REALmagic drivers for Windows NT.

Application note.

New features

This new beta version has an improved network support by avoiding opening twice the file and seeking backward when using MMIO functions. This means that an installed IO procedure should not receive any call with MMIOM_SEEK flag set during MPEG playback unless an MCI_SEEK command is issued. Most of the difficulty was to keep the right position when reading data out of a buffer or a network. See section “� REF _Ref363620522 * MERGEFORMAT �Installed IO procedure support�” for more information.

32khz and 48khz audio playback is now suported.

Installed IO procedure support

This feature allows you to use “buffered” input to feed the MCI driver with data that is not necessary accessible using a regular file (such as network). To achieve this, you need to install an MMIO procedure using the “mmioInstallIOProc” Windows multimedia API (do not forget to add a “+” add the end of the file name, following the extension). Note that the file name has no importance; only the extension and the drive really matter (the drive must be a hard disk drive; the MCI driver may not use MMIO functions when reading data out of a CD-ROM or a Network drive - for performance purposes). You may add any string after the “+”; they will be sent to you in the MMIO procedure when opening the file; you will be the only one to use this information.

Note: installed IO procedures are not related to buffered file input/output.

Installed procedure calls

The MMIO install procedure prototype is the following:

LONG mmioFunc (lpmmioinfo: Pchar; uMessage: UINT; lParam1, lParam2: LPARAM);

Warning: consider that the MMIO functions are only used when source is a hard drive (the letter specified in the filename should refer to a hard drive). This is for later compatibility and for performance purposes.

The following rules will be maintained in the future releases of the MCI driver:

The MMIOM_OPEN and MMIOM_CLOSE flags will be sent only once to the callback when the MCI driver opens the file consecutively to an MCI_OPEN, MCI_PLAY filename or MCI_LOAD command and when it closes the file consecutively to an MCI_CLOSE.

The MMIOM_SEEK flag will be sent twice right after receiving the MMIO_OPEN flag. The first time, the seek origin will be set to SEEK_END with a 0 position. The MCI driver uses the returned value to calculate the file size. You may return the real file size or 0 if it is undefined (don’t forget to update the lDiskOffset field of the MMIOINFO structure). The second time, the seek origin will be set to SEEK_SET with a 0 position. The MCI driver uses this call to reset the device position to the beginning of the file. When using an MMIO procedure, you do not need to physically seek during these two calls.

From the time the first MMIOM_READ flag is received, no more MMIOM_SEEK flags will be received by the callback unless an MCI_SEEK, MCI_STOP or any set of MCI commands forcing the device to seek is issued by your application.

When treating the MMIOM_READ flag in the MMIO callback procedure, you may return any number of bytes between 1 and the given parameter lParam2 (you may return always 1 byte, but this would dramatically reduce the system performance). Return as much data as possible; you should consider 100 bytes as a minimum. Note that the MCI driver will consider a 0 value as the end of the MPEG data. For network purpose, also note that you may wait for more data to be received before returning from the MMIO callback (the MCI driver will keep playing as long as data is available in its internal FIFO). Note that you should not use the buffer provided by the given parameter lParam2 for other purposes than loading data during the callback, even though the same buffer will be sent on each call.

File type analysis

The following rules are only information on reader’s discretion and are subject to changes:

The extension is not used to determine the file type.

After opening the input file and reading MPEG data, the MCI driver will search for a pack header (0x000001BA), for a sequence header (0x000001B3) or for an audio syncword (0xFFF). The driver will consider immediately the file as an MPEG system file when a pack header is found. In the two other cases, the driver will keep on searching for a header in order to verify the sequence header or the audio syncword is not inside a packet. When a minimum number of bytes has been looked (around 3000 bytes), the driver will decide whether the file is a video file (first choice) or an audio file (no sequence header has been found).

When the file is considered as a system file, the driver will start searching for information on the different video and audio streams. When a sequence header is found (there can be more than one to describe the streams), the driver will use it to calculate the number of video and audio streams. Then, the driver will try to retrieve information for those streams in the first 20 packets. If some streams remain not initialized (i.e. declare inside a sequence header, but no matching packets) the driver will keep on looking in the next 80 packets or until the first matching packet is found. If some streams are unknown (i.e. not declared in a sequence header), they will be treated the same way. Note that the driver will stop searching for streams when an invalid packet is found (i.e. the next packet header does not match with the previous packet header after adding the position of the previous packet and its size).

When the file is considered as an audio file, the first audio syncword found will be considered as the beginning of an audio frame (which may not be true: audio syncword are allowed inside audio data).

The first packet of a stream is used to determine some of its characteristics. Thus, the first video packet needs to have a sequence header fully contained inside the packet (it does not have to be at the beginning of the packet). Same thing for the audio: the first audio syncword found in the packet - there must be at least one - will be considered as the beginning of a valid audio frame.

Network issues

This release of the MCI driver has been especially designed to support networks:

MPEG data is read sequentially during playback (no seek).

Any amount of data (between 1 and a given size) can be loaded.

Improved support of missing MPEG data and data corruption.

When the server is continuously playing MPEG data over the network and the client wants to output this data at anytime, the application needs to make sure the first video packet contains a sequence header. It can force it by getting a sequence header (from the server or from a local file) and putting it at the beginning of the first video packet found following a pack header (remember MPEG data before a pack header will be ignored). Note that the system clock reference of all the packs and time stamps of all the packets need to be correct (this solution ensures it) and that system header is optional. The audio should not be a problem since every packet usually contains at least one syncword (one packet is around 2000 bytes and an audio frame around 700 bytes); you may force the audio information (sampling frequency included) by getting it the same way as for the video or just by verifying the first syncword is the beginning of a real audio frame (if not, just replace the syncword by 0).

