
Adding Emulation to PlanetLab Nodes∗

Marta Carbone
Dip. di Ingegneria dell’Informazione

Università di Pisa, Italy
marta.carbone@iet.unipi.it

Luigi Rizzo
Dip. di Ingegneria dell’Informazione

Università di Pisa, Italy
rizzo@iet.unipi.it

ABSTRACT
Network testbeds have become very popular to support re-
search on network protocols and distributed applications.
When it comes to reproduce network behaviour, testbeds
range between two extremes: use a fully emulated network,
as in EmuLab, which yields very reproducible experiments
but might be a poor representation of reality; or commu-
nicate through the real Internet, as in PlanetLab, resulting
in more realistic but less reproducible scenarios. Having
both features available in the same testbed, and being able
to choose and mix the two at will, is clearly interesting for
researchers.

In this paper we present an extension of the PlanetLab
testbed to add emulation capabilities to all nodes. The
work is centered around the Dummynet emulator, which we
ported to Linux as part of this project.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques

General Terms
Experimentation, Measurement, Performance

1. INTRODUCTION
In recent years many testbeds have been deployed to sup-

port research on network protocols and distributed applica-
tions. The motivation behind these deployments is to make
available to researchers a system that, for its size and fea-
tures, would be not affordable otherwise. The actual target
of each testbed varies. Some of them, such as EmuLab [1],
are focused on providing a very reproducible environment, in
terms of node capacity or network resources. Other testbeds
address specific aspects, such as the study of wireless net-
works (ORBIT [2]), or routing protocols (VINI [3]), or mesh
and sensor networks. Finally, testbeds such as PlanetLab [4]
are more oriented towards providing a realistic snapshot of
the real Internet.

The main contribution presented in this paper is an ex-
tension that we developed to add emulation capabilities to

∗The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement n.224263
– Onelab2.

Copyright is held by the author/owner(s).
CoNEXT’09 Student Workshop, December 1, 2009, Rome, Italy.
ACM 978-1-60558-751-6/09/12.

PlanetLab. With this work, PlanetLab users gain the ability
to configure, independently of each other, the actual features
of the network, thus making it possible to run experiments
in richer and more varied settings.

2. ARCHITECTURE
PlanetLab is a network testbed made by nodes, con-

tributed by participating organizations and distributed
across the Internet. Nodes are managed by a central au-
thority called PLC, which stores user credentials and other
management information. On each node, users can create a
virtual server called sliver, which provides resource isolation
and gives them the illusion of a dedicated system.

The goal of our emulation system is let users define, from
within their experiments, emulated links with configurable
features, and pass their own network traffic through these
links. The architecture of our system is shown in Figure 1.
The emulation is implemented by a Linux version of the
Dummynet link emulator. The configuration of the emulator
is done through the vsys subsystem described next.

Figure 1: The interaction between slivers, vsys and

the Dummynet emulator.

2.1 The vsys subsystem
Slivers run in a so-called slice context, where they have

limited access to the node’s resources. Privileged operations
can be run through the vsys subsystem, which is made of
two parts: a vsys-frontend, running in slice context, and a
vsys-backend, running in root context, where full access to
the node is allowed. A sliver must call a vsys frontend to
execute privileged commands; the vsys makes appropriate
permission checks and, if allowed, calls the corresponding
vsys backend to serve the request.

In our emulator, the frontend, called netconfig, is in
charge of collecting the parameters to configure an emu-



lated link. The backend, called ipfw-be, does the param-
eter checking and possibly configures the emulator or up-
dates the existing configuration. In turn, the backend talks
to the Dummynet kernel module and its control program
/sbin/ipfw to configure and perform the emulation.

2.2 The Linux port of Dummynet
The actual emulator is a Linux port of the Dummynet[5]

emulator and its associated packet filter, ipfw, originally de-
veloped on FreeBSD. The porting work consisted in the iden-
tification and design of suitable replacements for the kernel
subsystems used by Dummynet.

A first issue was to hook the classifier and the emulator
into the network stack. Our two requirements are to inter-
cept upstream and downstream traffic (Figure 1), and to
reinject packets back into the stack after a suitable delay.

On Linux, we have used the netfilter mechanism to pass all
packets to ipfw. For each packet we create a stripped-down
mbuf structure to adapt the in-kernel packet representation
between FreeBSD and the Linux equivalent (sk_buff). The
mapping does not require expensive data copies nor modifies
the packet itself. On return, the external mbuf descriptor is
simply destroyed, and the packet is reinjected by netfilter
completely unmodified into the network stack.

The adaptation of other system services has been done by
writing wrappers around Linux functions so that we could
export a FreeBSD-compatible API. This includes locking (in
the Linux port, we have mapped mutexes and rwlocks to
spin_lock_bh()); the memory allocator and timer support
(Linux offers a similar functionality, with only a different
interface and naming); and the infrastructure to support
loadable kernel modules.

The result of this porting work is a single kernel
module, ipfw_mod.ko, containing both the packet classi-
fier and the emulation module, and a control program,
/sbin/ipfw, which provides the user interface. The cur-
rent code has been tested on a wide range of Linux ver-
sions, including OpenWRT. The full code is available at:
http://info.iet.unipi.it/∼luigi/dummynet/ .

3. USAGE
Installing and using the emulator is extremely simple.

Vsys and netfilter are already part of PlanetLab nodes, and
we have created a new package with the ipfw_mod.ko mod-
ule and associated utilities, which is installed automatically
when a PlanetLab node is created or upgraded.

Users must install in their sliver a package containing the
frontend program, netconfig, which they can run to con-
figure an emulated link even from within an experiment.
netconfig requires the TCP or UDP port number for the
traffic to intercept, plus any other additional parameters re-
lated to emulation (bandwidth, delays and so on), e.g.:

./netconfig -p <port number> <parameters>

This results in the backend program being run, which in
turn performs the desired configuration. The following is
an example of the ipfw rules generated when configuring
emulation on port 5678:

ipfw pipe 5678 config <parameters>
ipfw add 5678 pipe 5678 src-ip ME src-port 5678 uid S // EXP
ipfw add 5678 pipe 5678 dst-ip ME dst-port 5678 uid S

As we can see, we configure two rules, one per direction.
One of the rules also stores, in the comment field, the expire

time (EXP) for the rule, which is used to delete old config-
urations. Additionally, to avoid interference between users
of different slivers, we exploit the VNET system. VNET
provides virtualized network access on nodes, and among
other things it tags packet with the identifier of the slice the
packet belongs to. When installing rules in the emulator,
the backend also adds a check on the slice identifier (S in
the listing) so that slivers can only capture their own traffic.

4. ACCURACY AND PERFORMANCE
The basic accuracy of our emulator equals the resolution of

the timer tick, which on PlanetLab nodes is 1ms. While this
may seem rather coarse, note that it corresponds to the du-
ration of a maximum-size Ethernet frame at 12 Mbit/s, not
to mention that timing uncertainties due to the scheduling
of slivers are possibly an order of magnitude higher. Much
better resolution can be easily achieved by increasing the
resolution of the timer tick (we have successfully run kernels
with 25..100µs ticks), or relying on High Precision Timers.
Also note that the granularity only affects the error on the
timing of individual events (packet transmissions or recep-
tions), but does not accumulate over multiple events.

Another factor that influences the accuracy of the
emulation is the CPU load on the nodes. To measure this,
we tested the ping response time for a node with 1 and
100 ipfw rules, in three different load conditions: IDLE (no
activity other than standard system tasks), USER (several
CPU-bound user processes consuming all available CPU
cycles), and KERNEL (several CPU-intensive kernel tasks).
Results (average and standard deviations, in µs) are below:

Experiment IDLE USER KERNEL
IPFW-1 28.1 / 2.82 28.2 / 1.36 55.1 / 2.62
IPFW-100 36.2 / 1.82 36.3 / 1.78 71.0 / 2.60

Compared to the IDLE case, USER load has almost no im-
pact, but KERNEL load can easily add an extra 25-35µs
to the packet processing times, so it is rather pointless to
increase the timer resolution beyond this limit.

We have also measured the per-packet processing cost
of the emulator, which is the sum of two components: a
“classification” time, to check the packet against the rules
in the classifier; and the “emulation” time, to pass the
packet through the emulator’s data structures. We mea-
sured 100–200ns per rule in the classifier, and 600ns for the
“emulation” time, even with 1000 active pipes. These times
should be compared with the overall packet processing times,
which on our test system were around 3µs. As a result, the
presence of the emulator should not impact significantly the
network performance of a node.

5. REFERENCES
[1] Emulab. http://www.emulab.net/.

[2] Orbit. http://www.orbit-lab.org/.

[3] Vini. http://www.vini-veritas.net/.

[4] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman. PlanetLab: an
overlay testbed for broad-coverage services. SIGCOMM

Comput. Commun. Rev., 33(3):3–12, 2003.

[5] L. Rizzo. Dummynet: a simple approach to the
evaluation of network protocols. SIGCOMM Comput.

Commun. Rev., 27(1):31–41, 1997.


