Popular 500 WORKSTATION

Popular 500 WORKSTATION

COPYRIGHT

Copyright © 1986 by MULTITECH INDUSTRIAL CORP. All rights reserved. No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written permission of MULTITECH INDUSTRIAL CORP.

DISCLAIMER

MULTITECH INDUSTRIAL CORP. makes no representations or warranties, either express or implied, with respect to the contents hereof and specifically disclaims any warranties or merchantability or fitness for any particular purpose. MULTITECH INDUSTRIAL CORP. software described in this manual is sold or licensed "as is". Should the programs prove defective following their purchase, the buyer (and not MULTITECH INDUSTRIAL CORP., its distributor, or its dealer) assumes the entire cost of all necessary servicing, repair, and any incidental or consequential damages resulting from any defect in the software. Further, MULTITECH INDUSTRIAL CORP. reserves the right to revise this publication and to make changes from time to time in the content hereof without obligation of MULTITECH INDUSTRIAL CORP. to notify any person of such revision or changes.

OFFICE/
15FL. 135 CHIEN KUO N. ROAD. SEC. 2. TAIPEI
10479, TAIWAN, R.O.C.
TEL: (O2)505-5533
TELEX: 19162 MULTIIC FAX: (02)505-4451
FACTORY/
1 industry e. road. III.
HSINCHU SCIENCE-BASED INDUSTRIAL PARK hSINCHU. TAIWAN 300. R.0.C.

Table of Contents

Chapter 1 Getting Started

Chapter 2 Keyboard Usage

Chapter 3 On-board Switch Setting

Chapter 4 How to Install the Expansion Board

Chapter 5 How to Install the Floppy Disk Drive on the System Unit

Appendix

A. I/O Channel Pin Assignment
B. Keyboard Connector Pin Assignment
C. CPU Pin Assignment
D. 8080 Registers
E. 8086/8088 Instruction Set - Listed Alphabetically
F. 8086/8088 Instruction Set - Object Codes in Ascending Numeric Sequence
G. BIOS Error Messages
H. U43 Memory Mapping
I. MEM-500 Installation Guide

Chapter 1

Getting Started

The first thing to learn about your computer is the different configurations that made up a complete system. This chapter is all about these configurations and a brief description on their functions.

Every complete computer system consists of:

1.1 The System Unit

The system unit is the personal computer itself and it comes in the form of an attractively designed box measuring about $400 \times 120 \times 380 \mathrm{~mm}$. Housed inside are the different vital parts that make the system unit function. These include the Central Processing Unit (CPU) which is also referred to as the heart of the computer, the power supply, fan, motherboard, peripheral interfaces and circuitries, etc.

1.2 The Real Panel

Important features on the rear panel like the power switch, sockets and connectors provide convenience for connecting peripherals like the keyboard, printer and monitor to the system unit.

Fig. 1-1 The Rear Panel

1.3 The Keyboard

Provided with the system is a 84-key typewriter style keyboard. The keys are low profile, full travel, sculptured type. In additional to the standard typewriter keys, there are the function keys, cursor control keys and numeric keypad for user convenience.

The keyboard can also be inclined for typing comfort. To tilt the keyboard, pull out the two pivotal legs at the bottom. Refer to Chapter Four for details on keyboard usage.

Fig. 1-2 Keyboard

The Rear Panel Connectors and 1.4 Switches

The power switch, peripheral sockets and connectors are located at the rear panel of the system unit as shown in Fig. 1-3. The corresponding peripherals that can be attached are also shown.

Fig. 1-3 The Rear Panel

1.5 The System Power Socket

Power is supplied to the system unit by means of a power cable. The three-prong male socket from the cable should be plugged to the system power socket in the rear panel as shown in Fig. 1-4. The other end of the cable is plugged to the power source.

Fig. 1-4 System Power Socket

1.6 The System Unit Power Switch

The power switch is located at the upper left corner of the rear panel. The power to the system is turned on and off using this switch.

Fig. 1-5 System Unit Power Switch

1.7 The Video Monitor Power Socket

For monochrome monitors, the monitor power cable should be connected to the video monitor power socket located below the system power switch. Color monitors are usually plugged directly to the power outlet.

Fig. l-6 Video Monitor Power Socket

1.8 The Keyboard Connectors

The keyboard connector (Fig. 1-7) provides the interface between the system unit and the keyboard.

Fig. 1-7 The Keyboard Connector

1.9 Expansion Slots

Inside the system unit is a vertical motherboard that supports four horizontal expansion slots. Add-on cards are inserted horizontally into these slots as against the conventional vertical insertion.

The CPU card is inserted in the lowest slot while the IO board occupies the next-to-lowest slot.

A display card may or may not be added into one of the two upper slots depending on your model. For details on how to install a card into the slot, refer to Chapter 4.

Fig. 1-8 The MotherBoard and the Expansion Slots

1.10 The CPU Card

On the CPU card are:
A. The 8088 CPU working at 4.77 MHz without coprocessor 8087.
B. ROM: 8 K bytes for BIOS (U36)
C. RAM: up to 512 K bytes of memory can be installed on board without parity check.
D. DMA (8237) : working at 4.77 MHz
E. WAIT: I/O RN Wait 1 clock for 4.77 MHz
F. Keyboard Interface: Compatible with IBM-PC keyboard.

* The total memory can be expanded to $64 \emptyset \mathrm{~KB}$ (512 KB on board and 128 KB on the expansion card) by using an expansion card - the MEB-5øø. For details on how to use the MEB-500, please refer to Appendix I.

Fig. 1-9 CPU Card Block Diagram

Chapter 2

Keyboard Usage

The keyboard serves one of the most important functions in a computer system. Without the device, direct communications between the computer and the user will be impossible.

By using the keyboard, the user can key in commands directly and store them in the diskette, or simply "echo" data entered on the screen.

There are 84 keys on the keyboard. These keys are divided into three groups: 1) the main keyboard, 2) the numeric key pad, and 3) the function keys.

2.1 The Main Keyboard

Fig. 2-1 The Main Keyboard

The main keyboard is similar to an ordinary typewriter keyboard. It is used mainly to enter alphabets from A to Z, numeric digits from \varnothing to 9 , special signs, and punctuation marks such as:

Once a key is pressed, its corresponding character will be displayed on your video monitor. In this case, we say the pressed key is "echoed" on the screen in computer terminology.

2.1.1 The Shift Key

Fig. 2-2 The Shift Key

The main keyboard may be used to enter both upper and lower case characters. On an ordinary typewriter keyboard, pressing the Shift key and any key will produce an upper case character of that key. By the same token, to type an upper case character using this keyboard, press the desired key while holding down the Shift key. The Shift key is always used together with another key.
2.1.2 The Ctrl (Control) Key

Fig. 2-3 The Ctrl Key

The control key, which is marked "Ctrl", is another kind of shift key. Normally, it is used together with other keys to generate an internal code for a special function that the system understands.

2.1.3 The Alt (Alternate) Key

Fig. 2-4 The Alt Key

The Alt key is a third kind of shift key that is used in conjunction with other keys to perform a special function.

2.1.4 The Caps Lock Key

Fig. 2-5 The Caps Lock Key

This key is located on the lower right corner of the main keyboard. This key functions as an on/off (toggle) switch for shifting from capital letters to small letters.

Pressing this key once will lock your keyboard to the capital-letter-only mode. After locking the keyboard to the capital-letter-only mode, all the keys pressed will be echoed in upper case letters on the video monitor. Pressing it again will return your keyboard to the lower case mode.

2.1.5 The Enter Key

Fig. 2-6 The Enter Key

This is the Enter key. It is equivalent to the typewriter's carriage return. When the Enter key is pressed, the cursor will move to the beginning of the next line.
2.1.6 The Backspace Key

Fig. 2-7 The Backspace Key

Pressing the Backspace key will move the cursor one character to the left of its current position, at the same time deleting the character from the position it has moved from.

2.1.7 The Tab Key

Fig. 2-8 The Tab Key

The Tab key shifts the cursor eight spaces to the right at each press. However, it cannot cause the cursor to tab to the left.

2.1.8 The Space Bar

Fig. 2-9 The space Bar

The Space bar is located at the bottom of the main keyboard. This key is used for producing spaces.

2.2 The Numeric Keypad

Fig. 2-10 The Numeric Keypad

On the right side of the keyboard is the numeric keypad as shown by the shaded keys in Fig. 2-10. These keys have two specific functions, including the numeric or cursor-control modes.

When serving as the numeric mode, the keys in this area are used for entering numerals. This is rather convenient for entering long string of numeric data.

The default is cursor-control mode. This means that upon power on, the keys on the numeric keypad will be used to shift the cursor one space to any of the four directions as indicated by the respective keys. -

To enter the numeric mode, press the Num Lock key once. Pressing the "Num Lock" key for a second time disables the numeric mode.

The usage of each key in the numeric keypad depends on different software. A detailed explanation of the operation of some special keys in this area are as follows:

Pressing this key once will print an asterisk (*) on the screen. When this key is used together with the "Shift" key, all the data on the screen wil be printed on the printer. When used with the "Ctrl" key, each line of data will be printed as they are entered from the keyboard.

ESC

This key is defined differently by different application softwares. Please refer to the manual pertaining to operating system or application programs for the key's usage.

This key is used to determine the movements of the text on the screen when the cursor reaches the top line of the screen or the bottom of the screen. Pressing it once will cause the LED labelled "Scroll Lock" to light up. Pressing it again will turn off the LED.

When this key is locked on, the cursor-up and the cursor-down keys move the text on the screen up or down one line without changing the cursor position.

There is also another function for this key. The "Break" key is used together with the "Ctrl" key to terminate the execution of a program or command.

This key is a function key whose usage depends on your own application programs or operating system.

This key is used to insert character (s) in a line. When a character is inserted, all the data to the right of the cursor moves one position to the right. Under certain application software, pressing this key once will cause the screen to stay in the "Insert on" mode.

This key is used to erase the character where the cursor is positioned. When a character is deleted from a line, all the data to the right of the cursor moves one position to the left.

This key is used to enter the minus symbol.

This key is used to enter the plus symbol.

Cursor Control Keys in the Numeric Keypad

isThis key is called the "cursor-up" key whose function is to move the cursor up one line at a time.

This key is called the "Cursor-down" key whose function is to move the cursor down one line at a time.

This key is called the "cursor-right" key which moves the cursor one position to the right at a time.

This is the "cursor-left" key which moves the cursor one position to the left at a time.

This key is called the "Home" key which moves the cursor to the top left corner of your screen.

This is the "End" key whose function depends on the definition of different application software.

9 This key is called the "Page-Up" key which moves the cursor up by one screen. The length of one screen depends on the definition of different application software.

3 Pgon This key is called the "Page-Down" key which moves the cursor down by one screen. The length of one screen depends on the definition of different application software.

2.3 The Function Keys Under the MS-DOS

Fig. 2-11 The Function Keys
Under MS-DOS, the first five function keys are used mainly for editing. Their functions are:

2.3.1 Fl

Fl is used for displaying one character from the template each time you enter this key. The same results can be achieved by using the right direction arrow key ("6" on the numeric keypad).

For example, type "Personal Computer" from the keyboard and hit F 5 to enter the characters into the template. Press the Fl key 17 times and all the characters, one character at a time from left to right, will be displayed.
2.3.2 F2

Pressing F2 and a character will display all the characters preceding that character from the template. The specified character and the succeeding characters will not be displayed.

For example, pressing F2 and then "C" will immediately display "Personal" on the screen.

2.3.3 F3

Pressing $F 3$ will copy all the characters from the template to the screen.
2.3.4 F4

This key will delete all the characters preceding a specified character.

Let's continue with the above example. Enter "Personal Computer" and press F5. Press F4 and "C". Nothing seems to have happened. Don't worry. Now press F3 and "Computer" will be shown on the screen. The characters preceeding the "C" in "Computer" has been deleted.
2.3.5 F5

Pressing F 5 will send all the keyed in characters to the template without sending them to the computer for processing.

For example, after the MS-DOS prompt > appears, enter "Multitech Personal Computer" and press F5, a "@" will be displayed at the end of the line and the cursor will move to the beginning of the next line. Now enter the key F3, all the characters that you just typed into the template will be displayed.

2.4 Other Editing Keys

Aside from the five function keys, there are three more keys that are used for MS-DOS editing. They are the "Del", "Ins" and "Esc" keys on the numeric keypad.
2.4.1 Ins

Ins will insert characters anywhere in the line. The "Ins" key is located at the bottom of the numeric keypad.

For example, key in "Personal Computer". Press F5 to enter these characters into the template. Press Fl until "Personal" is displayed on the screen. Press "Ins" key once and key in "micro". Now press the "Ins" key again to exit from the insert mode. Press F3 and "Personal microcomputer" will be shown on the screen.
2.4.2 Del

The Del key deletes characters (to the right of the cursor position) from the template without moving the cursor position on the screen. It is located at the bottom of the numeric keypad.

Using the above example, press Fl until "Personal" appears on the screen. Press the Del key five times (to delete "micro") before pressing F3. Now "Personal computer" will be shown on the screen.
2.4.3 ESC

The Esc key will cancel the current line on the screen. However, the characters in the template remain unchanged.

While "Personal computer" is being displayed, press the "Esc" key. The cursor will move to the next line. You can either enter new data and press the Return key to remove the previous data from the template, or you can press F3 to re-display "Personal computer".

2.5 Key Positions

2.5 Key Positions

2.6 Key Scan Codes (For PC Mode)

LEGEND KEY	POSITION	MAKE CODE	BREAK CODE
Esc	1	$\emptyset 1$	81
!1	2	02	82
@2	3	03	83
\#3	4	$\emptyset 4$	84
\$4	5	05	85
\% 5	6	$\emptyset 6$	86
${ }^{\wedge} 6$	7	07	87
\&7	8	08	88
*8	9	09	89
$(9$	10	®A	8A
) \varnothing	11	$\emptyset \mathrm{B}$	8B
-	12	$\square \mathrm{C}$	8 C
+=	13	ØD	8D
Back Space	14	$\emptyset E$	8 E
$\stackrel{H}{\rightarrow}$	15	$\emptyset F$	8 F

2-14

LEGEND	KEY POSITION	MAKE CODE	BREAK CODE
Q	16	10	90
W	17	11	91
E	18	12	92
R	19	13	93
T	20	14	94
Y	21	15	95
U	22	16	96
I	23	17	97
0	24	18	98
P	25	19	99
\{[26	1A	9A
\}]	27	1B	9B
\longleftarrow	28	1 C	9 C
Ctrl	29	1D	9D
A	30	1 E	9E
5	31	$1 F$	9F
D	32	20	A0
F	33	21	Al

LEGEND	KEY POSITION	MAKE CODE	BREAK CODE
G	34	22	A2
H	35	23	A3
J	36	24	A4
K	37	25	A5
L	38	26	A6
:;	39	27	A7
",	40	28	A8
~	41	01	81
\triangle Shift	42	2A	AA
N	43	2B	AB
Z	44	2C	AC
X	45	2D	AD
C	46	2E	AE
V	47	2F	AF
B	48	30	Bø
N	49	31	B1
M	50	32	B2
<,	51	33	B3
>.	52	34	B4

LEGEND KEY	POSITION	MAKE CODE	BREAK CODE
?/	53	35	B5
\triangle Shift	54	36	B6
Sys Req	55		
Alt	56	38	B8
Sp	57	39	B9
Caps Lock	58	3A	BA
Fl	59	3B	BB
F2	60	3 C	BC
F3	61	3D	BD
F4	62	3E	BE
F5	63	3 F	BF
F6	64	40	Cø
F7	65	41	Cl
F8	66	42	C2
F9	67	43	C3
Fl0	68	44	C4
Num Lock	69	45	C5

LEGEND KEY	POSITION	MAKE CODE	BREAK CODE
Scroll Lock	70	46	C6
7 Home	71	47	C7
81	72	48	C8
9 Pg Up	73	49	C9
PrtSc *	74	37	B7
4 <-	75	4B	CB
5	76	4 C	CC
$6->$	77	4D	CD
-	78	4A	CA
1 End	79	4F	CF
$2 \downarrow$	$8 \emptyset$	50	DO
3 Pg Dn	81	51	D1
\emptyset Ins	82	52	D2
- Del	83	53	D3
+	84	4E	CE

Chapter 3

On-board Switch
Setting

3.1 Configuration Switch Settings

There is a DIP (Dual In-Line Package) switch on the CPU card designated as SWl. On this switch are eight slide switches that can be set to "ON" or "OFF" by using a pin or toothpick.

The switch is adjusted so that the microprocessor can access the devices connected directly or indirectly to it, e.g., the RAM (Random Access Memory) and peripheral devices that are connected to or installed in your system unit.

3.2 The Location of the DIP Switch

The switch is positioned conveniently in the rear panel in such a way that it can be accessed without having to remove the housing from the system unit.

Remove the metal strip on the CPU Board by loosening the screw as shown in Fig. 3-1. The DIP switch is then visible.

The locations of the two switches are shown in the following illustration:

Fig. 3-1 Location of the DIP Switch
To operate your system properly, SWl should be set properly. The following is a summary of the function of each slide switch. The summary provides you with an overview of the functions of the two configuration switches.

Descriptions of the 3.3 DIP Switches

3.3.1 SW1 - DIP Switch One

Switch
No. Function
SWl-1 Enables disk drive.
SWl-2 Unused
SWl-3 SWl-3 and SWl-4 determine the amount
SWl-4 of RAM installed on the system board.
SWl-5 Determines the number of display columns.
SWl-6 Determines display type.
SWl-7 SWl-7 and SWl-8 determine the number
SWl-8 of disk drive(s) installed in the system unit.

3.4 Default Switch Settings

| 3.4.1 SWl | DIP Switch One |
| :--- | :---: | :--- |
| Switch Default
 No. Setting | |
| SWl-1 OFF Disk drive enabled.
 SWl-2 $*$ Unused
 SWl-3 OFF Default Memory Size is 256K
 SWl-4 OFF . | |

SWl-5	ON	Default display type is CGA and display is 80 characters
by 25 lines.		

3.5 How to Set the Switches

We strongly recommend that all switch positions be noted down before attempting to adjust any of the switches (so that you can reset them to their original positions if necessary).
3.5.1 Switch No. 1 - SWl

SWl-1 The normal position of this slide switch is OFF. This will load the operating system from the floppy disk drive to the system memory upon system power on. If it is ON , the diskette drive(s) will be deactivated, and the system cannot be booted even if you have diskette drive(s) installed and operating system program inserted in your diskette drive.

SWI-5 The video display type is determined by SWl-5 and SWl-6. Be forewarned that setting the slide switches for the display monitor differently from those given in this manual may damage your display. For monochrome display monitor, this slide switch should be set to OFF. For color display monitor having 40 characters per line, it should also be set to OFF. Refer to the following figures for the correct switch settings. Set this switch to ON if the Enhanced Graphics Adapter is installed.

SW1-6 This slide switch should be set to OFF for monochrome display. For color monitor with $4 \emptyset$ characters mode, it should be ON. Refer to the following figures for the correct switch settings. Set this switch to ON if the Enhanced Graphics Adapter is installed.

SW1
ON
OFF

Fig. 3-2 Switch Setting for Monochrome Display 80×25

ON
SWI

Fig. 3-3 Switch Setting for Color Card 40×25

ON
SW1
OFF

Fig. 3-4 Switch Setting for Color Card $8 \emptyset \times 25$

SWl-7 The number of disk drives is determined by switches SWl-7 and SWl-8.

SW1-8 In combination with SWl-7 the purpose of this slide switch is to determine the number of diskette drives in the system unit.

RAM Space Allocation and Switch

3.6 Settings

1. 512 K

Fig. 3-6 Switch Setting for 512K
BANK NO. CHIP TYPE MEMORY INCREMENT

Table 3-1 RAM Space Allocation for 512 K
2. 256 K

Fig. 3-7 Switch Setting for 256K

BANK NO. CHIP TYPE MEMORY INCREMENT
$1 \quad 41256 \quad 256 \mathrm{~K}$

Table 3-2 RAM Space Allocation for 256 K

Quick Reference for Switch Settings 3.7 Involved with the Memory Size

SW2-6 ON - indicates that 41256 RAM chips should be inserted in Bank \varnothing.
OFF - indicates that 4164 RAM chips should be inserted in Bank 1.

SW2-6	SWl-3	SWl-4	Enabled Bank	41256
ON	OFF	OFF	1	256K
ON	OFF	OFF	1,2	512K

Chapter 4

How to Install the Expansion Board

To install an expansion board into the system, simply follow the following steps:

1) Turn off the power switch on the rear panel of the system unit.
2) Turn off all external power switches (such as Monitor, Printer, etc.).
3) Disconnect all cables from the rear panel of the system unit, remembering distinctly where each cable was attached.
4) Place the system unit in a convenient position to allow easy access to the rear panel.
5) Remove the three screws from the cover with a flat screwdriver by turning them counter-clockwise as shown below. (Save the screws for re-installation of the cover.)

Fig. 4-1 Removing the Screws
6) Carefully slide the system unit's cover a few inches toward the rear as shown below, then pull both sides a little bit sideways.

Fig. 4-2 Openning the Top Cover
7) Raise the cover upwards and pull backwards. Set the cover aside.

Fig. 4-3 Removing the Cover
8) There are four expansion slots on the mother board. You can insert the expansion board in the unused slot.
9) Remove the metal strip that corresponds to the expansion slot by turning the screw counter-clockwise (save the screw for the re-installation of the expansion board).

Fig. 4-4 Removing the Metal Strip
10) Remove the screw on the board stopper and pull forward until it becomes horizontal. Insert the board horizontally. Make sure the board slides into the plastic groove on the right side.

Chapter 5

How to Install the Floppy Disk Drive on the System Unit

There is only one built-in floppy disk drive in our system but two floppy disk interfaces are supported by the FDI on the I/O board. For users who wish to expand their system by adding another disk drive, just follow these steps:

1. Place the system unit on a work table. Remove the housing from the system unit by removing the three screws from the rear panel.
2. The disk drives are housed inside the floppy drive unit inside the system unit. The built-in disk drive occupies the upper bunk; while the lower bunk is reserved for a second drive.
3. Remove the four screws from the floppy drive unit, refer to Fig. 5-1. Save the screws for reinstallation.

Fig. 5-1 Removing the Screws from the Floppy Drive Unit
4. Slide the floppy drive unit towards the rear of the system unit until the lever of the built-in floppy disk drive is beyond the top of the front panel. Remove the floppy drive unit by lifting it upwards, then place it on the work table. See Fig. 5-2.

Fig. 5-2 Removing the Floppy Drive Unit
5. A plastic board covers the empty lower bunk to prevent dust and other foreign materials from getting inside the system unit. Remove the plastic board by removing the two screws that attach it to the floppy drive unit as shown in Fig. 5-3.

Fig. 5-3 Removing the plastic board from the Empty Lower Bunk

Fig. 4-5 Inserting the Card
11) Note that the board should be inserted between two notches in the board guide. Screw the board in place. Return the card stopper to its original position and screw it in place.
12) Read the instructions for the option card and make the necessary connections if any.
13) Replace the cover and reinstall the screws.

Appendix

A. I/O Channel Pin Assignment

B. Keyboard Connector Pin Assignment

The keyboard is connected to the system through a cable attached with a 5-pin DIN connector. The following table lists the pin assignment of the connector and their corresponding signals.

Pin No.	Signal
1	Clock
2	Data
3	Reserved
4	Ground
5	+5 vdc

Note:
(A) : System Board 5-Pin Connector
(B) : Keyboard 5-Pin Connector

$$
B-1
$$

C. CPU Pin Assignment

Pin Name	Description	Type
ADO-AD7 A8-A15 A16/S3, A17/S4 A18/S5 A19/S6 SSO RD READY TEST INTR NIMI RESET CLK MN/MX SO, S1, S2 RQ/GTO, RQ/GI I QSO, QSI LOCK MN/MX IO/M WR ALE DT/R DEN INTA HOLD HLDA VCC. GND	Address/Data Bus Address Bus Address/Segment identifier Address/Interrupt enable status Address/status Status output Read control Wait state request Wait for test control Interrupt request Non-maskable interrupt request System Reset System Clock = GND for a maximum system Machine cycle status Local bus priority control Instruction queue status Bus hold control = VCC for a minimum system Memory or I/O access Write control Address Latch enable Data transmit/receive Data enable Interrupt acknowledge Hold request Hold acknowledge Power, ground	Bidirectional, tristate Output, tristate Output, trisate Output, tristate Output, tristate Output, tristate Output, tristate Input Input Input Input Input Input Output, tristate Bidirectional Output Output, tristate Output, tristate Output, tristate Output Output, tristate Output, tristate Output, tristate Input Output
Maximum System Signals ${ }_{\text {s }}$		um System Signals

8088 Pins and Signal Assignments

AX BX CX DX	AH	AL	Accumulator Base Reg. Counter Data	18		Instruction Pointer Status Flags
	BH	BL		Elagsh	Elags 1	
	CH	CL				
	DH	DL				
	SP		Stack Pointer	Cs		Code Segment
	BP		Base pointer	DS		Data Segment
	SI		Source Index	SS		Stack Segment
	DI		Destination Index	ES		Extra Segment

E. 8086/8088 Instruction Set — Listed Alphabetically

	Instruction	Object Code	Bytes	Clock Periods
$\begin{aligned} & \text { AAA } \\ & \text { AAD } \end{aligned}$		$\begin{aligned} & 37 \\ & \text { D5 } \\ & \text { OA } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{gathered} 4 \\ 60 \end{gathered}$
AAM		D4 OA	2	83
AAS ADC		$\begin{gathered} 3 F \\ 0001010 \mathrm{w} \end{gathered}$	$\stackrel{1}{2} \stackrel{\text { or } 3}{ }$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$
	ac,data	kk [ji]		
ADC	mem/reg ${ }_{1}$, data	$\begin{gathered} 100000 \mathrm{sw} \\ \text { mod 010 r/m } \\ \text { [DISP] } \\ \text { [DISP] } \\ \mathrm{kk} \\ \text { [j]] } \end{gathered}$	$\begin{gathered} 3,4,5 \\ \text { or } 6 \end{gathered}$	reg: 4 mem: 17 + EA
ADC	mem/reg ${ }_{1} \mathrm{mem} / \mathrm{reg}_{2}$	00100 dw mod rrr r/m [DISP] [DISP]	2,3 or 4	reg to reg: 3 mem to reg: $9+E A$ reg to mem: $16+$ EA
ADD	ac, data	$\begin{gathered} 0000010 w \\ \text { kk } \\ {[j j]} \end{gathered}$	2 or 3	4
ADD	mem/reg, data	$\begin{gathered} 100000 \mathrm{sw} \\ \text { mod } 000 \mathrm{r} / \mathrm{m} \\ \text { [DISP] } \\ \text { [DISP] } \\ \mathrm{kk} \\ \text { [jj] } \end{gathered}$	$\begin{gathered} 3,4,5 \\ \text { or } 6 \end{gathered}$	reg: 4 mem: $17+E A$
ADD	mem/reg ${ }_{1}, \mathrm{mem} / \mathrm{reg}_{2}$	000000 dw mod rrr r/m [DISP] [DISP]	2,3 or 4	reg to reg: 3 mem to reg: $9+E A$ reg to mem: $16+E A$
AND	ac, data	$\begin{gathered} 0010010 \mathrm{w} \\ \mathrm{kk} \\ {[\mathrm{ji}]} \end{gathered}$	2 or 3	4
AND	mem/reg, data	$\begin{gathered} \text { 1000000w } \\ \text { mod } 100 \mathrm{r} / \mathrm{m} \\ \text { [DISP] } \\ \text { [DISP] } \\ \text { kk } \\ \text { [ji] } \end{gathered}$	3, 4, 5 or 6	reg: 4 mem: $17+E A$
AND	mem/reg $1, \mathrm{mem} / \mathrm{reg}_{2}$	001000 dw mod rrr r/m [DISP] [DISP]	2, 3 or 4	reg to reg: 3 mem to reg: $9+$ EA reg to mern: $16+E A$
CALL	addr	$\begin{aligned} & \text { 9A } \\ & \text { kk } \\ & \text { ij } \\ & \text { hh } \end{aligned}$	5	28
CALL	disp 16	$\begin{aligned} & \text { gg } \\ & \text { E8 } \\ & \text { kk } \end{aligned}$	3	19
CALL	mem	$\begin{gathered} \mathrm{jj} \\ \text { FF } \\ \bmod 011 \mathrm{r} / \mathrm{m} \\ {[D I S P]} \\ {[D I S P]} \end{gathered}$	2,3 or 4	32-bit mem pointer: $37+E A$
CALL	mem/reg	$\begin{gathered} \text { FF } \\ \bmod 010 \mathrm{r} / \mathrm{m} \\ {[\mathrm{DISP}]} \\ {[D I S P]} \end{gathered}$	2,3, or 4	16-bit reg pointer: 16 16-bit mem pointer: $21+E A$

E-I

	Instruction	Object Code	Bytes	Clock Periods
CBW CLC CLD CLI CMC CMP	ac,data	98	1	2
		F8	1	2
		FC	1	2
		FA	1	2
		F5	1	2
		$0011110 w$	2 or 3	4
		kk		
CMP	mem/reg,data	100000 sw	3, 4, 5 or	$\begin{aligned} & \text { reg: } 4 \\ & \text { mem: } 10+E A \end{aligned}$
		$\bmod 111 \mathrm{r} / \mathrm{m}$	$3,4,5 \text { or }$	
		[DISP]		
		${ }_{\text {[DISP] }}^{\text {kk }}$]		
		[ji]		
CMP	mem/reg ${ }_{1}$,mem/reg ${ }_{2}$	001110dw	2, 3 or 4	reg to reg: 3
		$\begin{aligned} & \text { mod rri r/m } \\ & \text { [DISP] } \\ & \text { [DISP] } \end{aligned}$		mem to reg: $9+E A$ reg to mem: $9+$ EA
CMPS		$1010011 w$	1	22
				9+22/repetition*
CWD DAA DAS DEC		99	1	5
		27	1	4
		2F	1	4
	mem/reg	$1111111 w$	2,3 or 4	reg: 3
		$\begin{aligned} & \bmod 001 \mathrm{r} / \mathrm{m} \\ & \text { [DISP] } \end{aligned}$		mem: 15 + EA
		[DISP]		
DEC DIV	16-bit reg mem/reg	$\begin{gathered} 01001 \mathrm{rrr} \\ 1111011 w \end{gathered}$	1	8-bit reg. 2
		$\begin{gathered} 1111011 \mathrm{w} \\ \bmod 110 \mathrm{r} / \mathrm{m} \end{gathered}$	$2,3 \text { or } 4$	8-bit reg: $80 \rightarrow 90$
		[DISP]		16-bit reg:
		[DISP]		$144 \rightarrow 162$
				8-bit mem:
				$(86 \rightarrow 96)+E A$
				16-bit mem: $(150 \rightarrow 168)+E A$
ESC	mem/reg	11011xxx	2,3 or 4	mem: $8+E A$
		$\bmod x \times x \quad r / m$ [DISP]		reg: 2
HLT IDIV		[DISP] F4	1	2
	mem/reg	1111011w	2, 3 or 4	8-bit reg:
		$\bmod 111 \mathrm{r} / \mathrm{m}$		$101 \rightarrow 112$
		[DISP] [DISP]		16-bit reg: $165 \rightarrow 184$
		[DISP]		$165 \rightarrow 184$
				8-bit mem: $(107 \rightarrow 118)+E A$
				16-bit mem: $(171 \rightarrow 190)+E A$
IMUL	mem/reg	1111011w	2,3 or 4	8-bit reg:
		$\bmod 101 \mathrm{r} / \mathrm{m}$		$80 \rightarrow 98$
		[DISP]		$\begin{aligned} & \text { 16-bit reg: } \\ & 128 \rightarrow 154 \end{aligned}$
				8-bit mem:
				$(86 \rightarrow 104)+E A$
				16-bit mem: $(134 \rightarrow 160)+E A$
$\begin{aligned} & \text { IN } \\ & \text { IN } \end{aligned}$	$\begin{aligned} & \text { ac, DX } \\ & \text { ac, port } \end{aligned}$	1110110w		- 8
		1110010w	2	10

- When preceded by REP prefix

- Implied type $=3$

* When preceded by REP prefix

	Instruction	Object Code	Bytes	Clock Periods
MUL	mem/reg	$\begin{gathered} 1111011 \mathrm{w} \\ \text { mod 100 r/m } \\ \text { [DISP] } \\ \text { [DISP] } \end{gathered}$	2, 3 or 4	8-bit reg: $70 \rightarrow 77$ 16-bit reg: $118 \rightarrow 133$ 8-bit mem: $(76 \rightarrow 83)+E A$ 16-bit mem: $(124 \rightarrow 139)+E A$
NEG	mem/reg	$\begin{gathered} 1111011 \mathrm{w} \\ \mathrm{mod} 011 \mathrm{r} / \mathrm{m} \\ \text { [DISP] } \\ \text { [DISP] } \end{gathered}$	2,3 or 4	reg: 3 mem: $16+E A$
NOP NOT	mem/reg	$\begin{gathered} 90 \\ 1111011 \mathrm{w} \\ \text { mod } 010 \mathrm{r} / \mathrm{m} \\ \text { [DISP] } \\ \text { [DISP] } \end{gathered}$	$2,3^{1} \text { or } 4$	
OR	ac,data	$\begin{aligned} & 0000110 \mathrm{w} \\ & \text { kk } \\ & {[\mathrm{ji}]} \end{aligned}$	2 or 3	4
OR	mem/reg,data	$\begin{gathered} 1000000 \mathrm{w} \\ \text { mod } 001 \mathrm{r} / \mathrm{m} \\ \text { [DISP] } \\ \text { [DISP] } \\ \text { kk } \\ \text { [ji] } \end{gathered}$	$\begin{gathered} 3,4 \\ 6 \end{gathered}$	reg: 4 mem: 17 + EA
OR	$\mathrm{mem} / \mathrm{reg}_{1}, \mathrm{mem} / \mathrm{reg}_{2}$	000010dw $\bmod \mathrm{rrr}$ r/m [DISP] [DISP] kk [ji]	3, 4, 5 or 6	reg to reg: 3 mem to reg: $9+$ EA
$\begin{aligned} & \text { OUT } \\ & \text { OUT } \end{aligned}$	DX,ac port,ac	$\begin{gathered} 1110111 w \\ 1110011 w \\ y \underline{y} \end{gathered}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{gathered} 8 \\ 10 \end{gathered}$
POP	mem/reg	$\begin{gathered} 8 \mathrm{~F} \\ \bmod 000 \mathrm{r} / \mathrm{m} \\ {[\mathrm{DISP}]} \\ \text { [DISP] } \end{gathered}$	2, 3 or 4	$\begin{aligned} & \text { reg: } 8 \\ & \text { mem: } 17+\text { EA } \end{aligned}$
POP POP POPF	reg segreg	01011 rrr 000ss 111 90	1 1 1	$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$
PUSH PUSH	mem/reg	$\begin{gathered} \text { FF } \\ \bmod 110 \mathrm{r} / \mathrm{m} \\ \text { [DISP] } \\ \text { [DISP] } \end{gathered}$	2,3 or 4	reg: 11 mem: $16+E A$
PUSH PUSH PUSHF	reg segreg	$\begin{aligned} & 01010 \mathrm{rrr} \\ & 000 \mathrm{ss} 110 \\ & 9 \mathrm{C} \end{aligned}$	$\begin{array}{r} 1 \\ 1 \\ 1 \end{array}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$
RCL	mem/reg,count	$\begin{gathered} 110100 \mathrm{cw} \\ \mathrm{mod} 010 \mathrm{r} / \mathrm{m} \\ \text { [DISP] } \\ \text { [DISP] } \end{gathered}$	2, 3 or 4	$\begin{aligned} & \text { count }=1 \\ & \text { reg: } 2 \\ & \text { mem: } 15+E A \\ & \text { count: }[C L] \\ & \text { reg: } 8+\left(4^{\circ} N\right) \\ & \text { mem: } 20+E A+\left(4^{\circ} N\right) \end{aligned}$

[^0]E-5

	Instruction	Object Code	Bytes	Clock Periods
RCR	mem/reg,count	$\begin{gathered} 110100 \mathrm{cw} \\ \text { mod } 011 \mathrm{r} / \mathrm{m} \\ \text { [DISP] } \\ \text { [DISP] } \end{gathered}$	2,3 or 4	```count = 1 reg: } mem: 15 + EA count: [CL] reg: 8+(4*N) mem: 20+EA + (40N)```
$\begin{aligned} & \text { REP } \\ & \text { RET } \end{aligned}$	/REPE/REPNE (Inter-segment)	$\begin{gathered} 1111011 z \\ \text { CB } \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{gathered} 2 \\ 18 \end{gathered}$
RET	(Intra-segment)	C3	1	8
RET	disp 16 (Inter-segment)	CA	3	17
RET	disp 16 (Intra-segment)	$\begin{aligned} & \text { JI } \\ & \text { C2 } \\ & \text { k } \end{aligned}$	3	12
ROL	mem/reg,count	$\begin{gathered} 110100 \mathrm{cw} \\ \mathrm{mod} 000 \mathrm{r} / \mathrm{m} \\ \text { [DISP] } \\ \text { [DISP] } \end{gathered}$	2, 3 or 4	```count = 1 reg: } mem: 15 + EA count=[CL] reg: 8+(4*N), mem: 20+EA + (4*}N```
ROR	mem/reg,count	$\begin{gathered} 110100 \mathrm{cw} \\ \text { mod } 001 \mathrm{r} / \mathrm{m} \\ \text { [DISP] } \\ \text { [DISP] } \end{gathered}$	2, 3 or 4	```count \(=1\) reg: 2 mem: \(15+\) EA count: [CL] reg: \(\left.8+14^{\circ} N\right)\) mem: \(20+E A+\left(4^{\circ} N\right)\)```
$\begin{aligned} & \text { SAHF } \\ & \text { SAR } \end{aligned}$	mem/reg,count	$\begin{gathered} 9 E \\ 110100 \mathrm{cw} \\ \text { mod } 111 \mathrm{r} / \mathrm{m} \\ \text { [DISP] } \\ \text { [DISP] } \end{gathered}$	$2,3^{1} \text { or } 4$	$\begin{aligned} & \text { count }=1 \\ & \text { reg: } 2 \\ & \text { mem: } 15+E A \\ & \text { count }=[\mathrm{CL}] \\ & \text { reg: } 8+\left(4^{\circ} \mathrm{N}\right) \\ & \text { mem: } 20+E A+\left(4^{\circ} \mathrm{N}\right) \end{aligned}$
SBB	ac,data	$\begin{gathered} 0001110 \mathrm{w} \\ \text { kk } \\ {[\mathrm{ji]}]} \end{gathered}$	2 or 3	4 4
SBB	mem/reg, data	$\begin{gathered} 100000 \mathrm{sw} \\ \text { mod } 011 \mathrm{r} / \mathrm{m} \\ \text { [DISP] } \\ \text { [DISP] } \\ \mathrm{kk} \\ \text { [ij] } \end{gathered}$	$3,4,5 \text { or }$	reg: 4 mem: 17 + EA
SBB	$\mathrm{mem} / \mathrm{reg}_{1}, \mathrm{mem} / \mathrm{reg}_{2}$	$\begin{gathered} 000110 \mathrm{dw} \\ \text { mod rrr r/m } \\ \text { [DISP] } \\ \text { [DISP] } \end{gathered}$	2,3 or 4	reg from reg: 3 mem from reg: $9+E A$ reg from mem: $16+E A$
SCAS SEG	segreg	1010111w $001 s s 110$	1	$\underset{2}{9+16 / \text { repetition }} \stackrel{15}{2}$
$\begin{aligned} & \text { SHL } \\ & \text { SAL } \end{aligned}$	mem/reg, count	$\begin{gathered} 110100 \mathrm{cw} \\ \text { mod } 100 \mathrm{r} / \mathrm{m} \\ \text { [DISP] } \\ \text { [DISP] } \end{gathered}$	2, 3 or 4	```count = 1 reg: 2 mem: 15 + EA count: [CL.] reg: 8+(4*N) mem: 20+EA + (4*N)```

- When preceded by REP prefix
$N=$ count value in $C L$

- When preceded by REP prefix
$\mathbf{N}=$ clocks per samples of the TEST input

F. 8086/8088 Instruction Set - Object Codes in Ascending Numeric Sequence

Object Code			Mnemonic
Byte \# 0	Byte \# 1	Succeeding Bytes	
00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF 10 11 12 13 14 15 16 17 18 19 1A 1B 1C $1 D$ 1E $1 F$ 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F	mod reg r/m mod reg r/m mod reg r/m mod reg r/m kk kk mod reg r/m mod reg r/m mod reg r/m mod reg r/m kk kk mod reg r/m mod reg r/m mod reg r/m mod reg r/m kk kk mod reg r/m mod reg r/m mod reg r/m mod reg r/m kk kk mod reg r/m mod reg r/m mod reg r/m mod reg r/m kk kk mod reg r/m mod reg r/m mod reg r/m mod reg r/m kk kk	[disp][disp] [disp][disp] [disp](disp] [disp)[disp] jj [disp][disp] [disp][disp] [disp][disp] [disp][disp] jj [disp][disp] [disp][disp] [disp][disp] [disp][disp] jj [disp][disp] [disp][disp] [disp][disp] [disp][disp] jj [disp][disp] [disp][disp] [disp][disp] [disp][disp]	ADD mem/reg,reg (byte) ADD mem/reg,reg (word) ADD reg, mem/reg (byte) ADD reg, mem/reg (word) ADD AL,kk ADD AX, jjkk PUSH ES POP ES OR mem/reg,reg (byte) OR mem/reg,reg (word) OR reg,mem/reg (byte) OR reg,mem/reg (word) OR AL,kk OR AL,jjkk PUSH CS Not used ADC mem/reg,reg (byte) ADC mem/reg.reg (word) ADC reg,mem/reg (byte) ADC reg,mem/reg (word) ADC AL,kk ADC AX,jjkk PUSH SS POP SS SBB mem/reg,reg (byte) SBB mem/reg,reg (word) SBB reg,mem/reg (byte) SBB reg,mem/reg (word) SBB AL,kk SBB AX, jjkk PUSH DS POP DS AND mem/reg,reg (byte) AND mem/reg,reg (word) AND reg,mem/reg (byte) AND reg,mem/reg (word) AND AL,kk AND AX,jjkk SEG ES DAA SUB mem/reg,reg (byte) SUB mem/reg, reg (word) SUB reg,mem/reg (byte) SUB reg,mem/reg (word) SUB AL,kk SUB AX,jjkk SEG CS DAS

Object Code			Mnemonic
Byte \# 0	Byto \# 1	Succeeding Bytes	
30 31 32 33 34 35 36 37 38 39 $3 A$ $3 B$ $3 C$ $3 D$ $3 E$ $3 F$ 40 41 42 43 44 45 46 47 48 49 $4 A$ $4 B$ $4 C$ $4 D$ $4 E$ $4 F$ 50 51 52 $53-6 F$ 53 54 55 56 57 58 59 $5 A$ $5 B$ $5 C$	$\bmod r e g r / m$ mod reg r/m $\bmod \mathrm{reg} \mathrm{r} / \mathrm{m}$ mod reg r/m kk kk mod reg r/m $\bmod \mathrm{reg} \mathrm{r} / \mathrm{m}$ mod reg r/m mod reg r/m kk kk	[disp][disp] [disp][disp] [disp)(disp] [disp][disp] jj [disp][disp] [disp][disp] [disp][disp] [disp][disp] ij	XOR mem/reg, reg (byte) XOR mem/reg,reg (word) XOR reg,mem/reg (byte) XOR reg,mem/reg (word) XOR AL,kk XOR AX,jjkk SEG SS AAA CMP mem/reg, reg (byte) CMP mem/reg, reg (word) CMP reg,mem/reg (byte) CMP reg,mem/reg (word) CMP AL,kk CMP AX,jjkk SEG DS AAS INC AX INC CX INC DX INC BX INC SP INC BP INC SI INC DI DEC AX DEC CX DEC DX DEX BX DEC SP DEC BP DEC SI DEC DI PUSH AX PUSH CX PUSH DX PUSH BX PUSH SP PUSH BP PUSH SI PUSH DI POP AX POP CX POP DX POP BX POP SP POP BP POP SI POP DI Not used

Object Code			Mnemonic
Byte \# 0	Byte \# 1	Succeeding Bytes	
70	disp		JO disp
71	disp		JNO disp
72	disp		JB or JNAE or JC disp
73	disp		JNB or JAE or JNC disp
74	disp		JE or JZ disp
75	disp		JNE or JNZ disp
76	disp		JBE or JNA disp
77	disp		JNBE or JA disp
78	disp		JS disp
79	disp		JNS disp
7 A	disp		JP or JPE disp
7 B	disp		JNP or JPO disp
7 C	disp		JL or JNGE disp
7 D	disp		JNL or JGE disp
7E	disp		JLE or JNG disp
7F	disp		JNLE or JG disp
80	$\bmod 000 \mathrm{r} / \mathrm{m}$	[disp][disp] kk	ADD mem/reg,kk
80	$\bmod 001 \mathrm{r} / \mathrm{m}$	[disp][disp] kk	OR mem/reg,kk
80	$\bmod 010 \mathrm{r} / \mathrm{m}$	[disp][disp] kk	ADC mem/reg,kk
80	$\bmod 011 \mathrm{r} / \mathrm{m}$	[disp][disp] kk	SBB mem/reg, kk
80	$\bmod 100 \mathrm{r} / \mathrm{m}$	[disp][disp] kk	AND mem/reg, kk
80	$\bmod 101 \mathrm{r} / \mathrm{m}$	[disp][disp] kk	SUB mem/reg, kk
80	mod $110 \mathrm{r} / \mathrm{m}$	[disp)[disp] kk	XOR mem/reg,kk
80	$\bmod 111 \mathrm{r} / \mathrm{m}$	[disp][disp] kk	CMP mem/reg,kk
81	mod $000 \mathrm{r} / \mathrm{m}$	[disp][disp) kkjj	ADD mem/reg,jikk
81 81	$\bmod 001 \mathrm{r} / \mathrm{m}$	[disp][disp) kkji	OR mem/reg,ijkk
81	mod $011 \mathrm{r} / \mathrm{m}$	[disp][disp] kkj]	SBB mem/reg,jikk
81	$\bmod 100 \mathrm{r} / \mathrm{m}$	[disp][disp] kkjj	AND mem/reg,jikk
81	$\bmod 101 \mathrm{r} / \mathrm{m}$	[disp][disp] kkjj	SUB mem/reg,jikk
81	$\bmod 110 \mathrm{r} / \mathrm{m}$	[disp][disp] kkjj	XOR mem/reg,jjkk
81	mod $111 \mathrm{r} / \mathrm{m}$	[disp][disp] kkjj	CMP mem/reg,jikk
82	$\bmod 000 \mathrm{r} / \mathrm{m}$	[disp][disp] kk	ADD mem/reg,kk (byte)
82	x $\times 001 \times \times x$		Not used
82	$\bmod 010 \mathrm{r} / \mathrm{m}$	[disp][disp] kk	ADC mem/reg,kk (byte)
82	$\bmod 011 \mathrm{r} / \mathrm{m}$	[disp][disp] kk	SBB mem/reg,kk (byte)
82	xx 100 xxx		Not used
82	mod $101 \mathrm{r} / \mathrm{m}$	[disp][disp] kk	SUB mem/reg,kk (byte)
82	mod $111 \mathrm{r} / \mathrm{m}$	[disp][disp] kk	CMP mem/reg,kk (byte)
83	$\bmod 000 \mathrm{r} / \mathrm{m}$	[disp)[disp] kk	ADD mem/reg,jjkk (word-sign extended)
83	xx $001 \times \times x$		Not used
83	$\bmod 010 \mathrm{r} / \mathrm{m}$	[disp][disp] kk	ADC mem/reg,jikk (word-sign extended)
83	$\bmod 011 \mathrm{r} / \mathrm{m}$	[disp][disp] kk	SBB mem/reg.jjkk (word-sign extended)
83	xx $100 \mathrm{r} / \mathrm{m}$		Not used
83	$\bmod 101 \mathrm{r} / \mathrm{m}$	[displ[disp] kk	SUB mem/reg,jikk (word-sign extended)
83	x× $110 \times \times x$		Not used
83	$\bmod 111 \mathrm{r} / \mathrm{m}$	[disp][disp] kk	CMP mem/reg,jikk (word-sign extended)
84	mod reg r/m	[disp][disp]	TEST mem/reg,reg (byte)
85	mod reg r/m	[disp)[disp]	TEST mem/reg, reg (word)
86	mod reg r/m	[disp][disp]	XCHG reg,mem/reg (byte)
87	mod reg r/m	[disp)[disp]	XCHG reg,mem/reg (word)
88	mod reg r/m	[disp][disp]	MOV mem/reg,reg (byte)
89	mod reg r/m	[disp][disp]	MOV mem/reg,reg (word)

Object Code			Mnemonic
Byte \# 0	Byte \# 1	Succeeding Bytes	
8A 8B 8C 8C 8D 8E 8E 8F 8F 8F $8 F$ $8 F$ 8F 8F 8F 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F AO A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF	$\bmod \mathrm{reg} \mathrm{r} / \mathrm{m}$ mod reg r/m mod 0ss r/m $\times 1 \times \times \times x \times$ mod reg r/m mod Oss r/m xx 1 xxxxx $\bmod 000 \mathrm{r} / \mathrm{m}$ xx 001 xxx xx 010 xxx xx 011 xxx xx 100 xxx xx 101 xxx xx 110 xxx xx 111 xxx kk qq 99 qq 99 kk kk	[disp][disp] [disp][disp] [disp)[disp] [disp)(disp] \{disp](disp] [disp][disp] jj hh gg pp pp pp pp j)	MOV reg,mem/reg (byte) MOV reg,mem/reg (word) MOV mem/reg,segreg Not used LEA reg,addr MOV segreg, mem/reg Not used POP mem/reg Not used NOP XCHG AX,CX XCHG AX,DX XCHG AX,BX XCHG AX,SP XCHG AX,BP XCHG AX,SI XCHG AX,DI CBW CWD CALL addr WAIT PUSHF POPF SAHF LAHF MOV AL,addr MOV AX,addr MOV addr,AL MOV addr,AX MOVS BYTE MOVS WORD CMPS BYTE CMPS WORD TEST, AL,kk TEST AX,jjkk STOS BYTE STOS WORD LODS BYTE LODS WORD SCAS BYTE SCAS WORD

Object Code			Mnemonic
Byte \# 0	Byte \# 1	Succeeding Bytes	
BO B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF CO C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF	 kk		MOV AL,kk MOV CL,kk MOV DL,kk MOV BL,kk MOV AH,kk MOV CH,kk MOV DH,kk MOV BH,kk MOV AX,jjkk MOV CX,jjkk MOV DX,jjkk MOV BX,jjkk MOV SP,jjkk MOV BP,jjkk MOV SI,jjkk MOV DI,jjkk Not used Not used RET jjkk RET LES reg,addr LDS reg,addr MOV mem,kk Not used MOV mem, jikk Not used RET jjkk RET INT 3 INT Type INTO IRET

	Object Code		Mnemonic
Byte \# 0	Byte \# 1	Succeeding Bytes	
DO	$\bmod 000 \mathrm{r} / \mathrm{m}$	[disp][disp]	ROL mem/reg, 1 (byte)
DO	$\bmod 001 \mathrm{r} / \mathrm{m}$	[disp][disp]	ROR mem/reg, 1 (byte)
D0	$\bmod 010 \mathrm{r} / \mathrm{m}$	[disp][disp]	RCL mem/reg, 1 (byte)
DO	$\bmod 011 \mathrm{r} / \mathrm{m}$	[disp][disp]	RCR mem/reg, 1 (byte)
D0	$\bmod 100 \mathrm{r} / \mathrm{m}$	[disp][disp]	SAL or SHL mem/reg, 1 (byte)
D0	mod $101 \mathrm{r} / \mathrm{m}$	[disp][disp]	SHR mem/reg, 1 (byte)
D0	xx $110 \times \times x$		Not used
D0	$\bmod 111 \mathrm{r} / \mathrm{m}$	[disp)[disp]	SAR mem/reg, 1 (byte)
D1	mod $000 \mathrm{r} / \mathrm{m}$	[disp][disp]	ROL mem/reg, 1 (word)
D1	$\bmod 001 \mathrm{r} / \mathrm{m}$	[disp][disp]	ROR mem/reg, 1 (word)
D1	$\bmod 010 \mathrm{r} / \mathrm{m}$	[disp][disp]	RCL mem/reg, 1 (word)
D1	$\bmod 011 \mathrm{r} / \mathrm{m}$	[disp][disp]	RCR mem/reg, 1 (word)
D1	mod $100 \mathrm{r} / \mathrm{m}$	[disp][disp]	SAL or SHL mem/reg, 1 (word)
D1	mod $101 \mathrm{r} / \mathrm{m}$	[disp][disp]	SHR mem/reg, 1 (word)
D1	mod $111 \mathrm{r} / \mathrm{m}$	[disp][disp]	SAR mem/reg, 1 (word)
D2	$\bmod 000 \mathrm{r} / \mathrm{m}$	[disp][disp]	ROL mem/reg, CL (byte)
D2	$\bmod 001 \mathrm{r} / \mathrm{m}$	[disp][disp]	ROR mem/reg, CL (byte)
D2	$\bmod 010 \mathrm{r} / \mathrm{m}$	[disp)[(disp]	RCL mem/reg, CL (byte)
D2	$\bmod 011 \mathrm{r} / \mathrm{m}$	[disp][disp]	RCR mem/reg, CL (byte)
D2	$\bmod 100 \mathrm{r} / \mathrm{m}$	[disp][disp]	SAL or SHL mern/reg,CL (byte)
D2	$\bmod 101 \mathrm{r} / \mathrm{m}$	[disp][disp]	SHR mem/reg, CL (byte)
D2	xx $110 \times \times x$		Not used
D2	$\bmod 111 \mathrm{r} / \mathrm{m}$	[disp][disp]	SAR mem/reg, CL (byte)
D3	$\bmod 000 \mathrm{r} / \mathrm{m}$	[disp][disp]	ROL mem/reg, CL (word)
D3	$\bmod 001 \mathrm{r} / \mathrm{m}$	[disp][disp]	ROR mem/reg.CL (word)
D3	$\bmod 010 \mathrm{r} / \mathrm{m}$	[disp][disp]	RCL mem/reg, CL (word)
D3	$\bmod 011 \mathrm{r} / \mathrm{m}$	[disp][disp]	RCR mem/reg, CL. (word)
D3	$\bmod 100 \mathrm{r} / \mathrm{m}$	[disp][disp]	SAL or SHL mem/reg, CL (word)
D3	$\bmod 101 \mathrm{r} / \mathrm{m}$	[disp][disp]	SHR mem/reg,CL (word)
D3	xx $110 \times x \mathrm{x}$		Not used
D3	$\bmod 111 \mathrm{r} / \mathrm{m}$	[disp][disp]	SAR mem/reg, CL (word)
D4	OA		AAM
D5	OA		AAD -
D6			Not used
D7			XLAT
D8	$\bmod \times \times \times \mathrm{r} / \mathrm{m}$	[disp][disp]	ESC mem/reg
D9	$\bmod x \times x \times r / m$	[disp][disp]	ESC mem/reg
DA	$\bmod \times \times \times \mathrm{r} / \mathrm{m}$	[disp][disp]	ESC mem/reg
DB	$\bmod \times \times \times \mathrm{r} / \mathrm{m}$	[disp][disp]	ESC mem/reg
DC	$\bmod \times \times \times \mathrm{r} / \mathrm{m}$	[disp][disp]	ESC mem/reg
DD	$\bmod x \times x \times r / m$	[disp][disp]	ESC mem/reg
DE	$\bmod \times \times \times \mathrm{r} / \mathrm{m}$	[disp][disp]	ESC mem/reg
DF	$\bmod x \times x$ r/m	[disp][disp]	ESC mem/reg
E0	disp		LOQPNE/LOOPNZ disp
E1	disp		LOOPE/LOOPZ disp
E2	disp		LOOP disp
E3	disp		JCXZ disp
E4	kk		IN AL, kk
E5	kk		IN AX,kk
E6	kk		OUT kk,AL
E7	kk		OUT kk,AX
E8	disp	disp	CALL disp 16
E9	disp	disp	JMP disp 16

Object Code			Mnemonic
Byte \# 0	Byte \# 1	Succeeding Bytes	
EA EB EC ED EE EF FO F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF	kk disp $\bmod 000 \mathrm{r} / \mathrm{m}$ xx 001 xxx $\bmod 010 \mathrm{r} / \mathrm{m}$ $\bmod 011 \mathrm{r} / \mathrm{m}$ $\bmod 100 \mathrm{r} / \mathrm{m}$ $\bmod 101 \mathrm{r} / \mathrm{m}$ $\bmod 110 \mathrm{r} / \mathrm{m}$ $\bmod 111 \mathrm{r} / \mathrm{m}$ $\bmod 000 \mathrm{r} / \mathrm{m}$ x× $001 \times x \times$ $\bmod 010 \mathrm{r} / \mathrm{m}$ $\bmod 011 \mathrm{r} / \mathrm{m}$ $\bmod 100 \mathrm{r} / \mathrm{m}$ $\bmod 101 \mathrm{r} / \mathrm{m}$ $\bmod 110 \mathrm{r} / \mathrm{m}$ $\bmod 111 \mathrm{r} / \mathrm{m}$ $\bmod 000 \mathrm{r} / \mathrm{m}$ $\bmod 001 \mathrm{r} / \mathrm{m}$ x× $010 \times \times x$ $\times x 011 \times x x$ xx $100 \times x \times$ xx 101 xxx xx 110 xxx xx 111 x xx $\bmod 000 \mathrm{r} / \mathrm{m}$ $\bmod 001 \mathrm{r} / \mathrm{m}$ $\bmod 010 \mathrm{r} / \mathrm{m}$ $\bmod 011 \mathrm{r} / \mathrm{m}$ $\bmod 100 \mathrm{r} / \mathrm{m}$ $\bmod 101 \mathrm{r} / \mathrm{m}$ $\bmod 110 \mathrm{r} / \mathrm{m}$ xx $111 \mathbf{x x x}$	jj hh gg [disp)\{disp] kk [disp][disp] [disp][disp] [disp][disp] [disp](disp] [disp][disp] (disp)(disp] [disp][disp] kkjj [disp][disp] [disp](disp] [disp][disp] [disp][disp] [disp]/disp] [disp][disp] [disp][disp] [disp][disp] [disp)(disp]	JMP addr JMP disp IN AL,DX IN AX,DX OUT DX,AL OUT DX,AX LOCK Not used REPNE or REPNZ REP or REPE or REPZ HLT CMC TEST mem/reg,kk Not used NOT mem/reg (byte) NEG mem/reg (byte) MUL mem/reg (byte) IMUL mem/reg (byte) DIV mem/reg (byte) IDIV mem/reg (byte) TEST mem/reg,jikk Not used NOT mem/reg (word) NEG mem/reg (word) MUL mem/reg (word) IMUL mem/reg (word) DIV mem/reg (word) IDIV mem/reg (word) CLC STC CLI STI CLD STD INC mem/reg (byte) DEC mem/reg (byte) Not used INC mem/reg (word) DEC mem/reg (word) CALL mem/reg CALL. mem JMP mem/reg JMP mem PUSH mem Not used

G. BIOS Error Messages

When you power on the system unit, the firmware will perform a series of self-tests. The results of these tests are displayed on the screen. Note that the video display will remain blank for a few seconds after power up.

After powering on your system unit, you will hear a long beep generated by the built-in speaker unless an error occurs.

The possible errors are:

1. System halt!

DMA Register R/W error.
2. The system halts after generating a long beep, when an R / W or parity error has occurred in the memory range from \emptyset through \emptyset FFFFH on the system board.
3. The system generates two short beeps after a long beep. This error occurs when R/W error is detected on the color/graphic adapter.

The first screen shows the results of the selftest:

NOTES:
A. The DIP switches on the system board are set for actual RAM size. If you have inserted additional RAMs on the system board, the DIP switches will have to be adjusted accordingly, else the screen message will not echo the correct RAM size.
B. The top three rows of the self-test messages are used to show whether the color signals are transferred normally between the sytem unit and the video display.

If you use a monochrome video display connected to the system via a Monochrome Display and printer Adapter, the top three rows of the self-test will not be shown.

But if you use a color monitor, the " R " line is red, the "G" line green and the " B " line blue.
4. . 8259 Error !

This means 8259A PIC error.

$$
G-2
$$

5. . 8253 Error!

Represents 8253 Timer error.
6. PR.P.Err

Printer Port Error.
7. K_B Error!

Keyboard not connected or out of order.
8. . BAD FDC!

Disk controller error.
9. Warning RAM Error!

Indicates that there is an error in one of the memory banks, the location of which is currently shown on the screen.

After the Self-test, the operating system will be booted into the system. At this point, if a non-system diskette is inserted in the default drive, the screen will display the following error message:

Non-System disk or disk error Replace and strike any key when ready

Or, if no system diskette is inserted in the default drive, this error message will be displayed:
*No-system *
*Insert system disk and strike any key when ready

H．U43 Memory Mapping

A 32 K ROM space（F6øøø～FDFFF）is available at U43 and if you insert a 27256 chip in that location，the memory space should be mapped as follows：

27256 Chip
lst 8 K bytes 2nd 8 K bytes 3rd 8K bytes 4th 8K bytes

Memory Address

F8øø日～F9FFF
FAØØ日～FBFFF
FCØD日～FDFFF
F60ø0～F7FFF

For your convenience, below is a cross reference:

Fig. H-1 U43 Memory Mapping

I. MEM-500 Installation Guide

The memory expansion board MEB-5 50 is a small printed circuit borad on which 128 KB of RAM is installed. This expansion board could be installed to the CPU card to expand the system RAM of the Popular 500 from 5l2KB to 640KB.

NOTE: If your CPU board is not installed with 512 KB , you should first expand its memory to 512 KB before installing the MEB-500.

The MEB-5øØ card is shipped to you with two copper bolts and four screws, which are used for attaching the MEB-50 \quad to the CPU card.

On the component side of the MEB-5øø, you can see three locations markded with U12, U21, and U29. There are three connectors with round pins soldered to the three locations and with the round pins extending on the other side of the MEB-500.

After unpacking, you should check whether the round pins on the three connectors are straight. If they are bent, straighten them. Then, fasten the two copper bolts to the CPU card as illustrated below:

To install the MEB-50ø to the CPU card, you must insert the round pins to three sockets on the CPU card. The three sockets are also marked with the same numbers U12, U21 and U29.

While inserting the round pins to their sockets on the CPU card, be cautious that each pin is aligned properly so that they will fit into the right holes on the sockets. Don't exert excessive force while making the connection. If a pin bends twice or three times, it may be broken.

Since some of the CPU card is built with ICs inserted on the locations U12, U21 and U29. You must first extract the ICs on the two locations and then solder the round-pin sockets to these locations. Then, you can attach the MEB-500 to the CPU card following the steps mentioned above.

After installing the MEB-500 to the CPU card, you must fasten the remaining two screws to the copper bolts.

If you want to change the system back to 512 KB model, make sure Ul2 is installed with 41256, U21, 74LS245; and U29, 20L10.

$0 /$ Multitech

DOC NO: M5097-8609A

[^0]: $\mathrm{N}=$ count value in CL

