
Symantec pcAnywhere™

OLE Automation Guide

Symantec pcAnywhere
OLE Automation Guide

The software described in this book is furnished under a license agreement and
may be used only in accordance with the terms of the agreement.

Documentation version 10.0

Copyright Notice
Copyright  1995-2001 Symantec Corporation.

All Rights Reserved.

This document may not, in whole or in part, be copied, photocopied, reproduced,
translated, or reduced to any electronic medium or machine-readable form without
prior consent in writing from Symantec Corporation, 20330 Stevens Creek
Boulevard, Cupertino, CA 95014.

ALL EXAMPLES WITH NAMES, COMPANY NAMES, OR COMPANIES THAT APPEAR
IN THIS GUIDE ARE FICTICIOUS AND DO NOT REFER TO, OR PORTRAY, IN
NAME OR SUBSTANCE, ANY ACTUAL NAMES, ORGANIZATIONS, ENTITIES, OR
INSTITUTIONS. ANY RESEMBLANCE TO ANY REAL PERSON, ORGANIZATION,
ENTITY, OR INSTITUTION IS PURELY COINCIDENTAL.

Every effort has been made to ensure the accuracy of this guide. However,
Symantec makes no warranties with respect to this documentation and disclaims
any implied warranties of merchantability and fitness for a particular purpose.
Symantec shall not be liable for any errors or for incidental or consequential
damages in connection with the furnishing, performance, or use of this manual or
the examples herein. The information in this document is subject to change without
notice.

Trademarks
Symantec pcAnywhere, Symantec, the Symantec logo, pcAnywhere, ColorScale, and
SpeedSend, are U.S. registered trademarks of Symantec Corporation.

Microsoft, MS, Windows, Windows NT, Word, and the Office logo are either
registered trademarks or trademarks of Microsoft Corporation in the U.S. and/or
other countries.

Other product names mentioned in this guide may be trademarks or registered
trademarks of their respective companies and are the sole property of their
respective manufacturers.

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

3

C O N T E N T S

Chapter 1 Using OLE Automation
Introduction .. 5
Overview of technology ...5
Implementing the technology .. 6

Accessing the automation server .. 6
Using Microsoft Visual C++ ... 7
Using Microsoft Visual Basic ... 8

References ... 9

Chapter 2 C++ Object Definitions
CRemoteDataManager .. 12
CRemoteData .. 16

Detail Methods ... 19
Methods .. 21

CRemoteDataEx .. 23
C++ Sample Code .. 24

CHostDataManager ... 25
Methods .. 25

CHostData ... 29
Get and Set Methods ... 29
Detail Methods ... 30
COM device details .. 30
Network (TCP/IP, SPX, Banyan) device details 33
NetBios device details ... 33
ISDN via CAPI 2.0 device details .. 34
Methods .. 35

CHostDataEx ... 38
C++ Sample Code .. 41

AWREM32 functions ... 42

Chapter 3 Visual Basic Object Definitions
CRemoteDataManager .. 45

Methods .. 45
CRemoteData .. 49

Properties ... 49
Detail Properties .. 50
COM device properties .. 50
Network (TCP/IP, SPX, NetBios) device properties 51

4

NetBios ... 51
ISDN via CAPI 2.0 device properties .. 51
Methods .. 52

CRemoteDataEx .. 53
Visual Basic sample code .. 55

CHostDataManager ... 57
Methods .. 57

CHostData ... 60
Properties ... 60
Methods .. 63

CHostDataEx ... 67
Visual Basic sample code .. 70

AWREM32 functions ... 71

5

C H A P T E R 1Using OLE Automation

Introduction
pcAnywhere's Automation Server is an application that lets external
applications manage Host and Remote information files in pcAnywhere.
The Automation Server also lets external applications manage the
connection to a Host and file transfer (to and from the Host).

This document contains several examples, written in both Visual Basic and
C++, that illustrate the way to connect to, and use, the pcAnywhere
Automation Server.

For example, users often want to distribute files to a number of computers
on the company's network. Using the Automation Server, pcAnywhere can
be automated so that it reads a location from a list of computers, connects
to the pcAnywhere Host on that computer, transfers files, and continues
through the rest of the computer list.

Overview of technology
OLE Automation is the technology that makes the pcAnywhere Automation
Server possible. An external application accessing an Automation server
does so by first connecting to the server and then requesting access to one
or more of its published interfaces.

An interface is an entry point that allows access to one or more related
methods or properties. Once an application obtains an interface on the
server, it proceeds to call any interface methods, as though they were part
of the external application.

Using OLE Automation

6

The pcAnywhere Automation Server is an executable file named
Winawsvr.exe. Although the Winawsvr application is not part of
pcAnywhere, it uses pcAnywhere internals to perform its tasks.

Think of the Automation Server as a programmable replacement for the
pcAnywhere user interface. The behavior seen when using the
pcAnywhere interface is the same behavior seen when using the
Automation Server. When you create a Host object in pcAnywhere, the first
available TAPI device is assigned by default. Similarly, when you create a
Host object via the Automation Server and then enumerate through the list
of assigned connections, the first available TAPI device is already assigned.

Implementing the technology
When connected to the Automation Server and its interfaces, identifier
parameters, also known as Globally Unique Identifiers (GUIDs), are passed
to the automation library API functions. There is a single GUID
representing the Automation Server itself and a GUID for each of the
server’s exposed interfaces. In order for the application to succeed in
connecting to the server and its interfaces, these GUIDs must be present in
the registry.

When using a computer with pcAnywhere installed on it, the GUID entries
have already been added to the registry to allow the user to start using the
Automation Server immediately. If there is a need to run the application on
a computer that does not have an installed version of pcAnywhere, run
Winawsvr.exe once as an application. Doing this registers the necessary
GUIDs on the computer.

Accessing the automation server

You can access the pcAnywhere Automation Server via any language
platform that supports OLE Automation. The two most popular language
platforms that support OLE automation are Microsoft Visual C++ and
Microsoft Visual Basic.

The coding principles for these two platforms are similar, although in the
Visual Basic environment much of the low-level work is performed behind
the scenes by the Visual Basic run-time system.

Implementing the technology

7

Using Microsoft Visual C++

The following procedure gives the general steps to create a C++
application that accesses the pcAnywhere automation server.

To create a C++ application

1 In Visual C++, create an MFC application.

2 On the View menu, click Class Wizard.

3 Click Add Class > From a type library.

4 Select winawsvr.tlb.

5 In the Confirm Classes dialog box, click OK to import all class
definitions.

6 Click Add Class > From a type library.

7 Select awrem32.tlb.

8 In the Confirm Classes dialog box, click OK to import all class
definitions.

9 In the Class Wizard dialog box, click OK to complete the import.

The classes are added to the application. These classes allow you to
manipulate objects and manage connections.

To view the added classes

� Click the ClassView tab.

All of the Automation Server’s interfaces and methods are exposed through
these classes. In general, the data manager classes provide the functionality
needed to obtain an interface to the Automation Server and perform a
number of useful high-level operations on the interface’s associated object
type.

Use the data manager object to determine or change the current directory,
enumerate through the list of data object files in the current directory, and
create, retrieve, or delete a named object. Once created or retrieved, an
object uses the associated data object class to examine or modify any of its
exposed properties. Most of these properties are exposed through a pair of
methods that begin with the word Get or Set. For example, a user calls the
GetPhoneNumber method to examine the object’s current phone number
property, and calls SetPhoneNumber to set it.

In addition to the classes, the application now has four new files:
Winawsvr.h, Winawsvr.cpp, Awrem32.h, and Awrem32.cpp.

Using OLE Automation

8

To view the added files

� Click the FileView tab.

The added files contain the Automation Server’s class definitions and
implementations. There is no need to edit these files, but each of the
application source files containing calls to the Automation Server’s methods
must include Winawsvr.h.

For more information, see “C++ Object Definitions” on page 11.

Using Microsoft Visual Basic

Visual Basic can interact with OLE automation servers. When you create a
Standard Exe project and enter code to access the Automation Server,
Visual Basic takes the high-level method calls in the source and expands
them internally into the corresponding low-level OLE automation method
calls.

The following procedure gives the general steps to use Visual Basic to
accesses the pcAnywhere automation server.

To use Visual Basic to access the Automation server

1 Add a pair of Object variables for each of the pcAnywhere objects you
intend to access.

For example, when working with Remote objects, DIM a
RemoteDataManager and a RemoteDataObject as Object.

2 Use the RemoteDataManager to attach to the Remote object’s data
manager.

For example, call the CreateObject method with
WINAWSVR.REMOTEDATAMANAGER as a parameter.

Visual Basic uses the textual parameter to locate the manager’s
identifier in the registry and returns the interface to that manager.

3 Once there is a valid data manager object, use it to determine the
current directory, change to another directory, enumerate the
associated data object files in the current directory, or create, retrieve,
or delete a data object file.

4 After a data object is created or retrieved, you can get or set properties
of the object.

The Visual Basic syntax does not use a property’s name to differentiate
between getting and setting its value. Instead, the property’s position

References

9

in relation to the assignment operator determines whether the
underlying method call is a Get or a Set.

The following examples demonstrate a Get and a Set:

� To get an object’s phone number value, place the property name to
the right of the assignment operator.

For example, s = RemoteData.PhoneNumber(), where s is a string
variable.

� To change the current phone number, place the property name to
the left of the assignment operator.

For example, RemoteData.PhoneNumber = “555-1212”

For more information, see “Visual Basic Object Definitions” on page 45.

References
� Blaszczak, Mike. 1997. Professional MFC with Visual C++ 5.

Birmingham, UK.: Wrox Press.

� Box, Don. 1998 Essential COM. Reading, Mass.: Addison-Wesley.

� Brockschmidt, Kraig. 1995. Inside OLE, Second Edition. Redmond,
Wash.: Microsoft Press.

� Horton, Ivor. 1997. Beginning MFC Programming. Birmingham, UK.:
Wrox Press.

� Rogerson, Dale. 1997. Inside COM. Redmond, Wash.: Microsoft Press.

� Templeman, Julian. 1997. Beginning MFC COM Programming.
Birmingham, UK.: Wrox Press.

Using OLE Automation

10

11

C H A P T E R 2C++ Object Definitions

This section describes the C++ objects that support the pcAnywhere
WINAWSVR OLE Objects and the AWREM32 OLE Objects. The objects for
WINAWSVR are CRemoteDataManager, CRemoteData, CHostDataManager,
and CHostData. AWREM32 has one object.

� CremoteDataManager: Provides methods to create, open, modify,
save, and delete CRemoteData objects. CRemoteData defines the
pcAnywhere parameters that drive the pcAnywhere Remote for a
remote control session.

� ChostDataManager: Provides methods to create, open, modify, save,
and delete CHostData objects. CHostData defines the pcAnywhere
parameters that drive the pcAnywhere Host for a remote control
session.

� AWREM32: Eight interfaces are provided that allow for connecting,
disconnecting, file transfer, connection status, creating folders, running
programs on the host, and retrieving error status.

Some functions, including Gateways, are not available in pcAnywhere 10.0,
but are included here for use with previous versions.

For functions involving passwords, password values can be set, but not
retrieved. This is for security purposes.

C++ Object Definitions

12

CRemoteDataManager

Methods

BSTR CurrentDirectory();

Returns the full path name of the current directory in which pcAnywhere
Remote objects are stored.

BOOL ChangeDirectory(LPCTSTR lpszNewDirectory);

Changes the current directory in which pcAnywhere Remote objects are
stored.

BOOL FindFirst(LPCTSTR lpszPattern, BSTR FAR*
pbstrFullQualName);

Finds the first pcAnywhere Remote object file (*.CHF) in the current
directory, based on the specified file name pattern.

Return Value

BSTR The full path name of the current pcAnywhere
data directory.

Parameters

LPCTSTR lpszNewDirectory Name of an existing directory.

Return Value

BOOL True if successful.

Parameters

LPCTSTR lpszPattern File name pattern to filter object files (“*” finds
all Remote object files in the current directory).

BSTR FAR *
pbstrFullQualName

Return buffer for full path name of the Remote
object file matching the specified pattern.

CRemoteDataManager

13

BOOL FindNext(BSTR FAR* pbstrFullQualName);

After FindFirst()has been successfully called to get the name of a Remote
object file in the current directory, FindNext() can be called to find the next
file matching the pattern, if any.

LPDISPATCH RetrieveObject(LPCTSTR lpszFQName, short
wAccessMode, LPCTSTR lpszPassword);

Retrieves a CRemoteData object by file name.

Return Value

BOOL True if a Remote object file matching the
specified pattern is found. The full path name of
the matching file is stored in
pbstrFullQualName.

Parameters

BSTR FAR *
pbstrFullQualName

Return buffer for full path name of the Remote
object file matching the pattern specified in the
original call to FindFirst().

Return Value

BOOL True if another Remote object file matching the
pattern specified in the call to FindFirst() is
found. The full path name of the matching file is
stored in pbstrFullQualName.

Parameters

LPCTSTR lpszFQName The fully qualified Remote object file name to be
loaded.

C++ Object Definitions

14

LPDISPATCH RetrieveObjectEx(LPCTSTR lpszFQName, short
wAccessMode, LPCTSTR lpszPassword);

Retrieves a CRemoteDataEx object by file name.

short wAccessMode Specifies how this object is to be used. This is
related to the password protection. The options
include:

0 = Not specified

1 = View only

2 = View and Modify

3 = Execute

LPCTSTR lpszPassword Object password. May be NULL.

Parameters

LPCTSTR lpszFQName The fully qualified Remote object file name to be
loaded.

short wAccessMode Specifies how this object is to be used. This is
related to the password protection. The options
include:

0 = Not specified

1 = View only

2 = View and Modify

3 = Execute

LPCTSTR lpszPassword Object password. May be NULL.

Return Value

LPDISPATCH Pointer to an OLE dispatch object. The object is
a CRemoteDataEx object. The sample code at
the end of this section illustrates how to attach
this pointer to a CRemoteDataEx object.

CRemoteDataManager

15

LPDISPATCH CreateObject(LPCTSTR lpszName);

Creates a CRemoteData object and returns an LPDISPATCH pointer to it.

LPDISPATCH CreateObjectEx(LPCTSTR lpszName);

Creates a CRemoteDataEx object and returns an LPDISPATCH pointer to it.

BOOL DeleteObject(LPCTSTR lpszFQName, LPCTSTR
lpszPassword);

Deletes a remote object file.

Parameters

LPCTSTR lpszFQName The fully qualified Remote object file name for
new object.

Return Value

LPDISPATCH Pointer to an OLE dispatch object. The object is
a CRemoteData object. The sample code at the
end of this section illustrates how to attach this
pointer to a CRemoteData object.

Parameters

LPCTSTR lpszFQName The fully qualified Remote object file name for
new object.

Return Value

LPDISPATCH Pointer to an OLE dispatch object. The object is
a CRemoteDataEx object. The sample code at
the end of this section illustrates how to attach
this pointer to a CRemoteDataEx object.

Parameters

LPCTSTR lpszFQName The fully qualified Remote object file name of
the object to be deleted.

LPCTSTR lpszPassword Object password. May be NULL.

Return Value

BOOL True if object is deleted.

C++ Object Definitions

16

BOOL Launch(LPCTSTR lpszFQName);

Launches a Remote object file. This opens the pcAnywhere Remote
terminal window.

CRemoteData
Use this object to modify Remote object data.

Get and Set Methods

The following methods are used to get and set properties of the
CRemoteData object.

BSTR GetComputerName();

void SetComputerName(LPCTSTR lpszNewValue);

The computer name is the name of the pcAnywhere Host computer to be
called when the Remote object is launched.

BSTR GetPhoneNumber();

void SetPhoneNumber(LPCTSTR lpszNewValue);

The phone number is the number to dial to establish a modem connection
to a pcAnywhere Host computer.

BOOL GetUseDialingProperties();

void SetUseDialingProperties(BOOL bNewValue);

Indicates whether TAPI dialing properties should be used (location
information) (TRUE), or the phone number string should be used exactly
as it appears (FALSE).

BSTR GetAreaCode();

void SetAreaCode(LPCTSTR lpszNewValue);

Parameters

LPCTSTR lpszFQName The fully qualified Remote object file of object to
be launched.

Return Value

BOOL True if object is successfully launched.

CRemoteData

17

If dialing properties are to be used, this is the area code of the number to
be called.

BSTR GetCountryCode();

void SetCountryCode(LPCTSTR lpszNewValue);

If dialing properties are to be used, this is the country code of the number
to be called.

short GetRedialCount();

void SetRedialCount(short nNewValue);

The number of times to retry dialing this number if the call fails.

short GetRedialDelay();

void SetRedialDelay(short nNewValue);

The time to wait (in seconds) between redial attempts.

BSTR GetAutoLoginName();

void SetAutoLoginName(LPCTSTR lpszNewValue);

The login name to be sent to the Host when a connection is made. If this is
left empty, the user is prompted for a login name on connection.

BSTR GetAutoLoginPassword();

void SetAutoLoginPassword(LPCTSTR lpszNewValue);

The login password to be sent to the Host when a connection is made. If
this is left empty, the user is prompted for a password on connection.

BSTR GetPassword();

void SetPassword(LPCTSTR lpszNewValue);

The password for this object.

BOOL GetExecuteProtection();

void SetExecuteProtection(BOOL bNewValue);

The object can only be launched if the password is used (TRUE).

BOOL GetReadProtection();

void SetReadProtection(BOOL bNewValue);

The object can only be viewed if the correct password is provided (TRUE).

BOOL GetWriteProtection();

void SetWriteProtection(BOOL bNewValue);

The object can only be written if the correct password is provided (TRUE).

BOOL GetLogSession();

void SetLogSession(BOOL bNewValue);

C++ Object Definitions

18

Controls whether sessions using this object are logged.

BOOL GetRecordSession();

void SetRecordSession(BOOL bNewValue);

Controls whether sessions using this object are recorded from the
beginning.

BSTR GetRecordFile();

void SetRecordFile(LPCTSTR lpszNewValue);

The name of the record file for sessions using this object.

BOOL GetRunOnConnect();

void SetRunOnConnect(BOOL bNewValue);

Run one of the following procedures on connection (TRUE).

BSTR GetScriptFile();

void SetScriptFile(LPCTSTR lpszNewValue);

Script to run on connection (if RunOnConnect is TRUE).

BSTR GetAutoXferFile();

void SetAutoXferFile(LPCTSTR lpszNewValue);

AutoXfer commands to run on connection (if RunOnConnect is TRUE).

BSTR GetConnectionType();

void SetConnectionType(LPCTSTR lpszNewValue);

The available connection types include:

Also, the name of a TAPI device can be used as a connection type.
“DEFAULT TAPI” uses the first TAPI device found in the system. To use a
specific TAPI device, use FirstConnectionType() / NextConnectionType()
to search for available devices.

� COM1 � COM2 � COM3

� COM4 � SPX � NetBIOS

� TCP/IP � LPT1 � LPT2

� LPT3 � LPT4 � ISDN via CAPI 2.0

� Infrared � DEFAULT TAPI

CRemoteData

19

Detail Methods

These are methods used to get and set details for each of the connection
types. When a Remote object is assigned a connection type, the device
details are set to valid default values.

COM device details
BSTR GetComParity();

void SetComParity(LPCTSTR lpszNewValue);

Values include:

� None

� Odd

� Even

� Mark

� Space

BSTR GetComFlowControl();

void SetComFlowControl(LPCTSTR lpszNewValue);

Values include:

� <None>

� XONXOFF

� RTS/CTS

� BOTH

BSTR GetComStartedBy();

void SetComStartedBy(LPCTSTR lpszNewValue);

Values include:

� Always connected

� Carrier detect (DCD)

� Clear to send (CTS)

� Data set ready (DSR)

� Ring indicator (RI)

� Receive 2 <CR>'s

� Modem response

BSTR GetComEndedBy();

void SetComEndedBy(LPCTSTR lpszNewValue);

C++ Object Definitions

20

Values include:

� Always connected

� Carrier detect (DCD)

� Clear to send (CTS)

� Data set ready (DSR)

� Ring indicator (RI)

long GetComSpeed();

void SetComSpeed(long nNewValue);

Values include:

Network (TCP/IP, SPX, Banyan) device details
BOOL GetGatewayUse();

void SetGatewayUse(BOOL bNewValue);

Connect through a pcAnywhere Gateway (TRUE).

BSTR GetGatewayName();

void SetGatewayName(LPCTSTR lpszNewValue);

Name of pcAnywhere Gateway to use.

BSTR GetGatewayClass();

void SetGatewayClass(LPCTSTR lpszNewValue);

Class of pcAnywhere Gateway to use.

BSTR GetGatewayParity();

void SetGatewayParity(LPCTSTR lpszNewValue);

Values include:

� <None>

� Odd

� 110 � 300

� 600 � 1200

� 2400 � 4800

� 9600 � 19200

� 38400 � 57600

� 115200

CRemoteData

21

� Even

� Mark

� Space

NetBios device details
short GetLanaNumber();

void SetLanaNumber(short nNewValue);

The LANA (LAN Adapter) number to use for this connection.

ISDN via CAPI 2.0 device details
BOOL GetCapiChannelBonding();

void SetCapiChannelBonding(BOOL bNewValue);

Use Channel Bonding (uses 2 ISDN channels for one connection) (TRUE).

BSTR GetCapiExtensions();

void SetCapiExtensions(LPCTSTR lpszNewValue);

Methods

The following are the normal methods of the object. They are not used to
get and set properties.

short ConnectionTypes();

Returns the number of connection types available.

BSTR FirstConnectionType(); and BSTR NextConnectionType();

FirstConnectionType() and NextConnectionType() are used to iterate
through the available connection types. The functions return a BSTR,

Return Value

Short The number of connection types actually
available on this system.

C++ Object Definitions

22

which is the name of an available connection type. These returned types
can be used with the SetConnectionType() function.

BOOL FindConnectionType(LPCTSTR lpszConnectionType);

Returns TRUE if the passed in connection type exists on the computer.

short CountryCodes();

Returns the number of country codes available.

BSTR FirstCountryCode(); and BSTR NextCountryCode();

FirstCountryCode() and NextCountryCode() are used to iterate through the
available country codes. The functions return a BSTR, which is the name of
an available country code. These returned codes can be used with the
SetCountryCode() function.

Return Value

BSTR The name of a supported connection device
type.

Parameters

LPCTSTR lpszConnectionType The name of a connection device type.

Return Value

BOOL True if this device type is available.

Return Value

Short The number of country codes available.

Return Value

BSTR The first or next country code string.

CRemoteDataEx

23

BOOL ReadObject(LPCTSTR lpszPassword);

Reads the object data from the Remote object file.

BOOL WriteObject(LPCTSTR lpszPassword);

Writes the object data out to the Remote object file.

CRemoteDataEx
The CRemoteDataEx object contains all the functionality of the
CRemoteData object and the following Get Set methods:

BSTR GetPrivateKey(); //Returns the PrivateKey information

void SetPrivateKey(LPCTSTR lpszNewValue);

BSTR GetCertificationName(); //Returns the Certification
Name

void SetCertificationName(LPCTSTR lpszNewValue);

short GetEncryptionLevel(); //Returns the encryption level
value

void SetEncryptionLevel(short nNewValue);

BOOL GetDenyLowerEncrypt(); //Returns the DenyLowerEncryp
value

void SetDenyLowerEncrypt(BOOL bNewValue);

Parameters

LPCTSTR lpszPassword The object password.

Return Value

BOOL True if object is successfully read.

Parameters

LPCTSTR lpszPassword The object password.

Return Value

BOOL True if object is successfully written.

C++ Object Definitions

24

BSTR GetAutoDomain(); //Returns the AutoDomain value

void SetAutoDomain(LPCTSTR lpszNewValue);

C++ Sample Code

This sample C++ function creates a Remote object, sets its connection type
to TCP/IP, sets the computer name to the TCP/IP address passed into the
function, then launches the Remote object.

BOOL LaunchTCPRemote(LPCTSTR lpszAddress)

{

BOOL bReturn = FALSE;

CRemoteDataManager remoteDM;

CRemoteData remoteData;

// First, create the CRemoteDataManager

remoteDM.CreateDispatch(_T(“WINAWSVR.RemoteDataManager”)
);

// Next, create CRemoteData and attach it

remoteData.AttachDispatch(remoteDM.CreateObject(“Test”, 0)
);

// Now, set the required properties

remoteData.SetConnectionType(“TCP/IP”);

remoteData.SetComputerName(lpszAddress);

// Save the object data

if (remoteData.WriteObject(0))

{

// And launch it

if (remoteData.Launch())

bReturn = TRUE;

}

// Release the remote object.

remoteData.ReleaseDispatch();

remoteDM.ReleaseDispatch(_T(“WINAWSVR.RemoteDataManager”)
);

return bReturn;

}

CHostDataManager

25

CHostDataManager

Methods

BSTR CurrentDirectory();

Returns the full path name of the current directory in which pcAnywhere
Host objects are stored.

BOOL ChangeDirectory(LPCTSTR lpszNewDirectory);

Changes the current directory in which pcAnywhere Host objects are
stored.

BOOL FindFirst(LPCTSTR lpszPattern, BSTR FAR*
pbstrFullQualName);

Finds the first pcAnywhere Host object file (*.BHF) in the current directory,
based on the specified file name pattern.

Return Value

BSTR The full path name of the current pcAnywhere
data directory.

Parameters

LPCTSTR lpszNewDirectory Name of an existing directory.

Return Value

BOOL True if successful.

Parameters

LPCTSTR lpszPattern File name pattern to filter object files (“*” finds
all Host files in the current directory).

BSTR FAR *
pbstrFullQualName

Return buffer for full path name of the remote
object file matching the specified pattern.

C++ Object Definitions

26

BOOL FindNext(BSTR FAR* pbstrFullQualName);

After FindFirst() has been successfully called to get the name of a Host
object file in the current directory, FindNext() can be called to find the next
file matching the pattern, if any.

LPDISPATCH RetrieveObject(LPCTSTR lpszFQName, short
wAccessMode, LPCTSTR lpszPassword);

Retrieves a CHostData object by file name.

Return Value

BOOL True if a Host object file matching the specified
pattern is found. The full path name of the
matching file is stored in pbstrFullQualName.

Parameters

BSTR FAR *
pbstrFullQualName

Return buffer for full path name of the Host
object file matching the pattern specified in the
original call to FindFirst().

Return Value

BOOL True if another Host object file matching the
pattern specified in the call to FindFirst() is
found. The full path name of the matching file is
stored in pbstrFullQualName.

Parameters

LPCTSTR lpszFQName The fully qualified Host object file name to be
loaded.

short wAccessMode Specifies how this object is to be used. This is
related to the password protection. The options
include:

0 = Not specified

1 = View only

2 = View and Modify

3 = Execute

CHostDataManager

27

LPDISPATCH RetrieveObjectEx(LPCTSTR lpszFQName, short
wAccessMode, LPCTSTR lpszPassword);

Retrieves a CHostDataEx object by file name.

LPDISPATCH CreateObject(LPCTSTR lpszName);

Creates a CHostData object and returns an LPDISPATCH pointer to it.

LPCTSTR lpszPassword Object password. May be NULL.

Return Value

LPDISPATCH Pointer to an OLE dispatch object. The object is
a CHostData object.

Parameters

LPCTSTR lpszFQName The fully qualified Host object file name to be
loaded.

short wAccessMode Specifies how this object is to be used. This is
related to the password protection. The options
include:

0 = Not specified

1 = View only

2 = View and Modify

3 = Execute

LPCTSTR lpszPassword Object password. May be NULL.

Return Value

LPDISPATCH Pointer to an OLE dispatch object. The object is
a CHostDataEx object.

Parameters

LPCTSTR lpszFQName The fully qualified Host object file name for new
object.

C++ Object Definitions

28

LPDISPATCH CreateObjectEx(LPCTSTR lpszName);

Creates a CHostDataEx object and returns an LPDISPATCH pointer to it.

BOOL DeleteObject(LPCTSTR lpszFQName, LPCTSTR
lpszPassword);

Deletes a Host object file.

BOOL Launch(LPCTSTR lpszFQName);

Launches a Host object file. This opens the pcAnywhere Host terminal
window.

Return Value

LPDISPATCH Pointer to an OLE dispatch object. The object is
a CHostData object.

Parameters

LPCTSTR lpszFQName The fully qualified Host object file name for new
object.

Return Value

LPDISPATCH Pointer to an OLE dispatch object. The object is
a CHostDataEx object.

Parameters

LPCTSTR lpszFQName The fully qualified Host object file name of the
object to be deleted.

LPCTSTR lpszPassword Object password. May be NULL.

Return Value

BOOL True if object is deleted.

Parameters

LPCTSTR lpszFQName The fully qualified Host object file of object to
be launched.

CHostData

29

CHostData
Use this object to modify Host object data.

Get and Set Methods

The following methods are used to get and set properties of the CHostData
object.

BSTR GetComputerName();

void SetComputerName(LPCTSTR lpszNewValue);

The computer name is the name of the pcAnywhere remote computer to
be called when the Host object is launched.

BSTR GetPhoneNumber();

void SetPhoneNumber(LPCTSTR lpszNewValue);

The phone number is the number to dial to establish a modem connection
to a pcAnywhere remote computer.

BOOL GetUseDialingProperties();

void SetUseDialingProperties(BOOL bNewValue);

Indicates whether TAPI dialing properties should be used (location
information) (TRUE), or the phone number string should be used exactly
as it appears (FALSE).

BSTR GetAreaCode();

void SetAreaCode(LPCTSTR lpszNewValue);

If dialing properties are to be used, this is the area code of the number to
be called.

BSTR GetCountryCode();

void SetCountryCode(LPCTSTR lpszNewValue);

If dialing properties are to be used, this is the country code of the number
to be called.

short GetRedialCount();

void SetRedialCount(short nNewValue);

Return Value

BOOL True if object is successfully launched.

C++ Object Definitions

30

The number of times to retry dialing this number if the call fails.

short GetRedialDelay();

void SetRedialDelay(short nNewValue);

The time to wait (in seconds) between redial attempts.

BOOL GetLogSession();

void SetLogSession(BOOL bNewValue);

Controls whether sessions using this object are logged.

BOOL GetRecordSession();

void SetRecordSession(BOOL bNewValue);

Controls whether sessions using this object are recorded from the
beginning.

BSTR GetRecordFile();

void SetRecordFile(LPCTSTR lpszNewValue);

The name of the record file for sessions using this object.

BOOL GetRunOnConnect();

void SetRunOnConnect(BOOL bNewValue);

Run one of the following procedures on connection (TRUE).

BSTR GetScriptFile();

void SetScriptFile(LPCTSTR lpszNewValue);

Script to run on connection (if RunOnConnect is TRUE).

BSTR GetAutoXferFile();

void SetAutoXferFile(LPCTSTR lpszNewValue);

AutoXfer commands to run on connection (if RunOnConnect is TRUE).

Detail Methods

These are methods used to get and set details for each of the connection
types. When a Host object is assigned a connection type, the device details
are set to valid default values.

COM device details
BOOL AssignConnection(LPCTSTR lpszNewValue);

Places the requested connection type on the Host object’s list of assigned
connection types, and makes it the current connection type when
processing subsequent device-specific method calls. If the requested

CHostData

31

connection type is already in the list of assigned connections, the list of
assigned connections does not change; only the current connection type is
changed to the requested type. It is normal to call the AssignConnection
method on the same object multiple times in the course of getting and
setting connection-specific values.

AssignConnection returns TRUE if the passed in connection type exists on
the computer and is either successfully assigned or already assigned. It
returns FALSE if either the requested connection type does not exist on the
computer or the current assigned connection count is already at the
maximum allowed level.

A pcAnywhere Host object can currently support up to two assigned
connection types at any given time. The AssignConnection method returns
FALSE if it detects an attempt to exceed this limit.

The available connection types include:

Also, the name of a TAPI device can be used as a connection type.
“DEFAULT TAPI” uses the first TAPI device found in the system. To use a
specific TAPI device, use FirstConnectionType() / NextConnectionType()
to search for available devices.

BOOL UnassignConnection(LPCTSTR lpszNewValue);

Unassigns a connection type. After unassigning a connection type, the
remaining assigned connection, if any, becomes the current connection
type for subsequent device-specific method calls.

BSTR GetComParity();

void SetComParity(LPCTSTR lpszNewValue);

Values include:

� None

� Odd

� Even

� COM1 � COM2 � COM3

� COM4 � SPX � NetBIOS

� TCP/IP � LPT1 � LPT2

� LPT3 � LPT4 � ISDN via CAPI 2.0

� Infrared � DEFAULT TAPI

C++ Object Definitions

32

� Mark

� Space

BSTR GetComFlowControl();void SetComFlowControl(LPCTSTR
lpszNewValue);

Values include:

� <None>

� XONXOFF

� RTS/CTS

� BOTH

BSTR GetComStartedBy();

void SetComStartedBy(LPCTSTR lpszNewValue);

Values include:

� Always connected

� Carrier detect (DCD)

� Clear to send (CTS)

� Data set ready (DSR)

� Ring indicator (RI)

� Receive 2 <CR>'s

� Modem response

BSTR GetComEndedBy();

void SetComEndedBy(LPCTSTR lpszNewValue);

Values include:

� Always connected

� Carrier detect (DCD)

� Clear to send (CTS)

� Data set ready (DSR)

� Ring indicator (RI)

long GetComSpeed();

void SetComSpeed(long nNewValue);

Values include:

� 110 � 300

� 600 � 1200

CHostData

33

Network (TCP/IP, SPX, Banyan) device details
BOOL GetGatewayUse();

void SetGatewayUse(BOOL bNewValue);

Connect through a pcAnywhere Gateway (TRUE).

BSTR GetGatewayName();

void SetGatewayName(LPCTSTR lpszNewValue);

Name of pcAnywhere Gateway to use.

BSTR GetGatewayClass();

void SetGatewayClass(LPCTSTR lpszNewValue);

Class of pcAnywhere Gateway to use.

BSTR GetGatewayParity();

void SetGatewayParity(LPCTSTR lpszNewValue);

Values are:

� <None>

� Odd

� Even

� Mark

� Space

NetBios device details
short GetLanaNumber();void SetLanaNumber(short nNewValue);

The LANA (LAN Adapter) number to use for this connection.

� 2400 � 4800

� 9600 � 19200

� 38400 � 57600

� 115200

C++ Object Definitions

34

NASI/NCSI device details
BSTR GetNasiUserName();

void SetNasiUserName(LPCTSTR lpszNewValue);

User name for NASI server.

BSTR GetNasiPassword();

void SetNasiPassword(LPCTSTR lpszNewValue);

User password for NASI server.

BSTR GetNasiSessionName();

void SetNasiSessionName(LPCTSTR lpszNewValue);

NASI session name.

BOOL GetNasiSessionNameAvailable();

void SetNasiSessionNameAvailable(BOOL bNewValue);

BOOL NasiServer();

BSTR GetNasiServerName();

void SetNasiServerName(LPCTSTR lpszNewValue);

Specify the NASI server to use.

BOOL NasiService();

BSTR GetNasiServiceName();

void SetNasiServiceName(LPCTSTR lpszNewValue);

Specify the NASI Service to use.

BOOL NasiPort();

BSTR GetNasiPortName();

void SetNasiPortName(LPCTSTR lpszNewValue);

Specify the NASI Port to use.

BOOL GetNasiSelectOnConnect();

void SetNasiSelectOnConnect(BOOL bNewValue);

ISDN via CAPI 2.0 device details
BOOL GetCapiChannelBonding();

void SetCapiChannelBonding(BOOL bNewValue);

Use Channel Bonding (uses 2 ISDN channels for one connection) (TRUE).

BSTR GetCapiExtensions();

void SetCapiExtensions(LPCTSTR lpszNewValue);

CHostData

35

Methods

The following are the normal methods of the object. They are not used to
get and set properties.

short ConnectionTypes();

Returns the number of connection types available.

BSTR FirstConnectionType(); and BSTR NextConnectionType();

FirstConnectionType() and NextConnectionType() are used to iterate
through the available connection types. The functions return a BSTR,
which is the name of an available connection type. These returned types
can be used with the SetConnectionType() function.

BOOL FindConnectionType(LPCTSTR lpszConnectionType);

Returns TRUE if the passed in connection type exists on the computer.

Return Value

Short The number of connection types actually
available on this system.

Return Value

BSTR The name of a supported connection device
type.

Parameters

LPCTSTR lpszConnectionType The name of a connection device type.

Return Value

BOOL True if this device type is available.

C++ Object Definitions

36

short MaxAssignedConnections()

Returns the maximum allowed number of assigned connections (currently
two).

short AssignedConnections()

Returns the number of assigned connection types.

BSTR FirstAssignedConnection(); and
BSTR NextAssignedConnection ();

FirstAssignedConnection() and NextAssignedConnection() are used to
iterate through the list of assigned connections. The functions return a
BSTR, which is the name of an assigned connection type. These returned
types can be used with the AssignConnection() function.

BOOL FindAssignedConnection (LPCTSTR lpszConnectionType);

Returns TRUE if the passed in connection type is currently assigned on the
computer.

Return Value

Short The maximum allowed number of assigned
connections.

Return Value

Short The number of connection types currently
assigned on this system.

Return Value

BSTR The name of a supported connection device
type.

Parameters

LPCTSTR lpszConnectionType The name of a connection device type.

Return Value

BOOL True if this device type is currently assigned.

CHostData

37

short CountryCodes();

Returns the number of country codes available.

BSTR FirstCountryCode(); and BSTR NextCountryCode();

FirstCountryCode() and NextCountryCode() are used to iterate through the
available country codes. The functions return a BSTR, which is the name of
an available country code. These returned codes can be used with the
SetCountryCode() function.

BOOL ReadObject(LPCTSTR lpszPassword);

Reads the object data from the Host object file.

BOOL WriteObject(LPCTSTR lpszPassword);

Writes the object data out to the Host object file.

Return Value

Short The number of country codes available.

Return Value

BSTR The first or next country code string.

Parameters

LPCTSTR lpszPassword The object password.

Return Value

BOOL True if object is successfully read.

Parameters

LPCTSTR lpszPassword The object password.

Return Value

BOOL True if object is successfully written.

C++ Object Definitions

38

CHostDataEx
The CHostDataEx contains the same functionality as the CHostData, with
the added Get Set methods below:

Additional functionality

BOOL GetReadProtection();

void SetReadProtection(BOOL bNewValue);

BOOL GetWriteProtection();

void SetWriteProtection(BOOL bNewValue);

BSTR GetPassword(); //Returns “NOT IMPLEMENTED”

void SetPassword(LPCTSTR lpszNewValue);

BSTR GetCallersPath();

void SetCallersPath(LPCTSTR lpszNewValue);

BOOL GetConfirmConnect();

void SetConfirmConnect(BOOL bNewValue);

short GetConfirmTimeout();

void SetConfirmTimeout(short nNewValue);

BOOL GetConfirmDeny();

void SetConfirmDeny(BOOL bNewValue);

BOOL GetPwCaseSensitive();

void SetPwCaseSensitive(BOOL bNewValue);

short GetPwAttempts();

void SetPwAttempts(short nNewValue);

short GetPwTimeout();

void SetPwTimeout(short nNewValue);

short GetActiveKbds();

CHostDataEx

39

void SetActiveKbds(short nNewValue); //Sets ActiveKbds

short GetInactiveTimeout();

void SetInactiveTimeout(short nNewValue);

short GetCryptReqLevel();

void SetCryptReqLevel(short nNewValue);

BOOL GetCryptRefuseLower();

void SetCryptRefuseLower(BOOL bNewValue);

short GetAuthenticationType();

void SetAuthenticationType(short nNewValue);

BOOL GetLockSystemWhileWait();

void SetLockSystemWhileWait(BOOL bNewValue);

BOOL GetMinimizeOnLaunch();

void SetMinimizeOnLaunch(BOOL bNewValue);

BOOL GetRunAsService();

void SetRunAsService(BOOL bNewValue);

short GetConnLostWait();

void SetConnLostWait(short nNewValue);

BOOL GetConnLostHostOpts();

void SetConnLostHostOpts(BOOL bNewValue);

BOOL GetEnableConnLostSecurity();

void SetEnableConnLostSecurity(BOOL bNewValue);

short GetConnLostSecurity();

void SetConnLostSecurity(short nNewValue);

short GetCallbkDelay();

void SetCallbkDelay(short nNewValue);

C++ Object Definitions

40

BOOL GetEndSessHostOpts();

void SetEndSessHostOpts(BOOL bNewValue);

BOOL GetEnableEndSessSecurity();

void SetEnableEndSessSecurity(BOOL bNewValue);

short GetEndSessSecurity();

void SetEndSessSecurity(short nNewValue);

BSTR GetCryptPrivateKey();

void SetCryptPrivateKey(LPCTSTR lpszNewValue);

BSTR GetCryptCommonName();

void SetCryptCommonName(LPCTSTR lpszNewValue);

BOOL GetBlankHost();

void SetBlankHost(BOOL bNewValue);

BOOL GetAllowRemoteMouse();

void SetAllowRemoteMouse(BOOL bNewValue);

short GetRebootOnDisconnect();

void SetRebootOnDisconnect(short nNewValue);

BOOL GetPasswordAfterDisc();

void SetPasswordAfterDisc(BOOL bNewValue);

BOOL GetLogFailures();

void SetLogFailures(BOOL bNewValue);

BOOL GetAllowDriveSecurity();

void SetAllowDriveSecurity(BOOL bNewValue);

BOOL GetExecuteProtection();

void SetExecuteProtection(BOOL bNewValue);

CHostDataEx

41

C++ Sample Code

This sample C++ function creates a Host object, sets its connection type to
TCP/IP, sets the computer name to the TCP/IP address passed into the
function, then launches the Host object.

BOOL LaunchTCPHost(LPCTSTR lpszAddress)

{

BOOL bReturn = FALSE;

CHostDataManager hostDM;

CHostData hostData;

// First, create the CHostDataManager

hostDM.CreateDispatch(_T("WINAWSVR.BeHostDataManager"));

// Next, create CRemoteData and attach it

hostData.AttachDispatch(hostDM.CreateObject("Test", 0));

// Now, set the required properties

hostData.SetConnectionType("TCP/IP");

hostData.SetComputerName(lpszAddress);

// Save the object data

if (hostData.WriteObject(0))

{

// And launch it

if (hostData.Launch())

bReturn = TRUE;

}

// Release the Host object.

hostData.ReleaseDispatch();

return (bReturn);

}

C++ Object Definitions

42

AWREM32 functions
boolean awConnect(BSTR FileName);

Creates the connection to the Host computer.

boolean awDisconnect();

Disconnects the Host computer.

boolean FileXferFromHost(BSTR HostFile, BSTR RemoteFile);

Copies a file from the Host computer to the Remote computer. The
parameters can contain wildcards.

Parameters

Name as string The fully qualified .chf file name that contains
information about the Host computer.

Return Value

Boolean Executes the command.

Return Value

Boolean After calling this function, the calling program
must delete the object (C++ - delete
IAwrem32X*, VB – set ObjectName = Nothing;).

Parameters

HostFile as string Contains the fully qualified path and file name to
be copied.

RemoteFile as string Contains the fully qualified path and file name.
The HostFile and RemoteFile strings do not have
to be identical.

Return Value

Boolean True if command executed.

AWREM32 functions

43

boolean FileXferToHost(BSTR HostFile, BSTR RemoteFile);

Copies a file from the Remote computer to the Host computer. The
parameters can contain wildcards.

boolean CreateFolderOnHost(BSTR FolderName);

Creates a new folder on the Host computer. It creates a temporary folder
on the Remote computer, then copies that folder to the Host.

boolean ExecuteHostFile(BSTR FileName);

Executes an existing file on the Host computer. This function only executes
batch, command, and executable files. It does not execute files that are
associated with executables. For example, it does not open Microsoft Word
if you execute a .doc file.

Parameters

HostFile as string Contains the fully qualified destination path and
file name.

RemoteFile as string Contains the fully qualified path and file name to
be copied. The HostFile and RemoteFile strings
do not have to be identical.

Return Value

Boolean True if command executed.

Parameters

FolderName as string Contains the drive and path to create the folder
on the host computer.

Return Value

Boolean True if command executed.

Parameters

FileName as string Contains the fully qualified path to the file on
the Host computer.

Return Value

Boolean True if command executed.

C++ Object Definitions

44

BSTR GetError();

Returns the last error as a string

short ConnectionStatus();

Returns the current status of your connection to the Host computer.

Return Value

String Returns the last error generated in AWREM32.

Return Value

Short -1 = Lost Connection

0 = No Connection

1 = Session Connected

45

C H A P T E R 3Visual Basic Object
Definitions

Some functions, including Gateways, are not available in pcAnywhere 10.0,
but are included here for use with previous versions.

For functions involving passwords, password values can be set, but not
retrieved. This is for security purposes.

CRemoteDataManager

Methods

CurrentDirectory()

Returns the full path name of the current directory where pcAnywhere
objects are stored.

ChangeDirectory(NewDirectory)

Changes the current directory where pcAnywhere objects are stored.

Return Value

String The full path name of the current pcAnywhere
data directory.

Parameters

NewDirectory Name of an existing directory.

Visual Basic Object Definitions

46

FindFirst(Pattern, Name string)

Finds the first pcAnywhere Remote object file (*.CHF) in the current
directory, based on the specified file name pattern.

FindNext(Name)

After FindFirst() has been successfully called to get the name of a remote
object file in the current directory, FindNext() can be called to find the next
file matching the pattern, if any.

Return Value

Boolean True if successful.

Parameters

Pattern as string File name pattern to filter object files (“*”finds all
files in the current directory).

Name as string Return buffer for full path name of the remote
object file matching the specified pattern.

Return Value

Boolean True if a remote object file matching the
specified pattern is found. The full path name of
the matching file is stored in Name.

Parameters

Name as string Return buffer for full path name of the remote
object file matching the pattern specified in the
original call to FindFirst().

Return Value

Boolean True if another remote object file matching the
pattern specified in the call to FindFirst() is
found. The full path name of the matching file is
stored in Name.

CRemoteDataManager

47

RetrieveObject(Name, AccessMode, Password)

Retrieves a CRemoteData object by file name.

RetrieveObjectEx(Name, AccessMode, Password)

Retrieves a CRemoteDataEx object by file name.

Parameters

Name as string The fully qualified remote object file name to be
loaded.

AccessMode as integer Specifies how this object is to be used. This is
related to the password protection. The options
include:

0 = Not specified

1 = View only

2 = View and Modify

3 = Execute

Password as string Object password. May be NULL.

Return Value

Object CRemoteData object from the specified file.

Parameters

Name as string The fully qualified remote object file name to be
loaded.

AccessMode as integer Specifies how this object is to be used. This is
related to the password protection. The options
include:

0 = Not specified

1 = View only

2 = View and Modify

3 = Execute

Password as string Object password. May be NULL.

Visual Basic Object Definitions

48

CreateObject(Name)

Creates a CRemoteData object and returns an LPDISPATCH pointer to it.

CreateObjectEx(Name)

Creates a CRemoteDataEx object and returns an LPDISPATCH pointer to it.

DeleteObject(Name, Password)

Deletes a remote object file.

Return Value

Object CRemoteDataEx object from the specified file.

Parameters

Name as string The fully qualified remote object file name for
new object.

Return Value

Object CRemoteData

Parameters

Name as string The fully qualified remote object file name for
new object.

Return Value

Object CRemoteDataEx

Parameters

Name as string The fully qualified remote object file name of the
object to be deleted.

Password as string Object password.

Return Value

Boolean True if object is deleted.

CRemoteData

49

CRemoteData

Properties
� ComputerName as string

� PhoneNumber as string

� UseDialingProperties as boolean

� AreaCode as string

� CountryCode as string

� RedialCount as integer

� RedialDelay as integer

� AutoLoginName as string

� AutoLoginPassword as string

� Password as string

� ExecuteProtection as boolean

� ReadProtection as boolean

� WriteProtection as boolean

� LogSession as boolean

� RecordFile as string

� RecordSession as boolean

� RunOnConnect as boolean

� AutoXferFile as string

� ConnectionType as string

Connection types available on a computer can be obtained with the
FirstConnectionType() and NextConnectionType() functions. The
connection types available include:

� COM1 � COM2 � COM3

� COM4 � SPX � NetBIOS

� TCP/IP � LPT1 � LPT2

� LPT3 � LPT4 � ISDN via CAPI 2.0

� Infrared � DEFAULT TAPI

Visual Basic Object Definitions

50

Also, the name of a TAPI device can be used as a connection type.
DEFAULT TAPI uses the first TAPI device found in the system. To use a
specific TAPI device, you must use FirstConnectionType() /
NextConnectionType() to search for available devices.

Detail Properties

These are properties specific to the different connection types. When a
remote object is assigned a connection type, the device details are set to
valid default values.

COM device properties

ComParity as string

Values include:

� <None>

� Odd

� Even

� Mark

� Space

ComFlowControl as string

Values include:

� <None>

� XONXOFF

� RTS/CTS

� BOTH

ComStartedBy as string

Values include:

� Always connected

� Carrier detect (DCD)

� Clear to send (CTS)

� Data set ready (DSR)

� Ring indicator (RI)

CRemoteData

51

� Receive 2 <CR>'s

� Modem response

ComEndedBy as string

Values include:

� Always connected

� Carrier detect (DCD)

� Clear to send (CTS)Data set ready (DSR)

� Ring indicator (RI)

ComSpeed as long

Values include:

Network (TCP/IP, SPX, NetBios) device properties
� GatewayUse as boolean

� GatewayName as string

� GatewayClass as string

� GatewayParity as string

NetBios

LanaNumber as integer

ISDN via CAPI 2.0 device properties
� CapiChannelBonding as boolean

� CapiExtensions as string

� 110 � 300 � 600

� 1200 � 2400 � 4800

� 9600 � 19200 � 38400

� 57600 � 115200

Visual Basic Object Definitions

52

Methods

The following are the normal methods of the object.

ConnectionTypes()

Returns the number of connection types available.

FirstConnectionType() and NextConnectionType()

FirstConnectionType() and NextConnectionType() are used to iterate
through the available connection types. The functions return a string,
which is the name of an available connection type. These returned types
can be used with the SetConnectionType() function.

FindConnectionType(ConnectionType)

Returns TRUE if the passed in connection type exists on the machine.

CountryCodes()

Returns the number of country codes available.

Return Value

Integer The number of connection types actually
available on this system.

Return Value

String The name of a supported connection device
type.

Parameters

ConnectionType as string The name of a connection device type.

Return Value

Boolean True if this device type is available.

Return Value

Integer The number of country codes available.

CRemoteDataEx

53

FirstCountryCode() and NextCountryCode()

FirstCountryCode() and NextCountryCode() are used to iterate through the
available country codes. The functions return a string, which is the name of
an available country code. These returned codes can be used with the
SetCountryCode() function.

ReadObject(Password)

Reads the object data from the remote object file.

WriteObject(Password)

Writes the object data out to the Remote object file.

CRemoteDataEx
CRemoteDataEx contains the same functionality as CRemoteData, with the
addition of the following functionality:

Return Value

String The first or next country code string.

Parameters

Password as string The object password.

Return Value

Boolean True if object is successfully read.

Parameters

Password as string The object password.

Return Value

Boolean True if object is successfully written.

PrivateKey as string //Container name of Private Key

CertificationName as string //The common name associated with the private key

Visual Basic Object Definitions

54

EncryptionLevel as byte //The level of encryption, -1 = None, 0 =
pcAnywhere, 1 = Symmetric, 2 = Public key

DenyLowerEncrypt as
boolean

//Allow or Deny communication below that of the
EncryptionLevel value

AutoDomain as string //Combined with autologin and autopassword for the
three variables required for automatic login

CRemoteDataEx

55

Visual Basic sample code

This sample Visual Basic sample code retrieves a Remote Data Object and
modifies its properties.

Private Sub Command1_Click()

Dim RemoteDataManager as Object

Dim RemoteData as Object

Dim s as string

'Create CRemoteDataManager object

Set RemoteDataManager =
CreateObject(WINAWSVR.REMOTEDATAMANAGER)

'display and change current directory

s = RemoteDataManager.CurrentDirectory()

MsgBox (s)

RemoteDataManager.ChangeDirectory
("C:\dev\bin.w32\data")

s = RemoteDataManager.CurrentDirectory()

MsgBox (s)

'retrieve remote data object

Set RemoteData =
RemoteDataManager.RetrieveObjectEx("pod.CHF", 2, 0)

'display some properties

s = RemoteData.AreaCode()

MsgBox (s)

s = RemoteData.PhoneNumber()

MsgBox (s)

'set some properties

RemoteData.AreaCode = "212"

RemoteData.PhoneNumber = "555-5555"

'write object to disk

RemoteData.WriteObject (0)

End Sub

Visual Basic Object Definitions

56

Use the FindFirst and FindNext methods to display Remote file in a
directory.

Private Sub Command5_Click()

Dim RemoteDataManager as Object

Dim RemoteData as Object

Dim s as string

Set RemoteDataManager =
CreateObject("WINAWSVR.REMOTEDATAMANAGER")

RemoteDataManager.ChangeDirectory
("C:\dev\bin.w32\data")

RemoteDataManager.FindFirst "*", s

MsgBox (s)

RemoteDataManager.FindNext s

MsgBox (s)

End Sub

CHostDataManager

57

Create a Remote object, set connection for TCP/IP, computer name
“Host1,” and then launch it.

CHostDataManager

Methods

CurrentDirectory()

Returns the full path name of the current directory where pcAnywhere
Host objects are stored.

Return Value

String The full path name of the current pcAnywhere
data directory.

Private Sub Command6_Click()

Dim RemoteDataManager as Object

Dim RemoteData as Object

Dim s as string

Set RemoteDataManager =
CreateObject("WINAWSVR.REMOTEDATAMANAGER")

MsgBox (RemoteDataManager.CurrentDirectory())

RemoteDataManager.ChangeDirectory
("C:\dev\bin.w32\data")

MsgBox (RemoteDataManager.CurrentDirectory())

Set RemoteData = RemoteDataManager.CreateObject("test")

RemoteData.ConnectionType = "TCP/IP"

RemoteData.ComputerName = "Host1"

s = RemoteData.ConnectionType

MsgBox (s)

s = RemoteData.ComputerName

MsgBox (s)

RemoteData.WriteObject (0)

End Sub

Visual Basic Object Definitions

58

FindNext(Name)

After FindFirst() has been successfully called to get the name of a Host
object file in the current directory, FindNext() can be called to find the next
file matching the pattern, if any.

RetrieveObject(Name, AccessMode, Password)

Retrieves a CHostData object by file name.

Parameters

Name as string Return buffer for full path name of the Host
object file matching the pattern specified in the
original call to FindFirst().

Return Value

Boolean True if another Host object file matching the
pattern specified in the call to FindFirst() is
found. The full path name of the matching file is
stored in Name.

Parameters

Name as string The fully qualified Host object file name to be
loaded.

AccessMode as integer Specifies how this object is to be used. This is
related to the password protection. The options
include:

0 = Not specified

1 = View only

2 = View and Modify

3 = Execute

Password as string Object password. May be NULL.

Return Value

Object CRemoteData object from the specified file.

CHostDataManager

59

RetrieveObjectEx(Name, AccessMode, Password)

Retrieves a CHostDataEx object by file name.

CreateObject(Name)

Creates a CHostData object and returns an LPDISPATCH pointer to it.

CreateObjectEx(Name)

Creates a CHostDataEx object and returns an LPDISPATCH pointer to it.

Parameters

Name as string The fully qualified Host object file name to be
loaded.

AccessMode as integer Specifies how this object is to be used. This is
related to the password protection. The options
include:

0 = Not specified

1 = View only

2 = View and Modify

3 = Execute

Password as string Object password. May be NULL.

Return Value

Object CRemoteDataEx object from the specified file.

Parameters

Name as string The fully qualified Host object file name for new
object.

Return Value

Object CHostData

Parameters

Name as string The fully qualified Host object file name for new
object.

Visual Basic Object Definitions

60

DeleteObject(Name, Password)

Deletes a Host object file.

Launch(Name)

Launches a Host object file. This opens the pcAnywhere Host terminal
window.

CHostData

Properties
� ComputerName as string

� PhoneNumber as string

� UseDialingProperties as boolean

� AreaCode as string

� CountryCode as string

Return Value

Object CHostDataEx

Parameters

Name as string The fully qualified Host object file name of the
object to be deleted.

Password as string Object password.

Return Value

Boolean True if object is deleted.

Parameters

Name as string The fully qualified Host object file of object to
be launched.

Return Value

Boolean True if object is successfully launched.

CHostData

61

� RedialCount as integer

� RedialDelay as integer

� LogSession as boolean

� RecordFile as string

� RecordSession as boolean

� RunOnConnect as boolean

� ScriptFile as string

� AutoXferFile as string

Detail Properties

These are properties specific to the different connection types. When a
remote object is assigned a connection type, the device details are set to
valid default values.

COM device properties

ComParity as string

Values include:

� <None>

� Odd

� Even

� Mark

� Space

ComFlowControl as string

Values include:

� <None>

� XONXOFF

� RTS/CTS

� BOTH

Visual Basic Object Definitions

62

ComStartedBy as string

Values include:

� Always connected

� Carrier detect (DCD)

� Clear to send (CTS)

� Data set ready (DSR)

� Ring indicator (RI)

� Receive 2 <CR>'s

� Modem response

ComEndedBy as string

Values include:

� Always connected

� Carrier detect (DCD)

� Clear to send (CTS)Data set ready (DSR)

� Ring indicator (RI)

ComSpeed as long

Values include:

Network (TCP/IP, SPX, Banyan) device properties
� GatewayUse as boolean

� GatewayName as string

� GatewayClass as string

� GatewayParity as string

� 110 � 300 � 600

� 1200 � 2400 � 4800

� 9600 � 19200 � 38400

� 57600 � 115200

CHostData

63

NetBios

LanaNumber as integer

ISDN via CAPI 2.0 device properties
� CapiChannelBonding as boolean

� CapiExtensions as string

Methods

The following are the normal methods of the object.

ConnectionTypes()

Returns the number of connection types available.

The connection types available include:

Also, the name of a TAPI device can be used as a connection type.
“DEFAULT TAPI” uses the first TAPI device found in the system. To use a
specific TAPI device, use FirstConnectionType() / NextConnectionType()
to search for available devices.

Return Value

Integer The number of connection types actually
available on this system.

� COM1 � COM2 � COM3

� COM4 � SPX � NetBIOS

� TCP/IP � LPT1 � LPT2

� LPT3 � LPT4 � ISDN via CAPI 2.0

� Infrared � DEFAULT TAPI

Visual Basic Object Definitions

64

FirstConnectionType() and NextConnectionType()

FirstConnectionType() and NextConnectionType() are used to iterate
through the available connection types. The functions return a string,
which is the name of an available connection type. These returned types
can be used with the AssignConnection() function.

FindConnectionType(ConnectionType)

Returns TRUE if the passed in connection type exists on the computer.

MaxAssignedConnections()

Returns the maximum number of connection types that can be assigned at
the same time.

AssignedConnections()

Returns the number of currently assigned connection types.

Return Value

String The name of a supported connection device
type.

Parameters

ConnectionType as string The name of a connection device type.

Return Value

Boolean True if this device type is available.

Return Value

Integer The maximum number of connection type
assignments.

Return Value

Integer The number of assigned connection types.

CHostData

65

FirstAssignedConnection() and NextAssignedConnection()

FirstAssignedConnection() and NextAssignedConnection() are used to
iterate through the currently assigned connection types. The functions
return a string, which is the name of an available connection type. These
returned types can be used with the AssignConnection() function.

FindAssignedConnection(ConnectionType)

Returns TRUE if the passed in connection type is currently assigned on the
computer.

AssignConnection(ConnectionType)

Places the requested connection type on the Host object’s list of assigned
connection types, and makes it the current connection type when
processing subsequent device-specific method calls. If the requested
connection type is already in the list of assigned connections, the list of
assigned connections does not change; only the current connection type is
changed to the requested type. It is normal to call the AssignConnection
method on the same object multiple times in the course of getting and
setting connection-specific values.

AssignConnection returns TRUE if the passed in connection type exists on
the computer and is either successfully assigned or already assigned. It
returns FALSE if either the requested connection type does not exist on the
computer or the current assigned connection count is already at the
maximum allowed level.

Return Value

String The name of a supported connection device
type.

Parameters

ConnectionType as string The name of a connection device type.

Return Value

Boolean True if this device type is currently assigned.

Visual Basic Object Definitions

66

A pcAnywhere Host object can currently support up to two assigned
connection types at any given time. The AssignConnection method returns
FALSE if it detects an attempt to exceed this limit.

UnassignConnection(ConnectionType)

Returns TRUE if the passed in connection type is successfully removed
from the list of assigned connection types.

CountryCodes()

Returns the number of country codes available.

Parameters

ConnectionType as string The name of a connection device type to be
assigned.

Return Value

Boolean True if this device type is available and the
maximum allowed assigned connection count
has not already been reached.

Parameters

ConnectionType as string The name of a connection device type to be
unassigned.

Return Value

Boolean True if this device type is successfully
unassigned.

Return Value

Integer The number of country codes available.

CHostDataEx

67

FirstCountryCode() and NextCountryCode()

FirstCountryCode() and NextCountryCode() are used to iterate through the
available country codes. The functions return a string, which is the name of
an available country code. These returned codes can be used with the
SetCountryCode() function.

ReadObject(Password)

Reads the object data from the remote object file.

WriteObject(Password)

Writes the object data out to the Remote object file.

CHostDataEx
CHostDataEx contains the same functionality as CHostData, with the added
functionality shown below:

Return Value

String The first or next country code string.

Parameters

Password as string The object password.

Return Value

Boolean True if object is successfully read.

Parameters

Password as string The object password.

Return Value

Boolean True if object is successfully written.

ReadProtection as boolean // Require password to read this file

WriteProtection as boolean // Require password to write to this file

Password as string //Password to protect object

Visual Basic Object Definitions

68

CallersPath as string //Path to caller objects

ConfirmConnect as boolean //Allow or deny Host operator to confirm
connection

ConfirmTimeout as byte //Time for Host operator to confirm connection
or disconnect

ConfirmDeny as boolean //Allow or deny Host operator to confirm Deny
connection

PwCaseSensitive as boolean //Is password case sensitive

PwAttempts as byte //Number of times login attempts allowed
before disconnect

PwTimeout as byte //Time allowed to complete successful login
before disconnect

ActiveKbds as byte // 0 = Host and Remote, 1 = Host, 2 = Remote

InactiveTimeout as byte //Time limit for activity between Remote and
Host before disconnect

CryptReqLevel as byte //Preferred level of encryption, -1 = None, 0 =
pcAnywhere, 1 = Symmetric, 2 = Public key

CryptRefuseLower as boolean //Preferred level is minimum acceptable level of
encryption

AuthenticationType as byte //Returns index of Authentication Type
comboBox

LockSystemWhileWait as boolean //Settings – Host StartUp option

MinimizeOnLaunch as boolean //Settings – Host StartUp option

RunAsService as boolean //Settings – Host StartUp option

ConnLostWait as byte //Settings – Abnormal End of Session Option
Time to wait before reconnect allowed

ConnLostHostOpts as boolean //Wait or Cancel Host

EnableConnLostSecurity as
boolean

//Enable ConnLostSecurity

CHostDataEx

69

ConnLostSecurity as byte // 1 = Log off user, 2 = Restart host computer, 3
= Lock NT

CallbkDelay as byte //Modem callback delay in seconds (0-9999)

EndSessHostOpts as boolean //Wait or Cancel host

EnableEndSessSecurity; // Enable EndSessSecurity

EndSessSecurity as byte // 1 = Log off user, 2 = Restart host computer, 3
= Lock NT

CryptPrivateKey as string //Container name of Private Key

CryptCommonName as string //Certificate Common Name

BlankHost as boolean //Black PC screen after Connection

AllowRemoteMouse as boolean //T F

RebootOnDisconnect as byte //Reboot on disconnect

PasswordAfterDisc as boolean //Require revalidation of password after
disconnect

LogFailures as boolean //Include Login failure attempts in log

AllowDriveSecurity as boolean //

ExecuteProtection as boolean //Require password to execute file

UseDirectoryServices as boolean

DirectoryServiceEntry as string

Visual Basic Object Definitions

70

Visual Basic sample code

Retrieve a Host Data Object and modify its properties.

Private Sub Command1_Click()

Dim HostDataManager as Object

Dim HostData as Object

Dim s as string

'Create CHostDataManager object

Set HostDataManager =
CreateObject(WINAWSVR.BEHOSTDATAMANAGER)

'display and change current directory

s = HostDataManager.CurrentDirectory()

MsgBox (s)

HostDataManager.ChangeDirectory ("C:\dev\bin.w32\data")

s = HostDataManager.CurrentDirectory()

MsgBox (s)

'retrieve remote data object

Set HostData = HostDataManager.RetrieveObject("pod.BHF",
2, 0)

'display some properties

s = HostData.AreaCode()

MsgBox (s)

s = HostData.PhoneNumber()

MsgBox (s)

'set some properties

RemoteData. HostData = "212"

RemoteData. HostData = "555-5555"

'write object to disk

HostData.WriteObject (0)

End Sub

AWREM32 functions

71

Use the FindFirst and FindNext methods to display Host file in a directory.

AWREM32 functions
awConnect(FileName)

Creates the connection to the Host computer.

awDisconnect()

Disconnects the Host computer.

Parameters

Name as string The fully qualified .chf file name that contains
information about the Host computer.

Return Value

Boolean Executes the command.

Return Value

Boolean After calling this function, the calling program
must delete the object (C++ - delete
IAwrem32X*, VB – set ObjectName = Nothing;).

Private Sub Command5_Click()

Dim HostDataManager as Object

Dim HostData as Object

Dim s as string

Set HostDataManager =
CreateObject("WINAWSVR.BEHOSTDATAMANAGER")

HostDataManager.ChangeDirectory ("C:\dev\bin.w32\data")

HostDataManager.FindFirst "*", s

MsgBox (s)

HostDataManager.FindNext s

MsgBox (s)

End Sub

Visual Basic Object Definitions

72

FileXferFromHost(HostFile, RemoteFile)

Copies a file from the Host computer to the Remote computer. The
parameters can contain wildcards.

FileXferToHost(HostFile, RemoteFile)

Copies a file from the Remote computer to the Host computer. The
parameters can contain wildcards.

CreateFolderOnHost(FolderName)

Creates a new folder on the Host computer. It creates a temporary folder
on the Remote computer, then copies that folder to the Host.

Parameters

HostFile as string Contains the fully qualified path and file name to
be copied.

RemoteFile as string Contains the fully qualified path and file name.
The HostFile and RemoteFile strings do not have
to be identical.

Return Value

Boolean True if command executed.

Parameters

HostFile as string Contains the fully qualified destination path and
file name.

RemoteFile as string Contains the fully qualified path and file name to
be copied. The HostFile and RemoteFile strings
do not have to be identical.

Return Value

Boolean True if command executed.

Parameters

FolderName as string Contains the drive and path to create the folder
on the host computer.

AWREM32 functions

73

ExecuteHostFile(FileName)

Executes an existing file on the Host computer. This function only executes
batch, command, and executable files. It does not execute files that are
associated with executables. For example, it does not open Microsoft Word
if you execute a .doc file.

GetError()

Returns the last error as a string

ConnectionStatus()

Returns the current status of your connection to the Host computer.

Return Value

Boolean True if command executed.

Parameters

FileName as string Contains the fully qualified path to the file on
the Host computer.

Return Value

Boolean True if command executed.

Return Value

String Returns the last error generated in AWREM32.

Return Value

Short -1 = Lost Connection

0 = No Connection

1 = Session Connected

	Symantec pcAnywhere OLE Automation Guide
	Contents
	1. Using OLE Automation
	Introduction
	Overview of technology
	Implementing the technology
	Accessing the automation server
	Using Microsoft Visual C++
	Using Microsoft Visual Basic

	References

	2. C++ Object Definitions
	CRemoteDataManager
	CRemoteData
	Detail Methods
	Methods

	CRemoteDataEx
	C++ Sample Code

	CHostDataManager
	Methods

	CHostData
	Get and Set Methods
	Detail Methods
	COM device details
	Network (TCP/IP, SPX, Banyan) device details
	NetBios device details
	ISDN via CAPI 2.0 device details
	Methods

	CHostDataEx
	C++ Sample Code

	AWREM32 functions

	3. Visual Basic Object Definitions
	CRemoteDataManager
	Methods

	CRemoteData
	Properties
	Detail Properties
	COM device properties
	Network (TCP/IP, SPX, NetBios) device properties
	NetBios
	ISDN via CAPI 2.0 device properties
	Methods

	CRemoteDataEx
	Visual Basic sample code

	CHostDataManager
	Methods

	CHostData
	Properties
	Methods

	CHostDataEx
	Visual Basic sample code

	AWREM32 functions

