
-- --

IEEE - 695 Object Module Format Specification

Revision 4.1

December 21, 1992

Implementation Defined by:

Microtec Research Incorporated and Hewlett Packard Company

Copyright © Microtec Research Incorporated and Hewlett Packard
Company 1992

Permission is hereby granted to reproduce this document subject to the following conditions:

1. The document must be reproduced in its entirety, without modification to its contents.

2. Copies shall not be produced for the purpose of sale.

3. All copies must include this notice.

-- --

(Page intentionally left blank)

-- --

To register to receive updates and errata notices for this specification, please send the portion of the page below the
dashed line to:

Hewlett-Packard
Attn: Technical Publications Manager
Logic Product Support Dept.
P.O.Box 2197
Colorado Springs, CO 80901-2197

Please send updates and errata notices for

IEEE - 695 Object Module Format Specification,
Implementation defined by: Microtec Research Inc. and Hewlett-Packard Company,

Revision 4.1, December 21, 1992

to:

Name:

Title:

Company:

Address:

City/State/Zip:

Phone:

-- --

(Page intentionally left blank)

-- --

1. Intr oduction

This document† describes the Microtec Research Inc. (MRI)/Hewlett-Packard Company (HP) object module format
supporting assemblers, compilers, linkers and debuggers. It is derived from the IEEE format, Standard 695, and
includes extensions and limitations necessary to support MRI and HP product requirements. The standard describes
both an ASCII and binary version of the format. MRI and HP utilize the more compact binary form. This document
should be reviewed in conjunction with the IEEE standard [1].

2. Terminology

The IEEE specification defines a term that is redefined in this document. The term applies to the basic division of an
object file which is referred to as a ‘‘command.’’ Since this conflicts with the MRI/HP use of command, the basic
unit is renamed to be a ‘‘record.’’ Object module records are prefixed with a record type byte in the range $E0
through $FF. The term ‘‘library’ ’ is used throughout to mean a single file with more than one relocatable module.
The term ‘‘MAU’ ’ is used throughout to mean Minimum Addressable Unit; e.g.a byte (8 bits) on the MC68000 or a
word (16 bits) on a Mil-Std-1750A.

2.1 Nomenclature

The following nomenclature is used throughout this document:

• Braces { } surround a required field

• Brackets [] surround an optional field

• Dollar Signs ($) precede character representations of hexadecimal numeric values

2.2 NumberFormat

Numbers are used to define byte counts for fields and to specify numeric parameters. These specifications can have
two forms:

• If the value is between 0-127 decimal, the number is $0-$7F.

• If the value is greater than 127 decimal, then the number must be defined by 1 byte of count with the high
order bit set ($80) followed by the indicated number of bytes of numeric data with the most significant byte
first. The range for the count is usually 0-4 (i.e. $80-$84) and can be 0-8 on some installations. This form is
also valid for numbers in the range 0-127.

Example: $7FFF is encoded as {$82}{$7F}{$FF} (3 bytes).0 can be encoded as {$00} or {$81}{$00}, 2ˆˆ32
can be encoded as {$85}{01}{00}{00}{00}{00}, etc.

• Omitted optional fields in records may be represented by a byte count of zero.

Example: {$80}

• Numeric fields are represented in the document as {n} and {x}.

• Numeric fields in miscellaneous records are represented as {v}.

† Copyright 1987, 1988, 1989, 1992 Microtec Research, Inc. and Hewlett-Packard Company

[1] IEEE Trial Use Standard for Microprocessor Universal Format for Object Modules, (IEEE Std 695), IEEE Technical Committee
on Microcomputers and Microprocessors of the IEEE Computer Society, September, 1985.

-- --

Page 2 Microtec Research Inc. and Hewlett Packard Company

2.2.1 NegativeNumbers

Negative numbers have these characteristics:

• Numbers use $80-$88.

• All readers must handle $80-$84.

• Some processors can use $85 through $88 (see the appendix for your processor).

• Numbers are construed as unsigned except where indicated as signed.

• Signed numbers use signed complement notation; negative numbers must set highest bit of largest
representable number (e.g., {$84}{$FF}{$FF}{$FF}{$FF} is -1 for 32-bit and smaller processors).

2.3 NameFormat

Name fields are represented in this document by {Id} and consist of 1-byte of count (0-127) followed by the
indicated number of ASCII characters. The MRI/HP format extends the IEEE specification to allow the use of any
printable ASCII character in a name. Characters are represented as hexadecimal values in the file but are represented
as quoted characters in this document for improved readability.

Example:

name ‘‘ABCD’’ = { $04}{$41}{$42}{$43}{$44}

• Name fields in miscellaneous records are represented as {s}.

2.3.1 LongStrings

The IEEE format allows only for printable strings. This implementation allows for non-printable strings.

Path names with network headers, command lines in the environment, foreign characters, and strings of data could
exceed 127 characters.An extension byte allows for more than 127 characters. If the reader encounters a DE
character, the next one byte is the string length. The one byte length allows strings from 0 to 255 characters.If the
reader encounters a DF character, the next two bytes are the string length. The two byte string allows 0 to 65535
characters.

-- --

Microtec Research Inc. and Hewlett Packard Company Page 3

|
Prefix Description |

|
$00-$7F |Simple number in the range 0 to 127, or 7-bit ASCII string with length |

0 to 127. ||
$80-$84 |Number larger than 127 or negative.0 to 4 bytes follow. $80 is used |

as a place holder and means the value was not provided. ||
$85-$88 |Unsigned numbers between 2ˆˆ32 and (2ˆˆ64)-1, or negative. Not |

supported in all installations. ||
$89-$8F ||Unused. ||||
$90-$9F ||Reserved functions and operators. ||||
$A0-$BF |Function values (arithmetic and logical). ||
$C0-$DA |Variable letters (null, A-Z). ||
$DB-$DD |Unused. ||
$DE-$DF |Extension length.If DE, the next byte is the length of an 8-bit string |

between 0 and 255 bytes long. If DF, the next two bytes in high- |
order/low-order format are the length of an 8-bit string between 0 and |
65535 bytes long. ||

$E0-$FA |Record headers. ||
$FB ||Define Context. ||||
$FC-$FF ||Unused. ||||

||||

Table 2-1. Initial Bytes of IEEE Elements

2.4 Information Variables

Information variables convey information to a symbolic debugger or linker about various constructs within the
program. The information conveyed relates to symbols, section addresses and lengths, starting addresses, and
current PC value. These are represented by an alphabetic letter optionally followed by a number:

An The size of a contiguously-mapped portion of a sectionn in MAUs. Multiple assignments of a single A
variable indicate successive mappings. Only type B sections may have A-values.

Bn The physical address of a contiguously-mapped portion of a sectionn. Multiple assignments of a single B
variable indicate successive mappings. Only type B sections may have B-values.

Fn Specifies the size of an addressable memory unit for this section in terms of the MAU for this target. TheF
variable describes processors (e.g. 8051) that have more than one way of addressing memory. If the value
of an ASF record is a positiven, it means thatn addressable units in this section make one MAU for the
target. If the value is a negative n, it means n target MAUs make a addressable unit for this section.Only
type B or T sections may have F-values.

G Execution starting address.

In Address of public symboln.

Ln The logical address of a sectionn. Typically, L-values represent the value of the processor’s logical address
bus. Thisvalue does not change within an object file.

When there is no address mapping (i.e., logical addresses are the same as physical addresses) the L variable
represents the entire address value.

Mn The most significant half of a two part logical address of a sectionn. The meaning of an M-value is target-
dependent. TheM value may be omitted altogether for a particular target. Typically, M-values represent a
‘‘ memory space’’ number. If not assigned, the M-value for a section equals the M-value of its parent or
zero if the parent does not exist or does not assign the value. Only B or T sections may have M-values.

-- --

Page 4 Microtec Research Inc. and Hewlett Packard Company

Nn Address of local symboln.

Pn The program counter for sectionn; implicitly changes with each LR, LD, or LT that applies to sectionn in
the Data part.

Rn R-values are similar to L-values; they represent the logical address of a section modulen. Unlike an L-
value, an R-value may change within a module.

When there is no address mapping (i.e., logical addresses are the same as physical addresses) the R variable
represents the entire address value.

Sn The size, in MAUs, of a sectionn. Does not change in an object module.A size of 2ˆˆ32 bytes is specified
as ${85}{$01}{$00}{$00}{$00}{$00}.

Wn If n is 0 through 7, Wn is the file offset, in bytes, of then’th part of the object file from the beginning of the
file. Forn=8 to 31, the meaning of Wn is reserved for special uses.Values of Wn for n greater than 31 are
available to store values, serve as forward references, etc.

Xn Address of external symboln.

The number, if present for symbol definitions, identifies which of several variables of the same type is referenced.
Therefore, ‘‘I3’ ’ represents public symbol number 3 in the current module. This number is referred to as an ‘‘index’’
in the discussion that follows. There are 3 different series of indices: external reference indices, section indices and
public name/type/local name indices. Indices must be unique within a module for each series and must be included
with all variable specifications except G. Public/local (I/N) type symbol indices between 0 and 31 are reserved for
special class symbols. Normal symbol indices begin at 32.

External indices between 0 and 10 are also reserved for special class symbols; normal externals begin at 11. Indices
have been defined for the 68000, HD64180, Z80, and 8085.To find the indices that have been defined for your
target, see the appropriate appendix in this manual.

Specification of G variables must not include an index. The IEEE standard has been extended to require index values
for L, S, and P variables (these are all section indices). The binary encoding for the letters A-Z is $C1-$DA
respectively.

2.5 LineNumbers

Object modules can have a significant number of line number records included in typical situations. To minimize the
impact upon the size of the object module, the MRI/HP standard defines only one NN record per source file. A line
number will be specified by ATN and ASN records only.

2.6 Expressions

Expressions resolve address values at load/locate time. These expressions are coded in the Polish postfix form:
‘‘ operand operand operator’’ f or binary operators, ‘‘operand operator’’ f or unary operators. Operators are encoded as
$A0-$B8 as described in the standard (for example, $A5 is ‘‘+’ ’ , $A6 is ‘‘-’ ’ and $A3 is unary ‘‘-’ ’). An operand
can be a number, an information variable, or another expression. Expressions are not explicitly terminated. The
record prefix byte ($E0-$FF) for the next record serves as the terminator.

Tables 2-2a and 2-2b show all operator encodings.

Code $B9 is @ESCAPE, rather than the standard’s @ISDEF. @ESCAPE is a postfix ‘‘functor ’’ -- it r eturns a
function as determined by its only argument.

Codes $BA through $BF are expression-bracketing marks. They are described in Section 3.7.6.

-- --

Microtec Research Inc. and Hewlett Packard Company Page 5

Hex Function Hex Function

A0 @F B0 @AND

A1 @T B1 @OR

A2 @ABS B2 @XOR

A3 @NEG B3 @EXT

A4 @NOT B4 @INS

A5 + B5 @ERR

A6 - B6 @IF

A7 / B7 @ELSE

A8 * B8 @END

A9 @MAX B9 @ESCAPE

AA @MIN BA [††

AB @MOD BB] ††

AC < BC { ††

AD > BD } ††

AE = BE (††

AF != or < > BF) ††

Table 2-2a. Function and Operator Encodings †

Encoding Function

0 @ESCAPE reserved

1 @ESCAPE @ISDEF

2 @ESCAPE @TRANS

3 @ESCAPE @SPLIT

4 @ESCAPE @INBLOCK |
5 @ESCAPE @CALL_OPT |

Table 2-2b. ESCAPE Function Encodings †

2.6.1 EscapeFunctions

This section describes the escape functions listed in Table 2-2b.

Defined Variables Function - @ISDEF
@ISDEF takes an expression as its operand. The function returns TRUE if the expression contains no unassigned
variables. Itreturns FALSE otherwise. This expression is encoded differently, although it behaves as described in
theIEEE-695 Trial Use Standard.

format:

expression @ISDEF

† For the meanings of these functions, see theIEEE Trial Use Standard for Microprocessor Universal Format for Object Modules
(IEEE Std 695).

†† Thebracket functions shown in Table 2-2a are for illustrative purposes only. Do not confuse these bracket functions with the
representational nomenclature for required and optional fields introduced in Section 2.1 and used throughout this document.

-- --

Page 6 Microtec Research Inc. and Hewlett Packard Company

Tr anslation Function - @TRANS
The translation function, @TRANS, translates expressions between memory spaces. The operator takes two
parameters: an expression to be translated and a value representing the mode of translation (e.g., logical address to
physical address). The precise meaning of @TRANS is target dependent; see the appendix for your microprocessor.

format:

variable mode @TRANS

Insert Function - @SPLIT
The insert function, @SPLIT, inserts bit patterns into expressions. This function takes four parameters:

format:

x y z w @SPLIT

where:

x= expression
y= insertion pattern
z = low bit
w = high bit

Thus, the function @SPLIT inserts patterny (truncated tow+1-z bits) into expressionx at bit positionz throughw.
The original bits ofx at positionz or higher, are shifted up by (w+1-z).

For example, in the following:

aaaaaaaaaaa 1 8 12 @SPLIT

1 is inserted at bit positions 8 through 12 in the expression aaaaaaaaaaa.The original bits at positions 8 and higher
are shifted up by (12+1-8=5). The result is:

new expression: aaa00001 aaaaaaaa
bit position: 12 87 0

In-block Addressing Function - @INBLOCK
The in-block addressing function, @INBLOCK, checks addressing within blocks.

format:

d,s,b @INBLOCK

where:

b=block size
d=destination of jump
s=source of jump

The function returnsd but optionally reports an error ifd div b does not equals div b. The assembler creates the
@INBLOCK function. Only the linker reads it and reports any errors.

This operation can be performed by a series of standard IEEE operators but it is cumbersome. |

Linker Call Optimization - @CALL_OPT |

The @CALL_OPT function provides information to a linker in support of link-time procedure calling optimizations.|

format: |

parameters opt_code @CALL_OPT |

where: |

-- --

Microtec Research Inc. and Hewlett Packard Company Page 7

parameters = parameters for the link-time call optimization.The total number of @CALL_OPT|
parameters will depend on the @CALL_OPT optimization type code. |

opt_code = code to specify a particular optimization. |

The only currently defined opt_code is 0 for 80960 call optimizations. Code 0 is interpreted as follows: |

format: |

expr Xn 0 @CALL_OPT |

where: |

expr = default relocatable expression (used for call instruction) |
Xn = an X variable having index n which is to checked for possible .leafproc/.sysproc information |
0 = code to specify 80960 call optimization. |

The linker will use the information specified in the @CALL_OPT function to generate the appropriate call|
instruction in the data image part.

2.6.2 AbsoluteAddresses of Objects

For certain targets, if the bank or memory space number of a static object (symbol, code, starting address, etc.)
cannot be determined from context, then the absolute address of the object is represented by an L or R index and an
optional offset rather than a single constant.

Ln offset + or Rn offset +

2.7 Types

Symbol types supply information to debug and analysis tools to aid in determining the size, organization, and type
of program object referenced by the symbol.Tables A-1 and A-2 (Appendix A) describe the symbol classifications
supported by MRI/HP language systems and debug tools.Each symbol has an associated type number and/or a
mnemonic ‘‘code letter’’ w hich serves as a shorthand identifier for the type in the object file and elsewhere.The
tables indicate the rationalization for using that letter.

2.7.1 ComplexTypes

Table A-1 identifies the supported high level complex types.These types must be explicitly defined using an IEEE
’TY’ directive (see Section 3.6.3) in order to correctly represent the use of the symbol type in the high level
language source code.Table A-1 shows what parameters are used to define the type, where these parameters appear
in the IEEE, and the NN and TY records which define the type.

2.7.2 Built-in Types

Table A-2 identifies the implicit or ‘‘built-in’ ’ types supported by HP/MRI tools. The built-in types represent C,
PASCAL, and FORTRAN type definitions for common scalar types (and pointers to common scalar types) which
are implicit to the compiler, assembler, linker, and debugger. As for complex types, the type number or mnemonic
letter code for built in types implies the size and organization of the program object. The type number also specifies
a default type name for use by debug tools in referring to the built-in type.

Built-in types normally do not require additional information other than the type number to completely describe
them. Onlythe number of the built-in type is used in an ATN record describing a symbol having one of the implicit
types. Itis also the number used in the definitions for more complex types which have elements that are of built-in
type. Theshorthand notation for implicit types is intended to minimize the size of object modules by providing a
short notation for the common subsets of more general types.

If the user (or compiler) chooses to redefine the name of a built-in type, this must be done with a TY record for type
T defining a new name for the built-in type and indicating the built-in type as the underlying type.Redefining the
name of a built-in type nullifies most of the efficiency gained through use of built-in type codes.

The interpretation of built-in types is processor-dependent. Forexample, the C type ‘‘int’ ’ might be 16 bits on one
chip and 32 bits on another. Finally, assembler symbols associated with EQUs, DCBs, DCs and DSs are mapped

-- --

Page 8 Microtec Research Inc. and Hewlett Packard Company

into types B, H, or L depending on size.Assembler labels not associated with data declarations are mapped as type
J. Themapping of C, PASCAL, and FORTRAN scalar types into HP/MRI types is also shown in Table A-2.

The following assumptions relating to typedefs are made by MRI and HP tools:

• Type ‘‘char ’’ is assumed to be signed if not explicitly redefined.

• The size assumed for int/unsigned is the stack-push size for a given target (i.e. 68000 = 4 MAUs, Z80 = 2
MAUs, etc.) unless redefined explicitly.

• The size assumed for a pointer is the natural size for the target (i.e. 68000 = 4 MAUs, Z80 = 2 MAUs, etc.)
unless explicitly redefined. If two sizes of pointers are possible, NEAR and FAR qualifiers are used to specify
which size.

-- --

Microtec Research Inc. and Hewlett Packard Company Page 9

3. ObjectFile Components

An object file is divided into 7 component parts. Each part is a contiguous group of bytes within the file. The
component parts may occur in any order within the file with the exception that the Header must occur first and the
Module End must occur last. The Header part contains information pointing to the location of the other parts within
the file. Therefore, the various file parts do not necessarily have to be read in the order in which they appear. The
component parts listed below are described in the following sections:

Header Part

Module Beginning (MB) - $E0
Address Descriptor (AD) - $EC
Assign Pointer to AD Extension Part (ASW0) - $E2D700
Assign Pointer to Environment Part (ASW1) - $E2D701
Assign Pointer to Section Part (ASW2) - $E2D702
Assign Pointer to External Part (ASW3) - $E2D703
Assign Pointer to Debug Part (ASW4) - $E2D704
Assign Pointer to Data Part (ASW5) - $E2D705
Assign Pointer to Trailer Part (ASW6) - $E2D706
Assign Pointer to Module End (ASW7) - $E2D707

AD Extension Part (ASW0)

Variable Attributes (NN) - $F0
Variable Attributes (ATN) - $F1CE
Variable Values (ASN) - $E2CE †

Environment Part (ASW1)

Variable Attributes (NN) - $F0
Variable Attributes (ATN) - $F1CE
Variable Values (ASN) - $E2CE †

Section Definition Part (ASW2)

Section Type (ST) - $E6
Section Alignment (SA) - $E7
Section Size (ASS) - $E2D3
Section Base Address (ASL) - $E2CC
Variable Values (ASR) - $E2D2 †
Define Context (NC) - $FB
Physical Region Size (ASA) - $E2C1
Physical Region Base Address (ASB) - $E2C2
Mau Size (ASP) - $E2C6
M-Value (ASM) - $E2CD

† This record type is permissible in this part but it is not yet implemented.

-- --

Page 10 Microtec Research Inc. and Hewlett Packard Company

External Part (ASW3)

Public (External) Symbol (NI) - $E8
Variable Attribute (ATI) - $F1C9
Variable Values (ASI) - $E2C9
Variable Values (ASR) - $E2D2 †
External Reference Name (NX) - $E9
External Reference Relocation Information (ATX) - $F1D8
Weak External Reference (WX) - $F4

Debug Information Definition Part (ASW4)

Declare Block Beginning (BB) - $F8
Declare Type Name, file name, line numbers, function name, variable names, etc. (NN) -

$F0
Define Type Characteristics (TY) - $F2
Variable Attributes (ATN) - $F1CE
Variable Values (ASN) - $E2CE
Variable Values (ASR) - $E2D2 †
Declare Block End (BE) - $F9

Data Part (ASW5)

Current Section (SB) - $E5
Current Section PC (ASP) - $E2D0
Load Constant MAUs (LD) - $ED
Initialize Relocation Base (IR) - $E3
Repeat Data (RE) - $F7
Variable Values (ASR) - $E2D2 †
Variable Values (ASW) - $E2D7
Load With Relocation (LR) - $E4
Load With Translation (LT) - $FA

Trailer Part (ASW6)

Execution Starting Address (ASG) - $E2C7 |

Module End (ASW7) |

Module End (ME) - $E1
Checksum Records - $EE, $EF

For a description of the Library Information Area, see Appendix D.

† This record type is permissible in this part but it is not yet implemented.

-- --

Microtec Research Inc. and Hewlett Packard Company Page 11

3.1 HeaderPart

The header part contains information pointing to the location of other parts within the file.

3.1.1 ModuleBegin (MB)

The MB record must be the first record in the module.

format: {$E0}{Id1}{Id2}

where:

$E0 Recordtype
Id1 Processor(e.g. ‘‘68000’’ or ‘ ‘LIBRARY’’)
Id2 Modulename

Processor names are listed in Table 3-1.

Name (Id1) Processor Family Name (Id1) Processor Family

29000 AMD 29000 80C652 Intel 80C652

1750A M7700 Mitubishi MELPS 7700Fairchild 9450, MDC-281,
Pace 1750A

H8/300 Hitachi H8/300 68008 Motorola 68008

H8/500 Hitachi H8/500 68010 Motorola 68010

8044 Intel 8044 68012 Motorola 68012

8051 Intel 8051 68020 Motorola 68020

8052 Intel 8052 68030 Motorola 68030

8085 Intel 8085 68040 Motorola 68040

80960CA Intel 80960CA 68HC32 Motorola 68HC32

80960KA Intel 80960KA T900 Toshiba TLCS-900 (controller)

80960KB Intel 80960KB T9000 Toshiba TLCS-9000
(controller)

80960MC Intel 80960MC TX1 Toshiba TX1 processor

80C451 Intel 80C451 TX2 Toshiba TX2 processor

80C552 Intel 80C552 64180 Zilog Z64180 and Hitachi
HD64180

80C562 Intel 80C562 Z80 Zilog Z80

68000 Motorola 68000 LIBRARY Library Object

Table 3-1. Processor Names

-- --

Page 12 Microtec Research Inc. and Hewlett Packard Company

3.1.2 Address Descriptor (AD)

The AD record describes the characteristics of the target processor.

format: {$EC}{n1}{n2}[a]

where:

$EC Recordtype
n1 Numberof bits/MAU
n2 Numberof MAUs constituting the largest address form
a Optional definition for low order byte significance

$CC (’L’) - Low address of field contains least significant byte
$CD (’M’) - Low address of field contains most significant byte (default)

Example: The 68000 record will be encoded as $EC0804CD or, equivalently, $EC0804.

3.1.3 AssignValue To Variable W0 (ASW0)

The ASW0 record contains a file byte offset pointer to the AD Extension record relative to the beginning of the file.
A zero (0) value indicates that this extension is not included in the file.

format: {$E2}{$D7}{00}{n}

where:

n Byte offset in file in number format (see Section 2.2)

3.1.4 AssignValue To Variable W1 (ASW1)

The ASW1 record contains a file byte offset pointer to the Environmental record relative to the beginning of the file.
A zero (0) value indicates that this extension is not included in the file.

format: {$E2}{$D7}{01}{n}

where:

n Byte offset in file in number format (see Section 2.2)

3.1.5 AssignValue To Variable W2 (ASW2)

The ASW2 record contains a byte offset pointer to the module Section part relative to the beginning of the module.
A zero (0) value indicates that this part is not included in the module.

format: {$E2}{$D7}{$02}{n}

where:

n Byte offset in file in number format (see Section 2.2)

-- --

Microtec Research Inc. and Hewlett Packard Company Page 13

3.1.6 AssignValue To Variable W3 (ASW3)

The ASW3 record contains a byte offset pointer to the module External part relative to the beginning of the module.
A zero (0) value indicates that this part is not included in the module.

format: {$E2}{$D7}{$03}{n}

where:

n Byte offset in file in number format (see Section 2.2)

3.1.7 AssignValue To Variable W4 (ASW4)

The ASW4 record contains a byte offset pointer to the module Debug Information definition part relative to the
beginning of the module. A zero (0) value indicates that this part is not included in the module.

format: {$E2}{$D7}{$04}{n}

where:

n Byte offset in file in number format (see Section 2.2)

3.1.8 AssignValue To Variable W5 (ASW5)

The ASW5 record contains a byte offset pointer to the module Data part relative to the beginning of the module. A
zero (0) value indicates that this part is not included in the module.

format: {$E2}{$D7}{$05}{n}

where:

n Byte offset in file in number format (see Section 2.2)

3.1.9 AssignValue To Variable W6 (ASW6)

The ASW6 record contains a byte offset pointer to the module Trailer part relative to the beginning of the module. A
zero (0) value indicates that this part is not included in the module.

format: {$E2}{$D7}{$06}{n}

where:

n Byte offset in file in number format (see Section 2.2)

3.1.10 AssignValue To Variable W7 (ASW7)

The ASW7 record contains a byte offset pointer to the ME record relative to the beginning of the module.

format: {$E2}{$D7}{$07}{n}

where:

n Byte offset in file in number format (see Section 2.2)

-- --

Page 14 Microtec Research Inc. and Hewlett Packard Company

3.2 ADExtension Part

The AD Extension Part contains information describing how the object module was created.This part is located
after the header part and the AD record.It is optionally included and is pointed to by the W0 portion of ASW0 if it
exists. An NN record with a unique index associates ATN records defining the additional information.For more
information on the syntax of records in the AD Extension Part, see Appendix C.The AD Extension Part has the
following format:

format:
NN: {$F0}{n1}{Id}
ATN: {$F1}{$CE}{n1}{n2}{n3}[x1][x2][Id]

where:

$F0 NNrecord type
n1 Symbolname (NN record) type
Id Symbolname
$F1CE ATN Record type
n1 Symbolname index (must be the same index as was specified for the NN record)
n2 Symboltype index (unused, set to 0)
n3 Attributedefinition: Theattribute definitions for the AD Extension Part appear in Table 3-2.

n3 Description

37 Object format version number; requires two extranumeric fields [x1] and [x2] defining
the version number and revision level respectively. There must not be an ASN record.

38 Object format type; requires one extra field [x1] defining the type :

1 Absolute (not relinkable)
2 Relocatable
3 Loadable
4 Library

There must not be an ASN record.

39 Case sensitivity; requires one extra field [x1].

1 Treat all symbols as if they were upper case
2 Do not change the case of symbols

There must not be an ASN record.

Table 3-2. (part 1 of 2) Attribute Definitions for the AD Extension Part

-- --

Microtec Research Inc. and Hewlett Packard Company Page 15

n3 Description

40 Memory model; requires one extra field [x1] defining the memory model.

0 tiny. Code and data are in the same single 64K segment/page.

1 small. Codeand data each have a single 64K segment/page.

2 medium. Datahas a single 64K segment/page, while code has multiple
64K segments/pages.

3 compact. Datahas multiple 64K segments/pages, while code has a single
64K segment/page.

4 large. Bothdata and code have multiple 64K segments/pages.

5 big. Codehas multiple 64K segments/pages, while there is a common
"near" data area with far data areas available; normaly data and stack are
together

6 huge. All large arrays and structures are in their own section so that
addressing involves computations (you can have arrays and structures
bigger than 64K)

There must not be an ASN record.

Table 3-2. (part 2 of 2) Attribute Definitions for the AD Extension Part

-- --

Page 16 Microtec Research Inc. and Hewlett Packard Company

3.3 Environmental Part

The Environmental Part contains information relating to the host environment where the object module was created.
It is located after the Header Part and is pointed to by the W1 portion of ASW1. The organization of this part is
similar to the AD Extension part described earlier. For more information on the syntax of records in the
Environmental Part, see Appendix C. The ATN records have the following format:

format:
NN: {$F0}{n}{Id}
ATN: {$F1}{$CE}{n1}{n2}{n3}[x1[x2[x3[x4[x5[x6[Id]]]]]]]

where:

$F0 NNrecord type
n1 Symbolname (NN record) type
Id Symbolname
$F1CE ATN record type
n1 Symbolname index (must be same index as specified for its associated NN record)
n2 Symboltype index (0 = unspecified)
n3 Attributedefinition: The attribute definitions for the Environmental Part appear in Table 3-3

below.

n3 Description

50 Creation date and time; requires one extra field [x1[x2[x3[x4[x5[x6]]]]]]:

x1 Year (e.g., 1989)
x2 Month(1 - 12)
x3 Day(1 - 31)
x4 Hour(0 - 23)
x5 Minute(0 - 59)
x6 Second(0 - 59)

The year is encoded as a decimal number, not four hex digits.There must not be an ASN
record.

51 Command line text; requires one extra field [Id] containing the command line.There
must not be an ASN record.

52 Execution status; requires one extra field [x1]:

0 Success
1 Warning(s)
2 Error(s)
3 Fatal error(s)

There must not be an ASN record.

Table 3-3. (part 1 of 2) Attribute Definitions for the Environmental Part

-- --

Microtec Research Inc. and Hewlett Packard Company Page 17

n3 Description

53 Host environment; requires one extra field [x1]:

0 Unknown
1 VMS
2 MS-DOS
3 UNIX
4 HP-UX

There must not be an ASN record.

54 Tool and version number used to create the module; requires three extra numeric fields|
[x1], [x2], and [x3] defining the tool, version, and revision number. Supported tool codes|
for the [x1] field are listed in each processor-specific appendix. An optional fourth field|
[x4] defines the tool revision level (e.g., A, B, etc.). Field [x4] is encoded as a single|
IEEE-695 letter in the range $C1-$DA. There must not be an ASN record.

55 Comments; requires one extra field [Id] specifying the comment string. There must not be
an ASN record.

Table 3-3. (part 2 of 2) Attribute Definitions for the Environmental Part

3.4 ExternalPart

The External part contains records used to define and to resolve references for symbols in different modules when
they are combined by linking.Variable miscellaneous records are also allowed in the External part. For more
information on the syntax of records in the External and Public parts, see Appendix C.

3.4.1 Public(External) Symbol (NI)

The Public Symbol provides for Public symbol definition and is optionally included in a module.Public symbol
indices begin at 32. Indices 0 through 31 are reserved.

format: {$E8}{n}{Id}

where:

$E8 Recordtype
n Public name index number, unique within an object file (must be > 31, 0 - 31

reserved)
Id Symbolname

-- --

Page 18 Microtec Research Inc. and Hewlett Packard Company

3.4.2 Attribute Records (ATI)

format: {$F1}{$C9}{n1}{n2}{n3}[x1][x2][x3][x4]{n4}

where:

$F1C9 ATI record type
n1 Symbolname index (this must be the same index as specified for the NI record)
n2 Symboltype index as follows:

0 Unspecified |
3 8-bit data byte
5 16-bit short data word
7 32-bit long data word
10 32-bitfloating point
11 64-bit floating point
12 10or 12 byte floating point
15 Instructionaddress

n3 Attributedefinition: Theattribute definitions are described in Table 3-4.
n4 If n2 is non-zero, number of elements in the symbol type specified in n2

n3 Description

8 Global compiler symbol. There must be an ASI record specifying the address/value.

16 Constant, with the following additional fields. |

x1 Symbolclass, required. Defined as follows. |

0 Unknown class. |
1 EQU constant. |
2 SET constant. |
3 Pascal CONST constant. |
4 C#define constant. |
5-128 Reservedfor future use. |

x2 Public/local indicator, optional. Omittedor zero means local. One means|
public. |

x3 Numericvalue, optional. For constants with ordinal values.Either x3 or x4 |
should be present but not both. |

x4 Stringvalue, optional. For constants with string values. |

For each such ATI record, there may be one ASI record indicating the program counter|
address where the definition occurred. If such an ASI record is not present, then the|
constant value is assumed to be valid everywhere in the object module.There may be |
more than one ATI/ASI record pair for a single name since constants defined via SETs |
and #defines may be redefined repeatedly.

19 Static symbol generated by assembler. There must be an ASI record specifying the
address/value.

Table 3-4. Attribute Definitions for the External Part

3.4.3 Value Records (ASI)

The ASI record defines values for variables.

format: {$E2}{$C9}{n1}{n2}

-- --

Microtec Research Inc. and Hewlett Packard Company Page 19

where:

$E2C9 Recordtype
n1 Symbolindex (this must be the same index as specified for the NI record)
n2 Expressiondefining value for symbol
The expression typically involves a section base for addresses and not for constants.

Example: {$E2}{$C9}{$02}{$D2}{$05}{$10}{$A5} is the binary representation of the character
form ASI2,R5,10,+.This assigns the value ‘‘variable offset of the section’’ whose section
index is 5, plus offset $10 to variable I2.I2 is the public symbol whose public name index is
2.

-- --

Page 20 Microtec Research Inc. and Hewlett Packard Company

3.4.4 ExternalReference (NX)

The NX record references the name of a symbol in another module.External Reference indices begin at 11. Indices
0 - 10 are reserved for special case symbols such as register designators.

format: {$E9}{n1}{Id}

where:

$E9 Recordtype
n1 Externalreference index unique to this module
Id Symbolname

3.4.5 ExternalReference Information (ATX)

The ATX record contains additional definition information for an External Reference symbol.This record is
optionally generated.

format: {$F1}{$D8}{n1}[n2][n3][n4]

where:

$F1D8 Recordtype
n1 Externalreference index (this must be the same index as specified for the NX record)
n2 Type index (0 = unspecified)
n3 Sectionindex
n4 Shortexternal flag (0 = not short)

Optional numbers can be omitted but if a later one is present, the omitted number must be filled with the ‘‘omitted
number ’’ construct {$80}. The defaults for omitted numbers are: no type checking, no section checking, and the
external is not necessarily in ‘‘short’’ f orm.

3.4.6 Weak External Reference (WX)

A weak external symbol is a global symbol which may be declared in more than one of the constituent modules of a|
composite (linked) object module. Linkers treat weak externals like external references, except during a link to|
produce an absolute object module. In the latter case, if no explicit external definition exists for the weak external|
symbol in any of the constituent modules, the linker will allocate in the Section Part the largest space required for|
the weak external symbol among all of its instances, and will create a public definition for the weak external symbol|
in the Public/External Part. |

The basic properties of a weak external symbol, e.g., name, type, etc., are described in an NX/ATX record pair in a|
manner similar to that used for normal external references.In addition, a WX record having the same index as the|
accompanying NX/ATX pair further identifies the symbol as a weak external symbol.

format:{$F4}{n1}{n2}[n3]

where:

$F4 Recordtype for WX
n1 Externalreference index (must be same as in NX record)
n2 Defaultsize if not resolved (0 = unspecified; defaults to int for the target processor) |
n3 Defaultvalue if not resolved (0 = unspecified).

-- --

Microtec Research Inc. and Hewlett Packard Company Page 21

Some consuming tools require a mechanism to identify the module that declared each public symbol. In object|
modules containing several constituent modules, ownership of normal public symbols can be determined by finding|
which module claims ownership of the address range containing the space allocated to the symbol. (See BB11 |
blocks). |

In relocatable modules produced by translation of a single source file, there is no question of the ownership of a|
weak external, because the resulting relocatable object module has only one constituent module. |

Expressing the ownership of weak externals in object modules having several constituent modules presents a more|
difficult problem, however. For example, during incremental linking, i.e, producing a relocatable object module by|
combining multiple relocatable object modules, ownership of a weak external is lost because there are no provisions|
for expressing scoping in the Public/External Part.Also, when the linker allocates the space for a weak external in|
the process of creating an absolute object module, it is certain that the allocated space will not be associated with|
any of the constituent modules, obviating the use of the symbol’s address as a proxy for the owning module. |

To convey to consuming tools the identity of the module that declared a weak external symbol, the linker generates|
NN and variable miscellaneous ATN records having code 62 in the Public/External Part. The name of the module|
owning the weak external is specified in the NN record. There may be multiple variable miscellaneous ATN code|
62 records, each representing a specific weak external declaration in some module, pointing to the single NN record|
for that module. The detailed syntax of variable miscellaneous ATN record type 62 is explained in Appendix B.

-- --

Page 22 Microtec Research Inc. and Hewlett Packard Company

3.5 SectionPart

The Section part contains information defining the sections of the module. A ‘‘section’’ in this context is a
contiguous area of memory. It may be absolute or relocatable, and may or may not have a name. A section is
absolute if and only if the ‘‘AS’’ attribute is specified in its ST record (see below). All data MAUs must be defined
in a section.

Relocatable modules are produced by the assembler or the compiler. A relocatable module can have named
relocatable sections and both named and unnamed absolute sections.An absolute module must have only named or
unnamed absolute sections.

Symbol definitions for addresses are relative to a section and definitions for constants are absolute for the relocatable
format. In absolute format, all symbol definitions are absolute.

For more information on the syntax of records in the Section Part, see Appendix C.

3.5.1 SectionType (ST)

Each section must have exactly one section type record.

Section types may appear in any order, except that no forward references are allowed: sections must be defined
before they are referred to in ‘‘parent’’ or ‘ ‘brother ’’ fi elds of other sections.

SA, ASA, ASB, ASF, ASL, ASM, ASR, and ASS records must appear after the ST record they refer to.

format: ${E6}{n1}{l}[Id][n2][n3][n4]

where:

$E6 RecordType
n1 Sectionindex (index must be greater than zero and unique to this module)
l Section type (only the new section types are described here)

AS {$C1}{$D3} normal attributes for absolute sections. Sections from different modules
with these attributes, whether they have the same name or not, are considered to be
unrelated.

ASP {$C1}{$D3}{$D0} absolute code
ASR {$C1}{$D3}{$D2} absolute ROM data
ASD {$C1}{$D3}{$C4} absolute data

B A section which can contain other sections.

• A B section has a logical address and size which must contain the address ranges of
all of its children.

• A B section may specify the upper half of the logical address (M-value or memory
space number) for itself and its children.

• A B section may specify the physical addresses for itself and its children using a
sequence of ASA and ASB records all referring to the same B section.This
sequence defines one or more ‘‘hunks’’ of physical memory.

• A B section may specify a context. There may be more than one level of B section.

-- --

Microtec Research Inc. and Hewlett Packard Company Page 23

• A B section may be define a MAU (Minimum Addressable Unit) for itself and its
children which has a different size than the standard MAU for the target processor.

• A B section is not loadable.That is, it does not contain data which is put into
memory.

The addresses of the B section map onto the addresses of the physical hunks as described
below. Let L refer to the logical lowest address of this section. Let A(i) refer to the
length specified by the ith ASA record for this section. Let B(i) refer to the address
specified by the ith ASB record.Let T(i) be the sum of the sizes of all the previous i-1
hunks.

T(i) = A(1) + A(2) + ... + A(i-1)
T(1) = 0

Then the logical range of addresses

L+T(i) through L+T(i)+A(i)-1

map onto the physical addresses

B(i) through B(i)+A(i)-1

The ASB record must immediately follow the ASA record for a particular hunk.If the
ASB record is omitted (indicated by two ASA records in a row) the hunk is unmapped
(i.e. represented by no physical memory).

The total of the ASA records for a section must be less than or equal to the value of the
ASS record for the section. If there are fewer physical MAUs than logical MAUs, then
the leftover logical MAUs are unmapped (i.e. represented by no physical memory).

C {$C3} normal attribute for named relocatable sections. Sections from different modules
with the same name will be concatenated at link time. This section may also be explicitly
typed as:

CP {$C3}{$D0} normal code
CR {$C3}{$D2} normal ROM data
CD {$C3}{$C4} normal data

E {$C5} or M {$CD} shared (common) data sections.M specifies that different-sized
sections from different modules be merged into one section whose size is the maximum
of the input sizes. E specifies that an error condition exists if common sections are not the
same size.

EA {$C5}{$C1} Common absolute sections. EA sections from different modules are
overlayed at the same absolute address.It is an error if AE sections from different
modules have different sizes.It is an error if the AE sections from different modules
have different addresses. This section may be explicitly typed as:

EAP {$C5}{$C1}{$D0} common absolute code
EAR {$C5}{$C1}{$D2} common absolute ROM data
EAD {$C5}{$C1}{$C4} common absolute data

-- --

Page 24 Microtec Research Inc. and Hewlett Packard Company

EZ {$C5}{$DA} the attribute for short common with error checking.

T A section which provides an alternate view of the memory described by its brother
section. Tsections allow different logical addresses to access the same physical memory
within a context. The brother section must have type B.T sections allow the same
physical memory to appear in more than one context with either equal or differing logical
addresses. Tsections may not have ASA or ASB records.

A T section has all the properties of its brother (n3) except perhaps for the following: the
parent (n2), the logical address (specified by ASL and ASM records), its children, or its
MAU size (specified by the ASF record).In particular, it has the same physical size and
the same physical mapping as its brother. (Note: the physical size is figured using both
the S-value and MAU size factor (F-value) for a section. See the 8051 example.)

Two or more T sections may refer to the same brother.

ZC {$DA}{$C3} the attribute for ‘‘short’’ relocatable sections other than common. This
section may also be explicitly typed as:

ZCP {$DA}{$C3}{$D0} short code
ZCR {$DA}{$C3}{$D2} short ROM data
ZCD {$DA}{$C3}{$C4} short data

ZM {$DA}{$CD} the attribute for ‘‘short common’’ relocatable sections.

Id Sectionname. (Not necessarily unique within a context.)
n2 Sectionindex of the parent. Zero or omitted means none.Any type of section may have a parent.

No section may be an ancestor of itself.
n3 Sectionindex of a brother. Zero or omitted means none.Only type T sections may have a brother.

The brother must have type B.
n4 Contextindex. Zeroor omitted means none. Only a B section or a T section may specify a

context.

Examples:
{$E6}{$02}{$C3}{$04}‘‘CODE’’
{$E6}{$03}{$C5}{$06}‘‘COMMON’’

A consuming tool (e.g., a debugger) may need to determine the content of some region of the memory map so that|
the tool’s behavior can adapt in a manner appropriate to the content of the section. For example, the debugging tool|
may be designed to refuse to begin execution at a memory address in a section containing data. |

The content of a section is specified in two places: in the section content modifiers $D0 (code), $D2 (ROM data)|
and $C4 (data) attached to the section type field (l) of the ST record, and in the section type {n2} field of the BB11 |
blocks in the Debug Part. Consuming tools need to interpret the section content information with care. |

The section content modifiers of the ST records of absolute (linked) object modules may incorectly indicate the|
contents of a section and may thus be misleading to a consuming tool when, for example, when the linker is|
instructed to combine sections having differing content (e.g., code and data) into a single parent section.In this |
case, the content of the parent section as portrayed in the ST record is indeterminate. |

However, the original content of the parent section’s constituent subsections, is preserved in the section type {n2}|
field of the individual BB11 blocks of the Debug Part. There is one BB11 block for each of the children of the|
parent section, and the BB11 blocks are required to be present even in object modules stripped of symbolic|
debugging information. (See Section 3.6.1 "Block Begin (BB)".)

3.5.2 DefineContext (NC)

The NC record defines a context. An NC record must be inside the Section Part.

-- --

Microtec Research Inc. and Hewlett Packard Company Page 25

Define Context records may appear in any order. In particular, they may appear after the ST records which refer to
them.

format: ${FB}{n1}[Id]

where:

$FB RecordType
n1 ContextIndex (index must be greater than 0 and unique to this module)
Id ContextName (The context name need not be unique withing a module)

There are no variables associated with a context.

-- --

Page 26 Microtec Research Inc. and Hewlett Packard Company

3.5.3 SectionAlignment (SA)

The SA record defines the boundary alignment and boundary crossing parameters for relocatable sections.

format: {$E7}{n1}[n2][n3]

where:

$E7 Recordtype
n1 Sectionindex (this must be the same index as specified for the ST record)
n2 Boundaryalignment divisor

0 Processor default (e.g., 4 bytes for the 68000, 1 byte for the Z80)
1 Byte
2 Word
4 Long (quad)
n Any power of 2

n3 Pagesize - if present, align the section to the next multiple of n3 if it does not fit below the
next multiple of n3. n3 must be a power of 2.Value must be in MAUs.

3.5.4 SectionSize (ASS)

The ASS record is required for all sections and defines the size for this section.

format: {$E2}{$D3}{n1}{n2}

where:

$E2D3 Recordtype
n1 Sectionindex. AnST record must have occurred before this ASS record.
n2 Sectionsize (in MAUs). This expression must be a simple number.

3.5.5 PhysicalRegion Size (ASA)

An ASA record defines the size of a region of physical memory. The region corresponds to or maps all or part of a
B section.

More than one ASA record may exist for a section.This indicates that the section maps onto more than one physical
region. Theorder of ASA records is significant. The first addresses of the section map onto the bytes map onto the
second region until those bytes are all used; and so forth.

If several ASA for a single section exist, no other records may occur between the ASA records except for (possibly)
one ASB record after an ASA record.

The total of all A-values for a section must be less than or equal to the logical size (S-value) for the section.If there
are fewer physical MAUs than logical MAUs, then the leftover logical MAUs map to no physical memory.

format: {$E2}{$C1}{n1}{n2}

where:

$E2C1 Recordtype
n1 Sectionindex. An ST record with the same index must have occurred before this ASA

record. TheST record must have type B.
n2 Regionsize in MAUs. This expression must be a simple number.

-- --

Microtec Research Inc. and Hewlett Packard Company Page 27

3.5.6 PhysicalRegion Base Address (ASB)

An ASB record defines the beginning address of a region of physical memory. The region corresponds to or maps
all or part a B section. More than one ASB record may exist for a section.The ASB record must occur immediately
following the ASA record which defines the size of the region.If an ASB record does not occur directly after an
ASA record, it indicates that the physical region does not exist. That is, the corresponding addresses of logical
memory map to no physical memory.

format: {$E2}{$C2}{n1}{n2}

where:

$E2C2 Recordtype
n1 Sectionindex. An ST record with the same index must have occurred before this ASB

record. TheST record must have type B.
n2 Physicaladdress of the region.

3.5.7 MAU Size (ASF)

The ASF record defines a new MAU (Minimum Addressable Unit) in terms of the target processor MAU.

format: {$E2}{$C6}{n1}{n2}

where:

$E2C6 Recordtype
n1 Sectionindex. An ST record with the same index must have occurred before this ASF

record. TheST record must have type B or T.
n2 MAU size. If this number is positive, it indicates the section MAU is smaller than the target

MAU. n2 section MAUs make one target MAU.If this number is negative, it indicates the
section MAU is larger than the target MAU. -n2 target MAUs make one section MAU.
This expression must be a simple number.

3.5.8 M-value(ASM)

The M-value is the most significant half of the two part logical address. (The least significant half is the L-value).
The meaning of the M-value is defined for each target processor that needs a two-part address.

Whether or not an M-value is required as part of the address is defined for each target processor. For example, an
MC68000 section with no ASM record for itself or its parent has an ‘‘unspecified’’ M -value.

format: {$E2}{$CD}{n1}{n2}

where:

$E2CD Recordtype
n1 Sectionindex. An ST record with the same index must have occurred before this ASM

record. TheST record must have type B or T.
n2 M-value

-- --

Page 28 Microtec Research Inc. and Hewlett Packard Company

3.5.9 SectionBase Address (ASL)

ASL records specify the section base address. Each section defined by an ST record in either relocatable or absolute|
object modules must have an ASL record, with one exception.The one exception is that relocatable sections in|
relocatable object modules can have no ASL records.

format: {$E2}{$CC}{n1}{n2}

where:

$E2CC Recordtype
n1 Sectionindex (this must be the same index as specified for the ATN record)
n2 SectionBase address (in MAUs)

3.5.10 SectionOffset (ASR)

An ASR record is generated each time the section offset variable changes.

format: {$E2}{$D2}{n1}{n2}

where:

$E2D2 Recordtype
n1 Sectionindex
n2 Expressiondefining a new section offset (in MAUs)

-- --

Microtec Research Inc. and Hewlett Packard Company Page 29

3.6 DebugInformation Part

The Debug Information part contains records that define how to determine the symbol related information for a
module at execution time. This is required for debuggers that provide high-level debugging capabilities.

For information on the syntax of records in the Debug Information Part, see Appendix C.

3.6.1 BlockBegin (BB)

The BB records are an extension to the standard. They provide definitions of debugging information related to the
high level language definitions for typedef, scoping, and line numbers. They also provide assembly level language
definitions for modules and local symbols.A block beginning with a BB is terminated with a BE record.BB
records can be nested according to rules described below. Nested BB blocks can be used to capture scoping
information. Thetypes of BB blocks include:

BB1 Type definitions local to a module.
BB2 Type definitions global to all modules.
BB3 A module. Anon-separable unit of code, usually the result of a single compilation, i.e. a Modula-2

module or an Ada package.
BB4 A global subprogram.
BB5 A source file line number block.
BB6 A local (static) subprogram.
BB10 Anassembler debugging information block.
BB11 The module portion of a section.
BB20 Library - contains a list of global symbols used in a module. For a description of the Library

Information Area, see Appendix D.

The following list describes features of some of the blocks.

• There can be at most one BB2 block in an object file and it must occur before any other BB records.

• BB2 blocks are intended to collect all global type information in a single place.Support for BB2 blocks is not
currently implemented in most HP/MRI assemblers and linkers. Thus redundant type definitions, (e.g., from a
common #include file) are output in each module type block (BB1) where they occur. This is not an optimal
use of object file bytes, but is perfectly acceptable as far as object file readers are concerned.

• BB1, BB3 and BB5 blocks usually occur together and in that order.

• BB1 blocks can be absent for modules which declare no local types.

• Although it is not required, BB5 blocks immediately follow BB3 blocks in this implementation.

• A BB5 cannot occur without a BB3.

• Consecutive BB3 and BB5 blocks must refer to the same module.

• BB3s and BB6s can be arbitrarily nested in one another.

-- --

Page 30 Microtec Research Inc. and Hewlett Packard Company

Block Nesting

Nested BB3s can occur only in Ada modules.BB1s and BB5s cannot be nested in BB3s, BB4s, or BB6s, however,
BB5s can be nested in BB5s. For a summary of block nesting rules, see Table 3-5 below.

Global Type Definitions (BB2)
NN and TY records

Global Type Definitions End (BE2)
 Module-Scope Type Definitions (BB1)
 NN and TY records
 Module-Scope Type Definitions End (BE1)

 High Level Module Block Begin (BB3)
 Global Variables (NN, ATN8, ASN)
 External Variables (NN, ATN5, ASN)
 External Functions (NN, ATN4, ASN)
 Module-Scope Variables (NN, ATN3, ASN)

 Module-Scope Function Block Begin (BB6)
 Local Variables (NN,ATN, ASN)
 Module-Scope Function Block End (BE6)

 Global Function Block Begin (BB4)
 Local Variables (NN,ATN, ASN)

 Local Function Block Begin (BB6)
 Local Variables (NN,ATN, ASN)
 Local Function Block End (BE6)

 Global Function Block End (BE4) High Level Module Block
 (one for each High Level Module)
 High Level Module Block End (BE3)

 Source File Block Begin (BB5)
 NN, ATN, ASN, for line numbers in main source
 BB5 - Included File
 NN, ASN, ATN for line numbers
 BE5
 NN, ASN, ATN, for line numbers in main source
 Source File Block End (BE5)

 Assembly Module Block Begin (BB10)
 Compiler Generated Global/External
 Variables (NN, ATN19, ASN) |
 Compiler Generated Local Variables (NN, ATN19, ASN) |

 Assembler Section Block Begin (BB11)
 Assembler Section Block End (BE11)

 Assembler Section Block Begin (BB11)
 Assembler Section Block End (BE11)

 Assembly Module Block End (BE10)

-- --

Microtec Research Inc. and Hewlett Packard Company Page 31

 Assembly Module Block Begin (BB10)
 Global/External Variables (NN, ATN19, ASN)
 Local Variables (NN, ATN19, ASN)

 Assembler Section Block Begin (BB11)
 Assembler Section Block End (BE11) Assembly Level Module Block
 (one for each Assembly Level Module)
 Assembler Section Block Begin (BB11)
 Assembler Section Block End (BE11)

 Assembly Module Block End (BE10)

Table 3-5 below illustrates which of the blocks underInner can be nested within the blocks listed underOuter.
Some of the blocks require an outer block. For example, a BB4 block requires that its outer, enclosing block be a
BB3. Similarly, a BB1 or BB2 block requires that its outer, enclosing block be the Debug Part, ordebug.

Inner Outer
BB1 BB2 BB3 BB4 BB5 BB6 BB10 BB11 debug

BB1 no no no no no no no no yes

BB2 no no no no no no no no yes

BB3 no no yes (Ada)† yes (Ada) no yes(Ada) no no yes

BB4 no no required no no no no no no

BB5 no no no no yes no no no yes

BB6 no no yes yes no yes no no no

BB10 no no no no no no yes no yes

BB11 no no no no no no required no no

Table 3-5. Summary of Permitted Block Nesting

Block Size

There are different formats for BB records which require information depending on block type. In all cases, the
block size in bytes refers to the number of bytes from the beginning of the BB record to the end of the corresponding
BE record. This size can be used by a reader to skip ahead in the file, rather than having to read through it.For
example, in the segment below, the BB record is specified as being $30 bytes long:

0000 BB 1 $30 test_mod

.

.

.

002f BE

0030 BB 3 . . .

The size, $30, will be added to the address of the beginning of the BB 1 record to obtain the seek address of the
BB3.

† The combinations marked (Ada) are permissible for Ada but not yet implemented.

-- --

Page 32 Microtec Research Inc. and Hewlett Packard Company

The format for each block type is described below:

Block Type 1 - unique typedefs for module

format: {$F8}{$01}{n1}{Id}

where:

$F8 Recordtype
$01 BlockType 1 - unique typedefs for module
n1 Blocksize in bytes (0 = unknown)
Id Modulename

Block Type 2 - global typedefs

format: {$F8}{$02}{n1}{Id}

where:

$F8 Recordtype
$02 BlockType 2 - global typedefs
n1 Blocksize in bytes (0 = unknown)
Id Zerolength name

Block Type 3 - high level module scope beginning

format: {$F8}{$03}{n1}{Id}

where:

$F8 Recordtype
$03 BlockType 3 - high level module scope beginning
n1 Blocksize in bytes (0 = unknown)
Id Modulename (must be the same name as specified for BB1)

Block Type 4 - global function

format: {$F8}{$04}{n1}{Id}{n2}{n3}{n4}

where:

$F8 Recordtype
$04 BlockType 4 - global function
n1 Blocksize in bytes (0 = unknown)
Id Functionname
n2 Numberof bytes of stack space required for local variables (in MAUs)
n3 Type index for return value parameter and function information (’x’ type), (0 = unknown)
n4 Offset expression (in MAUs). In relocatable object modules, the offset is expressed in

terms of R-variables. In absolute object files, the offset expressions are the absolute
addresses of the beginning of the code block.

-- --

Microtec Research Inc. and Hewlett Packard Company Page 33

Block Type 5 - file name for source line numbers

format: {$F8}{$05}{n1}{Id}[n2[n3[n4[n5[n6[n7]]]]]]

where:

$F8 Recordtype
$05 BlockType 5 - file name for source line numbers
n1 Blocksize in bytes (0 = unknown)
Id Sourcefile name (including path)
n2 Year (e.g., 1988)
n3 Month(1-12)
n4 Day(1-31)
n5 Hour(0-23)
n6 Minute(0-59)
n7 Second(0-59)

Block Type 6 - local function

format: {$F8}{$06}{n1}{Id}{n2}{n3}{n4}[Id]

where:

$F8 Recordtype
$06 BlockType 6 - local function (static)
n1 Blocksize in bytes (0 = unknown)
Id Functionname
n2 Numberof bytes of stack space required for local variables (in MAUs)
n3 Type index for return value parameter and function information (’x’ type) (0 = unspecified)
n4 Offset expression (in MAUs). In relocatable object modules, the offset is expressed in

terms of R-variables. In absolute object files, the offset expressions are the absolute
addresses of the beginning of the code block.

If the function name does not exist (length = 0), this is an unnamed block used for variable scoping only.

-- --

Page 34 Microtec Research Inc. and Hewlett Packard Company

Block Type 10 - assembler module scope beginning

format: {$F8}{$0A}{n1}{Id}{Id}{n2}[Id][n3[n4[n5[n6[n7[n8]]]]]]

where:

$F8 Recordtype
$0A BlockType 10 - assembler module scope beginning
n1 Blocksize in bytes (0 = unknown)
Id Modulename or file name (with path)
Id Input relocatable object file name (used during incremental linking only, zero length string

otherwise)
n2 Tool type: To find the code for the tool type, see the appendix on Family Definitions for

your target.
Id Version and revision in string format.
n3 Year (e.g., 1988)
n4 Month(1-12)
n5 Day(1-31)
n6 Hour(0-23)
n7 Minute(0-59)
n8 Second(0-59)

If the BB 10 block did not exist in the relocatable module, the linker will create a dummy BB10 based on the
module name to cover backwards compatibility.

The first Id field in the BB10 record holds one of the following:

A module name.Normally, the module name is the assembler source file name with the suffix and
directory path stripped. An assembler directive can override this default.In the case of BB10
blocks associated with high level modules (e.g., BB1, BB3, BB5, or BB10) the module name in
the BB10 field must match the module name in the associated BB3 and BB1 blocks.Also, BB10
blocks for modules assembled without debugging turned on hold only the module name.

The path name of the assembly source file. This applies to BB10 blocks for hand coded
assembly source files.

Block Type 11 - module section

format: {$F8}{$0B}{n1}{Id}{n2}{n3}{n4}{n5}

where:

$F8 RecordType
$0B BlockType 11 - module section
n1 Blocksize in bytes (0 = unknown)
Id Zerolength name (section name already defined)
n2 Sectiontype

0 Mixture of code, data, etc.
1 Code
2 Read/Write data
3 Read only data
4 Stack
5 Memory

n3 Sectionindex (adjusted by linker when combining sections)
n4 Offset expression (in MAUs) - the expression is in terms of R-variables for relocatable files.

For absolute files, it is an absolute address.
n5

-- --

Microtec Research Inc. and Hewlett Packard Company Page 35

0 Map section to HP ABS
1 Map section to HP PROG
2 Map section to HP DATA
3 Map section to HP COMM

In the BB11 block, the parser stop (i.e., binary comma) code $90 is required before the HP Section|
mapping information, parameter {n5}.

Optional fields may be null; but if any field is null and a later field is present, the omitted field must be filled with the
{$80} construct. The relationship of blocks to variable attribute and variable value records (NN, ASN, ATN records)
is preserved in the file. For variables which have an NN, ASN, ATN triple, these records must be together in the
block structure definition (i.e., there can be no BB nor BE records between them). Block definitions may be nested.

3.6.2 Variable Names (NN)

These NN records declare variable names, type names and line numbers. The IEEE standard has been extended to
allow duplicate local symbols to be defined, as long as the indices and the scoping are different. This provides
symbol definitions that are local to a specific section.

format: {$F0}{n}{Id}

where:

$F0 Recordtype
n Name index number (must be > 31, 0-31 are reserved)
Id Name

3.6.3 DefineTypes (TY)

The TY record specifies that a type name represents an explicit type definition other than the implicit types
predefined for use with MRI/HP language variables. In some languages, such as PASCAL, different types with the
same name may be declared. This is supported by this specification by having multiple NN, TY pairs with the same
name in the NN.

format: {$F2}{n1}{$CE}{n2}[n3][n4]...

where:

$F2 Recordtype
n1 Type index unique within module (>255) (0-255 reserved for implicit types)
$CE Recordtype
n2 Localname index for symbol defined by NN record
n3,n4... Variable number of fields specifying additional type information as defined in Appendix A.

-- --

Page 36 Microtec Research Inc. and Hewlett Packard Company

3.6.4 Attribute Records (ATN)

Each ATN record (with the exception of ATN 9, see Table 3-6) is associated with an NN record and defines a valid
symbol.

format:
NN record: {$F0}{n1}{Id}
ATN record: {$F1}{$CE}{n1}{n2}{n3}[x1][x2][x3][x4][x5][x6][Id]
ASN record: {$E2}{$CE}{n1}{n2}

where:

$F0 NNrecord type
n1 Symbolname (NN record) type
Id Symbolname
$F1CE ATN record type
n1 Symbolname index (this must be the same index as specified for the NN record)
n2 Symboltype index (0=untyped)
n3 Thenumbers representing the attributes, the blocks they can appear in, and their descriptions

are illustrated in Table 3-6 below.
x1 ... Id Optional features, described for each attribute.
$E2CE ASNrecord type
n1 Symbolname (NN record) index
n2 Symbolvalue

-- --

Microtec Research Inc. and Hewlett Packard Company Page 37

n3 Block Description

1 4,6 Automatic variable; requires an additional field [x1] defining the stack offset (in MAUs). There
must not be an ASN record.

2 4,6 Defines a variable name as a living register; requires one extra field [x1]. This field is the index of
the register name.To find the register index, see the appendix on Family Definitions for your
target. Theremust not be an ASN or ASI record.

3 3,4,6 Compiler defined static variable.There must be an ASN or ASI record specifying the
address/value. †

4 3,4,6 External function. Definition type is ’x’ type. There must not be an ASN record.

5 External variable definition. There must not be an ASN record.

7 5 Line number; requires two extra fields giving the line number and column number. Two optional
fields [x3] and [x4] are reserved and should be omitted.The line and column number represent
the end of a group of one or more lines in a statement.A column number of 0 represents the end
of the line. Otherwise, the column number represents the last character in a statement (e.g., the ‘‘;’’
of a C statement). Line numbers do not have to be in ascending order, and it is the consuming
tool’s responsibility to handle numbers which are ‘‘out of order.’’ There must be an ASN record
specifying the address.

8 3 Compiler global variable.†† There must be an ASN record specifying the address/value.See also
Section 3.4.2.

9 4,6 Variable life time; this record controls the temporary allocation of symbols to register resources.|
ATN9 requires one extra field, [x1], which specifies the absolute program counter offset (in |
MAUs) from the current segment at which the first processor instruction reflecting the change can|
occur. |

Parameter {n1} refers either to a previously defined NN/ATN pair ({n1}>0) or to the special |
reserved NN index 0 ({n1}=0). When {n1} is 0, [x2] is interpreted as the index of the register|
resource returned to scratch status starting at the program counter offset specified in [x1].All |
variable lifetime symbols in this register resource are "dead" starting at the address in [x1].

|
When {n1}>0, {n1} is interpreted as the index of a local symbol which must have been previously|
declared in an NN/ATN pair having index {n1}.The original NN/ATN symbol declaration must|
indicate some form of register storage class. |

|This may be done in any of several ways: |

1. Symboldeclared as a living register variable. The symbol must have been declared in the|
immediately enclosing BB4 or BB6 scope. See ATN2. |

2. Symbol declared as an automatic variable. The symbol must have been declared in the|
immediately enclosing BB4 or BB6 scope. See ATN1. |

3. Symboldeclared as a shadowed variable. The symbol may be any automatic (stack), static, or|
global variable within the current BB3 (module) block. See variable miscellaneous record 60,|
Appendix B. |

4. Compilerregister utilization specified explicitly. Register storage specified for entire classes of|
variables. Seemodule miscellaneous code 61, Appendix B |

There must not be an ASN record. |

10 4,6 Defines a variable name as a locked register; requires two extra fields, [x1] and [x2], to define the
index of the register name and the frame offset (in MAUs). There must not be an ASN record.

11 3,4,6 Reserved for FORTRAN Common.

Table 3-6. (part 1 of 4) Attribute Numbers, Blocks and Descriptions

-- --

Page 38 Microtec Research Inc. and Hewlett Packard Company

n3 Block Description

12 3,4,6 Based variable. It has the following additional fields:

x1 Offset value.
x2 Controlnumber.

0 Based from static memory. The base is a relocatable expression and
evaluates to 0 if omitted. This control value allows basing from
another variable (such as external) for aliasing and special
languages. Ifthe space argument is used, it can allow reference to
other than normal address spaces (such as bit space).

1 Based from register. It is often used for index relative addresses,
when the absolute address is not known until run time.

2 Based from bank, section, or task. This allows special addressing for
MMU environments. It also handles instanciated data, as is used
with ADA.

3 Based from selector or pointer. This allows for indirected
addressing. This can be used for conformant arrays and PLM
‘‘ based’’ variables. It can also be used for local heap-based statics.

4 Indirected from register base. This allows for indirected addressing.
This is commonly used with ‘‘pass by reference’’ l anguages such as
FORTRAN, Pascal ‘‘var ’’ args, and ADA ‘‘in out’’ args. Like
control 1, it creates an address from register+offset, but the address
is treated as a pointer.

x3 Public/localindicator. Optional. Omittedor zero means local. One means public.
x4 Memoryspace indicator value - defined for each preprocessor. Default = 0x80.
x5 Base_size.The number of MAUs the base value can occupy. The base value, |

which is contained in an accompanying ASN record, is defined by the value of|
control.

0 Base is an address expression.
1 Base is a register index (predefined per processor).
2 Base is a section or super-section index.
3 Base is an address expression relating to another symbol. If another

symbol is not defined at that address, base refers to a default pointer
typed object at the specified address.

4 Base is a register index (usually the frame pointer) which when
added to the offset computes an address. The resultant address is
treated like a normal pointer (for the processor) to the actual object.

Table 3-6. (part 2 of 4) Attribute Numbers, Blocks and Descriptions

† Fortran entry statements are designated by an ATN 3 with an ’x’ type. The ’x’ type defines the argument types.The parameters
are defined as locals with the corresponding type and address.

†† Maybe present as an ATI record in the Public External Part if it is a global symbol.

-- --

Microtec Research Inc. and Hewlett Packard Company Page 39

n3 Block Description

16 3,4,6,10 Constant, with the following additional fields. |

x1 Symbol class. Required. Definedas follows:

0 Unknown class.
1 EQU constant.
2 SET constant.
3 Pascal CONST constant.
4 C#define constant.
5-128 Reservedfor future use.

x2 Public/localindicator. Optional. Omittedor zero means local. One means public.
x3 Numericvalue. Optional. For constants with ordinal values. Either x3 or x4 should be

present but not both.
x4 Stringvalue. Optional. For constants with string values.

There may be more than one ATN for a single name since SETs and #defines may be defined
repeatedly.

For each such ATN record, there may be one ASN record indicating the program counter address|
where the definition occurred.If such an ASN record is not present, then the constant value is|
assumed to be valid between the lowest and highest program counter addresses of the module in|
which the NN/ATN record pair defining the constant was found.

19 10 Static variable generated by assembler; may be global in scope.† There must be an ASN record
specifying the address/value. There is one required field [x1], which indicates the number of
elements of type n2 described by the symbol, and [x2], which is a local/global indicator.
[x2]=omitted or 0 means local. [x2]=1 means global. See also Section 3.4.2.

36 AD Part Contains the lowest version number of all input files that were used to build this file (see also AD
Extension Part).

37 See Section 3.2

38 See Section 3.2

39 See Section 3.2

50 See Section 3.3

51 See Section 3.3

52 See Section 3.3

53 See Section 3.3

54 See Section 3.3

55 See Section 3.3

62 4,6 Procedure block misc.; followed by two fields which describe the most recent procedure block.The
first field [x1] is the pmisc. type identification number, the second [x2] is the number of additional
ATN 65 or ASN records associated with this directive. Refer to the appendix on Miscellaneous
Records for the codes associated with this directive.

Table 3-6. (part 3 of 4) Attribute Numbers, Blocks and Descriptions

† May be present as an ATI record in the Public External Part if it is a global symbol.

-- --

Page 40 Microtec Research Inc. and Hewlett Packard Company

n3 Block Description

63 3,4,6 Variable misc.; followed by two fields which describe a variable. The first field [x1] is the vmisc.
type identification number, the second [x2] is the number of additional ATN 65 or ASN records
associated with this directive.Refer to the appendix on Miscellaneous Records for the codes
associated with this directive.

64 3 Module misc.; followed by two fields which describe the current module block.The first field
[x1] is the mmisc. type identification number, the second [x2] is the number of additional ATN 65
and ASN records associated with this directive.Refer to the appendix on Miscellaneous Records
for the codes associated with this directive.

65 3,4,6 Misc. string; requires one field which is a string value for miscellaneous records 62, 63, and 64.

Table 3-6. (part 4 of 4) Attribute Numbers, Blocks, and Descriptions

The appendix entitledSample C, and C++ Programs and Their IEEE Format contains examples of all of the
attribute definitions listed above except for 9, 11, 55, 62, 63, and 65.

3.6.5 Value Records (ASN)

The ASN records are used to define values for variables.

format: {$E2}{$CE}{n1}{n2}

where:

$E2CE Recordtype
n1 Symbolname index (must be the same as specified for the NN record)
n2 Expressiondefining value for symbol (in MAUs if it is an address)

The expression typically involves a section base for addresses and not for constants.

Example:

{$E2}{$CE}{$02}{$CC}{$05}{$10}{$A5} is the binary representation of the character
form ASN2,L5,10,+. This assigns the value ‘‘base of the section’’ whose section index is 5,
plus $10 to variable N2, the local symbol whose symbol index is 2.

Stack relative symbols and register-based symbols must not have an ASN record since the value is defined at
execution time.

-- --

Microtec Research Inc. and Hewlett Packard Company Page 41

3.6.6 CompilerId

Compiler Id Codes directly follow the BB3 record.A dummy NN record precedes the initial ATN record in order to
produce a symbol name index. One ATN record defines that this is a module miscellaneous directive. It is followed
by three ASN records for tool code, type checking code, and default pointer size in MAUs.These are optionally
followed by one ATN for the version number and up to six ASNs for the date and time.

format: {$F1}{$CE}{n1}{0}{64}{50}{n5}{ASN1}{ASN2}{ASN3}[ATN1][ASN4[ASN5
[ASN6[ASN7[ASN8[ASN9]]]]]]

where:

$F1CE ATN Record type
n1 Symbolname index produced by an NN record.
0 Symbol type index
64 Attributedefinition of 64 for module misc.
50 Modulemisc. type identification number of 50 (ATN record)
n5 Miscellaneousrecord count (based on number of date values, etc)
ASN1 Tool code definition. To find the tool code, see the appendix on Family Definitions for your

target.
ASN2 Rulemask - a bit mask specifying assorted object module processing rules: |

||
Bit Meaning ||

||
0 ||Type equivalency rule ||

0 Opaque type equivalence ||
1 Transparent type equivalence ||

Note: Opaquetype equivalence means that all types defined in the| ||
object module are to be treated as unique types even if they are derived| ||
from the same type and are the same size. Pascal and Ada have opaque| ||
type equivalence.Transparent type equivalence means that if two types| ||
are derived from the same underlying type, then they are equal.C has | ||
transparent type equivalence. | ||||

1 ||Interpretation of lifetime register variables information. | ||

0 Register lifetime information is provided. | ||
1 Register lifetime information is not provided. | ||

This allows a consuming tool to deal predictably with compilers that| ||
declare local variables that are never used. | ||||

2 ||Interpretation of source reference column numbers. | ||

0 Source column 1 means ’the last column of the indicated text| ||
line’. | ||

1 Source column 0 means ’the last column of the indicated text| ||
line’, i.e., column 1 means column 1. | ||||

||||

ASN3 Defaultpointer size for module (in MAUs).
ATN1 Version number of tool
ASN4 Year (e.g. 1988)
ASN5 Month(1-12)
ASN6 Day(1-31)
ASN7 Hour(0-23)
ASN8 Minute(0-59)
ASN9 Second(0-59)

-- --

Page 42 Microtec Research Inc. and Hewlett Packard Company

3.6.7 R_Label

R_Label codes occur within BB4 and BB6 blocks and signal a procedure exit.The format of the R_Label code is
similar to that of the Compiler ID.A dummy NN record precedes the initial ATN record to produce a symbol name
index. OneATN record defines that this is a procedure miscellaneous directive.It is followed by one ASN record
for the address of the R_Label being defined.

format:
NN record: {$F0}{n1}{0}
ATN record: {$F1}{$CE}{n1}{0}{62}{1}{1}{v1}
ASN record: {$E2}{$CE}{n1}{v1}

where:

$F0 NNrecord type
n1 Symbolname (NN record) index
0 Symbol name (blank)
$F1CE ATN Record type
n1 Symbolname index associated with the module misc. ATN.
0 Symbol type index
62 Attributedefinition of 62 for procedure misc.
1 Procedure misc. type identification number of 1: R_Label definition
1 Miscellaneous record count
v1 Addressof the R_Label being defined
$E2CE ASNrecord type
n1 Symbolname (NN record) index
v1 R-labelvalue

3.6.8 BlockEnd (BE)

The BE record extends the IEEE standard and is used in conjunction with a BB record. The BE record for type 4, 6,
and 11 BB records are different than others as indicated in the following definitions:

Block End — General

format: {$F9}

where:

$F9 Recordtype

Block End — for block types 4 and 6

format: {$F9}{n1}

where:

$F9 Recordtype
n1 Expressiondefining the ending address of the function (in MAUs)

Block End — for block type 11

format: {$F9}{n1}

where:

$F9 Recordtype
n1 Expressiondefining the size in MAUs of the module section

-- --

Microtec Research Inc. and Hewlett Packard Company Page 43

3.7 DataPart

The Data part contains records with both relocatable and fixed data for the module. It is always loaded at the current
PC value in the current section. The current section is defined by the SB record and the PC is defined by the ASP
record. If no SB record is defined, the current section is specified as 0. If no ASP record is defined, the PC for a
section is initially set to the start of the section.P variables can be used in relocation expressions to describe PC-
relative relocation.

Note that Section 10.1 of theIEEE Trial Use Standard says that the current section is 0 before any SB records are
encountered. Note also that Section 10.2 specifies that if no ST record is present for a section, the type is absolute
and shall have an assignment to its L variable.Taken together, these statements imply that the example module in
4.1 of theStandard is illegal. MRI and HP follow the definition as stated in Section 10.1 of theIEEE Trial Use
Standard.

3.7.1 SetCurrent Section (SB)

The SB record defines the current section. SB has no effect on the P variable. †

format: {$E5}{n1}

where:

$E5 Recordtype
n1 Sectionindex

3.7.2 SetCurrent PC (ASP)

The ASP record sets a new value for the current PC. An ASP record is required after an SB record to reset the value
of the P variable.

format: {$E2}{$D0}{n1}{n2}

where:

$E2D0 Recordtype
n1 Sectionindex
n2 Expressiondefining new value (in MAUs)

3.7.3 LoadConstant Bytes (LD)

The LD record specifies the number of MAUs to be loaded as constant data.

format: {$ED}{n1}{...}

where:

$ED Recordtype
n1 Numberof MAUs (1-127)
... (n1x MAU size) data bytes

† Currently, Microtec’s readers process an SB record, then reset the P variable to the start of the section.

-- --

Page 44 Microtec Research Inc. and Hewlett Packard Company

3.7.4 SetForward Reference Value (ASW) †

The ASW record resolves a forward reference from an earlier point at which the corresponding W variable was
used. The value of the W variable is the value given in the most recent ASW record effecting that variable.The
index must be greater than 31.

format: {$E2}{$D7}{n1}{n2}

where:

$E2D7 Recordtype
n1 Wvariable index (>31)
n2 Expression

3.7.5 SetRelocation Base (IR)

The IR record is used to initialize relocation base by designating a letter from G-Z as a ‘‘relocation base’’ and setting
it to a specified expression. A field width may also be specified. The relocation letter may subsequently be used in
the LR command (below) provided that it is only used to add constant offsets (in MAUs) to the base.

format: {$E3}{l}{n1}[n2]

where:

$E3 Recordtype
l Relocation base designator
n1 Expressiondefining relocation value (in MAUs)
n2 Fieldwidth in bits

— If the second expression is omitted, the field width is taken to be the maximum as
specified by the AD record (i.e. 32 bits (4 bytes) for the 68000).

† Proposed, not yet implemented.

-- --

Microtec Research Inc. and Hewlett Packard Company Page 45

3.7.6 LoadWith Relocation (LR)

format: {$E4}{loaditem}...

where:

$E4 Recordtype
(A) loaditem :={number}{data_byte}...
or
(B) loaditem :={relocation_letter}{number}
or
(C) loaditem :={$BA | $BC | $BE}{expression}[number]{$BB | $BD | $BF}

Form (A) represents a list of constant bytes (not MAUs) where ‘‘number ’’ i s the number of bytes
following. ‘‘number ’’ must be≤ 127.

Form (B) the relocation_letter is specified earlier in an IR record. The number is an offset to be added to
the value of the relocation_letter.

Form (C) gives a single expression whose value is to be stored in ‘‘number ’’ M AUs of memory. If
‘‘ number ’’ is not given, it is assumed to be the maximum number of MAUs per address from the AD record
(i.e., 4 for the 68000).The beginning and ending codes surrounding the expression indicate truncation
checking, and must occur in certain pairings:

{$BA}...{$BB} ‘‘signed’ ’ (typical for PC relative branches); check if all discarded bits match the
most significant bit.

{$BC}...{$BD} ‘‘unsigned;’ ’ check if discarded bits are all zero.
{$BE}...{$BF} ‘ ‘either ’’ (probably most common); check if discarded bits are all 0’s or all 1’s.

As the grammar shows, loaditems can be repeated in any order.

3.7.7 LoadWith Translation (LT)

format: {$FA}{loaditem}

where:

$FA Record type
loaditem For a description of loaditem, seeLoad With Relocation (LR).

3.7.8 RepeatData (RE)

The RE record specifies data initialization in a compact form.

format: {$F7}{n1}

where:

$F7 Recordtype
n1 Expressiondefining number of times to repeat the following LD or LR record data. The

IEEE standard has been extended to include repeating LD records.The length of data that
can be repeated is limited to 128 bytes.

-- --

Page 46 Microtec Research Inc. and Hewlett Packard Company

3.8 Trailer Part

The Trailer part contains the records described below.

3.8.1 StartingAddress (ASG)

The ASG record is optional and defines the execution starting address. This expression requires $BE/$BF
delimiters.

format: {$E2}{$C7}{n1}

where:

$E2C7 Recordtype
n1 Expressiondefining the execution starting address (in MAUs)

3.8.2 ModuleEnd (ME)

The ME record defines the end of the module and must be the last record in the module.

format: {$E1}

where: $E1 Module End (ME) Record Type

3.8.3 ChecksumRecords

The IEEE standard defines two records for managing checksums. The first checks the running checksum (modulo
256) and resets it to zero. The second resets the running total to zero without checking it.

format: {$EE}{n1}
{$EF}

where:

$EE Recordtype indicating check and reset
$EF Recordtype indicating reset only
n1 Unsignednumber in range 0-FF for check (number is always in a single byte)

The last byte added into the total is the EE record type byte. The running total is always set to zero at the start of a
module. The MRI/HP definitions include the following additional restrictions:

• No checksum may involve more than 1 part of the 8 parts defined above.

• Any part, other than the Header and Trailer, that contains a checksum must begin with a EF record and end
with a EE record.

-- --

IEEE - 695Object Module Format Specification

Revision 4.1

December 21, 1992

CONTENTS

1. Introduction..1

2. Terminology...1

2.1 Nomenclature..1

2.2 NumberFormat...1

2.2.1 NegativeNumbers..2

2.3 NameFormat..2

2.3.1 LongStrings..2

2.4 InformationVariables...3

2.5 LineNumbers...4

2.6 Expressions...4

2.6.1 EscapeFunctions..5

2.6.2 AbsoluteAddresses of Objects...7

2.7 Types...7

2.7.1 ComplexTypes...7

2.7.2 Built-inTypes...7

3. ObjectFile Components..9

3.1 HeaderPart...11

3.1.1 ModuleBegin (MB) ...11

3.1.2 AddressDescriptor (AD)..12

3.1.3 AssignValue To Variable W0 (ASW0)..12

3.1.4 AssignValue To Variable W1 (ASW1)..12

3.1.5 AssignValue To Variable W2 (ASW2)..12

3.1.6 AssignValue To Variable W3 (ASW3)..13

3.1.7 AssignValue To Variable W4 (ASW4)..13

3.1.8 AssignValue To Variable W5 (ASW5)..13

3.1.9 AssignValue To Variable W6 (ASW6)..13

3.1.10 AssignValue To Variable W7 (ASW7)..13

3.2 ADExtension Part..14

3.3 EnvironmentalPart...16

3.4 ExternalPart...17

- i -

-- --

3.4.1 Public(External) Symbol (NI)..17

3.4.2 AttributeRecords (ATI)..18

3.4.3 Value Records (ASI)...18

3.4.4 ExternalReference (NX)..20

3.4.5 ExternalReference Information (ATX)..20

3.4.6 Weak External Reference (WX)...20

3.5 SectionPart...22

3.5.1 SectionType (ST)...22

3.5.2 DefineContext (NC)...24

3.5.3 SectionAlignment (SA)...26

3.5.4 SectionSize (ASS)...26

3.5.5 PhysicalRegion Size (ASA)...26

3.5.6 PhysicalRegion Base Address (ASB)..27

3.5.7 MAUSize (ASF)..27

3.5.8 M-value(ASM) ..27

3.5.9 SectionBase Address (ASL)..28

3.5.10 SectionOffset (ASR)..28

3.6 DebugInformation Part..29

3.6.1 BlockBegin (BB)...29

3.6.2 Variable Names (NN)...35

3.6.3 DefineTypes (TY)..35

3.6.4 AttributeRecords (ATN)..36

3.6.5 Value Records (ASN)...40

3.6.6 CompilerId ...41

3.6.7 R_Label...42

3.6.8 BlockEnd (BE)...42

3.7 DataPart...43

3.7.1 SetCurrent Section (SB)..43

3.7.2 SetCurrent PC (ASP)...43

3.7.3 LoadConstant Bytes (LD)..43

3.7.4 SetForward Reference Value (ASW) †...44

3.7.5 SetRelocation Base (IR)..44

3.7.6 LoadWith Relocation (LR)..45

3.7.7 LoadWith Translation (LT)..45

3.7.8 RepeatData (RE)..45

3.8 Trailer Part..46

- ii -

-- --

3.8.1 StartingAddress (ASG)..46

3.8.2 ModuleEnd (ME)...46

3.8.3 ChecksumRecords...46

Appendices

A MRI/HP Symbol Types
B Miscellaneous Directives
C MRI IEEE Format Object File Semantics
D Library Information Area
E Hex coding for Standard Functions, Identifiers and Commands
F C++ Debugging Information
G Memory Mapping
H AMD 29000 Family Definitions
I Hitachi HD64180, Zilog Z80 Family Definitions
J Hitachi H8/300 Family Definitions
K Hitachi H8/500 Family Definitions
L Intel 8051 Family Definitions
M Intel 80960 Family Definitions
N Mil-Std-1750A Family Definitions
O Mitubishi MELPS 7700 Family Definitions
P Motorola 68000 Family Definitions
Q Toshiba TLCS-900 Family Definitions
R Toshiba TLCS-9000 Family Definitions
S Toshiba TX1 Processor Family Definitions
T Toshiba TX2 Processor Family Definitions
U Sample C and C++ Programs and Their IEEE Output

- iii -

-- --

(Page intentionally left blank)

