
Application Note 107
MII SMM Design Guide

�

2 Cyrix Application Note 107 - MII SMM DESIGN GUIDE

Table of Contents

1.0 Introduction

1.1 Scope . 4
1.2 Cyrix SMM Features . 5
1.3 Typical SMM Routines . 6

2.0 SMM Implementation

2.1 SMM Pins . 7
2.2 Cyrix SMM Mode . 8
2.3 SL SMM Mode . 9
2.4 Configuration Control Registers and SMM . 11

3.0 System Management Mode

3.1 Overall Operation . 19
3.2 SMM Memory Space . 20
3.3 SMM Memory Space Header . 22
3.4 SMM Instructions . 26
3.5 SMM Operation . 28
3.6 SL and Cyrix SMM Operating Modes . 31

4.0 SMM Programming Details

4.1 Initializing SMM . 34
4.2 SMM Handler Entry State . 36
4.3 Maintaining the CPU State. 40
4.4 Initializing the SMM Environment . 45

Cyrix Application Note 107 - MII SMM DESIGN GUIDE 3

4.5 Accessing Main Memory Overlapped by SMM Memory . 46
4.6 I/O Restart . 47
4.7 I/O Port Shadowing and Emulation . 48
4.8 Resume to HLT Instruction. 49
4.9 Exiting the SMI Handler . 50
4.10 Testing and Debugging SMM Code . 50

Appendices

A. Assembler Macros for Cyrix Instructions . 51
B. Differences in Cyrix Processors . 54

 4 Cyrix Application Note 107 - MII SMM DESIGN GUIDE

APPLICATION NOTE 107 SMM Design Guide

1 Introduction

1.1 Scope

This Programmer's Guide is provided to assist programmers in the creation of soft-
ware that uses the Cyrix™ System Management Mode (SMM) for the MII™ pro-
cessor. Unless stated otherwise, all information in this manual pertains to the MII
and 6x86MX CPUs. Limited SMM information is provided concerning these Cyrix
products:

• Cx486DX2™ processor

• Cx486DX4™ processor

• 5x86™ processor

• 6x86™ processor

Cyrix Application Note 107 - MII SMM DESIGN GUIDE 5

Cyrix SMM Features

For additional information concerning Cyrix CPUs prior to the 6x86MX, refer to
the Cyrix SMM Programmer’s Guide, Revision 2.1 or later.

SMM provides the system designer with another operating mode for the CPU.
Within this document, the standard x86 operating modes (real, V86, and protected)
are referred to as normal mode. Normal-mode operation can be interrupted by an
SMI interrupt or SMINT instruction that places the processor in System Manage-
ment Mode (SMM). SMM can be used to enhance the functionality of the system
by providing power management, register shadowing, peripheral emulation and
other system-level functions. SMM can be totally transparent to all software,
including protected-mode operating systems.

1.2 Cyrix SMM Features

The Cyrix microprocessors provide a register to program the location and size of
the SMM memory region. The CPUs automatically save minimal register informa-
tion, reducing the time needed for SMM entry and exit. The SMM implementation
by Cyrix provides unique instructions that save additional segment registers. The
x86 MOV instruction can be used to save the general purpose registers.

The Cyrix processors simplify I/O trapping by providing I/O type identification and
instruction restarting. Cyrix CPUs also make available to the SMM routine infor-
mation that can simplify peripheral register shadowing.

Cyrix provides a method (setting the SMI_LOCK bit) that prevents the SMM
configuration registers from being accessed. Locking the SMM configuration
registers enhances system security from programming errors and viruses, but at the
expense of making debugging more difficult.

6 Cyrix Application Note 107 - MII SMM DESIGN GUIDE

Typical SMM Routines

1.3 Typical SMM Routines

A typical SMM routine is illustrated in the flowchart shown in below. Upon entry to SMM, the
CPU registers that will be used by the SMM routine must be saved. The SMM environment is
initialized by setting up an Interrupt Descriptor Table, initializing segment limits, and setting
up a stack. If entry to SMM results from an I/O bus cycle, the SMM routine can monitor
peripheral activity, shadow read-only ports, and emulate peripherals in software. If a peripheral
is powered down, the SMM routine can power it up and reissue the I/O instruction. If the SMM
routine is not the result of an I/O bus cycle, non-trap SMI functions can be serviced. If an HLT
instruction is interrupted by an SMI then the HLT instruction should be restarted when the
SMM routine is completed. Before normal operation is resumed, any CPU registers modified
during the SMM routine must be restored to their previous state.

Typical SMM Routine

SMM Entry

Save State

Initialize SMM
Environment

Trap?
Service

Non-Trap SMI

HALT?
Decrement

EIP

Device
OFF?

Shadow

Service
Trap SMI

Modify State
For I/O Restart

Restore
State

Resume

I/O

SMM Exit

N Y

Y

Y

N

N

or Emulate

1727400

Cyrix Application Note 107 - MII SMM DESIGN GUIDE 7

SMM Pins

2. SMM Implementation

This chapter describes the Cyrix SMM System interface. SMM operations for
Cyrix microprocessors are similar to related operations performed by other x86
microprocessors.

The 6x86 supports only SL SMM mode. The 6x86MX and MII, support two SMM
modes, Cyrix SMM mode and SL SMM mode.

The CPU defaults to Cyrix SMM mode. Setting SMM_MODE bit will cause the
CPU to operate in SL SMM mode.

Note: SMM_MODE is CCR3 bit 3 for the 5x86, non-existent for the 6x86, and is
CCR6 bit 0 for the 6x86MX and MII.

2.1 SMM Pins

In either SMM mode, two unique pins are required to support SMM. These pins
perform three functions:

1. Signaling when an SMI interrupt should occur,

2. Informing the chipset that the CPU is in SMM mode,

3. Informing the chipset whether the bus cycle is intended for SMM memory
or system memory.

Signals at the SMI# and SMIACT# pins are used to implement SMM.

8 Cyrix Application Note 107 - MII SMM DESIGN GUIDE

Cyrix SMM Mode

2.2 Cyrix SMM Mode

For all Cyrix CPUs the CPU defaults to Cyrix SMM mode, (except for the 6x86
which does not support Cyrix SMM mode).

An SMM routine is by asserting the SMI# input pin. The SMIACT# output pin
indicates that the processor is operating in SMM mode.

2.2.1 SMI# Pin Timing

To enter Cyrix SMM mode, the SMI# pin must be asserted for at least one CLK
period (two clocks if SMI# is asserted asynchronously). To accomplish I/O
trapping, the SMI# signal should be asserted two clocks before the RDY# for that
I/O cycle. Once the CPU recognizes the active SMI# input, the CPU drives the
SMIACT# output low for the duration of the SMM routine.

The SMM routine is terminated with an SMM-specific resume instruction (RSM).
When the RSM instruction is executed, the CPU drives the SMIACT# pin high.

2.2.2 Cache Coherency

SMM memory is never cached in the CPU internal cache. This makes cache coher-
ency completely transparent to the SMM programmer using Cyrix SMM mode. If
the CPU cache is in write-back mode, all write-back cycles will be directed to nor-
mal memory with the use of the ADS# signal. An INVD or WBINVD will write
dirty data out to normal memory even if it overlaps with SMM space.

SMM memory can be cached by an external cache controller, but it is up to the
cache designer to be sure to maintain a distinction between SMM memory space
and normal memory space.

The A20M# input to the CPU is ignored for all SMM space accesses (that is, any
access that uses SMIACT#).

Cyrix Application Note 107 - MII SMM DESIGN GUIDE 9

SL SMM Mode

2.3 SL SMM Mode

SL SMM mode is selected by the SMM_MODE bit in CCR3 for the 5x86 or CCR6
for the 6x86MX and MII. The 6x86 supports only SL SMM mode.

The SMI# and SMIACT# pins are used to implement SL SMM Mode. (SMIACT#
is referred to as SMADS# on certain Cyrix CPUs prior to the introduction of the
6x86 family of CPUs.) The SMI# pin is an input pin used by the chipset to signal
the CPU that an SMI has been requested. While the CPU is in the process of ser-
vicing an SMI interrupt, the SMIACT# pin is an output used to signal the chipset
that the SMM processing is occurring. The ADS# address strobe signal is asserted
in order to access data in either normal memory or SMM address space.

2.3.1 SMI# Input

SMI# is an edge-triggered input pin sampled by two rising edges of CLK. SMI#
must meet certain setup and hold times to be detected on a specific clock edge. To
accomplish I/O trapping, the SMI# signal should be asserted three clocks before the
RDY# or BRDY# for that I/O cycle. Once the CPU recognizes the active SMI#
input, the CPU drives SMIACT# active for the duration of the SMM routine. The
SMM routine is terminated with an SMM-specific resume instruction (RSM).
When the RSM instruction is executed, the CPU negates the SMIACT# pin after
the last bus cycle to SMM memory. While executing the SMM service routine, one
additional SMI# can be latched for service after resuming from the first SMI.

2.3.2 SMIACT# - SMM Interrupt Active Signal

The CPU uses one address strobe, ADS#, to initiate memory cycles for both normal
and SMM memory.

The chipset must monitor the address on the bus to determine if a given cycle is
intended for normal or SMM memory. If SMIACT# is inactive when an ADS# is
asserted, the cycle will access normal memory. If SMIACT# is active when an
ADS# is asserted, the chipset must compare the address bus to the address range for

10 Cyrix Application Note 107 - MII SMM DESIGN GUIDE

SL SMM Mode

SMM memory. If the address is within the SMM address region, the cycle should
be directed to SMM memory. If the address is outside of the SMM address region,
the cycle should be directed to normal memory.

Normal memory located within the same physical address range as the SMM
address region can only be accessed from within SMM mode by chipset-specific
functions which will relocate the normal memory to an address that is accessible to
the SMM code. In normal mode, SMM memory can be initialized by using chipset-
specific functions to map the SMM memory into normal memory so that it can be
accessed.

The MMAC and SMAC bits in CCR1 should not be used while in SL SMM mode.
See Appendix B for details on how these bits function in each of the Cyrix CPUs.

2.3.3 Cache Coherency

Intel’s SL Enhanced 486 allows SMM memory accesses to be cached. This may
cause coherency problems in systems where SMM memory space and normal
memory space overlap. Therefore, Intel recommends one of two options: (1) flush
the cache when entering and exiting an SMM service routine, or (2) flush the cache
when entering an SMM service routine and then make all SMM accesses non-
cacheable using the KEN# pin. In both cases, Intel recommends asserting the
FLUSH# input when SMIACT# is asserted. This is acceptable for a CPU with a
write-through cache because the flush invalidates the cache in a single clock.

Therefore, the Cyrix CPU must also write back and invalidate the cache prior to
asserting SMIACT#. No dirty data can exist in the CPU (cache and write buffers) at
the time that SMIACT# is asserted.

On the 5x86, 6x86, 6x86MX and MII CPUs, the chipset must drive FLUSH# on the
same clock as SMI# to ensure that the dirty data is written out to memory before the
SMIACT# is asserted.

If the software instruction SMINT is used to enter SMM a WBINVD instruction
should be executed immediately before the SMINIT instruction to assure that no
dirty data is in the cache.

A bus snoop will not hit in the CPU cache if the FLUSH# pin has been asserted
before entering SMM. Cyrix CPUs prevent dirty data hits within SMM because the
SMM space is always non-cacheable.

Cyrix Application Note 107 - MII SMM DESIGN GUIDE 11

Configuration Control Registers and SMM

2.4 Configuration Control Registers and SMM

This section describes fields in the Configuration Registers that configure SMM
operations. Fields not related to SMM are not described in this manual and are
shown as blank fields in the configuration register tables. For a complete descrip-
tion of the configuration registers, refer to the appropriate data book.

All configuration-register bits related to SMM and power management are cleared
to 0 when RESET is asserted. Asserting WM_RST does not affect the configuration
registers.

These registers are accessed by writing the register index to I/O port 22h. I/O port
23h is used for data transfer. Each data transfer to I/O port 23h must be preceded by
an I/O port 22h register-index selection, otherwise the port 23h access will be
directed off chip.

Before accessing these registers, all interrupts must be disabled. A problem could
occur if an interrupt occurs after writing to port 22h but before accessing port 23h.
The interrupt service routine might access port 22h or 23h. After returning from the
interrupt, the access to port 23h would be redirected to another index or possibly off
chip.

An SMI interrupt cannot interrupt accesses to the configuration registers. After
writing an index to port 22h in the CPU configuration space, SMI interrupts are dis-
abled until the corresponding access to port 23h is complete.

The portions of the configuration registers that apply to SMM and power manage-
ment are described in the following pages.

Undefined bits in the configuration registers are reserved.

12 Cyrix Application Note 107 - MII SMM DESIGN GUIDE

Configuration Control Registers and SMM

CCR0 Register
Register INDEX = C0h

7 6 5 4 3 2 1 0

NC1

CCR0 Bit Definitions

BIT
 POSITION

NAME DESCRIPTION NOTES

1 NC1 No Cache 640 - 1 MByte
If = 1: Address region 640 KByte to 1MByte is non-cacheable.
If = 0: Address region 640 KByte to 1 MByte is cacheable.

Applies to 6x86MX
and MII only.

Cyrix Application Note 107 - MII SMM DESIGN GUIDE 13

Configuration Control Registers and SMM

CCR1 Register
Register INDEX = C1h

7 6 5 4 3 2 1 0
SM3 NO_LOCK MMAC SMAC USE_SMI

CCR1 Bit Definitions

BIT
 POSITION

NAME DESCRIPTION NOTES

1 USE_SMI Enable SMM Pins.

If = 1: The SMI# input/output pin and SMIACT# output pin are enabled. USE_SMI
must be set to 1 before any attempted access to SMM memory is made.

If = 0: the SMI# input pin is ignored and SMIACT# output pin floats. Execution of
Cyrix specific SMM instructions will generate an invalid opcode exception.

Also called SMI

2 SMAC System Management Memory Access.

If = 1: SMI# input is ignored. Memory accesses while in normal mode that fall
within the specified SMM address region generate an SMIACT# output and access
SMM memory. Instructions with SMM opcodes are enabled.

 If = 0: All memory accesses in normal mode go to system memory with ADS# out-
put active. In normal mode, execution of Cyrix specific SMM instructions generate
an invalid opcode exception.

Valid on Cx486DX2/
DX4 and 5x86 only
when operating in
Cyrix SMM mode.

SMAC is always
available for 6x86.

3 MMAC Main Memory Access.

If = 1: Data accesses while in SMM mode that fall within the specified SMM
address region will generate an ADS# output and access main memory. Code fetches
are not effected by the MMAC bit. Code fetches from the SMM address region
always generate an SMIACT# output and access SMM memory. If both the SMAC
and MMAC bits are set to 1, the MMAC bit has precedence.

If = 0: All memory accesses to the SMM address region while in SMM mode go to
SMM memory with SMIACT# output active.

Not available for
6x86, 6x86MX or
MII.
Do not set MMAC
unless operating in
Cyrix SMM mode.

4 NO_LOCK Negate LOCK#
If = 1: All bus cycles are issued with LOCK# pin negated except page table accesses
and interrupt acknowledge cycles. Interrupt acknowledge cycles are executed as
locked cycles even though LOCK# is negated. With NO_LOCK set, previously non-
cacheable locked cycles are executed as unlocked cycles and therefore, may be
cached. This results in higher performance. Refer to Region Control Registers for
information on eliminating locked CPU bus cycles only in specific address regions.

Used on 6x86MX and
MII only

7 SM3 SMM Space Address Region 3
If = 1 Address Region 3 (ARR3) is redefined as the SMM Address Region (SMAR).

Available for 6x86
only.

14 Cyrix Application Note 107 - MII SMM DESIGN GUIDE

Configuration Control Registers and SMM

CCR2 Register
 Register INDEX = C2h

7 6 5 4 3 2 1 0

USE_SUSP WPR1 SUSP_HALT LOCK_NW SADS

CCR2 Bit Definitions

BIT
 POSITION

NAME DESCRIPTION NOTES

1 SADS If = 1: CPU inserts an idle cycle following sampling of BRDY#
and inserts an idle cycle prior to asserting ADS#

Used on 6x86MX and MII only.

2 LOCK_NW Lock NW
If = 1: NW bit in CR0 becomes read only and the CPU ignores
any writes to the NW bit.
If = 0: NW bit in CR0 can be modified.

Used on 6x86MX and MII only.

3 SUSP_HALT Suspend on HALT.
If = 1: CPU enters suspend mode following execution of a HLT
instruction.
If = 0: CPU does not enter suspend mode following execution of
a HLT instruction.

Also called HALT.

4 WPR1 Write-Protect Region 1
If = 1: Designates any cacheable accesses in 640 KByte to 1
MByte address region are write protected.

Used on 6x86MX and MII only.

7 USE_SUSP Enable Suspend Pins.
If = 1: SUSP# input and SUSPA# output are enabled.
If = 0: SUSP# input is ignored and SUSPA# output floats.

Also called SUSP.

Cyrix Application Note 107 - MII SMM DESIGN GUIDE 15

Configuration Control Registers and SMM

CCR3 Register
INDEX = C3h

7 6 5 4 3 2 1 0

MAPEN3 MAPEN2 MAPEN1 MAPEN0 SMM_MODE LINBRST NMI_EN SMI_LOCK

CCR3 Bit Definitions

BIT
 POSITION

NAME DESCRIPTION NOTES

0 SMI_LOCK SMM Register Lock.

If = 1: the following Configuration Control Register bits can not be modified unless
operating in SMM mode: USE_SMI, SMAC, MMAC, NMI_EN, SM3 and SMAR.

If = 0: any program in normal mode, as well as SMM software, has access to all
Configuration Control Registers.

Once set, the SMI_LOCK bit can only be cleared by asserting the RESET pin.

1 NMI_EN NMI Enable.

If = 1: NMI is enabled during SMM. This bit should only be set temporarily while in
the SMM routine to allow NMI interrupts to be serviced. NMI_EN should not be
set to 1 while in normal mode. If NMI_EN = 1 when an SMI occurs, an NMI could
occur before the SMM code has initialized the Interrupt Descriptor Table.

If = 0: NMI (Non-Maskable Interrupt) is not recognized during SMM. One occur-
rence of NMI can be latched and serviced after SMM mode is exited. The NMI_EN
bit should be cleared before executing a RSM instruction to exit SMM.

Also called NMIEN

2 LINBRST Lock NW
If = 1: Use linear address sequence during burst cycles.
If = 0: Use “1 + 4” address sequence during burst cycles. The “1 + 4” address
sequence is compatible with Pentium’s burst address sequence.

Used on 6x86MX
and MII only

3 SMM_MODE SMM Mode

If = 1: SMM pins function as defined for SL-compatible mode.

If = 0: SMM pins function as defined for Cyrix SMM compatible mode.

Not available on 6x86
as 6x86 operates in
SL SMM mode only.
For 6x86MX and MII
SMM_MODE is
CCR6 bit 0.

7 - 4 MAPEN(3-0) MAP Enable
If = 1h: All configuration registers are accessible.
If = 0h: Only configuration registers with indexes C0-CFh, FEh and FFh
are accessible.

Use on 6x86MX and
MII only.

16 Cyrix Application Note 107 - MII SMM DESIGN GUIDE

Configuration Control Registers and SMM

CCR4 Register
INDEX = E8h

7 6 5 4 3 2 1 0

CPUID DTE_EN MEM_BYP IORT2 IORT1 IORT

CCR4 Bit Definitions

BIT
POSITION

NAME DESCRIPTION NOTES

0 - 2 IORT(2-0) I/O Recovery Time
Specifies the minimum number of bus clocks between I/O accesses:
0h = 1 clock delay
1h = 2 clock delay
2h = 4 clock delay
3h = 8 clock delay
4h = 16 clock delay
5h = 32 clock delay (default value after RESET)
6h = 64 clock delay
7h = no delay

3 MEM_BYP Memory Bypass
If = 1: Memory read bypassing enabled.
If = 0: Memory read bypassing disabled.

Used in 5x86 only

4 DTE_EN Enabled Directory Table Entry Cache
If = 1: Enable Directory Table Entry Cache
If = 0: Disable Directory Table Entry Cache

Not used by
6x86MX or MII

7 CPUID Enable CPUID instruction.
If = 1: the ID bit in the EFLAGS register can be modified and execution of the
CPUID instruction occurs as documented in section 6.3.
If = 0: the ID bit in the EFLAGS register can not be modified and execution of
the CPUID instruction causes an invalid opcode exception.

Used in 6x86,
6x86MX and MII.

Cyrix Application Note 107 - MII SMM DESIGN GUIDE 17

Configuration Control Registers and SMM

CCR5 Register
INDEX = E9h

7 6 5 4 3 2 1 0

ARREN LBR1 WT_ALLOC

CCR5 Bit Definitions

BIT
POSITION

NAME DESCRIPTION NOTES

0 WT_ALLOC Write-Through Allocate
If = 1: New cache lines are allocated for read and write misses.
If = 0: New cache lines are allocated only for read misses.

Used on 6x86, 6x86MX
and MII.

4 LBR1 Local Bus Region 1
If = 1: LBA# pin is asserted for all accesses to 640 KByte to 1
MByte address region.
If = 0: LBA# pin is ignored during accesses to 640 KByte to 1
MByte address region

Used on 6x86 only.

5 ARREN Enable ARR Registers
If = 1: Enables all ARR registers.
If = 0: Disables the ARR registers. If SM3 is set, ARR3 is enabled
regardless of the setting of ARREN.

Used on 6x86, 6x86MX
and MII.

18 Cyrix Application Note 107 - MII SMM DESIGN GUIDE

Configuration Control Registers and SMM

CCR6 Register
INDEX = EAh

7 6 5 4 3 2 1 0

N WP_ARR3 SMM_MODE

CCR6 Bit Definitions

BIT
POSITION

NAME DESCRIPTION NOTES

6 N Nested SMI Enable bit: If operating in Cyrix enhanced SMM mode and:
If = 1: Enables nesting of SMI’s
If = 0: Disable nesting of SMI’s.

This bit is automatically CLEARED upon entry to every SMM routine and is SET
upon every RSM. Therefore enabling/disabling of nested SMI can only be done
while operating in SMM mode.

Used on
6x86MX and
MII only.

1 WP_ARR3 If = 1: Memory region defined by ARR3 is write-protected when operating out-
side of SMM mode.
If = 0: Disable write protection for memory region defined by ARR3.
Reset State = 0.

Used on
6x86MX and
MII only.

0 SMM_MODE If = 1: Enables Cyrix Enhanced SMM mode.
If = 0: Disables Cyrix Enhanced SMM mode.

Used on
6x86MX and
MII only.

Cyrix Application Note 107 - MII SMM DESIGN GUIDE 19

Overall Operation

3. System Management Mode

System Management Mode (SMM) is a distinct CPU mode that differs from normal CPU x86 operating modes
(real mode, V86 mode, and protected mode) and is most often used to perform power management.

The 6x86MX and MII are backward compatible with the SL-compatible SMM found on previous Cyrix micro-
processors. On the 6x86MX and MII, SMM has been enhanced to optimize software emulation of multimedia
and I/O peripherals.

The Cyrix Enhanced SMM provides new features:

• Cacheability of SMM memory
• Support for nesting of multiple SMIs
• Improved SMM entry and exit time.

3.1 Overall Operation

The overall operation of a SMM operation is shown on the next page. SMM is entered using the System Manage-
ment Interrupt (SMI) pin. SMI interrupts have higher priority than any other interrupt, including NMI interrupts.
SMM can also be entered using software by using an SMINT instruction.

Upon entering SMM mode, portions of the CPU state are automatically saved in the SMM address memory
space header. The CPU enters real mode and begins executing the SMI service routine in SMM address space.

Execution of a SMM routine starts at the base address in SMM memory address space. Since the SMM routines
reside in SMM memory space, SMM routines can be made totally transparent to all software, including
protected-mode operating systems.

20 Cyrix Application Note 107 - MII SMM DESIGN GUIDE

SMM Memory Space

SMI Execution Flow Diagram

3.2 SMM Memory Space

SMM memory must reside within the bounds of physical memory and not overlap
with system memory. SMM memory space, as illustrated on the next page, is
defined by setting the SM3 bit in CCR1 and specifying the base address and size of
the SMM memory space in the ARR3 register.

1713703

SMI# Sampled Active or

CPU State Stored in SMM

CPU Enters Real Mode

Execution Begins at SMM

RSM Instruction Restores CPU

Normal Execution Resumes

Address Space Header

Address Space Base Address

State Using Header Information

SMINT Instruction Executed

Cyrix Application Note 107 - MII SMM DESIGN GUIDE 21

SMM Memory Space

The base address must be a multiple of the SMM memory space size. For example, a 32 KByte SMM memory
space must be located on a 32 KByte address boundary. The memory space size can range from 4 KBytes to
4 GBytes. SMM accesses ignore the state of the A20M# input pin and drive the A20 address bit to the unmasked
value.

SMM memory space can be accessed while in normal mode by setting the SMAC bit in the CCR1 register. This
feature may be used to initialize SMM memory space.

System Management Memory Space

FFFF FFFFh

Physical Memory

Physical

0000 0000h

Potential

Defined

0000 0000h

FFFF FFFFh

1747600
Non-SMM Mode

SMIACT# Active
4 KBytes to

SMM Mode

4 GBytes

Memory Space SMM Address
Space

SMM
Address
Space

4 GBytes

SMIACT# Negated

22 Cyrix Application Note 107 - MII SMM DESIGN GUIDE

SMM Memory Space Header

3.3 SMM Memory Space Header

The SMM Memory Space Header (shown in the figure below) is used to store the CPU state prior to starting an
SMM routine. The fields in this header are described on the next page. After the SMM routine has completed,
the header information is used to restore the original CPU state. The location of the SMM header is determined
by the SMM Header Address Register (SMHR).

SMM Memory Space Header

DR7

EFLAGS

CR0

031
SMHR

-4h

-8h

-Ch

-10h

-14h

-18h

-1Ch

-20h

-24h

-28h

P

Current IP

Next IP

CS Selector

CS Descriptor (Bits 63-32)

CS Descriptor (Bits 31-0)

ESI or EDI

I

1747700

31 16 15 0

31 2 1 0

-2Ch

-30h

Register

3

S

I/O Write AddressI/O Write Data Size

I/O Write Data

16 15

H

4

Reserved

Reserved

2122 1315

CN ISCPL

Cyrix Application Note 107 - MII SMM DESIGN GUIDE 23

SMM Memory Space Header

SMM Memory Space Header

NAME DESCRIPTION SIZE

DR7 The contents of Debug Register 7. 4 Bytes

EFLAGS The contents of Extended Flags Register. 4 Bytes

CR0 The contents of Control Register 0. 4 Bytes

Current IP The address of the instruction executed prior to servicing SMI interrupt. 4 Bytes

Next IP The address of the next instruction that will be executed after exiting SMM mode. 4 Bytes

CS Selector Code segment register selector for the current code segment. 2 Bytes

CS Descriptor Code segment register descriptor for the current code segment. 8 Bytes

CPL Current privilege level for current code segment. 2 Bits

N Nested SMI Indicator
If N = 1: current SMM is being serviced from within SMM mode.
If N = 0: current SMM is not being serviced from within SMM mode.

1 Bit

IS Internal SMI Indicator
If IS =1: current SMM is the result of an internal SMI event.
If IS =0: current SMM is the result of an external SMI event.

1 Bit

H SMI during CPU HALT state indicator
If H = 1: the processor was in a halt or shutdown prior to servicing the SMM inter-
rupt.

1 Bit

S Software SMM Entry Indicator.
If S = 1: current SMM is the result of an SMINT instruction.
If S = 0: current SMM is not the result of an SMINT instruction.

 1 Bit

P REP INSx/OUTSx Indicator
If P = 1: current instruction has a REP prefix.
If P = 0: current instruction does not have a REP prefix.

 1 Bit

I IN, INSx, OUT, or OUTSx Indicator
If I = 1: if current instruction performed is an I/O WRITE.
If I = 0: if current instruction performed is an I/O READ.

1 Bit

C Code Segment writable Indicator
If C = 1: the current code segment is writable.
If C = 0: the current code segment is not writable.

1 Bit

I/O Data Size Indicates size of data for the trapped I/O write:
 01h = byte
 03h = word
 0Fh = dword

2 Bytes

I/O Write Address I/O Write Address
Processor port used for the trapped I/O write.

 2 Bytes

I/O Write Data I/O Write Data
Data associated with the trapped I/O write.

4 Bytes

ESI or EDI Restored ESI or EDI value. Used when it is necessary to repeat a REP OUTSx or
REP INSx instruction when one of the I/O cycles caused an SMI# trap.

4 Bytes

Note: INSx = INS, INSB, INSW or INSD instruction.
Note: OUTSx = OUTS, OUTSB, OUTSW and OUTSD instruction.

24 Cyrix Application Note 107 - MII SMM DESIGN GUIDE

SMM Memory Space Header

3.3.1 Current and Next IP Pointers

Included in the header information are the Current and Next IP pointers. The Cur-
rent IP points to the instruction executing when the SMI was detected and the Next
IP points to the instruction that will be executed after exiting SMM.

Normally after an SMM routine is completed, the instruction flow begins at the
Next IP address. However, if an I/O trap has occurred, instruction flow should
return to the Current IP to complete the I/O instruction.

If SMM has been entered due to an I/O trap for a REP INSx or REP OUTSx
instruction, the Current IP and Next IP fields contain the same address.

If an entry into SMM mode was caused by an I/O trap, the port address, data size
and data value associated with that I/O operation are stored in the SMM header.
Note that these values are only valid for I/O operations. The I/O data is not restored
within the CPU when executing a RSM instruction.

Under these circumstances the I and P bits, as well as ESI/EDI field, contain valid
information.

Also saved are the contents of debug register 7 (DR7), the extended flags register
(EFLAGS), and control register 0 (CR0).

If the S bit in the SMM header is set, the SMM entry resulted from an SMINT
instruction.

3.3.2 SMM Header Address Pointer

The SMM Header Address Pointer Register (SMHR) (shown on the next page) con-
tains the 32-bit SMM Header pointer. The SMHR address is dword aligned, so the
two least significant bits are ignored.

The SMHR valid bit (bit 0) is cleared with every write to ARR3 and during a hard-
ware RESET. Upon entry to SMM, the SMHR valid bit is examined before the CPU
state is saved into the SMM memory space header. When the valid bit is reset, the
SMM header pointer will be calculated (ARR3 base field + ARR3 size field) and
loaded into the SMHR and the valid bit will be set.

If the desired SMM header location is different than the top of SMM memory
space, as may be the case when nesting SMI’s, then the SMHR register must be
loaded with a new value and valid bit from within the SMI routine before nesting is
enabled.

Cyrix Application Note 107 - MII SMM DESIGN GUIDE 25

SMM Memory Space Header

The SMM memory space header can be relocated using the new RDSHR and
WRSHR instructions.

SMHR Register

31 2 1 0

SMHR Res V

SMHR Register Bits

BIT
POSITION

DESCRPTION

31 - 2 SMHR header pointer address.

1 Reserved

0 Valid Bit

26 Cyrix Application Note 107 - MII SMM DESIGN GUIDE

SMM Instructions

3.4 SMM Instructions

After entering the SMI service routine, the MOV, SVDC, SVLDT and SVTS instructions, shown in the table
below, can be used to save the complete CPU state information. If the SMI service routine modifies more than
what is automatically saved or forces the CPU to power down, the complete CPU state information must be
saved. Since the CPU is a static device, its internal state is retained when the input clock is stopped. Therefore,
an entire CPU state save is not necessary prior to stopping the input clock.

SMM Instruction Set

INSTRUCTION OPCODE FORMAT DESCRIPTION

 SVDC 0F 78 [mod sreg3 r/m] SVDC mem80, sreg3 Save Segment Register and Descriptor
Saves reg (DS, ES, FS, GS, or SS) to mem80.

 RSDC 0F 79 [mod sreg3 r/m] RSDC sreg3, mem80 Restore Segment Register and Descriptor
Restores reg (DS, ES, FS, GS, or SS) from mem80.
Use RSM to restore CS.
Note: Processing “RSDC CS, Mem80” will produce an
exception.

 SVLDT 0F 7A [mod 000 r/m] SVLDT mem80 Save LDTR and Descriptor
Saves Local Descriptor Table (LDTR) to mem80.

 RSLDT 0F 7B [mod 000 r/m] RSLDT mem80 Restore LDTR and Descriptor
Restores Local Descriptor Table (LDTR) from mem80.

 SVTS 0F 7C [mod 000 r/m] SVTS mem80 Save TSR and Descriptor
Saves Task State Register (TSR) to mem80.

 RSTS 0F 7D [mod 000 r/m] RSTS mem80 Restore TSR and Descriptor
Restores Task State Register (TSR) from mem80.

 SMINT 0F 38 SMINT Software SMM Entry
CPU enters SMM mode. CPU state information is saved in
SMM memory space header and execution begins at SMM
base address.

 RSM 0F AA RSM Resume Normal Mode
Exits SMM mode. The CPU state is restored using the
SMM memory space header and execution resumes at
interrupted point.

 RDSHR 0F 36 RDSHR ereg/mem32 Read SMM Header Pointer Register
Saves SMM header pointer to extended register or memory.

 WRSHR 0F 37 WRSHR ereg/mem32 Write SMM Header Pointer Register
Load SMM header pointer register from extended register
or memory.

Note: mem32 = 32-bit memory location
 mem80 = 80-bit memory location

Cyrix Application Note 107 - MII SMM DESIGN GUIDE 27

SMM Instructions

The SMM instructions, (except the SMINT instruction) can be executed only if:

1. ARR3 Size > 0
2. Current Privilege Level =0
3. SMAC bit is set or the CPU is executing an SMI service routine.
4. USE_SMI (CCR1- bit 1) = 1
5. SM3 (CCR1-bit 7) = 1

If the above conditions are not met and an attempt is made to execute an SVDC,
RSDC, SVLDT, RSLDT, SVTS, RSTS, SMINT, RSM, RDSHR, or WDSHR
instruction, an invalid opcode exception is generated. These instructions can be exe-
cuted outside of defined SMM space provided the above conditions are met.

The SMINT instruction allows software entry into SMM. The SVDC, RSDC,
SVLDT, RSLDT, SVTS and RSTS instructions save or restore 80 bits of data,
allowing the saved values to include the hidden portion of the register contents.

The WRSHR instruction loads the contents of either a 32-bit memory operand or a
32-bit register operand into the SMHR pointer register based on the value of the
mod r/m instruction byte. Likewise the RDSHR instruction stores the contents of
the SMHR pointer register to either a 32 bit memory operand or a 32 bit register
operand based on the value of the mod r/m instruction byte.

28 Cyrix Application Note 107 - MII SMM DESIGN GUIDE

SMM Operation

3.5 SMM Operation

This section describes SMM operations. Detailed information and programming
follow in later sections.

3.5.1 Entering SMM

Entering SMM requires the assertion of the SMI# pin or execution of an SMINT
instruction. SMI interrupts have higher priority than any interrupt including NMI
interrupts.

For the SMI# or SMINT instruction to be recognized, the configuration register bits
must be set as shown in the table below.

Upon entry into SMM, after the SMM header has been saved, the CR0, EFLAGS,
and DR7 registers are set to their reset values. The Code Segment (CS) register is
loaded with the base, as defined by the ARR3 register, and a limit of 4 GBytes. The
SMI service routine then begins execution at the SMM base address in real mode.

3.5.2 Saving the CPU State

The programmer must save the value of any registers that may be changed by the
SMI service routine. For data accesses immediately after entering the SMI service
routine, the programmer must use CS as a segment override. I/O port access is pos-
sible during the routine but care must be taken to save registers modified by the I/O

Requirements for Recognizing SMI# and SMINT

REGISTER (BIT) SMI# SMINT

SMI CCR1 (1) 1 1

SMAC CCR1 (2) 0 1

ARR3 SIZE (3-0) > 0 > 0

SM3 CCR1 (7) 1 1

Cyrix Application Note 107 - MII SMM DESIGN GUIDE 29

SMM Operation

instructions. Before using a segment register, the register and the register’s descriptor
cache contents should be saved using the SVDC instruction. While executing in the
SMM space, execution flow can transfer to normal memory locations.

3.5.2.1 Program Execution

Hardware interrupts, (INTRs and NMIs), may be serviced during a SMI service
routine. If interrupts are to be serviced while executing in the SMM memory space,
the SMM memory space must be within the 0 to 1 MByte address range to guaran-
tee proper return to the SMI service routine after handling the interrupt.

INTRs are automatically disabled when entering SMM since the IF flag is set to its
reset value. Once in SMM, the INTR can be enabled by setting the IF flag. NMI is
also automatically disabled when entering SMM. Once in SMM, NMI can be
enabled by setting NMI_EN in CCR3. If NMI is not enabled, the CPU latches one
NMI event and services the interrupt after NMI has been enabled or after exiting
SMM through the RSM instruction.

Within the SMI service routine, protected mode may be entered and exited as
required, and real or protected mode device drivers may be called.

3.5.2.2 Exiting SMM

To exit the SMI service routine, a Resume (RSM) instruction, rather than an IRET,
is executed. The RSM instruction causes the MII processor to restore the CPU state
using the SMM header information and resume execution at the interrupted point. If
the full CPU state was saved by the programmer, the stored values should be
reloaded prior to executing the RSM instruction using the MOV, RSDC, RSLDT
and RSTS instructions.

When the RSM instruction is executed at the end of the SMI handler, the EIP
instruction pointer is automatically read from the NEXT IP field in the SMM
header.

When restarting I/O instructions, the value of NEXT IP may need modification.
Before executing the RSM instruction, use a MOV instruction to move the
CURRENT IP value to the NEXT IP location as the CURRENT IP value is valid if

30 Cyrix Application Note 107 - MII SMM DESIGN GUIDE

SMM Operation

an I/O instruction was executing when the SMI interrupt occurred. Execution is
then returned to the I/O instruction rather than to the instruction after the I/O
instruction.

A set H bit in the SMM header indicates that a HLT instruction was being executed
when the SMI occurred. To resume execution of the HLT instruction, the NEXT IP
field in the SMM header should be decremented by one before executing RSM
instruction.

Cyrix Application Note 107 - MII SMM DESIGN GUIDE 31

SL and Cyrix SMM Operating Modes

3.6 SL and Cyrix SMM Operating Modes

There are two SMM modes, SL-compatible mode (default) and Cyrix SMM mode.

3.6.1 SL-Compatible SMM Mode

While in SL-compatible mode, SMM memory space accesses can only occur dur-
ing an SMI service routine. While executing an SMI service routine SMIACT#
remains asserted regardless of the address being accessed. This includes the time
when the SMI service routine accesses memory outside the defined SMM memory
space.

SMM memory caching is not supported in SL-compatible SMM mode. If a cache
inquiry cycle occurs while SMIACT# is active, any resulting write-back cycle is
issued with SMIACT# asserted. This occurs even though the write-back cycle is
intended for normal memory rather than SMM memory. To avoid this problem it is
recommended that the internal caches be flushed prior to servicing an SMI event.
Of course in write-back mode this could add an indeterminate delay to servicing of
SMI.

An interrupt on the SMI# input pin has higher priority than the NMI input. The
SMI# input pin is falling edge sensitive and is sampled on every rising edge of the
processor input clock.

Asserting SMI# forces the processor to save the CPU state to memory defined by
SMHR register and to begin execution of the SMI service routine at the beginning
of the defined SMM memory space. After the processor internally acknowledges
the SMI# interrupt, the SMIACT# output is driven low for the duration of the inter-
rupt service routine.

When the RSM instruction is executed, the CPU negates the SMIACT# pin after the
last bus cycle to SMM memory. While executing the SMM service routine, one
additional SMI# can be latched for service after resuming from the first SMI.

During RESET, the USE_SMI bit in CCR1 is cleared. While USE_SMI is zero,
SMIACT# is always negated. SMIACT# does not float during bus hold states.

32 Cyrix Application Note 107 - MII SMM DESIGN GUIDE

SL and Cyrix SMM Operating Modes

3.6.2 Cyrix Enhanced SMM Mode

The Cyrix SMM Mode is enabled when bit 0 in the CCR6 (SMM_MODE) is set.
Only in Cyrix enhanced SMM mode can:

• SMM memory be cached
• SMM interrupts be nested

3.6.2.1 Pin Interface

The SMI# and SMIACT# pins behave differently in Cyrix Enhanced SMM mode.

In Cyrix Enhanced SMM mode SMI# is level sensitive. As a level sensitive signal
software can process SMI interrupts until all sources in the chipset have been
cleared.

While operating in this mode, SMIACT# output is not used to indicate that the CPU
is operating in SMM mode. This is left to the SMM driver.

In Cyrix enhanced SMM, SMIACT# is asserted for every SMM memory bus cycle
and is de-asserted for every non-SMM bus cycle. In this mode the SMIACT# pin
meets the timing of D/C# and W/R#.

During RESET, the USE_SMI bit in CCR1 is cleared. While USE_SMI is zero,
SMIACT# is always negated. SMIACT# does float during bus hold states.

3.6.2.2 Cacheability of SMM Space

In SL-compatible SMM mode, caching is not available, but in Cyrix SMM mode,
both code and data caching is supported. In order to cache SMM data and avoid
coherency issues the processor assumes no overlap of main memory with SMM
memory. This implies that a section of main memory must be dedicated for SMM.

The on-chip cache sets a special ID bit in the cache tag block for each line that con-
tains SMM code data. This ID bit is then used by the bus controller to regulate
assertion of the SMIACT# pin for write-back of any SMM data.

Cyrix Application Note 107 - MII SMM DESIGN GUIDE 33

SL and Cyrix SMM Operating Modes

3.6.2.3 Nested SMI

Only in the Cyrix Enhanced SMM mode is nesting of SMI interrupts supported.
This is important to allow high priority events such as audio emulation to interrupt
lower priority SMI code. In the case of nesting, it is up to the SMM driver to deter-
mine which SMM event is being serviced, which to prioritize, and perform all
SMM interrupt control functions.

Software enables and disables SMI interrupts while in SMM mode by setting and
clearing the nest-enable bit (N bit, bit 6 of CCR6). By default the CPU automati-
cally disables SMI interrupts (clears the N bit) on entry to SMM mode, and re-
enables them (sets the N bit) when exiting SMM mode (i.e., RSM). The SMI han-
dler can optionally enable nesting to allow higher priority SMI interrupts to occur
while handling the current SMI event.

The SMI handler is responsible for managing the SMHR pointer register when pro-
cessing nested SMI interrupts. Before nested SMI’s can be serviced the current
SMM handler must save the contents of the SMHR pointer register and then load a
new value into the SMHR register for use by a subsequent nested SMI event.

Prior to execution of a RSM instruction the contents of the old SMHR pointer regis-
ter must be restored for proper operation to continue. Prior to restoring the contents
of old SMHR pointer register one should disable additional SMI’s. This should be
done so that the CPU will not inadvertently receive and service an SMI event after
the old SMHR contents have been restored but before the RSM instruction is exe-
cuted.

34 Cyrix Application Note 107 - MII SMM DESIGN GUIDE

Initializing SMM

4. SMM Programming Details

This section provides detailed SMM information and programming examples.

4.1 Initializing SMM

Many systems have memory controllers that aid in the initialization of SMM mem-
ory. Cyrix SMM features allow the initialization of SMM memory without external
hardware memory remapping.

When loading SMM memory with an SMM interrupt handler it is important that the
SMI# does not occur before the handler is loaded.

To load SMM memory with a program it is first necessary to enable SMM memory
without enabling the SMI pins. This is done by setting SMAC = 1 (CCR1-bit 2) and
loading SMAR with the SMM address region. Setting USE_SMI = 1 (CCR1-bit 1)
will then map the SMM memory region over main memory. The SMM region is
physically mapped by the assertion of SMIACT# to allow memory access within
the SMM region. A REP MOV instruction can then be used to transfer the program
to SMM memory. After initializing SMM memory, negate SMAC to activate poten-
tial SMI#s.

SMM space can be located anywhere in the 4-GByte address range. However, if the
location of SMM space is above 1 MByte, the value in CS will truncate the segment
above 16 bits when stored from the stack. This would prohibit calls or interrupts
from real mode without restoring the 32-bit features of the 486 because of the
incorrect return address on the stack.

Cyrix Application Note 107 - MII SMM DESIGN GUIDE 35

Initializing SMM

; load SMM memory from system memory (Cyrix SMM mode only)

include SMIMAC.INC
SMMBASE = 68000h
SMMSIZE = 4000h ;SMM SIZE is 16K
SMI = 1 shl 1
SMAC = 1 shl 2
MMAC = 1 shl 3
;interrupts should be disabled here

mov al, 0cdh ;index SMAR, SMM base<A31-A24>
out 22h, al ;select
mov al, 00h ;set high SMM address to 00
out 23h, al ;write value
mov al, 0ceh ;index SMAR,SMM base<A23-A16>
out 22h, al ;select
mov al, 06h ;set mid SMM address to 06h
out 23h, al ;write value
mov al, 0cfh ;SMAR,SMM base<A15-A12> & SIZE
out 22h, al ;select
mov al, 083h ;set SMM lower addr. 80h, 16K
out 23h, al ;write value
mov al, 0c1h ;index to CCR1
out 22h, al ;select CCR1 register
in al, 23h ;read current CCR1 value
mov ah, al ;save it
mov al, 0c1h ;index to CCR1
out 22h, al ;select CCR1 register
mov al, ah
or al, SMI or SMAC; set SMI and SMAC
out 23h, al ;new value now in CCR1, SMM now

;mapped in
mov ax, SMMBASE shr 4
mov es, ax
mov edi, 0 ;es:di = start of the SMM area
mov esi, offset SMI_ROUTINE ;start of copy of SMM
mov ax, seg SMI_ROUTINE ;routine in main memory
mov ds, ax
mov ecx, (SMI_ROUTINE_LENGTH+3)/4 ;calc. length

; this line copies the SMM routine from DS:ESI to ES:EDI
rep
movs dword ptr es:[edi],dword ptr ds:[esi]

; now disable SMI by clearing SMAC and SMI
mov al, 0c1h ;index to CCR1
out 22h, al ;select CCR1 register
mov al, ah ;AH is still old value
and al, NOT SMAC ;disable SMAC, enable SMI#
out 23h, al ;write new value to CCR1

36 Cyrix Application Note 107 - MII SMM DESIGN GUIDE

SMM Handler Entry State

4.2 SMM Handler Entry State

Before entering an SMM routine, certain portions of the CPU state are saved at the top of SMM memory. To opti-
mize the speed of SMM entry and exit, the CPU saves the minimum CPU state information necessary for an SMI
interrupt handler to execute and return to the interrupted context.

The information is saved to the relocatable SMM header at the top of the defined SMM region (starting at SMM
base + size - 30h) as shown in the SMM Memory Space Header Figure (page 22). Only the CS, EIP, EFLAGS,
CR0, and DR7 are saved upon entry to SMM. Data accesses must use a CS segment override to save other regis-
ters and access data in SMM memory. To use any other segment register, the SMM programmer must first save
the contents using the SVDC instruction for segment registers or MOV operations for general purpose registers
(See Cyrix SMM instruction description on Page 26). It is possible to save all the CPU registers as needed. See
Section 4.3 (Page 2-40) for an example of saving and restoring the entire CPU state.

Upon execution of a RSM instruction, control is returned to NEXT_IP. The value of NEXT_IP may need to be
modified for restarting I/O instructions. This modification is a simple move of the CURRENT_IP value to the
NEXT_IP location. Execution is then returned to the I/O instruction, rather than to the instruction after the I/O
instruction.

Cyrix Application Note 107 - MII SMM DESIGN GUIDE 37

SMM Handler Entry State

This CURRENT_IP value is valid only if the instruction executing when the SMI occurred was an I/O
instruction. The table below lists the SMM header information needed to restart an I/O instruction. The restarting
of I/O instructions may also require modifications to the ESI, ECX and EDI depending on the instruction.

The EFLAGS, CR0 and DR7 registers are set to their reset values upon entry to the SMI handler. Resetting these
registers has implications for setting breakpoints using the debug registers. Breakpoints in SMM address space
cannot be set prior to the SMI interrupt using debug registers. A debugger will only be able to set a code break-

 I/O Trap Information

BIT DESCRIPTION SIZE

H HALT Indicator
If = 1: The CPU was in a halt or shut down prior to serving the SMM interrupt.
If = 0: The CPU was not in a halt or shut down prior to serving the SMM interrupt.

1 bit

S Software SMM Entry Indicator
S=1, if current SMM is the result of an SMINT instruction.
S=0, if current SMM is not the result of an SMINT instruction.

1 bit

P REP INSx/OUTSx Indicator
If = 1: Current instruction does not have a REP prefix
If = 0: Current instruction has a REP prefix

1 bit

I IN, INSx, OUT, or OUTSx Indicator
If = 1: Current instruction performed an I/O WRITE
If = 0: Current instruction performed an I/O READ

1 bit

I/O Data Size Indicates size of data for the trapped I/O write:
 01h = byte
 03h = word
 0Fh = dword

2 Bytes

I/O Write
Address

I/O Write Address
Processor port used for the trapped I/O write.

 2 Bytes

I/O Write Data I/O Write Data
Data associated with the trapped I/O write.

4 Bytes

ESI or EDI Restored ESI or EDI value. Used when it is necessary to repeat a REP OUTSx or
REP INSx instruction when one of the I/O cycles caused an SMI# trap.

4 Bytes

38 Cyrix Application Note 107 - MII SMM DESIGN GUIDE

SMM Handler Entry State

point using INT 3 outside of the SMM handler. See Section 4.10 (Page 2-50) for restrictions on debugging
SMM code. Once the SMI has occurred and the debugger has control in SMM space, the debug registers can
be used for the remainder of the SMI handler execution.

If the S bit in the SMM header is set, the SMM entry resulted from an SMINT instruction.

Upon SMM entry, I/O trap information is stored in the SMM memory space header. This information allows
restarting of I/O instructions, as well as the easy emulation of I/O functions by the SMM handler. This data is
valid only if the instruction executing when the SMI occurred was an I/O instruction. On DX2/DX4 devices,
only I/O writes generate valid I/O fields to allow I/O restart. On 5x86 and 6x86 devices, both I/O reads and I/O
write traps result in valid I/O fields and current P and I field values.

If the H bit in the SMM header is set, a HLT instruction was being executed when the SMI occurred. To resume
execution of the HLT instruction, the field NEXT-IP in the SMM header should be decremented by one before
executing RSM instruction.

The values found in the I/O trap information fields are specified below for all cases.

Valid I/O Trap Cases

VALID CASES P I
I/O WRITE
DATA SIZE

I/O WRITE

ADDRESS
I/O WRITE DATA

ESI OR
EDI

Not an I/O instruction x x x x x x

IN al 0 0 01h I/O Address xxxxxxxx EDI

IN ax 0 0 03h I/O Address xxxxxxxx EDI

IN eax 0 0 0Fh I/O Address xxxxxxxx EDI

INSB 0 0 01h I/O Address xxxxxxxx EDI

INSW 0 0 03h I/O Address xxxxxxxx EDI

INSD 0 0 0Fh I/O Address xxxxxxxx EDI

REP INSB 1 0 01h I/O Address xxxxxxxx EDI

REP INSW 1 0 03h I/O Address xxxxxxxx EDI

REP INSD 1 0 0Fh I/O Address xxxxxxxx EDI

OUT al 0 1 01h I/O Address xxxxxxdd ESI

OUT ax 0 1 03h I/O Address xxxxdddd ESI

OUT eax 0 1 0Fh I/O Address dddddddd ESI

OUTSB 0 1 01h I/O Address xxxxxxdd ESI

OUTSW 0 1 03h I/O Address xxxxdddd ESI

Cyrix Application Note 107 - MII SMM DESIGN GUIDE 39

SMM Handler Entry State

Upon SMM entry, the CPU enters the state described in table below.

OUTSD 0 1 0Fh I/O Address dddddddd ESI

REP OUTSB 1 1 01h I/O Address xxxxxxdd ESI

REP OUTSW 1 1 03h I/O Address xxxxdddd ESI

REP OUTSD 1 1 0Fh I/O Address dddddddd ESI

Note: x = invalid
Note: For DX2/DX4 devices, the I/O Data size, I/O address, I/O address, I/O data fields are not valid for IN
instructions. The P, I and ESI or EDI fields are valid to allow I/O restart.

SMM Entry State

REGISTER
REGISTER

CONTENT
COMMENTS

CS SMM base
specified by SMAR

CS limit is set to 4 GBytes
(64 KBytes for a DX2/DX4 devices).

EIP 0000 0000h Begins execution at the base of SMM memory

EFLAGS 0000 0002h Reset State

CR0 0000 0010h DX2/DX4 only:
EM is not modified.

6000 0010h Other than DX2/DX4:
NW will not be modified if LOCK_NW is set.

DR7 0000 0400h Traps disabled

Valid I/O Trap Cases (Continued)

40 Cyrix Application Note 107 - MII SMM DESIGN GUIDE

Maintaining the CPU State

4.3 Maintaining the CPU State

The following registers are not automatically saved on SMM entry or restored on SMM exit.

General Purpose Registers: EAX, EBX, ECX, EDX
Pointer and Index Registers: EBP, ESI, EDI, ESP
Selector/Segment Registers: DS, ES, SS, FS, GS
Descriptor Table Registers: GDTR, IDTR, LDTR, TR
Control Registers: CR2, CR3
Debug Registers: DR0, DR1, DR2, DR3, DR6
Configuration Registers: all valid configuration registers
FPU Registers: Entire FPU state.

If the SMM routine will use any of these registers, their contents must be saved after entry into the SMM rou-
tine and then restored prior to exit from SMM. Additionally, if power is to be removed from the CPU and the
system is required to return to the same system state after power is reapplied, then the entire CPU state must be
saved to a non-volatile memory subsystem such as a hard disk.

Cyrix Application Note 107 - MII SMM DESIGN GUIDE 41

Maintaining the CPU State

4.3.1 Maintaining Common CPU Registers

The following is an example of the instructions needed to save the entire CPU state and restore it. This code
sequence will work from real mode if the conditions needed to execute Cyrix SMM instructions are met (see Sec-
tion 2.3). Configuration registers would also need to be saved if power is to be removed.

; Save and Restore the common CPU registers.
; The information automatically saved in the
; header on entry to SMM is not saved again.
include SMIMAC.INC

.386P ;required for SMIMAC.INC macro
mov cs:save_eax,eax
mov cs:save_ebx,ebx
mov cs:save_ecx,ecx
mov cs:save_edx,edx
mov cs:save_esi,esi
mov cs:save_edi,edi
mov cs:save_ebp,ebp
mov cs:save_esp,esp
svdc cs:,save_ds,ds
svdc cs:,save_es,es
svdc cs:,save_fs,fs
svdc cs:,save_gs,gs
svdc cs:,save_ss,ss
svldt cs:,save_ldt ;sldt is not valid in real mode
svts cs:,save_tsr ;str is not valid in real mode
db 66h ;32bit version saves everything
sgdt fword ptr cs:[save_gdt]
db 66h ;32bit version saves everything
sidt fword ptr cs:[save_idt]

; at the end of the SMM routine the following code
; sequence will reload the entire CPU state

mov eax,cs:save_eax
mov ebx,cs:save_ebx
mov ecx,cs:save_ecx
mov edx,cs:save_edx
mov esi,cs:save_esi
mov edi,cs:save_edi
mov ebp,cs:save_ebp
mov esp,cs:save_esp
rsdc ds,cs:,save_ds
rsdc es,cs:,save_es
rsdc fs,cs:,save_fs
rsdc gs,cs:,save_gs

42 Cyrix Application Note 107 - MII SMM DESIGN GUIDE

Maintaining the CPU State

rsdc ss,cs:,save_ss
rsldt cs:,save_ldt
rsts cs:,save_tsr
db 66h
lgdt fword ptr cs:[save_gdt]
db 66h
lidt fword ptr cs:[save_idt]

; the data space so save the CPU state is in
; the Code Segment for this example
save_ds dt ?
save_es dt ?
save_fs dt ?
save_gs dt ?
save_ss dt ?
save_ldt dt ?
save_tsr dt ?
save_eax dd ?
save_ebx dd ?
save_ecx dd ?
save_edx dd ?
save_esi dd ?
save_edi dd ?
save_ebp dd ?
save_esp dd ?
save_gdt df ?
save_idt df ?

Cyrix Application Note 107 - MII SMM DESIGN GUIDE 43

Maintaining the CPU State

4.3.2 Maintaining Control Registers

CR0 is maintained in the SMM header. CR2 and CR3 should be saved if the SMM routine will be entering pro-
tected mode and enabling paging. Most SMM routines will not need to enable paging. However, if the CPU will
be powered off, these registers should be saved.

4.3.3 Maintaining Debug Registers

DR7 is maintained in the SMM Header. Since DR7 is automatically initialized to the reset state on entry to
SMM, the Global Disable bit (DR7 bit 13) will be cleared. This allows the SMM routine to access all of the
Debug Registers. Returning from the SMM handler will reload DR7 with its previous value. In most cases, SMM
routines will not make use of the Debug Registers and they will need to be saved only if the CPU needs to be
powered down.

4.3.4 Maintaining Configuration Control Registers

The SMM routine should be written so that it maintains the Configuration Control Registers in the same state as
they were initialized by the BIOS at power-up.

4.3.5 Maintaining FPU State

If power will be removed from the CPU or if the SMM routine will execute FPU instructions, then the FPU state
should be maintained for the application running before SMM was entered. If the FPU state is to be saved and
restored from within SMM, there are certain guidelines that must be followed to make SMM completely trans-
parent to the application program.

The complete state of the FPU can be saved and restored with the FNSAVE and FNRSTOR instructions.
FNSAVE is used instead of the FSAVE because FSAVE will wait for the FPU to check for existing error condi-
tions before storing the FPU state. If there is an unmasked FPU exception condition pending, the FSAVE instruc-
tion will wait until the exception condition is serviced. To maintain transparency for the application program, the
SMM routine should not service this exception. If the FPU state is restored with the FNRSTOR instruction
before returning to normal mode, the application program can correctly service the exception. Any FPU instruc-
tions can be executed within SMM once the FPU state has been saved.

44 Cyrix Application Note 107 - MII SMM DESIGN GUIDE

Maintaining the CPU State

The information saved with the FSAVE instruction varies depending on the operating mode of the CPU. To save
and restore all FPU information, the 32-bit protected mode version of the FPU save and restore instruction should
be used. This can be accomplished by using the following code example:

; Save the FPU state
mov eax,CR0
or eax,00000001h
mov CR0,eax ;set the PE bit in CR0
jmp $+2 ;clear the prefetch que
db 66h ;do 32bit version of fnsave
fnsave [save_fpu] ;saves fpu state to

;the address DS:[save_fpu]
mov eax,CR0
and eax, 0FFFFFFFEh ;clear PE bit in CR0
mov CR0,eax ;return to real mode

;now the SMM routine can do any FPU instruction.
;Restore the FPU state before executing a RSM

FNINIT ;initialize the FPU to a valid state
mov eax,CR0
or eax,00000001h
mov CR0,eax ;set the PE bit in CR0
jmp $+2 ;clear the prefetch que
db 66h ;do 32bit version of fnsave
frstor [save_fpu] ;restore the FPU state

;Some assemblers may require
;use of the fnrstor instruction

mov eax,CR0
and eax, 0FFFFFFFEh ;clear PE bit in CR0
mov CR0,eax ;return to real mode

Be sure that all interrupts are disabled before using this method for entering protected mode. Any attempt to
load a selector register while in protected mode will shutdown the CPU since no GDT is set up. Setting up a GDT
and doing a long jump to enter protected mode will also work correctly.

Cyrix Application Note 107 - MII SMM DESIGN GUIDE 45

Initializing the SMM Environment

4.4 Initializing the SMM Environment

After entering SMM and saving the CPU registers that will be used by the SMM routine, a few registers need to
be initialized.

Segment registers need to be initialized if the CPU was operating in protected mode when the SMI interrupt
occurred. Segment registers that will be used by the SMM routine should be loaded with known limits before
they are used. The protected mode application could have set a segment limit to less than 64K. To avoid a protec-
tion error, all segment registers can be given limits of 4 GBytes. This can be done with the Cyrix RSDC instruc-
tion and will allow access to the full 4 GBytes of possible system memory without entering protected mode.
Once the limits of a segment register are set, the base can be changed by use of the MOV instruction.

If necessary, an Interrupt Descriptor Table (IDT) should be set up in SMM memory before any interrupts or
exceptions occur. The Descriptor Table Register can be loaded with an LIDT instruction to point to a small IDT
in SMM memory that can handle the possible interrupts and exceptions that might occur while in the SMM rou-
tine.

A stack should always be set up in SMM memory so that stack operations done within SMM do not affect the
system memory.

; SMM environment initialization example
include SMIMAC.INC ; see Appendix A

rsdc ds,cs:,seg4G ;DS is a 4GByte segment, base=0
rsdc es,cs:,seg4G ;ES is a 4GByte segment, base=0
rsdc fs,cs:,seg4G ;FS is a 4GByte segment, base=0
rsdc gs,cs:,seg4G ;GS is a 4GByte segment, base=0
rsdc ss,cs:,seg4G ;SS is a 4GByte segment, base=0
lidt cs:smm_idt ;load IDT base and limit for

;SMM's IDT
mov esp, smm_stack
jmp continue_smm_code

;
;descriptor of 4GByte data segment for use by rsdc
seg4G dw 0ffffh ; limit 4G

dw 0 ; base = 0
db 0 ; base = 0
db 10010011B ; data segment, DPL=0,P=1
db 8fh ; limit = 4G,
db 0h ; base = 0
dw 0 ; segment register = 0

smm_idt dw smm_idt_limit
dd smm_idt_base

46 Cyrix Application Note 107 - MII SMM DESIGN GUIDE

Accessing Main Memory Overlapped by SMM Memory

4.5 Accessing Main Memory Overlapped by SMM Memory

In SMM mode, there are instances where the program needs access to the system memory that is overlapping
with SMM memory. The need for access to this area of system memory most commonly occurs when the
SMM routine is trying to save the entire memory image to disk before powering down the system. If using
Cyrix SMM mode, access is made to main memory that overlaps SMM space by setting the MMAC bit in
CCR1. The following code will enable and then disable MMAC.

; Set MMAC to access main memory
; this code is only valid for Cyrix SMM mode operations
MMAC = 1 shl 3

mov al, 0c1h ;select CCR1
out 22h, al
in al, 23h ;get CCR1 current value
mov ah, al ;save it
mov al, 0c1h ;select CCR1 again
out 22h, al
mov al, ah
or al, MMAC ;set MMAC
out 23h, al ;write new value to CCR1

;Now all data memory access will use ADS#, Code fetches
;will continue to be done with SMIACT# from SMM memory.
;
;Disable MMAC

mov al, 0c1h ;select CCR1
out 22h, al
mov al, ah ;get old value of CCR1
out 23h, al ;and restore it

Cyrix Application Note 107 - MII SMM DESIGN GUIDE 47

I/O Restart

4.6 I/O Restart

Often when implementing a power management design, peripherals are required to be powered down by the sys-
tem when not in use. When an I/O instruction is issued to a powered down device, the SMM routine is called to
power up the peripheral and then reissue the I/O instruction. Cyrix CPUs make it easy to restart the I/O instruc-
tion that has generated an SMI interrupt.

The system will generate an SMI interrupt when an I/O bus cycle to a powered-down peripheral is detected. The
SMM routine should interrogate the system hardware to find out if the SMI was caused by an I/O trap. By check-
ing the SMM header information, the SMM routine can determine the type of I/O instruction that was trapped. If
the I/O instruction has a REP prefix, the ECX register needs to be incremented before restarting the instruction. If
the I/O trap was on a string I/O instruction, the ESI or EDI registers must be restored to their previous value
before restarting the instruction.
The following code example shows how easy I/O restart is with the Cyrix CPU.

include SMIMAC.INC ;see Appendix A
;Restart the interrupted instruction

mov eax,dword ptr cs:[SMI_CURRENTIP]
mov dword ptr cs:[SMI_NEXTIP],eax
mov al,byte ptr cs:[SMI_BITS]

;test for REP instruction
bt ax,2 ;rep instruction?

 ;(result to Carry)
adc ecx,0 ;if so, increment ecx
test al,1 shl 1 ;test bit 1 to see

;if an OUTS or INS
jnz out_instr

; A port read (INS or IN) instruction caused the
; chipset to generate an SMI instruction.
; Restore EDI from SMM header.

mov edi, dword ptr cs:[SMI_ESIEDI]
jmp common1

; A port write (OUTS or OUT) instruction caused the
; chipset to generate an SMI instruction.
; Restore ESI from SMM header.
out_instr:

mov esi, dword ptr cs:[SMI_ESIEDI]
common1:

48 Cyrix Application Note 107 - MII SMM DESIGN GUIDE

I/O Port Shadowing and Emulation

4.7 I/O Port Shadowing and Emulation

Some system peripherals contain write-only ports. In a system that performs power management, these peripher-
als need to be powered off and then reinitialized when their functions are needed later. The Cyrix SMM imple-
mentation makes it very easy to monitor the last value written to specific I/O ports. This process is known as
shadowing. If the system can generate an SMI whenever specific I/O addresses get accessed, the SMM routine
can, transparently to the system, monitor the port activity. The SMM header contains the address of the I/O write
as well as the data. In addition, information is saved which indicates whether it is a byte, word or dword write.
With this information, shadowing system write-only ports becomes trivial.

Some peripheral components contain registers that must be programmed in a specific order. If an SMI interrupt
occurs while an application is accessing this type of peripheral, the SMI routine must be sure to reload the
peripheral registers to the same stage before returning to normal mode. If the SMM routine needs to access such
a peripheral, the previous normal-mode state must be restored. The previous accesses that were shadowed by pre-
vious SMM calls can be used to reload the peripheral registers back to the stage where the application was inter-
rupted. The application can then continue where it left off accessing the peripheral.

In a similar way, the Cyrix SMM implementation allows the SMM routine to emulate the function of peripheral
components in software.

Cyrix Application Note 107 - MII SMM DESIGN GUIDE 49

Resume to HLT Instruction

4.8 Resume to HLT Instruction

To make an SMI interrupt truly transparent to the system, an SMI interrupt from a HLT instruction should return
to the HLT instruction. There are known cases with DOS software where returning from an SMI handler to the
instruction following the HLT will cause a system error. To determine if a HLT instruction was interrupted by the
SMI, the H bit in the SMM header must be interrogated. If the H bit is set, the SMI interrupted a HLT instruc-
tion. To restart the HLT instruction simply decrement the NEXT_IP field in the SMM header.

The H bit is not available on a Cx486DX2/DX4.

;This is the start of specific code to check if the SMI
;occurred while in a HLT instruction. If it did, then
;resume back to the HLT instruction when SMI is finished.

include SMIMAC.INC ;see Appendix A

mov ax,cs:word ptr[SMI_BITS] ;get H bit
test ax,0010h ;check if H=1
je not_hlt ;was not a HLT
dec cs:dword ptr[SMI_NEXTIP] ;decrement NEXT_IP

not_hlt:

50 Cyrix Application Note 107 - MII SMM DESIGN GUIDE

Exiting the SMI Handler

4.9 Exiting the SMI Handler

When the RSM instruction is executed at the end of the SMI handler, the EIP is
loaded from the SMM header at the address (SMMbase + SMMsize - 14h) called
NEXT_IP. This permits the instruction to be restarted if NEXT_IP was modified by
the SMM program. The values of ECX, ESI, and EDI, prior to the execution of the
instruction that was interrupted by SMI, can be restored from information in the
header which pertains to the INx and OUTx instructions. See Section 3.6 for an
example program to restart an I/O instruction. The only registers that are restored
from the SMM header are CS, NEXT_IP, EFLAGS, CR0, and DR7. All other regis-
ters which were modified by the SMM program need to be restored before execut-
ing the RSM instruction.

4.10 Testing and Debugging SMM Code

An SMI routine can be debugged with standard debugging tools, such as DOS
DEBUG, if the following requirements are met:

1. The debugger will only be able to set a code break point using INT 3 outside of
the SMI handler. The debug control register DR7 is set to the reset value upon
entry to the SMI handler. Therefore, any break conditions in DR0-3 will be dis-
abled after entry to SMM. Debug registers can be used if they are set after entry
to the SMI handler and if debug registers DR0-3 are saved.

2. The debugger must be running in real mode and the SMM routine must not
enter protected mode. This insures that normal system interrupts, BIOS calls
and the debugger will work correctly from SMM mode.

3. Before an INT 3 break point is executed, all segment registers should have their
limits modified to 64K, or larger, within the SMM routine.

Cyrix Application Note 107 - MII SMM DESIGN GUIDE 51

Testing and Debugging SMM Code

 APPENDIX A

A. Assembler Macros For Cyrix Instructions

The include file, SMIMAC.INC, provides a complex set of macros which generate SMM opcodes along with the
appropriate mod/rm bytes. In order to function, the macros require that the labels which are accessed correspond
to the specified segment. Thus segment overrides must be passed to the macro as an argument.

Do not specify a segment override if the default segment for an address is being used. If an address size override
is used, a final argument of ‘1’ must be passed to the macro as well. Address size overrides must be presented
explicitly to prevent the assembler from generating them automatically and breaking the macros.

;SMM Instruction Macros - SMIMAC.INC
;Macros which generate mod/rm automatically

svdc MACRO segover,addr,reg,adover
 domac segover,addr,reg,adover,78h
 ENDM
rsdc MACRO reg,segover,addr,adover
 domac segover,addr,reg,adover,79h
 ENDM
svldt MACRO segover,addr,adover
 domac segover,addr,es,adover,7ah
 ENDM
rsldt MACRO segover,addr,adover
 domac segover,addr,es,adover,7bh
 ENDM
svts MACRO segover,addr,adover
 domac segover,addr,es,adover,7ch
 ENDM
rsts MACRO segover,addr,adover
 domac segover,addr,es,adover,7dh
 ENDM
rsm MACRO
 db 0fh,0aah
 ENDM
smint MACRO

52 Cyrix Application Note 107 - MII SMM DESIGN GUIDE

Testing and Debugging SMM Code

 db 0fh,7eh
 ENDM
;Sub-Macro used by the above macro

domac MACRO segover,addr,reg,adover,op
 local place1,place2,count
 count = 0
 ifnb <adover>
 count=count+1
 endif
 ifnb <segover>
 count=count+1
 endif
 if (count eq 0)
 nop ;expanding the opcode one byte
 endif
 place1 = $
;pull off the proper prefix byte count
 mov word ptr segover addr,reg
 org place1+count
 mov word ptr segover addr,reg
 place2 = $
;patch the opcode
 org place1+(count*2)-1
 db 0Fh,op
 org place2
ENDM

;Offset Definition for access into SMM space
SMI_SAVE STRUC
$ESIEDI DD ?
$IOWDATA DD ?
$IOWADDR DW ?
$IOWSIZE DW ?
$BITS DD ?
$CSSELL DD ?
$CSSELH DD ?
$CS DW ?
$RES1 DW ?
$NEXTIP DD ?
$CURRENTIP DD ?
$CR0 DD ?
$EFLAGS DD ?
$DR7 DD ?
SMI_SAVE ENDS

Cyrix Application Note 107 - MII SMM DESIGN GUIDE 53

Appendix

SMI_ESIEDI EQU ($ESIEDI + SMMSIZE - SIZE SMI_SAVE)
SMI_IOWDATA EQU ($IOWDATA+ SMMSIZE - SIZE SMI_SAVE)
SMI_IOWADDR EQU ($IOWADDR+ SMMSIZE - SIZE SMI_SAVE)
SMI_IOWSIZE EQU ($IOWSIZE+ SMMSIZE - SIZE SMI_SAVE)
SMI_BITS EQU ($BITS + SMMSIZE - SIZE SMI_SAVE)
SMI_CSSELL EQU ($CSSELL + SMMSIZE - SIZE SMI_SAVE)
SMI_CSSELH EQU ($CSSELH + SMMSIZE - SIZE SMI_SAVE)
SMI_CS EQU ($CS + SMMSIZE - SIZE SMI_SAVE)
SMI_RES1 EQU ($RES1 + SMMSIZE - SIZE SMI_SAVE)
SMI_NEXTIP EQU ($NEXTIP + SMMSIZE - SIZE SMI_SAVE)
SMI_CURRENTIP EQU ($CURRENTIP+ SMMSIZE -SIZE SMI_SAVE)
SMI_CR0 EQU ($CR0 + SMMSIZE - SIZE SMI_SAVE)
SMI_EFLAGS EQU ($EFLAGS + SMMSIZE - SIZE SMI_SAVE)
SMI_DR7 EQU ($DR7 + SMMSIZE - SIZE SMI_SAVE)

SMM Instruction macro example: TEST.ASM

.MODEL SMALL

.386
;SMM Macro Examples

include smimac.inc

0000 .DATA
0000 0A*(??) there db 10 dup (?)
000A .CODE
0000 2E 0F 78 1E 004E svdc cs:,hello,ds
0006 2E 0F 79 1E 004E rsdc ds,cs:,hello
000C 2E 0F 79 2E 004E rsdc gs,cs:,hello
0012 2E 67 2E 0F 78 9C 58 0000004E svdc cs:,[eax+ebx*2+hello],1
001D 67| 0F 78 23 svdc ,[ebx],fs,1

0021 0F 78 2E 0000 svdc ,there,gs
0026 2E 0F 7A 06 004E svldt cs:,hello
002C 2E 0F 7B 06 004E rsldt cs:,hello

0032 2E 0F 7D 06 004E rsts cs:,hello
0038 2E 67 2E 0F 7C 84 58 0000004E svts cs:,[eax+ebx*2+hello],1
0043 67| 0F 7A 03 svldt ,[ebx],1
0047 0F 7C 06 0000 svts ,there
004C 0F AA rsm

004E 0A*(??) hello db 10 dup (?)
end

54 Cyrix Application Note 107 - MII SMM DESIGN GUIDE

Appendix

 APPENDIX B

B. Differences in Cyrix Processors

The table below lists the major differences between the 5x86, 6x86, 6x86MX and MII, CPUs as related to Sys-
tem Management Mode.

Differences between Cyrix CPUs

FEATURE 5X86 6X86 6X86MXI MII

SMAC
CCR1 - bit 2

Valid only if
SMM_MODE=0.

Available Available Available

MMAC
CCR1 - bit 3

Valid only. if
SMM_MODE=0.

Not available Valid only. if
SMM_MODE=0.

Valid only. if
SMM_MODE=0.

SM3
CCR1 - bit 7

Not available, register
index CDh, CEh and CFh
are always defined as
SMAR.

Must be set to define reg-
ister index CDh CEh and
CFh as SMAR.

Must be set to define reg-
ister index CDh CEh and
CFh as SMAR.

Must be set to define reg-
ister index CDh CEh and
CFh as SMAR.

SMIACT
CCR3 - bit3

Available Always in SL SMM
mode.

Use SMM_MODE
CCR6_Bit 0

Use SMM_MODE
CCR6_Bit 0

SMAR SIZE field If = Fh, SMAR size set to
4K Bytes

If = Fh, SMAR size set to
4 GBytes

If = Fh, SMAR size set to
4 GBytes

If = Fh, SMAR size set to
4 GBytes

SMI# acknowledged
when:

CPL=0 &
USE_SMI=1 &
(SMAR size > 0) &
SMAC=0 &
(in normal mode)

CPL=0 &
USE_SMI=1 &
(ARR3 size > 0) &
SM3=1 &
SMAC=0 &
(in normal mode)

CPL=0 &
USE_SMI=1 &
(ARR3 size > 0) &
SM3=1 &
SMAC=0 &
(in normal mode)

CPL=0 &
USE_SMI=1 &
(ARR3 size > 0) &
SM3=1 &
SMAC=0 &
(in normal mode)

SMINT instruction is
valid when:

CPL=0 & USE_SMI=1 &
(SMAR size > 0) &
SMAC=1 &
SMM_Mode=0

CPL=0 & USE_SMI=1 &
(ARR3 size > 0) &
 SM3=1 &
 SMAC=1

CPL=0 & USE_SMI=1 &
(ARR3 size > 0) &
 SM3=1 &
 SMAC=1

CPL=0 & USE_SMI=1 &
(ARR3 size > 0) &
 SM3=1 &
 SMAC=1

Cyrix Specific SMM
instructions are valid
when:

CPL=0 & USE_SMI=1 &
(SMAR size > 0) &
(SMAC=1 or
 in SMM mode)

CPL=0 & USE_SMI=1 &
(ARR3 size > 0) &
SM3=1 &
(SMAC=1 or
 in SMM mode)

CPL=0 & USE_SMI=1 &
(ARR3 size > 0) &
SM3=1 &
(SMAC=1 or
 in SMM mode)

CPL=0 & USE_SMI=1 &
(ARR3 size > 0) &
SM3=1 &
(SMAC=1 or
 in SMM mode)

H bit in SMM header Valid Valid Valid Valid

Cyrix Application Note 107 - MII SMM DESIGN GUIDE 55

Appendix

I/O trap information I/O Data Size,
I/O Address and
I/O Data valid for both I/
O reads and
writes trapped by an SMI.

I/O Data Size,
I/O Address and
I/O Data valid for both I/
O reads and
writes trapped by an SMI.

I/O Data Size,
I/O Address and
I/O Data valid for both I/
O reads and
writes trapped by an SMI.

I/O Data Size,
I/O Address and
I/O Data valid for both I/
O reads and
writes trapped by an SMI.

CS limit on entry to
SMM

4 GByte limit 4 GByte limit 4 GByte limit 4 GByte limit

CR0 value on entry to
SMM

6000 0010h
if LOCK_NW=1 then
NW is not changed

6000 0010h
if LOCK_NW=1 then
NW is not changed

6000 0010h
if LOCK_NW=1 then
NW is not changed

6000 0010h
if LOCK_NW=1 then
NW is not changed

Differences between Cyrix CPUs (Continued)

FEATURE 5X86 6X86 6X86MXI MII

56 Cyrix Application Note 107 - MII SMM DESIGN GUIDE

Appendix

©1997 Copyright Cyrix Corporation. All rights reserved.

Printed in the United States of America

Trademark Acknowledgments:

Cyrix is a registered trademark of Cyrix Corporation.

Cx486DX, Cx486DX2, Cx486DX4, 5x86, 6x86 .6x86MX and MII are trademarks of Cyrix Corporation.

Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

Order Number: 94xxx-xx

Cyrix Corporation

2703 North Central Expressway

Richardson, Texas 75080-2010

United States of America

Cyrix Corporation (Cyrix) reserves the right to make changes in the devices or specifications described herein without notice. Before
design-in or order placement, customers are advised to verify that the information is current on which orders or design activities are based.
Cyrix warrants its products to conform to current specifications in accordance with Cyrix’ standard warranty. Testing is performed to the
extent necessary as determined by Cyrix to support this warranty. Unless explicitly specified by customer order requirements, and agreed
to in writing by Cyrix, not all device characteristics are necessarily tested. Cyrix assumes no liability, unless specifically agreed to in writ-
ing, for customers’ product design or infringement of patents or copyrights of third parties arising from use of Cyrix devices. No license,
either express or implied, to Cyrix patents, copyrights, or other intellectual property rights pertaining to any machine or combination of
Cyrix devices is hereby granted. Cyrix products are not intended for use in any medical, life saving, or life sustaining system. Information
in this document is subject to change without notice.

July 13, 1998 12:02 pm
C:\!!!devices\appnotes\107ap.fm5

Rev 1.2 Added MII
Rev 1.1 SMADS# -> SMIACT#, many changes

Cyrix Application Note 107 - MII SMM DESIGN GUIDE 57

Appendix

58 Cyrix Application Note 107 - MII SMM DESIGN GUIDE

Appendix

