¥ Texas
INSTRUMENTS

- TI486SXLC and TI486S XL
'Microprocessors

Reference

Guide

1994 PC Systems Logic Products

TI486SXLC and TI486SXL
Microprocessors

Reference Guide

“.’f TEXAS
INSTRUMENTS

Important Notice

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

Tlwarrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality
control techniques are utilized to the extent Tl deems necessary to support this warranty. Specif-
ic testing of all parameters of each device is not necessarily performed, except those mandated
by government requirements.

Certain applications using semiconductor products may involve potential risks of death, person-
al injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of Tl products in such applications is understood to be fully at the risk of the customer.
Use of Tl products in such applications requires the written approval of an appropriate Tl officer.
Questions concerning potential risk applications should be directed to Tl through a local SC
sales office.

In order to minimize risks associated with the customer’s applications, adequate design and op-
erating safeguards should be provided by the customer to minimize inherent or procedural haz-
ards.

Tlassumes no liability for applications assistance, customer product design, software perform-
ance, or infringement of patents or services described herein. Nor does Tl warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask
work right, or other intellectual property right of Tl covering or relating to any combination, ma-
chine, or process in which such semiconductor products or services might be or are used.

Copyright © 1994, Texas Instruments Incorporated

Preface

Read This Fir

About This Manual

This manual describes the Ti486SXL(C) microprocessor product family. Each
chapter except for chapters 3 and 4 cover all versions of the microprocessors.
both the TI486SXLC and the TI486SXL. Chapter 3 explicitly covers the
TI486SXLC series and chapter 4 explicitly covers the TI486SXL series. This
document contains the following chapters:

Chapter 1 Product Overview

Chapter 1 introduces the features of the TI486SXLC and T1486SXL micropro-
cessor series and defines the differences between them. Each series offers
a 3.3-volt version (T1486SXLC-V and TI486SXL-V) for battery-powered
applications. A functional block diagram, logic symbol, and I/O signal identifi-
cations are provided for each of the two series of microprocessors. Additional
material describes selected system architectures such as the execution
pipeline, the on-chip cache memory, and the power-management techniques.
The system-management mode (SMM) permits the TI486SXL(C) family of mi-
croprocessors to respond to and service interrupts with a higher priority than
standard 486 processors. :

Chapter 2 Programming Interface

Chapter 2 describes the internal operations of the TI1486SXL(C) family of mi-
croprocessors mainly from an application programmer’s point of view. In-
cluded in this chapter are descriptions of processor initialization, the register
sets, memory addressing, various types of interrupts, system-management
mode, and the shutdown and halt process. Overviews of real, virtual-8086,
and protected operating modes are also included.

Chapter 3 TI486SXLC Microprocessor Bus Interface

Chapter 3 provides a summary of the TI486SXLC series processor signals
and descriptions of all inputs/outputs, functional timing and bus operations (in-
cluding pipelined and nonpipelined addressing), various interfaces, and power
management. '

About This Manual

Chapter 4 TI486SXL Microprocessor Bus Interface

Chapter 4 provides a summary of the TI486SXL series processor signals and
descriptions of all inputs/outputs, functional timing and bus operations (includ-
ing pipelined and nonpipelined addressing), various interfaces, and power
management.

Chapter 5 EIectrical Specifications

Chapter 5 provides electrical specifications for the TI486SXL(C) family, includ-
ing specifications for the 3.3-volt versions. The specifications include electrical
connection requirements for all package pins, maximum ratings, recom-
mended operating conditions, dc electrical characteristics, and ac characteris-
tics.

Chapter 6 Mechanical Specifications

Chapter 6 provides mechanical specifications for the TI486SXL(C) family that
include pin assignments, package physical dimensions, and package thermal
characteristics.

Chapter 7 Instruction Set

Chapter 7 summarizes the instruction set for the TI486SXL(C) family and pro-
vides detailed information of the instruction encoding. The instruction setis the
same for all TI486SXL(C) microprocessors. Instructions are listed in an
instruction set summary table that provides information on the flags affected
and the instruction clock counts for each instruction.

Appendix A SMM Programmer’s Guide

Appendix A provides detailed information including examples pertinent to pro-
gramming the T1486SXL(C) system management mode (SMM). Included are
system-management interrupt (SMI} examples, testing/debugging SMM
code, power management features, loading SMM programs, detection of CPU
type, presence of SMM-capable devices, creating macros, and altering SMM
code limits.

Appendix B BIOS Modifications Guide

Appendix B discusses some BIOS changes that may need to be considered
by the PC designer. The areas considered are power-on and hard reset, pro-
tected-mode to real-mode switching, and soft reset. Examples of assembler
code for turning the cache on and off are provided.

Appendix C Design Considerations and Cache Flush

Appendix C provides design considerations, address bit A20 masking, and
general cache invalidation procedures.

About This Manual / Style and Symbol Conventions

Appendix D OEM Modifications for 168-Pin CPGA

Appendix D describes the potential modifications an OEM needs to implement
on an existing 486SX/DX/DX4 motherboard to take advantage of the
Ti486SXL 168 pin CPGA. A system implementation is described for a 3.3-V
system that supports a 5-V ISA and a 3.3-V VL bus and another implementa-
tion for a mixed 3.3-V/5-V system that supports a 5-V ISA and a 5-V VL bus.

Appendix E Thermal Management in Microprocessor-Based Systems

Appendix E provides the reader with basic thermal concepts and the relation-
ship between thermal measurements and the system. In addition, problems
associated with comparing thermal specifications from different manufactur-
ers are discussed. Finally, corrective activity within JEDEC is detailed.

Appendix F Ordering Information

Appendix F provides detailed ordering information showing what the compo-
nents of the part number mean and a description of each microprocessor of-
fered. Versions offered include 5-volt and 3.3-volt versions, each of which are
rated to operate at different speeds. The TI1486SXLC series devices are pack-
aged in the quad flat pack, and the TI486SXL series devices are packaged in
quad flat pack and ceramic PGA packages.

Appendix G Glossary
Appendix G contains explanations for the terms, abbreviations, and acronyms
used in this manual.

Style and Symbol Conventions

This document uses the following conventions.

(O Program code listings and program code examples are shown in a spe-
cial typeface similar to a typewriter’s.

Here is a sample assembler code program listing:

CLI
MOV EAX, CRO ; set bit 30, turn off cache
OR EAX, 40000000h ; for external cache coherency

[Intheinstruction syntax descriptions, the instruction is in a bold typeface
and a description of the instruction s in italic typeface. Here is an example
of an instruction syntax and description:

RSM Resume from SMM Mode-

1 Square brackets ([and]) identify the location and sequence for specifying
register and/or memory options in the instruction opcode. Here’s an exam-
ple of an opcode that requires register and memory parameters:

Reference: Instruction ADD Integer Add (Register to Memory)

Opcode = 0 [000w] [mod reg r/m]

Read This First v

Information About Cautions and Warnings / Trademarks

Information About Cautions and Warnings

Trademarks

This book may contain cautions and warnings.

The information in a caution or a warning is provided for your protection.
Please read each caution and warning carefully.

AMD is a trademark of Advanced Micro Devices.

EPIC is a trademark of Texas Instruments Incorporated.

Intel is a trademark of Intel Corp.

1 Product OVervieWc..ciiiiiiiiiiiicrcrranccrneasssunsnsssnsnnnsnnassannnns 1-1
1.1 FEaUMES o e e 1-2
1.2 INtrOdUCHION . .. e 1-4
1.3 TI486SXLC SerieS OVEIVIEW\ttt ettt et eneas 1-5
1.4 TI486SXL Series OVeIVIBWttt e iiiee e 1-9
1.5 Differences Between the TI486SXLC Series and TI486SXL Series 1-15
1.6 Differences Between the TI486SXL(C) Family and the TI486SLC/DLC Family 1-16
1.7 Execution PIpelinet e 1-17
1.8 ON-ChipCache e e e 1-17
1.9 Clock-Doubled Modet i 1-18
1.10 Power Management i e i 1-18

1.10.1 System-ManagementMode (SMM) ittt 1-18
1.10.2 Suspend Mode and Static Operationcooiiiiiiiina... 1-18
1.10.3 3.3-VOperationot e 1-19
1.10.4 Mixed 3.3-Vand5-VOperationciiiiii it 1-19

2 ProgrammingInterfacecciiiiiiiiiiiiiii e s s, 2-1
2.1 Processor Initialization s 2-2
2.2 Real Mode Versus Protected Mode e 2-5
2.3 Instruction-Set OVerviewt e 2-6

2.3.1 LoCK PrefiX ..o 2-7
232 Register Sets 2-7
2.3.3 AdAreSS SPaCES ..\ttt s 2-8
2.4 Application Register Set e 2-10
2.41 General Purpose Registerscoiiiiiiiiiiiiiii i 2-11
242 SegmentRegistersand Selectors il 2-12
2.4.3 Instruction Pointer Registero 2-14
244 FlagWord Registerouiiiit i e 2-14
25 SystemBegister Set e ... 2-16
251 Control Registerst e 2-18
2.5.2 Descriptor-Registers and Descriptorso 2-19
253 TaskRegistero e 2-23
2.5.4 Configuration Registersoouiiiiiiiii ittt 2-26
255 Debug Registers ... e 2-31
256 TestRegiSterS ..o e 2-33
2.6 Memory AdAress SPacecuveeitnae ettt 2-37
2.6.1 OffsetMechanismoouiirii it 2-37
2.6.2 Real-Mode Memory Addressing i 2-38
2.6.3 Protected-Mode Memory Addressing ..ot 2-39

vii

Contents

viii

2.7 Interrupts and EXCEPLONS ovi it e 2-43
271 Interrupts ...l e 2-43
2.7.2 EXCEPUONS ..\ttt e e 2-44
2.7.3 Interrupt VECIOrSot 2-45
2.7.4 Interrupt and Exception Priorities oo i, 2-46
275 ExceptionsinRealMode i 2-47
2.7.8 Error CoOeS ..ottt e e 2-48
2.8 System-ManagementModeo e 2-49
281 SMMOperationscoiiiiii i e e 2-50
2.8.2 SMMMemory Space Headert 2-51
2.83 SMM InStructionso e e 2-52
2.84 SMMMeEMOry SPacettt it e e 2-54
2.8.5 SMI Service Routine Execution 2-54
2.8.6 CPU States Related to SMM and SuspendMode 2-55
2.9 Shutdownand Halt e 2-57
210 ProteCtiont e 2-57
2.10.1 Privilege Levels 2-58
2.10.2 O Privilege Levelsttt e 2-58
2.10.3 Privilege Level Transfers e 2-58
2.10.4 Initialization and Transition to ProtectedMode 2-59
211 Virtual-8086 Modettt 2-60
2111 Memory Addressingooviin i e 2-60
2.11.2 Protection e e 2-60
2.11.3 Interrupt Handling e 2-60
2.11.4 Enteringand LeavingV86Mode ... 2-61
TI486SXLC Microprocessor Bus Interface e eerrrrreraaaeaaaaanns 3-1
3.1 Input/Output Signals e e e 3-2
3.1.1 TI486SXLC Terminal Function Descriptionscoooolt. 3-4
3.1.2 Signal States During Reset and Hold Acknowledge 3-12
3.2 Bus-Cycle Definition i e 3-13
3.2.1 Clock Doubling Using Software Control 3-13
3.2.2 PowerManagement i 3-15
3.3 Reset Timing and Internal Clock Synchronization 3-17
3.4 Bus Operation and Functional Timing ... 3-19
3.4.1 Bus Cycles Using Nonpipelined Addressingccoiiiiiiiinnnn. 3-20
3.4.2 Bus Cycles Using Pipelined Addressingcoovviiiiiiinnnnnnnn. 3-24
3.43 LockedBus CyCleS ..o e 3-31
3.4.4 Interrupt-Acknowledge CycCles 3-31
3.4.5 Haltand Shutdown Cycles i 3-33
3.4.6 Internal Cache Interfacet i i i 3-36
3.47 AddressBit-20 Masking 3-38
3.4.8 Hold-Acknowledge Statet 3-39
3.4.9 Coprocessorinterfaceoi i 3-42
3.4.10 SMMinterfacel e 3-43
3.4.11 Power Management e 3-45
B2 Float .. oo e 3-48

Contents

4 TI486SXL Microprocessor BusiInterfacecivviiiiieiiinnerrcnnnnnnss 4-1
4.1 Input/OUtPUL SIgNAIS e e 4-2
411 TI486SXL Terminal Function Descriptions oo, 4-4

4.1.2 Byte Enable Line Definitionsc.ciiiiii i 4-13

4.1.3 Write Duplication as a Function of BES# —BEO#ccont. 4-14

414 Generating A1 —AOUsing BE3#—-BEOQ#cciiiiiinan. 4-14

4.1.5 Signal States During Reset and Hold Acknowledge 4-14

4.2 Bus-Cycle Definitionc. i e 4-16
4.2.1 Clock Doubling Using Software Controlt 4-16

422 Power Managementuuuiiiiiii ittt 4-18

4.3 Reset Timing and Internal Clock Synchronization 4-20
4.4 Bus Operation and Functional Timingc.oiiiiiiii i, 4-22
4.4.1 Bus Cycles Using Nonpipelined Addressingc.ooiiiien... 4-23

442 Bus Cycles Using Pipelined Addressingc.c.oiiiiiiniiiiin... 4-27

443 BusCyclesUsingBS16# it e 4-34

444 lockedBus CyCles ...t 4-37

4.45 Interrupt-Acknowledge Cycles e 4-37

446 Haltand Shutdown Cyclescoiiiiiiiii it 4-39

447 Internal Cachelnterface e 4-42

448 AddressBit-20Masking i 4-45

4.49 Hold Acknowledge Statet s 4-46
4.4.10 CoprocessorInterfaceovviiii it 4-49

4417 SMMINterface ...t e 4-50
4412 Power Management i 4-52
4.4.13 Float (144-Pin QFP and 168-Pin PGA Pinouts Only) 4-55

5 Electrical Specificationsccciiiiiiiiiiii ittt it 5-1
5.1 Electrical Connectionsoviueiieiiiieannan.. e 5-2
5.1.1 Power and Ground Connections and Decoupling 5-2

5.1.2 Pullup/Pulldown Resistors e 5-2

5.1.3 NC Designated Terminals e e 5-3

5.1.4 Unused Signal Input Terminalso i ... 5-3

5.2 Absolute Maximum Ratings e 5-4
5.3 Recommended Operating Conditionscciiiiiiiiiiiiii i, 5-5
5.3.1 3.3-Volt Microprocessors With 5-Volt Tolerant Inputs, Outputs, and I/Os 5-5

5.83.2 3.3-VOIt MiCroproCESSOrSvviiie et et 5-6

5.83.3 5-Volt MiCrOPrOCESSOrS . ..ttt e e 5-6

5.4 DC Electrical CharacteristiCsuuuiiiiiii e e 5-7
5.4.1 3.3-Volt Microprocessors With 5-Volt Tolerant Inputs, Outputs, and I/Os 5-7

5.4.2 3.3-VoIt MiCrOproCESSOrS ...ttt ettt e 5-9

5.4.3 5-VOIt MiCrOproCeSSOrSottt e et 5-12

5,5 AC CharacteristiCsooiiiii i 5-16
5.5.1 Measurement Points for AC Characteristics 5-16

5.5.2 CLK2 Timing Measurement Points iiiiiiiniianaans. 5-19

55.3 AC DataCharacteristics Tables it 5-19

5.5.4 RESET SetupandHold Timingot 5-29

5.5.5 TI486SXLC Switching Waveforms oot 5-29

5.5.6 TI486SXL Switching Waveforms i 5-32

Table of Contents ix

Contents

6 Mechanical Specificationsoiiiiiiiiiii i i i i 6-1
6.1 Terminal ASSIgNMENtS o i e 6-2
6.2 Package Dimensionsttt i i e e 6-13
6.3 Thermal Characteristicscooiiiiiiiiiii i ittt eenens 6-18

6.3.1 Airflow Measurement Setup ...t 6-20
6.3.2 Thermal Parameter Definitions e 6-21

7 InstructionSetc.niiiiiiiii it icr s cnacinanna s s 7-1
7.1 General Instruction Format 7-2
7.2 Instruction Fieldso e e e 7-3

7.2 PrefiXes .o e e e e 7-4
7.22 OpcodeField e e e e e 7-5
7.2.3 WHIEld .. e e 7-5
724 dFeId ..o e e 7-6
7.25 reg Field e 7-6
726 modandr/mField e 7-7
727 modandbaseFields 7-9
728 SsSField ..o e e 7-10
729 index Field oo e 7-10
7.210 sreg2 Field e 7-10
7211 sreg3 Field ... o 7-11
7212 eeeField e 7-11
7.3 FlagS o e 7-12
7.4 Clock-CoUNnt SUMMAIYiititit et ettt e i ii ittt aeaaeennns 7-18
741 ASSUMPHONS ... e e 7-13
7.42 Abbreviations e 7-13
7.5 INSIUCHON Set ... oo e 7-13
A SMM Programmer's GUideciiiiiiinninncrtennnanetannnersnnnsanernnnan A-1
A SMM OVEIVIEW L. ittt et e e A-2
AT INtrodUCHON ... e e A-2
A.1.2 SMMIimplementation i e A-2
A2 TI486SXL(C) Microprocessor Power Management Features A-3
A21 Reducingthe CloCK Frequencyo.iiiiiriii i, A-3
A22 Suspend MOdet e e s A-3
A.3 SMM Feature Comparisoniiiiunn it R A-4
A4 SMM Hardware Considerationsttt e A-5
A4l SMM PINS . e A-5
Ad2 SMIEEPIN TIMING ... e e e e e e A-5
A43 Adress SIrODESottt et A-5
Ad4 Chipset READYH e e A-6
A5 SMM Software Considerationsccoiiiiiii i A-7
A51 Exitingthe SMiHandler i i e A-9
A5.2 Accessing Main Memory At the Same Addressas SMM Code A-9
A.5.3 Miscellaneous Execution Details il A-9
A8 ENnabling SMM ... e A-11
A7 SMM Instruction Summary and Macros ...ttt A-12
A.8 SMIHandler Example R A-17
A.9 Loading SMM Memory With an SMM Program From Main Memory A-22
A.10 Detection of a Tl Microprocessor e e A-26
A.11 Detection of SMM Capable Versionttt A-28

Contents

A.12 Format of Data Used by SVDC/RSDC Instructions A-32
A13 Altering SMM Code Limitscoiiiionii i it A-34
A.14 Testing/Debugging SMM Code ... i A-35
A.14.1 Software Only Debuggingovivriiiiii ettt A-35
A.14.2 Software Debugging Example i A-36
A14.3 Clearingthe VM FlagBit...... ... i i it A-42
BIOS Modifications GUIdecoiiiiiiiiinaane it a s rrrrrrrnranasannnnsns B-1
B.1 Differences Between the T1486SLC/DLC BIOS and the TI486SXL(C) BIOS B-2
B.2 Power-UpandHard Reset ... e B-3
B.3 Protected-Mode to Real-Mode Switchingo, B-3
B.4 Soft Reset— (CONTROD) (ALT) (BELETE) . . v« s eteete caete e e e aenaeananeseannnannnns B-4
B.5 Turning the Internal Cache Onand Off B-4
Design Considerations and Cache Flushc.iiiiiiiiiiiiiniiinnnnns C-1
C.1 Design Considerationso, e C-2
C.2 Address Bit A20 Maskingoiuiiiiiiiii i e et e e e C-3
C.3 General Cache Invalidationc.coiiiiiiiiii i C-4
C.3.1 Systems With No Secondary Cache or With a Parallel Secondary Cache ... C-4
C.3.2 Systems With a Serial Secondary Cache e C-5
TI486SXL OEM Modifications for 168-PIn CPGAcivuiiiiinninnecernnnns D-1
D.1 Boards Supporting TI486SXL and Intelt D-2
D.2 Boards Supporting TI486SXL and @a486DXc.cciiiiiii ... D-5
D.3 Boards Supporting TI486SXL and a486DX4 i D-6
D.4 Boards Supportingthe VL BUS D-7
D41 Cache SnoopINgoiiriiiii e e e D-7
D.4.2 VL-BusCloCK i D-7
D.4.3 VL-BusSIotID Settingscoiiueiiiiiii e D-8
D.5 Power Planes for 3.3-V and 3.3-V/5-V Systems Using TI486SXL or 486DX4 D-9
D.5.1 PowerPlanesfor3.3-VSystems i i i D-9
D.5.2 Power Planes for Mixed 3.3-V/5-V Systems D-10
D.68 Chipset SUPPOIt . ..t e D-11
Thermal Management in Microprocessor-Based Systemscc.cvvventn. E-1
Bl dntroduction o e E-2
E.1.1 Thermallmpedance i i E-3
E1 2 POWEr ..o e E-3
E.1.3 Junction Temperature e E-3
E.2 Modesof Heat Transfer ...t e e E-4
E.2.1 Integrated Circuit Thermal Resistance o iiiiiiiii., E-5
E.2.2 PWB Conductivityiueiiitinieii i E-7
E.2.3 Proximity of Integrated CircuitonBoard iiin.. E-8
E.24 Aiflow ... e e E-8
E.3 Thermal Specifications of Integrated Circuits P E-9
E.3.1 System Dependence of Rgyaand RgCA -« -+ vvvveriinniiiiiinn E-9
E.3.2 Measurementof Tpooo .. e E-10
E.3.3 Defintionof Q..o e E-10
E.4 Tl Thermal Specification Methodologyt E-11
E5 Guidelines i e E-14
E.6 Current Trends and Theory of Correctionc.couiiiiiiiiiininnannnnns E-14
E.7 CONCIUSIONS . . .o e E-15

Table of Contents - Xi

Contents

F

Xii

Ordering Informationciiiiiiiii it a i ia e rararnssanannnanans F-1
F.1 Part Number Componentsoiiiiiniiniin i iieiiieeeeean F-1
F.2 Part Numbers for Microprocessors Offered iiiiiiiiiiiion.. F-2
GlOSSaANY .. vtriiiiiiieinnnr et snaanstssennsnasnsnrrannnnnanansssnnnnannnnns G-1

Figures

2-10
2-11

2-12
2-13
2-14
2-15
2-16
2-17
2—-18
2-19
2—-20
2-21
2-22
2-23
2-24
2-25
226
2-27
2-28
2-29
2-30
2-31

TI486SXLC Functional Block Diagramttt ieeeen, 1-6
TI486SXLC Logic Symbol e 1-7
Ti486SXLC Input and Qutput Signals ... e 1-8
TI486SXL Functional Block Diagram i 1-10
T1486SXL Logic Symbol (132-Pin PGAPackage)c.voiiiiiiinennannnn.. 1-1
Ti486SXL Logic Symbol (144-Pin QFP and 168-Pin PGA Packages) 1-12
T1486SXL Input and Output Signals for 132-Pin PGA Package 1-13
T1486SXL Input and Output Signals for 144-Pin QFP and 168-Pin PGA Package 1-14
TI486SXLC Memory and I/O Address Spacesc.ovveviiiiinannnnneinann... 2-8
TI1486SXL Memory and I/O Address Spacesovvviin v 2-8
Application Register Set e 2-10
General Purpose Registerso i e 2-11
Segment Selector Register e 2-12
EFLAGS Register . ..ottt e 2-14
System Register Setovii i e 2-17
Control Registers e e 2-18
Descriptor-Table (System-Address) Registers, 2-20
Application- and System-Segment Descriptors ..., 2-21
Gate DeSCrIPIOr .« . .. 2-23
Task (System-Address) Register i e 2-23
32-Bit Task-State Segment (TSS) Table et 2-24
16-Bit Task-State Segment (TSS) Table e 2-25
T1486SXLC Address Region Registers (ARR1—-ARR4)t 2-29
Ti486SXL Address Region Registers (ARR1—ARR4)t 2-30
TI486SXLC Debug Registersuiiiii i e 2-31
TI486SXL Debug Registerst e 2-32
Test Registers ... e 2-33
Offset Address Calculation i e 2-37
Real-Mode Address Calculation P 2-38
Protected-Mode Address Calculationt 2-39
Selector Mechanismo e 2-40
Paging Mechanism et 2-41
Directory- and Page-Table Entry (DTE and PTE) Format 2-41
Error-Code Format e e 2-48
TI486SXLC Memory and I/0O Address Spacesc.uevriiiiienanninnennnn. 2-49
T1486SXL Memory and I/O Address Spaces - ... c.viriin i S 2-50
SMM Execution Flow Diagramiiiiiii e eieaiaaa e 2-51
SMM Memory Space Header i 2-52

SMM and Suspended-Mode Flow Diagram i, 2-56

Table of Contents it

Figures

31

3-2

3-3

34

3-5

3-6

3-7

3-8

3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25
3-26
3-27

4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20
4-21
4-22
4-23
4-24

Xiv

TI486SXLC Functional Signal Groupingso it 3-2
Internal Processor Clock Synchronization i 3-17
Bus Activity From RESET Until First Code Fetch e 3-18
Fastest Nonpipelined Read Cycles ... e 3-20
Various Nonpipelined Bus Cycles (No Wait States)ccoiiiiiiiiinann 3-21
Various Nonpipelined Bus Cycles With Different Numbers of Wait States 3-22
Nonpipelined Bus Statesoiiiii i i i i e et e 3-23
Fastest Pipelined Read Cycles e e 3-25
Various Pipelined Cycles (One WaitState)ccciiiiiiiiiiiiiiiiiinns. 3-27
Fastest Transition to Pipelined Address Following Idle Bus State 3-28
Transitioning to Pipelined Address During Burstof BusCycles 3-29
Complete BUS States et 3-30
Interrupt-Acknowledge Cyclesciiiiiiiii i e et 3-32
Nonpipelined Halt Cycle e 3-34
Pipelined Shutdown Cycle e 3-35
Nonpipelined Cache Fills Using KEN# (With Different Numbers of Wait States) 3-36
Pipelined Cache Fills Using KEN# (With Different Numbers of Wait States) 3-37
Masking A20 Using A20M# During Burstof BusCyclescooiuunn. 3-38
Requesting Hold From Bus-ldle Stateo i i 3-40
Requesting Hold From Active NonpipelinedBus i, 3-41
Requesting Hold from Active PipelinedBus e 3-42
OMIE TIMING . .o e e 3-43
VO Trap TimiNg ..ottt et 3-44
SUSP#-Initiated Suspend Modet e 3-45
HALT-Initiated Suspend Mode i e 3-46
Stopping CLK2 During Suspend Modet 3-47
Entering and Exiting Float 3-48
TI1486SXL Functional Signal Groupingst it 4-2
Internal Processor Clock Synchronization i, 4-20
Bus Activity From RESET Until First Code Fetch i 4-21
Fastest Nonpipelined Read CycClesccoitiiiiiii it ii e iiaanns 4-23
Various Nonpipelined Bus Cycles (No Wait States)cccoiiiiiiia... 4-24
Various Nonpipelined Bus Cycles With Different Numbers of Wait States 4-25
Nonpipelined Bus States ... i e e 4-26
Fastest Pipelined Read Cyclest e 4-28
Various Pipelined Cycles (One Wait State)c. i, 4-30
Fastest Transition to Pipelined Address Following Idle Bus State 4-31
Transitioning to Pipelined Address During Burst of Bus Cycles 4-32
Complete Bus States e 4-33
Nonpipelined Bus Cycles Using BS16#o i 4-35
Pipelining and BS16#o i e 4-36
Interrupt-Acknowledge Cycles 4-38
Nonpipelined Halt Cycle e et e 4-40
Pipelined Shutdown CyCleo ittt e e 4-41
Nonpipelined Cache Fills Using KEN#o i 4-42
Nonpipelined Cache Fills Using KEN#and BS16#cciiiiiinnn, 4-43
Pipelined Cache Fills Using KEN# i e 4-44
Masking A20 Using A20M# During Burstof BusCyclescvivent, 4-45
Requesting Hold From Bus-ldle State i e 4-47
Requesting Hold From Active NonpipelinedBus oo it 4-48
Requesting Hold from Active PipelinedBus e .. 449

Figures

4-25
4-26
4-27
4-28
4-29
4-30
5-1
5-2
5-3
5-4

5-6
5-7
5-8
5-9
5-10
5-11
5-12
5-13
5-14
5-15
6-1

6-3
6-4

6-6
67
6-8
6-9
6-10
611
6-12
7-1
A-1
A-2
C—

C-3
D-1
D-2
D-3
D-4
D-5
E-1
E-2
E-3
E+4

E-6

SIMBE TIMING - - oot e e 4-50
VO Trap TImMING . ..ottt et e e ettt e et it anaee, 4-51
SUSP#-Initiated Suspend Mode e 4-52
HALT-Initiated Suspend Mode ...t e e 4-53
Stopping CLK2 During Suspend Modet i 4-54
Entering and Exiting Float i e 4-55
Internal Pullup/Pulldown-1V Characteristicot 5-3
T1486SXLC Drive Level and Measurement Points for AC Characteristics 5-17
T1486SXL Drive Level and Measurement Points for AC Characteristics 5-18
CLK2 Timing Measurement Points i, 5-19
RESET Setup and Hold Timingoiiiriiriiiiiiiii i iieiiieeeiinnns 5-29
TI486SXLC Input Signal Setupand Hold Timing ..., 5-29
TI486SXLC Output Signal Valid Delay Timing iiieees 5-30
TI486SXLC Data Write Cycle Valid Delay Timingo iiiiiinann. 5-30
TI486SXLC Data Write Cycle Hold Timing oo et 5-31
TI486SXLC Output Signal Float Delay and HLDA Valid Delay T|m|ng 5-31
TI486SXL Input Signal Setup and Hold Timingt 5-32
TI486SXL Output Signal Valid Delay Timingot eeeene 5-33
TI486SXL Data Write Cycle Valid Delay Timing ... innenan, 5-33
TI486SXL Data Write Cycle Hold Timing i eiene e 5-34
TI486SXL Output Signal Float Delay and HLDA Valid Delay Timing 5-34
TI486SXLC Terminal ASSIgNMENtS ittt e eaiee s 6-2
132-Pin PGA Ti486SXL Package Terminals (Bottom View)ccvvvunn.. 6-4
132-Pin PGA TI486SXL Package Terminals (Top VIiewW)ccoviiiiiiinnnnn. 6-5
144-Pin QFP TI486SXL Package Terminals (Top View)ccviiiiia... 6-7
168-Pin PGA TI486SXL Package Terminals (Bottom View) 6-9
168-Pin PGA T1486SXL Package Terminals (Top View)cccoviiiinean.. 6-10
100-Pin Thermally Enhanced Plastic QFP Package Dimensions (TI486SXLC) 6-13
132-Pin Ceramic PGA Package Dimensions (TI486SXL)c.ciiiinnnan.. 6-14
144-Pin Plastic QFP Dimensions (T1486SXL)ooiiiiiii i 6-15
144-Pin Ceramic QFP Package Dimensions (TI486SXL) ccccieenn.. 6-16
168-Pin Ceramic PGA Package Dimensions (TI486SXL)c.coiiiia... 6-17
Wind Tunnel Schematic Diagramoiiiiiii i e ee e 6-20
General Instruction Format i e 7-2
SMIE TIMING . ..ottt e it e e e i A-5
SMM Memory Space Header ...t et e A-8
Cache Invalidation for the TI486SXLC and the 132-pin TI486SXL C-4
Cache Invalidation for the 144- and the 168-Pin TI486SXL C-5
FLUSH# for 144-Pin and 168-Pin TI486SXL e C-5
FLUSH# Logic With a Serial Secondary Cache iiiii... D-2
FLUSH# Logic With Level-2 Serial Cache ... D-3
Hardware FIUSh o D-7
3.3-VVL-Bus Implementation i D-9
Mixed 3.3-V/5-V VL-Bus Implementation e D-10
Effect of Component Operating Temperature on Component Failure Rate E-2
Die Using a Temperature-Sensitive Electrical Parameter E-4
Diode Voltage Versus Temperature for a Typical Bipolar Device S E-4
Metal Within Projected Footprint of Integrated Circuit E-8
Plotting Die Thermal Datac o i e ens E-12
Wind Tunnel Schematic Diagramo i e E-13

Table of Contents XV

1-1
1-2
1-3
1-4
1-5
1-6
21
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2—11
2-12
2-13
2-14
2-15
2-16
2-17
2-18
2-19
2-20
2-21
2-22
2-23
2-24
2-25
2-26
3-1
3-2

34
3-5

Xvi

TI486SXLC Product Offeringcoiiiiin i ettt i 1-3
TI486SXL Product Offering e 1-3
TI486SXLC MICTOPrOCESSOIS ..\ vttt ittt ettt et ii et i annaas 1-5
TI486S XL MIiCrOPrOCESSOIS & . v vt ittt e ettt e et e et e e e e e e e eane e 1-9
TI486SXLC and T1486SXL Signal Differences 1-15
TI486SXL and T1486SLC/DLC Feature Differencest 1-16
TI486SXLC Initialized Register Contents i 2-3
T1486SXL Initialized Register Contents e 2-4
Real Mode Versus Protected Modec.coiiiiiinnn it 2-5
Segment Register Selection RUles e 2-13
EFLAGS Definitionso i ittt ii e i iiineeieenn. 2215
CRO Bit Definitionst e 2-19
Segment Descriptor Bit Definitionst s 2-22
Gate Descriptor Bit Definitions e e 2-23
TI1486SXLC Configuration Control Registers ..ottt 2-26
T1486SXL Configuration Control Registers e 2-26
CCRO Bit Definitionso o vttt e et e e e 2-27
CCR1 Bit Definitionso i, 2-28
ARR1-ARR4 Block Size Field i 2-30
DR6 and DR7 Field Definitions e e 2-32
TR6 and TR7 Bit Definitions e 2-34
TR6 Attribute Bit Pairs e 2-34
TR3-TR5 Bit Definitionsooviiii e e 2-36
Memory Addressing Modes e 2-38
Directory and Page-Entry (DTE and PTE) Bit Definitions 2-42
Interrupt-Vector ASSIgNmentst e 2-46
Interrupt and Exception Prioritiescco i 2-47
Exception Changesin RealMode ...t 2-47
Error-Code Bit Definitions e 2-48
SMM Memory Space Headeruuueririuiii i 2-52
SMM INStruction Setottt e 2-53
Descriptor Types Used for Control Transfero i, 2-59
TI486SXLC Signal SUMMANYttt it et i e 3-3
TI486SXLC Terminal Functions e 3-4
Signal States During Reset and Hold Acknowledget 3-12
BUS CYCIe TYPES - i vt ittt e e 3-13
Signal States During Suspend Mode e 3-16

Tables

41
4-2

4-4
4-5
4-6
4-7

5-1
5-2
5-3
5-4
55
5-6
5-7
5-8
5-9
5-10
5-11
5-12
5-13
5-14
5-15
516
5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
5-25
61

6-3
6—4
6-5
6-6
6~7
6-8
6-9
6-10
6—11
6-12
6-13
6-13
7-1
7-2
7-3

TI486SXL Signal SUMMANYottt e e e e 4-3
TI486SXL Terminal FUNCHONS oottt e e e eiaae s 4-4
Byte Enable Line Definitions et 4-13
Write Duplication as a Function of BE3#—-BEO# iiiiia... 4-14
Generating A1-AO Using BE3#—-BEO# i 4-14
Signal States During Reset and Hold Acknowledgeot 4-15
BUS-CYCIE TYPES .ottt et e e 4-16
Signal States During Suspend Mode 4-19
Terminals Connected to Internal Pullup and Pulldown Resistors 5-2
Terminals Requiring External Pullup Resistors oo i, 5-3
Absolute Maximum Ratings ... e 5-4
TI486SXL-G Recommended Operating Conditions ..., 5-5
TI486SXLC-V and T1486SXL-V Recommended Operating Conditions 5-6
TI486SXLC and T1486SXL Recommended Operating Conditions 5-6
T1486SXL-G40 Electrical Characteristicsco i it 5-7
T1486SXL2-G50 Electrical Characteristicscoovviiin it i 5-8
TI1486SXLC-V25 Electrical Characteristics ...t e s 5-9
TI486SXL-V40 Electrical Characteristics ... 5-10
T1486SXL2-V50 Electrical Characteristicsc.veirininiieiiinieeannn. 5-11
TI486SXLC-040 Electrical Characteristics 5-12
TI486SXLC2-050 Electrical Characteristicsccoiiiii it e 5-13
TI486SXL-040 Electrical Characteristics i 5-14
T1486SXL2-050 Electrical Characteristicscoiiiniier i, 5-15
Measurement Points for AC Characteristicst 5-16
AC Characteristics for TI486SXL-G40 i e 5-20
AC Characteristics for TI486SXL2-G50ottt 5-21
AC Characteristics for TI486SXLC-V25 i n 5-22
AC Characteristics for TI486SXL-V40 ittt eeee e 5-23
AC Characteristics for TI486SXL2-V50ot eieeees 5-24
AC Characteristics for TI486SXLC-040ot 5-25
AC Characteristics for TI486SXLC2-050ot e e eeeeens 5-26
AC Characteristics for TI486SXL-040 it eeeen 5-27
AC Characteristics for TI486SXL2-050ot eeeeaas 5-28
TI486SXLC Signal Names Sorted by Terminal Number, 6-3
TI1486SXLC Terminal Numbers Sorted by SignalNamet 6-3
132-Pin PGA TI486SXL Signal Names Sorted by Terminal Number 6-6
132-Pin PGA T1486SXL Terminal Numbers Sorted by Signal Name 6-6
144-Pin QFP TI1486SXL Signal Names Sorted by Terminal Number 6-8
144-Pin QFP T1486SXL Terminal Numbers Sorted by SignalName 6-8
168-Pin PGA TI486SXL Signal Names Sorted by Terminal Number 6-11
168-Pin PGA T1486SXL Terminal Numbers Sorted by SignalName 6-11
TI486SXL Signal Summary for 168-Pin PGA Pinoutccovan... 6-12
TI486SXLC 100-Pin PQFP Thermal Resistance and Airflow 6-18
TI486SXL 132-Pin CPGA Thermal Resistance and Airflow 6-19
TI486SXL 144-Pin PQFP Thermal Resistance and Airflow, 6-19
TI1486SXL 144-Pin CQFP Thermal Resistance and Airflow 6-19
TI1486SXL 168-Pin CPGA Thermal Resistance and Airflow 6-20
INStrUCtON Fields o e e e e 7-3
Instruction Prefix SUMMaryo e 7-4
W Field ENCOding . ..ot e 7-5

Table of Contents XVii

Tables

7-4
7-5
7-6
7-7
7-8
7-9
7-10
7-11
7-12
7-13
7-14
7-15
7-16
7-17

xviii

dField EnCoding . ..o cov it e 7-6
reg Field ENCOdingot e e 7-6
mod r/m Field ENCOAINGo oo e it e e 7-7
mod r/m Field Encoding Dependentonw Fieldot 7-8
mod base Field ENCoding ...t e e 7-9
ssFieldENCOdiNg . ..o e e 7-10
index Field ENCOdiNgo oottt 7-10
sreg2 Field ENCOdiNgv oottt e 7-10
sreg3 Field Encodingo e 7-11
eee Field Encodingo e 7-11
Flag Abbreviations i it i e e 7-12
Action of Instructionon Flag 7-12
Clock-Count Abbreviations i et e 7-13
INStrUCHON St ... o i e 7-14
Power Management Oplionsttt s A-3
SMM FeatUres . ..ottt it ettt e A-4
SMM Memory Space Header i e e A-8
Setting SMM Register Bits oo A-11
SMM Instruction Set with Clock Counts i A-13
EDX Register Data At Power-Up/Reset ... A-28
VL-BUS QKW . . e e D-7
VL-Bus SIot ID Settings e D-8
Thermal Conductivity of PackagingMaterials oot E-5
Thermal Performance of Various 486-Class Microprocessorsc..vo... E-6
Thermal Conductivity of PWBs With Various Amounts of Copper E-7
ReJa Versus Board TYPe e e E-8
Rega Versus Airflow E-9
TI486SXLC and T1486SXL Part Numbers i F-2
TI486SLC/E and TI486DLC/E Part NUMbersov i F-3

Examples

A-10

Accessing Main Memory OverlappingSMM Space ..., A-9
SMM SetUD . e e A-11
Macros That Implement the Special SM Instructions A-14
Typical Coding Found In SMIHandIersc..ooi i e e A-17
SMIHandler Routing i e e A-22
Detection of a TI MiCrOProCeSSOro ottt e et e eiaeeaas A-26
Detection of SMM Capable Versiont iiieans A-28
Internal Descriptor Formato e A-32
Load SS Descriptor Values (Real Mode) ...ttt e cieeans A-33
Debugging SMI Codeo e e A-36
Turning Internal Cache Off it aa B-5
Turning Internal Cache On i et B-6

Table of Contents Xix

XX

Chapter 1

Product Overview

This chapter introduces the features of the TI486SXLC series and TI486SXL
series of microprocessors and defines the differences between them. The
TI486SXL series offers a -G version that operates at 3.3 volts and features 5-V
tolerant 1/0Os for use in either 3.3-volt-only or mixed 3.3-V/5-V systems. A
functional block diagram, logic symbol, and I/O signal identifications are
provided for the TI486SXLC and TI486SXL series of microprocessors.
Additional material describes selected system architectures such as the
execution pipeline, the on-chip cache memory, and the power-management
techniques. The system-management mode (SMM) permits the TI486SXL(C)
family of microprocessors to respond to and service interrupts with a higher
priority than standard 486 processors.

Topic Page

1-1

Features

1.1 Features

1-2

The TI486SXLC and T1486SXL series microprocessors are attractive for new
486-compatible system designs as they are instruction-set and footprint com-
patible with existing platforms. Additionally, they implement high-performance
levels, including clock-doubled CPUs with on-chip 8K-byte cache, advanced
power-management techniques, and industry-standard pinouts that simplify
implementation of energy-efficient desktop and/or battery-powered notebook
systems. Their expanded features are:

(1 486 architecture and performance

486-compatible instruction set and register set

On-chip 8K-byte, 32-bit instruction/data cache configured as two-way
set associative

Clock-doubled 3.3-V with 5-V tolerant I/Os, and 5-V versions
Highly optimized, variable-length pipeline
On-chip 16-bit hardware multiplier

[0 High-performance, footprint-compatible upgrade path for existing
TI486SLC and TI486DLC platforms

Clock speeds up to 50 MHz

Industry standard footprints:

TI486SXLC series uses 100-pin QFP (486SLC footprint)

T1486SXL series uses 132-pin PGA (486DLC footprint), 144-pin plas-
tic or ceramic QFP (486DLC footprint), and a 168-pin CPGA (486SX
footprint)

O Advanced power-management features for battery-powered notebook
and energy-efficient desktop PC systems

System-management mode (SMM)

High-priority system-management interrupt (SMI) with separate
memory-address space

Suspend mode (initiated by either hardware or software)
Dynamic clock scaling

Fully static device permits clock-stop state

3.3-V versions provide approximately 60-percent power savings

3.3-V versions with 5-V tolerant inputs and outputs (available in the
T1486SXL series) can be used in 3.3-V-only or mixed 3.3-V/5-V
systems

Features

Features (Continued)

4 Texas Instruments EPIC™ submicron CMOS technology

[TI486SXLC series features 32-bit internal and 16-bit external buses. The
product offering is shown in Table 1-1.

Table 1—1. TI486SXLC Product Offering

T1486SXLC Series Supply Voltage Speed (MHz)

Device Part Number (V) Core Bus Package
TX486SXLC-V25-PJF 3.3 25 25 100-pin QFP
TX486SXLC-040-PJF 5 40 40, 20t
TX486SXLC2-050-PJF 5 50 25

T These microprocessors can be operated as nonclock-doubled 40 MHz or clock-doubled 20/40
MHz.

[Ti486SXL series features 32-bit internal and 32-bit external buses. The-
product offering is shown in Table 1-2

Table 1-2. TI486SXL Product Offering

TI486SXL Series Supply Voltage __SPeed (MHz)

Device Part Number (V) Core Bus Package
TX486SXL-040S-GA 5 40 40,20t 132-pin PGA
TX486SXL2-050S-GA 5 50 25
TX486SXL-040-PCE 5 40 40,20t 144-pin TEP
TX486SXL-G40-HBN 33V,5-Vtolerant 40 40,201 144-pin ce-
TX486SXL2-G50-HBN ~ 3.3-V, 5-Violerant 50 25 ramic QFP
TX486SXL-040-HBN 5 40 40, 20t
TX486SXL2-050-HBN 5 50 25
TX486SXL-G40-GA 3.3-V,5-Violerant 40 40,20 168-pin PGA
TX486SXL2-G50-GA 3.3V, 5-Violerant 50 25
TX486SXL-V40-GA 3.3 40 40, 20t
TX486SXL2-V50-GA 3.3 50 25
TX486SXL-040-GA 5 40 40,20t
TX486SXL2-050-GA 5 50 25

T These microprocessors can be operated as nonclock-doubled 40 MHz or clock-doubled 20/40
MHz.

For an explanation of the part numbers see Appendix F.

Product Overview 1-3

Introduction

1.2

Introduction

The Texas Instruments T1486SXL(C) microprocessor family is comprised of
advanced x86-compatible processors that offer clock-doubled features for in-
creased system performance. Each provides an internal 8K-byte, 32-bit cache
and integrated power management on a single chip.

The fully static, 486 instruction-set-compatible TI486SXLC series micropro-
cessors are backward compatible with the TI486SLC/E. The TI1486SXLC2
microprocessors contain a clock-doubled feature for increased system
performance of up to 50 MHz. The TI486SXLC series is an ideal solution for
battery-powered applications as it typically draws only 0.1-mA supply current
while the input clock is stopped in suspend mode. The TI486SXLC-V25 offers
additional power savings as it operates from a 3.3-V power supply.

The fully static, 486 instruction-set-compatible TI486SXL series microproces-
sors are available in three package types: a 132-pin PGA, 144-pin QFPs, and
a 168-pin PGA. The 132-pin PGA T1486SXL and TI1486SXL2 are backward
compatible with the TI1486DLC/E, the 144-pin QFP TI486SXL and TI486SXL2
are backward compatible with the 486DLC footprint, and the 168-pin PGA
TI486SXL and T1486SXL2 have the same footprint as the 486SX pinout (see
Appendix D, OEM Modifications for 168-Pin CPGA). The T1486SXL2 micro-
processors contain a clock-doubled feature for increased system performance
of up to 50 MHz. The T1486SXL series is an ideal solution for battery-powered
applications as it typically draws only 0.1 mA while the input clock is stopped
in suspend mode. The TI486SXL-V40 and TI486SXL2-V50 offer additional
power savings as they operate from a 3.3-V power supply. The TI486SXL-G40
and T1486SXL2-G50 offer the equivalent power savings with the added capa-
bility to operate in either 3.3-V-only systems or in mixed 3.3-V/5-V systems.

The T1486SXL series microprocessors support 8-, 16-, and 32-bit data types
and operate in real, virtual-8086, and protected modes. The TI486SXL(C) mi-
croprocessor family achieves high performance through use of a highly opti-
mized, variable-length pipeline combined with a RISC-like, single-cycle
execution unit, an on-chip hardware mulitiplier, and an 8K-byte integrated
instruction and data cache.

TI486SXLC Series Overview

1.3 TI486SXLC Series Overview

The TI486SXLC series of microprocessors are implemented using Texas
Instruments EPIC™ submicron CMOS technology. The combination of high-
performance 486 operation, internal 8K-byte cache, advanced power
management, and small-form-factor package makes the TI486SXLC series
ideal for notebook/subnotebook applications. A summary of the product
offering is shown in Table 1-3. Figure 1—1 is a functional block diagram and
Figure 1-2 is the logic symbol for the TI486SXLC microprocessors.

Table 1-3. TI486SXLC Microprocessors

Speed (MHz)
Device Supply Voltage (V) Core Bus PackageT
TI486SXLC-V25 3.3 25 25 100-pin QFP
TI486SXLC-040 5 40 40, 20t
TI486SXLC2-050 5 50 25

T Pinout and footprint compatible with TI486SLC/E.
% These microprocessors can be operated as nonclock-doubled 40 MHz or clock-doubled 20/40
MHz.

Product Overview 1-5

TI486SXLC Series Overview

Figure 1-1. TI486SXLC Functional Block Diagram

rr-—--—-—r—H—H——FF"F"—™—'/"———™—"—"™—™—"™—""—"=—" T T " —"7"—=—]
| | Core |
| 16-byte ! Clock [
| Decoder In(s)tructlon } Bus | Clock ck2 |
ueue I |
| Clock | control ‘_—‘r
| l] |
| Control immediate I I SUSP# |
I y : 32 | SUSpend
Mode SUSPA#
! ROM I internal | | Control |—20SPA% L
I Data Bus | |
Address SMi#
| Sequencer |« > Microcode ROM | | SMM
{ l : Control | SMADS#|
|
Control T Immediate I Memory	Enhanced 386SX-
J Data Bus	B()orr;ptalt:lfole
y 1	us Interface
Execution Unit	1 Byte I
Branch Control - 1Y omaxes L oL 1] paa D15-D0	
ranch LOnel] Limit	Muttptier
l Unit Unit Unit	Unit File
!_ Execution Pipeline _4 JI l :	
I nd	
v y y	Bus Control
:	Control
Memory 8 KByte	
Management	—» P'Sfe.:"h »! Instr/Data >
Unit n Cache	
l Instruction	I
A23-A1	
: L } Address Bus {	Adaress BHE#, BLE# I
Cache and Memory 1	
Management Data Address Bus	.
L	
. I	
TI486SXLC Microprocessor 1 Interface	

1-6

TI486SXLC Series Overview

Figure 1-2. TI486SXLC Logic Symbolt

CLK2

RESET ——

NMI
INTR
SMi# —ep—

FLT# ———

KEN# ——I>
FLUSH# ——

PEREQ
BUSY# ——

ERROR# — >

SUSP# ——

SUSPA# ——F

A20M# ————I

DO

D15

€ Address Bit 20 Mask

0]
TI486SXLC
MICROPROCESSOR
B 2x Clock lnput Hold Request
 Bus
Reset Arbitration Hold Ack.
Non-Maskable Req. Bus Ready
u
Maskable Req. Interrupt
Control Bus Next Address Req.
€ System Mgmt Int. Cycle
Control Address Strobe V
¢ Float SMM Address Strobe v
€ Cache Enable | Internal
Cache
€ Cache Flush |lInterface
Data/Control v
& Extension Reg.
Bus| Memory I/OV
£ Extension Busy ﬁtt):rrf:gzssor Cycle
initi Write/Read v
& Extension Error Definition
Bus Lock
€ Suspend Req. | power
Suspend Ack. | Management Byte| £Yte High En- ¥
Enables

Byte Low En. V

—<«—— HOLD
HLDA

READY#
NA#
ADS#
SMADS#

D/C#
M/IO#
W/R#
LOCK#

BHE#
BLE#

® o0 —

[Address > v

N
[¢5]

At

A23

T This symbol is in accordance with ANSI/IEEE Std 91-1991 and IEC Publication 617-12.

Product Overview

TI486SXLC Series Overview

The TI486SXLC includes two power-management signals (SUSP# and
SUSPA#), two cache-interface signals (FLUSH# and KEN#), an A20 mask
input (A20M#), and two SMM signals (SMADS# and SMi#) that are additions
tothe 386SX signal set. The TI486SXLC series has the same signal set as the
TI486SLC/E microprocessor and the complete list of TI486SXLC signals is
shown in Figure 1-3.

" Figure 1-3. TI486SXLC Input and Output Signals

A20M# —P| A :> A23-A1
BUSY# —» —» ADS#
TI486SXLC
CLK2 —¥, Microprocessor —» BHE#

ERROR# —» L9 BLE#
FLT# — <:> D15-D0
FLUSH# —¥| B I——» D/c#
INTR —» —» HLDA
HOLD —¥| —» LOCK#
KEN# —bP| B L—» M/IO#
NA# —P| —» SUSPA#
NMI —» —» SMADS#
PEREQ —P| j&—» SMi#
SUSP# —»| @® —» W/R#
READY# —P
RESET —¥»

@ Internal Cache Interface
® Power Management

A A20 Mask
4 System Management Mode

1-8

TI486SXL Series Overview

1.4 TI486SXL Series Overview

The TI486SXL series of microprocessors are implemented using Texas
Instruments EPIC submicron CMOS technology. The combination of
high-performance 486 operation, internal 8K-byte cache, 32-bit external data
path, and advanced power-management features makes the TI486SXL series
ideal for energy-efficient desktop and notebook applications. A summary of
the product offering is shown in Table 1—4. Figure 1—4 is a functional block
diagram and Figure 1-5 and Figure 1-6 are logic symbols for the 132-pin,
144-pin, and 168-pin TI486SXL microprocessors.

Table 1—4. TI486SXL Microprocessors

Speed (MHz)
Device Supply Voltage (V) Core Bus Package
TI486SXL-G40 3.3-V, 5-V tolerant 40 40,201 144-pin QFP¥, and
, 168-pin PGAS
TI486SXL2-G50 3.3-V, 5-V tolerant 50 25
TI486SXL-V40 3.3 40 40,201 168-pin PGAS
TI486SXL2-V50 3.3 50 25
TI486SXL-040 5 40 40,20t 132-pin PGA%,
144-pin QFP¥, and
TI486SXL2-0501 5 50 25 168-pin PGA§
t These microprocessors can be operated as nonclock-doubled 40 MHz or clock-doubled 20/40

MHz.
¥ Pinout and footprint compatible with TI486DLC/E
§ Footprint compatible with 486SX. See Appendix D, OEM Modifications for 168-Pin CPGA.
1 Available in 144-pin ceramic QFP and 168-pin PGA

Product Overview 1-9

TI486SXL Series Overview

Figure 1—4. TI486SXL Functional Block Diagram

rr-—-—-————--""""""""""-""-"=7""" o |
| | Core |
I | Clock |
I 16-byte ! Bus | Clock CLK2 ||
| Decoder Ingrucﬁon { Clock | control |
| ueue | |+
| I | '
SUSP#
| Control Immediate | I Suspend :
| y v I 32 l CN(I)?l(tjr?ﬂ M}f
| | |
Internal SMI# I
| ROM | paaBus| | [swm [—1»
Address | | SMADS#
| | sequencer|¢——» Microcode ROM Control | SWMAUSK 1y,
| | | |
| ' |
|
I Control Immediate I Memory I o
| Data Bus 386DX-Compatible I
I y | | Bus Interface |
| Execution Unit | Byte | |
l Branch Control | {1 i ier] 3nput] oo | pocictor | L muxes |)e ! Data | ‘_';321]_’
| imit| Muttiplier] “Aqqer | Shift | Regis [and /O 71 Buffers 2 |
| Unit| Unit Unit | Unit| File | Registers | |
|
;___E_X_ec_u“ﬂ‘ﬂ&e;"us _______________ ! l }
| { |
| y ' {, | Bus Control |
| | Control |
Memory 8 KByte |
: Management {—» Prﬁfﬁ"h »| Instr/Data o | |
| Unit ! Cache } |
| Instruction | A |
31-A2
| r f Address Bus | BE3#-BEO# |
| Cache and Memory | 7] Address |
| Management Data Address Bus ' Buffers 34 |
> |
| |
TI486SXL Microprocessor |
p
o I !

T1486SXL Series Overview

Figure 1-5. TI486SXL Logic SymbolT (132-Pin PGA Package)

@
TI486SXL
MICROPROCESSOR
(132-pin PGA)

CLK2 ——— > 2x Clock Input Bus Hold Request }—«—— HOLD
Arbitration Hold Ack. |——— HLDA
RESET —] Reset
NMI —— Non-Maskable Reg. Bus Size 16 F<+—— BS16#
INTR ———{ Maskable Req. | (reTuPt Bus Ready [“—«— READY#
Control Bus
SMI# —»— © System Mgmt Int. Cycle Next Address Req. Fl4—— NA#
Control
Address StrobeV I~ ADS#
KEN# —— ™ & Cache Enable gtewm SMM Address StrobeV ~— gMADS#
ache '
FLUSH# ———™ ¢ Cache Flush | Interface
Data/Control Vv }——— D/C#
PEREQ ——— 3 Extension Req. Bus| Memory /O Vi——— M/IO#
. Coprocessor Cycle
BUSY# — ¢ Extension Busy lntgrface Defini};ion Write/Read V|——— W/R#
ERROR# — N ¢ Extension Error Bus Lock f~—— LOCK#

SUSP# N ¢ Suspend Req. Power Byte Enable 3 v >~——— BE3#
SUSPA# ———=1 Suspend Ack. | Management Byte| Byte Enable 2 v > BE2#
A20M# ————D © Address Bit 20 Mask Enables| Byte Enable 1 v p——— BET#
Byte Enable 0 v [>——— BEO#
DO ——— 0 2 A2
: t| v <> [Address > | - :
D31 —————] 31 31 A31

T This symbol is in accordance with ANSI/IEEE Std 91-1991 and IEC Publication 617-12.

Product Overview 1-11

TI486SXL Series Overview

Figure 1-6. TI486SXL Logic Symbolt (144-Pin QFP and 168-Pin PGA Packages)

CLK2

RESET

NMI
INTR
SMi# —qp—D

FLT#

KEN# ——
FLUSH# ——
MEMW# —— N

PEREQ—

BUSY# ———
ERROR# ————

SUSP# ———IN ¢ Suspend Req.
SUSPA# ———= Suspend Ack.

A20M# ——TN @ Address Bit 20 Mask

[0
TI486SXL
MICROPROCESSOR
(144-pin QFP and
168-pin PGA)
> 2x Clock Input Bus Hold Request
Arbitration Hold Ack.
Reset
Non-Maskable Req. Bus Size 16
Interrupt Bus Ready
Maskable Req. Control Bus
£ System Mgmt Int. Cycle Next Address Req.
Control
onr Address Strobe V
€ Fioat
SMM Address Strobe vV
€ Cache Enable
Internal
€ Cache Flush | Cache Data/Control v
Memory Write | Interface
(ISA bus) Memory /O V
Bus
Cycle| Write/Read v
& Extension Req. Definition Write/Readt v
: Coprocessor
€ Extension Busy Interface Bus Lock
€ Extension Error
Byte Enable 3 v
Power Byte Enable 2 v
Management Byte | B!

Enables Byte Enable 1 v

Byte Enable 0 Vv

HOLD
HLDA

BS16#
READY#
<1-4—— NA#
ADS#

SMADS#

D/C#
M/O#
W/R#
W/R#
LOCK#

BE3#
BE2#
BE1#
BEO#

DO ————

D31

[Address > v

e 0o VO

w
puirg

A2

A31

1 This symbol is in accordance with ANSI/IEEE Std 91-1991 and IEC Publication 617-12.
% 144-pin QFP has W/R# on pins 36 and 37. These terminals must be connected together.

TI486SXL Series Overview

The TI486SXL includes two power-management signals (SUSP# and
SUSPA#), two cache-interface signals (FLUSH# and KEN#), an A20 mask
input (A20M#), and two SMM signals (SMADS# and SMi#) that are additions
to the 386D X signal set. The 132-pin PGA TI486SXL has the same signal set
as the T1486DLC/E microprocessor while the 144-pin QFP and the 168-pin
PGA have two additional inputs, MEMW#, and FLT#. MEMW# is part of the
cache interface and FLT# can be used to float the bidirectional and output
signals. (See Appendix D, OEM Modifications for 168-Pin CPGA.). The
complete list of TI486SXL signals is shown in Figure 1-7 for the 132-pin PGA
and Figure 1-8 for the144-pin QFP and 168-pin PGA.

Figure 1-7. TI486SXL Input and Output Signals for 132-Pin PGA Package

A20M# —>| &
BS16# —»| :> A31-A2
BUSY# —] > ADSH
CLK2 —»| Mic.:r:rii)é's-sor —» BE3#-BE0#
ERROR# —»| 132-pin PGA <:> D31-DO
FLUSH# —»| B —» D/C#
INTR — > HLDA
HOLD —»| > LOCK#
KEN# —>| m e
NA% —» o |—» suspax
NMI —, > SMADS#
PEREQ —» l—> s
SusPs —»| ® > W/RH#
READY# —%
RESET —»|

® Internal Cache Interface

® Power Management

A A20 Mask

¢ System Management Mode

Product Overview 1-13

TI486SXL Series Overview

Figure 1-8. TI486SXL Input and Output Signals for 144-Pin QFP and 168-Pin PGA Package

A20M# —P
BS16# — :> A31-A2
BUSY# —» | > ADs#
CLK2 —¥ Mic-ll:cl)“;gi);:sor —» BE3#-BEO#
errors —»f HBROTAY KO psroo
FLT# —» | > Do
FLUSH# —» > HiDA
INTR — > LOCK#
HOLD —» —> M/io#
KEN# —> m > SUSPA#
MEMW# —>| m | > SMmADS#
NA# — fe—> smi#
NMI— —> W/R#
PEREQ —¥| | Wt
SUSP# —»,
READY# —»
RESET —»

m Internal Cache Interface

® Power Management

A A20 Mask

¢ System Management Mode

T 144-pin QFP has W/R# on pins 36 and 37. These terminals must be connected together.

Differences Between the TI486SXLC Series and TI486SXL Series

1.5 Differences Between the TI486SXLC Series and TI486SXL Series

The TI486SXLC and the 132-pin TI486SXL are the same except for how the
pin signals are routed and utilized on the processors. Thus, the bus interfaces

- are different but the CPU core and cache/memory management are the same.

The TI486SXLC has a physical address range of 16M bytes and the TI486SXL
has a physical address range of 4G bytes. Table 1-5 describes the signal
differences between the TI1486SXLC and T1486SXL.

Table 1-5. TI486SXLC and TI486SXL Signal Differences

TI486SXLC TI486SXL TI486SXL (144-pin QFP
Description (100-pin QFP) (132-pin PGA) and 168-pin PGA)
Data bus 16 bits wide (D15-D0) 32 bits wide (D31-D0) 32 bits wide (D31-D0)
Address bus A23-A1 A31-A2 A31-A2
Byte enables 2 byte enables used 4 byte enablesused 4 byte enables used
(BHE#, BLE#) (BE3#-BEO#) (BE3#-BEO#)
Float bus signal (FLT#) supported not supported supported
Bus size 16 signal (BS16#) not supported supported supported
MEMW# ISA signal not supported not supported supported

The 144-pin QFP and the 168-pin PGA TI486SXL differs from both the
TI486SXLC and the 132-pin PGA TI486SXL by the addition of one signal,
MEMWH#. This signal is part of the cache flush logic that is implemented
on-chip inthe 144- and 168-pin versions of the T1486SXL. For a more detailed
description of this logic, see Appendix C, Design Considerations and Cache
Flush and Appendix D, OEM Modifications for 168-Pin CPGA. The 144-pin
QFP and the 168-pin PGA TI486SXL contain the TI486SXLC signal FLT# that
is not implemented in the 132-pin PGA T1486SXL. This signal can be used to
float all bidirectional and output signals of the TI486SXL microprocessor when
it is used in conjunction with an upgrade socket. The 144-pin QFP differs from
the 168-pin PGA by the addition of a second W/R# input. As these two W/R#
inputs must be connected together, these devices are functionally the same.

Product Overview 1-15

Differences Between the TI486SXL(C) Family and the TI486SLC/DLC Family

1.6 Differences Between the TI486SXL(C) Family and the TI486SLC/DLC

Family

The T1486SXLC and the TI1486SLC/E are the same in all respects except for
the cache size, cache organization, and the clock-doubled feature. The
TI486SXL and the TI486DLC/E are also the same in all respects except for the
same new features shown in Table 1-6. Signal differences between the
T1486SXLC and the 132-pin PGA TI486SXL, listed in Table 1-5, also apply for
the T1486SLC/E and T1486DLC/E, respectively.

Table 1-6. TI486SXL and TI486SLC/DLC Feature Differences

Description T1486SXL(C) Family TI486SLC/DLC Family

Cache size 8K bytes 1K byte

Cache organization Two-way set Two-way set associative
associative or direct mapped

Clock doubled Supported Not supported

Execution Pipeline / On-Chip Cache

1.7 Execution Pipeline

The execution path in the TI486SXL(C) family of microprocessors consists of
five pipelined stages optimized for minimal instruction-cycle times. These five
stages are:

Code fetch

Instruction decode

Microcode ROM access
Execution

Memory/register file write-back

ooood

These stages have been designed with hardware interlocks that permit execu-
tion overlap for successive instructions.

The 16-byte instruction-prefetch queue fetches code in advance and prepares
it for decode, helping to minimize overall execution time. The instruction de-
coder then decodes four bytes of instructions per clock, eliminating the need
for a queue of decoded instructions. Sequential instructions are decoded
quickly and provided to the microcode. Nonsequential operations do not have
to wait for a queue of decoded instructions to be fiushed and refilled before
execution continues. As a result, both sequential and nonsequential instruc-
tion execution times are minimized.

The execution stage takes advantage of a RISC-like, single-cycle execution
unit and a 16-bit hardware multiplier. The write-back stage provides single-
cycle, 32-bit access to the on-chip cache and posts all writes to the cache and
system bus using a two-deep write buffer. Posted writes allow the execution
unit to proceed with program execution while the bus-interface unit completes
the write cycle.

1.8 On-Chip Cache

The 8K-byte, 32-bit on-chip cache in the TI486SXL(C) family of microproces-
sors maximizes overall performance by quickly supplying instructions and
data to the internal execution pipeline. An external memory access takes a
minimum of two clock cycles (zero wait states). For cache hits, the TI486SXL
series eliminates these two clock cycles by overlapping cache accesses with
normal execution pipeline activity. In addition, bus bandwidth is gained by
presenting instructions and data to the execution pipeline at up to 32 bits at a
time compared to 16 bits per cycle for an external memory access.

The TI1486SXL(C) cache is an 8K-byte, write-through unified instruction and
data cache with lines that are allocated only during memory read cycles. The
cache is configured as two-way set associative, and the cache organization
consists of 1024 sets each containing two lines of four bytes each.

Product Overview 1-17

Clock-Doubled Mode / Power Management

1.9 Clock-Doubled Mode

The T1486SXL(C) family of microprocessors is designed with a clock-doubled
feature that provides an immediate performance increase and upgrade path
from the T1486SLC/DLC family of products. The clock-doubled feature can be
enabled using software by setting bit 6 of the Configuration Control register 0.

When the microprocessor is in clock-doubled mode, the internal core is oper-
ating at the CLK2 frequency while the external bus interface remains at half
the CLK2 frequency. This provides a speed increase in the on-chip cache,
instruction decode, and instruction execution while the external interface re-
mains the same.

In addition to the clock-doubled feature, the TI486SXL(C) microprocessor
family also supports dynamic clock scaling that enables the CLK2 input to be
scaled up or down. To take advantage of this feature (scaling or stopping the
CLK2 input) the processor must first be brought into the nonclock-doubled
mode. Dynamic clock scaling is transparent to the user since the processor
continues instruction execution in nonclock-doubled mode until the desired
frequency is reached within the PLL lock range to initiate clock-doubled mode.
This allows for increased bandwidth on demand without restriction to the user.

1.10 Power Management

The TI1486SXL(C) family incorporates advanced power-management features
such as suspend mode, static operation, and operation at 3.3 V. These capa-
bilities are attractive for battery-powered notebook and energy-efficient desk-
top PC systems.

1.10.1 System-Management Mode (SMM)

System-management mode (SMM) provides an additional interrupt and a
separate address space that can be used for system power management or
software-transparent emulation of 1/0 peripherals. SMM is entered using the
system-management interrupt (SMI#) that has a higher priority than any other
interrupt. While running in protected SMM address space, the SMI interrupt
routine can execute without interfering with the operating system or
application programs. ‘

After receiving an SMI# interrupt, portions of the CPU state are automatically
saved, SMM is entered and program execution begins at the base of SMM
address space. The location and size of the SMM memory is programmable
in the TI486SXL(C) microprocessor family. Seven SMM instructions have
been added to the 486 instruction set that permit saving and restoring the total
CPU state when in SMM mode.

1.10.2 Suspend Mode and Static Operation

The power-management features in the TI486SXL(C) family of micrbproces-
sors allow a dramatic reduction in the current required when the microproces-

Power Management

sor is in suspend mode (typically less than three percent of the operating cur-
rent). Suspend mode is entered either by a hardware- or software-initiated
action. Using the hardware to initiate suspend mode involves a two-pin hand-
shake using the SUSP# and SUSPA# signals.

The software initiates suspend mode through execution of the HALT instruc-
tion. Once in suspend mode, the microprocessor power consumption can be
further reduced by stopping the external clock input.

¥ 1

Note:

For the clock-doubled versions of the TI486SXL(C) microprocessor family,
suspend mode can be initiated while in clock-doubled mode as long as the
external input clock is not stopped. The external input clock can be stopped
after the microprocessor has been put into nonclock-doubled mode.

[-]

Since these microprocessors are static devices, no internal CPU data is lost
when the clock input is stopped.

1.10.3 3.3-V Operation

The T1486SXLC-V and TI486SXLC2-V versions operate from a 3.3-V supply.
Power consumed is typically only 30 percent of the power consumed while
operating at 5 V. The T1486SXLC-V25 operates at 25-MHz speed.

The TI486SXL-V and TI486SXL2-V versions operate from a 3.3-V supply.
Power consumed is typically only 30 percent of the power consumed by a mi-
croprocessor operating at 5 V. The TI486SXL-V40 can be operated in
clock-doubled mode at 40-MHz core and 20-MHz bus speeds, or in nonclock-
doubled mode with both the core and bus speeds at 40 MHz. The
TI486SXL2-V50 operates at 50 MHz core and 25-MHz bus speeds in the
clock-doubled mode.

1.10.4 Mixed 3.3-V and 5-V Operation

The TI486SXL-G and TI486SXL2-G versions operate from both a 3.3-V and
a 5-V supply. These microprocessors feature 5-V tolerant inputs and outputs
meaning that they can be incorporated in system designs that utilize both
3.3-V and 5-V devices. These devices can be used in 3.3-V-only systems by
connecting the 5-V supply pin (Vgcs) to the 3.3-V supply. The microprocessor
power consumption is typically only 30 percent of the power consumed by a
microprocessor operating at 5 V. The TI486SXL-G40 can be operated in
clock-doubled mode at 40-MHz core and 20-MHz bus speeds, or in nonclock-
doubled mode with both the core and bus speeds at 40 MHz. The
TI486SXL2-G50 operates at 50-MHz core and 25-MHz bus speeds in the
clock-doubled mode.

Product Overview 1-19

1-20

Chapter 2

Programming Interface

In this chapter, the internal operations of the TI486SXL(C) family of micropro-
cessors are described mainly from an application programmer’s point of view.
Included in this chapter are descriptions of processor initialization, the register
sets, memory addressing, various types of interrupts, system-management
mode, and the shutdown and halt process. Overviews of real, virtual-8086,
and protected operating modes are also included.

Topic Page

2-1

Processor Initialization

2.1 Processor Initialization

Each T1486SXL(C) family microprocessor is initialized when the RESET sig-
nal is asserted. The processor is placed in real mode and the registers listed
in Table 2—1 or Table 22 are set to their initialized values. RESET invalidates
and disables the cache, and turns off paging. For the clock-doubled versions
of the T1486SXL(C) microprocessor family RESET returns the processor to
the nonclock-doubled mode. When RESET is asserted, the microprocessor
terminates all local bus activity and all internal execution. During the time that
RESET is asserted, the internal pipeline is flushed and no instruction execu-
tion or bus activity occurs.

Approximately 350 to 450 CLK2 clock cycles (additional 220 + 60 if self-test is
requested) after deassertion of RESET, the processor begins executing
instructions at the top of physical memory (address location FF FFFOh for the
TI486SXLC series and FFFF FFFOh for the TI486SXL series). When the first
intersegment JUMP or CALL is executed, address lines A23—-A20 for the
TI486SXLC series or A31—A20 for the TI486SXL series are driven low for
code-segment-relative memory-access cycles. While these address lines are
low, the microprocessor executes instructions only in the lowest 1M byte of
physical address space until system-specific initialization occurs via program
execution.

Processor Initialization

Table 2—-1. TI486SXLC Initialized Register Contents

Register Register Name Initialized Contents Comments

EAX Accumulator XX xxxxh 00 0000h indicates self-test
passed.

EBX Base xx xxxxh

ECX Count XX xxxxh

EDX Data xx 0400h + Revision ID Revision ID = 10h

EBP Base Pointer XX xxxxh

ESI Source Index XX Xxxxh

EDI Destination Index xx xxxxh

ESP Stack Pointer xX Xxxxh

EFLAGS Flag Word 00 0002h

EIP Instruction Pointer 00 FFFOh

ES Extra Segment 0000h Base address set to 00 0000h
Limit set to FFFFh

Cs Code Segment FO00h Base address set to 00 0000h
Limit set to FFFFh

SS Stack Segment 0000h

DS Data Segment 0000h Base address set to 00 0000h
Limit set to FFFFh

FS Extra Segment 0000h

GS Extra Segment 0000h

IDTR Interrupt-Descriptor Table Base=0, Limit=3FFh

CRO Machine Status Word 00 0010h

CCRoO Configuration Control 0 00h

CCR1 Configuration Control 1 xx xxx0 (binary)

ARR1 Address Region 1 000Fh 4G-byte noncacheable region

ARR2 Address Region 2 0000h

ARR3 Address Region 3 0000h

ARR4 Address Region 4 0000h

DR7 Debug 00 0000h

Note: x = Undefined value

Programming Interface 2-3

Processor Initialization

Table 2-2. TI486SXL Initialized Register Contents

Register Register Name initialized Contents Comments

EAX Accumulator XXXX XXxxh 0000 0000h indicates self-test passed

EBX Base XXXX XXXXh

ECX Count Xxxx xxxxh

EDX Data xxxx 0421h + Revision ID Revision ID = 10h

EBP Base Pointer XXXX XXxxh

ESI Source Index XXXX Xxxxh

EDI Destination Index XXXX XXXXh

ESP Stack Pointer xXxxx xxxxh

EFLAGS Flag Word 0000 0002h

EIP Instruction Pointer 0000 FFFOh

ES Extra Segment 0000h Base address set to 0000 0000h
Limit set to FFFFh

CSs Code Segment FOOOh Base address set to 0000 0000h
Limit set to FFFFh

SS Stack Segment 0000h

DS Data Segment 0000h Base address set to 0000 0000h
Limit set to FFFFh

FS Extra Segment 0000h

GS Extra Segment 0000h

IDTR Interrupt-Descriptor Table Base=0, Limit=3FFh

CRO Machine Status Word 0000 0010h

CCRO Configuration Control 0 00h-

CCR1 Configuration Control 1 XXxx xxx0 (binary)

ARR1 Address Region 1 000Fh 4G-byte noncacheable region

ARR2 Address Region 2 0000h

ARR3 Address Region 3 0000h

ARR4 Address Region 4 0000h

DR7 Debug 0000 0000h

Note: x = Undefined value

2-4

Real Mode Versus Protected Mode

2.2 Real Mode Versus Protected Mode

When powered up or reset, the microprocessor is initialized to real mode. Real
mode establishes conditions that are backward compatible with the
8086/8088 microprocessors. Addressing capabilities are limited to the range
that is available on those two microprocessors, and the default operand size
is 16 bits.

The microprocessor can be switched from the real mode into protected mode,
where the extended capabilities of The TI486SXL(C) are available for use.
Protected mode provides enhanced memory management capabilities that in-
clude segment- and page-level protection.

Table 2-3 provides a comparison of real mode and protected mode. The mi-
croprocessor is in protected mode when the PE bit in Control register 0 is set.
After this bit is set, an intersegment JMP is used to load the CS reg|ster and
to flush the instruction-decode pipeline.

Table 2-3. Real Mode Versus Protected Mode

Real Mode Protected Mode

Physical Memory is limited to 1M byte. Physical memory is limited to 4G bytes.
Virtual memory of up to 4T bytes is avail-

able.
Default operand size is 16 bits. Default operand size is 32 bits.
Segments are fixed at 64K bytes. Segment size can vary from 1 byte to 4G
bytes.

Physical addresses are generated by Physical address are generated by ap-

multiplying the segment register value by plying paging, if enabled, to linear ad-

16 and adding an offset to the product. dresses. Linear addresses are gener-
ated by adding an offset to a value calcu-
lated from information contained in seg-
ment descriptors. The value in a segment
register determines which of several pos-
sible segment descriptors will be used.

No hardware protection is provided for Segments can be given combinations of

segment access or use. read, write, and execute permissions. At-
tempted access beyond the end of a seg-
ment is monitored.

There is no privileged code. Code can have one of four privilege lev-
els, with some processor instructions re-
stricted to the most privileged level.

Programming Interface 2-5

Instruction-Set Overview

2.3 Instruction-Set Overview

26

The T1486SXL(C) microprocessor family instruction set can be divided into
eight types of operations:

Arithmetic

Bit manipulation

Control transfer

Data transfer
High-level-language support
Operating-system support
Shift/rotate

String manipulation

ooooooodd

All instructions operate on as few as zero operands and as many as three op-
erands. An NOP (no operation) instruction is an example of a zero operand
instruction. Two-operand instructions allow the specification of an explicit
source and destination pair as part of the instruction. These two-operand
instructions can be divided into eight groups according to operand types:

Register to register
Register to memory
Memory to register
Memory to memory
Register to I/O

I/O to register

Immediate data to register
Immediate data to memory

oodooodd

An operand can be held in the instruction itself (as in an immediate operand),
in a register, in an I/0 port, or in memory. An immediate operand is prefetched
as part of the opcode for the instruction.

Operand lengths of 8, 16, or 32 bits are supported. Operand lengths of 8 or
32 bits are generally used when executing code written for 386- or 486-class
(32-hit code) processors. Operand lengths of 8 or 16 bits are generally used
when executing 8086 or 80286 code (16-bit code). The defaultlength of an op-
erand can be overridden by placing one or more instruction prefixes in front
of the opcode. For example, by using prefixes, a 32-bit operand can be used
with 16-bit code or a 16-bit operand can be used with 32-bit code.

Chapter 7, Instruction Set, lists each instruction in the T1486SXL(C) micropro-
cessor family instruction set along with the associated opcodes, execution
clock counts, and effects on the Flag Word register.

Instruction-Set Overview

2.3.1 Lock Prefix

The LOCK prefix can be placed before certain instructions that read, modify,
then write back to memory. The prefix asserts the LOCKi# signal to indicate to
the external hardware that the CPU is in the process of running multiple, indi-
visible memory accesses. The LOCK prefix can be used with the following
instructions:

[Bittestinstructions (BTS, BTR, BTC)

[0 Exchange instructions (XADD, XCHG, CMPXCHG)

1 One-operand arithmetic and logical instructions
(DEC, INC, NEG, NOT)

[Two-operand arithmetic and logical instructions
(ADC, ADD, AND, OR, SBB, SUB, XOR)

An invalid-opcode exception is generated if the LOCK prefix is used with any
other instruction or with the above instructions when no write operation to
memory occurs (i.e., the destination is a register).

2.3.2 Register Sets

There are 43 accessible registers in the TI486SXL(C) microprocessor and
these registers are grouped into two sets. The application register set contains
the registers frequently used by applications programmers, and the system
register set contains the registers typically reserved for use by operating-sys-
tems programmers.

The application register set is made up of:

[Eight 32-bit General Purpose registers
[Six 16-bit Segment registers

11 One 32-bit Flag Word register

(1 One 32-bit Instruction Pointer register

The system register set is made up of the remaining registers that include:

Three 32-bit Control registers

Two 48-bit and two 16-bit System Address registers

Two 8-bit and four 16-bit (TI486SXLC) or 24-bit (TI486SXL) Configuration
registers

Six 32-bit Debug registers

Five 32-bit Test registers

oo doo

Each application register is discussed in Section 2.4, Application Register Set,
page 2-10.

Each system register is discussed in Section 2.5, System Register Set, page
2-16.

Programming Interface 2-7

Instruction-Set Overview

2.3.3 Address Spaces

The microprocessor can directly address either memory or 1/0 space.
Figure 2-1 and Figure 2-2 illustrate the range of addresses available for
memory address space and I/O address space.

Figure 2—1. TI486SXLC Memory and I/O Address Spaces

Physical
Memory Space
FF FFFFh
Physical
Memory
16M bytes
00 0000h

Accessible
Programmed

80 00FFh
80 00F8h [

Coprocessor
Space

00 FFFFh |-

TI486SXLC
Configuration
Register I/O
Space

00 0023h

00 0022h

00 0000h L

Figure 2-2. TI486SXL Memory and I/O Address Spaces

Physical
Memory Space
FFFF FFFFh
Physical
Memory
4G bytes
0000 0000h

Accessible
Programmed

I/O Space
FFFF FFFFh T 5%

Coprocessor
Space

0000 FFFFh|"

TI486SXL
Configuration
ssrmmm «—— Legister VO
Space

0000 0023h
0000 0022h

0000 0000h1L

Instruction-Set Overview

2.3.3.1 Memory Address Space Range

For the TI486SXLC series, the addresses for physical memory range between
00 0000h and FF FFFFh (16M bytes). For the TI486SXL series, the addresses
for physical memory range between 0000 0000h and FFFF FFFFh (4G bytes).
Memory address space is accessed as bytes, words (16 bits), or doublewords
(32 bits). Words and doublewords are stored in consecutive memory bytes
with the low-order byte located in the lowest address. The physical address
of a word or doubleword is the byte address of the low-order byte.

Section 2.6, Memory Address Space, page 2-37, discusses in detail:

O Memory addressing modes that are used to calculate the physical address

[Memory management mechanisms, segmentation and paging, that can
be used to protect address spaces and also create an environment that
lets a small amount of physical memory simulate a large address space.

2.3.3.2 I/O Address Space Range

The accessible I/0O address space for both the TI486SXLC and Ti486SXL mi-
croprocessors ranges between 00 0000h and 00 FFFFh (64K bytes). The co-
processor communication space for the TI486SXLC series exists in upper I/O
space between 80 00F8h and 80 00FFh. The coprocessor communication
space for the TI486SXL series exists in the upper I/0 space between 8000
00F8h and 8000 00FFh. These coprocessor /O ports are automatically ac-
cessed by the CPU whenever an ESC opcode is executed. The I/O locations
22h and 23h are used for Configuration register access on all versions of the
T1486SXL(C) microprocessors.

The TI486SXL(C) family of microprocessors address space is accessed using
IN and OUT instructions to addresses referred to as ports. The accessible I/O
address space is 64K bytes and can be accessed as 8-bit, 16-bit, or 32-bit
ports. The execution of any IN or OUT instruction causes M/IO# to be driven
low, thereby selecting the 1/0 space instead of memory space for loading or
storing data. The upper eight address bits of the TI486SXLC processor and
the upper sixteen bits of the TI486SXL processor are driven low during IN and
OUT instruction port accesses.

The microprocessor Configuration registers reside within the 1/O address
space at port addresses 22h and 23h and are accessed using the standard IN
and OUT instructions. The Configuration registers are modified by writing the
index of the Configuration register to port 22h and then transferring the data
through port 23h. Accesses to the on-chip Configuration registers do not gen-
erate external I/O cycles. However, each port 23h operation must be preceded
by a port 22h write with a valid index value, otherwise the second and later port
23h operations are directed off-chip and generate external I/0O cycles without
modifying the on-chip Configuration registers. Also, writes to port 22h outside
of the microprocessor index range (COh to CFh) result in external I/O cycles
and do not affect the on-chip Configuration registers. Reads of port 22h are
always directed off-chip.

Programming Interface 2-9

Application Register Set

2.4 Application Register Set

The Application register set (Figure 2—3) consists of the registers most often
used by the applications programmer. These registers are generally accessi-
ble and are not protected from read or write access.

The General Purpose registers contents are frequently modified by assembly
language instructions and typically contain arithmetic and logical-instruction
operands.

The Segment registers contain segment selectors that index into tables lo-
cated in memory. These tables hold the base address for each segment as well
as other information related to memory addressing.

The Flag Word register contains control bits used to reflect the status of pre-
viously executed instructions. This register also contains control bits that affect
the operation of some instructions.

The Instruction Pointer is a 32-bit register that points to the next instruction that
the processor executes. This register is automatically incremented by the pro-
cessor as execution progresses.

Figure 2-3. Application Register Set

2-10

31 16 15 87 0
_______ AX | N
AH T AL EAX
BX
——BA 1 gL~ | EBX
(0), SR
cH — T T CL ECX
———DH————E]’X————D—L—— EDX General
> Purpose
Si ESI Registers
DI EDI
BP EBP
SP ESP
15 0
N
CS
SS
ps . Segment
ES Registers
FS
GS
rd
31 16 15 0
P EIP Instruction
Pointer and
Flag Word EFLAGS Registers

Application Register Set

2.4.1 General Purpose Registers

The General Purpose registers are divided into four Data, two Pointer, and two
Index registers as shown in Figure 2-4.

Figure 2—4. General Purpose Registers

Data Registers

31 16 15 87 0
_______ AX__
AA in AL A (Accumulator)
___BH____B'X_———EF_—— B (Base)
CcX
——ogr———1————e.—] C(Count)
___DH____DIZ_~——W_—1 D (Data)

Pointer and Index Registers

(EBP) BP BP (Base Pointer)
(ESP) SP SP (Stack Pointer)
(ESI) sl Sl (Source Index)
(EDI) DI DI (Destination Index)

2.4.1.1 Data Registers

The Data registers are used by the applications programmer to manipulate
data structures and to hold the results of logical and arithmetic operations. Dif-
ferent portions of the general Data registers can be addressed by using differ-
ent names. An E prefix identifies the complete 32-bit register. An X suffix with-
out the E prefix identifies the lower 16 bits of the register. The lower two bytes
of the register can be addressed with an H suffix to identify the upper byte or
an L suffix to identify the lower byte. When a source operand value specified
by an instruction is smaller than the specified destination register, the upper
bytes of the destination register are not affected when the operand is written
to the register.

2.4.1.2 Pointer and Index Registers

The Pointer and Index registers are:

BP or EBP Base Pointer
SP or ESP Stack Pointer
Slor ESI Source Index
Dl or EDI Destination Index

These registers can be addressed as 16- or 32-bit registers, with the E prefix
indicating 32 bits. These registers can be used as General Purpose registers;
however, some instructions use a fixed assignment of these registers. For ex-
ample, the string operations always use ESI as the source pointer, EDI as the
destination pointer, and ECX as a counter. The instructions using fixed regis-
ters include double-precision multiply and divide, I/O access, string opera-
tions, translate, loop, variable shift and rotate, and stack operations.

Programming Interface 2-11

Application Register Set

The T1486SXL(C) processors implement a stack using the ESP register. This
stack is accessed during the PUSH and POP instructions, procedure calls,
procedure returns, interrupts, exceptions, and interrupt/exception returns.
The microprocessor automatically adjusts the value of the ESP during opera-
tion of these instructions. The EBP register can be used to reference data
passed on the stack during procedure calls. Local data can also be placed on
the stack and referenced relative to BP. This register provides a mechanism
to access stack data in high-level languages.

2.4.2 Segment Registers and Selectors

Segmentation provides a means of defining data structures inside the memory
space of the microprocessor. There are three basic types of segments: code,
data, and stack. Segments are used automatically by the processor to deter-
mine the memory locations of code, data, and stack references.

There are six 16-bit Segment registers:

CS Code Segment

DS Data Segment

FS Additional Data Segment
GS Additional Data Segment
SS Stack Segment

ES Extra Segment

In real and virtual-8086 operating modes, a Segment register holds a 16-bit
segment base. The 16-bit segment base is multiplied by 16 and a 16-bit or
32-bit offset is then added to it to create a linear address. The offset size is de-
pendent on the current address size. In real mode and in virtual-8086 mode
with paging disabled, the linear address is also the physical address. In virtual-
8086 mode with paging enabled, the linear address is translated to the physi-
cal address using the current page tables.

In protected mode, a Segment register holds a segment selector containing
a 13-bit index, a table indicator (TI) bit, and a two-bit requested-privilege-level
(RPL) field as shown in Figure 2-5.

Figure 2-5. Segment Selector Register
15 3 2 1 0

Index TI RPL

Tl = Table Indicator
RPL = Requested Privilege Level

The index points into a descriptor table in memory and selects one of 8192
(213) segment descriptors contained in the descriptor table. A segment des-
criptor is an eight-byte value used to describe a memory segment by defining
the segment base, the segment limit, and access control information.

2-12

Application Register Set

To address data within a segment, a 16-bit or 32-bit offset is added to the seg-
ment's base address. Once a segment selector has been loaded into a Seg-
ment register, an instruction needs to specify the offset only.

The table indicator (T1) bit of the selector defines the descriptor table into which
the index points. If Tl = 0, the index references the global-descriptor table
(GDT). If TI=1, the index references the local-descriptortable (LDT). The GDT
and LDT are described in more detail later in this chapter.

The requested privilege level (RPL) field contains a 2-bit segment privilege
level (00 = most privileged, 11 = least privileged). The RPL bits are used when
the Segment register is loaded to determine the effective privilege level (EPL).
If the RPL bits indicate less privilege than the program, the RPL overrides the
current privilege level and the EPL is the lower privilege level. If the RPL bits
indicate more privilege than the program, the current privilege level overrides
the RPL and again the EPL is the lower privilege level.

When a Segment register is loaded with a segment selector, the segment
base, segment limit, and access rights are also loaded from the descriptor
table into a user-invisible or hidden portion of the Segment register, i.e.,
cached on-chip. The CPU does not access the descriptor table again until
another Segment register load occurs. If the descriptor tables are modified in
memory, the Segment registers must be reloaded with the new selector val-
ues.

The processor automatically selects a default Segment register for memory
references. Table 2—4 describes the selection rules. In general, data refer-
ences use the selector contained in the DS register, stack references use the
SS register, and instruction fetches use the CS register. While some of these
selections can be overridden, instruction fetches, stack operations, and the
destination write of string operations cannot be overridden. Special segment
override prefixes allow the use of alternate Segment registers including the
use of the ES, FS, and GS Segment registers.

Table 2-4. Segment Register Selection Rules

Implied (Default) Segment Override
Type of Memory Reference Segment Prefix
Code fetch CS None
Destination of PUSH, PUSHF, INT, CALL, PUSHA SS None
instructions
Source of POP, POPA, POPF, IRET, RET instructions SS None
Destination of STOS, MOVS, REP STOS, REP ES None
MOVS instructions
Other data references with effective address using
Base registers of: ;
EAX, EBX, ECX, EDX, ESI, EDI DS CS,ES, FS, GS, SS
EBP, ESP SS CS, DS, ES, FS, GS

Programming Interface 2-13

Application Register Set

2.4.3 Instruction Pointer Register

The (extended) Instruction Pointer (EIP) register shown in Figure 2-3 on page
2-10 contains the offset into the current code segment of the next instruction
to be executed. The register is normally incremented with each instruction
execution uniess implicitly modified through an interrupt, exception, or an
instruction that changes the sequential execution flow (e.g., jump, call).

2.4.4 Flag Word Register

The Flag Word register, EFLAGS, contains status information and controls
certain operations on the microprocessor. The lower 16 bits of this register are
referred to as the Flag register, FLAGS, that is used when executing 8086 or
80286 code. The flag bits are shown in Figure 2—6 and defined in Table 2-5.

Figure 2-6. EFLAGS Register

EFLAGS

/ / —/
FLAGS
A

\

[

111
2109876543210

0 —
~ =
o =

2 11
3 43
! !

10
0000CO0OO0OO0OODOOOO PL
|

2
1 4

aifs)
—-_z
mnoO

DI1[T]S|Z|,|Ao|P[4]C
FIF|F|F|F|O|F F

o>
=<

Alignment Check
Virtual-8086 Mode
Resume Flag
Nested Task Flag
I/O Privilege Level
Overflow
Direction Flag
Interrupt Enable
Trap Flag

Sign Flag

Zero Flag
Auxiliary Carry
Parity Flag

Carry Flag

w

w

>Pp0N>>000>0NO0NO

A = arithmetic flag, D = debug flag, S = system flag, C = control flag
0 or 1 indicates reserved

Application Register Set

Table 2-5. EFLAGS Definitions

Bit Position

Name

Function

0

10

1

12,13

14

16

17

18

CF

PF

AF

ZF
SF

TF

DF

OF

IOPL

NT

RF

VM

AC

Carry flag. CF is set when an operation results in a carry out of (addition) or borrow
into (subtraction) the most significant bit, cleared otherwise.

Parity flag. PF is set when the low-order eight bits of the result contain an even
number of ones, cleared otherwise.

Auxiliary carry flag. AF is set when an operation results in a carry out of (addition)
or borrow into (subtraction) bit position 3, cleared otherwise.

Zero flag. ZF is set if result is zero, cleared otherwise.

Signflag. SFis setequal to high-order bit of result (0 indicates positive, 1 indicates
negative).

Trap enable flag. Once TF is set, a single-step interrupt occurs after the next
instruction completes execution. TF is cleared by the single-step interrupt.

Interrupt enable flag. When IF is set, maskable interrupts (INTR input pin) are
acknowledged and serviced by the CPU.

Direction flag. When cleared, DF causes string instructions to auto-increment
(default) the appropriate Index registers (ESI and/or EDI). Setting DF causes
auto-decrement of the Index registers.

Overflow flag. Set if the operation resulted in a carry or borrow into the sign bit of
the result but did not result in a carry or borrow out of the high-order bit. Also set if
the operation resulted in a carry or borrow out of the high-order bit but did not result
in a carry or borrow into the sign bit of the result.

/O privilege level. While executing in protected mode, IOPL indicates the
maximum current privilege level (CPL) permitted to execute I/O instructions without
generating an exception 13 fault or consulting the I/O permission bit map. IOPL also
indicates the maximum CPL allowing alteration of the IF bit when new values are
popped into the EFLAGS register.

Nested task. While executing in protected mode, NT indicates that the execution
of the current task is nested within another task.

Resume flag. RF is used in conjunction with Debug register breakpoints. It is
checked at instruction boundaries before breakpoint exception processing. If set,
any debug fault is ignored on the next instruction.

Virtual-8086 mode flag. If VM is set while in protected mode, the microprocessor
switches to virtual-8086 operation handling segment loads as the 8086 does, but
generating exception 13 faults on privileged opcodes. The VM flag can be set by
the IRET instruction (if current privilege level = 0) or by task switches at any privilege
level.

Alignment-check enable. In conjunction with the AM flag in CRO, the AC flag
determines whether or not misaligned accesses to memory cause a fault. If AC is
set, alignment faults are enabied.

Programming Interface 2-15

System Register Set

2.5 System Register Set

The System register set (Figure 2—7) consists of registers not generally used
by application programmers. These registers are typically used by system-
level programmers who generate operating systems and memory-manage-
ment programs.

~ The Control registers control aspects of the microprocessor such as paging,

coprocessor functions, and segment protection. When paging is enabled and
a paging exception occurs, the Control registers retain the linear address of
the access that caused the exception.

The Descriptor Table registers and the Task register can also be referred to as
System Address or Memory Management registers. These registers consist
of two 48-bit and two 16-bit registers. These registers specify the location of
the data structures that control the segmentation used by the microprocessor.
Segmentation is a method of memory management.

The Configuration registers are used to control the clock-doubled operation
(for the T1486SXLC2 and T1486SXL2), on-chip cache operation, power-man-
agement features, and system-management mode. The clock-doubling,
cache, power-management, and SMM features can be enabled or disabled by
writing to these registers. Noncacheable areas of physical memory are also de-
fined through the use of these registers.

The Debug registers provide debugging facilities for the microprocessor and
enable the use of data-access breakpoints and code-execution breakpoints.

The Testregisters provide a mechanism to test the contents of both the on-chip
8K-byte cache and the translation lookaside buffer (TLB). The TLB is used as
a cache for translating linear addresses to physical addresses when paging
is enabled. In the following sections, the System register set is described in
greater detail.

System Register Set

Figure 2—7. System Register Set

31 16 15 0 -
CRO
i - . . Control
Page-Fault Linear Address Register CR2 Registers
Page-Directory Base Register CR3)
47 16 15 0 -
Base Limit GDTR System Address
Base Limit IDTR > (Descriptor Table)
Registers
Selector LDTR)
System Address
Selector TR (Task Register)
7 0 S
CCRo | CCRO
23 15 CCRt1 CCR1
I .
l Address Region 1 ARR1 , Configuration
| Address Region 2 ARR2 Registers
I
| Address Region 3 ARR3
{ Address Region 4 ARR4)
31 (T1486SXL only) 0
N
Linear Breakpoint Address 0 DRO
Linear Breakpoint Address 1 DR1
Linear Breakpoint Address 2 DR2
> Debug
Linear Breakpoint Address 3 DR3 Registers
Breakpoint Status DR6
Breakpoint Control DR7
e
31 0
- Cache Test TR3)
Cache Test TR4
Cache Test TR5 s Test
Registers
TLB Test Control TR6
TLB Test Status TR7 §

CCRO = Configuration Control 0
CCR1 = Configuration Control 1

Programming Interface 217

System Register Set

2.5.1 Control Registers

The Control registers (CR0, CR2, and CR3) are shown in Figure 2-8. The CRO
register contains system control flags that control operating modes and indi-
cate the general state of the CPU. The lower 16 bits of CRO are referred to as
the machine status word (MSW). The CRO bit definitions are described in
Table 2-6. The reserved bits in CRO should not be modified.

Figure 2-8. Control Registers

31

CR3

2-18

Page-Fault Linear Address CR2

=g
)

E CRO

wn-
Zzm

When paging is enabled and a page faultis generated, the CR2 register retains
the 32-bit linear address of the address that caused the fault. CR3 contains the
20-bit base address of the page directory. The page directory must always be
aligned to a 4K-byte page boundary; therefore, the lower 12 bits of CR3 are
reserved.

When operating in protected mode, any program can read the Control regis-
ters. Privilege level 0 (most privileged) programs can modify the contents of
these registers. '

System Register Set

Table 2—6. CRO Bit Definitions

Bit Position

Name

Function

0

16

18

29
30

31

PE

MP

EM
TS

WP

AM

CD

PG

Protected mode enable. Enables the segment-based protection mechanism. If PE =
1, protected mode is enabled. If PE = 0, the CPU operates in real mode, with
segment-based protection disabled, and addresses are formed as in an 8086-class
CPU.

Monitor processor extension. f MP =1 and TS = 1, a WAIT instruction causes fault
7. The TS bit is set to 1 on task switches by the CPU. Floating-point instructions are
not affected by the state of the MP bit. The MP bit should be set to 1 during normal
operations.

Emulate processor extension. If EM = 1, all floating-point instructions cause a fault 7.

Task switched. Set whenever a task-switch operation is performed. Execution of a
floating-point instruction with TS = 1 causes a device-not-available (DNA) fault. If
MP =1 and TS = 1, a WAIT instruction also causes a DNA fault.

Reserved. Do not modify.
Reserved. Do not modify.

Write protect. Protects read-only pages from supervisor write access. The 386-type
CPU allows a read-only page to be written from privilege ievels 0—2. The TI486SXL(C)
CPU is compatible with the 386-type CPU when WP = 0. WP = 1 forces a fault on a
write to a read-only page from any privilege level.

Alignment-check mask. If AM =1, the AC bit in the EFLAGS register is unmasked and
allowed to enable alignment-check faults. Setting AM = 0 prevents AC faults from
oceurring.

Reserved. Do not modify.

Cache disable. If CD = 1, no further cache fills occur. However, data already present
inthe cache continues to be used if the requested address hits in the cache. The cache
must also be invalidated to completely disable any cache activity.

Paging enable. If PG = 1 and protected mode is enabled (PE = 1), paging is enabled.

2.5.2 Descriptor-Table Registers and Descriptors

The Global-, Interrupt-, and Local-Descriptor-Table registers (GDTR, IDTR
and LDTR) are used to specify the location of the data structures that control
segmented memory management.

2.5.2.1 Descriptor-Table (System-Address) Registers

The GDTR, IDTR, and LDTR, shown in Figure 2-9, are loaded uging the
LGDT, LIDT, and LLDT instructions, respectively. The values of these registers
are stored using the corresponding store instructions. The GDTR and IDTR
load instructions are privileged instructions when operating in protected mode.
The LDTR can be accessed only in protected mode.

The Global-Descriptor-Table register (GDTR) holds a 32-bit base address and
16-bit limit for the global-descriptor table (GDT). The GDT is an array of up to
8192 8-byte descriptors. When a Segment register is loaded from memory, the
Tl bit in the segment selector chooses either the GDT or the local-descriptor

Programming Interface 2-19

System Register Set

table (LDT) to locate a descriptor. If Tl = 0, the index portion of the selector is
used to locate a given descriptor within the GDT table. The contents of the
GDTR are completely visible to the programmer. The first descriptor in the
GDT (location 0) is not used by the CPU and is referred to as the null descriptor.
If the GDTR is loaded while operating in 16-bit operand mode, the micropro-
cessor accesses a 32-bit base value but the upper 8 bits are ignored, resulting
in a 24-bit base address.

The Interrupt-Descriptor-Table register (IDTR) holds a 32-bit base address
and 16-bit limit for the interrupt-descriptor table (IDT). The IDT is an array of
256 8-byte interrupt descriptors, each of which is used to point to an interrupt
service routine. Every interrupt that can occur in the system must have an
associated entry in the IDT. The contents of the IDTR are completely visible
to the programmer.

Figure 2-9. Descriptor-Table (System-Address) Registers

48 16 15 0
Base Address Limit GDTR
Base Address Limit IDTR
Selector LDTR

2-20

The Local-Descriptor-Table register (LDTR) holds a 16-bit selector for the lo-
cal-descriptor table (LDT). The LDT is an array of up to 8192 8-byte descrip-
tors. When the LDTRis loaded, the LDTR selector indexes an LDT descriptor
that must reside in the global-descriptor table (GDT). The contents of the se-
lected descriptor are cached on-chip in the hidden portion of the LDTR. The
CPU does not access the GDT again until the LDTR is reloaded. If the LDT
description is modified in memory in the GDT, the LDTR must be reloaded to
update the hidden portion of the LDTR.

When a Segment register is loaded from memory, the Tl bit in the segment se-
lector chooses either the GDT or the LDT to locate a segment descriptor. If
Tl = 1,theindex portion of the selector is used to locate a given descriptor with-
in the LDT. Each task in the system may be given its own LDT, managed by
the operating system. The LDTs provide a method for isolating a given task’s
segments from other tasks in the system.

System Register Set

2.5.2.2 Descriptors

The three types of descriptors are:

O Application-segment descriptors that define code, data, and stack seg-
ments

[System-segment descriptors that define an LDT segment or a TSS

[0 Gate descriptors that define task gates, interrupt gates, trap gates, and
call gates

Application-segment descriptors can be located in either the LDT or GDT. Sys-
tem-segment descriptors can be located only in the GDT. Dependent on the
gate type, gate descriptors can be located in either the GDT, LDT, or IDT.
Figure 2—-10 illustrates the descriptor format for both application-segment des-
criptors and system-segment descriptors. Table 2—7 lists the corresponding
bit definitions.

Figure 2-10. Application- and System-Segment Descriptors

31 24 23 22 21 20 19 16 15 14 13 12 11 8 7 0
A D
Base 31-24 G| D|oO|V Limit 19—-16 | P | DPL T Type Base 23-16 +4
L
Base 15-0 Limit 15-0 +0

Programming Interface 2-21

System Register Set

Table 2-7. Segment Descriptor Bit Definitions

Bit Memory
Position Offset Name Description
31-24 +4 Base 3124 Segment base address. A 32-bit linear address that points to the be-
7-0 +4 Base 23-16 ginning of the segment.
31-16 +0 Base15-0
19-16 +4 Limit 19-16 Segment limit. In real mode, segment limit is always 64K bytes
15-0 +0 Limit 15-0 (OFFFFh).
23 +4 G Limit granularity:
0 = byte granularity
1 = 4K-byte (page) granularity
22 +4 D Default length for operands and effective addresses. Valid for code
and stack segments only:
0 = 16 bit
1 =32 bit
20 +4 AVL Segment available
15 +4 P Segment present
14-13 +4 DPL Descriptor privilege level
12 +4 DT Descriptor type:
0 = system
1 = application
11-8 +4 Type Segment type. System descriptor (DT = 0):
0010 = LDT descriptor
1001 = TSS descriptor, task not busy
1011 = TSS descriptor, task busy
11 +4 E Application descriptor (DT = 1):
0 =data
1 = executable
10 +4 C/D If EisO:
0 = expand up, limit is upper bound of segment
1 = expand down, limit is lower bound of segment
fEis 1:
0 = nonconforming
1 = conforming (runs at privilege level of calling procedure)
9 +4 R/W If Eis O:
0 = nonreadable
1 = readable
If Eis 1:
0 = nonwritable
1 = writable
8 +4 A 0 = not accessed
1 = accessed

2-22

Gate descriptors provide protection for executable segments operating at dif-
ferent privilege levels. Figure 2—11 illustrates the format for gate descriptors
and Tabie 28 lists the corresponding bit definitions.

Task-gate descriptors are used to switch the CPU’s context during a task
switch. The selector portion of the task-gate descriptor locates a task-state
segment. Task-gate descriptors can be located in the GDT, LDT, or IDT.

System Register Set

Figure 2-11. Gate Descriptor

31 16 15 14 1312 1 8 7 0
Offset 31-16 P|DPL| O] Type | 0| O| 0| Parameters |+4
Selector 15-0 Offset 15—-0 +0

Table 2-8. Gate Descriptor Bit Definitions

Bit Memory
Position Offset Name Description
31-16 +4 Offset 31—16 Offset used during a call gate to calculate the branch target
15-0 +0 Offset 15-0
31-16 +0 Selector 15-0 Segment selector used during a call gate to calculate the branch target
15 +4 P Segment present
14-13 +4 DPL Descriptor privilege level
11-8 +4 Type Segment type:
0100 = 16-bit call gate
0101 =tack gate
0110 = 16-bit interrupt gate
0111 = 16-bit trap gate
1100 = 32-bit call gate
1110 = 32-bit interrupt gate
1111 = 32-bit trap gate
4-0 +4 Parameters Number of 32-bit parameters to copy from the caller’s stack to the

called procedure’s stack

Interrupt-gate descriptors are used to enter a hardware interrupt service rou-
tine. Trap-gate descriptors are used to enter exceptions or software interrupt
service routines. Trap-gate and interrupt-gate descriptors can be located only
in the IDT.

Call-gate descriptors are used to enter a procedure (subroutine) that executes
at the same or a more-privileged level. A call-gate descriptor primarily defines
the procedure entry point and the procedure’s privilege level.

2.5.3 Task Register

The Task register (TR) holds a 16-bit selector for the current task-state seg-
ment (TSS) table as shown in Figure 2—12. The TR is loaded and stored via
the LTR and STR instructions, respectively. The TR can be accessed only dur-
ing protected mode and can be loaded only when the privilege level is 0 (most
privileged).

Figure 2—12. Task (System-Address) Register

15 0

Selector

Programming Interface 2-23

System Register Set

When the TR is loaded, the TR selector field indexes a TSS descriptor that
must reside in the global-descriptor table (GDT). The contents of the selected
descriptor are cached on-chip in the hidden portion of the TR.

During task switching, the processor saves the current CPU state in the TSS
before starting a new task. The TR points to the current TSS. The TSS can be
either a 286-type TSS (16-bit) or a 386/486-type TSS (32-bit) as shown in
Figure 2—-13 and Figure 2—14. An |/O permission bit map is referenced in the
32-bit TSS by the I/0 map base address.

Figure 2-13. 32-Bit Task-State Segment (TSS) Table

31 16 15
/O Map Base Address 00000000000000O0O|T
00000000000000O0O Selector For Task's LDT
0000000000000000O GS
0000000000000O0O0O)
0000000000000000O DS
00000000000000O0ODO sS
0000000000000000O cs
0000000000000000 ES
ED!I
ES!
EBP
ESP
EBX
EDX
ECX
EAX
EFLAGS
EIP
CR3
00000000000000O0 O] SSfor CPL =2
ESP for CPL =2
000000000000000O0O] SS for CPL = 1
ESP for CPL =1
000000000000000O0O] SS for CPL=0
ESP for CPL=0
00000000000000O0O0O0] Back Link (Old TSS Selector)

0 = Reserved

2-24

+64h
+60h
+5Ch
+58h
+54h
+50h
+4Ch
+48h
+44h
+40h
+3Ch
+38h
+34h
+30h
+2Ch
+28h
+24h
+20h
+1Ch
+18h
+14h
+10h
+Ch

+8h

+4h

+0h

System Register Set

Figure 2—14. 16-Bit Task-State Segment (TSS) Table

Selector For Task’s LDT

DS

SS

CS

ES

DI

Sl

BP

SP

BX

DX

CX

AX

FLAGS

IP

SP For Privilege Level 2

SS For Privilege Level 2

SP For Privilege Levelt

SS For Privilege Level 1

SP For Privilege Level 0

SS For Privilege Level 0

Back Link (Old TSS Selector)

Programming Interface

+2Ah
+28h
+26h
+24h
+22h
+20h
+1Eh
+1Ch
+1Ah
+18h
+16h
+14h
+12h
+10h
+Eh
+Ch
+Ah
+8h
+6h
+4h
+2h
+0h

2-25

System Register Set

2.5.4 Configuration Registers

The TI486SXL(C) family microprocessors contain six registers that do not ex-
iston other 80x86 microprocessors. These registers include two Configuration
Control registers (CCR0 and CCR1) and four Address Region registers (ARR1
through ARR4) as listed in Table 2-9 and Table 2-10. The CCR and ARR reg-
isters exist in 1/0 memory space and are selected by a register index number
via /O port 22h. /O port 23h is used for data transfer.

Table 2-9. TI486SXLC Configuration Control Registers

Register Name Register Index Width
Configuration Control 0 (CCRO) Coh) 8
Configuration Control 1 (CCR1) Cih 8
Address Region 1 (ARR1) C5h—-C6h 16
Address Region 2 (ARR2) C8h—C%h 16
Address Region 3 (ARR3) CBh-CCh 16
Address Region 4 (ARR4) CEh-CFh 16

Note: Thefollowing registerindex numbers are reserved: C2h, C3h, C4h, C7h, CAh, CDh, and
DOh through FFh.

Table 2—10.TI486SXL Configuration Control Registers

2-26

Register Name Register Index Width
Configuration Control 0 (CCROQ) COh ’ 8
Configuration Control 1 (CCR1) C1h 8
Address Region 1 (ARR1) C4h-Cs6h 24
Address Region 2 (ARR2) C7h—C%h 24
Address Region 3 (ARR3) CAh—-CCh 24
Address Region 4 (ARR4) CDh—CFh 24

Note: The following register index numbers are reserved: C2h, C3h, and DOh through FFh.

Each 1/O port 23h data transfer must be preceded by an /O port 22h register
selection, otherwise the second and later I/O port 23h operations are directed
off-chip and produce external I/O cycles. If the registerindex number is outside
the COh—CFh range, external I/O cycles also occur.

System Register Set

The CCRO register (Table 2-11) determines if the 64K-byte memory area on
1M-byte boundaries and the 640K-byte to 1M-byte area are cacheable. This
register also enables certain functions associated with cache control, suspend
mode, and the clock-doubled mode.

Table 2—11. CCRO Bit Definitions

Bit Position Register Index Description
0 NCo Noncacheable 1M-byte boundaries:
If 1, sets the first 64K bytes at each 1M-byte boundary as noncacheable.
1 NC1 Noncacheable upper memory area:
If 1, sets 640K-byte to 1M-byte memory region noncacheable.
2 A20M Enable A20M# pin:
If 1, enables A20M#; otherwise pin is ignored.
3 KEN Enable KEN# pin:
If 1, enables KEN#; otherwise pin is ignored.
4 FLUSH Enable FLUSH# pin:
If 1, enables FLUSH#; otherwise pin is ignored.
5 BARB Enable cache flush during hold:
If 1, enables flushing of the internal cache when hold state is entered.
6 CKD Enable clock double:
If 1, enables clock-double mode.
If 0, disables clock-double mode.
7 SUS Enable suspend pins:

If 1, enables SUSP# and SUSPA#.
If 0, SUSPA# floats; SUSP# is ignored.

Programming Interface 2-27

System Register Set

The CCR1 register (Table 2-12) is used to set up internal cache operation and
system-management mode (SMM). The ARR registers (Figure 2—15 on page
2-29, Figure 2—16 on page 2-30, and Table 29 and Table 2—10 on page 2-26)
are used to define the location and size of the memory regions associated with
the internal cache. ARR1—-ARRS3 define three write-protected or noncache-
able memory regions as designated by CCR1 bits WP1-WP3. ARR4 defines
an SMM memory space or noncacheable memory region as defined by CCR1
bit SM4. Other CCR1 bits enable SMM pins and control SMM memory access.
The SMAC bit allows access to defined SMM space while notin an SM! service
routine. The MMAC bit allows access to main memory that overlaps with SMM
memory while in an SMI service routine for data access only.

Table 2—12. CCR1 Bit Definitions

Bit Position

Register Index Description

0
1

SMI

SMAC

MMAC

WP1

WP2

WP3

SM4

Reserved

Enable SMM pins:
If 1, SMi# and SMADS# are enabled.
If 0, SMI# is ignored and SMADSH# floats.

System management memory access:

If 1, noncode-segment prefixed data reads and writes to addresses within
the SMM memory space cause external bus cycles to be issued with
SMADS# active. SMI# is ignored.

If 0, no effect on access.

Main memory access:

If 1, alt noncode-segment prefixed data reads and writes which occur within
an SMI service routine (or when SMAC = 1) access main memory instead
of SMM memory space.

If 0, no effect on access.

Access region 1 control:
If 1, region 1 is write protected and cacheable.
If 0, region 1 is noncacheable.

Access region 2 control:
If 1, region 2 is write protected and cacheable.
If 0, region 2 is noncacheable.

Access region 3 control:
If 1, region 3 is write protected and cacheable.
If 0, region 3 is noncacheable.

Access region 4 control:
If 1, region 4 is noncacheable SMM memory space.

2-28

If 0, region 4 is noncacheable. SMI# input ignored.

System Register Set

The ARR registers define address regions using a starting address and a block
size. The noncacheable region block sizes range from 4K bytes to 4G bytes
(Table 2—13). Ablock size of zero disables the address region. The starting ad-
dress of the address region must be on a block size boundary. For example,
a 128K-byte block is allowed to have a starting address of OK bytes, 128K
bytes, 256K bytes, etc. The SMM memory region size is restricted to a maxi-
mum of 16M bytes. The block size must be defined for SMI# to be recognized.

Figure 2—-15. TI486SXLC Address Region Registers (ARR1—-ARR4)

Register Index = C5h Register Index = Céhr
A A
r AY4 Al
7 0 7 4 3 0
T
Starting Address Size ARR1
A23 A16 | A15 At2
Address Region 1
Register Index = C8h Register Index = C9h
A A
r AYA A
7 0 7 4 3 0
T
Starting Address Size ARR2
A23 Al16 | A15 At2
Address Region 2
Register Index = CBh Register Index = CCh
A A
4 AYA Al
7 0 7 4 3 0
T
Starting Address Size ARR3
A23 A16 | Al5 A12
Address Region 3
Register Index = CEh Register Index = CFh
A A
r AYA A
7 0 7 4 3 0
T
Starting Address Sizet ARR4
A23 A16 | A15 A12

Address Region 4

TARRA4 (Size) must be 4K bytes to 16M bytes if ARR4 is defined as SMM memory space.

Programming Interface 2-29

System Register Set

Figure 2-16. TI486SXL Address Region Registers (ARR1—-ARR4)

Register Index = C4h
A

Register Index = C5h

Register Index = Céh

A A
r N N A
7 07 07 43 0
T T
Starting Address Size ARR1
A31 A24 | A23 Al 6|A15 Al12
Address Region 1
Register Index = C7h Register Index = C8h Register Index = C9h
A A A
(\Y S AL A
7 07 07 43 0
T T
Starting Address Size ARR2
A31 A24 | A23 Al 6'A1 5 Ai2
Address Region 2
Register Index = CAh Register Index = CBh Register Index = CCh
A __A A
4 A\ N A
7 07 07 43 0
T T
Starting Address Size ARR3
A31 A24 A23 A16 A15 A12
1 1
Address Region 3
Register Index = CDh Register Index = CEh Register Index = CFh
A A A
C N YA
7 07 07 43 0
T T
Starting Address Sizet ARR4
A31 A24 \ A23 Al 6I A15 Al2
Address Region 4
TARR4 (Size) must be 4K bytes to 16M bytes if ARR4 is defined as SMM memory space.
Table 2-13.ARR1—ARR4 Block Size Field
Bits 3-0 Block Size Bits 3-0 Block Size
Oh Disabled 8h 512K bytes
1h 4K bytes 9h 1M bytes
2h 8K bytes Ah 2M bytes
3h 16K bytes Bh 4M bytes
4h 32K bytes Ch 8M bytes
5h 64K bytes Dh 16M bytes
6h 128K bytes Eh 32M bytes
7h 256K bytes Fh 4G bytes

2-30

System Register Set

2.5.5 Debug Registers

Six Debug registers (DR0—DRS3, DR6, and DR?7), shown in Figure 2—17 and
Figure 2—-18, support debugging on the TI486SXL(C) family of microproces-
sors. Memory addresses loaded in the Debug registers, referred to as break-
points, generate a debug exception when a memory access of the specified
type occurs to the specified address. A breakpoint can be specified for a partic-
ular kind of memory access such as a read or a write. Code and data break-
points can also be set allowing debug exceptions to occur whenever a given
data access (read or write) or code access (execute) occurs. The size of the
debug target can be setto 1, 2, or 4 bytes. The Debug registers are accessed
via MOV instructions that can be executed only at privilege level 0.

Figure 2-17. TI486SXLC Debug Registers

3 322222222221 111 11111
1 0987 65 432109876 5432 09876543210
LENR/WLENFt/WLENF{/WLENF{NV00(5001GLGLGLC—]LGLDR7
3 3 2 2 1 1 0 0 D E|E{3|3|2]|2|1[1]|0]0
B|B B|B|B|B
0000000000000000.'.800111111113210DR6
Reserved , DR5
Reserved DR4
Breakpoint 3 Linear Address DR3
Breakpoint 2 Linear Address DR2
Breakpoint 1 Linear Address DR1
Breakpoint 0 Linear Address DRO

All bits marked as 0 or 1 are reserved and should not be modified.

The Debug Breakpoint (n) Linear Address registers DRO—DR3 each contain
the linear address for one of four possible breakpoints. Each breakpoint is fur-
ther specified by bits in the Debug Control register (DR7). For each breakpoint
address in DRO—DRS3, there are corresponding fields L, R/W, and LEN in DR7
that specify the type of memory access associated with the breakpoint.

The R/W field can be used to specify execution as well as data-access break-
points. Instruction-execution and data-access breakpoints are always taken
before execution of the instruction that matches the breakpoint.

The Debug Status register (DR6) reflects conditions that were in effect at the
time the debug exception occurred. The contents of the DR6 register are not
automatically cleared by the processor after a debug exception occurs and
therefore should be cleared by software at the appropriate time. Table 2—14
lists the field definitions for the DR6 and DR7 registers.

Programming Interface 2-31

System Register Set

Figure 2—-18. TI486SXL Debug Registers

3322222222221 111 11111
1 0987 65 432109876 5432 09876254 3210
LEN [R'W | LEN | R/W | LEN | R'W | LEN | R/'W 00 GOOOGLGL G/L|GIL |G|L
3| 3|2 2|1]1]0]o0 D E|E|3(3|2|2|1[1 |0|0|DRY
B|B B|B|B|B
000000O0O0COO0 OOOCO OOTS101111 1 11 13210DR6
Breakpoint 3 Linear Address DR3
Breakpoint 2 Linear Address DR2
Breakpoint 1 Linear Address DR1
Breakpoint 0 Linear Address DRO
All bits marked as 0 or 1 are reserved and should not be modified.
Table 2—14.DR6 and DR7 Field Definitions
Number
Register Field Of Bits Description
DR6 Bi 1 Bi is set by the processor if the conditions described by DRi, R/Wi, and
LENi occurred when the debug exception occurred, even if the breakpoint
is not enabled via the Gi or Li bits.
BT 1 BT is set by the processor before entering the debug handler if a task
switch has occurred to a task with the T bit in the TSS set.
BS 1 BS is set by the processor if the debug exception was triggered by the
single-step-execution mode (TF flag in EFLAGS set).
DR7 R/Wi 2 Applies to the DRi Breakpoint (n) Linear Address register:
00 — Break on instruction execution only
01 — Break on data writes only
10 — Not used
11 — Break on data reads or writes
LENi 2 Applies to the DRi Breakpoint (n) Linear Address register:
00 — One-byte length
01 — Two-byte length
10 — Not used
11 — Four-byte length
Gi 1 If set to 1, breakpoint in DRi is globally enabled for all tasks and is not
cleared by the processor as the result of a task switch.
Li 1 If set to 1, breakpoint in DRI is locally enabled for the current task and is
cleared by the processor as the result of a task switch.
GD 1 Global disable of Debug register access. GD bit is cleared whenever a

debug exception occurs.

Code execution breakpoints can also be generated by placing the breakpoint
instruction (INT3) at the location where control is to be regained. The single-

2-32

System Register Set

step feature can be enabled by setting the TF flag in the EFLAGS register. This
causes the processor to perform a debug exception after the execution of
every instruction.

2.5.6 Test Registers

The five Test registers, shown in Figure 2—19, are used in testing the CPU’s
translation look-aside buffer (TLB) and on-chip cache. TR6 and TR7 are used
for TLB testing, and TR3—-TR5 are used for cache testing. Table 2-15 and
Table 2—16 list the bit definitions for the TR6 and TR7 registers.

Figure 2—-19. Test Registers

TLB Physical Address PCD |PWT|TLB LRU| O 0 |[PL] REP | 0 0 |TR?
31 12 11 10 9 8 7 6 5 4 3 2 1 0
TLB Linear Address \' D (D#|U/U#|R |R#¥/0 O 0 0| C|TR6
31 ’ i2 11 10 ¢ 8 7 6 5 4 3 2 1 0
Set Selection Line Ctl | TR5
Sel
31 i2 11 10 9 8 7 6 5 4 3 2 1 0
~—~— Valid —~
Cache Tag Addresst Bits BLK| 0 0 | TR4
31 24 9 8 7 6 5 4 3 2 1 0
Cache Data TR3
31 0
|| =Reserved

1 Bits 31-24 are reserved on the T1486SXLC.

2.5.6.1 TLB Test Registers

The microprocessor TLB is a four-way set-associative memory with eight en-
tries per set. Each TLB entry consists of a 24-bit tag and 20-bit data. The 24-bit
tag represents the high-order 20 bits of the linear address, a valid bit, and three
attribute bits. The 20-bit data portion represents the upper 20 bits of the physi-
cal address that corresponds to the linear address.

The TLB Test-Control register (TR6) contains a command bit, the upper 20 bits
of alinear address, a valid bit, and the attribute bits used in the test operation.
The contents of TR6 are used to create the 24-bit TLB tag during both write
and read (TLB lookup) test operations. The command bit defines whether the
test operation is a read or a write.

The TLB Test-Data register (TR7) contains the upper 20 bits of the physical
address (TLB data field), two LRU bits, and a control bit. During TLB write op-
erations, the physical address in TR7 is written into the TLB entry selected by

Programming Interface 2-33

System Register Set

the contents of TR6. During TLB lookup operations, the TLB data selected by
the contents of TR6 is loaded into TR7.

Table 2-15. TR6 and TR7 Bit Definitions

Register Bit
Name Position Description

TR6 31-12 Linear address
- TLB lookup: The TLB is interrogated per this address. If one and only one match
occurs in the TLB, the rest of the fields in TR6 and TR7 are updated per the
matching TLB entry.
TLB write: A TLB entry is allocated to this linear address.

11 Valid bit (V)
TLB lookup: Always set to 1
TLBwrite: Ifset, indicatesthatthe TLB entry contains valid data. If clear, target entry

is invalidated.
10-9 Dirty attribute bit and its complement (D, D#). (Refer to Table 2—16.)
8-7 User/supervisor attribute bit and its complement (U, U#). (Refer to Table 2-16.)
6-5 Read/write attribute bit and its complement (R, R#). (Refer to Table 2—16.)
0 Command bit (C)
If 0, TLB write

If 1, TLB lookup

TR7 31-12 Physical address
TLB lookup: data field from the TLB
TLB write: data field written into the TLB

11 Page-level cache disable bit (PCD). Corresponds to the PCD bit of a page-table
entry

10 Page-level cache write-through bit (PWT). Corresponds to the PWT bit of a
page-table entry

9-7 LRU bits

TLB lookup: LRU bits associated with the TLB entry prior to the TLB lookup
TLB write: ignored

4 PL bit
- TLB lookup: If 1, read hit occurred. If 0, read miss occurred.
TLBwrite: If 1, REP field is used to select the set. If 0, the pseudo-LRU replacement
algorithm is used to select the set.

3-2 Set selection (REP)
TLB lookup: If PLis 1, set in which the tag was found. If PL is 0, undefined data
TLB write: If PLis 1, selects one of the four sets for replacement. If PL is 0, ignored

Table 2-16. TR6 Attribute Bit Pairs

Bit (B) Bit Complement (Bi#) Effect on TLB Lookup Effect on TLB Write

0 0 Do not match Undefined
0 1 Maitch if the bit is 0 Ciear the bit
1 0 Match if the bit is 1 Set the bit
1 1 Match if the bitis 1 or 0 Undefined

2-34

System Register Set

2.5.6.2 Cache Test Registers

The microprocessor on-chip cache is 8K bytes in size and is configured as two-
way set associative.

The cache memory is physically split into two 4K-byte blocks each containing
1024 lines. Associated with each 4K-byte block are 256 twenty-bit tags imply-
ing there are four lines in a block that are associated with the same tag. These
four lines are consecutive at 16-byte boundaries. For each byte in aline, there
is a valid bit indicating which of the four data bytes actually contain valid data.
In addition, there is a valid bit associated with each block of four lines, which
when reset, indicates that none of the 16-bytes in the four lines of that block
contain valid data.

The LRU bit indicates which of the two sets was more recently accessed. The
LRU bit is uninitialized for a given set after RESET or FLUSH#. The set’s LRU
bit will remain uninitialized until the first read allocation to that set occurs. The
first cache allocation to a given set will be to way 1 and the LRU bit will than
be equalto 1. In a similar manner, the tag and valid bits of a given set and way
are uninitialized until a read allocation occurs and the block valid bit is set.

The microprocessor contains three Test registers that allow testing of its inter-
nal cache. Using these registers, cache test writes and reads can be per-
formed. Cache test writes cause the data in TR3 to be written to the selected
way and entry in the cache. Cache testreads allow inspection of the data, valid
bits, and the LRU bit for the cache entry. For data to be written to the allocated
entry, the valid bits for the entry must be set prior to the write of the data. Bit
definitions for the cache Test registers are shown in Table 2—17.

Programming Interface 2-35

System Register Set

Table 2—17. TR3—-TR5 Bit Definitions

Register Name

Bit Position

Description

TR3

31-0

Cache data
Cache read:
Cache write:

data accessed from the cache
to be written into the cache

TR4

31-12

6-3

Tag address
Cache read:
Cache write:

tag address from which data is read
data written into the tag address of the selected set

LRU
Cache read:
Cache write:

the LRU bit associated with the cache set
ignored

Valid bits
Cache read:
Cache write:

four valid bits for the accessed line, (one bit per byte)
valid bits written into the line

Block valid bit
Cache read: the block valid bit associated with the cache way
Cache write: the block valid bit written into the selected way

If 0, block is invalid (all 16 bytes are invalid).

If 1, block is valid (one or more bytes may be valid in 16-byte line).

TR5

12

1-4
3-2
1-0

Way selection
If 0, way 0 is selected.
If 1, way 1 is selected.

Set selection. Selects one of 256 sets
Line selection. Selects one of four lines

Control bits. These bits control reading or writing the cache.
If 00, ignored
If 01, cache write
If 10, cache read
If 11, cache invalidate

2-36

Memory Address Space

2.6 Memory Address Space

The T1486SXLC directly addresses up to 16M bytes of physical memory and
the T1486SXL directly addresses up to 4G bytes of physical memory. Memory
address space is accessed as bytes, words (16 bits), or doublewords (32 bits).
Words and doublewords are stored in consecutive memory bytes with the low-
order byte located in the lowest address. The physical address of a word or
doubleword is the byte address of the low-order byte.

With the T1486SXL(C) microprocessor family, memory can be addressed us-
ing nine different addressing modes. These addressing modes are used to cal-
culate an offset address often referred to as an effective address. Depending
on the operating mode of the CPU, the offset is then combined using memory-
management mechanisms to create and address a physical memory location.

Memory-management mechanisms on the microprocessor consist of seg-
mentation and paging. Segmentation allows each program to use several in-
dependent, protected address spaces. Paging supports a memory subsystem
that simulates a large address space using a small amount of RAM and disk
storage for physical memory. Either or both of these mechanisms can be used
for management of the microprocessor memory address space.

2.6.1 Offset Mechanism

The offset mechanism computes an offset (effective) address by summing up
to three values: the base, the index, and the displacement. The base, if pres-
ent, is the value in one of eight 32-bit General registers at the time of the execu-
tion of the instruction. The index, like the base, is a value that is determined
from one of the 32-bit General registers (except the ESP register) when the
instruction is executed. The index differs from the base in that the index is first
multiplied by a scale factor of 1, 2, 4 or 8 before the summation is made. The
third component of the memory address calculation is the displacement which
is a value of up to 32 bits in length supplied as part of the instruction.
Figure 2—20 illustrates the calculation of the offset address.

Figure 2-20. Offset Address Calculation

Index

Base Displacement

Scaling
x1, X2, x4, x8

Offset Address
(Effective Address)

Programming Interface 2-37

Memory Address Space

Nine valid combinations of the base, index, scale factor, and displacement can
be used with the T1486SXL(C) family instruction set. These combinations are
listed in Table 2—18. The base and index both refer to contents of a register as
indicated by [Base] and [Index].

Table 2—18.Memory Addressing Modés

Scale Displacement
Addressing Mode Base Index Factor (SF) (DP) Offset Address (OA) Calculation
Direct X OA =DP
Register indirect X OA = [BASE]
Based X X OA = [BASE] + DP
Index X X OA = [INDEX] + DP
Scaled index X X X OA = ([INDEX] * SF) + DP
Based index X X OA = [BASE] + [INDEX]
Based scaled X X X OA = [BASE] + ([INDEX] * SF)
index
Based index with X X X OA = [BASE] + [INDEX] + DP
displacement
Based scaled index X X X X OA = [BASE] + (INDEX] * SF) + DP

with displacement

2.6.2 Real-Mode Memory Addressing

In real-mode operation, the TI486SXL(C) family of microprocessors address
only the lowest 1M bytes (220) of memory. To calculate a physical memory ad-
dress, the 16-bit segment base address located in the selected Segment reg-
ister is shifted left by four bits and then the 16-bit offset address is added. For
the T1486SXLC, the resulting 20-bit address is then extended with four zeros
in the upper address bits to create the 24-bit physical address. For the
TI486SXL, the resulting 20-bit address is then extended with 12 zeros in the
upper address bits to create the 32-bit physical address. Figure 2-21 illus-
trates the real-mode address calculation. Address offsets larger than 65,535
cause a general protection fault. Physical addresses beyond 1M byte cause
a segment-limit-overrun exception.

Figure 2-21. Real-Mode Address Calculation

Offset Mechanism

Offset Address

Linear Address = Physical Address
+ »

Register

Selected Segment

x16

2-38

Memory Address Space

The addition of the base address and the offset address can result in a carry.
Therefore, the resulting address can actually contain up to 21 significant ad-
dress bits that address memory in the first 64K bytes above 1M byte.

2.6.3 Protected-Mode Memory Addressing

In protected mode, three mechanisms calculate a physical memory address.

[Offset mechanism that produces the offset or effective address as in real
mode

1 Selector mechanism that produces the base address

[d Optional paging mechanism that translates a linear address to the physi-
cal memory address

The offset and base address are added together to produce the linear address
as illustrated in Figure 2—22. If paging is not used, the linear address is used
as the physical memory address. If paging is enabled, the paging mechanism
is used to translate the linear address into the physical address. The offset
mechanism is described earlier in this section and applies to both the real and
protected modes. The selector and paging mechanisms are described in the
following paragraphs.

Figure 2-22. Protected-Mode Address Calculation

Offset Mechanism

Selector Mechanism

Offset Address
Linear Address * Opti Physical
a ptional
» i ; —» Memory
Paging Mechanism Address

Base Address

2.6.3.1 Selector Mechanism

Memory is divided into an arbitrary number of segments, each containing usu-
ally much less than the 232-byte (4G-byte) maximum.

The six Segment registers (CS, DS, SS, ES, FS and GS) each contain a 16-bit
selector thatis used when the register is loaded to locate a segment descriptor
in either the global-descriptor table (GDT) or the local-descriptor table (LDT).
The segment descriptor defines the base address, limit, and attributes of the
selected segment and is cached on the microprocessor as a result of loading
the selector. The cached descriptor contents are not visible to the programmer.
When a memory reference occurs in protected mode, the linear address is
generated by adding the segment base address in the hidden portion of the
Segment register to the offset address. If paging is not enabled, this linear ad-
dress is used as the physical memory address. Figure 2-23 illustrates the op-
eration of the selector mechanism.

Programming Interface 2-39

Memory Address Space

Figure 2-23. Selector Mechanism

15 0
{Accessed
Seledtor Index TI | RPL Selector Segment
l Register)
v
o Segment = Oo o T=1 Segment o
Descriptor \ Descriptor
Global-Descriptor Table Local-Descriptor Table
Memor Descriptor
Referer}:ce —» Cache ——» Base Address

2.6.3.2 Paging Mechanism

2-40

The paging mechanism supports a memory subsystem that simulates a large
address space with a small amount of RAM and disk storage. The paging
mechanism either translates a linear address to its corresponding physical ad-
dress or generates an exception if the required page is not currently present
in RAM. When the operating system services the exception, the required page
is loaded into memory and the instruction is then restarted. Pages are always
4K bytes in size and are aligned to 4K-byte boundaries.

A page is addressed by using two levels of tables as illustrated in Figure 2—24.
The upper 10 bits of the 32-bit linear address are used to locate an entry in the
page-directory table. The page-directory table acts as a master index of up to
1K individual 32-bit pointers to second-level page tables. The selected entry
in the page-directory table, referred to as the directory-table entry, identifies
the starting address of the second-level page table. The page-directory table

~ itself is a page and is therefore aligned to a 4K-byte boundary. The physical

address of the current page directory is stored in the CR3 Control register, also
referred to as the Page-Directory Base register (PDBR).

Memory Address Space

Figure 2-24. Paging Mechanism

Linear Address
31 v 22 21 s 12 11 v 0
Directory-Table Index Page-Table Index Page-Frame Offset
(DTI) (PTI) (PFO)
Directory Table Page Table Page Frame
4 KB 4 KB 4 KB
»| Physical Data
—P, PTE
—> DTE
> 0 > 0 » 0

CR3 | Control Register

Bits 12-21 of the 32-bit linear address, referred to as the page-table index, lo-
cate a 32-bit entry in the second-level page table. This page-table entry (PTE) _
contains the base address of the desired page frame. The second-level page-
table addresses up to 1K individual page frames. A second-level page table
is 4K bytes in size and is itself a page. The lower 12 bits of the 32-bit linear
address, referred to as the page-frame offset, locate the desired data within
the page frame.

Since the page-directory table can point to 1K page tables, and each page
table can point to 1K page frames, a total of 1M page frames can be imple-
mented. Since each page contains 4K bytes, up to 4G bytes of virtual memory
can be addressed by the microprocessor with a single page-directory table.

In addition to the base address of the page table or the page frame, each direc-
tory-table entry or page-table entry contains attribute bits and a present bit, as
illustrated in Figure 2—25 and listed in Table 2—19.

Figure 2-25. Directory- and Page-Table Entry (DTE and PTE) Format

31

12 11 10 9

Base Address

Available WR| P

Reserved

Programming Interface 2-41

Memory Address Space

Table 2—-19.Directory- and Page-Table Entry (DTE and PTE) Bit Definitions

Bit Position Field Name Description

31-12

Base
Address

PCD

u/s

W/R

Specifies the base address of the page or page-table

Undefined and available to the programmer
Reserved and not available to the programmer

Dirty bit. If set, indicates that a write access has occurred to the page (PTE only,
undefined in DTE)

Accessed flag. If set, indicates that a read access or write access has occurred
to the page

Page caching disable flag. If set, indicates that the page is not cacheable in the
on-chip cache

Reserved and not available to the programmer

User/supervisor attribute. If set (user), page is accessibie at all privilege levels.
If clear (supervisor), page is accessible only when CPL < 2.

Write/read attribute. If set (write), page is writable. If clear (read), page is read
only.

Present flag. If set, indicates that the page is present in RAM memory and
validates the remaining DTE/PTE bits. If clear, indicates that the page is not
present in memory and that the remaining DTE/PTE bits can be used by the
programmer

If the present bit (P) is set in the DTE, the page table is present and the ap-
propriate page-table entry is read. If P = 1 in the corresponding PTE (indicating
that the page is in memory), the accessed and dirty bits are updated and the
operand is fetched. Both accessed bits (DTE and PTE) are set, if necessary,
to indicate that the table and the page have been used to translate a linear ad-
dress. The dirty bit (D) is set before the first write is made to a page.

The present bits must be set to validate the remaining bits inthe DTE and PTE.
If either of the present bits is not set, a page fault is generated when the DTE
or PTE is accessed. If P =0, the remaining DTE/PTE bits are available for use
by the operating system. For example, the operating system can use these bits
to record where on the hard disk the pages are located. A page fault is also
generated if the memory reference violates the page-protection attributes.

2.6.3.3 Translation Look-Aside Buffer

2-42

The translation look-aside buffer (TLB) is a cache for the paging mechanism
and replaces the two-level page-table lookup procedure for cache hits. The
TLB is a four-way, set-associative, 32-entry, page-table cache that automati-
cally keeps the most commonly used page-table entries in the processor. The
32-entry TLB coupled with a 4K page size results in coverage of 128K bytes
of memory addresses.

The TLB must be flushed when entries in the page tables are changed. The
TLB is flushed whenever the CR3 register is loaded. An individual entry in the
TLB can be flushed using the INVLPG instruction.

Interrupts and Exceptions

2.7

2741

Interrupts and Exceptions

Interrupts

The processing of either an interrupt or an exception changes the normal se-
quential flow of a program by transferring program control to a selected service
routine. Except for SMM interrupts, the location of the selected service routine
is determined by one of the interrupt vectors stored in the interrupt-descriptor
table.

Alltrue interrupts are hardware interrupts and are generated by signal sources
external to the CPU. All exceptions, including so-called software interrupts,
are produced internally by the CPU.

External events can interrupt normal program execution by using one of the
three interrupt pins on the TI486SXL(C) family of microprocessors.

[Nonmaskable Interrupt (NMI pin)
1 Maskable Interrupt (INTR pin)
1 SMM Interrupt (SMI# pin)

For most interrupts, program transfer to the interrupt routine occurs after the
current instruction has been completed. When the execution returns to the
original program, it begins immediately following the interrupted instruction.

The NMI interrupt cannot be masked by software and always uses interrupt
vector 2 to locate its service routine. Since the interrupt vector is fixed and is
supplied internally, no interrupt-acknowledge bus cycles are performed. This
interrupt is usually reserved for unusual situations such as parity errors and
has priority over INTR interrupts.

Once NMI processing has started, no additional NMIs are processed until an
IRET instruction is executed, typically at the end of the NMI service routine.
IfNMl is re-asserted prior to the execution of the IRET instruction, one and only
one NMI rising edge is stored and then processed after execution of the next
IRET.

During the NMI service routine, maskable interrupts are still enabled. If an un-
masked INTR occurs during the NMI service routine, the INTR is serviced and
execution returns to the NMI service routine following the next IRET. If a HALT
instruction is executed within the NMI service routine, the microprocessor re-
starts execution only in response to RESET, an unmasked INTR, or an SMM
interrupt. NMI does not restart CPU execution under this condition.

The INTR interrupt is unmasked when the interrupt enable flag (IF) in the
EFLAGS register is set to 1. With the exception of string operations, INTR in-
terrupts are acknowledged between instructions. Long string operations have
interrupt windows between memory moves that allow INTR interrupts to be ac-
knowledged.

When an INTR interrupt occurs, the CPU performs two locked interrupt-ac-
knowledge bus cycles. During the second cycle, the CPU reads an 8-bit vector
that is supplied by an external interrupt controller. This vector selects which of

Programming Interface 2-43

Interrupts and Exceptions

2.7.2 Exceptions

the 256 possible interrupt handlers will be executed in response to the inter-
rupt.

The SMM interrupt has higher priority than either the INTR or NMI. After SMI#
is asserted, program execution is passed to an SM! service routine that runs
in SMM address space reserved for this purpose. The remainder of this sub-
section (2.7.2, Exceptions, through 2.7.6, Error Codes, page 2-48) does not
apply for SMM interrupts. SMM interrupts are described in Section 2.8, Sys-
tem-Management Mode, page 2-49.

Exceptions are generated by an interrupt instruction or a program error. Ex-
ceptions are classified as traps, faults, or aborts depending on the mechanism
used to report them and the restartability of the instruction that first caused the
exception.

2.7.2.1 Trap Exceptions

A trap exception is reported immediately following the instruction that gener-
ated the trap exception. Trap exceptions are generated by execution of a soft-
ware interrupt instruction during single stepping, at a breakpoint, or by soft-
ware interrupt instruction (INTO, INT3, INTn, BOUND) by a single-step opera-
tion, or by a data breakpoint.

Software interrupts can be used to simulate hardware interrupts. For example,
an INTn instruction causes the processor to execute the interrupt service rou-
tine pointed to by the nth vector in the interrupt table. Execution of the interrupt
service routine occurs regardless of the state of the IF flag in the EFLAGS reg-
ister.

The one-byte INT3, or breakpoint-interrupt (vector 3), isa particular case of
the INTn instruction. By inserting this one-byte instruction in a program, the
user can set breakpoints in code that can be used during debug.

Single-step operation is enabled by setting the TF bit in the EFLAGS register.
When TF is set, the CPU generates a debug exception {(vector 1) after the
execution of every instruction. Data breakpoints also generate a debug excep-
tion and are specified by loading the Debug registers (DRO—DR7) with the ap-
propriate values.

2.7.2.2 Fault Exceptions

2-44

A fault exception is caused by a program error and is reported prior to comple-
tion of the instruction that generated the exception. By reporting the fault prior
to instruction completion, the CPU is left in a state that allows the instruction
to be restarted and the effects of the faulting instruction to be nullified. Fault
exceptions include divide-by-zero errors, invalid opcodes, page faults, and co-
processor errors. Debug exceptions (vector 1) are also handled as faults (ex-
cept for data breakpoints and single-step operations). After execution of the
fault service routine, the instruction pointer points to the instruction that caused
the fault.

Interrupts and Exceptions

2.7.2.3 Abort Exceptions

An abort exception is a type of fault exception severe enough that the CPU
cannot restart the program at the faulting instruction. Abort exceptions include
the double fault (vector 8) and coprocessor segment overrun (vector 9).

2.7.3 Interrupt Vectors

When the CPU services an interrupt or exception, the current program’s
instruction pointer and flags are pushed onto the stack to allow resumption of
execution of the interrupted program. In protected mode, the processor also
saves an error code for some exceptions. Program control is then transferred
to the interrupt handier (also called the interrupt service routine). Upon execu-
tion of an IRET at the end of the service routine, program execution resumes
at the instruction-pointer address saved on the stack when the interrupt was
serviced.

2.7.3.1 Interrupt-Vector Assignments

Each interrupt (except SMI#) and each exception is assigned one of 256 inter-
rupt-vector numbers (Table 2—20). The first 32 interrupt-vector assignments
are defined or reserved. INT instructions acting as software interrupts can use
any of the interrupt vectors, 0 through 255. The nonmaskable hardware inter-
rupt (NMI) is assigned vector 2.

In response to a maskable hardware interrupt (INTR), the microprocessor is-
sues interrupt-acknowledge bus cycles used to read the vector number from
external hardware. These vectors should be in the vector range of 32—255 be-
cause vectors 0—31 are predefined.

2.7.3.2 Interrupt-Descriptor Table

The interrupt-vector number is used by the microprocessor to locate an entry
in the interrupt-descriptor table (IDT). In real mode, each IDT entry consists
of a four-byte far pointer to the beginning of the corresponding interrupt service
routine. In protected mode, each IDT entry is an eight-byte descriptor. The In-
terrupt-Descriptor-Table register (IDTR) specifies the beginning address and
limit of the IDT. Following reset, the IDTR contains a base address of Oh with
a limit of 3FFh.

The IDT can be located anywhere in physical memory as determined by the
IDTR register. The IDT can contain different types of descriptors: interrupt
gates, trap gates, and task gates. Interrupt gates are used mainly to enter a
hardware interrupt handler. Trap gates are generally used to enter an excep-
tion handler or software interrupt handler. If an interrupt gate is used, the inter-
rupt enable flag (IF) in the EFLAGS register is cleared before the interrupt han-
dler is entered. Task gates are used to make the transition to a new task.

Programming Interface 2-45

Interrupts and Exceptions

Table 2-20. Interrupt-Vector Assignments

274

2-46

Interrupt Vector Function Exception Type

0 Divide error Fault

1 Debug exception Trap (see Note)

2 NMI interrupt —

3 Breakpoint Trap

4 Interrupt on overflow Trap

5 BOUND range exceeded Fault

6 Invalid opcode Fault

7 Device not available Fault

8 Double fault Abort

9 Coprocessor segment overrun Abort

10 Invalid TSS Fault

11 Segment not present Fault

12 Stack fault Fault

13 General-protection fault Fault

14 Page fault Fault/Trap

15 Reserved —_

16 Coprocessor error Fault

17 Alignment-check exception Fault
18-31 Reserved —_
32-255 Maskable hardware interrupts Trap
0-255 Programmed interrupt Trap

Note: Some debug exceptions may report traps on the previous instruction and faults on the
next instruction.

Interrupt and Exception Priorities

Asthe TI486SXL(C) family of microprocessors executes instructions, each fol-
lows a consistent policy for prioritizing exceptions and hardware interrupts as
listed in Table 2—21. SMM interrupts always take precedence. Debug traps for
the previous instruction and next instruction are handled in the next priority.
When NMI and maskable INTR interrupts are both detected at the same
instruction boundary, the microprocessor services the NMI interrupt first.

The microprocessor checks for exceptions in parallel with instruction decoding
and execution. Several exceptions can result in a single instruction. However,
only one exception is generated upon each attempt to execute the instruction.
Each exception service routine should make the appropriate corrections to the
instruction and then restart the instruction. In that way, exceptions can be serv-
iced until the instruction executes properly.

The microprocessor supports instruction restart after all faults except when an
instruction causes a task switch to a task whose task-state segment (TSS) is

Interrupts and Exceptions

partially not present. A TSS can be partially not present if the TSS is not page
aligned and one of the pages (where the TSS resides) is not currently in

memory.

Table 2-21. Interrupt and Exception Priorities

Priority Description Notes
1 Debug traps and faults from previous Includes single-step trap and data breakpoints
instruction specified in the Debug registers
2 Debug traps for next instruction Includes instruction execution breakpoints
specified in the Debug registers
3 Nonmaskable hardware interrupt Caused by NMI asserted
4 Maskable hardware interrupt Caused by INTR asserted and IF = 1
5 Faults resulting from fetching the next Includes segment not present,
instruction general-protection fault, and page fault
6 Faults resulting from instruction decoding Includes illegal opcode, instruction too long,
and privilege violation
7 WAIT instruction and TS = 1 and MP = 1 Device not available exception generated
8 ESC instruction and EM =1 0or TS = 1 Device not available exception generated
9 Coprocessor-error exception Caused by ERROR# asserted
10 Segmentation faults (for each memory Includes segment not present, stack fault, and
reference required by the instruction) that general-protection fault
prevent transferring the entire memory operand
1 Page faults that prevent transferring the entire —
memory operand
12 Alignment-check fault —

2.7.5 Exceptions in Real Mode

Many of the exceptions described in Table 2—20 are not applicable in real
mode. Exceptions 10, 11, and 14 do not occur in real mode. Other exceptions
have slightly different meanings in real mode, as listed in Table 2-22.

Table 2-22. Exception Changes in Real Mode

Vector Number Protected-Mode Function Real Mode Function

8 Double fault Interrupt table limit overrun
10 Invalid TSS —
11 Segment not present —
12 Stack fault SS segment limit overrun
13 General-protection fault CS, DS, ES, FS, GS segment
limit overrun
14 Page fault —

Programming Interface 2-47

Interrupts and Exceptions

2.7.6 Error Codes

When operating in protected mode, the following exceptions generate a 16-bit

error code:

Double fault
Alignment check
Invalid TSS
Segment not present
Stack fault

ogodoood

Page fault

General-protection fault

The error-code format is shown in Figure 2-26 and the error-code bit defini-
tions are listed in Table 2—-23. Bits 15—3 (selector index) are not meaningful
if the error code was generated as the result of a page fault. The error code
is always zero for double faults and alignment-check exceptions.

Figure 2-26. Error-Code Format

15 3 1 0
Selector Index S2|S81(8S0
Table 2-23. Error-Code Bit Definitions
Selector
Fault Index
Type (Bits 15-3) S2 (Bit 2) S1 (Bit 1) S0 (Bit 0)
Pagefault Reserved Fault caused by: Fault occurred during: Fault occurred during:
0 = not present page 0 =read access 0 = supervisor access
1 = page-level protec- 1 = write access 1 = user access
tion violation
IDT fault Index of faulty = Reserved 1 If set, the exception
IDT selector occurred while trying to
invoke exception or
hardware interrupt handler.
Segment Index of faulty Tl bit of faulty selector 0 If set, the exception
fault selector occurred while trying to
invoke exception or

hardware interrupt handler.

2-48

System-Management Mode

2.8 System-Management Mode

System-management mode (SMM) provides an additional interrupt that can
be used for system power management or software-transparent emulation of
I/O peripherals. SMM is entered using the software-management interrupt
(SMI#) which has a higher priority than any other interrupt, including NMI. After
receiving an SMI#, portions of the CPU state are automatically saved, SMM
is entered and program execution begins at the base of SMM space
(Figure 2-27 and Figure 2—28). Running in protected SMM address space,
the interrupt routine does not interfere with the operating system or any ap-
plication program.

Seven SMM instructions have been added to the TI486SXL(C) microproces-
sor family instruction set that permit saving and restoring the total CPU state
when in SMM mode. Two new pins, SMi# and SMADS#, support SMM func-
tions.

Figure 2-27. TI486SXLC Memory and I/O Address Spaces

Physical Potential
Memory Space SMM Addres Space
FF FFFFh FF FFFFh \
Physical Defined
Memory SMM
16M bytes Address
Space
4K bytes to S SMADS# > ADS#
16M bytes Active Active

00 0000h 00 0000h /

Non-SMM Mode SMM Mode
ADS# Active

Programming Interface 2-49

System-Management Mode

Figure 2-28. TI486SXL Memory and I/O Address Spaces

FFFF FFFFh

0000 0000h

Physical Potential
Memory Space SMM Address Space
FFFF FFFFh \
Physical Defined
Memory SMM
4G bytes Address
Space
4K bytes to / > SMADS# . ADS#
16M bytes Active Active
0000 0000h /
Non-SMM Mode SMM Mode

ADS# Active

2.8.1 SMM Operations

2-50

SMM operation is summarized in Figure 2—29. Entering SMM requires the
assertion of SMI# for at least four CLK2 periods. For the SMI# input to be rec-
ognized, the following Configuration register bits must be set as shown below:

SMmI CCR1(1) =1
SMAC CCRi(2) =0
SM4 CCR1(7) = 1
ARR4 SIZE(3-0) >0

The Configuration registers are discussed in subsection 2.5, System Register
Set, page 2-16. After recognizing SMi# and prior to executing the SMi service
routine, some of the CPU-state information is changed. Prior to modification,
this information is automatically saved in the SMM memory-space header lo-
cated at the top of the SMM memory space. After the header is saved, the CPU
enters real mode and begins executing the SMI service routine starting at the
SMM memory base address.

The SMI service routine is user definable and may contain system or power-
management software. If the power-management software forces the CPU
to power down, or if the SMI service routine modifies more than what is auto-
matically saved, the complete CPU-state information must be saved.

System-Management Mode

Figure 2-29. SMM Execution Flow Diagram

SMI# Sampled Active

v

CPU State Stored in SMM
Address-Space Header

v

Program Flow Transfers
to SMM Address Space

v

CPU Enters Real Mode

v

Execution Begins at SMM
Address-Space Base Address

v

RSM Instruction Restores CPU
State Using Header Information

v

Normal Execution Resumes

A complete CPU-state save is performed by using MOV instructions to save
normally accessible information, and by using the SMM instructions to save
CPU information that is not normally accessible to the programmer. As will be
explained, SMM instructions (SVDC, SVLDT, and SVTS) are used to store the
LDTR, TSR, and Segment registers and their associated descriptor cache en-
tries in 80-bit memory locations. After power up or at the end of the SMI service
routine, the MOV and additional SMM instructions (RSDC, RSLDT, and RSTS)
are used to restore the CPU state. The SMM RSM instruction returns the CPU
to normal execution.

2.8.2 SMM Memory Space Header

With every SMI interrupt, certain CPU-state information is automatically saved
in the SMM memory space header located at the top of SMM address space
(Table 2—24 and Figure 2-30). The header contains CPU-state information
that is modified when servicing an SMI interrupt. Included in this information
are two pointers. The current IP points to the instruction executing when the
SMI was detected. The next IP points to the instruction that will be executed
after exiting SMM. Also saved are the contents of Debug register 7 (DR7), the
extended Flag Word register (EFLAGS), and Control register 0 (CRO). If SMM
has been entered due to an I/O trap for a REP INSx or REP OUTSx instruction,
the current IP and next IP fields (Table 2—24) contain the same addresses and
the [and P fields contain valid information.

Programming Interface 2-51

System-Management Mode

Table 2-24. SMM Memory Space Header

Name Description Size

DR7 The contents of the Debug register 7 4 bytes
EFLAGS The contents of the extended flag register 4 bytes
CRO The contents of the Control register 0 4 bytes
Current IP The address of the instruction executed prior to servicing the SMI interrupt 4 bytes
Next IP The address of the next instruction that will be executed after exiting the SMM mode 4 bytes
CS Selector Code Segment register selector for the current code segment 2 bytes
CS Descriptor Code register descriptor for the current code segment 8 bytes
P REP INSx/OUTSxT indicator 1 bit

P is 1 if current instruction has a REP prefix
P is O if current instruction does not have REP prefix

| IN, INSx, OUT, or OUTSx Indicator 1 bit
lis 1 if current instruction performed is an I/O WRITE
lis 0if current instruction performed is an /O READ

ES! or EDI Restored ESI or EDI value. Used when it is necessary to repeat a REP OUTSx or 4 bytes
REP INSx instruction when one of the I/O cycles caused an SMI# trap

TINSx = INS, INSB, INSW, or INSD insiruction, and OUTSx = OUTS, OUTSB, OUTSW, or OUTSD instruction.

Figure 2-30. SMM Memory Space Header

31 0
Top of SMM —»
AJ?:iress Space DR7 -4h
EFLAGS
-8h
CRO
-Ch
Current IP 10h
Next IP)
31 16 15 01.14h
Reserved CS Selector h
-18
CS Descriptor (Bits 63-32)
- - -1Ch
31 CS Descriptor (Bits 31-0) 210 o0h
Reserved Pl
-24h
Reserved
-28h
Reserved
-2Ch
ESI or EDI
-30h

2.8.3 SMM Instructions

The TI486SXL(C) microprocessor family automatically saves the minimal
amount of CPU-state information when entering SMM that allows fast SM| ser-
vice routine entry and exit. After entering the SMI service routine, the MOV,
SVDC, SVLDT, and SVTS instructions can be used to save the complete CPU

2-52

System-Management Mode

state information. If the SMI service routine either modifies more than what is
automatically saved or forces the CPU to power down, the complete CPU-
state information must be saved. Since the TI486SXL(C) microprocessors are
static devices, their internal state is retained when the input clock is stopped.
Therefore, an entire CPU-state save is not necessary prior to stopping the in-
put clock.

The new SMM instructions, listed in Table 2-25, can be executed only if:
(a) the current privilege level (CPL) =0 and the SMAC bit (CCR1, bit 2) is set;
or (b) CPL=0andthe CPUisin an SMI service routine (SMI# = 0). If both these
conditions are not met and an atiempt is made to execute an SMM instruction,
an invalid-opcode exception is generated. These instructions can be executed
outside of defined SMM space provided the above conditions are met. All of
the SMM instructions (except RSM) save or restore 80 bits of data, allowing
the saved values to include the hidden portion of the register contents.

Table 2-25. SMM Instruction Set

Instruction Opcode

Format Description

SVvDC OF 78 [mod sreg3 r/m] SVDC mem80t, sreg3 Save Segment register and Descriptor

Saves reg DS, ES, FS, GS, or SS to mem80

RSDC OF 79 [mod sreg3 r/m] RSDC sreg3, mem80 Restore Segment register and Descriptor

Restores reg DS, ES, FS, GS, or SS from
mem80
(CS is automatically restored with RSM)

SVLDT OF 7A [mod 000 r/m] SVLDT mem80 Save LDTR and Descriptor

Saves local-descriptor table (LDTR) to
mem80

RSLDT OF 7B [mod 000 r/m] RSLDT mem80 Restore LDTR and Descriptor

Restores local-descriptor table (LDTR) from
mem80

SVTS OF 7C [mod 000 r/m] SVTS mem80 Save TSR and Descriptor

Save Task-State register (TSR) to mem80

RSTS OF 7D [mod 000 r/m] RSTS mem80 Restore TSR and Descriptor

RSM OF AA

Restores Task-State register (TSR) from
mem80

RSM Resume Normal Mode
Exits SMM mode. The CPU state is restored
using the SMM memory space header and
execution resumes at interrupted point.

T mem80 = 80-bit memory location.

Programming Interface 2-53

System-Management Mode

2.8.4 SMM Memory Space

SMM memory space is defined by assigning address region 4 to SMM memory
space. This assignment is made by setting bit 7 (SM4) in the on-chip CCR1
register. ARR4, also an on-chip Configuration register, specifies the base ad-
dress and size of the SMM memory space. The base address must be a multi-
ple of the SMM memory space size. For example, a 32K-byte SMM memory
space must be located at a 32K-byte address boundary. The memory space
size can range from 4K bytes to 16M bytes.

SMM memory space accesses can use address pipelining, and are always
noncacheable. SMM accesses ignore the state of the A20M# input and drive
the A20 address bit to the unmasked value.

Access to the SMM memory space can be made while not in SMM mode by
setting the system-management access (SMAC) bitin the CCR1 register. This
feature can be used to initialize the SMM memory space.

While in SMM mode, SMADS# address strobes are generated instead of
ADS# for SMM memory accesses. Any memory accesses outside the defined
SMM space result in normal memory accesses and ADS# strobes. Data
(noncode) accesses to main memory that overlap defined SMM memory
space are allowed if bit 3 in CCR1 (MMAC) is set. In this case, ADS# strobes
are generated for data accesses only and SMADS# strobes continue to be
generated for code accesses.

2.8.5 SMI Service Routine Execution

2-54

Upon entry into SMM after the SMM header has been saved, the CRO,
EFLAGS, and DRY registers are set to their reset values. The Code Segment
(CS) register is loaded with the base and limits defined by the ARR4 register
and the SMI service routine begins execution at the SMM base address in real
mode.

The routine must then save the value of any registers that can be changed by
the SMI service routine. For data accesses immediately after entering the SMi
service routine, the routine must use CS as a segment override. 1/O port ac-
cess is possible during the routine but care must be taken to save registers
modified by the 1/O instructions. Before using a Segment register, the regis-
ter’s descriptor-cache contents should be saved using the SVDC instruction.
While executing in SMM space, execution flow can transfer to normal memory
locations.

Hardware interrupts (INTRs and NMIs) can be serviced during an SMI service
routine. If interrupts are to be serviced while operating in SMM memory space,
the SMM memory space must be within the 0 to 1M-byte address range to as-
sure proper return to the SMI service routine after handling the interrupt.
INTRs are automatically disabled when entering SMM since the IF flag is set
to its reset value. However, NMIs remain enabled. If itis desired to disable NMI,
itshould be done immediately after entering the SMI service routine by the sys-
tem hardware logic.

Within the SMI service routine, protected mode can be entered and exited as
required, and real- or protected-mode device drivers can be called.

System-Management Mode

To exit the SMI service routine, a resume (RSM) instruction, rather than an
IRET, is executed. The RSM instruction causes the microprocessor to restore
the CPU state using the SMM header information and resume execution at the
interrupted point. If the full CPU state was saved by the programmer, the stored
values should be reloaded prior to executing the RSM instruction using the
MOV and the RSDC, RSLDT, and RSTS instructions.

2.8.6 CPU States Related to SMM and Suspend Mode

The state diagram shown in Figure 2-31 illustrates the various CPU states
associated with SMM and suspend mode. While in the SMI service routine, the
TI486SXL(C) microprocessor family can enter suspend mode either by
executing a HALT instruction or by asserting the SUSP# input.

During SMM operation and while in SUSP#-initiated suspend mode, an occur-
rence of either NMI or INTR is latched. In order for INTR to be latched, the IF
flag must have been set. The INTR or NMI is serviced after exiting suspend
mode. '

If suspend mode is entered via a HALT instruction from the operating system
or application software, the reception of an SMI# interrupt causes the CPU to
exit suspend mode and enter SMM. If suspend mode is entered via the hard-
ware (SUSP# = 0) while the operating system or application software is active,
the CPU latches one occurrence of INTR#, NMI, and SMi#.

Programming Interface 2-55

System-Management Mode

Figure 2-31. SMM and Suspended-Mode Flow Diagram

Suspend Mode
(SUSPA# = 0)

NMI or INTR

Interrupt
Service

HALT*

RESET

Non-SMM Oerations

SMM Operations

INTR or NMI

Interrupt
Service
Routine

* Instructions

2-56

OS/Application
Software

Routine

SMI Service

(SMI# = 0)

SUSP# =0

SUSP# = 1

Suspend Mode

(SUSPA#

=0)

(INTR and NMI
Latched)

Routine

Suspend Mode
(SUSPA# = 0)

SUSP# =1
(INTR, NMI, and SMI Latched)

HALT*
Suspend Mode
(SUSPA# = 0)
IRET*
INTR and NMI
Interrupt
Service
Routine

Shutdown and Halt / Protection

2.9 Shutdown and Halt

2.10 Protection

Shutdown occurs when a severe error is detected that prevents further proces-
sing. An NMI input can bring the processor out of shutdown if the IDT limit is
large enough to contain the NMI interrupt vector (at least 000Fh) and the stack
has enough room to contain the vector and flag information (i.e., stack pointer
is greater than 0005h). Otherwise, shutdown can be exited only by a processor
reset.

The halt (HLT) instruction stops program execution and prevents the proces-
sor from using the local bus until restarted. The microprocessor then enters
a low-power suspend mode. INTR with interrupts enabled (IF bit in
EFLAGS = 1), SMI, NMI, or RESET forces the CPU out of the halt state. If in-
terrupted, the saved code segment and instruction pointer specify the instruc-
tion following the HLT.

Segment protection and page protection are safeguards built into the
TI1486SXL(C) microprocessor family protected-mode architecture that deny
unauthorized or incorrect access to selected memory addresses. These safe-
guards allow multitasking programs to be isolated from each other and from
the operating system. Page protection is discussed in subsection 2.6.3, Pro-
tected-Mode Memory Addressing, page 2-39. This section concentrates on
segment protection.

Selectors and descriptors are the key elements in the segment-protection
mechanism. The segment base address, size, and privilege level are estab-
lished by a segment descriptor. Privilege levels control the use of privilege

~instructions, 1/O instructions, and access to segments and segment descrip-

tors. Selectors are used to locate segment descriptors.

Segment accesses are divided into two basic types, those involving code seg-
ments (e.g., control transfers) and those involving data accesses. The ability
of a task to access a segment depends on:

[the segment type

[the instruction requesting access

[the type of descriptor used to define the segment
[the associated privilege levels

Data stored in a segment can be accessed only by code executing at the same
or a more privileged level. A code segment or procedure can be called only by
a task executing at the same or a less privileged level.

2.10.1 Privilege Levels

The values for privilege levels range between 0 and 3. Level 0 is the highest
privilege level (most privileged), and level 3 is the lowest privilege level (least
privileged). The privilege level in real mode is effectively 0.

The descriptor privilege level (DPL) is the privilege level defined for a segment
in the segment descriptor. The DPL field specifies the minimum privilege level
needed to access the memory segment pointed to by the descriptor.

Programming Interface 2-57

Protection

The current privilege level (CPL) is defined as the current task’s privilege level.
The CPL of an executing task is stored in the hidden portion of the Code Seg-
ment register and essentially is the DPL for the current code segment.

The requested privilege level (RPL) specifies a selector’s privilege level and
is used to distinguish between the privilege level of a routine actually acces-
sing memory (the CPL), and the privilege level of the original requestor (the
RPL) of the memory access. The lower privilege level (0 is highest) of RPL and
CPL is called the effective privilege level (EPL). Therefore, if RPL =0 in a seg-
ment selector, the effective privilege level is always determined by the CPL.
If RPL = 3, the effective privilege level is always 3 regardless of CPL.

For a memory access to succeed, the effective privilege level (EPL) must be
at least as privileged as the descriptor privilege level (EPL > DPL). If the EPL
is less privileged than the DPL (EPL < DPL), a general-protection fault is gen-
erated. For example, if a segment has a DPL = 2, an instruction accessing the
segment succeeds only if executed with an EPL > 2.

2.10.2 I/O Privilege Levels

The I/O privilege level (IOPL) allows the operating system executing at
CPL = 0 to define the least-privileged level at which IOPL-sensitive instruc-
tions can be used unconditionally. The IOPL-sensitive instructions include
CLI, IN, OUT, INS, OUTS, REP INS, REP OUTS, and STI. Modification of the
IF bit in the EFLAGS register is also sensitive to the 1/O privilege level.

The IOPL is stored in the EFLAGS register. An /O permission bit map is avail-
able as defined by the 32-bit task-state segment (TSS). Since each task can
have its own TSS, access to individual I/O ports can be granted through sepa-
rate I/O permission bit maps.

If CPL < IOPL, IOPL-sensitive operations can be performed. If CPL > IOPL,
a general-protection fault is generated if the current task is associated with a
16-bit TSS. If the current task is associated with a 32-bit TSS and CPL > IOPL,
the CPU consults the I/O permission bit map in the TSS to determine on a port-
by-port basis whether or not I/O instructions (IN, OUT, INS, OUTS, REP INS,
REP OUTS) are permitted, and the remaining IOPL-sensitive operations gen-
erate a general-protection fault.

2.10.3 Privilege Level Transfers

A task’s CPL can be changed only through intersegment control transfers us-
ing gates or task switches to a code segment with a different privilege level.
Control transfers result from exception and interrupt servicing and from execu-
tion of the CALL, JMP, INT, IRET, and RET instructions.

2.10.3.1 Control Transfers

2-58

The five types of control transfers are summarized in Table 2-26. Control
transfers can be made only when the operation causing the control transfer
references the correct descriptor type. Any violation of these descriptor-usage
rules causes a general-protection fault.

Protection

Table 2-26. Descriptor Types Used for Control Transfer

Descriptor Descriptor
Type Of Control Transfer Operation Types Referenced Table
Intersegment within the same privilege JMP, CALL, RET, IRET Code segment GDT or LDT
level
Intersegment to the same or a more CALL Call gate GDT or LDT

privileged level. Interrupt within task

(could change CPL level)

Interrupt instruction, Excep- Trap or interrupt IDT

tion, External interrupt gate
Intersegment to a less privileged level RET, IRET Code segment GDT or LDT
(changes task CPL)
Task switch via TSS CALL, JMP Task-state GDT
segment
Task switch via task gate CALL, JMP Task gate GDT or LDT
Task switch via task gate IRET, Interrupt instruction, Task gate IDT

Exception, External interrupt

2.10.3.2 Gates

Any control transfer that changes the CPL within a task results in a change of
stack. The initial values for the stack segment (SS) and stack pointer (ESP)
for privilege levels 0, 1, and 2 are stored in the TSS. During a JMP or CALL
control transfer, the SS and ESP are loaded with the new stack pointer and the
previous stack pointer is saved on the new stack. When returning to the origi-
nal privilege level, the RET or IRET instruction restores the less-privileged
stack.

Gate descriptors provide protection for privilege transfers among executable
segments. Gates are used to transition to routines of the same or a more privi-
leged level. Call gates, interrupt gates, and trap gates are used for privilege
transfers within a task. Task gates are used to transfer between tasks.

Gates conform to the standard rules of privilege. In other words, gates can be
accessed by a task if the effective privilege level (EPL) is the same or more
privileged than the gate descriptor’s privilege level (DPL).

2.10.4 Initialization and Transition to Protected Mode

The TI486SXL(C) microprocessor family switches to real mode immediately
after RESET. While operating in real mode, the system tables and registers
should be initialized. The GDTR and IDTR must point to a valid GDT and IDT,
respectively. The size of the IDT should be at least 256 bytes, and the GDT
must contain descriptors that describe the initial code and data segments.

The processor can be placed in protected mode by setting the PE bit in the
CRQO register. After enabling protected mode, the CS register should be loaded
and the instruction-decode queue should be flushed by executing an interseg-
ment JMP. Finally, all data Segment registers should be initialized with ap-
propriate selector values.

Programming Interface 2-59

Virtual-8086 Mode

2.11 Virtual-8086 Mode

Both real mode and virtual-8086 (V86) mode are supported by the
T1486SXL(C) microprocessor family, allowing execution of 8086 application
programs and 8086 operating systems. V86 mode allows the execution of
8086-type applications, yet still permits use of the T1486SXL(C) microproces-
sor-protection mechanism. V86 tasks run at privilege level 3. Upon entry, all
segment limits are set to FFFFh (64K) as in real mode.

2.11.1 Memory Addressing

2.11.2 Protection

While in V86 mode, Segment registers are used in the same manner as in real
mode. The contents of the Segment register are shifted left four bits and added
tothe offset to form the segment base linear address. The Ti486SXL(C) micro-
processor family permits the operating system to select which programs use
the V86 address mechanism and which programs use protected-mode ad-
dressing for each task. ‘

The T1486SXL(C) microprocessor family also permits the use of paging when
operating in V86 mode. Using paging, the 1M-byte address space of the V86
task can be mapped to anywhere in the 4G-byte linear address space of the
microprocessor CPU. As in real mode, linear addresses that exceed 1M byte
cause a segment-limit-overrun exception.

The paging hardware allows multiple V86 tasks to run concurrently, and pro-
vides protection and operating-system isolation. The paging hardware must
be enabled to run multiple V86 tasks or to relocate the address space of a V86
task to physical address space above 1M byte.

All V86 tasks operate at the lowest privilege level (level 3) and are subject to
all of the microprocessor protected-mode protection checks. As a result, any
attempt to execute a privileged instruction within a V86 task results in a gener-
al-protection fault.

In V86 mode, a slightly different set of instructions is sensitive to the I/O privi-
lege level (IOPL) than in protected mode. These instructions are: CLI, INTn,
IRET, POPF, PUSHF, and STI. The INT3, INTO and BOUND variations of the
INT instruction are not IOPL sensitive.

2.11.3 Interrupt Handling

2-60

To fully support the emulation of an 8086-type machine, interrupts in V86 mode
are handled as follows. When an interrupt or exception is serviced in V86
mode, program execution transfers to the interrupt service routine at privilege
level O (i.e., transition from V86 to protected mode occurs) and the VM bit in
the EFLAGS register is cleared. The protected-mode interrupt service routine

~ then determines if the interrupt came from a protected-mode or V86 applica-

tion by examining the VM bit in the EFLAGS image stored on the stack. The
interrupt service routine can then choose to allow the 8086 operating system

Virtual-8086 Mode

to handle the interrupt or can emulate the function of the interrupt handler. Fol-
lowing completion of the interrupt service routine, an IRET instruction restores
the EFLAGS register (restores VM = 1) and segment selectors and control re-
turns to the interrupted V86 task.

2.11.4 Entering and Leaving V86 Mode

V86 mode is entered from protected mode either by executing an IRET instruc-
tion at CPL =0 or by task switching. If an IRET is used, the stack must contain
an EFLAGS image with VM = 1. If a task switch is used, the TSS must contain
an EFLAGS image containing a 1 in the VM bit position. The POPF instruction
cannot be used to enter V86 mode since the state of the VM bit is not affected.
V86 mode can be exited only as the result of an interrupt or exception. The
transition out must use a 32-bit trap or interrupt gate that must point to a non-
conforming privilege level 0 segment (DPL = 0), or a 32-bit TSS. These restric-
tions are required to permit the trap handler to IRET back to the V86 program.

Programming Interface 2-61

2-62

Chapter 3

TI1486SXLC Microprocessor Bus Interfac

This chapter provides a summary of the TI486SXLC series processor signals
and descriptions of all inputs/outputs, functional timing and bus operations (in-
cluding pipelined and nonpipelined addressing), various interfaces, and power
management.

Topic Page

3-1

Input/Output Signals

3.1

Input/Output Signals

This section describes the TI1486SXLC series microprocessors’ input and out-
put signals. The discussion of these signals is arranged by functional groups
as shown in Figure 3—-1. Table 3—1 gives a brief description of each signal.

Figure 3—1. TI486SXLC Functional Signal Groupings

2x Clock

Reset

Address
Bus

Data
Bus

Bus
Cycle
Definition

Bus
Cycle
Control

——

CLK2

RESET
A23-A1
BLE#
BHE#
D15-DO
W/R#
D/C#
M/IO#
LOCK#
NA#
READY#
ADS#
SMADS#

TI486SXLC

INTR
NMI
SMi#

KEN#
FLUSH#

A20M#
PEREQ
BUSY#
ERROR#
HOLD
HLDA
SUSP#
SUSPA#
FLT#

¢—
44—

<—>
PE—
l«——
Vi—
«——

ﬂ———-
r——

=

‘__
——»
‘__

Interrupt
Control

Internal
Cache
Interface

Address
Bit-20 Mask

Coprocessor
Interface

Bus
Arbitration

Power
Management

Float
Control

Input/Output Signals

Table 3—1. TI486SXLC Signal Summary

Signal

Signal Name

Signal Group

ADS#
A20M#
A23-A1
BHE#
BLE#
BUSY#
CLK2
D15-D0
D/C#
ERROR#
FLT#
FLUSH#
HLDA
HOLD
INTR
KEN#
LOCK#
M/I10#
NA#
NMi
PEREQ
READY#
RESET
SMADS#
SMi#
SUSP#
SUSPA#
W/R#

Address strobe

Address bit-20 mask
Address bus lines

Byte-high enable

Byte-low enable

Processor extension busy
2X clock input

Data bus lines

Data/control

Processor extension error
Float

Cache flush

Hold acknowledge

Hold request

Maskable interrupt request
Cache enable

Bus lock
Memory/input-output

Next address request
Nonmaskable interrupt request
Processor extension request
Bus ready

Reset

SMM address strobe
System management interrupt
Suspend request

Suspend acknowledge

Write/read

Bus-cycle control
None

Address bus

Address bus

Address bus
Coprocessor interface
None

None

Bus-cycle definition
Coprocessor interface
None

Internal cache interface
Bus arbitration

Bus arbitration
Interrupt control
Internal cache interface
Bus-cycle definition
Bus-cycle definition
Bus-cycle control
Interrupt control
Coprocessor interface
Bus-cycle control
None

Bus-cycle control
Interrupt control
Power management
Power management

Bus-cycle definition

The following sections describe the signals and their functional characteris-
tics. Additional signal information can be found in Chapter 5, Electrical Specifi-
cations. Chapter 5 documents the dc and ac characteristics for the signals in-
cluding voltage levels, propagation delays, setup times, and hold times. Speci-
fied setup and hold times must be met for proper operation of the Ti486SXLC
series microprocessors.

TI486SXLC Microprocessor Bus Interface 3-3

Input/Output Signals

3.1.1 TI486SXLC Terminal Function Descriptions
Table 3-2identifies and describes each of the TI486SXLC package terminals.

Table 3-2. TI486SXL.C Terminal Functions

Terminal
Name No. Description
A1 18 Address Bus (active high). The address bus (A23—-A1) signals are 3-state outputs that
A2 51 provide addresses for physical memory and I/O ports. All address lines can be used for
A3 52 ' addressing physical memory allowing a 16M-byte address space (00 0000h to FF
Ad 53 FFFFh). During I/O port accesses, A23—A16 are driven low (except for coprocessor
A5 54 accesses). This permits a 64K-byte I/O address space (00 0000h to 00 FFFFh).
A6 55
A7 56 During all coprocessor I/0O access address lines A22-A16 are driven low and A23 is
A8 58 driven high. This allows A23 to be used by external logic to generate a coprocessor
A9 59 select signal. Coprocessor command transfers occur with address 80 00F8h and
A10 60 coprocessor data transfers occur with addresses 80 00FCh and 80 00FEh. A23-AT1 float
A1l 61 while the CPU is in a hold-acknowledge or float state.
Al2 62
“A13 64
A4 65
A15 66
A16 70
A17 72
A18 73
A19 74
A20 75
A21 76
A22 79
A23 80
ADS# 16 Address Strobe (active low). This 3-state output indicates that the Ti486SXLC
microprocessor has driven a valid address (A23—-A1, BHE#, BLE#) and bus-cycle
definition (M/10#, D/C#, W/R#) on the appropriate output pins. During nonpipelined bus
cycles, ADS# is active for the first clock of the bus cycle. During address pipelining,
ADS# is asserted during the previous bus cycle and remains asserted until READY# is
returned for that cycle. ADS# floats while the microprocessor is in a hold-acknowledge
or float state.
A20M# 31 Address Bit-20 Mask (active low). This input causes the microprocessor to mask (force

low) physical address bit 20 when driving the external address bus or performing an
internal cache access. When the processor is in real mode, asserting A20M# emulates
the 1M-byte address wraparound that occurs on the 8086. The A20 signal is never
masked when paging is enabled regardiess of the state of the A20M# input. The A20M#
input is ignored following reset and can be enabled using the A20M bit in the CCRO
Configuration register.

A20M# is internally connected to a pullup resistor to prevent it from floating active when
left unconnected.

3-4

Input/Output Signals

Table 3—2. TI486SXLC Terminal Functions (Continued)

Terminal

Name

No.

Description

BHE#
BLE#

19
17

Byte Enables (active low). Byte-low enable (BLE#) and byte-high enable (BHE#)
3-state outputs indicate which byte(s) of the 16-bit data bus are selected for data transfer
during the current bus cycle. BLE# selects the low byte (D7-D0) and BHE# selects the
high byte (D15-D8).

When BHE# and BLE# are asserted, both bytes (all 16 bits) of the data bus are selected.
BLE# and BHE# float while the CPU is in a hold-acknowledge or float state.

BHE# = BLE# = 1 never occurs during a bus cycle.

BUSYi#

34

Coprocessor Busy (active low). This input indicates to the TI486SXLC that the
coprocessor is currently executing an instruction and is unable to accept another
opcode. When the microprocessor encounters a WAIT instruction or any coprocessor
instruction that operates on the coprocessor stack (i.e., load, pop, arithmetic operation),
BUSY# is sampled. BUSY# is continually sampled and must be recognized as inactive
before the CPU supplies the coprocessor another instruction. However, coprocessor
instructions FNINIT and FNCLEX are allowed to execute even if BUSY# is active
because they are used for coprocessor initialization and exception clearing. -

BUSY# is internally connected to a pullup resistor to prevent it from floating active when
left unconnected.

CLK2

15

2X Clock Input (active high). This input signal is the basic timing reference for the
T1486SXLC microprocessors. The CLK2 input is internally divided by two to generate
the internal processor clock. The external CLK2 is synchronized to a known phase of
the internal processor clock by the falling edge of the RESET signal. External timing
parameters are defined with respect to the rising edge of CLK2.

For the T1486SXLC2 microprocessors, the CLK2 input is used internally to generate the
internal core processor clock and the internal bus interface clock. The external CLK2 is
synchronized to a known phase of the internal processor clock by the falling edge of the
RESET signal. External timing parameters are defined with respect to the rising edge
of CLK2.

D/C#

24

Data/Control. This 3-state, bus-cycle-definition signal is low during control cycles and
is high during data cycles. Control cycles are issued during functions such as a halt
instruction, interrupt servicing, and code fetching. Data bus cycles include data access
from either memory or I/O.

TI486SXLC Microprocessor Bus Interface 3-5

Input/Output Signals

Table 3-2. TI486SXLC Terminal Functions (Continued)

Terminal
Name No. Description
DO 1 Data Bus (active high). The data bus (D15-D0) signals are 3-state bidirectional signals
D1 100 that provide the data path between the microprocessor and external memory and 1/O
D2 99 devices. The data bus inputs data during memory-read, 1/O-read, and
D3 96 interrupt-acknowledge cycles and outputs data during memory and I/O-write cycles.
D4 95 Dataread operations require that specified data setup and hold times be met for correct
D5 94 operation. The data bus signals float while the CPU is in a hold-acknowledge or float
D6 93 state. :
D7 92
D8 90
D9 89
D10 88
D11 87
D12 86
D13 83
D14 82
D15 81
ERROR# 36 Coprocessor Error (active low). This input indicates that the coprocessor generated an
error during execution of an instruction. ERROR# is sampled by the microprocessor
whenever a coprocessor instruction is executed. If ERROR# is sampled active, the
processor generates exception 16 that is then serviced by the exception handling
software.
Certain coprocessor instructions do not generate an exception 16 even if ERROR# is
active. These instructions, which involve clearing coprocessor error flags and saving the
coprocessor state, are: FNINIT, FNCLEX, FNSTSW, FNSTCW, FNSTENV, FNSAVE.
ERRORU is internally connected to a pullup resistor to prevent it from floating active
when left unconnected.

FLT# 28 Float (active low). This input forces all bidirectional and output signals to a 3-state
condition. Floating the signals allows the microprocessor signals to be driven externally
without physically removing the device from the circuit. The microprocessor must be
reset following assertion or deassertion of FLT#. It is recommended that FLT# be used
only for test purposes.

FLT# is internally connected to a pullup resistor to prevent it from floating active when
left unconnected.
FLUSH# 30 Cache Flush (active low). This input invalidates (flushes) the entire cache. Use of

FLUSH# to maintain cache coherency is optional. The cache may also be invalidated
during each hold-acknowledge cycle by setting the BARB bit in the CCRO Configuration
register. The FLUSH# input is ignored following reset and can be enabled using the
FLUSH bit in the CCRO Configuration register.

FLUSH## is internally connected to a pullup resistor to prevent it from floating active when
left unconnected.

Input/Output Signals

Table 3—-2. TI486SXLC Terminal Functions (Continued)

No.

Description

Hold Request (active high). This input indicates that another bus master requests
control of the local bus. The bus arbitration (HOLD, HLDA) signals aliow the
microprocessor to relinquish control of its local bus when requested by another bus
master device. Once the processor has relinquished its bus (3-stated), the bus master
device can then drive the local bus signals.

After recognizing the HOLD request and completing the current bus cycle or sequence
of locked bus cycles, the microprocessor responds by floating the local bus and
asserting the hold-acknowledge (HLDA) output.

Once HLDA is-asserted, the bus remains granted to the requesting bus master until
HOLD becomes inactive. When the microprocessor recognizes HOLD is inactive, it
simultaneously drives the local bus and drives HLDA inactive. External pullup resistors
may be required on some of the microprocessor 3-state outputs to ensure that they
remain inactive while in a hold-acknowledge state.

The HOLD input is not recognized while RESET is active. If HOLD is asserted while
RESET is active, RESET has priority and the microprocessor places the bus into an idle
state instead of a hold-acknowledge state. The HOLD input is also recognized during
suspend mode provided that the CLK2 input has not been stopped. HOLD is level
sensitive and must meet specified setup and hold times for correct operation.

Hold Acknowledge (active high). This output indicates that the microprocessor is in a
hold-acknowledge state and has relinquished control of its local bus. While in the
hold-acknowledge state, the microprocessor drives HLDA active and continues to drive
SUSPA¥#, if enabled. The other microprocessor outputs are in the high-impedance state
allowing the requesting bus master to drive these signals. If the on-chip cache can
satisfy bus requests, the microprocessor continues to operate during hold-acknowledge
states. A20M# is internally recognized during this time.

The microprocessor deactivates HLDA when the HOLD request is driven inactive. The
microprocessor stores an NMI rising edge during a hold-acknowledge state for
processing after HOLD is inactive. The FLUSH# input is also recognized during a
hold-acknowledge state. If SUSP# is asserted during a hold-acknowledge state, the
microprocessor may or may not enter suspend mode depending on the state of the
internal execution pipeline. Table 3-3 summarizes the state of the microprocessor
signals during hold acknowledge.

Terminal
Name
HOLD 4
HLDA 3
INTR 40

Maskable Interrupt Request. This level-sensitive input causes the processor to
suspend execution of the current instruction stream and begin execution of an interrupt
service routine. The INTR input can be masked (ignored) through the Flag Word register
IF bit. When unmasked, the microprocessor responds to the INTR input by issuing two
locked interrupt-acknowledge cycles. To assure recognition of the INTR request, INTR
must remain active until the start of the first interrupt-acknowledge cycle.

TI486SXLC Microprocessor Bus Interface 3-7

Input/Output Signals

Table 3—2. TI486SXLC Terminal Functions (Continued)

Description

Cache Enable (active low). This inputindicates that the data being returned during the
current cycle is cacheable. When KEN# is active and the microprocessor is performing
a cacheable code-fetch or memory-data-read cycle, the cycle is transformed into a
cache fill. Use of the KEN# input to control cacheability is optional. The Noncacheable
Region registers can also be used to control cacheablity. Memory addresses specified
by the Noncacheable Region registers are not cacheable regardiess of the state of
KEN#. 1/O accesses, locked reads, SMM address space accesses, and
interrupt-acknowledge cycles are never cached.

During cached code fetches, two contiguous read cycles are performed to completely
fill the 4-byte cache line. KEN# must be asserted during both read cycles to cause a
cache line fill. During memory data reads, the microprocessor performs as many read
cycles as necessary to supply the required data to complete the current operation. Valid
bits are maintained for each byte in the cache line and each block of four lines, thus
allowing data operands of less than four bytes to reside in the cache.

If two read cycles are performed with the same address (A23—-A2), KEN# must be
asserted during both cycles to cache the data in these cycles. If the data is cached, the
microprocessor ignores the state of the byte enables (BHE# and BLE#) and all data on
the bus is cached. The KEN# input is ignored following reset and can be enabled using
the KEN bit in the CCRO Configuration register.

KEN# is internally connected to a pullup resistor to prevent it from floating active when
left unconnected. -

LOCK (active low). This 3-state, bus-cycle-definition signal is asserted to deny access
of the CPU bus to other bus masters. The LOCK# signal may be explicitly activated
during bus operations by including the LOCK prefix on certain instructions. LOCK# is
always asserted during descriptor and page table updates, interrupt- acknowledge
sequences, and when executing the XCHG instruction. The microprocessor does not
enter the hold-acknowledge state in response to HOLD while the LOCK# output is
active.

Memory/IO. This 3-state, bus-cycle-definition signal is low during I/O read and write
cycles and is high during memory cycles.

Next Address Request (active low). This input requests address pipelining by the
system hardware. When asserted, the system indicates that it is prepared to accept
new bus-cycle definition and address signals (M/IO#, D/C#, W/R#, A23—-A1, BHE#, and
BLE#) from the microprocessor even if the current bus cycle has not been terminated
by assertion of READY#. If the microprocessor has aninternal bus request pending and
the NA# input is sampled active, the next bus-cycle definition and address signals are
driven onto the bus.)

Terminal
Name No.
KEN# 29

LOCK# 26
M/IO# 23
NA# 6

NC 27, 45,
46

Make no external connection.

3-8

Note: NC Terminals

Connecting or terminating (high or low) any NC terminal(s) may cause un-
predictable results or nonperformance of the microprocessor.

Input/Output Signals

Table 3—-2. TI486SXLC Terminal Functions (Continued)

Terminal

Name

No.

Description

NMI

38

Nonmaskable Interrupt Request. This rising-edge-sensitive input causes the processor
to suspend execution of the current instruction stream and begin execution of an NMI
interrupt service routine. The NMI interrupt service request cannot be masked by
software. Asserting NMI causes an interrupt which internally supplies interrupt vector
2h to the CPU core. External interrupt-acknowledge cycles are not necessary since the
NMI interrupt vector is supplied internally. Once NMI processing has started, no
additional NMls are processed until an IRET instruction is executed.

The microprocessor samples NMI at the beginning of each phase two ($2) clock period.
To assure recognition, NMI must be inactive for at least eight CLK2 periods and then be
active for at least eight CLK2 periods. Additionally, specified setup and hold times must
be met to assure recognition at a particular clock edge.

PEREQ

37

Coprocessor Request (active high). This input indicates that the coprocessor is ready
to transfer data to or from the CPU. The coprocessor can assert PEREQ in the process
of executing a coprocessor instruction. The microprocessor internally stores the current
coprocessor opcode and performs the correct data transfers to support coprocessor
operations using PEREQ to synchronize the transfer of required operands.

PEREQ is internally connected to a pulldown resistor to prevent this signal from floating
active when left unconnected.

READY#

Ready (active low). This inputis generated by the system hardware to indicate that the
current bus cycle can be terminated. During aread cycle, assertion of READY# indicates
that the system hardware has presented valid data to the CPU. When READY# is
sampled active, the microprocessor latches the input data and terminates the cycle.
During a write cycle, READY# assertion indicates that the system hardware has
accepted the microprocessor output data. READY# must be asserted to terminate every
bus cycle, including halt and shutdown indication cycles.

RESET

33

Reset (active high). When asserted, RESET suspends all operations in progress and
places the microprocessor into a reset state. RESET is a level-sensitive synchronous
input and must meet specified setup and hold times to be properly recognized by the
microprocessor. The microprocessor begins executing instructions at physical address
location FF FFFOh approximately 400 CLK2s after RESET is driven inactive (low).

While RESET is active, the microprocessor is initialized to nonclock-doubled mode (for
the T1486SXLC2) and all other input pins, except FLT#, are ignored. The remaining
signals are initialized to their reset state during the internal processor reset sequence.
The reset signal states for the microprocessor are shown in Table 3-3.

SMADS#

20

SMM Address Strobe (active low). SMADS#, a 3-state output, is asserted instead of the
ADS# during SMM bus cycles and indicates that SMM memory is being accessed.
SMADSH# floats while the CPU is in a hold-acknowledge or float state. The SMADS#
output is disabled (floated) following reset and can be enabled using the SMi bit in the
CCR1 Configuration register.

TI486SXLC Microprocessor Bus Interface 3-9

Input/Output Signals

Table 3-2. TI486SXLC Terminal Functions (Continued)

Terminal

Name No. Description

SMi# 47 System Management Interrupt (active low). This 3-state, bidirectional, level-sensitive
input/output signal is an interrupt with higher priority than the NMI interrupt. SMI# must
be active for at least four CLK2 clock periods to be recognized by the microprocessor.
After the SMi is acknowledged, the SMI# pin is driven low by the microprocessor for the
duration of the SMI service routine. The SMI# input is ignored following reset and can
be enabled using the SMI bit in the CCR1 Configuration register.
SMi# is internally connected to a pullup resistor to prevent it from floating active when
left unconnected.

SUSP# 43 Suspend Request (active low). This input requests the microprocessor to enter
suspend mode. After recognizing SUSP# active, the processor completes execution of
the current instruction, any pending decoded instructions, and associated bus cycles.
in addition, the microprocessor waits for the coprocessor to indicate a not-busy status
(BUSY# = 1) before entering suspend mode and asserting suspend acknowledge
(SUSPA#).

SUSP# is internally connected to a pullup resistor to prevent it from floating active when
left unconnected.

SUSPA# 44 Suspend Acknowledge (active low). This output indicates that the microprocessor has
entered the suspend mode as a result of SUSP# assertion or execution of a HALT
instruction.

Vee 8 5-V Power Supply. All pins must be connected and used.
9
10
21
32
39
42
48
57
69
71
84
o1
97

3-10

Input/Output Signals

Table 3-2. TI486SXLC Terminal Functions (Continued)

Terminal

Name

No.

Description

Vss

2 ~
5
11
12
13
14
22
35
41
49
50
63
67
68
77
78
85
98

Ground Pins. All pins must be connected and used.

W/R#

25

Wirite/Read. This 3-state, bus-cycle-definition signal is low during read cycles (data is
read from memory or I/O) and is high during write bus cycles (data is written to memory
or 1/0).

TI486SXL.C Microprocessor Bus Interface 3-11

Input/Output Signals

3.1.2 Signal States During Reset and Hold Acknowledge

RESET is the highest priority input signal. When RESET is asserted, the mi-
croprocessor aborts any current bus cycle and establishes real-mode bus-
cycle definition with active buses. See Table 3-3 and Section 3.3, Reset Tim-

ing and Internal Clock Synchronization, page 3-17.

The hold-acknowledge state (Th) is entered in response to assertion of the
HOLD input during which the microprocessor floats all output and bidirectional
signals, except for HLDA and SUSPA#. In the hold-acknowledge state, all in-
puts except HOLD, FLUSH#, FLT#, SUSP# and RESET are ignored. See
Table 3-3 and subsection 3.4.8, Hold Acknowledge State, page 3-39. The
hold-acknowledge state provides the mechanism for an external device to ac-

quire the system bus.

Table 3-3. Signal States During Reset and Hold Acknowledge

3-12

Signal State Signal State During
Signal Name During Reset Hold Acknowledge
A20M# Ignored Input recognized
A23-A1 1 Float
ADS# 1 Float
BHE#, BLE# 0 Float
BUSY# Initiates self test Ignored
D15-D0 Float Float
D/C# 1 Float
ERROR# Ignored lgnored
FLT# Input recognized Input recognized
FLUSH# Ignored Input recognized
HLDA 0 1
HOLD Ignored Input recognized
INTR Ignored Input recognized
KEN# Ignored Ignored
LOCKi# 1 Float
WIO# 0 Float
NA# Ignored Ignored
NMI Ignored Input recognized
PEREQ Ignored Ignored
READY# Ignored Ignored
RESET Input recognized Input recognized
SMADS# Float Float
SMI# Ignored Input recognized
SUSP# Ignored Input recognized
SUSPA# Float Driven
W/R# 0 Float

Bus-Cycle Definition

3.2 Bus-Cycle Definition

The bus-cycle-definition signals consist of four 3-state outputs (M/IO#, D/C#,
W/R#, LOCK#) that define the type of bus-cycle operation being performed.
Table 3—4 defines the bus cycles for the possible states of these signals.
M/IO#, D/C#, and W/R# are the primary bus-cycle-definition signals and are
driven valid as ADS# (address strobe) becomes active. During nonpipelined
cycles, the LOCK# output is driven valid along with M/IO#, D/C# and W/R#.
During pipelined addressing, LOCK# is driven at the beginning of the bus
cycle, which is after ADS# becomes active for that cycle. The bus-cycle-defini-
tion signals are active low and float while the microprocessor is in a hold-ac-
knowledge or float state.

Table 3—4. Bus Cycle Types

3.2.1

MIO# D/C# W/R# LOCK# Bus Cycle Type

0 0 0 0 Interrupt acknowledge
0 0 0 1 —

0 0 1 X —_

0 1 X 0 —

0 1 0 1 I/O data read

0 1 1 1 I/O data write

1 X 0 —

1 0 1 Memory code read

Halt: A23-A1=2h, BHE#=1 and BLE#=0
Shutdown: A23-A1=0h, BHE#=1 and BLE#=0

Locked memory data read
Memory data read
Locked memory data write

—t b ek ek
PR U O -
- a4 o o
—_ O =2 O

Memory data write

X = Don't care
— = Does not occur
Clock Doubling Using Software Control

The clock-doubled feature of the TI486SXLC2 is enabled/disabled using
Configuration Control register 0 (CCRO0), bit 6. The following can be used for
software enabling/disabling of CKD:

Set CKD programming sequence:

mov al, 0COh ;select CCRO
out 22h, al ;
in al, 23h ;read CCRO
mov ah, al ;save in AH
or ah, 40h ;set AH<6>
mov al, 0COh ;sselect CCRO

out 22h, al
mov al, ah
out 23h, al ;write CCRO

TI486SXLC Microprocessor Bus Interface 3-13

Bus-Cycle Definition

Reset CKD programming sequence:

mov al, 0COh ;select CCRO
out 22h, al

in al, 23h ;read CCRO
mov ah, al ;save in AH
and ah, OBFh ;reset AH<6>
mov al, 0COh ;select CCRO

out 22h, al
mov al, ah :
out 23h, al ;write CCRO

3.2.1.1 Entering Clock-Doubled Mode

The T1486SXLC2 microprocessors power up in the nonclock-doubled mode.
To enter the clock-doubled mode, set CLK2 to the desired frequency inside the
phase-locked loop (PLL) lock range (see Table 5-5 and Table 5-6) and issue
the set CKD programming sequence. Approximately 20 us after the final OUT
instruction has exited the processor pipeline, the PLL locks and the CPU
enters clock-doubled mode. Until the PLL is locked, the processor continues
to operate in the nonclock-doubled mode.

3.2.1.2 Clock-Scaling Sequence

When the processor is in clock-doubled mode and the CLK2 input is to be
scaled or stopped, the reset CKD programming sequence should be issued.
The final OUT instruction exiting the processor pipeline causes the CKD bit to
be reset and puts the processor into nonclock-doubled mode. This must occur
prior to scaling or stopping the CLK2 input in order to prevent a synchronization
error from occurring. This may be ensured by issuing a JUMP instruction, such
as JMP $+2, before scaling CLK2. ‘

To return the processor to clock-doubled mode, set CLK2 to the desired fre-
quency inside the PLL lock range and issue the set CKD programming se-
quence. Approximately 20 us after the final OUT instruction has exited the pro-
cessor pipeline, the PLL locks and the processor enters clock-doubled mode.

3.2.1.3 Suspend Mode

3-14

Suspend mode can be initiated when the TI486SXLC2 microprocessor is in
clock-doubled mode as long as the CLK2 input is not scaled or stopped. Sus-
pend mode does not disable the PLL; instead, changing the CLK2 frequency
causes the PLL to lose lock.

For more detailed information on entering and exiting suspend in nonclock-
doubled mode, refer to subsection 3.2.2, Power Management.

In order to get the lowest possible power state, bring the microprocessor out
of clock-doubled mode, enter the suspend mode (using software or hardware),
and stop the CLK2 input.

Bus-Cycle Definition

3.2.2 Power Management

The power-management signals allow the TI486SXLC series microproces-
sors to enter suspend mode. Suspend-mode circuitry allows the microproces-
sor to consume minimal power while maintaining the entire internal CPU state.

3.2.2.1 Suspend Request (SUSP#)

Suspend request (SUSP#) is an active-low input that requests the TI486SXLC
series microprocessors to enter suspend mode. With the TI1486SXLC2 micro-
processors you should follow the procedure in subsection 3.2.1 to enter non-
clock-doubled mode prior to scaling or stopping the CLK2 input. After recog-
nizing SUSP# is active, the processor completes execution of the current
instruction, any pending decoded instructions, and associated bus cycles. In
addition, the microprocessor waits for the coprocessor to indicate a not-busy
condition (BUSY#=1) before entering suspend mode and asserting suspend
acknowledge (SUSPA#). During suspend mode, internal clocks are stopped
and only the logic associated with monitoring RESET, HOLD, and FLUSH# re-
mains active. With SUSPA# asserted, the CLK2 input to the microprocessor
can be stopped in either phase. Stopping the CLK2 input further reduces cur-
rent required by the microprocessor.

To resume operation, the CLK2 input is restarted (if stopped), followed by
deassertion of the SUSP# input. The TI486SXLC2 processors can enter
clock-doubled mode (subsection 3.2.1.1, Entering Clock-Doubled Mode) once
the CLK2 input reaches the desired frequency within the PLL lock range. The
processor then resumes instruction fetching and begins execution in the
instruction stream at the point it had stopped. The SUSP# input is level sensi-
tive and must meet specified setup and hold times to be recognized at a partic-
ular clock edge. The SUSP# input is ignored following reset and can be en-
abled using the SUSP bit in the CCRO Configuration register.

3.2.2.2 Suspend Acknowledge (SUSPA#)

The suspend acknowledge (SUSPA#) output indicates that the TI486SXLC
series microprocessor has entered the suspend mode as a result of SUSP#
assertion or execution of a HALT instruction. If SUSPA# is asserted and the
CLK2 inputis switching, the microprocessor continues to recognize FLT#, RE-
SET, HOLD, and FLUSH#. In addition, the T1486SXLC2 microprocessor may
stay in clock-doubled mode while the CLK2 input is switching. If suspend mode
was entered as the result of a HALT instruction, the microprocessor also con-
tinues to monitor the NMI input and an unmasked INTR input. Detection of
INTR or NMI forces the microprocessor to exit suspend mode and begin
execution of the appropriate interrupt service routine. The CLK2 input to the
processor can be stopped after SUSPA# has been asserted to further reduce
the power requirement of the microprocessor. For this case, the TI486SXLC2
microprocessor must be brought out of clock-doubled mode prior to stopping
the CLK2 input to prevent a synchronization error. The SUSPA# output is dis-
abled (floated) following reset and can be enabled using the SUSP bit in the
CCRO Configuration register.

TI486SXLC Microprocessor Bus Interface 3-15

Bus-Cycle Definition

Table 3-5 shows the state of the TI486SXLC series microprocessor signals
when the device is in suspend mode.

Table 3-5. Signal States During Suspend Mode

Signal State During
Signal Name Hold Acknowledge

Signal State During Halt-
Initiated Suspend Mode

A20M# Ignored Ignored

A23-A1 1 1

ADS# 1 1

BHE#, BLE# 0 0

BUSY# Ignored Ignored

D15-DO Float Float

D/C# 1 1

ERROR# Ignored Ignored

FLT# Input recognized Input recognized
FLUSH# Input recognized Input recognized
HLDA 0 0

HOLD Input recognized Input recognized
INTR Latched Input recognized
KEN# Ignored Ignored

LOCK# 1 1

M/10# 0 0

NA# Ignored Ignored

NMI Latched Input recognized
PEREQ Ignored lgnored
READY# Ignored Ignored

RESET Input recognized Input recognized
SMADS# 1 1

SMI# Latched Input recognized
SUSP# Input recognized Ignored
SUSPA# 0 | 0

W/R# 0 0

Reset Timing and Internal Clock Synchronization

3.3 Reset Timing and Internal Clock Synchronization

RESET is the highest priority input signal and is capable of interrupting any
processor activity when it is asserted. When RESET is asserted, the micropro-
cessor aborts any bus cycle. Idle, hold-acknowledge, and suspend states are
also discontinued and the reset state is established. RESET is used when the
microprocessor is powered up to initialize the CPU to a known valid state and
to synchronize the internal CPU clock with external clocks. The TI486SXLC2
microprocessors are initialized to nonclock-doubled mode upon RESET going
active.

- RESET must be asserted for at least 15 CLK2 periods to ensure recognition

by the microprocessor. If the self-test feature is to be invoked, RESET must
be asserted for at least 80 CLK2 periods. RESET pulses of less than 15 CLK2
periods may not have sufficient time to propagate throughout the microproces-
sor and may not be recognized. RESET pulses of less than 80 CLK2 periods
followed by a self-test request may incorrectly report a self-test failure when
no true failure exists.

~ Provided the RESET falling edge meets specified setup and hold times, the

internal processor clock phase is synchronized as illustrated in Figure 3-2.
The TI486SXLC internal processor clock is half the frequency of the CLK2 in-
put and each CLK2 cycle corresponds to an internal CPU clock phase (9).
Phase two (¢2) of the internal clock is defined to be the second rising edge of
CLK2 following the falling edge of RESET. The Ti486SXLC2 internal core
clock is the same frequency as the CLK2 input and the internal bus interface
clock is half the frequency of the CLK2 input. Phase two of the internal clock
is defined to be the second rising edge of CLK2 following the falling edge of
RESET.

Figure 3-2. Internal Processor Clock Synchronization

o 20r¢1 , ¢ 2o0r¢1 | 02 I o1 |

I I I | I
CLK2
| I

RESET

INTERNAL
PROCESSOR
CLOCK

 —

| | |
I I | I
| | I I
I I I | I
| | | ! |
| I |
I I
I
|

TR
RIS _/—

TI486SXLC Microprocessor Bus Interface 3-17

Reset Timing and Internal Clock Synchronization

Following the falling edge of RESET (and after self test if it was requested),
the microprocessor performs an internal initialization sequence for approxi-
mately 400 CLK2 periods. The microprocessor self-test feature is invoked if
the BUSY# input is in the active (low) state when RESET falls inactive. The
self-test sequence requires approximately (220 + 60) CLK2 periods to com-
plete. Even if the self test indicates a problem, the microprocessor attempts
to proceed with the reset sequence. Figure 3-3 illustrates the bus activity and
* timing during the microprocessor reset sequence.

Figure 3-3. Bus Activity From RESET Until First Code Fetch
< Reset Pt Internal > NQCycIe 1

N Initialization npipelined
| >15CLK:
sluepmeimt e omog e | e
| =80 CLK2 periods before | C 207+ 60 tothese numbers | T1 T2
| 1

20
requsting self-test. 2 3 17 18 19 392* 393*394* 395*
I L

* Approximately

RESET l/ \ | |
62 01] 02/ 01|02 61 92 [91]02]
ma) 0000 VAVAWAWAWAN
(Internal) | |
|

X XXX XK XXKXA XXX XXX XKXX XXX
g

L High for no Self Test (see Note) \ ?’?mmo.mmAmA

Low to Begin Self Test
X R X R T R YR TI XX RIRXIXI XIS
OSBRI

AVAVAV NAVAVAVAVAVAV.AVAV,AVAVAVAVAV A

XTI XXX EXXTIEXXLIN
BUSY# SN

AVAVAVAVAVAVAVAN

R TR (XXX XXX
e o A e e

ERROR#

PAVAVAVAVAV.VA

Up to 30 CLK2
BHE#, BLE#, soooommoomeomomn, | |
w/R#, Mo, ZEEXEEIMIIION Low . |/ vaid
A23HL:1A Upto30 CLK2 — |
- S N Y S Y Y N7 7 17) N
DIC#, JROUEERRXRXXXXKY | High N\ _Valid
LOCK#

Upto30CLK2 —H B) |

X XXX AKX IXXHIXXHIXXXXA . " K
as# RRRRRRRY | High -
\VAVAY \YAVAYAYAVAAV4 \YAYAVAY NN/ N NN NININININININININININ/ N V’;’V'V ’;’;""’;’;"’;’;’;"‘;"

XXX XX R XX X K XXX KR XX XX R KX
o e e e e e e e e e e o e e e e e e e

NA#

R

XXX XXX XXXXXXX XY

R X R L XX R RXRR TS RXTTTTZLITS
R A YA B KB SN

TXRXXXXXLRXXN . | |
D15-D0 XXXXXKXXXHXD— = — e e — — — (Floating) - ———$r————4r————T—
l l

— — o = = = — — (FI0ating) = == = = = = o i o e b —

Note: BUSY# should be held stable for 80 CLK2 periods before and after the CLK2 period in which RESET falling edge occurs.

XXTTXTITTIN

SUSPA# KXEXEXEEES

Upon completion of self-test, the EAX register contains 0000 0000h if the
microprocessor passed its internal self test with no problems detected. Any
nonzero value in the EAX register indicates that the microprocessor is faulty.

3-18

Bus Operation and Functional Timing

3.4 Bus Operation and Functional Timing

The TI486SXLC series microprocessor communicates with the external sys-
tem through separate, parallel buses for data and address. This is commonly
called a demultiplexed address/data bus. This demultiplexed bus eliminates
the need for address latches required in multiplexed address/data bus config-
urations where the address and data are presented on the same pins at differ-
ent times.

T1486SXLC series microprocessor instructions can act on memory data oper-
ands consisting of 8-bit bytes, 16-bit words, or 32-bit double words. The micro-
processor bus architecture allows for bus transfers of these operands without
restrictions on physical address alignment. Any byte boundary may require
more than one bus cycle to transfer the operand. This feature is transparent
to the programmer.

The microprocessor data bus (D15-DQ0) is a 16-bit-wide bidirectional bus. The
microprocessor drives the data bus during write bus cycles, and the external
system hardware drives the data bus during read bus cycles. The address bus
provides a 24-bit value using 23 signals for the 23 upper-order address bits
(A23-A1), defining which 16-bit word is being accessed, and two byte-enable
signals (BHE# and BLE#) to directly indicate which of the two bytes within the
word is active.

Every bus cycle begins with the assertion of the address strobe (ADS#). ADS#
indicates that the microprocessor has issued a new address and new bus-
cycle-definition signals. A bus cycle is defined by four signals: M/IO#, W/R#,
D/C#, and LOCK#. M/IO# defines if a memory or /O operation is occurring,
W/R# defines the cycle to be read or write, and D/C# indicates whether a data
or control cycle is in effect. LOCK# indicates that the current cycle is a locked
bus cycle. Every bus cycle completes when the system hardware returns
READY# asserted.

The TI486SXLC series microprocessor performs the following bus-cycle
types:

Memory read

Locked memory read

Memory write

Locked memory write

I/O read (or coprocessor read)

I/O write (or coprocessor write)’

Interrupt acknowledge (always locked)

Halt/shutdown

Ooooooddo

When the microprocessor has no pending bus requests, the bus enters the idle
state. There is no encoding of the idle state on the bus-cycle-definition signals;
however, the idle state can be identified by the absence of further assertions
of ADS# following a completed bus cycle.

It should be noted that all bus diagrams apply for all TI486SXLC series micro-
processors. The TI486SXLC2 clock-doubled feature does not change the ex-
ternal microprocessor bus interface.

TI486SXLC Microprocessor Bus Interface 3-18

Bus Operation and Functional Timing

3.4.1 Bus Cycles Using Nonpipelined Addressing

The shortest time unit of bus activity is a bus state, commonly called a T state.
A bus state is one internal processor clock period in duration (two CLK2 peri-
ods in nonclock-doubled mode and one CLK2 period in clock-doubled mode).
A complete data transfer occurs during a bus cycle, composed of two or more
bus states.

3.4.1.1 Nonpipelined Bus States

The first state of a nonpipelined bus cycle is called T1. During phase one (¢1,
first CLK2) of T1, the address bus and bus-cycle-definition signals are driven
valid and, to signal their availability, address strobe (ADS#) is simultaneously
asserted.

The second bus state of a nonpipelined cycle is called T2. T2 terminates a bus
cycle with the assertion of the READY# input and valid data is either input or
output depending on the bus-cycle type. The fastest microprocessor bus cycle
requires only these two bus states. READY# is ignored at the end of the T1
state.

Three consecutive bus read cycles, each consisting of two bus states, are
shown in Figure 3—4.

Figure 3—4. Fastest Nonpipelined Read Cycles

CLK2

A23—-At, BHE#,
BLE#, M/IO#,
D/C#, W/R#

I | I
I I I
ADS# I | : | |

NA#

READY#

LOCK#

D15-D0

(Input During Read)

Cycle 1 Cycle 2 Cycle 3
ﬁ— Nonpipelined —bﬁ—— Nonpipelined —bﬁ—— Nonpipelined —ﬂ
(Read) (Read) | (Read)
T1 | T2 | Tt | T2 | T | T2
o1l 02 01! 92 o1l 02| ¢1! o |¢1'¢2|¢1'¢2|¢1

| I I |
I I | I

| |
| |
X Valid 1 X Valid 2 Valid 3 X
[[
| |

I I
I I
I I
| I
| I
| I
I I
I I

|
I
I
|
|
I
I
|

X Valid 1 X Valid 2 X Valid 3 X

Note: Fastest nonpipelined bus cycles consist of T1 and T2.

3-20

Bus Operation and Functional Timing

3.4.1.2 Nonpipelined Read and Write Cycles

Any bus cycle can be performed with nonpipelined address timing. Figure 3—5
shows a mixture of read and write cycles with nonpipelined address timing.
When aread cycle is performed, the microprocessor floats its data bus and the
externally addressed device then drives the data. The microprocessor re-
quires that all data-bus pins be driven to a valid logic state (high or low) at the
end of each read cycle, when READY# is asserted. When a read cycle is ac-
knowledged by READY# asserted in the T2 bus state, the microprocessor
latches the information present at its data-bus pins and terminates the cycle.

When a write cycle is performed, the data bus is driven by the microprocessor
beginning in phase two of T1. When a write cycle is acknowledged, the write
data remains valid throughout phase one of the next bus state to provide write-
data hold time.

Figure 3-5. Various Nonpipelined Bus Cycles (No Wait States)

| | Cycle 1 I Cycle 2 | Cycle 3 [I Cycle 4 [
| Idle | Nonpipelined | Nonpipelined | Nonpipelined | Idle | Nonpipelined | Idle
| | (Write) | (Read) | (Write) | | (Read) |
[¢ e e > i« >
I I |

[(A I : T T2 T2 bono T T2
I | I | | | | [[I

A23-A1, _1_ | | L | I | I | |

BHEY, BLER, OREON valid1 X vaidz X Valid3 XN valid4
’ |

il I I | I
| | | I | |

I
| |
o E— | r ! oot |
wry QXY 1| L N
SR N (S A

R XXX XXX X KRR X R XX K XXX X XX KX XXX KX XXX
e e e e e e e e et

NA#

rrervereereeerveerveos Sl
i

TN |
R LRRRLLLLN, RN

DO
XL LN

LRBOLEEEN LK

| | | e les | ergchies | | ey
o | | EndCycle1 | EndCycle2 | EndCycle3 | EndCycle 4

LOCK# X valid1 X vaid2 X valid3 XXX valida XX
—T | f
|

I 1 T T T T | |
I ! ' I |
S i SCTINND & S (D & GEICTEND S B S DS
| |

Note: Idle states are shown here for diagram variety only.

R

$
READY# QO

TI486SXLC Microprocessor Bus Interface 3-21

Bus Operation and Functional Timing

3.4.1.3 Nonpipelined Wait States

Once a bus cycle begins, it continues until acknowledged by the external sys-
tem hardware using the READY# input. Acknowledging the bus cycle at the
end of the first T2 results in the shortest possible bus cycle, requiring only T1
and T2. If READY# is not immediately asserted however, T2 states are re-
peated indefinitely until the READY# input is sampled active. These intermedi-
ate T2 states are referred to as wait states. If the external system hardware
is not able to receive or deliver data in two bus states, it withholds the READY#
signal and at least one wait state is added to the bus cycle. Thus, on an ad-
dress-by-address basis the system is able to define how fast a bus cycle com-
pletes.

Figure 36 illustrates nonpipelined bus cycles with one wait state added to
cycles 2 and 3. READY# is sampled inactive at the end of the first T2 state in
cycles 2 and 3. Therefore, the T2 state is repeated until READY# is sampled
active at the end of the second T2 and the cycle is then terminated. The micro-
processor ignores the READY# input at the end of the T1 state.

Figure 3—6. Various Nonpipelined Bus Cycles With Different Numbers of Wait States

! I cycle 1 | Cycle 2 | | Cycle 3 |
| Idle | Nonpipelined | Nonpipelined | ldle | Nonpipelined | Idle
| | (Read) | (Write) | | (Read) |
| | |
T | T ; T | T { T2 I T | Tl T T2 T2 | T
. | b | | | | |
A23-A1, _]] 1 | | l | L

wre T

| |

| |
BHE#, BLE#, &SN valid1 X Valid 2 X Valid 3

|

|

l/

l

M/IO#, DIC# <9 ! —
|
l
|
|

v,

XXX XXX XXX\ XXX XXX XXX KRR IR T XXXXXXXXXRIIXY
e e e e o o e e KEEEKEEEEERIEEKD KIS
READY# SRRRXXRXXXXKOOEEEEN LRZEZEIEXIKY
v
o || } EndCycle1 | } EndCycle2 | | ! End Cycle 3
| | T l —T T | E— T f

Note: Idle states are shown here for diagram variety only.

3-22

Bus Operation and Functional Timing

3.4.1.4 Initiating and Maintaining Nonpipelined Cycles

The bus states and transitions for nonpipelined addressing are illustrated in
Figure 3—-7. The bus transitions between four possible states: T1, T2, Ti, and
Th. Active bus cycles consist of T1 and T2 states, with T2 being repeated for
wait states. Bus cycles always begin with a single T1 state. T1 is always fol-
lowed by a T2 state. If a bus cycle is not acknowledged during a given T2 and
NA# is inactive, T2 is repeated resulting in a wait state. When a cycle is ac-
knowledged during T2, the following state is T1 of the next bus cycle if a bus
request is pending internally. If no internal bus request is pending, the Ti state
is entered. If the HOLD input is asserted and the microprocessor is ready to
enter the hold-acknowledge state, the Th state is entered.

Figure 3—-7. Nonpipelined Bus States

HOLD Asserted

HOLD Negated

HOLD Negated Request Pending

No Request

HOLD Asserted READY# Asserted
HOLD Asserted

READY# Asserted |
HOLD Negated
No Request

HOLD Negated
No Request

Request Pending
HOLD Negated

READY# Asserted
HOLD Negated

Request Pending READY# Negated

NA# Negated

Bus States:

T1 — First clock of a nonpipelined bus cycle (CPU drives new address and asserts ADS#)

T2 — Subsequent clocks of a bus cycle when NA# has not been sampled asserted in the current bus cycle
Ti - Idle state

Th — Hold acknowledge (CPU asserts HLDA)

The fastest bus cycle consists of two states: T1 and T2.

TI486SXLC Microprocessor Bus Interface 3-23

Bus Operation and Functional Timing

Because of the demultiplexed nature of the bus, the address pipelining option
provides a mechanism for the external hardware to have an additional T state
of access time without inserting a wait state. After the reset sequence and fol-
lowing any idle bus state, the processor always uses nonpipelined address
timing. Pipelined or nonpipelined address timing is then determined on a
cycle-by-cycle basis using the NA#input. When address pipelining is not used,
the address and bus-cycle definition remain valid during all wait states. When
wait states are added and nonpipelined address timing is hecessary, negate
NA# during each T2 state of the bus cycle except the last one.

3.4.2 Bus Cycles Using Pipelined Addressing

The address pipelining option allows the system to request the address and
bus-cycle definition of the next internally pending bus cycle before the current
bus cycle is acknowledged with READY# asserted. If address pipelining is
used, the external system hardware has an extra T state of access time to
transfer data. The address pipelining option is controlled on a cycle-by-cycle
basis by the state of the NA# input.

3.4.2.1 Pipelined Bus States

3-24

Pipelined addressing is always initiated by asserting NA# during a nonpipe-
lined bus cycle. Within the nonpipelined bus cycle, NA# is sampled at the be-
ginning of phase two of each T2 state and is only acknowledged by the micro-
processor during wait states. When address pipelining is acknowledged, the
address (BHE#, BLE#, and A23—A1) and bus-cycle definition (W/R#, D/C#,
and M/IO#) of the next bus cycle are driven before the end of the nonpipelined
cycle. The address status output (ADS#) is asserted simultaneously to indi-
cate validity of these signals. Once in effect, address pipelining is maintained
in successive bus cycles by continuing to assert NA# during the pipelined bus
cycles.

As in nonpipelined bus cycles, the fastest bus cycles using pipelined address
require only two bus states. Figure 3-8 illustrates the fastest read cycles using
pipelined address timing. The two bus states for pipelined addressing are T1P
and T2P or T1P and T2l. The T1P state is entered following completion of the
bus cycle in which the pipelined address and bus-cycle-definition information
was made available and is the first bus state of every pipelined bus cycle. In
other words, the T1P state follows a T2 state if the previous cycle was nonpipe-
lined, and follows a T2P state if the previous cycle was pipelined.

Bus Operation and Functional Timing

Figure 3-8. Fastest Pipelined Read Cycles

CLK2

A23-A1, BHE#,
BLE#, M/IO#,
D/C#, W/R#

READY#

LOCK#

D15-DO0
(Input During Read)

Note:

Cycle 1 Cycle 2 Cycle 3
[Pipelined | Pipelined | Pipelined |
| (Read) | (Read) | (Read) |
- o e »
| TP TP TP TP | TIP | T2P |
| 011 02 01! 92 01! 62 o1 02 ¢1! 02| 01! 62

Valid 1

|
|
I

Fastest pipelined bus cycles consist of T1P and T2P.

Within the pipelined bus cycle, NA# is sampled at the beginning of phase two
(2) of the T1P state. If the microprocessor has an internally pending bus re-
quest and NA# is asserted, the T1P state is followed by a T2P state and the
address and bus-cycle definition for the next pending bus request is made
available. If no pending bus request exists, the T1P state is followed by a T2I
state regardless of the state of NA# and no new address or bus-cycle informa-
tion is driven.

The pipelined bus cycle is terminated in either the T2P or T2| states with the
assertion of the READY# input and valid data is either input or output depend-
ing on the bus cycle type. READY# is ignored at the end of the T1P state.

3.4.2.2 Pipelined Read and Write Cycles

Any bus cycle can be performed with pipelined address timing. When a read
cycle is performed, the microprocessor floats its data bus and the externally
addressed device drives the data. When a read cycle is acknowledged by
READY# asserted in either the T2P or T2l bus state, the microprocessor
latches the information present at its data pins and terminates the cycle.

When a write cycle is performed, the data bus is driven by the microprocessor
beginning in phase two (¢2) of T1P. When a write cycle is acknowledged, the

TI486SXLC Microprocessor Bus Interface 3-25

Bus Operation and Functional Timing

write data remains valid throughout phase one (¢1) of the next bus state to pro-
vide write-data hold time.

3.4.2.3 Pipelined Wait States

3-26

Once a pipelined bus cycle begins, it continues until acknowledged by the ex-
ternal system hardware using the microprocessor READY# input. Acknowl-
edging the bus cycle at the end of the first T2P or T2 state results in the short-
est possible pipelined bus cycle. If READY# is notimmediately asserted, how-
ever, T2P or T2l states are repeated indefinitely until the READY# input is
sampled active. Additional T2P or T2l states are referred to as wait states.

Figure 3-9 illustrates pipelined bus cycles with one wait state added to cycles
1 through 3. Cycle 1 is a pipelined cycle with NA# asserted during T1P and a
pending bus request. READY# is sampled inactive at the end of the first T2P
state in cycle 1. Therefore, the T2P state is repeated until READY# is sampled
active at the end of the second T2P and the cycle is then terminated. The mi-
croprocessor ignores the READY# input at the end of the T1P state. ADS#,
the address, and the bus-cycle-definition signals for the pending bus cycle are
all valid during each of the T2P states. Also, asserting NA more than once dur-
ing the cycle has no additional effects. Pipelined addressing can only output
information for the next bus cycle.

Cycle 2 in Figure 3—9 illustrates a pipelined cycle, with one wait state, where
NA# is not asserted until the second bus state in the cycle. In this case, the
CPU enters the T2 state following T1P because NA# is not asserted. During
the T2 state the microprocessor samples NA# asserted. Because a bus re-
questis pending internally, and READY# is not active, the CPU enters the T2P
state and asserts ADS#, a valid address, and bus-cycle-definition information
for the pending bus cycle. The cycle is then terminated by an active READY#
at the end of the T2P state.

Cycle 3 of Figure 3-9 illustrates the case where no internal bus request exists
until the last state of a pipelined cycle with wait states. In cycle 3, NA# is as-
serted in T1P, requesting the next address. Because the CPU does not have
an internal bus request pending, The T2l state is entered. However, by the end
of the T2l state, a bus request exists. Because READY# is not asserted, a wait
state is added. The CPU then enters the T2P state and asserts ADS#, a valid
address, and bus-cycle-definition information for the pending bus cycle. As
long as the CPU enters the T2P state at some point during the bus cycle, pipe-
lined addressing is maintained. NA# needs to be asserted only once during the
bus cycle to request pipelined addressing.

Bus Operation and Functional Timing

Figure 3-9. Various Pipelined Cycles (One Wait State)

Cycle 1 Cycle 2 Cycle 3 Cycle 4
l—— Pipelined —ble— Pipelined —he—— Pipelined —hle— Pipelined
I (Write) f (Read) | (Write) | (Read)
I I I I
I TIP | TeP | T2P L mp o T2 | TeP | TP | T2 | TP I Tip |
CLK2
A23-A1, | | I] I I | |
BHEA, _ Valid1 X Valid 2 Valid 3 KN valida X
MO I I [[[| | I [
pcs | I I I | | I ! I
I | | I I I ADS# is asserted as soon
I I | | I | | | as the CPU has another
| | | | | | | | bus cycle to perform,
| | | | | | I | which is not always
| I I | | I | | immediately after NA# is
I I | I asserted. | |
wWR# | ! | | l | | INCKE | |
| I T T 1 1 | [!]
I I | | I | | | |
I I I I
ADS# | | I
I | | | I |
| I L : As long as the CPU enters the T2P
I ADS# is asserted state during cycle 3, address pipelining
in every T2P state. is maintained in cycle 4.
XX XXX XXIXXXXKXK XXX XS XX LXAKKIKKKRN A XX KA AKKIRXX KX XXX X X
NA# XK\ & LBEEAGBEEEREEY X LEEEEUBEN. L LN, LK
l [I l I I |
| I |
I Asserting NA# more than I NA# could have been asserted in I I | I
once during any cycle has I T1P if desired. Assertion now is I I | I
| no additional effects. | the latest time possible to allow | | I |
I] | the CPUtoenter T2P stateto | l | |
| | | | main:tain pipelining in cycle 3. | | I |
I | | | | |
| OOXKRXXKCKKKSY XXX XX XY
READYE LR | | LK | I
I | 1 I | 1 il | | | |
Lock# X valid 1 X Valid 2 X Valid 3 X Valid 4
[I I I I 1 | il ! | [
] }]] | | L]] | |
D15-D0 Out X Out 1 >—t——t—==In2)} Out 3 Dt
T j| |

TI486SXLC Microprocessor Bus Interface

3-27

Bus Operation and Functional Timing

3.4.2.4 |Initiating and Maintaining Pipelined Cycles

Pipelined addressing is always initiated by asserting NA# during a nonpipe-
lined bus cycle with at least one wait state. The first bus cycle following reset,
an idle bus, or a hold-acknowiedge state is always nonpipelined. Therefore,
the microprocessor always issues at least one nonpipelined bus cycle follow-
ing reset, idle, or hold acknowledge before pipelined addressing takes effect.

Once abus cycle is in progress and the current address has been valid for one
entire bus state, the NA# input is sampled at the end of every phase one until
the bus cycle is acknowledged. Once NA# is sampled active, the microproces-
sor is free to drive a new address and bus-cycle definition on the bus as early
as the next bus state and as late as the last bus state in the cycle.

Figure 3—10 illustrates the fastest transition possible to pipelined addressing
following an idle bus state. In cycle 1, NA# is driven during state T2. Thus,
cycle 1 makes the transition to pipelined address timing, since it begins with
T1 but ends with T2P. Because the address for cycle 2 is available before cycle
2begins, cycle 2 s called a pipelined bus cycle, and it begins with a T1P state.
Cycle 2 begins as soon as READY# assertion terminates cycle 1.

Figure 3—10. Fastest Transition to Pipelined Address Following Idle Bus State

Cycle 1 Cycle 2 Cycle 3 Cycle 4
idie | Nonpipelined | Pipelined | Pipelined | Pipelined | idle
(Write) I (Read) I (Write) | (Read) |
o e
. | ! ! ! | | | | | B
T | ™ | T2 | T2P | T1IP | T2P | T1P [T2P | TIP | T2l | T2l | T |
A23—A1 | ! | J L L il I I | |

BHE#, BLE#, Valid 1 X Valid 2 X Valid 3 Valid 4
M/IO#, D/C# [T f T ” T

W/RH XIS

00‘0‘0‘0‘0"‘0‘0‘0‘0‘0‘0‘0‘0'0'0'0'0'0'0'0‘0;

LRI

ADS#
TXXXRITIXXIIIITON RITXTIT (ITTTITTN CRTIRTX XA IXXT RN
NA# EEEERLROEEEN. & LGN & LLEEEEEN. & LGN L LRI IR
|
R XXX KT LTI RITXXIIRN,. | fORRRRRIRY ¥
READY# GBI AEQEEEEN | LEEIIEEIN. | LRI
{ | i | l | | | | | | L |
LOCK# XXX Valid 1 X vaid2 X valid3 X Valid 4 R
|

I 1 | | } | ! ! I 1l 3 I
e e STIND SE G GNTEND SR B GO S
T T T
Note: Following any idle bus state (Ti) the address is always nonpipelined and NA# is sampled only during wait states. To start

address pipelining after an idle state requires a nonpipelined cycle with at least one wait state (cycle 1 above). The pipe-
lined cycles (2, 3, and 4 above) are shown with various numbers of wait states.

3-28

Bus Operation and Functional Timing

Figure 3—11 illustrates transitioning to pipelined addressing during a burst of
bus cycles. Cycle 2 makes the transition to pipelined addressing. Comparing
cycle 2 to cycle 1 of Figure 3—10 (on page 3-28) illustrates that a transition
cycle is the same when it occurs and consists of at least T1, T2 (NA# is as-
serted at that time), and T2P (provided the microprocessor has an internal bus
request already pending). T2P states are repeated if wait states are added to
the cycle. Cycles 2, 3, and 4 in Figure 3—11 show that once address pipelining
is achieved it can be maintained with two-state bus cycles consisting only of
T1P and T2P.

Once a pipelined bus cycle is in progress, pipelined timing is maintained for
the next cycle by asserting NA# and detecting that the microprocessor enters
T2P during the current bus cycle. The current bus cycle must end in state T2P
for pipelining to be maintained in the next cycle. T2P is identified by the asser-
tion of ADS#. Figure 3—10 and Figure 3—11 each show pipelining ending after
cycle 4. This occurs because the microprocessor does not have an internal
bus request prior to the acknowledgment of cycle 4.

Figure 3—11. Transitioning to Pipelined Address During Burst of Bus Cycles

| | Cycle 1 | Cycle 2 | Cycle 3 | Cycled | |
| Idle | Nonpipelined | Nonpipelined | Pipelined I Pipelined | Idle |
| Ay (Write) |) (Read) (Write) | (Read)
| 0 | | [| | | ' | | |
I LA | T2 | ™ | T2 ' T2P | T1P | T2P TP | T21 | T |
AS AL | | | | [L | I | |
BLE# AN valid1 X validz X vaidda X valida OO0
M/1O#, =T I T] l | [] Ik ! I

! ! | ! ! | | | | ! |

I | | ATRRRRXTRITIRRR
| | LKL
| | | | | |

ADS# | | | | |

[
DiC# | I | I i | | l I
l

TXTRLTIXLK
W/R# 00K |

XXX TR KRR XXX TR TR (RIXTTII) RRXRXRXIXRIIRR
e e e N o o e o NI D N A e e e e oo

IR ool (TR
XXX

AR08 X LB
l | | | | | | | I |

| I

LOCK# GAAON valid1 X Valid 2 X vaid3 X validd Q00
! |
r I

TR RXIRXTTLT TN
A DY RSB

AALNDAN

i ! I [li !

T T I)

| | | | I | | |

D15-D0 —:———I—-’-———T——(ln 2y ous)—T-—*— —f
. 1 | 1

Note: Following any idle bus state (Ti), addresses are nonpipelined bus cycles, NA#is sampled only during wait states. There-
fore, to begin address pipelining during a group of nonpipelined bus cycles requires a nonpipelined cycle with at least one
wait state (cycle 2 above).

TI486SXLC Microprocessor Bus Interface 3-29

Bus Operation and Functional Timing

The complete bus-state-transition diagram, including operation with pipelined
address, is given in Figure 3—12. This is a superset of the diagram for nonpipe-
lined address. The three additional bus states for pipelined address are
shaded.

Figure 3—12. Complete Bus States
HOLD Asserted

READY# Asserted o
HOLD Asserted

NA# Asserted o
HOLD Negated o READYi# Asserted o (HOLD Asserted +
No Request HOLD Asserted No Request)

HOLD Negated « (No Request +
RESET Request Pending HOLD Asserted) o
Asserted HOLD Asserted NA# Asserted o
READY# Asserted o READY# Negated

HOLD Negated e

l
|
I
|
|
|
I
|

No Request :
Always | NA# Negated
Request Pending ¢
READY# Asserted o
HOLD HOLD Negated HOLD Negated »
Negated Request Pending READY#
No Request Negated
READY# Asserted o NA# Negated
READY# Asserted HOLD Negated »
HOLD Negated Request Pending
No Request

READY# Negated
NA# Asserted
HOLD Negated

Request Pending

READY# Negated
(No Request +
HOLD Asserted)

READY# Negated
Request Pending
HOLD Asserted

NA# Asserted o
HOLD Negated o
Request Pending

\F‘EiDY#/ASserted

READY# Negated

Bus States:

T1 - First clock of a nonpipelined bus cycle (CPU drives new address and asserts ADS#)

T2 - Subsequent clocks of a bus cycle when NA# has not been sampled asserted in the current bus cycle

T2l — Subsequent clocks of a bus cycle when NA# has been sampled asserted in the current bus cycle but there
is not yet an internal bus request pending (CPU does not drive a new address or assert ADS#)

T2P — Subsequent clocks of a bus cycle when NA# has been sampled asserted in the current bus cycle and
there is an internal bus request pending (CPU drives new address and asserts ADS#)

T1P - First clock of a pipelined bus cycle

Ti - Idle state

Th - Hold acknowledge state (CPU asserts HLDA)

3-30

Bus Operation and Functional Timing

3.4.3 Locked Bus Cycles

When the LOCK# signal is asserted, the TI486SXLC series microprocessors
do not allow other bus master devices to gain control of the system bus.
LOCKH# is driven active in response to executing certain instructions with the
LOCK prefix. The LOCK prefix allows indivisible read/modify/write operations
on memory operands. LOCK# is also active during interrupt-acknowledge
cycles.

LOCK# is activated on the CLK2 edge that begins the first locked bus cycle
and is deactivated when READY# is returned at the end of the last locked bus
cycle. When using nonpipelined addressing, LOCK# is asserted during
phase one (¢1) of T1. When using pipelined addressing, LOCK# is driven valid
during phase one of T1P.

Figure 3—4 through Figure 3—6 on pages 3-20 through 3-22 illustrate LOCK#
timing during nonpipelined cycles and Figure 3-8 through Figure 3—11 on
pages 3-25 through 3-29 cover the pipelined-address case.

3.4.4 Interrupt-Acknowledge Cycles

The T1486SXLC series microprocessors are interrupted by an external source
via an input request on the INTR input (when interrupts are enabled). The mi-
croprocessor responds with two locked interrupt-acknowledge cycles. These
bus cycles are similar to read cycles. Each cycle is terminated by READY#
sampled active as shown in Figure 3—13.

TI486SXL.C Microprocessor Bus Interface 3-31

Bus Operation and Functional Timing

Figure 3—13. Interrupt-Acknowledge Cycles

Interrupt Idle Interrupt
Ide | Acknowledge (4 Bus States) | Acknowledge Idle
Cycle 1 | Cycle 2

| I

| |
»id bid Dl

| I

I I

T2 | i T2

Ti

TR R KRR XXX TR RRXRXRRRITIRRR
BHE# Q0SS BB RREEEKEEEY NS

A23-A3, Al,
BLE#, M/IO#,
D/C#, W/R#

XX CRKKURRAAX

SRR | | LLEBREBBLR

L R KR IICCRX XX XKRICRXK
SN SN 00000 0 OI0I09.99999009.00.0999

AR BN

XXXXXXRRX XXX R R XXX XX XXX IRRRR) TRXIIIIIIIKR
A2 ZEREKNY ‘ LRI

e 00 e e e e e

™~

I A

[T TS
e R RRRERLERLLELBELKLN LRI

LOCXXX XU X XXX XXX

NA#

R

:‘0;0‘0;0‘0‘0‘0‘0‘0'0‘0‘0'0'0'0'0”
X0 (XY K

READY# AR

R

| | I | lgnored | I I | I |

07-00 =t m ok Y S S SO P S ;

| | | I I l I | |
I I d
| I | | gnored | | | | | | gnore:

I R o e e e e O

Note: Interrupt vector (0—255) is read on D7—D0 at end of second interrupt-acknowledge bus cycle. Because each interrupt-
acknowledge bus cycle is followed by idle bus states, asserting NA# has no practical effect.

The state of the A2 pin distinguishes the first and second interrupt-acknowl-
edge cycles. The address driven during the first interrupt-acknowledge cycle
is 4h (A23—A3, A1, BLE#=0; A2, BHE#=1). The address driven during the se-
cond interrupt-acknowledge cycle is Oh (A23-A1, BLE#=0; BHE#=1).

To assure that the interrupt-acknowledge cycles are executed indivisibly, the
LOCK# output is asserted from the beginning of the first interrupt-acknowl-
edge cycle until the end of the second interrupt-acknowledge cycle. In clock-
doubled mode, four idle bus states (Ti) are inserted by the microprocessor
between the two interrupt-acknowledge cycles. In nonclock-doubled mode,
eight idle bus states are inserted.

The interrupt vector is read at the end of the second interrupt cycle. The vector
is read by the microprocessor from D7-DO0 of the data bus. The vector
indicates the specific interrupt number (from 0-255) requiring service.
Throughout the balance of the two interrupt cycles, D15—D0 float. At the end
of the first interrupt-acknowledge cycle, any data presented to the micropro-
cessor is ignored.

3-32

Bus Operation and Functional Timing

3.4.5 Halt and Shutdown Cycles

Executing the HLT instruction or detecting a severe error causes the micropro-
cessor to either halt operation or shutdown further processing. When halt or
shutdown occurs the microprocessor signals the condition through a halt- or
shutdown-indication cycle.

3.4.5.1 Halt Indication Cycle

Executing the HLT instruction causes the microprocessor execution unit to
cease operation. Signaling its entrance into the halt state, a halt indication
cycle is performed. The haltindication cycle is identified by the state of the bus-
cycle-definition signals (M/IO#=1, D/C#=0, W/R#=1, LOCK#=1) and an ad-
dress of 2h (A23—-A2=0, A1=1, BHE#=1, BLE#=0). The halt indication cycle
must be acknowledged by asserting READY#. A halted microprocessor re-
sumes execution when INTR (if interrupts are enabled), NMI, or RESET is as-
serted. Figure 3—14 illustrates a nonpipelined halt cycle.

TI486SXLC Microprocessor Bus Interface 3-33

Bus Operation and Functional Timing

Figure 3—14. Nonpipelined Halt Cycle

| Cycle 1 I Cycle 2 | |
| Nonpipelined | Nonpipelined | Idle |
[(Write) | (Halt) | |
:4 —big P— »1
| | |
: T ll L2 S R T2 | Ti : Ti II Ti { Ti }
|
CLK2 I
| | | ' 1 R ! !
A1, BHE# f CPU remains halted |
i) XX ng
men Xt /T KRR e
L 1 | |
|
|
|

A23-A2
' : XTI EXI LT E LA STAXTILS
BLEY, X validi I\ ISR,
|

| | | | |
[I T T T I |

ADS# | | | | I [|
| | | I | | | |

B X XX X XXX AR IR AT XTR
BB

| |
TR, | LTI | A TR RTINS
READYE | LXK | AKX 1 AKX

asserting READY# . Wait states may be

I I I
| I I
Halt cycle must be acknowledged by | I
added to the cyclle if desired. | : {

| L |
0 XTI TRXTLTDS
R

|
|
T
| e
|
| | | |

| |
| I |
| I |
| | [
| I |
L
LOCK# X Valid 1]
[I |
| | | |

| , |

D15-D0 Out X Out 1 X Undefined >——-‘I- (Floating) —:-———-l-————-:
| | | | | |

|

I I
| I I I I

3-34

Bus Operation and Functional Timing

3.4.5.2 Shutdown Indication Cycle

Shutdown occurs when a severe error is detected that prevents further proces-
sing. The TI486SXLC series microprocessor shuts down as a result of a
protection fault while attempting to process a double fault as well as the condi-
tions referenced in Chapter 2, Programming Interface. A shutdown indication
cycle is performed signaling its entrance into the shutdown state. The shut-
down indication cycle is identified by the state of the bus-cycle-definition sig-
nals (M/IO#=1, D/C#=0, W/R#=1, LOCK#=1) and an address of Oh
(A23—-A1=0, BHE#=1, BLE#=0). The shutdown indication cycle must be ac-
knowledged by asserting READY#. A shutdown microprocessor resumes
execution only when NMI or RESET is asserted. Figure 3—15illustrates a shut-
down cycle using pipelined addressing.

Figure 3—15. Pipelined Shutdown Cycle

T1P | T2P Ti | Ti ‘ Ti I

I

BHE# Valid 1 T | | l CPU remainls I
M/IO# all
; / |
Wik BLE# is low for
Ao Ay : KX XXX
BLE#, Vald1 | R
! I I

| Cycle 1 I Cycle 2 | [
| Pipelined | Pipelined I ldle |
| (Read) | (Shutdown) | I
I‘* Pie ¢ D}
| | | | | | | I
TP | TP | T

I

|

(X XXX : ‘
R R R st o
D/C# T] * I

ADS# | |

NI

| |
I I
I |
I I

AR

JAVAVAVA

NN

A KR K RS

A

TTTTN. | SRR
RN 1 AN

"v Y vvvvaV‘v’v
AN .AAAAAAAA

XXX X XHKIQOXIXXX KKK IKIRXIX
g

A‘A‘t‘A‘A‘AAAAAA VAVAY VAVAVAVAVAVAVAVAVAVAVAVAVAYA

READY# |

| ! I I |
| | | |

Shutdown cycle must be acknowledged by asserting READY#. {

Wait states. may be added to the cycle if desired. |
| ' 1 1

I

|
| I | | |

|
|
|
|
| | | |
|
XXX RRRXS
R

I | l
- | RORK
Look# A RIS Q2
I

j j JAVAVAVAN VAVAN

}
I I I I I
D15-D0 @——I ———@- Undefined —I— (FIoating):—————lr————}
| I Il I | |
| I | I I I

I |
I I I

TI486SXLC Microprocessor Bus Interface 3-35

Bus Operation and Functional Timing

3.4.6

Internal Cache Interface

The TI486SXLC cache is an 8K-byte write-through unified instruction/data
cache with lines that are allocated only during memory read cycles. The cache
is configured as two-way set associative, and the cache organization consists
of 1024 sets each containing two lines of four bytes each.

3.4.6.1 Cache Fills

Any unlocked memory-read cycle can be cached by the TI486SXLC series mi-
croprocessor. The microprocessor does not cache accesses automatically to
memory addresses specified by the Noncacheable-Region registers. Addi-
tionally, the KEN# input can be used to enable caching of memory accesses
on a cycle-by-cycle basis. The microprocessor acknowledges the KEN# input
only if the KEN enable bit is set in the CCRO Configuration register.

As shown in Figure 3—16 and Figure 3—17, the microprocessor samples the
KEN# input one CLK2 before READY# is sampled active. If KEN# is asserted
and the current address is not set as noncacheable per the Noncacheable-Re-
gion registers, the microprocessor fills two bytes of a line in the cache with the
data present on the data bus pins. The states of BHE# and BLE# are ignored
if KEN# is asserted for the cycle.

Figure 3—16. Nonpipelined Cache Fills Using KEN# (With Different Numbers of Wait States)

3-36

Cycle 1 Cycle 2
| Nonpipelined | Nonpipelined I
| (Read—Cache Fill) | (Read—Cache Fill) |
[0 ”

| ™ | T2 T | T2 T
| o1l 02 otl 02 o1l 92| 01! 2| o1! 92

CLK2

| | |]
A23-A1, BHE#, : ;
BLEF X Valid 1 X Valid 2
D/C#, M/IO#, W/R# | | I
I
I
|
I
I

|

S R

|
| I

|
| |
READY# : | |
I I
!

B

%

id 1 X Valid 2

| | !
|
D15-D0 jD___J___
i

I
LOCK# Val
I

U

{Input During Read) |
| ! | !

Y
;

Bus Operation and Functional Timing

Figure 3—-17. Pipelined Cache Fills Using KEN# (With Different Numbers of Wait States)

| Cycle 1 | Cycle 2 |
| Pipelined | Pipelined I
, (Read - Cache Fill) | (Read—CacheFil) |
| TIP | ToP | T2P TP | T2P | T1P
| o1l o2 ot] o2 o1!] o2 o1! 02| o1! 02| o1! 2|
CLK2
I | I | I I
A23-A1, BHE#, ‘ \ l | \ | '
BLE#,D/C#, Valid 1 X Valid 2 >S Valid 3
M/IO#, W/R# T | T 7 f — I
I | I | II |
I | |
ADS#
| L I | |
I | | I I
| | |
NA# | { :
I I

| |
KEN 0.000.0“00.““‘0‘0‘0 m A

OO
l | QK
I | | |
| I I I - |
|/ | | | | | [
I I | | |
| I | | |
LOCK#)L Valid 1 >< Valid 2 s< Valid 3
I T
In >——
|

READY#

I I I

T oo

D15-D0
(Input During Read)

3.4.6.2 Flushing the Cache

To maintain cache coherency with external memory, the T1486SXLC series mi-
croprocessor cache contents should be invalidated when previously cached
data is modified in external memory by another bus master. The microproces-
sor invalidates the internal cache contents during execution of the INVD and
WBINVD instructions following assertion of HLDA if the BARB bit is set in the
CCRO Configuration register or following assertion of FLUSH# if the FLUSH
bit is set in CCRO. ~

The microprocessor samples the FLUSH# input on the rising edge of CLK2
corresponding to the beginning of phase two (¢2) of the internal processor
clock. If FLUSH# is asserted, the microprocessor invalidates the entire con-
tents of the internal cache. The actual point in time where the cache is invali-
dated depends upon the internal state of the execution pipeline. FLUSH# must
be asserted for at least two CLK2 periods and must meet specified setup and
hold times to be recognized on a specific CLK2 edge.

T1486SXLC Microprocessor Bus Interface 3-37

Bus Operation and Functional Timing

3.4.7 Address Bit-20 Masking

The Ti486SXLC series microprocessor can be forced to provide 8086 1M-byte
address wraparound compatibility by setting the A20 bit in the CCRO Configu-
ration register and asserting the A20M# input. When the A20M# is asserted,
the 20th bit in the address to both the internal cache and the external bus pin
is masked (zeroed).

As shown in Figure 3—18, the microprocessor samples the A20M# input on the
rising edge of CLK2 corresponding to the beginning of phase two (¢2) of the
internal processor clock. If A20M# is asserted and paging is not enabled, the
microprocessor masks the A20 signal internally starting with the next cache
access and externally starting with the next bus cycle. If paging is enabled, the
A20 signal is not masked regardiess of the state of A20M#. A20 remains
masked until the access following detection of an inactive state on the A20M#
pin. A20M# must be asserted for a minimum of two CLK2 periods and must
meet specified setup and hold times to be recognized on a specific CLK2 edge.

Figure 3—18. Masking A20 Using A20M# During Burst of Bus Cycles

I Cycle 1 I Cycle 2 I Cycle 3 I Cycle4 |
Ide | Nonpipelined | Nonpipelined | Pipelined | Pipelined | ldle
| (Write) | (Read) (Write) | (Write) |
I | |
w2l 12 I meplmpl 2P| TP | 120 | i
CLK2 ‘
I I | I | I | | l I |
AQQQRQI | | I I | | L | l | |
B het T it X vz X vaiws X vaias XORROR
M/IO#, DIC# | | I r | I : |
| | I |
POOKXXXXHXXXXXXX
| LREEXEEREE

AVAVAV

|
| |
W/R# W } | | : N l
ADS# | | I I ! I I I
] | iV
| L

|
I I
| I
! I
T T

A20M# ‘

GBI

QI

IR
A20 XKEREEEES)

AL

———] — —

I
X XKIKKK KX KK XXX AKX KXXKXXD X (XKRKKEKRK

KTTIXIIR XXX (TRTTRXXXX TR
NA# LSS AKX L ALK

TR
EIEENEENEEUIEN

XX XKXHXHXKX XK XK XX XX XXX
B Y

LV VPV ANV 0.0.9.9 AXXX

I
LOCK# N valid1 X Valid 2 X vaids X valida R0
T
|

[l ! I | !
|

I T
|
D15—Do—i———}l--$-———i——(|n[2)-(' 5 - -ED——
|

KX XXX XA
LY

TN | RN, |
QLR LN

READY# XXX

XXX

——
-

3-38

Bus Operation and Functional Timing

An alternative to using the A20M# pin is provided by the NCO bit in the CCRO
Configuration register. The microprocessor does not automatically cache
accesses to the first 64K bytes and to 1M byte + 64K bytes if the NCO bit is set.
This prevents data within the wraparound memory area from residing in the
internal cache and eliminates the need for masking A20 to the internal cache.

3.4.8 Hold-Acknowledge State

The hold-acknowledge state provides the mechanism for an external device
in a TI486SXLC microprocessor system to acquire the system bus while the
microprocessor is held in an inactive bus state. This allows external bus
masters to take control of the microprocessor bus and directly access system
hardware in a shared manner. The microprocessor continues to execute
instructions out of the internal cache (if enabled) until a system bus cycle is
required.

The hold-acknowledge state (Th) is entered in response to assertion of the
HOLD input. In the hold-acknowledge state, the microprocessor floats all out-
put and bidirectional signals, except for HLDA and SUSPA#. HLDA is asserted
as long as the microprocessor remains in the hold-acknowledge state and all
inputs except HOLD, FLUSH#, FLT#, SUSP# and RESET are ignored.

State Th can be entered directly from a bus-idle state, as in Figure 3—19, or
after the completion of the current physical bus cycle if the LOCK signal is not
asserted, as in Figure 3—20 and Figure 3—-21. The CPU samples the HOLD in-
put on the rising edge of CLK2 corresponding to the beginning of phase one
(¢1) of internal processor clock. HOLD is a synchronous input and can be as-
serted at any CLK2 edge, provided setup and hold requirements are metin ev-
ery bus state.

The hold-acknowledge state is exited in response to the HOLD input being ne-
gated. The next bus start is an idle state (Ti) if no bus request is pending, as
in Figure 3—19. If an internal bus request is pending, as in Figure 3—20 and
Figure 3—21, the next bus state is T1. State Th is aiso exited in response to
RESET being asserted. If HOLD remains asserted when RESET goes inac-
tive, the microprocessor enters the hold-acknowledge state before performing
any bus cycles provided HOLD is still asserted when the CPU is ready to per-
form its first bus cycle.

If a rising edge occurs on the edge-triggered NMI input while in state Th, the
event is remembered as a nonmaskable interrupt 2 and is serviced when the
state is exited.

TI486SXLC Microprocessor Bus Interface 3-39

Bus Operation and Functional Timing

Figure 3—-19. Requesting Hold From Bus-Idle State
} Idle lﬁ————— Hold Acknowledge ———W, Idle
' I I
{ Ti : Th | Th | Th

| I
HOLD | i
(Note 1) | :
|
|

I

-+ !
I I
| I
| |
| |
| |
| |
I I
I |
| I

I
A23—A1, BHE#, BLE#, - , L
D/C#, M/IO#, W/R# W’ —I| (Floating) -{- M
| | | | | |
ADSH# | AN —
I
|

— 1) o e oo o e e L/
(Note 2) | (Floating) 7 I |
|

T l
| i

I I 1N : l I

\VAVAVAVAVAVAVAVAV | | |
===t Fosting) +—————

I | | | |
A -:——————JI—- (Floating) JI- ————— o —

Notes: 1) HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold requirements are
met in every bus state. Violating setup or hold requirements will result in incorrect operation.

2) For maximum design flexibility the CPU has no internal pullup resistors on its outputs. External pullups may be re-
quired on ADS# and other outputs to keep them negated during hold-acknowledge period.

LOCK#

D15-D0 —

3-40

Bus Operation and Functional Timing

Figure 3-20. Requesting Hold From Active Nonpipelined Bus

| Cycle 1 | Hold Acknowledge | Cycle 2
Nonpipelined | Nonpipelined
(Read) | (Write)

| I I | |

HOLD | | | l | I |

(See Note) | | | / | ! \ | |
I

1 |r I[I HOLD asserted no later | II

| | | | than READY# asserted I |
| 1

I | I | = | |

HLDA | | I I/ I I\ | |

[T] I I I I I

A23-A1, BHE#, I | .
BLE#, BLE#, L Valid 1 >—-—- (Floating) -———](Valid 2
[

D/C#, M/IO#, W/R#] T T
| | | |
ADst |\ |/ | \ N~ — - (Flohting ———m
o | |
| | | ' [J

QLN

READYi# 58

VAVAVAVAVAN AN JAVAVAVAN

(T KKK KKK
LLLLLLELLLLLRRREEEL

: (Negated, or last locked gycle)

I I I | |
|

LOCK# Valid 1)——= (Floating) —— Valid 2
I [

I
' |

|
. b
D15-D0 =T~ ==—=-- (Floating) T=—— — (Floating) -——I——(Out 2
I | | I I T 1
I [I

Note: HOLD is a synchronous input and can be asserted at any CLK2 edge provided setup and hold requirements are met in
every bus state. Violating setup or hold requirements will result in incorrect operation.

TI486SXLC Microprocessor Bus Interface 3-41

Bus Operation and Functional Timing

Figure 3-21. Requesting Hold from Active Pipelined Bus

A23-A1, BHE#, -
s oor vt SRR — = (Fosting) ~— a2
M/IO#, W/R# /

Note:

I
N |
(Se el}l\%‘g HOLD asserted in same bus \ !
| state as NA# asserlted. |
| |

| Cycle 1 Hold Acknowledge | Cycle 2
Pipelined | Nonpipelined
(Write) | (Read)

| I
| | |
I | | | | l
I 1 T2l T2 | h molom :

|

I I |

|

I

|

I

l |

| |

HLDA | |
I |

I I

|

|
|
|
|
|
I
|

—

: |
—
| [
| |
| |

| | |
|
T e Ve
I N

[I
|

|

|
|
I
I
|

KL RRIRLRERLLLLLLLRRLLLLLLLRLKL

TAVAVAVAVAN AVAVAVAVAVAVAVAVAVAVAVAVAN

| |]
ST TR | LTTTRLTTTLN
I |

| |

READY#

I I I I I
] (Negated, or last locked (I:ycle) | | |
LOCK# X Valid 1 >——-(F|oz:ning) ———(Valid 2
I I | I | | | |
| : | | | | :
p15-po Out X | . Out1 >—-I-——-(F|oating) ——————In2
T T | | I | |
I | I I | I I I

HOLD is a synchronous input and can be asserted at any CLK2 edge provided setup and hold requirements are met in
every bus state. Violating setup or hold requirements will result in incorrect operation.

3.4.9 Coprocessor Interface

3-42

The data-bus, address-bus, and bus-cycle-definition signals, as well as the co-
processor interface signals (PEREQ, BUSY#, ERROR#), are used to control
communication between the TI486SXLC microprocessor and a coprocessor.
Coprocessor or ESC opcodes are decoded by the microprocessor and the op-
code and operands are then transferred to the coprocessor via 1/O port ac-
cesses to addresses 80 00F8h, 80 O0OFCh, or 80 00FEh. Address 80 00F8h
functions as the control-port address and 80 00FCh and 80 O0FEh are used
for operand transfers.

Bus Operation and Functional Timing

Coprocessor cycles can be either read or write and can be either nonpipelined
or pipelined. Coprocessor cycles must be terminated by READY# and, as with
any other bus cycle, can be terminated as early as the second bus state of the
cycle.

BUSY#, ERROR# and PEREQ are asynchronous level-sensitive inputs used
to synchronize CPU and coprocessor operation. All three signals are sampled
at the beginning of phase one (1) and must meet specified setup and hold
times to be recognized at a given CLK2 edge.

3.4.10 SMM Interface

System management mode (SMM) uses two T1486SXLC microprocessor
pins, SMi# and SMADS#. The bidirectional SMI# pin is a nonmaskable inter-
rupt that is a higher priority than the NMI input. SMI# must be active for at least
four CLK2 periods to be recognized by the microprocessor. Once the micro-
processor recognizes the active SMI# input, the CPU drives the SMI# pin low
for the duration of the SMI service routine.

The SMADS# pin outputs the SMM address strobe that indicates an SMM
memory bus cycle is in progress and a valid SMM address is on the address
bus. The SMADS# functional timing, output delay times, and float delay times
are identical to the main memory address strobe (ADS#) timing.

3.4.10.1 SMI Handshake

The functional timing for SMI# interrupt is shown in Figure 3-22. Five signifi-
cant events take place during an SMI# handshake:

1) The SMI# input pin is driven active (low) by the system logic.

2) The CPUsamples SMI# active onthe rising edge of CLK2 phase one (¢1).

3) Four CLK2s after sampling the SMI# active, the CPU switches the SMI#
pin to an output and drives SMI# low.

4) Following execution of the RSM instruction, the CPU drives the SMI# pin
high for two CLK2s indicating completion of the SMI service routine.

5) The CPU stops driving the SMI# pin high and switches the SMi# pin to an
input in preparation for the next SMl interrupt. The system logic is respon-
sible for maintaining the SMi# pin at the inactive (high) level after the pin
has been changed to an input.

Figure 3—22. SMI# Timing
I

lot 92 o1 g2 o1 92 1ot g2 o1 o2 Lot o211 02 lo1 42 1ot g2 lo1 92101 g2 ot 02 |
CLK2 |

s T 1N

l
I
l
I
|

Cl— — ——

|
|
|
|
|
1 2 3
== |Ndicates that TI486SXLC drives the SMI# pin.

TI486SXLC Microprocessor Bus Interface 3-43

Bus Operation and Functional Timing

3.4.10.2 I/O Trapping

The T1486SXLC series provides I/0 trapping that can be used to facilitate pow-
er management of 1/O peripherals. When an I/O bus cycle is issued, the 1/0
address is driven onto the address bus and can be decoded by external logic.
If a trap to the SMI handler is required, the SMI# input should be activated at
least three CLK2 edges prior to returning the READY# input for the 1/0 cycle.
The timing for creating an /O trap via the SMI# input is shown in Figure 3-23.
The microprocessor immediately traps to the SMI interrupt handler following
execution of the I/O instruction, and no other instructions are executed be-
tween completion of the I/O instruction and entering the SMI service routine.
The 1/O trap mechanism is not active during coprocessor accesses.

Figure 3-23. I/O Trap Timing

/0 CYCLE

|l< (Read or Write) 5{

|l ™y T2 T2 T2 |

l | ‘ I | | | l | |

I l !
V’V‘V‘V‘V‘V’V‘V‘V’ I L AL 4{ ‘ V’V \/ V‘V’V \VAVAVAVAVAWA W/
Address,)

Byte Enables SO Vali QRRXLLELI?

| |
ADS# : \ l/
-

ZRXXITS %

A e 2020202020000 00

|
|
|
|
|
l
|
PAVAVAVAN PAVAVAVAVAVAN A |
|
|
[
|
|

| |
| |
SMI# : :
| |

w -)]

3-44

Bus Operation and Functional Timing

3.4.11 Power Management

The power-management features in the TI486SXL(C) family of microproces-
sors allow a dramatic reduction in the current required when the microproces-
sor is in suspend mode (typically less than three percent of the operating cur-
rent). Suspend mode is entered either by a hardware- or software-initiated
action. Using the hardware to initiate suspend mode involves a two-pin hand-
shake using the SUSP# and SUSPA# signals. Using the software involves ini-
tiating the suspend mode through execution of the HALT instruction. Additional
power management can be achieved by stopping and restarting the input
clock. This technique is available because the TI1486SXLC series micropro-
cessors are static devices, meaning that clock can be stopped and restarted
without loss of any internal CPU data.

3.4.11.1 SUSP#-Initiated Suspend Mode

The TI486SXLC series microprocessor enters suspend mode when the
SUSP#inputis asserted and execution of the current instruction, any pending
decoded instructions, and associated bus cycles are completed. The micro-
processor also waits for the coprocessor to indicate a not-busy status
(BUSY#=1) prior to entering suspend mode. The SUSPA# output is then as-
serted. The microprocessor responds to SUSP# and asserts SUSPA# only if
the SUSP bit is set in the CCRO0 Configuration register.

Figure 3—24 illustrates the microprocessor functional timing for SUSP#-initi-
ated suspend mode. SUSP# is sampled on the phase two (¢2) CLK2 rising
edge and must meet specified setup and hold times to be recognized at a par-
ticular CLK2 edge. The time from assertion of SUSP# to activation of SUSPA#
varies depending on which instructions were decoded prior to assertion of
SUSP#. The minimum time from SUSP# sampled active to SUSPA# asserted
is two CLK2s. As a maximum, the microprocessor can execute up to two
instructions and associated bus cycles prior to asserting SUSPA#. The time
required for the microprocessor to deactivate SUSPA# once SUSP# has been
sampled inactive is four CLK2s.

Figure 3—24. SUSP#-Initiated Suspend Mode

CLK2

o1

I I I I
92 o1 1 62 o1 1 ¢2 | o011 ¢2) o1 [02 | 611 ¢2

U i

N |

_

SUSPA#

i T
I |
CLK2s
Min ——PI :4———— 4 CLK2s ————»}
| |

|

| | |
|
I

TI486SXLC Microprocessor Bus Interface 3-45

Bus Operation and Functional Timing

If the microprocessor is in a hold-acknowledge state and SUSP# is asserted,
the processor may or may not enter suspend mode depending on the state of
the microprocessor internal execution pipeline. If the microprocessor is in a
SUSP#-initiated suspend state and the CLK2 input is not stopped, the proces-
sor recognizes and acknowledges the HOLD input and stores the occurrence
of FLUSH#, NMI, and INTR (if enabled) for execution once suspend mode is
exited.

3.4.11.2 HALT-Initiated Suspend Mode

The TI1486SXLC series microprocessor also enters suspend mode as a result
of executing a HALT instruction. The SUSPA# output is asserted no more than
17 CLK2s following a READY# sampled active for the HALT bus cycle as
shown in Figure 3-25. Suspend mode is then exited upon recognition of an
NMI or an unmasked INTR. SUSPA# is deactivated 12 CLK2s after sampling
of an active NMI or unmasked INTR. If the microprocessor is in a HALT-initi-
ated suspend mode and the CLK2 input is not stopped, the processor recog-
nizes and acknowledges the HOLD input and stores the occurrence of
FLUSH# for execution once suspend mode is exited.

Figure 3-25. HALT-Initiated Suspend Mode
Nonpipelined HALT

| T T2 | Ti | Ti | Ti | Ti

| |
T T
| |
| [

ADS# _}\—/
|
M/ |O#, W/ R#, " N N N \V4 V‘V’v" V’v’v’v’v’v’v‘v‘v‘v
A1, BHEH# X? SRR KLRRKKRL
|
|
T
|
|
|
|
|
|
|
|
|

D/C#, A23—A2, R KR
BLE# LLLIRLLRLRILLLK BLLRKIKLKLK

|
READY# : ; 12 ;
| |‘— CLK2s —"
| ((d
NMI | (| Voo |
) T |
17 CLK2s Max —i¢ 1 b | |
SUSPA#) { ! !
| | | I

l
l
|

3-46

Bus Operation and Functional Timing

3.4.11.3 Stopping the Input Clock

Because the TI486SXLC series microprocessors are static devices, the input
clock (CLK2) can be stopped and restarted without loss of any internal CPU
data. This assumes, of course, that the TI486SXLC2 microprocessor is in non-
clock-doubled mode when the input clock is stopped. (Refer to subsection
3.2.1, Clock Doubling Using Software Control, page 3-13.) CLK2 can be
stopped in either phase one (¢1) or phase two ($2) of the clock and in either
a logic-high or logic-low state. However, entering suspend mode prior to stop-
ping CLK2 dramatically reduces the CPU current requirements. Therefore, the
recommended sequence for stopping CLK2 of the TI486SXLC2 series micro-
processor from clock-doubled mode is:

1) Bring the processor out of clock-doubled mode
2) Initiate suspend mode

3) Wait for assertion of SUSPA# by the processor
4) Stop the input clock

Note:

Suspend mode can be entered while in clock-doubled mode as long as CLK2
is not scaled or stopped.

— J

For all other cases, including the TI486SXLC2 in nonclock-doubled mode, the
recommended sequence is:

1) Initiate suspend mode
2) Wait for assertion of SUSPA# by the processor
3) Stop the input clock

The TI486SXLC series microprocessor remains suspended until CLK2 is re-
started and suspend mode is exited as described above. While CLK2 is
stopped, the microprocessor can no longer sample and respond to any input
stimulus including the HOLD, FLUSH#, NMI, INTR, and RESET inputs.
Figure 3-26 illustrates the recommended sequence for stopping CLK2 using
SUSP# to initiate suspend mode. CLK2 should be stable for a minimum of 10
clock periods before SUSP# is deasserted.

Figure 3—26. Stopping CLK2 During Suspend Mode

CLK2

SUSP#

BUSY#

SUSPA#

o1

|
02 | o1 | 62 | of | 62 | ot | 2

|
N

LU TUULLLE

{
)

I
I .
| (s_/
|)
(1) |
|

10 CLK2s Min —— 4~ —Pp
|
I

—_—r

P

(Y

(
)

~—
—

TI486SXL.C Microprocessor Bus Interface 3-47

Bus Operation and Functional Timing

3.4.12 Float

Activating the FLT#input floats all TI486SXLC bidirectional and output signals.
Asserting FLT# electrically isolates the microprocessor from the surrounding
circuitry. This feature is useful in board-level test environments. Since the mi-
croprocessor is packaged in a surface-mount QFP, it is not usually socketed
and cannot be removed from the motherboard when in-circuit emulation (ICE)
is needed. Float capability allows connection of an emulator by clamping the
emulator probe onto the microprocessor QFP without removing it from the cir-
cuit board.

FLT# is an asynchronous, active-low input. It is recognized on the rising edge
of CLK2. When recognized, it aborts the current bus state and floats the out-
puts of the microprocessor as shown in Figure 3—27. FLT# must be asserted
for a minimum of 16 CLK2 cycles. To exit the float condition, RESET should
be asserted and held asserted until after FLT# is deasserted.

Asserting the FLT# input unconditionally aborts the current bus cycle and
forces the microprocessor into the float mode. As a result, the microproces-
sors are not guaranteed to enter float in a valid state. After deactivating FLT#,
the CPU is not guaranteed to exit float in a valid state. The microprocessor
RESET input must be asserted prior to exiting float to ensure that the micropro-
cessor is reset and that it returns in a valid state.

Figure 3-27. Entering and Exiting Float

FLT# _\ /

CONTROL T Valid)_ _________________ _(X

R B x
ADDRESS X Vaid).. ________________ _(r

RESET /

3-48

Chapter 4

T4

86SXL Microprocessor

This chapter provides a summary of the TI486SXL series processor signals
and descriptions of all inputs/outputs, functional timing and bus operations (in-
cluding pipelined and nonpipelined addressing), various interfaces, and power
management.

Topic Page

Input/Output Signals

4.1 Input/Output Signals

This section describes the TI486SXL series microprocessors’ input and output
signals. The discussion of these signals is arranged by functional groups as
shown in Figure 4-1. Table 4—1 gives a brief description of each signal.

Figure 4—1. TI486SXL Functional Signal Groupings

2x Clock _’I CLK2 TI486SXL INTR j¢——
le interrupt
NMI J Control
Reset ~ —M RESET SMi# f¢—»
Address @ A31-A2 ‘ KEN# [¢——
Bus Internal
<4—— BE3#-BEO# FLUSH# [¢—— > Cache
Interface
T MEMW# [¢——
DSJ? Q D31-DO Add
ress
A20M# (¢ Bit-20 Mask
- 44— TW/R#
Bue.Gvel <+— W/R# PEREQ |¢—
us-Cycle .
Definiion | 4 D/C# BUSY# [¢—— > Doprocessor
<«— mio#
ERROR# |¢—
. «—] LocK#
HOLD j¢—
~ —» BS16# Bus
HLDA —» Arbitration
—» NA#
Bus- SUSP# [¢—
e e -
Pag|—> |V
<+— ADSH# SUSPA#
[«—{ SMADS# tFLT# [&— Float Control

t 144-pin QFP and 168-pin PGA pinout only
¥ 144-pin QFP pinout only

Input/Output Signals

Table 4—1. TI486SXL Signal Summary

Signal

Signal Name

Signal Group

ADS#
A20M#
A31-A2
BE3#-BEO#
BS16#
BUSY#
CLK2
D31-D0
D/C#
ERROR#
FLT#t
FLUSH#
HLDA
HOLD
INTR
KEN#
LOCK#
MEMW# T
M/IO#
NA#
NMI
PEREQ
READY#
RESET
SMADS#
SMi#
SUSP#
SUSPA#
W/R##

Address Strobe

Address Bit-20 Mask
Address Bus Lines

Byte enables

Bus size 16

Processor extension busy
2X clock input

Data bus

Data/control

Processor extension error
Float

Cache flush

Hold acknowledge

Hold request

Maskable interrupt request
Cache enable

Bus lock

ISA memory write
Memory/input-output

Next address request
Nonmaskable interrupt request
Processor extension request
Bus ready

Reset

SMM address strobe
System management interrupt
Suspend request

Suspend acknowledge
Write/read

Bus-cycle control

None

Address bus

Address bus

Bus-cycle control
Coprocessor interface
None

None

Bus-cycle definition
Coprocessor interface
None

Internal cache interface
Bus arbitration

Bus arbitration

Interrupt control
Internal Cache interface
Bus-cycle definition
Internal cache interface
Bus-cycle definition
Bus-cycle control
Interrupt control
Coprocessor interface
Bus-cycle control

None

Bus-cycle control
Interrupt control

Power management
Power management

Bus-cycle definition

T 144-pin QFP and 168-pin PGA pinout only.
% 144-pin QFP has W/R# on pins 36 and 37. These terminals must be connected together.

The following sections describe the signals and their functional characteris-
tics. Additional signal information can be found in Chapter 5, Electrical Specifi-
cations. Chapter 5 documents the dc and ac characteristics for the signals in-
cluding voltage levels, propagation delays, setup times, and hold times. Speci-
fied setup and hold times must be met for proper operation of the T1486SXL
series microprocessors.

TI486SXL Microprocessor Bus Interface - 43

Input/Output Signals

4.1.1 TI486SXL Terminal Function Descriptions

Table 4-2 identifies and describes each of the TI486SXLC package terminals.

Table 4-2. TI486SXL. Terminal Functions

Terminal
No.

132- 144- 168-

Name pin pin pin Description
A2 C4 73 Q14 Address Bus (active high). The address bus (A31-A2) signals are three-
A3 A3 74 R15 state outputs that provide addresses for physical memory and 1/O ports. All
A4 B3 75 S16 address lines can be used for addressing physical memory allowing a
A5 B2 76 Q12 4G-byte address space (0000 0000h to FFFF FFFFh). During /O port
A6 C3 77 S15 accesses, A31-A16 are driven low (except for coprocessor accesses). This
A7 Cc2 78 Q13 permits a 64-Kbyte /O address space (0000 0000h to 0000 FFFFh).
A8 C1 86 Ri13
A9 D3 87 Q11 During all coprocessor /O access address lines A30-A16 are driven low and
A10 D2 88 S13 A31isdriven high. This allows A31 to be used by external logic to generate
At1 D1 89 R12 a coprocessor select signal. Coprocessor command transfers occur with
A12 E3 90 S7 address 8000 00F8h and coprocessor data transfers occur with address
A13 E2 93 Q10 8000 00FCh. A31-A2 float while the CPU is in a hold-acknowledge or float
Al14 E1 94 S5 state.
A15 F1 95 R7
Al6 G1 104 Q9
A17 H1 106 Q3
A18 H2 107 RS
A19 H3 108 Q4
A20 J1 109 Q8
A21 K1 110 Q5
A22 K2 113 Q7
A23 L1 114 S3
A24 L2 61 Q6
A25 K3 60 R2
A26 M1 59 S2
A27 N1 58 S1
A28 L3 84 Rt
A29 M2 83 P2
A30 P1 82 P3
A31 N2 81 Q1
ADS# Ei4 26 S17 Address Strobe (active low). This 3-state output indicates thatthe T1486SXL
microprocessor has driven a valid address (A31-A2, BE3#-BEO#) and
bus-cycle definition (M/IO#, D/C#, W/R#) on the appropriate output pins.
During nonpipelined bus cycles, ADS# is active for the first clock of the bus
cycle. During address pipelining, ADS# is asserted during the previous bus
cycle and remains asserted until READY# is returned for that cycle. ADS#
floats while the microprocessor is in a hold-acknowledge or float state.
A20M# F13 43 D15 Address Bit-20 Mask (active low). This input causes the microprocessor to

mask (force low) physical address bit 20 when driving the external address
bus or performing an internal cache access. When the processor is in real
mode, asserting A20M# emulates the 1M-byte address wraparound that
occurs on the 8086. The A20 signal is never masked when paging is enabled
regardless of the state of the A20M# input. The A20M# input is ignored
following reset and can be enabled using the A20M bit in the CCRO
Configuration register.

A20M# is internally connected to a pullup resistor to prevent it from floating
active when left unconnected.

Input/Output Signals

Table 4-2. TI486SXL Terminal Functions (Continued)

Name

Terminal
No.

132-
pin

144-
pin

168-
pin

Description

BE3#
BE2#
BE1#
BEO#

A13
B13
C13
E12

32
31
28
27

F17
J15
J16
K15

Byte Enables BE3#—BEO# (active low). These 3-state outputs determine
which bytes within the 32-bit data bus are transferred during a memory or I/O
access (Table 4-3). During a memory write, one or both of the upper bytes
(D and C) of the data bus can be duplicated in the lower bytes (B and A) of
the bus. This duplication is dependent on BE3#—BEO0# as listed in Table 4—4.

Generating A1—A0 using BE3#—-BEO# can be achieved by using the
following equations:

AO = (BEO# « BE2#) + (BEO# ¢ BE1#)

A1l = BEO# « BE1#
The relationship between A1—-A0 and BE3#—BEO# is shown in Table 4-5.

BS16#

C14

115

c17

Bus Size 16 (active low). This input allows connection of .the 32-bit
microprocessor data bus to an external 16-bit data bus. When this input is
activated, the microprocessor performs multiple bus cycles to couple read
and write accesses from devices that cannot provide (accept) 32 bits of data
in a single cycle. During bus cycles with BS16# active, data is transferred
using data bus signals D15—D0 only.

BUSY#

B9

48

S4

Coprocessor Busy (active low). This inputindicates to the TI486SXL that the
coprocessor is currently executing an instruction and is unable to accept
another opcode. When the microprocessor encounters a WAIT instruction or
any coprocessor instruction that operates on the coprocessor stack (i.e.,
load, pop, arithmetic operation), BUSY# is sampled. BUSY# is continually
sampled and must be recognized as inactive before the CPU supplies the
coprocessor with another instruction. However, the following coprocessor
instructions are allowed to execute even if BUSY# is active because they are
used for coprocessor initialization and exception clearing: FNINIT, FNCLEX.

BUSY# is internally connected to a puliup resistor to prevent it from floating
active when left unconnected.

CLK2

F12

25

C3

2X Clock Input (active high). This input signal is the basic timing reference
for the TI486SXL series microprocessors. The CLK2 input is internally
divided by two to generate the internal processor clock. The external CLK2
is synchronized to a known phase of the internal processor clock by the falling
edge of the RESET signal. External timing parameters are defined with
respect to the rising edge of CLK2.

For the TI486SXL2 microprocessors, the CLK2 input is used internally to
generate the internal core processor clock and the internal bus interface
clock. The external CLK2 is synchronized to a known phase of the internal
processor clock by the falling edge of the RESET signal. External timing
parameters are defined with respect to the rising edge of CLK2.

TI486SXL Microprocessor Bus Interface 4-5

Input/Output Signals

Table 4-2. TI486SXL Terminal Functions (Continued)

Terminal
No.
132- 144- 168-
Name pin pin pin Description
D/C# A1 35 M15 Data/Control. This 3-state, bus-cycle-definition signal is low during control
cycles and is high during data cycles. Control cycles are issued during
functions such as a halt instruction, interrupt servicing, and code fetching.
Data bus cycles include data access from either memory or 1/O.
DO H12 1 P1 Data Bus (active high). The data bus (D31-D0) signals are 3-state
D1 H13 144 N2 bidirectional signals that provide the data path between the microprocessor
D2 H14 143 N1 and external memory and I/O devices. The data bus inputs data during
D3 J14 137 H2 memory read, I/O read, and interrupt-acknowledge cycles and outputs data
D4 Ki4 136 M3 during memory and /O write cycles. Data read operations require that
D5 K13 135 J2 specified data setup and hold times be met for correct operation. The data
D6 L14 134 L2 bus signals float while the CPU is in a hold-acknowledge or float state.
D7 Ki2 133 L3
D8 L13 131 F2
D9 N14 130 D1
D10 Mi2 129 E3
D11 N13 128 Cf
D12 N12 127 G3
D13 P13 118 D2
D14 P12 117 K8
D15 M11 116 F3
D16 Ni11 124 J3
D17 N10° 123 D3
D18 P11 122 Cc2
D19 P10 121 B1
D20 M9 102 A1
D21 N9 101 B2
D22 P9 100 A2
D23 N8 99 A4
D24 P7 3 A6
D25 N6 4 B6
D26 P5 142 c7
D27 N5 141 C6
D28 M6 12 C8
D29 P4 13 A8
D30 P3 14 C9
D31 M5 15 B8
ERROR# A8 49 A12 Coprocessor Error {active low). This input indicates that the coprocessor

generated an error during execution of an instruction. ERROR# is sampled
by the microprocessor whenever a coprocessor instruction is executed. If
ERROR# is sampled active, the processor generates exception 16, that is
then serviced by the exception handling software.

Certain coprocessor instructions do not generate an exception 16 even if
ERROR# is active. These instructions, which involve clearing coprocessor
error flags and saving the coprocessor state, are: FNINIT, FNCLEX,
FNSTSW, FNSTCW, FNSTENV, FNSAVE.

ERROR# is internally connected to a pullup resistor to prevent it from floating
active when left unconnected.

4-6

Input/Output Signals

Table 4-2. TI486SXL Terminal Functions (Continued)

Name

Terminal
No.

132-
pin

144-
pin

168-
pin

Description

FLT#

40

c11

Float (active low). This input forces all bidirectional and output signals to a
3-state condition. Floating the signalis allows the microprocessor signals to
be driven externally without physically removing the device from the circuit.
The microprocessor must be reset following assertion or deassertion of
FLT#. This signal may be used in conjunction with an upgrade socket.

FLT# is internally connected to a pullup resistor to prevent it from floating
active when left unconnected.

FLUSH#

E13

42

Ci15

Cache Flush (active low). This input invalidates (flushes) the entire cache.
Use of FLUSH# to maintain cache coherency is optional. The cache may also
be invalidated during each hold-acknowledge cycle by setting the BARB bit
in the CCRO Configuration register. The FLUSH# input is ignored following
reset and can be enabled using the FLUSH bit in the CCRO Configuration
register.

FLUSHE# is internally connected to a pullup resistor to prevent it from floating
active when left unconnected.

HOLD

D14

E15

Hold Request (active high). This input indicates that another bus master
requests control of the local bus. The bus arbitration (HOLD, HLDA) signals
allow the microprocessor to relinquish control of its local bus when requested
by another bus master device. Once the processor has relinquished its bus
(3-stated), the bus master device can then drive the local bus signals.

After recognizing the HOLD request and completing the current bus cycle or
sequence of locked bus cycles, the microprocessor responds by floating the
local bus and asserting the hold acknowledge (HLDA) output.

Once HLDA is asserted, the bus remains granted to the requesting bus
master until HOLD becomes inactive. When the microprocessor recognizes
HOLD is inactive, it simultaneously drives the local bus and drives HLDA
inactive. External pullup resistors may be required on some of the
microprocessor 3-state outputs to ensure that they remain inactive while in
a hold-acknowledge state (or float state for the 144-pin QFP and 168-pin
CPUs).

The HOLD input is not recognized while RESET is active. If HOLD is asserted
while RESET is active, RESET has priority and the microprocessor places

~ the bus into an idle state instead of a hold-acknowledge state. The HOLD

input is also recognized during suspend mode provided that the CLK2 input
has not been stopped. HOLD is level-sensitive and must meet specified
setup and hold times for correct operation.

TI486SXL Microprocessor Bus Interface 4-7

Input/Output Signals

Table 4-2. TI486SXL Terminal Functions (Continued)

Name

Terminal
No.

132-
pin

144-
pin

168-
pin

Description

HLDA

M14

6

P15

Hold Acknowledge (active high). This output indicates that the
microprocessor is in a hold-acknowledge state and has relinquished control
of its local bus. While in the hold-acknowledge state, the microprocessor
drives HLDA active and continues to drive SUSPA#, if enabled. The other
microprocessor outputs are in the high-impedance state allowing the
requesting bus master to drive these signals. If the on-chip cache can satisfy
bus requests, the microprocessor continues to operate during
hold-acknowledge states. A20M# is internally recognized during this time.

The microprocessor deactivates HLDA when the HOLD request is driven
inactive. The microprocessor stores an NMI rising edge during a
hold-acknowledge state for processing after HOLD is inactive. The FLUSH#
input is also recognized during a hold-acknowledge state. if SUSP# is
asserted during a hold-acknowledge state, the microprocessor may or may
not enter suspend mode depending on the state of the internal execution
pipeline. Table 4-6 summarizes the state of the microprocessor signals

during hold acknowledge. :

INTR

B7

53

A16

Maskable Interrupt Request. This level-sensitive input causes the processor
to suspend execution of the current instruction stream and begin execution
of an interrupt service routine. The INTR input can be masked (ignored)
through the Flag Word register IF bit. When unmasked, the microprocessor
responds to the INTR input by issuing two locked interrupt-acknowledge
cycles. To assure recognition of the INTR request, INTR must remain active
until the start of the first interrupt-acknowledge cycle.

KEN#

B12

41

F15

Cache Enable (active low). This input indicates that the data being returned
during the current cycle is cacheable. When KEN# is active and the
microprocessor is performing a cacheable code fetch or memory data read
cycle, the cycle is transformed into a cache fill. Use of the KEN# input to
control cacheability is optional. The noncacheable region registers can also
be used to control cacheablity. Memory addresses specified by the
noncacheable region registers are not cacheable regardless of the state of
KEN#. /O accesses, locked reads, SMM address space accesses, and
interrupt-acknowledge cycles are never cached.

During cached code fetches with BS16# asserted, two contiguous read
cycles are performed to completely fill the 4-byte cache line. KEN# must be
asserted during both read cycles to cause a cache linefill. If BS16# is inactive,
only one bus cycle is required and KEN# must be asserted for the data to be
cached. During memory data reads, the microprocessor performs as many
read cycles as necessary to supply the required data to complete the current
operation. Valid bits are maintained for each byte in the cache line and for
each block of four lines, thus allowing data operands of less than four bytes
to reside in the cache.

If two read cycles are performed with the same address (A31-A2), KEN#
must be asserted during both cycles to cache the data in these cycles. If the
data is cached, the microprocessor ignores the state of the byte enables
(BE3#— BEO#) and four bytes of data (2 bytes if BS16# is asserted) is cached.
The KEN# input is ignored following reset and can be enabled using the KEN
bit in the CCRO Configuration register.

KEN# is internally connected to a pullup resistor to prevent it from floating
active when left unconnected.

4-8

Input/Output Signals

Table 4-2. TI486SXL Terminal Functions (Continued)

Name

Terminal

No.

132-
pin

144-
pin

168-
pin

Description

LOCK#

C10

38

N15

LOCK (active low). This 3-state, bus-cycle-definition signal is asserted to
deny access of the CPU bus to other bus masters. The LOCK# signal may
be explicitly activated during bus operations by including the LOCK prefix
on certain instructions. LOCK# is always asserted during descriptor and
page table updates, interrupt-acknowledge sequences, and when
executing the XCHG instruction. The microprocessor does not enter the
hold-acknowledge state in response to HOLD while the LOCK# output is
active.

MEMW#

66

B16

Memory Write (active low). This input is used in the cache interface logic
which flushes the cache in systems that hold the CPU during DMA and
MASTER cycles. »

M/IO#

A12

34

N16

Memory/IO. This 3-state, bus-cycle-definition signal is low during I/O read
and write cycles and is high during memory cycles.

NA#

D13

A13

Next Address Request (active low). This input requests address pipelining
by the system hardware. When asserted, the system indicates that it is
prepared to accept new bus-cycle definition and address signals (M/IO#,
D/C#, W/R#, A31—-A2, BS16#, and BE3#—BEO#) from the microprocessor
even if the current bus cycle has not been terminated by assertion of
READY#. If the microprocessor has an internal bus request pending and the
NA# input is sampled active, the next bus-cycle definition and address
signals are driven onto the bus.

NC

B6

39
65
71
138

A3
A5
Al4
At7
B14
B15
B17
C10
c12
Ci14
D16
D17
F1
G15
H3
H15
J17
L15
N3
Q15
Q16
Q17
R16

Make no external connection.

-
Note:

NC Terminals

Connecting or terminating (high or low) any NC terminal(s) may cause un-

predictable results or nonperformance of the microprocessor.
1

TI486SXL Microprocessor Bus Interface 4-9

Input/Output Signals

Table 4-2. TI486SXL Terminal Functions (Continued)

Name

Terminal
No.

132-
pin

144-
pin

168-
pin

Description

NMI

B8

51

A15

Nonmaskable Interrupt Request. This rising-edge-sensitive input causes
the processor to suspend execution of the current instruction stream and
begin execution of an NMI interrupt service routine. The NMlinterrupt service
request cannot be masked by software. Asserting NMI causes an interrupt
which internally supplies interrupt vector 2h to the CPU core. External
interrupt-acknowledge cycles are not necessary since the NMI interrupt
vector is supplied internally. Once NMI processing has started, no additional
NMIs are processed until an IRET instruction is executed.

The microprocessor samples NMI at the beginning of each phase two ($2)
clock period. To assure recognition, NMI must be inactive for at least eight
CLK2 periods and then be active for at least eight CLK2 periods. Additionally,
specified setup and hold times must be met to assure recognition at a
particular clock edge.

_ PEREQ

C8

50

R17

Coprocessor Request (active high). This input indicates that the
coprocessor is ready to transfer data to or from the CPU. The coprocessor
can assert PEREQ in the process of executing a coprocessor instruction. The
microprocessor internally stores the current coprocessor opcode and
performs the correct data transfers to support coprocessor operations using
PEREQ to synchronize the transfer of required operands.

PEREQ is internally connected to a pulldown resistor to prevent this signal
from floating active when left unconnected.

READY#

G13

10

F16

Ready (active low). This input is generated by the system hardware to
indicate that the current bus cycle can be terminated. During a read cycle,
assertion of READY# indicates that the system hardware has presented valid
data to the CPU. When READY# is sampled active, the microprocessor
latches the input data and terminates the cycle. During a write cycle,
READY# assertion indicates that the system hardware has accepted the
microprocessor output data. READY# must be asserted to terminate every
bus cycle, including halt and shutdown indication cycles.

Reserved

A10

RESET

Co

45

C16

Reset (active high). When asserted, RESET suspends all operations in
progress and places the microprocessor into a reset state. RESET is a
level-sensitive synchronous input and must meet specified setup and hold
times to be properly recognized by the microprocessor. The microprocessor
begins executing instructions at physical address location FF FFFCh
approximately 400 CLK2s after RESET is driven inactive (low).

While RESET is active, the microprocessor is initialized to nonclock-doubled
mode (for the TI486SXL2) and all other input pins are ignored. The remaining
signals are initialized to their reset state during the internal processor reset
sequence. The reset signal states for the microprocessor are shown in
Table 4-6.

SMADS#

Cé

29

B13

SMM Address Strobe (active low). SMADS#, a three-state output, is
asserted instead of the ADS# during SMM bus cycles and indicates that SMM
memory is being accessed. SMADS# floats while the CPU is in a
hold-acknowledge or float state. The SMADS# output is disabled (floated)
following reset and can be enabled using the SMI bit in the CCR1
Configuration register.

4-10

Input/Output Signals

Table 4-2. T1486SXL Terminal Functions (Continued)

Terminal
No.
132- 144- 168-

Name Ppin pin pin Description

SMi# c7 67 B10 System Management Interrupt (active low). This 3-state, bidirectional,
level-sensitive, input/output signal is an interrupt with higher priority than the
NMI interrupt. SMI# must be active for at least four CLK2 clock periods to
be recognized by the microprocessor. After the SMI is acknowledged, the
SMI# pin is driven low by the microprocessor for the duration of the SMI
service routine. The SMI# input is ignored following reset and can be
enabled using the SMI bit in the CCR1 Configuration register.
SMI# is internally connected to a pullup resistor to prevent it from floating
active when left unconnected.

SUSP# Ad 63 C13 Suspend Request (active low). This input requests the microprocessor to
enter suspend mode. After recognizing SUSP# active, the processor
completes execution of the current instruction, any pending decoded
instructions, and associated bus cycles. In addition, the microprocessor
waits for the coprocessor to indicate a not-busy status (BUSY# = 1) before
entering suspend mode and asserting suspend acknowledge (SUSPA#).
SUSP## is internally connected to a pullup resistor to prevent it from floating
active when left unconnected.

SUSPA# B4 64 B12 Suspend Acknowledge (active low). This output indicates that the
microprocessor has entered the suspend mode as a result of SUSP#
assertion or execution of a HALT instruction.

Vee Al 5 B7 Power Supply. All pins must be connected and used.
A5 11 B9 .
A7 16 B11
A10 17 C4
Al14 30 C5
C5 44 E2
Cc12 52 E16
D12 55 G2
G2 56 G16
G3 62 H16
G12 68 K2
G14 79 K16
L12 85 L16
M3 91 M2
M7 98 M16
M13 103 P16
N4 105 R3
N7 119 R6
P2 125 R8
P8 132 R9

139 R10
R11
Ri14
VCC5 — 47 J1 5-V Power Supply

- TI486SXL Microprocessor Bus Interface 4-11

Input/Output Signals

Table 4-2. TI486SXL Terminal Functions (Continued)

Terminal
No.
132- 144- 168-
Name pin pin pin Description

Vss A2 2 A7 Ground Pins. All pins must be connected and used.
A6 8 A9
A9 18 AN
Bt 19 B3
B5 20 B4
B11 21 B5
B14 22 E1
c1t 23 E17
F2 24 G
F3 3 Gi17
F14 48 H1
J2 54 H17
J3 57 K1
Jiz2 69 K17
Ji3 70 L1
M4 72 L17
M8 80 M1
M10 92 Mi7
N3 96 P17
P6 97 Q2
P14 111 R4

S6

S8

S9
$10
S11
S12
S14

W/R# Bi10 36 N17 Wirite/Read. This 3-state, bus-cycle-definition signal is low during read
37 cycles (data is read from memory or I/O) and is high during write bus cycles
(data is written to memory or 1/O).

4.1.2 Byte Enable Line Definitions

These 3-state outputs determine which bytes within the 32-bit data bus are
transferred during a memory or 1/O access. See Table 4-3.

Table 4-3. Byte Enable Line Definitions

Byte Enable Line Byte Transferred
BEO# D7-D0
BE1# D15-D8
BE2# D23-D16
BE3# D31-D24

Input/Output Signals

4.1.3 Write Duplication as a Function of BE3# — BEO#

During a memory write, one or both of the upper bytes (D and C) of the data
bus can be duplicated in the lower bytes (B and A) of the bus. This duplication

is dependent on BE3#—BEO# as listed in Table 4—4.

Table 4—4. Write Duplication as a Function of BE3#—-BEO#

BE3#-BEO# D31-D24 D23-D16 D15-D8 D7-D0 Duplicated Data
0000 D C B A No
0001 D Cc B X No
0011 D Cc D C Yes
0111 D X D X Yes
1000 X C B A No
1001 X Cc B X No
1011 X Cc X Cc Yes
1100 X X B A No
1101 X X B X No
1110 X X X A No

Note: BE3# — BEO# combinations not listed do not occur during TI486SXL bus cycles.
A = logical write data D7 — DO
B = logical write data D15 ~ D8

C = logical write data D23 — D16
D = logical write data D31 — D24

X = Don't care

4.1.4 Generating A1 — A0 Using BE3# — BEO#
Generating A1—AOQ using BE3#—-BEOQ# can be achieved by using the following

4.1.5

equations:

AO = (BEO# « BE2#) + (BEO# o BE1#)
A1 = BEO# o BE1#

The relationship between A1—-AQ and BE3#—BEO# is shown in Table 4-5.
Table 4-5. Generating A1—AO0 Using BE3#—-BEO#

A31-A2 A1 A0 BE3# BE2# BE1# BEO#
_ 0 0 X X X 0
_ 0 1 X X 0 1
_ 1 0 X 0 1 1

1 1 0 1 1 1

Note: X =Don't care

Signal States During Reset and Hold Acknowledge

RESET is the highest priority input signal. When RESET is asserted, the mi-
croprocessor aborts any current bus cycle and establishes real-mode bus-

TI486SXL Microprocessor Bus Interface

4-13

Input/Output Signals

cycle definition with active buses. See Table 3—3 and Section 4.3, Reset Tim-

ing and Internal Clock Synchronization, page 4-19.

The hold-acknowledge state (Th) is entered in response to assertion of the
HOLD input during which the microprocessor floats all output and bidirectional
signals, except for HLDA and SUSPA#. In the hold-acknowledge state, all in-
puts except HOLD, FLUSH#, FLT#, SUSP# and RESET are ignored. See
Table 3—3 and subsection 4.4.9, Hold Acknowledge State, page 4-45. The
hold-acknowledge state provides the mechanism for an external device to ac-

quire the system bus.

Table 4—6. Signal States During RESET and Hold Acknowledge

Signal State Signal State During
Signal Name During Reset Hold Acknowledge
A20M# Ignored " Input recognized
A31-A2 1 Float
ADS# 1 Float
BE3#-BEO# 0 Float
BS16# Ignored Ignored
BUSY# Initiates self test ignored
D31-D0 Float Float
D/C# 1 Float
ERROR# Ignored Ignored
FLT#1T Input recognized Input recognized
FLUSH# Ignored Input recognized
HLDA 0 1
HOLD Ignored Input recognized
INTR Ignored Input recognized
KEN# Ignored Ignored
LOCK# 1 Float
MEMW# t Ignored Input recognized
M/IO# 0 Float
NA# Ignored Ignored
NMI Ignored Input recognized
PEREQ Ignored Ignored
READY# Ignored Ignored
RESET Input recognized Input recognized
SMADS# Float Float
SMI# Ignored Input recognized
SUSP# Ignored Input recognized
SUSPA# Float Driven
W/R#+ 0 Float

T 144-pin QFP and 168-pin PGA only

% 144-pin QFP has W/R# on pins 36 and 37. These terminals must be connected together.

Bus-Cycle Definition

4.2 Bus-Cycle Definition

The bus-cycle-definition signals consist of four 3-state outputs (M/IO#, D/C#,
W/R#, LOCK#) that define the type of bus-cycle operation being performed.
Table 4—7 defines the bus cycles for the possible states of these signals.
M/10#, D/C#, and W/R# are the primary bus-cycle-definition signals and are
driven valid as ADS# (Address Strobe) becomes active. During nonpipelined
cycles, the LOCK# output is driven valid along with M/IO#, D/C# and W/R#.
During pipelined addressing, LOCK# is driven at the beginning of the bus
cycle, which is after ADS# becomes active for that cycle. The bus-cycle-defini-
tion signals are active low and float while the microprocessor is in a hold-ac-
knowledge or float state.

Table 4-7. Bus-Cycle Types

M/IO# D/C# W/R# LOCK# Bus-Cycle Type

0 0 0 0 Interrupt acknowledge
0 0 0 1 —

0 0 1 X —

0 1 X 0 —

0 1 0 1 I/O data read

0 1 1 1 I/O data write

1 0 X 0 —

1 0 0 1 Memory code read

Halt: A31-A2 = Oh, BE3#—-BEO# = 1011

1 0 1 T Shuidown: A31—A2 = Oh, BES#—BEO# =1110

1 1 0 0 Locked memory data read
1 1 0 1 Memory data read
1 1 1 0 Locked memory data write
1 1 1 1 Memory data write

X =don’t care

— = does not occur

4.2.1 Clock Doubling Using Software Control

The clock-doubled feature of the TI486SXL2 is enabled/disabled using
Configuration Control register 0 (CCRO) bit 6. The following can be used for
software enabling/disabling of CKD:

Set CKD programming sequence:

mov al, 0COh ;select CCRO
out 22h, al

in al, 23h ;read CCRO
mov ah, al ;save in AH
or ah, 40h ;set AH<6>
mov al, 0COh ;select CCRO

out 22h, al
mov al, ah i
out 23h, al swrite CCRO

TI486SXL Microprocessor Bus Interface 4-15

Bus-Cycle Definition

Reset CKD programming sequence:

mov al, 0COh ;select CCRO
out 22h, al

in al, 23h ;read CCRO
mov ah, al ;save in AH
and ah, OBFh ;reset AH<6>
mov al, 0COh ;select CCRO

out 22h, al
mov al, ah
out 23h, al ;write CCRO

4.2.1.1 Entering Clock-Doubled Mode

The T1486SXL2 microprocessors power up in the nonclock-doubled mode. To
enter the clock-doubled mode, set CLK2 to the desired frequency inside the
phase-locked loop (PLL) lock range (see Table 5-5 and Table 5-6) and issue
the set CKD programming sequence. Approximately 20 us after the final OUT
instruction has exited the processor pipeline, the PLL locks and the CPU
enters clock-doubled mode. Until the PLL is locked, the processor continues
to operate in the nonclock-doubled mode.

4.2.1.2 Clock-Scaling Sequence

When the processor is in clock-doubled mode and the CLK2 input is to be
scaled or stopped, the reset CKD programming sequence should be issued.
The final OUT instruction exiting the processor pipeline causes the CKD bit to
be reset and puts the processor into nonclock-doubled mode. This must occur
prior to scaling or stopping the CLK2 input in order to prevent a synchronization
error from occurring. This may be ensured by issuing a JUMP instruction, such
as JMP $+2, before scaling CLK2.

- To return the processor to clock-doubled mode, set CLK2 to the desired fre-

quency inside the PLL lock range and issue the set CKD programming se-
guence. Approximately 20 us after the final OUT instruction has exited the pro-
cessor pipeline, the PLL locks and the processor enters clock-doubled mode.

4.2.1.3 Suspend Mode

4-16

Suspend mode can be initiated when the TI486SXL2 microprocessor is in
clock-doubled mode as long as the CLK2 input is not scaled or stopped. Sus-
pend mode does not disable the PLL; instead, changing the CLK2 frequency
causes the PLL to lose lock.

For more detailed information on entering and exiting suspend in honclock-
doubled mode, refer to subsection 4.2.2, Power Management.

In order to get the lowest possible power state, bring the microprocessor out
of clock-doubled mode, enter the suspend mode (using software or hardware),
and stop the CLK2 input.

Bus-Cycle Definition

4.2.2 Power Management

The power management signals allow the TI486SXL series microprocessors
to enter suspend mode. Suspend-mode circuitry allows the microprocessor to
consume minimal power while maintaining the entire internal CPU state.

4.2.2.1 Suspend Request (SUSP#)

Suspend Request (SUSP#) is an active-low input that requests the TI486SXL
series microprocessors to enter suspend mode. With the TI486SXL2 micro-
processors you should follow the procedure in subsection 4.2.1 to enter non-
clock-doubled mode prior to scaling or stopping the CLK2 input. After recog-
nizing SUSP# is active, the processor completes execution of the current
instruction, any pending decoded instructions, and associated bus cycles. In
addition, the microprocessor waits for the coprocessor to indicate a not-busy
condition (BUSY#=1) before entering suspend mode and asserting suspend
acknowledge (SUSPA#). During suspend mode, internal clocks are stopped
and only the logic associated with monitoring RESET, HOLD, and FLUSH# re-
mains active. With SUSPA# asserted, the CLK2 input to the microprocessor
can be stopped in either phase. Stopping the CLK2 input further reduces cur-
rent required by the microprocessor.

To resume operation, the CLK2 input is restarted (if stopped), followed by
deassertion of the SUSP# input. The TI486SXL2 processors can enter clock-
doubled mode (subsection 4.2.1.1, Entering Clock-Doubled Modeg) once the
CLK2 input reaches the desired frequency within the PLL lock range. The pro-
cessor then resumes instruction fetching and begins execution in the instruc-
tion stream at the point it had stopped. The SUSP# input is level sensitive and
must meet specified setup and hold times to be recognized at a particular clock
edge. The SUSP# input is ignored following reset and can be enabled using
the SUSP bit in the CCRO Configuration register.

4.2.2.2 Suspend Acknowledge (SUSPA#)

The Suspend Acknowledge (SUSPA#) output indicates that the TI486SXL se-
ries microprocessor has entered the suspend mode as a result of SUSP#
assertion or execution of a HALT instruction. If SUSPA# is asserted and the
CLK2 input is switching, the microprocessor continues to recognize RESET,
HOLD, and FLUSH#. In addition, the TI486SXL2 microprocessor may stay in
clock-doubled mode while the CLK2 input is switching. If suspend mode was
entered as the result of a HALT instruction, the microprocessor also continues
to monitor the NMI input and an unmasked INTR input. Detection of INTR or
NMI forces the microprocessor to exit suspend mode and begin execution of
the appropriate interrupt service routine. The CLK2 input to the processor can
be stopped after SUSPA# has been asserted to further reduce the power re-
quirement of the microprocessor. For this case, the TI486SXL2 microproces-
sor must be brought out of clock-doubled mode prior to stopping the CLK2 in-
put to prevent a synchronization error. The SUSPA# output is disabled
(floated) following reset and can be enabled using the SUSP bit in the CCRO
Configuration register.

TI486SXL Microprocessor Bus Interface 417

Bus-Cycle Definition

Table 4-8 shows the state of the TI486SXL series microprocessor signals

when the device is in suspend mode.

Table 4-8. Signal States During Suspend Mode

Signal State During

Signal State During Halt-

Signal Name Hold Acknowledge Initiated Suspend Mode
A20M# Ignored Ignored

A31-A2 1 1

ADS# 1 1

BE3#-BEO# O 0

BS16# Ignored Ignored

BUSY# Ignored Ignored

D31-D0O Float Float

D/C# 1 1

ERROR# Ignored Ignored

FLT#T Input recognized Input recognized
FLUSH# Input recognized Input recognized
HLDA 0 0

HOLD Input recognized Input recognized
INTR Latched Input recognized
KEN# Ignored Ignored

LOCK# 1 1

MEMW T Input recognized Input recognized
WiO# 0 0

NA# Ignored Ignored

NMI Latched Input recognized
PEREQ Ignored Ignored
READY# Ignored Ignored

RESET Input recognized Input recognized
SMADS# 1 1

SMI# Latched Input recognized
SUSP# Input recbgnized Ignored
SUSPA# 0 0

W/R## 0 0

1 144-pin QFP and 168-pin PGA only
 144-pin QFP has duplicate W/R# inputs on pins 36 and 37

4-18

Reset Timing and Internal Clock Synchronization

4.3 Reset Timing and Internal Clock Synchronization

RESET is the highest priority input signal and is capable of interrupting any
processor activity when itis asserted. When RESET is asserted, the micropro-
cessor aborts any bus cycle. Idle, hold-acknowledge, and suspend states are
also discontinued and the reset state is established. RESET is used when the
microprocessor is powered up to initialize the CPU to a known valid state and
to synchronize the internal CPU clock with external clocks. The T1486SXL2 mi-
croprocessors are initialized to nonclock-doubled mode upon RESET going
active.

RESET must be asserted for at least 15 CLK2 periods to ensure recognition
by the microprocessor. If the self-test feature is to be invoked, RESET must
be asserted for at least 80 CLK2 periods. RESET pulses of less than 15 CLK2
periods may not have sufficient time to propagate throughout the microproces-
sor and may not be recognized. RESET pulses of less than 80 CLK2 periods
followed by a self-test request may incorrectly report a self-test failure when
no true failure exists.

Provided the RESET falling edge meets specified setup and hold times, the
internal processor clock phase is synchronized as illustrated in Figure 4-2.
The TI1486SXL internal processor clock is half the frequency of the CLK2 input
and each CLK2 cycle corresponds to an internal CPU clock phase (¢). Phase
two (¢2) of the internal clock is defined to be the second rising edge of CLK2
following the falling edge of RESET. The TI486SXL2 internal core clock is the
same frequency as the CLK2 input and the internal bus interface clock is half
the frequency of the CLK2 input. Phase two of the internal clock is defined to
be the second rising edge of CLK2 following the falling edge of RESET.

Figure 4-2. Internal Processor Clock Synchronization
| 6 2or o1 | o 2o0r¢1 | 02 | 01

I I I I I
CLK2
I I

I I

I I I I
I I I

RESET I | | !
| | |

| 1

I

I

|
| |
INTERNAL
TN
PROCESSOR G9900.9.9.99999.9.9.90999999,
o XXX \ /

| | i I I

I
I
I
|
|
I
I
|

T1486SXL Microprocessor Bus Interface 4-19

Reset Timing and Internal Clock Synchronization

Following the falling edge of RESET (and after self-test if it was requested),
the microprocessor performs an internal initialization sequence for approxi-
mately 400 CLK2 periods. The microprocessor self-test feature is invoked if
the BUSY# input is in the active (low) state when RESET falls inactive. The
self-test sequence requires approximately (220 + 60) CLK2 periods to com-
plete. Even if the self-test indicates a problem, the microprocessor attempts
to proceed with the reset sequence. Figure 4-3 illustrates the bus activity and
timing during the microprocessor reset sequence.

Figure 4-3. Bus Activity From RESET Until First Code Felch
< Reset pie Internal > N Cycle 1

> 15 GLK2 periods if not Initialization onpipelined

| | : |

| going to request self-test. | I sze(l)f-testls performed, add (Read)

| >80 CLK2 periods before | 204V + 60” to these numbers Tt T2

| requesting seif-test. 1 2 3 17 18 19 392* 393*394* 395

CLK2||||||||I|S

| " * Approximately

RESET |/ " \ | |

02| 0102l 010201 ¢2 lo1]02]
CLK
(vt DQOOOGPOOOOU‘_/*_/'\M
|

»

XXX XK , XXX, KTTXTXKAXKR
BUSY# SRR | High for no Selt-Test (see Note) _ |(ARCESRKERKIARANERS
—pl Low-to Begin Self Test
O O O O e (O e oo
ER RO e R P
Up to 30 CLK2 I ' |
BE3#—BEO#, XXXXXXXOOOOOON | Low /'_L_

M/IO#, HLDA yp 0 30 CLK2 —! ’ v v

|
{ {(£ L |
A31-A2 TRXXXXXXXXXXXITS) s 3 ,
DIC#, XXXXRLELEEKRKY | High 1__Valid

LOCK# up to 30 CLK2 —¥ |

TR {5 — |
N
KKKX KX XXKX KXKEX SRS KKK X XXX XKSRAKK

Y R Y X X XXX X XXX XLX TN RITIV
XESEXNESEEENKE

A20M#, BS16#,
FLUSH#, KEN#,

" «
e o e e e i e o e e e e e o e o oo e e

NA#, READY#,
SUSP
ITXTIZTIRS .
D31-D0 I — — I ————— (Floating) === === —=—=—=—{r————— -
SUSPA# BN e — o — — — — — (Floating) -——— b —— = — fr = — ———

Note: BUSY# should be held stable for 80 CLK2 periods before and after the CLK2 period in which RESET falling edge occurs.

Upon completion of self-test, the EAXkregister contains 0000 0000h if the
microprocessor passed its internal self-test with no problems detected. Any -
nonzero value in the EAX register indicates that the microprocessor is faulty.

4-20

Bus Operation and Functional Timing

4.4 Bus Operation and Functional Timing

The TI486SXL series microprocessor communicates with the external system
through separate, parallel buses for data and address. This is commonly
called a demultiplexed address/data bus. This demultiplexed bus eliminates
the need for address latches required in multiplexed address/data bus config-
urations where the address and data are presented on the same pins at differ-
ent times.

TI486SXL series microprocessor instructions can act on memory data oper-
ands consisting of 8-bit bytes, 16-bit words, or 32-bit double words. The micro-
processor bus architecture allows for bus transfers of these operands without
restrictions on physical address alignment. Any byte boundary may require
more than one bus cycle to transfer the operand. This feature is transparent
to the programmer.

The microprocessor data bus (D31-D0) is a bidirectional bus that can be con-
figured as either a 16-bit or 32-bit wide bus as determined by BS16#. The bus
is 16 bits wide when BS16# is asserted. When 32 bits wide, memory and 1/0
spaces are physically addressed as arrays of 32-bit double words. The micro-
processor drives the data bus during write bus cycles, and the external system
hardware drives the data bus during read bus cycles.

Every bus cycle begins with the assertion of the address strobe (ADS#). ADS#
indicates that the microprocessor has issued a new address and new bus-
cycle-definition signals. A bus cycle is defined by four signals: M/IO#, W/R#,
D/C#, and LOCK#. M/IO# defines if a memory or I/O operation is occurring,
W/R# defines the cycle to be read or write, and D/C# indicates whether a data
or control cycle is in effect. LOCK# indicates that the current cycle is a locked
bus cycle. Every bus cycle completes when the system hardware returns
READY# asserted.

The TI1486SXL series microprocessor performs the following bus-cycle types:
Memory read

Locked memory read

Memory write

Locked memory write

I/O read (or coprocessor read)

1/0O write (or coprocessor write)

Interrupt acknowledge (always locked)

Halt/shutdown

ooooooodd

When the microprocessor has no pending bus requests, the bus enters the idle
state. There is no encoding of the idle state on the bus-cycle-definition signals;
however, the idle state can be identified by the absence of further assertions
of ADS# following a completed bus cycle.

It should be noted that all bus diagrams apply for all TI486SXL series micropro-

cessors. The T1486SXL2 clock-doubled feature does not change the external
microprocessor bus interface.

TI486SXL Microprocessor Bus Interface 4-21

Bus Operation and Functional Timing

4.4.1 Bus Cycles Using Nonpipelined Addressing

The shortest time unit of bus activity is a bus state, commonly called a T state.
A bus state is one internal processor clock period in duration (two CLK2 peri-
ods in nonclock-doubled mode and one CLK2 period in clock-doubled mode).
A complete data transfer occurs during a bus cycle, composed of two or more
bus states.

4.4.1.1 Nonpipelined Bus States

The first state of a nonpipelined bus cycle is called T1. During phase one (first
CLK2) of T1, the address bus and bus-cycle-definition signals are driven valid
and, to signal their availability, address strobe (ADS#) is simultaneously as-
serted.

The second bus state of a nonpipelined cycle is called T2. T2 terminates a bus
cycle with the assertion of the READY# input and valid data is either input or
output depending on the bus-cycle type. The fastest microprocessor bus cycle
requires only these two bus states. READY# is ignored at the end of the T1
state.

Three consecutive bus read cycles, each consisting of two bus states, are
shown in Figure 4—4.

Figure 4—4. Fastest Nonpipelined Read Cycles

CLK2
(Input)

A31-A2,
BE3#-BEO#,
M/10#, D/C#, W/R#

ADS#

NA#

BS16#

READY#

LOCK#

D31-D0
(Input During Read)

| Cycle 1 Cycle 2 Cycle 3
Nonpipelined — Nonpipelined Nonpipelined

r_ (Read) ﬁ_ (Read) —H‘— (Read) —_ﬂ

| T1 | T2 T | T2 T1 | T2

011 92 01! 92 01! 02 o1! 02| 61! 92| o1} ¢2' o1

L 1 |

Valid 3

I
Valid 1 X Valid 2

~I

1

}_

____‘_____L____

—_————_— - ——

______‘___.__1_

}_
r_
|
p

Valid 1 Valid 2 Valid 3

e .

Note: Fastest nonpipelined bus cycles consist of T1 and T2.

4-22

Bus Operation and Functional Timing

4.4.1.2 Nonpipelined Read and Write Cycles

Any bus cycle can be performed with nonpipelined address timing. Figure 4-5
shows a mixture of read and write cycles with nonpipelined address timing.
When aread cycle is performed, the microprocessor floats its data bus and the
externally addressed device then drives the data. The microprocessor re-
quires that all data-bus pins be driven to a valid logic state (high or low) at the
end of each read cycle, when READY# is asserted. When a read cycle is ac-
knowledged by READY# asserted in the T2 bus state, the microprocessor
latches the information present at its data-bus pins and terminates the cycle.

When a write cycle is performed, the data bus is driven by the microprocessor
beginning in phase two of T1. When a write cycle is acknowledged, the write
data remains valid throughout phase one of the next bus state to provide write-
data hold time.

Figure 4-5. Various Nonpipelined Bus Cycles (No Wait States)

| | Cycle 1 | Cycle 2 | Cycle 3 | | Cycle 4 | |

| Idle | Nonpipelined | Nonpipelined | Nonpipelined | Idle | Nonpipelined | Idle |

| | (Write) | (Read) | (Write) | | (Read) | |

+———r¢—t— > t—>

| | | l | | | I l | | l

[T | ™ | T2 | T1 | T2 | Tt | T | T | ™ | T2 | Ti |

AS1-A2Z, l : L1 l z | | | 1 |

BE3#-BEO#, QXSO valid1 X Vaid2 X Valid3 valida XX
M/IO#, D/C# =7 T T 1 T I

|

| . , I

e BRI 1 N1/ | I

| I | | r ! |

—\ L/~ N I/~ N\ L/ T\ /T 1
ADS# | l | l | | l

TR TKRRXXXIXIIXIXIYX
o %

32-Bit

TR XXX KRR RITIRS TR
0 e e e 0 0 e e 0 20 00

32-Bit 32-Bit 32-Bit

XXXKXXXXKXXKXX KKXRXKXIXKAXKIXKXKAXX XK
; sy

AL

| | |Bus Size | |Bus Size| |Bus Size| | |Bus Size| |
3 4 2 s

XK RX XXX XXXKKX XX
QRIS

\§
GO0

RS

SERKLY LY NG RS

BS16# XXXXXXXXXXP

R R R R RTRXTRTEN TR TR RTINS
READY# ORKEGXXAEAIIEN, | AEERKXIKKIN, | ARKKCKON, | AEEERRIEKKKIGEEEN, |
v
{ : | EndCyclet | EndCycle2 | EndCycles | | EndCycled !
LOCK# QG Valid1 X validz X Vvalid3 XXX Valid 4
l | — 1 | l 1 |

| I [|
| | ~L L | | | I
o81-00 -t~ a1)i D
| |

Note: Idle states are shown here for diagram variety only.

TI486SXL Microprocessor Bus Interface 4-23

Bus Operation and Functional Timing

4.4.1.3 Nonpipelined Wait States

Once a bus cycle begins, it continues until acknowledged by the external sys-
tem hardware using the READY# input. Acknowledging the bus cycle at the
end of the first T2 results in the shortest possible bus cycle, requiring only T1
and T2. If READY# is not immediately asserted however, T2 states are re-
peated indefinitely until the READY# input is sampled active. These intermedi-
ate T2 states are referred to as wait states. If the external system hardware
is not able to receive or deliver data in two bus states, it withholds the READY#
signal and at least one wait state is added to the bus cycle. Thus, on an ad-
dress-by-address basis the system is able to define how fast a bus cycle com-
pletes.

Figure 4-6 illustrates nonpipelined bus cycles with one wait state added to
cycles 2 and 3. READY# is sampled inactive at the end of the first T2 state in
cycles 2 and 3. Therefore, the T2 state is repeated until READY# is sampled
active at the end of the second T2 and the cycle is then terminated. The micro-
processor ignores the READY# input at the end of the T1 state.

Figure 4—-6. Various Nonpipelined Bus Cycles With Different Numbers of Wait States

| | Cycle 1 | Cycle 2 | | Cycle 3 I |
| Idle | Nonpipelined | Nonpipelined | Idle | Nonpipelined | e |
I (Read) | (Write) L (Read) R |
| | | I | | | D | | i _ }
| I | | T

LI | T2 T | T2 | T2 | i Ti | T2 [T2

I

AB1—A2, < | I | I | | | | I I |

BE3-BEO#, QUi Valid1 X vaid2 X Valid 3
M/IO#, D/IC# <7 1 T T | I I I |
s N — T |

W/R# | / | | [|
| | | | |

I I

|

l |
ADS# | | | |

B

TR XXX XXX XXXy N KRR KRRy, oKX K XXX
R N e BB LIS
32-Bit 32-Bit 32-Bit

| | | Bus Size| | |Bus Size| | | |Bus Size|

R KX X KRNI ITIRYRNTT
OSSN o?ofofofofofo?otofofofofotofofo y

XX R B R XXX XXX IR X T
O XXRX XXX QKRR

RARIXIRTRS,
A LB & 8K RS

BS16# X X

X

e & N

e aearaararaerararaviver s SO TR
’0’0‘0.0’0.0‘0’0‘0‘0‘0’0.0.0’0‘0‘0‘0’0‘0&‘0 AR

"
LRBBERRLLLLLLEBEEN. | LN
| |

LRUXXX

%0
L0 |
| |

|

READY# XK

|
I
| | EndCycle1 | | EndCyce2 | | End Cycle3 |
LoCk# SN valid1 X Valid 2 XXX Valid 3
| i T ! T : T | T N —f
| | |
D31-D0 —II———I-———I——Qn 1)< Out 2)—r———-«-———r——@——
| ! T T T I

Note: Idle states are shown here for diagram variety only.

4-24

Bus Operation and Functional Timing

4.4.1.4 Initiating and Maintaining Nonpipelined Cycles

The bus states and transitions for nonpipelined addressing are illustrated in
Figure 4—7. The bus transitions between four possible states: T1, T2, Ti, and
Th. Active bus cycles consist of T1 and T2 states, with T2 being repeated for
wait states. Bus cycles always begin with a single T1 state. T1 is always fol-
lowed by a T2 state. If a bus cycle is not acknowledged during a given T2 and
NA# is inactive, T2 is repeated resulting in a wait state. When a cycle is ac-
knowledged during T2, the following state is T1 of the next bus cycle if a bus
request is pending internally. If no internal bus request is pending, the Ti state
is entered. If the HOLD input is asserted and the microprocessor is ready to
enter the hold-acknowledge state, the Th state is entered.

Figure 4-7. Nonpipelined Bus States

HOLD Asserted

HOLD Negated

HOLD Negated Request Pending

No Request

HOLD Asserted READY# Asserted
HOLD Asserted

RESET

Asserted READY# Asserted |

HOLD Negated
No Request

!\

Always

HOLD Negated
No Request

Request Pending
HOLD Negated

READY# Asserted
HOLD Negated
Request Pending

READY# Negated
NA# Negated

Bus States:

T1 — First clock of a nonpipelined bus cycle (CPU drives new address and asserts ADS#)

T2 — Subsequent clocks of a bus cycle when NA# has not been sampled asserted in the current bus cycle
Ti - Idle state

Th — Hold acknowledge (CPU asserts HLDA)

The fastest bus cycle consists of two states: T1 and T2.

TI486SXL Microprocessor Bus Interface 4-25

Bus Operation and Functional Timing

Because of the demultiplexed nature of the bus, the address pipelining option
provides a mechanism for the external hardware to have an additional T state
of access time without inserting a wait state. After the reset sequence and fol-
lowing any idle bus state, the processor always uses nonpipelined address
timing. Pipelined or nonpipelined address timing is then determined on a
cycle-by-cycle basis using the NA# input. When address pipelining is not used,
the address and bus-cycle definition remain valid during all wait states. When
wait states are added and nonpipelined address timing is necessary, negate
NA# during each T2 state of the bus cycle except the last one.

442 Bus Cycles Using Pipelined Addressing

The address pipelining option allows the system to request the address and
bus-cycle definition of the next internally pending bus cycle before the current
bus cycle is acknowledged with READY# asserted. If address pipelining is
used, the external system hardware has an exira T state of access time to
transfer data. The address pipelining option is controlled on a cycle-by-cycle
basis by the state of the NA# input.

4.4.2.1 Pipelined Bus States

4-26

Pipelined addressing is always initiated by asserting NA# during a nonpipe-
lined bus cycle. Within the nonpipelined bus cycle, NA# is sampled at the be-
ginning of phase two of each T2 state and is only acknowledged by the micro-
processor during wait states. When address pipelining is acknowledged, the
address (BE3#-BEO#, and A31—-A2) and bus-cycle definition (W/R#, D/C#,
and M/IO#) of the next bus cycle are driven before the end of the nonpipelined
cycle. The address status output (ADS#) is asserted simultaneously to indi-
cate validity of these signals. Once in effect, address pipelining is maintained
in successive bus cycles by continuing to assert NA# during the pipelined bus
cycles.

As in nonpipelined bus cycles, the fastest bus cycles using pipelined address
require only two bus states. Figure 48 illustrates the fastest read cycles using
pipelined address timing. The two bus states for pipelined addressing are T1P
and T2P or T1P and T2I. The T1P state is entered following completion of the
bus cycle in which the pipelined address and bus-cycle-definition information
was made available and is the first bus state of every pipelined bus cycle. In
other words, the T1P state follows a T2 state if the previous cycle was nonpipe-
lined, and follows a T2P state if the previous cycle was pipelined.

Bus Operation and Functional Timing

Figure 4-8. Fastest Pipelined Read Cycles

Cycle 1 Cycle 2 Cycle 3
Pipelined | Pipelined | Pipelined [
(Read) | (Read) | (Read) |
TIP | TP | TP | TP | TIP | T2P

| 011 02 ot! 02 o1! 02| 01! o2 01! 92| o1! ¢2

CLK2

A31-A2,
BE3#-BEO#,

L | I L | |
\/

M/IO#, D/C#, W/R#

ADS#

NA#

BS16#

READY#

LOCK#

D31-DO
(input During Read)

Note: Fastest pipelined bus cycles consist of T1P and T2P.

Within the pipelined bus cycle, NA# is sampled at the beginning of phase two
(92) of the T1P state. If the microprocessor has an internally pending bus re-
quest and NA# is asserted, the T1P state is followed by a T2P state and the
address and bus-cycle definition for the next pending bus request is made
available. If no pending bus request exists, the T1P state is followed by a T2l
state regardiess of the state of NA# and no new address or bus-cycle informa-
tion is driven.

The pipelined bus cycle is terminated in either the T2P or T2l states with the
assertion of the READY# input and valid data is either input or output depend-
ing on the bus-cycle type. READY# is ignored at the end of the T1P state.

4.4.2.2 Pipelined Read and Write Cycles

Any bus cycle can be performed with pipelined address timing. When a read
cycle is performed, the microprocessor floats its data bus and the externally
addressed device drives the data. When a read cycle is acknowledged by
READY# asserted in either the T2P or T2l bus state, the microprocessor
latches the information present at its data pins and terminates the cycle.

TI486SXL Microprocessor Bus Interface 4-27

Bus Operation and Functional Timing

When a write cycle is performed, the data bus is driven by the microprocessor
beginning in phase two (¢2) of T1P. When a write cycle is acknowledged, the
write data remains valid throughout phase one (¢1) of the next bus state to pro-
vide write-data hold time.

4.4.2.3 Pipelined Wait States

4-28

Once a pipelined bus cycle begins, it continues until acknowledged by the ex-
ternal system hardware using the microprocessor READY# input. Acknowl-
edging the bus cycle at the end of the first T2P or T2l state results in the short-
est possible pipelined bus cycle. if READY# is notimmediately asserted, how-
ever, T2P or T2l states are repeated indefinitely until the READY# input is
sampled active. Additional T2P or T2l states are referred to as wait states.

Figure 4-9 illustrates pipelined bus cycles with one wait state added to cycles
1 through 3. Cycle 1 is a pipelined cycle with NA# asserted during T1P and a
pending bus request. READY# is sampled inactive at the end of the first T2P
state in cycle 1. Therefore, the T2P state is repeated until READY# is sampled
active at the end of the second T2P and the cycle is then terminated. The mi-
croprocessor ignores the READY# input at the end of the T1P state. ADS#,
the address, and the bus-cycle-definition signals for the pending bus cycle are
all valid during each of the T2P states. Also, asserting NA more than once dur-
ing the cycle has no additional effects. Pipelined addressing can only output
information for the next bus cycle.

Cycle 2 in Figure 4-9 illustrates a pipelined cycle, with one wait state, where
NA# is not asserted until the second bus state in the cycle. In this case, the
CPU enters the T2 state following T1P because NA# is not asserted. During
the T2 state the microprocessor samples NA# asserted. Because a bus re-
questis pending internally, and READY# is not active, the CPU enters the T2P
state and asserts ADS#, a valid address, and bus-cycle-definition information
for the pending bus cycle. The cycle is then terminated by an active READY#
at the end of the T2P state.

Cycle 3 of Figure 4-9 illustrates the case where no internal bus request exists
until the last state of a pipelined cycle with wait states. In cycle 3, NA# is as-
serted in T1P, requesting the next address. Because the CPU does not have
aninternal bus request pending, The T2l state is entered. However, by the end
of the T2l state, a bus request exists. Because READY# is not asserted, a wait
state is added. The CPU then enters the T2P state and asserts ADS#, a valid
address, and bus-cycle-definition information for the pending bus cycle. As
long as the CPU enters the T2P state at some point during the bus cycle, pipe-
lined addressing is maintained. NA# needs to be asserted only once during the
bus cycle to request pipelined addressing.

Bus Operation and Functional Timing

Figure 4-9. Various Pipelined Cycles (One Wait State)

Cycle 1 Cycle 2 Cycle 3 Cycle 4
l¢—— pipelined ——Pl€¢——— pipelined ——P——— Pipelined ——P4— Pipelined
(Write) I (Read) | (Write) | (Read)
| I I I
{ TIP | TeP | T2P I TP | T2 | TeP I TP | T2 | T2P TP
CLK2
A31-A2, _| I | 1 1 I I I
BE3#-BEO#, Valid 1 Valid 2 Valid 3 vaid4 X
M/IO#, D/C# T T T T T |
| | | I | I I
| | | | o ! |
| | [| | ADS# is asserted as soon
[| | | [as the CPU has another
bus cycle to perform, which is
I | |
| | not always immediately after
| I i l ! NA# is asserted.
i [
wR# | | I I I / | I
| T T ! | |
| | | : I
ADS# I I
I I
I
| o l As long as the CPU enters the T2P
| ADS# is asserted state during cycle 3, address
in every T2P state. pipelining is maintained in cycle 4.
PXXKXKXXXKKKXXXXHXXS LXHXKXXXX XXX XXX XKD
NA# $009.099.9999999.09 00’0‘0‘00‘00.0‘00‘00‘0‘0.0.0

LLIEEREERKKS LXK

AN

1 | 1 1 1
' Asserting NA# more than I NA# could have been asserted in
| once during any cycle has | T1P if desired. Assertion now is
| no additional effects. the latest time possible to allow
I
I
|

|
| | the CPU to enter T2P state to
' maintain pipelining in cycle 3.
|
BS16# ﬁ?’
AXXKXXXKXKX XS

ALY

(RRRXXXTS

(RIXIIXXKY
LSS

| AP

READY# |

I 1 | l | _ 1 1 L |
LOCK# Valid 1 X Valid 2 X Valid 3 Valid 4
| I ! |] |] I |
J ol L ! | | 1 L [|
D31-D0 Out X Out 1 —————=n2 Out 3 H—
|

I I | [I I | T T T
! ! I | | | | ! [! |

TI486SXL Microprocessor Bus Interface 4-29

Bus Operation and Functional Timing

4.4.2.4 Initiating and Maintaining Pipelined Cycles

Pipelined addressing is always initiated by asserting NA# during a nonpipe-
lined bus cycle with at least one wait state. The first bus cycle following reset,
an idle bus, or a hold-acknowledge state is always nonpipelined. Therefore,
the microprocessor always issues at least one nonpipelined bus cycle follow-
ing reset, idle, or hold acknowledge before pipelined addressing takes effect.

Once abus cycleis in progress and the current address has been valid for one
entire bus state, the NA# input is sampled at the end of every phase one until
the bus cycle is acknowledged. Once NA# is sampled active, the microproces-
sor is free to drive a new address and bus-cycle definition on the bus as early
as the next bus state and as late as the last bus state in the cycle.

Figure 4-10 illustrates the fastest transition possible to pipelined addressing
following an idle bus state. In cycle 1, NA# is driven during state T2. Thus,
cycle 1 makes the transition to pipelined address timing, since it begins with
T1 but ends with T2P. Because the address for cycle 2 is available before cycle
2 begins, cycle 2 is called a pipelined bus cycle, and it begins with a T1P state.
cycle 2 begins as soon as READY# assertion terminates cycle 1.

Figure 4-10. Fastest Transition to Pipelined Address Following Idle Bus State

Cycle 1 Cycle 2 Cycle 3 Cycle 4
Idle | Nonpipelined | Pipelined | Pipelined | Pipelined | Idle
(Write) | (Read) | (Write) | (Read) |
———————— P}
| | | | |
Ti|T1:Tz{T2P|T1P:T2P|T1P|IT2P|T1P:T2l{T2I|T|
CLK2
A31-A2 |1 { | | | l | | | L
BE3#-BEO#, XXXXXR0X Valid 1 Valid 2 Valid 3
M/IO#, D/C# 9 1 | | T

R

(R RRYIRTTITILLIS
WIR# SEESXXX0 | (RN

LIRS

ADS#

AUXX XXX XXXAXXAXL Y

XRRRRRIRKXXKXXXXION (TXTRXRXRXXY X (XRRXHXXILRRIXL TIX XRXRXKS
NA# XN LSS I LESEEEK 0
Recognize Recognize |
NA# | NA# NA# |
|
BS16# R | ! l 1 | u !

READY# SXRREKRIRRNS

| AEEEBEER

RRTXRIIR)
AN KL

TR
AN I

LXK

| | | | l | l | | | | L
LOCK# XN Valid 1 X vaidz2 X vaids X Valid 4 P
l

| | [{ | [1 IT r
| | |
D31-DO -}-——-:——(Out 1)—-ll——@ _ll___ll_._d_
lj i l

Note: Following any idle bus state (Ti) the address is always nonpipelined and NA# is sampled only during wait states. To start
address pipelining after an idle state requires a nonpipelined cycle with at least one wait state (cycle 1 above). The pipe-
lined cycles (2, 3, and 4 above) are shown with various numbers of wait states.

4-30

Bus Operation and Functional Timing

Figure 4—11 illustrates transitioning to pipelined addressing during a burst of
bus cycles. Cycle 2 makes the transition to pipelined addressing. Comparing
cycle 2 to cycle 1 of Figure 4-10 (on page 4-30) illustrates that a transition
cycle is the same when it occurs and consists of at least T1, T2 (NA# is as-
serted at that time), and T2P (provided the microprocessor has an internal bus
request already pending). T2P states are repeated if wait states are added to
the cycle. Cycles 2, 3, and 4 in Figure 4—11 show that once address pipelining
is achieved it can be maintained with two-state bus cycles consisting only of
T1P and T2P.

Once a pipelined bus cycle is in progress, pipelined timing is maintained for
the next cycle by asserting NA# and detecting that the microprocessor enters
T2P during the current bus cycle. The current bus cycle must end in state T2P
for pipelining to be maintained in the next cycle. T2P is identified by the asser-
tion of ADS#. Figure 4—10 and Figure 4—11 each show pipelining ending after
cycle 4. This occurs because the microprocessor does not have an internal
bus request prior to the acknowledgment of cycle 4.

Figure 4—11. Transitioning to Pipelined Address During Burst of Bus Cycles

| | Cycled | Cycle 2 | Cycle 3 I Cycle4 | I

| Idle | Nonpipelined | Nonpipelined | Pipelined | Pipelined | Idle |

| (Write) (Read) (Write) | (Read) |

| I | I I |

| T T 1 T | T } T2 : T2P | TIP } T2P I T1P | T21 | i |

CLK2 I
A31-A2, | | ! | | | | J | | |

|
BE3#-BEO, i Vaidl X vaidz X vaidd X vaida RO

M/IO#, D/IC#=T1 [T l !
| |

W/R# W i
I
’ I

ADS#

(TRTXTXRTIXITLS
GEAEXEEEENE

\VAYAY/ \VaAvAvAvAvAY,

7
tfofo

XXX XXX KKK KR XXXXXIYY) [AXXTIXTO) TXXIXTR) [RRRXXXRXTIIIRR
e e e e e o NI A 0 e e) SERRRBEN L AEEKLEBEEE

To
Recognize

| [| | Recognize Recognize

NA#

BS16#

R XXX XX

OO X XS
KL R

(XXX
| LS R

TR
LA

| I | I |
LOCK# AN valid1 X Valid 2 X validz X valida 0D
I | : f 1 [[[: [[|
| I I I I I
D31-00 —j——— (D) SEETEIND o= S (X S
| | I I | I I I | . !
Note: Following any idie bus state (Ti), addresses are nonpipelined bus cycles, NA# is sampled only during wait states. There-

fore, to begin address pipelining during a group of nonpipelined bus cycles requires a nonpipelined cycle with atleast one
wait state (cycle 2 above).

QOORXX
L

AXXXXXN

TI486SXL Microprocessor Bus Interface 4-31

Bus Operation and Functional Timing

The complete bus-state-transition diagram, including operation with pipelined
address, is given in Figure 4—12. This is a superset of the diagram for nonpipe-
lined address. The three additional bus states for pipelined address are
shaded.

Figure 4-12. Complete Bus States
HOLD Asserted

READY# Asserted o
HOLD Asserted

NA# Asserted e
HOLD Negated « READY# Asserted o (HOLD Asserted +
No Request HOLD Asserted No Request)

HOLD Negated o (No Request +
RESET Request Pending HOLD Asserted) o
Asserted HOLD Asserted NA# Asserted

READY# Asserted o READY# Negated

HOLD Negated

|
|
l
|
I
|
|
l

No Request }
Always | NA# Negated
Request Pending ¢ i
READY# Asserted o
HOLD HOLD Negated HOLD Negated »
Negated Request Pending READY#
No Request Negated ¢
READY# Asserted o NA# Negated
READY# Asserted o HOLD Negated o
HOLD Negated Request Pending
No Request READY# Negated o
NA# Asserted o
HOLD Negated
Request Pending
READY# Negated
(No Request +
HOLD Asserted)
READY# Negated
Request Pending
HOLD Asserted
NA# Asserted o
HOLD Negated
Request Pending
READY# Negated
Bus States:

T1 — First clock of a nonpipelined bus cycle (CPU drives new address and asserts ADS#)

T2 — Subsequent clocks of a bus cycle when NA# has not been sampled asserted in the current bus cycle
T2l — Subsequentclocks of abus cycle when NA# has been sampled asserted in the current bus cycle but there
is not yet an internal bus request pending (CPU does not drive a new address or assert ADS#)

T2P — Subsequent clocks of a bus cycle when NA# has been sampled asserted in the current bus cycle and

there is an internal bus request pending (CPU drives new address and asserts ADS#)
T1P — First clock of a pipelined bus cycle
Ti - Idle state
Th — Hold acknowledge state (CPU asserts HLDA)

4-32

Bus Operation and Functional Timing

4.4.3 Bus Cycles Using BS16#

Assertion of BS16# during a bus cycle effectively changes the TI486SXL mi-
croprocessor 32-bit bus into a 16-bit data bus. Although slower, the 16-bit data
bus usually requires less hardware interface circuitry and generally offers
greater compatibility with 16-bit devices.

4.4.3.1 Nonpipelined Cycles

With BS16# asserted, all operand transfers physically occur on data bus lines
D15-D0. With BS16# asserted during a 32-bit nonpipelined read or write,
additional bus cycles are issued by the CPU to transfer the data.

For data reads with only the two upper bytes selected (BE3# and/or BE2# as-
serted), data is read from D15-D0.

For data writes with only the two upper bytes selected (BE3# and/or BE2# as-
serted), data is duplicated on D15—D0 and no further action is required.

For data reads with all four bytes selected (at least BE1#, BE2# asserted and
possibly BEO# and/or BE3# also asserted), the CPU performs two 16-bit read
cycles using data lines D15-D0. Lines D31—-D16 are ignored.

Data writes with all four bytes selected (at least BE1#, BE2# asserted and
possibly BEO# and/or BE3# also asserted), the CPU performs two 16-bit write
cycles using datalines D15—D0. Bytes 0 and 1 (corresponding to BEO#, BE1#)
are sent on the first bus cycle (part one) and bytes 2 and 3 (corresponding to
BE2#, BE3#) are sent on the second bus cycle (part two). BEO# and BE1# are
always negated during the second 16-bit bus cycle. Figure 4—13illustrates two
nonpipelined bus cycles using BS16#.

TI486SXL Microprocessor Bus Interface 4-33

Bus Operation and Functional Timing

Figure 4—13. Nonpipelined Bus Cycles Using BS16#

Transfer Requiring Two Cycles Transfer Requiring Two Cycles
on 16-Bit Data Bus on 16-Bit Data Bus
AL AN

¢ O N
| Cycle 1 | Cycle 1A | Cycle 2 | Cycle2A | |
Idle | Nonpipelined | Nonpipelined | Pipelined | Pipelined | ldle |
Write, Part One | Write, Part Two Read, Part One | Read, Part Two | l
| [l | | I
A R A - I A I (R R A R O R

| | I | l 1

| | | | |
BE1# BEO# W Valid 1 / Always Inactive \ Valid 2 / Always Inactive
, |
| | |

, Y T During Part 2 | Durir|g Part 2 |
i

A31-A2, odooomoood | | | P —
BE3#, BE2#, Valid 1 X Valid 2
M/IO#, D/C# T T T I T

' ——t——— |
W/R#W | | | N__|
I R D L

ADS# | | | | | | |

(TR TXRXTITTIXYS
ASEEEEENAK

N A KRR AR Care SRXXRE Care QBRI B KEXXXXXK §
T 1 | f ! fooo
o + ! T v ! | 4 I v o B
' | | 16Bit | | 1Bt | | 16-Bit | 1e-Bit | |
| Bus Size | Bus Size | Bus Size Bus Size |

TAVAYAYAATAAY l AN\
KRN (X

A\VAAVAVAV, WVAVAVAVAVAVAVAVAVAVAVAVAVAY, \/\/\/\/\/ VAVAVAVAVAVAVAY, I A
R TRTXTTTTRTITR TR XX TR
READY# (UKKSSRLREAELLN. | LRGN | LERELEEEIN | LRGN | LRI

| |
LOCK# m I Vallid 1 l lX l Val:d 2 I R
: ; { d15-do L 531 —d@‘ : d15—do } d31-d16 ;
p15-po 4———F—__ ou X out)-4---@——*—_@__1____
: : || :d31 -d1 6} J l Ignored l Ignored I
D31-D16 = —=——r—— Out - -1 ———
| | 1 I | l | I |

Note: Dn = physical data pin n
dn = logical data bit n

4.4.3.2 Pipelined Cycles

The input signal NA# is a request to the CPU to drive the address, byte en-
ables, and bus status signals for the next bus cycle as soon as they become
internally available. Pipelining this address allows the system logic to antici-
pate the next bus-cycle operation.

The CPU cannot acknowledge both address pipelining and BS16# for the
same bus cycle. If NA# is already sampled when BS16# is asserted, the data
bus remains 32 bits wide. If NA# and BS16# are asserted in the same window,
NA# is ignored and BS16# remains effective (the data bus becomes 16 bits
wide). Figure 4—14 illustrates the interaction between NA# and BS16#.

4-34

Bus Operation and Functional Timing

Figure 4—14. Pipelining and BS16#

A Transfer Requiring Two Cycles

on 16-Bit Bus
A
e N
—_— Cycle 1A I Cycle 1B I Cycle 2 I
Pg;é?e[" s | Pipelined | Nonpipelined | Nonpipelined | ldle
Write, Part One I Write, Part Two R Read N
< r|< rl
lr2p) TPl T2 L T2 T | T2l T2 Tl T2 TP o I
_I)(I | | | 1 1 | 1 | I !
BE1#,BEO# Valid 1 Always Inactive Valid 2 Valid 3
I - T T |/ During Part 2 I\(T IX =]
A31-A2, [| | | 1 o | | L | I
BE3#,BE2#, Valid 1 X vaid2 X Vvaid3
M/1O#, D/C#
’] T | | ! | I | I : :
| f ' — ' i - I |
wRe /| | | | ! | N+ |
R S T L
ADS# | | | | | |
| | | ! :
| I I I I I J NA# must be negated in these T’s to allow |
| I ! ! I ! recognition of asserted BS16# in final T2s. :
| | |
V‘V" \4 V’V’V’V’V’V" ‘V’V’V Dol n't V""’V’V‘V’V’V‘V‘v \V’V‘V D "V’V’V’V’V’V’V‘V’ 'V’V’V‘V’V’V‘V‘V‘V'V’V’v’v’v’v’v
NA# (EREKEEY N, Care SEORXBNLY XK KOO AEXUBEEBELLIER

|
XXX XXXXX)
LA

TSt

XX OAOAOAAO.MAO.O.O.OAOA‘IA

LXXAAXKXAXAXX XX X
RS LKL

DALLALALLN

D

(RETRXRIRITS
XS

BS16# LKL

I | | b 1eBit | I | 1e-Bit | | | I I
| Bus Size | Bus Size |

YOOXXKX DQOOOOOOCKXS QX DOCOOOXANS DOOOXAX AL
READY# G0N | LKLY | AR89 | LB

J | | I 1 | I I 1 | I
LocK# REZXTTN Valid 1 X Valid 2)m

! T T T | i ~f I

I d5-d0 | di5-d0 | | d3i—dis | I I dis=do |

p15-00 === iy~ out X Out)——1—__+__@._.1
I g31ldate | | d31-d16 | H I I { d31-d16

I
I I C) I
D31-D16 === In Out —————r —
-] _<_:>--C| T T T T T)_ r T B
I | | | I | | I | I I
Dn = physical data pin n
dn = logical data bit n
Cycle 1A is pipelined. Cycle 1B cannot be pipelined, but its address can be inferred from cycle 1 to externally simulate

address pipelining during cycle 1B.

TI486SXL Microprocessor Bus Interface 4-35

Bus Operation and Functional Timing

444 Locked Bus Cycles

445

4-36

When the LOCK# signal is asserted, the TI486SXL series microprocessors do
not allow other bus master devices to gain control of the system bus. LOCK#
is driven active in response to executing certain instructions with the LOCK
prefix. The LOCK prefix allows indivisible read/modify/write operations on
memory operands. LOCK# is also active during interrupt-acknowledge cycles.

LOCK# is activated on the CLK2 edge that begins the first locked bus cycle
and is deactivated when READY# is returned at the end of the last locked bus
cycle. When using nonpipelined addressing, LOCK# is asserted during phase
one (¢1) of T1. When using pipelined addressing, LOCK# is driven valid during
phase one of T1P.

Figure 4—4, Figure 4-5, Figure 4-6, and Figure 4-13 on pages 4-22, 4-23,
4-24, and 4-34 illustrate LOCK# timing during nonpipelined cycles and
Figure 4-8, Figure 49, Figure 4-10, Figure 411, and Figure 4—14 on pages
4-27, 4-29, 4-30, 4-31 and 4-35 cover the pipelined-address case.

Interrupt-Acknowledge Cycles

The TI486SXL microprocessors are interrupted by an external source via an
input request on the INTR input (when interrupts are enabled). The micropro-
cessor responds with two locked interrupt-acknowledge cycles. These bus
cycles are similar to read cycles. Each cycle is terminated by READY#
sampled active as shown in Figure 4—15.

Bus Operation and Functional Timing

Figure 4—15. Interrupt-Acknowledge Cycles

Interrupt Idle Interrupt
Idle | Acknowledge | (4 Bus States) | Acknowledge | Idle
Cycle 1 | | Cycle 2

CLK2

|
R R X XXX

XTITIXEXE R
XGOS QEDEOEOEEEEEEEEEEEECEES KK

BE3#-BE1# NCXXXXXXXX XXX

| I
A31-A3, | |
BEO#, M/I0# | | AR R R KRR LRRERIER
Eos. 10K, — BRI RIKIRXRRREXKEEN LRI

R

LSOO

R R R KRR R R IIIIT
| RN
/' |
] |
|

XXX SOORREEEN

KRS

T R R R R KRR

XXX XXX XXX HUXX XX XX XXX XXX XXX XXX XX XXX XXX XX XXX XXX XXX

|
R R 7 XXX XX R R XX XXX XATXTAXXXTIRRRXI I XK
BS16# RS Tamored e KKK RA R

AVAVAN AVAV ALV VAVAVAV.N. VaV.V.a Jal aVa PAVAVAVAV.

R XX

XXX XXOOOXXX

X5 B XXX XXX

READY# LXXXXX

o e e e o oot o et

T T T O

b7-D0 -:-——-L——-L———r— N P A SRV DR B ;

l l | | | | | | I
l i d
I I l | gnored , | I l I I gnore

A" o e e e s €

Note: Interrupt vector (0—255) is read on D7-D0 at end of second interrupt-acknowledge bus cycle. Because each interrupt-
acknowledge bus cycle is followed by idle bus states, asserting NA# has no practical effect.
The state of the A2 pin distinguishes the first and second interrupt-acknowl-
edge cycles. The address driven during the first interrupt-acknowledge cycle
is 4h (A31-A3 =0, A2=1, BE3#-BE1# =1, and BEO# = 0). The address
driven during the second interrupt-acknowledge cycle is Oh (A31-A2 =0,
BE3#—BE1# = 1, and BEO# = 0).

To assure that the interrupt-acknowledge cycles are executed indivisibly, the
LOCK# output is asserted from the beginning of the first interrupt-acknowl-
edge cycle until the end of the second interrupt-acknowledge cycle. In clock-
doubled mode, four idle bus states (Ti) are inserted by the microprocessor
between the two interrupt-acknowledge cycles. In nonclock-doubled mode,
eight idle bus states are inserted.

The interrupt vector is read at the end of the second interrupt cycle. The vector
is read by the microprocessor from D7-D0 of the data bus. The vector
indicates the specific interrupt number (from 0-255) requiring service.
Throughout the balance of the two interrupt cycles, D31-DO float. At the end
of the first interrupt-acknowledge cycle, any data presented to the micropro-
cessor is ignored.

TI486SXL Microprocessor Bus Interface 4-37

Bus Operation and Functional Timing

4.4.6 Halt and Shutdown Cycles

Executing the HLT instruction or detecting a severe error causes the micropro-
cessor to either halt operation or shutdown further processing. When halt or
shutdown occurs the microprocessor signals the condition through a halt- or
shutdown-indication cycle.

4.4.6.1 Hait Indicatibn Cycle

4-38

Executing the HLT instruction causes the microprocessor execution unit to
cease operation. Signaling its entrance into the halt state, a halt indication
cycleis performed. The haltindication cycle is identified by the state of the bus-
cycle-definition signals (M/IO# = 1, D/C# = 0, W/R# = 1, LOCK# = 1) and an
address of 2h (A31—-A2 = 0, BE3# = 1, BE2# = 0, BE1#—BEO# = 1). The halt
indication cycle must be acknowledged by asserting READY#. A halted micro-
processor resumes execution when INTR (if interrupts are enabled), NMi, or
RESET is asserted. Figure 4—16 illustrates a nonpipelined halt cycle.

Bus Operation and Functional Timing

Figure 4-16. Nonpipelined Halt Cycle

| Cycle 1 | Cycle 2 | |
Nonpipelined | Nonpipelined | Idle |
I (Write) L (Halt) J N
I o 'l
| : 2 T f 2 T { Ti : Ti : Ti Il
| { 1 | | : : | |
BEO#. BE1#, t CPU remains halted
' - ' QTR I
BEH, MIO, IX Vo / KRR e
| | | ! '
A31-A2, ' i | (XX XXX XXX XXX XXX XX
BEor, vaid1 O\ ! € XIOEXAINIINNNKS
D/c# T T T | f | T T l
| | | ! l | | |
| ! B T T | l
ADS# | ! | l | ! ! !
| [| | | | | [

A R A KA KRS RAERS

| | i | l | | | |
’V’V’V’V’V’V’V’V’V V V‘V’V’V’V’V’V’V’V‘V \/ : V'V YV 'V V’V’V’V’V‘V’V‘V’V’V’V‘V VN \/\/ V‘V V’V VVVVVVVVV\\/
X R amared S KRB

BS16#

JAVAVAVAVAVAVAVAVAVAVAVA

(RITXTXTR TIXXXTTR (XXX XXX
READY# | LB | ARLEEREN. | BRI EEEEEEK

| | | r
Halt cycle must be aknowledged by		
asserting READY#. Wait states may be		
added to the cycle if desired.	l	

|
|
|
|
i l QR CCRRAAD (XA
LocK# ,X Va"T1 7/ | otoatsaa o ttateatea et uto e touel
|
|

|
D31-D0 Out >< Out 1 X Undefined >——l— (Floating) :_____l__—_|
1 b I | | | [l |
| | | | I

TI486SXL Microprocessor Bus Interface 4-39

Bus Operation and Functional Timing

4.4.6.2 Shutdown Indication Cycle

Shutdown occurs when a severe error is detected that prevents further proces-
sing. The TI486SXL series microprocessor shuts down as a result of a protec-
tion fault while attempting to process a double fault as well as the conditions
referenced in Chapter 2, Programming Interface. A shutdown indication cycle
is performed signaling its entrance into the shutdown state. The shutdown in-
dication cycle is identified by the state of the bus-cycle-definition signals
(MNO# =1, D/IC#=0, W/R#=1, LOCK#=1) and an address of Oh
(A31-A2 = 0, BE3#—BE1# =1, and BEO# = 0). The shutdown indication
cycle mustbe acknowledged by asserting READY#. A shutdown microproces-
sor resumes execution only when NMI or RESET is asserted. Figure 4-17
illustrates a shutdown cycle using pipelined addressing.

Figure 4-17. Pipelined Shutdown Cycle

Cycle 1	Cycle 2	
Pipelined	Pipelined I Idle	
(Read)	(Shutdown)	
. g		
1P	TP ! TP	TP b omo omo omo T :
1		
BE3#_BE1#, . i S X oo CPU remains		
Valid 1 / RIIKOOXHIIIHINXX shutdown until NMI, or		
M/IO#, W/R# = : QXXX XXX XX RESET is	asserted. :	
I oY		
AR i	BRI	
D/C# [!	
		l
ADS# | '\ ,/
I |

JTRTERXTTRS R AT R AT LT XX
AEEN AKX

JAVAVAVAVAN

| | I L I 1 |
OO OOCK
ERRLBEERRRAR

|
‘ / | OO
e G5 1 L] KRR
I

TN | TN | LR XTI
READY# | L0000 | AN L BRI

JAVAN

AN AN JAVAVAVAVAN

Wait states may be added to the cycle if desired. | |
J | I I

|
LRI T 5
| e |

! | | I I | | |
D31~DO0 ®—+—_{1‘n1 >-<| Undefin(i >——i—(Floating)-l—————I-————{

I I | I

| I

} | Shutdown cycle must be acknowledged by asserting READY#. | |
|

|

| |
BRI
SRR

JAN TAVAVAVAVAY AN

4-40

Bus Operation and Functional Timing

4.4.7 Internal Cache Interface

4.4.7.1 Cache Fills

The TI486SXL cache is an 8K-byte write-through unified instruction/data
cache with lines that are allocated only during memory read cycles. The cache
is configured as two-way set associative, and the cache organization consists
of 1024 sets each containing two lines of four bytes each.

Any unlocked memory read cycle can be cached by the TI486SXL series mi-
croprocessor. The microprocessor does not cache accesses automatically to
memory addresses specified by the Noncacheable-Region registers. Addi-
tionally, the KEN# input can be used to enable caching of memory accesses
on a cycle-by-cycle basis. The microprocessor acknowledges the KEN# input
only if the KEN enable bit is set in the CCRO Configuration register.

As shown in Figure 4-18, the microprocessor samples the KEN# input one
CLK2 before READY# is sampled active. If KEN# is asserted and the current
address is not set as noncacheable per the Noncacheable-Region registers,
the microprocessor fills two bytes of a line in the cache with the data present
on the data bus pins.

Figure 4-18. Nonpipelined Cache Fills Using KEN#

CLK2

A31-A2,
BE3#-BEO#,
D/C#, M/IO#, W/R#

ADS#

Cycle 1 Cycle 2
| Nonpipelined | Nonpipelined I
| (Read-CacheFil) | (Read — Cache Fill) I
7 3 bid |
) Lg ™
[T [T2 | T1 | T2 f T2 [
I |

2

611 02 o1l 02	¢1! 02 o1l 92	¢1	¢2
I			
I	I		

I

I

X v X az R
)

I

| |

| |

f T

| | | | |
| [I
QRKIRXXXAN

| | |
I l I
I | |
| I I
I

DN (TN TR
I |

BB |
| | I3 I | | |
| | T T _i_//F—_j
—'r—/_T_\—I—/ | | |
| | | I |
| | [| | I J
4>< Valid 1 K Valid 2 W

1 T T T T -

D DD

TI486SXL. Microprocessor Bus Interface 4-41

Bus Operation and Functional Timing

As shown in Figure 4—19 and Figure 4—20 on page 4-43, the microprocessor
samples the KEN# input one CLK2 before READY# is sampled active. If KEN#
is asserted and the current address is not set as noncacheable per the
Noncacheable-Region registers, the microprocessor fills two bytes of a line in
the cache with the data present on the data bus pins. The states of
BE3#-BEO# are ignored if KEN# is asserted for the cycle.

Figure 4-19. Nonpipelined Cache Fills Using KEN# and BS16#

Cycle 1 Cycle 2
| Nenpipelined | Nonpipelined |
| (Read — Cache Fill) | (Read — Cache Fill) |
»
T [T2 | T1 | T2 [T2 |
|

11 o2 o1l 02 o1l 62 01! 02| o1 ¢2 I

I
| ¢
| I | I

I I

I | I | I I J
BEQEHE’S?;Z X Valid 1 Valid 2 W

1 ! T

| I

D/C#, M/IO#, W/R# T
I

[[|

= | | | |

O | |

ADS# w | | |

| | | | |

woror TTTRN. LTI TR
A S

| | |
| I I I I I |
NAE I |
| | |

KEN# must be asserted during both read
cycles in order for the cache fill to occur.
I
o TRRTT0 1 TR 1 R

N |
| | |
READY# | | |
| |
ook X Valid 1 X Valid 2

I

| I I |

(Input During Read) | | | |
I

Dn = physical data pin n
“dn = logical data bit n

A

4-42

Bus Operation and Functional Timing

Figure 4-20. Pipelined Cache Fills Using KEN#

Cycle 1 Cycle 2

| Pipelined | Pipelined |

| (Read — Cache Fill) | (Read —Cache Fill) |

i« bie »

| TP | TP | TP | TIP | T2P | TP

| o1l o2 o1l o02] o1! 02 o1 02| o1 02| o1! g2

CLK2 ’

| I I | | I

| I I | | I |
BESs BEog Valid 1 X Valid 2 X Valid 3

D/C#, M/IO#, W/R#

ADS#

NA#

|
J |
I
KEN# ;o,o,o‘o,o,o.0,0,0,0‘0,0,0‘0‘0,0, &m
I
I I

READY#

LOCK#

D31-D0
(Input During Read)

I I

I
I
I
I
I | I I I
I
I
I
I

| |
0o,
RLLLLLLLILLLLKSY

I !
| |
I I
I | I
I |
I I

Valid 1 X

<
s

I I I

oo

4.4.7.2 Flushing the Cache

To maintain cache coherency with external memory, the TI1486SXL series mi-
croprocessors cache contents should be invalidated when previously cached
data is modified in external memory by another bus master. The microproces-
sor invalidates the internal cache contents during execution of the INVD and
WBINVD instructions following assertion of HLDA if the BARB bit is set in the
CCRO Configuration register or following assertion of FLUSH# if the FLUSH
bit is set in CCRO.

The microprocessor samples the FLUSH# input on the rising edge of CLK2
corresponding to the beginning of phase two (¢$2) of the internal processor
clock. If FLUSH# is asserted, the microprocessor invalidates the entire con-
tents of the internal cache. The actual point in time where the cache is invali-
dated depends upon the internal state of the execution pipeline. FLUSH# must
be asserted for at least two CLK2 periods and must meet specified setup and
hold times to be recognized on a specific CLK2 edge.

TI486SXL Microprocessor Bus Interface 4-43

Bus Operation and Functional Timing

4.4.8 Address Bit-20 Masking

The TI486SXL series microprocessor can be forced to provide 8086 1M-byte
address wraparound compatibility by setting the A20 bit in the CCRO Configu-
ration register and asserting the A20M# input. When the A20M# is asserted,
the 20th bit in the address to both the internal cache and the external bus pin
is masked (zeroed).

As shown in Figure 4-21, the microprocessor samples the A20M# input on the
rising edge of CLK2 corresponding to the beginning of phase 2 (¢2) of the in-
ternal processor clock. If A20M# is asserted and paging is not enabled, the mi-
croprocessor masks the A20 signal internally starting with the next cache ac-
cess and externally starting with the next bus cycle.If paging is enabled, the
A20 signal is not masked regardless of the state of A20M#. A20 remains
masked until the access following detection of an inactive state on the A20M#
pin. A20M# must be asserted for a minimum of two CLK2 periods and must
meet specified setup and hold times to be recognized on a specific CLK2 edge.

Figure 4-21. Masking A20 Using A20M# During Burst of Bus Cycles

| Cycle1 | Cycle 2 I Cycle 3 I Cycle4 |
idle | Nonpipelined | Nonpipelined | Pipelined | Pipelined | Iidle
| (Write) | (Read) (Write) (Write)

I | I I I
oy br2 o1 bm2 brerpmp D om2p) mip | o120 | i 1
CLK2 I
AQIQXS% | | | | I | | | | | | |
BES#-BEO¥, SO Valid1 X Vaidz X Vaida X valid4 XX0X0ES
M/IO#, DIC# | | | I | II | | I I |

v avavav/

(TRTXRXNITS
LESEUEEENRK

Sy
ADS# —I’—I_I/_—__V__l/_—_l/ /

A20M#

XXX (RRTRRIXXXIXXXY
SCRELEEANY QR

Valid 1
|

A20

\VVVVVVVVVV" \VVVVVVVVVVVVVVVVVVY V’V’V’V’V’V’V‘V‘V"’
XY RIS TR

BS16# \CXXXXXXXY

T RRIRXXXXXRXIXRXY
SIS

A

KB KRB

TR XXX XXX IXXITTIR) (TXXIIITR [TXXXRT "
NA# (R RREEEEEREREBIEEBEEIEEEEELEEEEEN ALBERXN LXLBEKRKN N AKX

TXTITTIITITIITIXTIN, | A2XTTeTTeysy AT, | LRI
READY# S00008E00BIIEO00ON | AR | AR | BN

| | | | | | |] | I

| |
LoCK# KN valid1 X Valid 2 X vaida X valida X

I |

| T | T T 7 f [[I
01000 ==~ BT Yt === 2 O D=~

4-44

Bus Operation and Functional Timing

An alternative to using the A20M# pin is provided by the NCOQ bit in the CCRO
Configuration register. The microprocessor does not automatically cache ac-
cesses to the first 64K bytes and to 1M byte + 64K bytes if the NCO bit is set.
This prevents data within the wraparound memory area from residing in the
internal cache and eliminates the need for masking A20 to the internal cache.

4.4.9 Hold Acknowledge State

The hold-acknowledge state provides the mechanism for an external device
in a TI1486SXL microprocessor system to acquire the system bus while the
microprocessor is held in an inactive bus state. This allows external bus
masters to take control of the microprocessor bus and directly access system
hardware in a shared manner. The microprocessor continues to execute
instructions out of the internal cache (if enabled) until a system bus cycle is
required.

The hold-acknowledge state (Th) is entered in response to assertion of the
HOLD input. In the hold-acknowledge state, the microprocessor floats all out-
put and bidirectional signals, except for HLDA and SUSPA#. HLDA is asserted
as long as the microprocessor remains in the hold-acknowledge state and all
inputs except HOLD, FLUSH#, SUSP# and RESET are ignored.

State Th can be entered directly from a bus-idle state, as in Figure 4-22, or
after the completion of the current physical bus cycle if the LOCK signal is not
asserted, as in Figure 4—23 and Figure 4—24. The CPU samples the HOLD in-
put on the rising edge of CLK2 corresponding to the beginning of phase one
(1) of internal processor clock. HOLD is a synchronous input and can be as-
serted at any CLK2 edge, provided setup and hold requirements are met in ev-
ery bus state.

The hold-acknowledge state is exited in response to the HOLD input being ne-
gated. The next bus start is an idle state (Ti) if no bus request is pending, as
in Figure 4-22. If an internal bus request is pending, as in Figure 4-23 and
Figure 4-24, the next bus state is T1. Th is also exited in response to RESET
being asserted. If HOLD remains asserted when RESET goes inactive, the
microprocessor enters the hold-acknowledge state before performing any bus
cycles provided HOLD is still asserted when the CPU is ready to perform its
first bus cycle.

If a rising edge occurs on the edge-triggered NMI input while in Th state, the
event is remembered as a nonmaskable interrupt 2 and is serviced when the
state is exited.

TI486S XL Microprocessor Bus Interface 4-45

Bus Operation and Functional Timing

Figure 4-22. Requesting Hold From Bus-Idle State

’ Idle |ﬁ‘—_— Hold Acknowledge ———H Idle :
I I I I | I
| Ti | Th | Th | Th | Ti |

|

I

|

HOLD |

(Note 1) | |

|

|

| |
HLDA | | /
AB1_A2, Tron A :
T

D/C#, M/IO#, W/R# : |

I I I
I | |

il
|
ADS# —+ A\ I |
I
I

I
|
|
|
I
|
I
l
I
I
|

(Note 2) i \——-——Jl—— (Floating) -'{— ————— }—/ I
L L | | | :
BS16#, ’ Vs ‘ ‘
NS00I IIXNXNK)
READY# , I I AN s ¢ AN |
- I | | | '
LOCK# W—————ﬁ-— (Floating) = =—=————

I | I

| | I
D31-D0 —-i' ————— —1‘ ————— —:»—' (Floating)—ll ————— —————— —i

Notes: 1) HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold requirements are
met in every bus state. Violating setup or hold requirements will result in incorrect operation.

2) For maximum design flexibility the CPU has no internal pullup resistors on its outputs. External pullups may be re-
quired on ADS# and other outputs to keep them negated during hold-acknowledge period.

4-46

Bus Operation and Functional Timing

Figure 4-23. Requesting Hold From Active Nonpipelined Bus

Cycle 1 Hold Acknowledge Cycle 2
Nonpipelined | | Nonpipelined I
(Read) | | (Write) |

|
N
o] |

T2 T2 Th Th |

| | | ! | | !

HOLD | | | / * i I | I
(See Note) | | | } \ |

!

: } | HOLD asserted no later | | Il

| I | th'an READY# a|sserted | | |

I | | | i | |

HLDA | | | I/ I I\ I I

I I I I l

| | | | |

| | |
/ 1 I f
Valid 1 >——- Floating) == Valid 2
D/C#, M/IO#, W/R# X & (9 | '
[[[I | [L
|

A31-A2,
BE3#—-BEO#,

I | I | I |

|

|
ADS# U T {\——' (Flolating) '—-l__Jl/__:
I I | | | } | I

Ry XTI T XTI RTILT LT ILIXI LTI XTLRT

NA# SXXKEKELY o SRR,
-bit
bus silze
BS16# XXLLKIKXXLLLLLLKSY LKL ILIIIIXLLLLLILIIAIKKKS

$0900.9.90.9.0.9.99.9.0.9.930.9.0.9.9.9.9.9.9.9.9.9,

If asserting BS16# requires a second bus
cycle to be performed, the second cycle is | { : || 1
performed before hold acknowledge
| KKK] LX X XXX KX XX XX XX IXHKX XXX XX XXX
READYE | 0EBEEEUN. 3 AR

XXXX XX

I (Negated, or last locked cycle) | | [[

|
LOCK# Valid 1 >——- (Floating) -——(Valid 2
I I
N | I

| I
| | | | | | |
D31-Do —~—=—=— (Floating) +— - —— —— (Floating) ==—{— Out2
| | | I I T |
|

I I I | | | |

Note: HOLD is a synchronous input and can be asserted at any CLK2 edge provided setup and hold requirements are met in every bus state.
Violating setup or hold requirements will result in incorrect operation.

TI486SXL Microprocessor Bus Interface 4-47

Bus Operation and Functional Timing

Figure 4-24. Requesting Hold from Active Pipelined Bus

Cycle 1 Hold Acknowledge Cycle 2
| Pipelined | | Nonpipelined |
(Write) | | (Read) |
* e e >
e b 1

L

! | | |

HOLD N 1 ! \ I I

HOLD asserted in same bus

(See Note) statel as NA# assetl‘ted. l I :

| | | | | I I

HDA | | E/ I I\ | |

1 | | | | ! |

I I I I l I I |

| I | I I | | |

A31-A2, —L i | 1 I | I |
BE3#—BEO#, Valid 1 WW—— (Floating) =— Valid 2

D/C#, M/IO#, W/R# |

] |
|
| |
I
ADS# | / : : :\ —— (FIc%ating) ———1_}/—-_:
| | | | l | |
|
AR LLLLLLLLLLLLLKLS

JAVAN

NA#

| | | 1 |

I |

| I L QRHICOCORKIUXHAIIN (X
et Gk R RS KRR AR
I I

| | I I

(R | AKX
READY# | AXXKKKLKY | LLEELLLLLLLLLRLLLRLLRD

|
|
|
} (Negated, Ior last locked cycle) | | | | }
LOCK# X Valid 1 >---- (Flo::uing) ——J‘< Valid 2
| | I } | |
| | | | | | |

|
D31-p Out Out 1 4= — =+ (Floating) - In2
0 =T X T T I D | I I

Note: HOLD is a synchronous input and can be asserted at any CLK2 edge provided setup and hold requirements are met in
every bus state. Violating setup or hold requirements will result in incorrect operation.

4.4.10 Coprocessor Interface

The data-bus, address-bus, and bus-cycle-definition signals, as well as the co-
processor interface signals (PEREQ, BUSY#, ERROR#), are used to control
communication between the TI486SXL series microprocessor and a copro-
cessor. Coprocessor or ESC opcodes are decoded by the microprocessor and
the opcode and operands are then transferred to the coprocessor via I/O port
accesses to addresses 8000 00F8h and 8000 00FCh. Address 8000 00F8h
functions as the control-port address and 8000 00FCh is used for operand
transfers.

4-48

Bus Operation and Functional Timing

Coprocessor cycles can be either read or write and can be either nonpipelined
or pipelined. Coprocessor cycles must be terminated by READY# and, as with
any other bus cycle, can be terminated as early as the second bus state of the
cycle.

BUSY#, ERROR#, and PEREQ are asynchronous level-sensitive inputs used
to synchronize CPU and coprocessor operation. All three signals are sampled
at the beginning of phase one (¢1) and must meet specified setup and hold
times to be recognized at a given CLK2 edge.

4.4.11 SMM Interface

System Management Mode (SMM) uses two T1486SXL microprocessor pins,
SMI# and SMADS#. The bidirectional SMI# pin is a nonmaskable interrupt that
is a higher priority than the NMI input. SMI# must be active for at least four
CLK2 periods to be recognized by the microprocessor. Once the microproces-
sor recognizes the active SMI# input, the CPU drives the SMi# pin low for the
duration of the SMI service routine.

The SMADS# pin outputs the SMM address strobe that indicates an SMM
memory bus cycle is in progress and a valid SMM address is on the address
bus. The SMADS# functional timing, output delay times, and float delay times
are identical to the main memory address strobe (ADS#) timing.

4.4.11.1 SMI Handshake

The functional timing for SMI# interrupt is shown in Figure 4-25. Five signifi-
cant events take place during an SMI# handshake:

1) The SMI# input pin is driven active (low) by the system logic.

2) The CPUsamples SMi# active onthe rising edge of CLK2 phase one (¢1).

3) Four CLK2s after sampling the SMI# active, the CPU switches the SMi#
pin to an output and drives SMI# low.

4) Following execution of the RSM instruction, the CPU drives the SMI# pin
high for two CLK2s indicating completion of the SMI service routine.

5) The CPU stops driving the SMI# pin high and switches the SMI# pin to an
input in preparation for the next SMl interrupt. The system logic is respon-
sible for maintaining the SMI# pin at the inactive (high) level after the pin
has been changed to an input.

Figure 4-25. SMI# Timing

o1 92 lo1 02 lo1 02 o1 g2 1ot o2 lo1 g2 1ot g2 o1 g2 1ot g2 o1 g2

CLK2
(input)

SMI# I : { \

o1 62 lo1 92 |
|

G~
S

l |
| |
! |
L |
I |

l
1 2 3 4

=== [Ndicates that TI486SXL drives the SMI# pin.

TI486SXL Microprocessor Bus Interface 4-49

Bus Operation and Functional Timing

4.4.11.2 1/O Trapping

The TI486SXL series provides I/O trapping that can be used to facilitate power
management of I/O peripherals. When an I/O bus cycle is issued, the 1/0 ad-
dress is driven onto the address bus and can be decoded by external logic. If
a trap to the SMI handler is required, the SMI# input should be activated at
least three CLK2 edges prior to returning the READY# input for the I/O cycle.
The timing for creating an I/O trap via the SMI# input is shown in Figure 4—26.
The microprocessor immediately traps to the SMI interrupt handler following
execution of the I/Q instruction, and no other instructions are executed be-
tween completion of the 1/O instruction and entering the SMI service routine.
The I/O trap mechanism is not active during coprocessor accesses.

Figure 4-26. I/O Trap Timing

CLK2
(Input)

Address,
Byte Enables

| IO CYCLE |
¢ (Read or Write) ’

| T | T | T2 { T2
l
I T S N S T R R

ADS#
(Output)

READY#

SMi#

4-50

— 3CLK2s —

Bus Operation and Functional Timing

4.4.12 Power Management

The power-management features in the TI486SXL(C) family of microproces-
sors allow a dramatic reduction in the current required when the microproces-
sor is in suspend mode (typically less than three percent of the operating cur-
rent). Suspend mode is entered either by a hardware- or software-initiated
action. Using the hardware to initiate suspend mode involves a two-pin hand-
shake using the SUSP# and SUSPA# signals. Using the software involves ini-
tiating the suspend mode through execution of the HALT instruction. Additional
power management can be achieved by stopping and restarting the input
clock. This technique is available because the TI486SXLC series micropro-
cessors are static devices, meaning that clock can be stopped and restarted
without loss of any internal CPU data.

4.4.12.1 SUSP#-Initiated Suspend Mode

The T1486SXL series microprocessor enters suspend mode when the SUSP#
input is asserted and execution of the current instruction, any pending de-
coded instructions, and associated bus cycles are completed. The micropro-
cessor also waits for the coprocessor to indicate a not-busy status (BUSY#=1)
prior to entering suspend mode. The SUSPA# output is then asserted. The
microprocessor responds to SUSP# and asserts SUSPA# only if the SUSP bit
is set in the CCRO Configuration register.

Figure 4-27 illustrates the microprocessor functional timing for SUSP#-initi-
ated suspend mode. SUSP# is sampled on the phase two (¢2) CLK2 rising
edge and must meet specified setup and hold times to be recognized at a par-
ticular CLK2 edge. The time from assertion of SUSP# to activation of SUSPA#
varies depending on which instructions were decoded prior to assertion of
SUSP#. The minimum time from SUSP# sampled active to SUSPA# asserted
is two CLK2s. As a maximum, the microprocessor can execute up to two
instructions and associated bus cycles prior to asserting SUSPA#. The time
required for the microprocessor to deactivate SUSPA# once SUSP# has been
sampled inactive is four CLK2s.

Figure 4-27. SUSP#-Initiated Suspend Mode

| I | I
01 1 62 | o1 1 62 | o011 ¢2 | o1 1 62| o011 ¢2 | ¢1 | ¢2

- AAA AR AR

I

I
BUSY# I
l—

g e

l
|
SUSPA# I
I
I

I
I
2 CLK2s
Min —»l I<———| 4 CLK2s —’I
|
| I}/"
I
[
I

I
T
I

TI486SXL Microprocessor Bus Interface 4-51

Bus Operation and Functional Timing

If the microprocessor is in a hold-acknowledge state and SUSP# is asserted,
the processor may or may not enter suspend mode depending on the state of
the microprocessor internal execution pipeline. If the microprocessor is in a
SUSP#-initiated suspend state and the CLK2 input is not stopped, the proces-
sor recognizes and acknowledges the HOLD input and stores the occurrence
of FLUSH#, NMI, and INTR (if enabled) for execution once suspend mode is
exited.

4.4.12.2 Halt-Initiated Suspend Mode

The TI486SXL series microprocessor also enters suspend mode as a result
of executing a HALT instruction. The SUSPA# output is asserted no more than
17 CLK2s following READY# sampled active for the HALT bus cycle as shown
in Figure 4-28. Suspend mode is then exited upon recognition of an NMI or
anunmasked INTR. SUSPA#is deactivated 12 CLK2s after sampling of an ac-
tive NMI or unmasked INTR. If the microprocessor is in a HALT-initiated sus-
pend mode and the CLK2 input is not stopped, the processor recognizes and
acknowledges the HOLD input and stores the occurrence of FLUSH# for
execution once suspend mode is exited.

Figure 4-28. HALT-Initiated Suspend Mode
| |
IH—— Nonpipelined HALT —»:

|

|

| 1 | T2 Ti | Ti | Ti | Ti

|

5
Q

BE3#,BE1#,
BEO#, M/10#,
W/R#,

|
|
V4 |
A31-A2, _\
|
|
I
|
|
|
|
]
|
|
|
|

1000000202020 % %000 2020202020 %0 %0201 1220 2020 0 20 0%

PAWAN A1 9. 9. 9.9.9.1

BE2#, D/C#

READY#

I
I
NMI |
T

(|
T

(
T |
17 CLK2s Max ————————P|
T
I

1)T
| |
| |

SUSPA#

|

4.4.12.3 Stopping the Input Clock

Because the T1486SXL series microprocessors are static devices, the input
clock (CLK2) can be stopped and restarted without loss of any internal CPU

4-52

Bus Operation and Functional Timing

data. This assumes, of course, that the TI486SXL2 microprocessor is in non-
clock-doubled mode when the input clock is stopped. (Refer to subsection
4.2.1, Clock Doubling Using Software Control, page 4-15.) CLK2 can be
stopped in either phase one (¢1) or phase two (¢2) of the clock and in either
a logic-high or logic-low state. However, entering suspend mode prior to stop-
ping CLK2 dramatically reduces the CPU current requirements. Therefore, the
recommended sequence for stopping CLK2 of the T1486SXLC2 series micro-
processor from clock-doubled mode is: '

1) Bring the processor out of clock-doubled mode
2) Initiate suspend mode

3) Wait for assertion of SUSPA# by the processor
4) Stop the input clock

" Note:

Suspend mode can be entered while in clock-doubled mode as long as CLK2
is not scaled or stopped.

For all other cases, including the TI486SXLC2 in nonclock-doubled mode, the
recommended sequence is:

1) Initiate suspend mode
2) Wait for assertion of SUSPA# by the processor
3) Stop the input clock

The TI486SXL series microprocessor remains suspended until CLK2 is re-
started and suspend mode is exited as described above. While CLK2 is
stopped, the microprocessor can no longer sample and respond to any input
stimulus including the HOLD, FLUSH#, NMI, INTR, and RESET inputs.
Figure 4-29 illustrates the recommended sequence for stopping CLK2 using
SUSP# to initiate suspend mode. CLK2 should be stable for a minimum of 10
clock periods before SUSP# is deasserted.

Figure 4-29. Stopping CLK2 During Suspend Mode

CLK2

SUSP#

BUSY#

SUSPA#

02

! |
o1 | ¢2 | of |¢2,'¢1|¢2

|
N

—

LU UL

d
—

N

(
)
(
)

—

N =N

—t—+——

= =N
NN

4— 10 CLK2s Min ———P)

}/_

T
S~

(
)

-
=

TI486SXL Microprocessor Bus Interface 4-53

Bus Operation and Functional Timing

4.4.13 Float (144-Pin QFP and 168-Pin PGA Pinouts Only)

Activating the FLT# input on the 144-pin or 168-pin TI486SXL floats all bidirec-
tional and output signals. Asserting FLT# electrically isolates the microproces-
sor from the surrounding circuitry. This feature is useful in systems designs
that contain an upgrade socket.

FLT# is an asynchronous, active-low input. It is recognized on the rising edge
of CLK2. When recognized, it aborts the current bus state and floats the out-
puts of the microprocessor as shown in Figure 4-30. FLT# must be asserted
for a minimum of 16 CLK2 cycles. To exit the float condition, RESET should
be asserted and held asserted until after FLT# is deasserted.

Asserting the FLT# input unconditionally aborts the current bus cycle and
forces the microprocessor into the float mode. As a result, the microproces-
sors are not guaranteed to enter float in a valid state. After deactivating FLT#,
the CPU is not guaranteed to exit float in a valid state. The microprocessor
RESET input must be asserted prior to exiting float to ensure that the micropro-
cessor is reset and that it returns in a valid state.

Figure 4-30. Entering and Exiting Float

FLT# \

CONTROL X Valid)________________5___(r

ADDRESS X

RESET

4-54

Chapter 5

Electrical Specifications

Electrical specifications for the TI1486SXL(C) family of microprocessors are
provided in this chapter. The specifications include electrical connection re-
quirements for all package pins, maximum ratings, recommended operating
conditions, dc electrical characteristics, and ac characteristics.

Topic Page

Electrical Connections

5.1 Electrical Connections

This section provides specific requirements for power and ground connec-
tions, decoupling, termination of inputs with internal pullup/pulldown resistors,
termination of system functional inputs requiring external pullup resistors, ter-
mination of unused inputs, and connection to terminals designated NC.

5.1.1 Power and Ground Connections and Decoupling

The high-frequency operation of the TI1486SXL(C) microprocessors makes it
necessary to install and test the devices using standard high-frequency tech-
niques. The high clock frequencies used in the microprocessors and their out-
put buffer circuits can cause transient power surges when several output buff-
ers switch output levels simultaneously. These effects can be minimized by fil-
tering the dc power leads with low-inductance decoupling capacitors, using
low-impedance wiring, and by making connection to all of the Vo Vs, and
Vgg (GND) terminals.

5.1.2 Pullup/Pulldown Resistors

Table 51 lists the input terminals that are internally connected to pullup and
pulldown resistors (see Figure 5-1). The pullup resistors are connected to
Vgc and the pulldown resistors are connected to Vgg. When unused, these
inputs do not require connection to external pullup or pulldown resistors.

Note:

The internal pullup and pulldown resistors are designed to tie off the individu-
alinternal signal associated with that pin. External signals should not be ter-
minated to any of these pins.

Table 5-1. Terminals Connected to Internal Pullup and Pulldown Resistors

TI486SXLC TI486SXL TI486SXL TI486SXL

Signal 100-Terminal 132-Terminal 144-Terminal 168-Terminal Resistor
A20M# 31 F13 43 D15 Pullup
BUSY# 34 B9 48 S4 Pullup
BS16# — Ci4 115 C17 Pullup
ERROR# 36 A8 49 A12 Pullup
FLT# 28 — 40 cH1 Pullup
FLUSH# 30 E13 42 C15 Pullup-
KEN# 29 B12 41 F15 Pullup
MEMW# — — 66 B16 Pullup
PEREQ 37 C8 50 R17 Pulldown
SMI# 47 c7 67 B10 Pullup
SUSP# 43 A4 63 C13 Pullup

Electrical Connections

Figure 5-1. Internal Pullup/Pulldown-1V Characteristic
‘ 60

50

~~

Current — pA
w
o

= N
o o

0 0.5 1 1.5 2 25 3 3.5 4 4.5 5 55
Voltage - V

It is recommended that the ADS# and LOCK# output terminals be connected
to pullup resistors, as indicated in Table 5-2. The external pullups ensure that
the signals remain negated during hold-acknowledge states.

Table 5-2. Terminals Requiring External Pullup Resistors

Ti486SXLC TI486SXL TI486SXL TI486SXL External
Signal 100-Terminal 132-Terminal 144-Terminal 168-Terminal Resistor
ADS# 16 E14 26 S17 20-kQ pullup
LOCK# 26 c10 38 N15 20-kQ pullup

5.1.3 NC Designated Terminals

Terminals designated NC should be left disconnected. Connecting or terminat-
ing any NC terminal(s) to a pullup resistor, pulldown resistor, or an active signal
can cause unpredictable results or nonperformance of the microprocessor.

5.1.4 Unused Signal Input Terminals

All signal inputs not used by the system designer and not listed in Table 5-1
should be connected eitherto Vgg orto Vg . Connectactive-highinputsto Vgg
through a 20-kQ (+10%) pulldown resistor and active-low inputs to Vgg
through a 20-kQ (+10%) pullup resistorto prevent possible spurious operation.

Electrical Specifications 5-3

Absolute Maximum Ratings

5.2 Absolute Maximum Ratings

Table 5-3. Absolute Maximum Ratings Over Operating Free-Air Temperature Range

The absolute maximum ratings provide specific limits regarding power supply
and input voltages, input and output current limits, and operating and storage

temperatures.

Table 5-3 specifies the absolute maximum ratings for the TI486SXL(C) family

of microprocessors.

(Unless Otherwise Noted)t

Parameter Min Max | Unit
TI486SXLC and T1486SXL With respect to Vgg -0.5 6.5 \
I B B
Voltage on any terminal With respect to Vgg -05 Vgo+0.5 \
Case temperature Power applied -65 110 °C
Storage temperature No bias —65 150 °C

1 Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress
ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended
operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device

reliability.

5-4

Recommended Operating Conditions

5.3 Recommended Operating Conditions

Recommended operating conditions provide specific values for power supply
and input voltages, required input threshold ranges, output drive currents
available for system interfacing, and operating levels for clamp currents and
case temperature.

5.3.1 3.3-Volt Microprocessors With 5-Volt Tolerant Inputs, Outputs, and I/Os

Table 5-4 presents the recommended operating conditions for the
TI486SXL-G 3.3-V microprocessors with 5-V-tolerant inputs, outputs, and
I/Os.

During power up and power down conditions, the 3.3-V Vg terminals and the
5-V Vo5 terminal should be ramped simultaneously as the 3.3-V V¢ voltage
should not exceed the 5-V Vg5 voltage by more than 1 V or the device may
not initialize correctly. Conversely, the 5-V Vg5 can exceed the 3.3-V Vg by
upto2.25 V.

Table 5-4. TI486SXL-G Recommended Operating Conditions

Min Max | Unit
Voo Supply voltaget With respect to Vgg See Note 1 3 36| V
Voos Supply voltage¥ With respect to Vgg See Note 2 3 525| V
VIH High-level input voltage 2 Vges+0.3 \'
ViL Low-level input voltage -0.3 0.6 \Y
ViLe CLK2 low-level input voltage -0.3 0.5 \'
VIHC CLK2 high-level input voltage Vce-0.3 Vees+03 | vV
IoH High-level output current VOH = VOH(min) -2 mA
loL Low-level output current VoL=VOL(max) 5| mA
Phase-locked loop frequency | With respect to CLK2

PLLLOCK lock range frequency 82 50 | MHz

TI486SXLC in 100-pin

QFP 0 85

Power TI486SXL in 132- and R

tc Case temperature applied 168-pin PGA 0 85 C

T1486SXL in 144-pin

QFP 0 85

Notes: 1) Vg should be no more than 1 V greater than Vg s during power up or the device may not initialize correctly.
2) Vs should be connected to the 3.3-V supply in a 3.3-V-only system. In mixed systems (3.3/5 V) Vg5 should be

connected to the 5-V supply.

Electrical Specifications

5-5

Recommended Operating Conditions

5.3.2 3.3-Volt Microprocessors

Table 5-5 presents the recommended operating conditions for the
T1486SXLC-V and TI486SXL-V 3.3-V microprocessors.

Table 5-5. TI486SXLC-V and TI486SXL-V Recommended Operating Conditions

Min ‘Max | Unit
Vee Supply voltage With respect to Vgg 3 3.6 \"
ViH High-level input voltage 2 Vgc+03 \'
ViL Low-level input voltage -0.3 0.6 \
ViLc CLK2 low-level input voltage -0.3 0.5 \'
VIHC CLK2 high-level input voltage Vee-0.3 Vgg+0.3 \
IoH High-level output current VOH = VOH(min) -2 | mA
loL Low-level output current VoL=V0OL(max) 5| mA
Phase - locked loop frequency | With respect to CLK2
PLLLOCK |ock range frequency 32 50 | MHz
T1486SXLC in 100-pin
QFP 0 85
Power :
t Case temperature - TI486SXL in 132- and °C
¢ applied 168-pin PGA 0 85
TI1486SXL in 144-pin QFP 0) 85

5.3.3 5-Volt Microprocessors

Table 5-6 presenis the recommended operating conditions for the
TI486SXLC and TI486SXL 5-V microprocessors.

Table 5-6. TI486SXLC and TI486SXL Recommended Operating Conditions

Min Max | Unit
Vee Supply voltage With respect to Vgg 4.75 5.25 Vv
ViH High-level input voltage 2 Vgg+0.3 \"
ViL Low-level input voltage . -0.3 0.8 \'
ViLe CLK2 low-level input voltage ~-0.3 0.8 \'
VIHC CLK2 high-level input voltage 3.7 Vcc+03 \
IoH High-level output current VOH=VOH(min) -1 mA
loL Low-level output current VoL= VoL(max) 5| mA
Phase-locked loop frequency | With respect to CLK2

PLLLock lock range frequency 32 50| Mhz

TI486SXLC in 100-pin

QFP 0 100

Power TI486SXL in 132- and o

te Case temperature applied 168-pin PGA 0 85 Cc

TI486SXL in 144-pin

QFP 0 100

5-6

DC Electrical Characteristics

5.4 DC Electrical Characteristics

5.4.1 3.3-Volt Microprocessors With 5-Volt-Tolerant Inputs, Outputs, and I/Os

The dc electrical characteristics tables provide specific data regarding the ca-
pabilities of the TI486SXL(C) family microprocessors to interface directly with
either CMOS- or TTL-type system functions. Devices are offered for operation
in 3.3 and 5-volt mixed, 3.3-volt only, and 5-volt only systems.

[J Table 57 covers the 3.3-V 40, 20-MHz T1486SXL-G40.

[Table 5-8 on page 5-8 covers the 3.3-V 50-MHz TI1486SXL2-G50.

Table 5-7. TI486SXL-G40 Electrical Characteristics at Recommended Operating
Conditions (Typical values are at Voc =33V, Vocs =5V, and T =25°C)

TI486SXL-G40
Parameter Test Conditions Unit
Min Typ Max
VoL Low-level output voltage loL=3mA 0.4 \
: IoH =—1 mA 24
VOH High-level output voltage \
loH=-0.2mA Voc—-0.4
| Input current (leakage) VIN=0,VIN = Vcc See Note 1 e o F15] pA
- - NS
High-level input current at BN
IH PEREg S P VIN =24, See Note 2 ‘%%@5 200| pA
Pawd :
hL Low-level input current ViL =045V, See Note 3 %1’}(3 -400| pA
Icc Supply current (Active mode) 20 MHz (CLK2 = 40 MHz) N 300 400 mA
20 MH
lccsm Supply current (Suspend mode) (CLK22= 40 MHz) See Note 4 15 mA
Iccss Standby supply current 0 MHz, Suspended/CLKé e"’:ﬁ&?‘i 0.1 1 mA
CIN Input capacitance fo =1 MHz, See Note 5 10 pF
Cout Output or I/O capacitance fo =1 MHz, See Note 5 12| pF
CcLk Input capacitance CLK2 fe=1MHz, See Note 5 20| pF
Notes: 1) Applicable for all input terminals except those with an internal pullup resistor. See Table 5-1.

2) PEREQ has an internal pulldown resistor.
3) Applicable for all inputs that have an internal pullup resistor. See Table 5-1.
4) Allinputs at0or Vi . Allinputs held static, (except CLK2 as indicated). All outputs unloaded (static IoyT = 0 mA).

5) Not 100% tested

Electrical Specifications

5-7

DC Electrical Characteristics

Table 5-8. TI486SXL2-G50 Electrical Characteristics at Recommended Operating
Conditions (Typical values are at Voc =3.3V, Vocs =5V, and Ty =25°C)

TI486SXL2-G50
Parameter Test Conditions - Unit
Min Typ Max

VoL Low-level output voltage lop=3mA 0.4 \'
: loH =—1 mA 24

VOH High-level output voltage \Y
loH=-0.2mA Vcc-0.4

| Input current (leakage) VIN=0,VIN =2 Vcc See Note 1 e <n T15| MA

) yae)
High-level input current at _ %‘g"gf@
H PEREQ VIN=24, See Note 2 AR@@ 200 | MA
T

L Low-level input current ViIL=045V, See Note 3 &0 -400 | pA

Icc Supply current (Active mode) 25 MHz (CLK2 = 50 MHz) = 365 500 mA
25 MHz

Iccsm Supply current (Suspend mode) (CLK2 = 50 MHz) See Note 4 20 mA
0 MHz, Suspended/CLK2 stopped,

lccss Standby supply current P See l\?(?te 4 0.1 1 mA

CIN Input capacitance fe =1 MHz, See Note 5 10| pF

Coutr Output or I/O capacitance fo =1 MHz, See Note 5 12 pF

CcLKk Input capacitance CLK2 fc = 1 MHz, See Note 5 20| pF

Notes: 1) Applicable for all input terminals except those with an internal pullup resistor. See Table 5-1.
2) PEREQ has an internal pulldown resistor.
3) Applicable for all inputs that have an internal pullup resistor. See Table 5-1.
4) Allinputs at 0 or Vgc. Allinputs held static, (except CLK2 as indicated). All outputs unloaded (static IloyT = 0 mA).
5) Not 100% tested

5-8

DC Electrical Characteristics

5.4.2 3.3-Volt Microprocessors

[J Table 5-9 covers the 3.3-V 25-MHz T1486SXLC-V25.
(1 Table 5-10 on page 5-10 covers the 3.3-V 40, 20 MHz T1486SXL-V40.
1 Table 5-11 on page 5-11 covers the 3.3-V 50, 25 MHz T1486SXL2-V50

Table 5-9. TI486SXLCB-V25 Electrical Characteristics at Recommended Operating
Conditions (Typical values are at Voo =3.3Vand Ty =25°C)

TI486SXLC-V25
Parameter Test Conditions Unit
Min Typ Max
VoL Low-level output voltage loL=3mA 0.4 \'%
loH=-1mA 24
VOH High-level output voltage \
loH=-0.2mA Veoe-0.4
I Input current (leakage) VIN=0,VIN = Vo See Note 1 & 5| uA
i . oF Q
High-level input current at AN
I e VN = 2.4, See Note 2 K%% 200| pA
L Low-level input current VIL=045YV, See Note 3 %’}(Q? —-400 nA
icc Supply current (Active mode) 25 MHz W~ 225 2851 mA
lccsm Supply current (Suspend mode) | 25 MHz See Note 4 6 mA ’
MHz, Suspended/CLK2 stopped,
Iccss Standby supply current 0 MHz, Suspende s esé I\?gte 4 0.1 1 mA
CIN Input capacitance fo=1MHz, See Note 5 10 pF
Cout Output or I/O capacitance fo=1MHz, See Note 5 12| pF
CcLk Input capacitance CLK2 fc=1MHz, . See Note 5 20| pF

Notes: 1) Applicable for all input terminals except those with an internal pullup resistor. See Table 5-1.
2) PEREQ input has an internal pulldown resistor.
3) Applicable for all inputs that have an internal puliup resistor. See Table 5-1.
4) Allinputs at 0 or V. All inputs held static, (except CLK2 as indicated). All outputs unloaded (static loyT = 0 mA).
5) Not 100% tested '

Electrical Specifications 5-9

DC Electrical Characteristics

Table 5-10. TI486SXL-V40 Electrical Characteristics at Recommended Operating
Conditions (Typical values are at Voo =3.3Vand Ty =25°C)

TI486SXL-V40
Parameter Test Conditions - Unit
Min Typ Max
VoL Low-level output voltage loL=3mA 0.4 \'
' loH=-1mA 24

VOH High-level output voltage v
loq =-0.2mA Vcc-0.4

| Input current (leakage) VIN=0,VIN = Vcc See Note 1 15| uA

High-level input current at
IiH VIN =24, See Note 2 S 200| pA
PEREQ \&:@

L Low-level input current ViIL=045YV, See Note 3 ey .@&“ -400| pA

Icc Supply current (Active mode) | 20 MHz (CLK2 = 40 MHz) V0 300 400| mA
20 MHz W~

Iccsm Supply current (Suspend mode) (CLK2 = 40 MHz) See Note 4 15 mA
0 MHz, Suspended/CLK2 stopped,

lccss Standby supply current See Note 4 0.1 1] mA

CiN Input capacitance fc =1 MHz, See Note 5 10| pF

CouTt Output or I/0 capacitance fc=1MHz, See Note 5 12 pF

CcLk Input capacitance CLK2 fc = 1 MHz, See Note 5 20| pF

Notes: 1) Applicable for all input terminals except those with an internal pullup resistor. See Table 5-1.

5-10

2) PEREQ has an internal pulldown resistor.
3) Applicable for all inputs that have an internal pullup resistor. See Table 5-1.
4) Allinputs at 0 or Vo . Allinputs held static, (except CLK2 as indicated). All outputs unloaded (static IoyT = 0 mA).

5) Not 100% tested

DC Electrical Characteristics

Table 5—11. TI486SXL2-V50 Electrical Characteristics at Recommended Operating
Conditions (Typical values are at Voo =3.3 Vand Ty =25°C)

TI486SXL2-V50
Parameter Test Conditions Unit
Min Typ Max
VoL Low-level output voltage loL =3 mA 0.4 \
loH=-1mA 24
VOH High-level output voltage \Y
loH =-0.2mA Veo—-0.4
] Input current (leakage) VIN=0,VIN = Vo See Note 1 o oy TS| A
.) (8
High-level input current at AN
W penes VIN =24, See Note 2 m&%y 200| pA
L " Low-level input current VIL=045YV, See Note 3 éﬁv —-400| pA
lcc Supply current (Active mode) 25 MHz (CLK2 = 50 MHz) N 365 500 mA
| Supply current (Suspend mode) 25 MHz 20 mA
CCSM Supply P (CLK2 = 50 MHz) See Note 4
0 MHz, Suspended/CLK2 stopped,
lccss Standby supply current P See r\? ch)t o4 0.1 11 mA
CIN Input capacitance fo =1 MHz, See Note 5 10 pF
CouT Output or I/O capacitance fo=1MHz, See Note 5 ’ 12| pF
CcLk Input capacitance CLK2 fo=1MHz, See Note 5 20| pF

Notes: 1) Applicable for all input terminals except those with an internal pullup resistor. See Table 5-1.
2) PEREQ has an internal pulldown resistor.
3) Applicable for all inputs that have an internal pullup resistor. See Table 5-1.
4) Allinputs at 0 or V. All inputs held static, (except CLK2 as indicated). All outputs unloaded (static loyT = 0 mA).
5) Not 100% tested

Electrical Specifications 5-11

DC Electrical Characteristics

5.4.3 5-Volt Microprocessors

1 Table 5-12 covers the 5-V 40, 20-MHz TI486SXL.C-040.

[Table 5-13 on page 5-13 covers the 5-V 50, 25-MHz TI486SXLC2-050.
[0 Table 5-14 on page 5-14 covers the 5-V 40, 20-MHz T1486SXL-040.

[Table 5-15 on page 5-15 covers the 5-V 50. 25-MHz TI486SXL2-050.

Table 5-12. TI1486SXLC-040 Electrical Characteristics at Recommended Operating
Conditions (Typical values are at Voo =5 V and Ty = 25°C)

TI486SXLC-040
Parameter Test Conditions Unit
E Min Typ Max

VoL Low-level output voltage loL=5mA 0.4 \'%
log=-1mA 24

VOH High-level output voltage \
loH=-0.2mA Vce—-0.5

] Input current (leakage) VIN=0,V|N =2 Voc See Note 1 s, H5 1 uA

: : YRS X
High-level input current at AN

I Pé’REQ P VIN = 2.4, See Note 2 6&?? s 200 | upA

I Low-level input current VIL=045YV, See Note 3 (‘t{(@ —400| pA

Icc Supply current (Active mode) 20 MHz (CLK2 = 40 MHz) = 580 725 | mA

) 20 MHz

IccsM Supply current (Suspend mode) (CLK2 = 40 MHz) See Note 4 10 mA
0 MHz, Suspended/CLK2 stopped

Iccss Standby supply current P See ,\? &Z 4 0.1 1 mA

CIN Input capacitance foc =1 MHz, See Note 5 10 pF

CouT Output or I/0 capacitance fo=1MHz, See Note 5 12 pF

CcLK Input capacitance CLK2 fc=1MHz, See Note 5 20| pF

Notes: 1) Applicable for all input terminals except those with an internal pullup resistor. See Table 5-1.
2) PEREQ has an internal pulidown resistor.
3) Applicable for all inputs that have an internal pullup resistor. See Table 5-1.
4) Allinputs at 0 or V¢ . Allinputs held static, (except CLK2 as indicated). All outputs unloaded (static loyT = 0 mA).
5) Not 100% tested

5-12

DC Electrical Characteristics

Table 5—13. TI486SXLC2-050 Electrical Characteristics at Recommended Operating
Conditions (Typical values are at Voo =5V and Ty =25°C)

TI486SXLC2-050
Parameter Test Conditions - Unit
Min Typ Max

VoL Low-level output voltage loL=5mA 0.45 \'
loH =-1mA 2.4

VOH High-level output voltage \
loH=-0.2mA Vcc-0.5

I Input current (leakage) VIN=0,VIN =2 Voc See Note 1 & ka 15| pA

High-level input current at AN
4 A EgREQ p VIN =24, See Note 2 Aﬁz Qy 200 pA
T T

i Low-level input current ViIL=0.45V, See Note 3 ?*?i ; -400 HA

Icc Supply current (Active mode) 25 MHz (CLK2 = 50 MHz) = 640 850 | mA
25 MHz

Ilccsm Supply current (Suspend mode) (CLK2 = 50 MH2) See Note 4 9 mA
0 MHz, Suspended/CLK2 stopped,

lccss Standby supply current P See I\?gte 4 0.1 1| mA

CiN Input capacitance , fc =1MHz, See Note 5 10 pF

CouTt Output or I/O capacitance fc=1 MHz,‘ See Note 5 12 pF

CcLk Input capacitance CLK2 fc=1MHz, See Note 5 20 pF

Notes: 1) Applicable for all input terminals except those with an internal pullup resistor. See Table 5-1.
2) PEREQ has an internal pulldown resistor.
3) Applicable for all inputs that have an internal pullup resistor. See Table 5-1.

4) Allinputs at 0.4 or Vo —0.4 (CMOS levels). All inputs held static, (except CLK2 as indicated). All outputs unloaded
(static loyT = 0 mA).

5) Not 100% tested

Electrical Specifications 5-13

DC Electrical Characteristics

Table 5—-14. TI486SXL-040 Eleétrical Characteristics at Recommended Operating
Conditions (Typical values are at nominal Voo =5V and Ty =25°C)

TI486SXL-040
Parameter Test Conditions Unit
Min Typ Max

VoL Low-level output voltage loL=5mA 0.45 \'
loH=-1mA 24

VOH High-level output voltage \
log=-02mA Vece—0.5

I Input current (leakage) VIN=0,V|N = Voc See Note 1 é%:: Q‘% 15| pA

High-level input current at _ e

IiH PEREQ VIN =24, See Note 2 @ QL& 200 | pA

L Low-level input current VIL=045YV, See Note 3 égv -400 | pA

Icc Supply current (Active mode) 20 MHz (CLK2 = 40 MHz) 600 800 mA
20 MHz

Iccsm Supply current (Suspend mode) (CLK2 = 40 MHz) See Note 4 10 mA
0 MHz, Suspended/CLK2 stopped,

lccss Standby supply current P See I\?gte 4 0.1 1 mA

CIN Input capacitance fc=1MHz, See Note 5 10 pF

CouTt Output or I/O capacitance fc =1MHz, See Note 5 12| pF -

CcLk Input capacitance CLK2 fo=1MHz, See Note 5 20| pF

Notes: 1) Applicable for all input terminals except those with an internal pullup resistor. See Table 5-1.
2) PEREQ input has an internal pulldown resistor.
3) Applicable for all inputs that have an internal pullup resistor. See Table 5-1.
4) Allinputs at 0 or Voc . All inputs held static, (except CLK2 as indicated). All outputs unloaded (static loyT =0 mA).
5) Not 100% tested

ADVANCE INFORMATION concerns new cgroduc\s in the sampling or
preproduction phase of development. Characteristic data and other
specifications are subject to change without notice.

5-14

DC Electrical Characteristics

Table 5—-15. TI486SXL2-050 Electrical Characteristics at Recommended Operating
Conditions (Typical values are at nominal Voo =5 V and Ty =25°C)

TI486SXL2-050
Parameter Test Conditions - Unit
Min Typ Max

VoL Low-level output voltage loL=5mA 0.45 \Y
loH=—1mA 2.4

VOH High-level output voltage \
loH=-0.2mA Vcc—-0.5

Iy Input current (leakage) VIN=0,VIN =2 Vcc See Note 1 %%Q 15| pA

High-level input current at | \s
IH PeREa T VIN = 2.4, See Note 2 @ﬁ%{x\ 200 | pA
,) o .

L Low-level input current VIL=0.45YV, See Note 3 & -400 | pA

Icc Supply current (Active mode) 25 MHz (CLK2 = 50 MHz) 670 900 | mA
25 MHz

lccsM Supply current (Suspend mode) (CLK2 = 50 MHz) See Note 4 10 mA
0 MHz, Suspended/CLK2 stopped,

Ilccss Standby supply current , P See l\’ljc?te 4 0.1 1 mA

CIN Input capacitance fo=1MHz, See Note 5 10 pF

CouT Output or I/O capacitance fo=1MHz, See Note 5 12| pF

CcLk Input capacitance CLK2 fo=1MHz, See Note 5 20| pF

Notes: 1) Applicable for all input terminals except those with an internal pullup resistor. See Table 5-1.
2) PEREQ input has an internal pulldown resistor.
3) Applicable for all inputs that have an internal pullup resistor. See Table 5-1.
4) Allinputs at 0 or Voc. Allinputs held static, (except CLK2 as indicated). All outputs unloaded (static ioyT = 0 mA).
5) Not 100% tested

ADVANCE INFORMATION concerns new ﬁroducts in the sampling or
preproduction phase of development. Characteristic data and other
specifications are subject to change without notice.

Electrical Specifications 5-15

AC Characteristics

5.5 AC Characteristics
The ac characteristics provide detailed information regarding measurement
points, specific timing requirements for setup and hold times, and propagation
delay times of the TI486SXL(C) microprocessors.

5.5.1 Measurement Points for AC Characteristics
The rising-clock-edge reference level VRegg, and other reference levels are

specified in Table 516 for the TI486SXL(C) family of microprocessors. Input
or output signals must cross these levels during testing.

Table 5—-16. Measurement Points for AC Characteristics

Symbol | TI486SXLC-V and TI486SXL-V | TI486SXLC and TI486SXL | Unit
VREEC 15 2 Vv
VREF 1.2 1.5
ViHe Veg—0.3 Voe-0.8 v
ViLe 0.6 08 Vv
ViHD 2.3 3 Vv
Vip 0 0 v

Figure 5-2 and Figure 5-3 show delays (A and B) and input setup and hold
times (C and D). Input setup and hold times (C and D) are specified minimums,
defining the smallest acceptable sampling window during which a synchro-
nous input signal must be stable for correct operation.

The TI486SXLC microprocessor outputs A23-A1, ADS#, BHE#, BLE#,
D/C#, HLDA, LOCK#, M/IO#, SMADS#, SMI#, and W/R# change only at the
beginning of phase one (Figure 5-2, ¢1). Outputs D15—D0 (write cycles) and
SUSPA# change at the beginning of phase two (¢2).

The TI486SXLC microprocessor inputs BUSY#, D15—-D0 (read cycles), ER-
ROR#, FLT#, HOLD, PEREQ, and READY# are sampled at the beginning of
phase one (Figure 5-2, ¢1). Inputs A20M#, FLUSH#, INTR, KEN#, NA#, NMI,
SMI# and SUSP# are sampled at the beginning of phase two (¢2).

The T1486SXL microprocessor outputs A31—A2, ADS#, BE3#—BEO#, D/C#,
HLDA, LOCK#, M/IO#, SMADS#, SMI#, and W/R# change only at the begin-
ning of phase one (Figure 5-3, ¢1). Outputs D31-D0 (write cycles) and SUS-
PA# change at the beginning of phase two (¢2).

The TI1486SXL microprocessor inputs BUSY#, D31-D0 (read cycles), ER-
ROR#, HOLD, PEREQ, and READY# are sampled at the beginning of phase 1
(Figure 5-3, ¢1). Inputs A20M#, BS16, FLUSH#, INTR, KEN#, NA#, NMI,
SMI# and SUSP# are sampled at the beginning of phase two ($2).

5-16

AC Characteristics

Figure 5-2. TI486SXLC Drive Level and Measurement Points for AC Characteristics

CLK2:

OUTPUTS:
A23-A1, ADS#
BHE#, BLE#, D/C#,
HLDA, LOCK#,
M/IO#, SMADS#,
SMi#, W/R#

OUTPUTS:
.b15-Do,
SUSPA#

INPUTS:
A20M#,
FLUSH#,
INTR, KEN#,
NA#, NMI, SMi#,
SUSP#

INPUTS:
BUSY#,
D15-D0,
ERROR#, FLT#,
HOLD, PEREQ,
READY#

VREFC

1

R ax

I

o2

Valid
Output n

VREF

i

Valid
Outp

ut n+1

VIHD -

Max

Valid

Qutput n

@
VREF

Valid

Output n+1

// %VREF

Valid
Input

S

VILD

LEGEND: A — Maximum Output Delay Specification
B — Minimum Output Delay Specification
C — Minimum Input Setup Specification
D — Minimum Input Hold Specificaton

VIHD

|
I
:
|
|
|
|
I
I
I

/ /%VREF

Valid
Input

VILD

Electrical Specifications

5-17

AC Characteristics

Figure 5-3. TI486SXL Drive Level and MeaSurement Points for AC Characteristics

CLK2:

OUTPUTS:
A31-A2, ADS#
BE3#-BEO#, D/C#,
HLDA, LOCK#,
M/I0#, SMADS#,
SMI# W/R#

OUTPUTS:
D31-D0, SUSPA#

INPUTS:
A20M#, BS16,
FLUSH#, INTR,
KEN#, NA#, NMI,
SMI#, SUSP#

INPUTS:
BUSY#, D31-D0,
ERROR#, HOLD,
PEREQ, READY#

VREFC

$1

Max
Min i

Tx
I
|

¢2

|
|
i
giltigutn VREF ///// ///%VREF g?{gut et I:
| |
|
L—'———P‘—Max ;
naOnd O i
gauligum VREWVREF gaul':gut n+1

|

Valid
Input

e,

wo L=

.EGEND: A — Maximum Output Delay Specification
B — Minimum Output Delay Specification
C ~ Minimum Input Setup Specification
D — Minimum Input Hold Specificaton

5-18

\'
Vi

IHD

Valid
Input

VREF%

AC Characteristics

5.5.2 CLK2 Timing Measurement Points

The CLK2 timing measurement points are illustrated in Figure 5-4 for the
TI1486SXL(C) family of microprocessors.

Figure 5-4. CLK2 Timing Measurement Points

¢ Tt »
ﬂ—TZa—HI ll
| — T2b —Py | l
VIHC ——— = N\ ——— ——— —
ClLk2 VREFC —————ff————— ———— \ E E E
V|LC$—‘————J§\\ | ———-?F ————— T
—» —T5 {H—T3b——>|} —» —T4
——T3a—9

5.5.3 AC Data Characteristics Tables

Parametric ac characteristics include output delays, input setup requirements,
input hold requirements, and output float delays are based on the measure-
ment points identified in Figure 5-2 on page 5-17, Figure 5-3 on page 5-18,
and Figure 54.

Electrical Specifications 5-19

AC Characteristics

5.5.3.1 AC Data for 3.3-Volt Microprocessors with 5-Volt Tolerant Outputs

0 Table 5-17 covers the 3.3-V 40, 20-MHz T1486SXL-G40.
O Table 5-18 on page 5-21 covers the 3.3-V 50-MHz TI486SXL.2-G50.

Table 5-17.AC Characteristics for TI486SXL-G40, Voo =3 V1o 3.6 V,
Voos =4.75Vto 5.25Vor3Vito 3.6V, Tg,=0t085°C

SYM- , TI486SXLG40
BOL PARAMETER UNIT | FIGURE NOTES
MIN MAX

CLK2 clock-doubled frequency range 32 40 MHz
T1 CLK2 period 12.5 5-4 Note 1
T2a CLK2 high time 5 5-4 Note 2
T2b CLK2 high time 3.25 5-4 Note 2
T3a CLK2 low time 5 ns |54 Note 2
T3b CLK2 low time 3.25 5-4 Note 2
T4 CLK2 fall time 4 5-4 Note 2
T5 CLK2 rise time 4 5-4 Note 2
T6 A31-A2 valid delay 3 12.5 5-12,5-15 [C|_ =50 pF
T6a SMI# valid delay 3 12.5 ns |5-12,5-15 | C_ =50 pF
T7 A31-A2 float delay 3 17 5-15 Note 3
T8 BE3# — BEO#, LOCK# valid delay 3 12.5 ns 5-12,5-15 | C =50 pF
T9 BE3# — BEO#, LOCK# float delay 3 17 5-15 Note 3
T10 ADS#, D/C#, M/IO#, W/R# valid delay 3 12.5 5-12,5-15 | C =50 pF
T10a | SMADS# valid delay 3 125 NS |5-42,5-15 | C| =50 pF
T ADS#, D/C#, M/\O#, W/R# float delay 3 17 n 5-15 Note 3
Ti1a | SMADS# float delay 3 &7 S |5-15 Note 3
T12 D31-DO0 write data, SUSPA# valid delay 5,,@@@3 20 5-12,5-13 | C| =50 pF,
T12a | D31-DO0 write data hold time & ™ ns |5-14 Note 5
T13 D31-D0 write data, SUSPA# float delay @Q X 14.5 5-15 Notes 3, 6
T14 HDLA valid delay %‘?‘é 17 ns |515 CL =50pF
T15 A20M#, FLUSH#, KEN#, NA#, SUSP# setup time -5 ns 5-11
T16 A20M#, FLUSH#, KEN#, NA#, SUSP# hold time 2 5-11
T17 BS16# setup time 5 ns 5-11
T18 BS16# hold time 2 5-11
T19 READY# setup time 5 ns 5-11
T20 READY# hold time 3 5-11
T21 D31-DO0 read data setup time 5 ns 5-11
T22 D31-D0 read data hold time 3 5-11
T23 HOLD setup time 4 ns 5-11
T24 HOLD hold time 2 5-11
T25 RESET setup time 4.5 ns 5-4
T26 RESET hold time 2 5-4 Note 5
T27 NMI, INTR setup time 5 5-10 Note 4
T27a | SMli# setup time 5 ns 5-10 Note 4
T28 NMI, INTR hold time 5 5-10 Note 4
T28a | SMI# hold time 5 5-10 Note 4
T29 PEREQ, ERROR#, BUSY# setup time 5 ns 5-10 Note 4
T30 PEREQ, ERROR#, BUSY# hold time 3 5-10 Note 4
T31 Clock-doubled PLL lock time 20 us Note 7

Notes: 1) Input clock can be stopped, therefore minimum CLK2 frequency is 0 MHz.
2) These parameters are not tested. They are guaranteed by design characterization.
3) Float condition occurs when maximum output current becomes less than) in magnitude. Float is not 100% tested.
4) These following inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for

testing purposes, to assure recognition within a specific CLK2 period.

5) Not 100% tested.
6) SUSPA# floats only in response to activation of FLT#. SUSPA# does not float during a hold-acknowledge state.
7) Delay time from setting CKD in CCRO to entering clock-doubled mode.

5-20

AC Characteristics

Table 5—-18. AC Characteristics for TI486SXL2-G50, Voo =3 V10 3.6 V,
Vocs =4.75V10525Vor3Vito36V, Tc=0t085°C

TI486SXL.2-G50
SYMBOL PARAMETER UNIT | FIGURE NOTES
MIN MAX
CLK2 clock-doubled
frequency range 32 50 MHz
T1 CLK2 period 20 5-4 Note 1
T2a CLK2 high time 7 5-4 Note 2
T2b CLK2 high time 4 5-4 Note 2
T3a CLK2 low time 7 ns |54 Note 2
T3b CLK2 low time 5 5-4 Note 2
T4 CLK2 fall time 7 5-4 Note 2
T5 CLK2 rise time 7 5-4 Note 2
T6 A31-A2 valid delay 3 21 5-12,5-15 | C_ =50 pF
T6a SMI# valid delay 3 30 ns |5-12,5-15 | C| =50 pF
T7 A31-A2 float delay 4 30 5-15 Note 3
T8 BE3# — BEO#, LOCK# valid delay 25 18 ns 5-12,5-15 | CL =50 pF
T9 BE3# — BEO#, LOCK# float delay 4 30 5-15 Note 3
T10 ADS#, D/C#, M/IO#, W/R# valid delay 4 &, 49 5-12,5-15 | C|_ =50 pF
T10a |SMADS# vaiid delay TR AL NS 1542 5-15 | C[= 50 pF
™ ADS#, D/C#, M/IO#, W/R# float delay @\% > 30 5-15 Note 3
Tila | SMADS# float delay VO 30 ns |s-15 Note 3
T12 D31-D0 write data, SUSPA# valid delay 35 27 5-12,5-13 | CL =50 pF,
T12a | D31-DO0 write data hold time 2 ns |5-14 Note 5
T13 D31-D0 write data, SUSPA# float delay 4 22 5-15 Notes 3, 6
T14 HDLA valid delay 2 22 ns |5-15 CL=50pF
T15 A20M#, FLUSH#, KEN#, NA#, SUSP# setup time 5 ns 5-11
T16 A20M#, FLUSH#, KEN#, NA#, SUSP# hold time 3.5 5-11
7 BS16# setup time 7 ns 5-11
T18 BS16# hold time 2 5-11
T19 READY# setup time 9 ns 5-11
T20 READY# hold time 4 5-11
T21 D31-DO0 read data setup time 7 ns 5-11
T22 D31-D0 read data hold time 5 5-11
T23 HOLD setup time 9 ns |31
T24 HOLD hold time 35 5-11
T25 RESET setup time 8 ns 5-4
T26 RESET hold time 3 5-4 Note 5
T27 NMI, INTR setup time 6 5-10 Note 4
T27a | SMi# setup time 6 ns 5-10 Note 4
T28 NMi, INTR hold time 6 5-10 Note 4
T28a | SMI# hold time 6 5-10 Note 4
T29 PEREQ, ERROR#, BUSY# setup time 6 ns 5-10 Note 4
T30 PEREQ, ERROR#, BUSY# hold time 5 5-10 Note 4
T31 Clock-doubled PLL lock time 20 us Note 7

Notes: 1) Input clock can be stopped, therefore minimum CLK2 frequency is 0 MHz.
2) These parameters are not tested. They are guaranteed by design characterization.
3) Float condition occurs when maximum output current becomes less than | in magnitude. Float is not 100% tested.
4) These following inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for

testing purposes, to assure recognition within a specific CLK2 period.

5) Not 100% tested.
6) SUSPA# floats only in response to activation of FLT#. SUSPA# does not float during a hold-acknowledge state.
7) Delay time from setting CKD in CCRO to entering clock-doubled mode.

Electrical Specifications 5-21

AC Characteristics

5.5.3.2 AC Data for 3.3-Volt Microprocessors

[Table 5-19 covers the 3.3-V 25-MHz T1486SXLC-V25.
[Table 5-20 on page 5-23 covers the 3.3-V 40, 20 MHz TI486SXL-V40.
O Table 5-21 on page 5-24 covers the 3.3-V 50 MHZ T1486SXL2-050.

Table 5-19. AC Characteristics for TI486SXLC-V25, Voo =3 Vio 3.6 V
Tc =0°Cto85°C

SYM- TI486SXLC-V25
PARAMETER UNIT FIGURE NOTES
BOL MIN MAX
™ CLK2 period 20 5-4 Note 1
T2a CLK2 high time 7 5-4 Note 2
T2b CLK2 high time 4 5-4 Note 2
T3a CLK2 low time 7 ns 5-4 Note 2
T3b CLK2 low time 5 5-4 Note 2
T4 CLK2 fall time 7 5-4 Note 2
T5 CLK2rise time 7 5-4 Note 2
T6 A23-A1 valid delay 3 21 5-7,5-10 CL=50pF
Téa SMI# valid delay 3 30 ns 5-7,5-10 CL =50pF
T7 A23-A1 float delay 4 30 5-10 Note 3
T8 BHE#, BLE#, LOCK# valid delay 25 18 ns 5-7,5-10 CL =50pF
T9 BHE#, BLE#, LOCKi float delay 4 30 5-10 Note 3
T10 . | ADS#, D/C#, M/IO#, W/R# valid delay 4 19 ns 5-7,5-10 CL =50 pF
T10a | SMADS# valid delay 4 19 5-7,5-10 CL=50pF
T ADS#, D/C#, M/IO#, W/R# float delay 4 L ns 5-10 Note 3
Tila | SMADS# float delay 4 A30 5-10 Note 3
T12 D15-DO0 write data, SUSPA# valid delay (ZS 27 5-7,5-8 CL =50 pF,
T12a | D15-DO0 write data hold time ns 5-9 Note 5
T13 | D15-DO write data, SUSPA# float delay i 22 5-10 Notes 3, 6
T14 HDLA valid delay 2 22 ns 5-10 CL =50pF
T15 NA#, SUSP#, FLUSH#, KEN#, A20M# setup time 5 ns 5-6
T16 NA#, SUSP#, FLUSH#, KEN#, A20M# hold time 35 5-6
T19 READY# setup time 9 ns 5-6
T20 READY# hold time 4 5-6
T21 D15-D0 read data setup time 7 ns 5-6
T22 D15-DO read data hold time 5 5-6
T23 HOLD setup time 9 ns 5-6
T24 HOLD hold time 35 5-6
T25 | RESET setup time 8 ns |55
T26 RESET hold time 3 5-5 Note 5
T27 NMI, INTR setup time 6 5-6 Note 4
T27a | SMi# setup time 6 5-6 Note 4
T28 | NMI, INTR hold time 6 ns |56 Note 4
T28a | SMI# hold time 6 5-6 Note 4
T29 PEREQ, ERROR#, BUSY# setup time 6 ns 5-6 Note 4
T30 PEREQ, ERROR#, BUSY# hold time 5 5-6 Note 4

Notes: 1) Input clock can be stopped, therefore minimum CLK2 frequency is 0 MHz.
2) These parameters are not tested. They are guaranteed by design characterization.
3) Float condition occurs when maximum output current becomes less than | in magnitude. Float is not 100% tested.
4) These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing pur-
poses, to assure recognition within a specific CLK2 period.
5) Not 100% tested.
6) SUSPA# floats only in response to activation of FLT#. SUSPA# does not float during a hold acknowledge state.

ADVANCE INFORMATION concerns new ﬂroducts in the sampling or
preproduction phase of development. Characteristic data and other
specifications are subject to change without notice.

5-22

AC Characteristics

Table 5-20. AC Characteristics for TI486SXL-V40, Voo =3 V10 3.6 V,

Tc =0 to 85°C
SYM- TI486SXL-V40
BOL PARAMETER UNIT | FIGURE | NOTES
MIN MAX
CLK2 clock-doubled frequency range 32 40 MHz
T CLK2 period 125 5-4 Note 1
T2a CLK2 high time 5 5-4 Note 2
T2b CLK2 high time 3.25 5-4 Note 2
T3a CLK2 low time 5 ns |54 Note 2
T3b CLK2 low time 3.25 5-4 Note 2
T4 CLK2 fall time 4 5-4 Note 2
T5 CLK2 rise time 4 5-4 Note 2
T6 A31-A2 valid delay 3 125 5-12,5-15 [C| =50 pF
T6a SMI# valid delay 3 12.5 ns |5-12,5-15 | C =50 pF
T7 A31-A2 float delay 3 17 5-15 Note 3
T8 BE3# — BEO#, LOCK# valid delay 3 12.5 ns 5-12,5-15 | CL =50 pF
T9 BES3# — BEO#, LOCK# float delay 3 17 5-15 Note 3
T10 ADS#, D/C#, M/IO#, W/R# valid delay 3 125 n 5-12,5-15 | C_ =50 pF
T10a | SMADS# valid delay 3 12.5 S 5-12,5-15 | C =50 pF
™ ADS#, D/C#, M/IO#, W/R# float delay 3 17 n 5-15 Note 3
Tiia | SMADS# float delay 3 17 S |5-15 Note 3
T12 D31-D0 write data, SUSPA# valid delay 5 {ﬁ{’@ 5-12,5-13 | CL = 50 pF,
Ti2a | D31-DO write data hold time RS ns |5-14 Note 5
T13 D31-D0 write data, SUSPA# float delay 9(3?7:\ 5*14.5 5-15 Notes 3, 6
Ti4 | HDLA valid delay g@? 17 ns |5-15 C| =50 pF
T15 A20M#, FLUSH#, KEN#, NA#, SUSP# setup time 5 ns 5-11
T16 A20M#, FLUSH#, KEN#, NA#, SUSP# hold time 2 5-11
T17 BS16i setup time 5 ns 5-11
T18 BS16# hold time 2 5-11
T19 READY# setup time 5 ns 5-11
T20 READY# hold time 3 5-11
T21 D31-D0 read data setup time 5 ns 5-11
T22 D31-D0 read data hold time 3 5-11
T23 HOLD setup time 4 ns 5-11
T24 HOLD hold time 2 5-11
T25 RESET setup time 4.5 ns 5-4
T26 RESET hold time : 2 5-4 Note 5
T27 NMI, INTR setup time 5 5-10 Note 4
T27a | SMi# setup time 5 ns 5-10 Note 4
T28 NMI, INTR hold time 5 5-10 Note 4
T28a | SMI# hold time 5 5-10 Note 4
T29 PEREQ, ERROR#, BUSY# setup time 5 ns 5-10 Note 4
T30 PEREQ, ERROR#, BUSY# hold time 3 5-10 Note 4
T31 Clock-doubled PLL lock time 20 us Note 7
Notes: 1) Input clock can be stopped, therefore minimum CLK2 frequency is 0 MHz.

2) These parameters are not tested. They are guaranteed by design characterization.

3) Float condition occurs when maximum output current becomes less than |} in magnitude. Float is not 100% tested.

4) These following inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for
testing purposes, to assure recognition within a specific CLK2 period.

5) Not 100% tested.

6) SUSPA¥## floats only in response to activation of FLT#. SUSPA# does not float during a hold-acknowledge state.

7) Delay time from setting CKD in CCRO to entering clock-doubled mode.

Electrical Specifications 5-23

AC Characteristics

Table 5-21. AC Characteristics for TI486SXL2-V 50, Voo =3 V10.3.6 V,

Tc =010 85°C
TI486SXL2-V50
SYMBOL PARAMETER N MAX UNIT | FIGURE NOTES
CLK2 clock-doubled frequency range 32 50 | MHz
T CLK2 period 20 5-4 Note 1
T2a CLK2 high time 7 5-4 Note 2
T2b CLK2 high time 4 5-4 Note 2
T3a CLK2 low time 7 ns |54 Note 2
T3b CLK2 low time 5 5-4 Note 2
T4 CLK2 fall time 7 54 Note 2
T5 CLK2 rise time 7 5-4 Note 2
T6 A31-A2 valid delay 3 21 5-12, 5-15 | C =50 pF
T6a SMI# valid delay 3 30 ns |5-12,5-15 | C =50 pF
T7 A31-A2 float delay 4 30 5-15 Note 3
T8 BE3# — BEO#, LOCK# valid delay 25 18 ns |5-12.5-15 [CL=50pF
T9 BE3# — BEO#, LOCK# float delay 4 30 5-15 Note 3
T10 ADS#, D/C#, M/I0#, W/R# valid delay 4 19 ns 5-12,5-15 | CL =50 pF
Ti0a | SMADS# valid delay 4 1o o 5-12,5-15 | C_ = 50 pF
T ADS#, D/C#, M/IO#, W/R# float delay 4 > @‘ 30 ns 5-15 Note 3
T11la | SMADSH# float delay SIS 30 5-15 Note 3
T12 | D31-DO write data, SUSPA# valid delay %{g‘" 27 5-12,5-13 | C| = 50 pF,
T12a | D31-DO write data hold time AN ns |5-14 Note 5
T13 D31-DO0 write data, SUSPA# float delay 4 22 5-15 Notes 3, 6
T4 HDLA valid delay 2 22 ns |5-15 CL=50pF
T15 A20M#, FLUSH#, KEN#, NA#, SUSP# setup time 5 ns 5-11
T16 A20M#, FLUSH#, KEN#, NA#, SUSP# hold time 35 5-11
T17 BS16# setup time 7 ns 5-11
T18 BS16# hold time 2 5-11
T19 READY# setup time 9 ns 5-11
T20 READY# hold time 4 5-11
T21 D31-D0 read data setup time 7 ns 5-11
T22 D31-DO0 read data hold time 5 5-11
T23 HOLD setup time 9 ns 5-11
T24 HOLD hold time 35 5-11
T25 RESET setup time 8 ns 5-4
T26 RESET hold time 3 5-4 Note 5
T27 NMI, INTR setup time 6 5-10 Note 4
T27a | SMI# setup time 6 ns 5-10 Note 4
T28 NMI, INTR hold time 6 5-10 Note 4
T28a SMI# hold time 6 5-10 Note 4
T29 PEREQ, ERROR#, BUSY# setup time 6 ns 5-10 Note 4
T30 PEREQ, ERROR#, BUSY# hold time 5 5-10 Note 4
T31 Clock-doubled PLL lock time 20 us Note 7

Notes: 1) Input clock can be stopped, therefore minimum CLK2 frequency is 0 MHz.
2) These parameters are not tested. They are guaranteed by design characterization.
3) Float condition occurs when maximum output current becomes less than Ijin magnitude. Float is not 100% tested.
4) These following inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for

testing purposes, to assure recognition within a specific CLK2 period.

5) Not 100% tested.
6) SUSPA# floats only in response to activation of FLT#. SUSPA# does not fioat during a hold-acknowledge state.
7) Delay time from setting CKD in CCRO to entering clock-doubled mode.

5-24

AC Characteristics

5.5.3.3 AC Data for 5-Volt Microprocessors

O Table 5-22 covers the 5-V 40, 20 MHz TI486SXLC-040.

(O Table 5-23 on page 5-26 covers the 5-V 50 MHz TI486SXLC2-050.
[Table 5-24 on page 5-27 covers the 5-V 40, 20 MHz TI1486SXL-040.
[Table 5-25 on page 5-28 covers the 5-V 50 MHz TI486SXL2-050

Table 5-22. AC Characteristics for TI486SXLC-040, Voo =4.756 V1o 5.25 'V,
Tc =0to 100°C

TI486SXL.C-040 y
SYMBOL PARAMETER UNIT | FIGURE NOTES
MIN MAX
CLK2 clock-doubled frequency range 32 40 MHz
T CLK2 period 12.5 5-4 Note 1
T2a CLK2 high time 5 5-4 Note 2
T2b CLK2 high time 3.25 5-4 Note 2
T3a CLK2 low time 5 ns |54 Note 2
T3b CLK2 low time 3.25 5-4 Note 2
T4 CLK2 fall time 4 5-4 Note 2
T5 CLK2 rise time 4 5-4 Note 2
T6 A23-A1 valid delay 3 12.5 5-7,5-10 | CL =50pF
T6a SMI# valid delay 3 12.5 ns |57,510 |C|L=50pF
T7 A23-A1 float delay 3 17 5-10 Note 3
T8 BHE#, BLE#, LOCK# valid delay 3 12.5 ns 5-7,5-10 | CL=50pF
T9 BHE#, BLE#, LOCK# float delay 3 17 5-10 Note 3
T10 ADS#, D/C#, M/IO#, W/R# valid delay 3 12, 5-7,5-10 {CpL =50pF
T10a | SMADS# valid delay 3 éﬁ@* nS 157,510 |CL =50pF
T11 | ADS#, D/C#, M/IO#, W/R# float delay 3wk 17 | o [510 Note 3
T11la | SMADS# float delay ‘z@g@’ 17 5-10 Note 3
T12 D15-DO0 write data, SUSPA# valid delay é‘ 20 5-7,5-8 CL =50pF,
T12a | D15-DO0 write data hold time) ns |59 Note 5
T13 D15-D0 write data, SUSPA# float delay 3 145 5-10 Notes 3, 6
T14 HDLA valid delay 3 17 ns |5-10 CL=50pF
T15 NA#, SUSP#, FLUSH#, KEN#, A20M# setup time 5 ns 5-6
T16 NA#, SUSP#, FLUSH#, KEN#, A20M# hold time 2 5-6
T19 READY# setup time 5 ns 5-6
T20 READY# hold time 3 5-6
T21 D15-D0 read data setup time 5 ns 5-6
T22 D15~D0 read data hold time 3 5-6
T23 HOLD setup time 4 ns 5-6
T24 HOLD hold time 2 5-6
T25 RESET setup time 4.5 ns 5-5
T26 RESET hold time 2 5-5 Note 5
T27 NMI, INTR setup time 5 5-6 Note 4
T27a | SMI# setup time 5 ns 5-6 Note 4
T28 NMI, INTR hold time 5 5-6 Note 4
T28a | SMI# hold time 5 5-6 Note 4
T29 PEREQ, ERROR#, BUSY# setup time 5 ns 5-6 Note 4
T30 PEREQ, ERROR#, BUSY# hold time 3 5-6 Note 4
T31 Clock-doubled PLL lock time 20 us Note 7

Notes: 1) Input clock can be stopped, therefore minimum CLK2 frequency is 0 MHz.
2) These parameters are not tested. They are guaranteed by design characterization.
3) Float condition occurs when maximum output current becomes less than 1| in magnitude. Float is not 100% tested.
4) These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing pur-

poses, to assure recognition within a specific CLK2 period.

5) Not 100% tested.
6) SUSPA# floats only in response to activation of FLT#. SUSPA# does not float during a hold acknowledge state.
7) Delay time from setting CKD in CCRO to entering clock-doubled mode.

ADVANCE INFORMATION concerns new products in the sampling or
preproduction phase of development. Characteristic data and other
specifications are subject to change without notice.

Electrical Specifications 5-25

AC Characteristics

Table 5-23. AC Characteristics for TI486SXLC2-050, Voo =4.75Vto 525V

Tc = 0to 100°C

TI486SXLC2-050
SYMBOL PARAMETER WIN A UNIT FIGURE NOTES
CLK2 clock-doubled frequency range 32 50 MHz
T CLK2 period 20 5-4 Note 1
T2a CLK2 high time 7 5-4 Note 2
T2b CLK2 high time 4 5-4 Note 2
T3a CLK2 low time 7 ns 5-4 Note 2
T3b CLK2 low time 5 5-4 Note 2
T4 CLK2 fall time 7 5-4 Note 2
T5 CLK2 rise time 7 5-4 Note 2
T6 A23-A1 valid delay 4 21 5-7,5-10 | CL=50pF
Téa SMiI# valid delay 4 30 ns 5-7,5-10 | C=50pF
T7 A23-Af1 float delay 4 30 5-10 Note 3
T8 BHE#, BLE#, LOCK# valid delay 4 21 ns 5-7,5-10 | Cp =50pF
T9 BHE#, BLE#, LOCK# float delay 4 30 5-10 Note 3
T10 ADS#, D/C#, M/IO#, W/R# valid delay 4 21 N n 5-7,5-10 | CL=50pF
T10a | SMADS# valid delay 4 |c&ay S 157,510 |c =50pF
+& L
T ADS#, D/C#, M/10#, W/R# float delay 4%@’ @%’*30 5-10 Note 3 .
Ti1a | SMADS# float delay &4 30 S 1510 Note 3
T12 D15-D0 write data, SUSPA# valid delay %? 27 5-7,5-8 CL =50 pF,
T12a | D15-DO0 write data hold time \2 ns 5-9 Note 5
T13 D15-DO0 write data, SUSPA# float delay 4 22 5-10 Notes 3, 6
T14 | HDLA valid delay 4 22 ns |5-10 CL =50pF
T15 NA#, SUSP#, FLUSH#, KEN#, A20M# setup time 5 ns 5-6
T16 NA#, SUSP#, FLUSH#, KEN#, A20M# hold time 3 5-6
T19 READY# setup time 9 ns 5-6
T20 READY# hold time 4 5-6
T21 D15-D0 read data setup time 7 ns 5-6
T22 D15-D0 read data hold time 5 5-6
T23 HOLD setup time 9 ns 5-6
T24 HOLD hold time 3 5-6
T25 RESET setup time 8 ns 5-5
T26 RESET hold time 3 5-5 Note 5
T27 NMI, INTR setup time 6 5-6 Note 4
T27a | SMI# setup time 6 5-6 Note 4
T28 | NMI, INTR hold time 6 NS |56 Note 4
T28a | SMi# hold time 6 5-6 Note 4
T29 PEREQ, ERROR#, BUSYi# setup time 6 ns 5-6 Note 4
T30 PEREQ, ERROR#, BUSY# hold time 5 5-6 Note 4
T31 Clock-doubled PLL lock time 20 us Note 7

Notes: - 1) Input clock can be stopped, therefore minimum CLK2 frequency is 0 MHz.

2) These parameters are not tested. They are guaranteed by design characterization.
3) Float condition occurs when maximum output current becomes less than I} in magnitude. Float is not 100% tested.
4) These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing pur-
poses, to assure recognition within a specific CLK2 period.
5) Not 100% tested.
6) SUSPA# floats only in response to activation of FLT#. SUSPA# does not float during a hold acknowledge state.
7) Delay time from setting CKD in CCRO to entering clock-doubled mode.

5-26

AC Characteristics

Table 5-24. AC Characteristics for TI486SXL-040, VCC =4.75V 10 5.25V,

(for Tc see Table 5-6)

SYM- TI486SXL-040
PARAMETER UNIT | FIGURE NOTES
BOL MIN MAX
CLK2 clock-doubled frequency range 32 40 MHz
T CLK2 period 125 5-4 Note 1
T2a CLK2 high time 5 5-4 Note 2
T2b CLK2 high time 3.25 5-4 Note 2
T3a CLK2 low time 5 ns |54 Note 2
T3b CLK2 low time 3.25 5-4 Note 2
T4 CLK?2 fall time 4 5-4 Note 2
T5 CLK2 rise time 4 5-4 Note 2
T6 A31-A2 valid delay 3 12.5 5-12,5-15 | C|_ = 50 pF
T6a SMI# valid delay 3 12.5 ns }5-12,5-15 | C| =50 pF
T7 A31-A2 float delay 3 17 5-15 Note 3
T8 BE3# — BEO#, LOCK# valid delay 3 12.5 ns 5-12,5-15 | C =50 pF
T9 BE3# — BEO#, LOCK# float delay 3 17 5-15 Note 3
T10 ADS#, D/C#, M/IO#, W/R# valid delay 3 12.5 n 5-12,5-15 | Cp = 50 pF
T10a | SMADSH# valid delay 3 12.5 S 15-12,5-15 CL =50pF
T11 ADS#, D/C#, M/IO#, W/R# float delay 3 17 n 5-15 Note 3
T11a | SMADSH# float delay 3 17 S |5-15 Note 3
T12 D31-D0 write data, SUSPA# valid delay 5 V@% 5-12,5-13 | C =50 pF,
T12a | D31-DO write data hold time 285> ns 514 Note 5
T13 D31-DO0 write data, SUSPA# float delay m@ P 14.5 5-15 Notes 3, 6
T14 HDLA valid delay 8 17 ns |5-15 CL =50pF
T15 A20M#, FLUSH#, KEN#, NA#, SUSP# setup time ~5 ns 5-11
T16 A20M#, FLUSH#, KEN#, NA#, SUSP# hold time 2 5-11
T17 BS16# setup time 5 ns 5-11
T18 BS16# hold time 2 5-11
T19 READY# setup time 5 ns 5-11
T20 READY# hold time 3 5-11
T21 D31-DO0 read data setup time 5 ns |3M
T22 D31-D0 read data hold time 3 5-11
T23 HOLD setup time 4 ns |5 M
T24 HOLD hold time 2 5-11
T25 RESET setup time 4.5 ns 5-4
T26 RESET hold time 2 5-4 Note 5
T27 NMI, INTR setup time 5 5-10 Note 4
T27a | SMi# setup time 5 ns 5-10 Note 4
T28 NMI, INTR hold time 5 5-10 Note 4
T28a | SMI# hold time 5 5-10 Note 4
T29 PEREQ, ERROR#, BUSY# setup time 5 ns 5-10 Note 4
T30 PEREQ, ERROR#, BUSY# hold time 3 5-10 Note 4
T31 Clock-doubled PLL lock time 20 us Note 7
Notes: 1) Input clock can be stopped, therefore minimum CLK2 frequency is 0 MHz.

2) These parameters are not tested. They are guaranteed by design characterization.

3) Float condition occurs when maximum output current becomes less than I in magnitude. Float is not 100% tested.

4) These following inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for
testing purposes, to assure recognition within a specific CLK2 period.

5) Not 100% tested.

6) SUSPA# floats only in response to activation of FLT#. SUSPA# does not float during a hold-acknowledge state.

7) Delay time from setting CKD in CCRO to entering clock-doubled mode.

Electrical Specifications 5-27

AC Characteristics

Table 5-25. AC Characteristics for TI486SXL2-050, Voc =4.75 V10525V,
(for T¢ see Table 5-6)

TI486SXL2-050
SYMBOL PARAMETER N AX UNIT | FIGURE NOTES
CLK2 clock-doubled frequency range 32 50 MHz
T1 CLK2 period 20 5-4 Note 1
T2a CLK2 high time 7 5-4 Note 2
T2b CLK2 high time 4 5-4 Note 2
T3a CLK2 low time 7 ns |54 Note 2
T3b CLK2 low time 5 5-4 Note 2
T4 CLK2 fall time 7 5-4 Note 2
T5 CLK2 rise time 7 5-4 Note 2
T6 A31-A2 valid delay 3 21 5-12,5-15 | CL =50 pF
Téa SMI# valid delay 3 30 ns |5-12,5-15 | C_=50pF
T7 A31-A2 float delay 4 30 5-15 Note 3
T8 BES3# — BEO#, LOCK# valid delay 25 18 ns 5-12,5-15 | C|_ = 50 pF
T9 BE3# — BEO#, LOCK# float delay 4 30 5-15 Note 3
T10 ADS#, D/C#, WIO#, W/R# valid delay 4 19 ns 5-12,5-15 | C|. = 50 pF
T10a | SMADS# valid delay 4 l¢ 9 5-12,5-15 | C| = 50 pF
T11 | ADS#, D/C#, M/IO#, W/R# float delay 4 @@‘ 30 5-15 Note 3
Ti1a | SMADS# float delay B 0 | ™ |55 Note 3
Ti2 | D31-DO write data, SUSPA# valid delay %ﬁ"” 27 5-12, 5-13 | C|_ = 50 pF,
T12a | D31-DO write data hold time w2 ns |5-14 Note 5
T13 D31-D0 write data, SUSPA# float delay 4 22 5-15 Notes 3, 6
T14 HDLA valid delay 2 22 ns |]5-15 Cp =50 pF
T15 A20M#, FLUSH#, KEN#, NA#, SUSP# setup time : 5 ns 5-11
T16 A20M#, FLUSH#, KEN#, NA#, SUSP# hold time 3.5 5-11
T17 BS16# setup time 7 ns 5-11
T18 BS16# hold time 2 5-11
T19 READY# setup time 9 ns 5-11
T20 READY# hold time 4 5-11
T21 D31-D0 read data setup time 7 ns 5-11
T22 D31-DO0 read data hold time 5 5-11
T23 HOLD setup time 9 ns 5-11
T24 HOLD hold time 3.5 5-11
T25 RESET setup time 8 ns 5-4
T26 RESET hold time 3 5-4 Note 5
T27 NMI, INTR setup time 6 5-10 Note 4
T27a | SMI# setup time 6 ns 5-10 Note 4
T28 NMI, INTR hold time 6 5-10 Note 4
T28a | SMI# hold time 6 5-10 Note 4
T29 PEREQ, ERROR#, BUSY# setup time 6 ns 5-10 Note 4
T30 PEREQ, ERROR#, BUSY# hold time 5 5-10 Note 4
T31 Clock-doubled PLL lock time 20 us Note 7

Notes: 1) Input clock can be stopped, therefore minimum CLK2 frequency is 0 MHz.
2) These parameters are not tested. They are guaranteed by design characterization.
3) Float condition occurs when maximum output current becomes less than || in magnitude. Float is not 100% tested.
4) These following inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for

testing purposes, to assure recognition within a specific CLK2 period.

5) Not 100% tested. .
6) SUSPA# floats only in response to activation of FLT#. SUSPA# does not float during a hold-acknowledge state.
7) Delay time from setting CKD in CCRO to entering clock-doubled mode. -

5-28

AC Characteristics

5.5.4 RESET Setup and Hold Timing

RESET setup and hold timing for the TI1486SXL(C) family of microprocessors
are illustrated in Figure 5-5.

Figure 5-5. RESET Setup and Hold Timing

45— Reset pi¢ Initialization Sequence {5

)

| ¢lor¢2 ’I ¢1or ¢2 I $2 | &1 I

4 } | | I
_Sr) |
RESET | \[\%

{
T26 —ﬂ—ﬂ =
5.5.5 TI486SXLC Switching Waveforms

Switching waveforms for the TI486SXLC microprocessors are illustrated in

Figure 5-6, Figure 5-7, Figure 5-8, Figure 5-9, and Figure 5-10 on pages
5-29 through 5-31.

Figure 5—6. TI486SXLC Input Signal Setup and Hold Timing

Tx T by
[$2 | 1 | ¢2 | 4 |
| | ' ' I
CLK2 _/W_/
| F T19 ———»H—~ T20 ———P' ' | |
o TIK U
}1— T23 —+— T4 —>| |
HOLD // m W
=1—— T21 —+— T22 ————>| |
D15-D0 / / /ﬁ(W/ h
11— T29—J<— T30 ——>| :
PEREQ, ERFORY. / / / ﬁ(| W
I 4— T15—>H— T16 —>|
Sy 7 //ﬁ(W// L
A0M# 4271272 41— T28,728a +|

77X X7

ADVANCE INFORMATION concerns new Rroducis in the sampling or
preproduction phase of development. Characteristic data and other
specifications are subject to change without notice.

Electrical Specfications 5-29

AC Characteristics

Figure 5-7. TI486SXLC Output Signal Valid Delay Timing
Tx Tx

| Te —L—"m——'—’l i |
Lz%% Validn W//////@(Valid n+1
A23—A1, SMI# | Valid n WMI/}/////////////%Ma);alid n+1
T12 —Q—H—~——————>l

| Min |Max

Figure 5-8. TI486SXLC Data Write Cycle Valid Delay Timing

T1
I ¢1 $2 | &1

|
| | |
CLK2
| | |

|
|
W/R# / I | |
el \ "
T2 { Min | Max
|
|

DI5-D0 —esisme e I——W /X Valid

5-30

AC Characteristics

Figure 5-9. TI486SXLC Data Write Cycle Hold Timing

’ &1 I ¢2 I o1

1 |
oL _/—_/__/__
| 1
|
|

W/R#

D15-D0 Valid n W Valid n+1

<
g

Figure 5-10. TI486SXLC Output Signal Float Delay and HLDA Valid

Delay Timing
| 02 i o1 T 2 l: 1 e 2 |
ae LN NS S S S
| To ——h—b}m————}—bi Max T8 ‘lf_’:w—i_jyax |
N, S - ———1-mnk
T11,T11a—"—’:—MiT_‘—L"‘ T10,T10a _H—i_dl Max
\/I/IO/:#I,DSSJASI\):/CS;% Y) ////ﬁ_ —-—T_W/////////%
T % Te —l‘—"——"—"

A23-A1 Y/////////////ﬁ————-'——@//////////%

‘—h—pl———»l
T13 IMax 11277 ' Max

T
X%%%%V -———4%%%%%K

T14 —‘—J———ﬂ

Y s | |

D15-D0 (Write |
Data), SUSPA#

=

5
=
o

<

T14

Electrical Specifications 5-31

AC Characteristics

5.5.6 TI486SXL Switching Waveforms

Switching waveforms for the TI486SXL microprocessors are illustrated in
Figure 5-11, Figure 5-12, Figure 5-13, Figure 5-14, and Figure 5-15 on
pages 5-32 through 5-34.

Figure 5—11. TI486SXL Input Signal Setup and Hold Timing

Tx Tx Tx
I ¢2 | &1 I $2 | ¢1 l

| | I | |
| |
e T19 -—>|<——J T20 —» | | |

READY# /// ///% W//A

l— Tzs—*- To4 ——»}

o JK X

l— 121 —Pe—T220 —»!

le— T29——+— T30 —P{

PEREQ, ERFORY, 7////% | W/

& Ti5 T32 -b}d— T16, T33 —D:

1
]|<— T 7—44*' T18 —»:

I T27,727a —bp—' To8 T28a P
1

NMI, INTR, SM# / ////@(W//// 7

5-32

AC Characteristics

Figure 5-12. TI486SXL Output Signal Valid Delay Timing

Tx , Tx Tx
} 92 ; 91 ; ¢2 : o1 :
| | ! y | |
‘ | | Min
BEsnlt_—oBCE}(gz Valid n W/////// m(Valid n+1
T10
M/IO@?S&A%%% Valid n >|é/ // %// %; 7 Valid n+1
T6,T6a —e—!
A31-A2, SMI# | Valid n >&//////////%< Valid n+1
T12

| Min Max

SusPA# Validn W//// 7K vaiana

Figure 5-13. TI486SXL Data Write Cycle Valid Delay Timing
T

I o1 | ¢2 | &1
CLK2 W
| ! | |
W/R# J #E l l
T2 W’: Max
D31-D0 ——————————— {——W Valid

Electrical Specifications 5-33

AC Characteriétics

Figure 5-14. TI486SXL Data Write Cycle Hold Timing

: o1 I $2 | ¢1
I

W/R# l:\ . Valid n+1

Figure 5-15. TI1486SXL Output Signal Float Delay and HLDA Valid Delay Timing
| I

| 2 | o1 TIh $2 ! ¢1 T cIr m 2 I
{ T9 ‘F’:W—H Max 8 Jﬂ_’rw_—-{_—’: Max |
oy 0000———+=0A
T11,T11a+"",\,|_m—_|“"l 10,7102 _“"'—_J_" | Max
WIOH, SADSH, Y////////////ﬁ-—-—ﬂ-—(////////////////ﬁ
WI/R# T7 —'Q—N————I—DI T6 —h—f‘———lﬂ
A31-A2 Y//////////ﬁ————+-W//////ﬂ////A
D31-D0 : e —h—’l_——" I e
(Wite Data), I Y/////////ﬂ/)-————-(///////////%(
T14 —I‘—'I————"M T14 “__’l_—”

Vo |,

5-34

Chapter 6

Mechanical Specifications

Mechanical specifications include pin assignments, package dimensions, and
thermal characteristics for each of the TI486SXL(C) microprocessors.

The TI486SXL(C) microprocessors are supplied in the following packages:
[d 100-pin, thermally enhanced plastic quad flat package’

[132-pin, ceramic pin grid array package

O 144-pin, thermally enhanced plastic quad flat package

[0 144-pin, ceramic quad flat package

[J 168-pin, ceramic pin grid array package

Pin assignments provide both a pin locator drawing and two pin listings. One
pin listing is alphabetically by pin name and the other is (alpha)numerically by
pin number.

A pinout cross-reference, comparing industry-standard 486SX pinouts, is sup-
plied for the 168-pin package at the end of the pin-assignment data.

Industry-standard dimensioned drawings are supplied for each package.

Thermal characteristics are supplied on each package that includes airflow
measurement setup data for correlation purposes.

Topic Page

6-1

Terminal Assignments

6.1 Terminal Assignments

The terminal assignments for the TI486SXLC microprocessors are shown in
Figure 6—1. The signal names are shown in Table 6—1 sorted by terminal num-
bers and in Table 6-2 sorted by signal names.

Figure 6—1. TI486SXLC Terminal Assignments

[so B> Yol
[aYa)a]
<ou><r
[N e > e}

100 |—T—> D1

99— D2

98— 1T Vgg
97 —/—— V¢
93 |—/—T— 1 D6

92 |F—r— b7

9 —1 > V¢
90 —r—> psg

89 I—T D D9

88 |—T—> D10
87 —1T— D11
86 —I—> D12
85 —T—> Vgg
84 |—1—> Voo
83 (I—T— D13
82 I—1—7D D14
81 —1—> D15
80— A23
79 =——/T—"D A22
78 |—T—> Vsg
77 [E——> Vss
76 I——T— A21

DO 1 O'\ 75 l—1—> A20
Vss g 2 Terminal # 1 Index Mark 74 —1—D Al9
HLDA <T—1T—}|3 (On Top Side) 73 —T—D Ai8
HOLDT—T—1 4 72 E—1—> A17
Vessa—T1—1 5 71 —1—> Vgo
NA#<T—T 16 70 —T—> A16
READY# ——T —1 7 69 —T 1 Voo
Veca—T— 8 68 [—I—> Vss
Veca—T— 9 67 —T—> Vss
Voo <—— 10 66 ||——> A15
Ves c——l 11 65 I—1—> A14
Vs a—1— 12 (Top View) 64 [—T—> A13
Vgs a—1—1 13 63 f—T—> Vgg
Vgs a—1— 14 62 [——> A12
CLK2 T—T—H 15 61 —T—> A1
ADS#<CT—T—] 16 60 ——> A10
BLE# T—T—1 17 59 —T—> A9
A a—T—] 18 58 —1—> A8
BHE# <—1T—} 19 57 —1—> Vgo¢
SMADS#<T—T | 20 56 —1—> A7
Voo «—— 21 55 —T—> As6
Veggs a—T— 2o 54 —T—> A5
M/IO# <—T—1 23 53 —1I—> A4
D/C# <T—T— 24 52 —1—> A3
W/R# T—T— 25 51 |—T—™ A2

LOCK# —1— 26
NC «—1— 27
FLT# T—1—} 28
KEN# <T—T— 29
FLUSH# T—T—} 30
A20M# T T4 31
Vec ——T— 32
RESET <—T—| 33
BUSY# T T} 34
Vggs—1T—1 35
ERROR# T—1T—}| 36
PEREQ T—1—}| 37
NMI <—1—}| 38
Vo «—1—| 39
INTR T—T—%} 40
Vgg T—1T | M1
Vee «——T—4| 42
SUSP# T—1T— 43
SUSPA# T—1T—} 44
NC a—1— 45

NC ——1—1 46
SMi# T 47
Voo «——}| 48
Vgg <—1T— 49
Vgg <——1T—| 50

NC — Make no external connection

Note: NC Terminals

Connecting or terminating (high or iow) any NC terminal(s) may cause un-
predictable results or nonperformance of the microprocessor.

6-2°

Terminal Assignments

Table 6—1. TI486SXLC Signal Names Sorted by Terminal Number

Term. Signal Term. Signal Term. Signal Term. Signal Term. Signal
No. Name No. Name No. Name No. Name No. Name
1 DO 21 Voo 41 Vss 61 A1 81 D15
2 Vss 22 Vss 42 Vce 62 A12 82 D14
3 HLDA 23 M/AO# 43 SUSP# 63 Vgs 83 D13
4 HOLD 24 D/C# 44 SUSPA# 64 A13 84 Vce
5 Vss 25 W/R# 45 NC 65 A14 85 Vss
6 NA# 26 LOCK# 46 NC 66 A15 86 D12
7 READY# 27 NC 47 SMi# 67 Vgs 87 D11
8 vVee 28 FLT# 48 Vce 68 Vss 88 D10
9 Vce 29 KEN# 49 Vgs 69 Vee 89 D9
10 Vco 30 FLUSH# 50 Vss 70 A16 90 D8
11 Vss 31 A20M# 51 A2 71 Vee 91 Vee
12 Vss 32 Vee 52 A3 72 Al17 92 D7
13 Vss 33 RESET 53 A4 73 A18 93 D6
14 Vss 34 BUSY# 54 A5 74 A19 94 D5
15 CLK2 35 Vss 55 A6 75 A20 95 D4
16 ADS# 36 ERROR# 56 A7 76 A21 96 D3
17 BLE# 37 PEREQ 57 . Vee 77 Vss 97 vee
18 Al 38 NMI 58 A8 78 Vss 98 Vss
19 BHE# 39 vee 59 A9 79 A22 99 D2
20 SMADS# 40 INTR 60 A10 80 A23 100 D1
Table 6-2. TI486SXLC Terminal Numbers Sorted by Signal Name
Signal Term. Signal Term. | Signal Term. | Signal Term. Signal Term.
Name No. Name No. Name No. Name No. Name No.
Al 18 A21 76 D11 87 PEREQ 37 Vee 97
A2 51 A22 79 D12 86 READY# 7 Vss 2
A3 52 A23 80 D13 83 RESET 33 Vss 5
A4 53 ADS# 16 D14 82 SMADS# 20 Vss 11
A5 54 A20M# 31 b15 81 SMi# 47 Vgs 12
A6 55 BHE# 19 D/C# 24 SUSP# 43 Vss 13
A7 56 BLE# 17 ERROR# 36 SUSPA# 44 Vss 14
A8 58 BUSY# 34 FLT# 28 Vee 8 Vss 22
A9 59 CLK2 15 FLUSH# 30 Vce 9 Vss 35
A10 60 Do 1 HOLD 4 Vee 10 Vss 41
Al 61 D1 100 HLDA 3 Vce 21 Vss 49
Al12 62 D2 99 INTR 40 Vce 32 Vss 50
A13 64 D3 96 KEN# 29 Voo 39 Vgs 63
Al4 65 D4 95 LOCK# 26 Vce 42 Vss 67
Al15 66 D5 94 M/IO# 23 Vce 48 Vgs 68
A16 70 D6 93 NA# 6 Vce 57 Vss 77
A17 72 D7 92 NMI 38 Vce 69 Vss 78
A18 73 D8 90 NC 27 vVce 71 Vss 85
A19 74 D9 89 NC 45 Vce 84 Vss 98
A20 75 D10 88 NC 46 Vee 91 W/R# 25
NC — Make no external connection
L

Note: NC Terminals

Connecting or terminating (high or low) any NC terminal(s) may cause un-
predictable results or nonperformance of the microprocessor.

Mechanical Specifications

6-3

Terminal Assignments

The terminal assignments for the 132-pin PGA TI486SXL microprocessors
are shown as viewed from the terminal side (bottom) in Figure 6—2 and as
viewed from the top side (component side when mounted on a PC board) in
Figure 6-3. The signal names are listed in Table 6—3 and Table 6—4 sorted by
terminal number and signal name respectively.

Figure 6-2. 132-Pin PGA TI486SXL Package Terminals (Bottom View)

i

10

1

12

13

14

Terminal # 1 Index Mark
(On Top Side)

Cc D E F G H J K L

(DEEEEEEEEEEE

(6100000000000

G EEEE EEE EE
D@ EEEEE

TI486SXL
(Bottom View)

BEO#

READY#

OOOOOOOOOOEO®

O®E

BS1

OOOOOOOOOOOE
OOOEO®OO®EOG®E
0/0/010/0/0/0/6/0/0/00/0/03k
(OOOOOEOOOO®O®® -

OO®
HO®
OO®
000
O@OE
000
000

NC — Make no external connection

Terminal Assignments

Figure 6-3. 132-Pin PGA TI486SXL Package Terminals (Top View)

Terminal # 1 Index Mark
(On Top Side)
P N M L K J H G F E D (o]

(D@ E@EEEEEEE0E)
D HEHEEEE O
G HEEEEEEEE O
(=)=)
(=)
(=)
()

&)
000

() s
(@)

(Top View) @
BS16# @

BEO#

READY#

©
HOOOOOOOOODOO@EH

OOOOOOOOOOOHEE)

®

®

®
HEE
Q00
Q.00
000
OO®
HO®
OO®
900

ERROR#

10

1

12

13

14

N\

NC — Make no external connection

Note: NC Terminals

Connecting or terminating (high or low) any NC terminal(s) may cause un-

predictable results or nonperformance of the microprocessor.
L

Mechanical Specifications

6-5

Terminal Assignments

Table 6-3. 132-Pin PGA TI486SXL Signal Names Sorted by Terminal Number

Term. Signal Term. Signal Term. Signal Term. Signal | Term. Signal | Term. Signal
No. Name No. Name No. Name No. Name No. Name No. Name
Al Vee B9 BUSY# D3 A9 H1 A17 L13 D8 N7 Vee
A2 Vss B10 W/R# D12 Vge H2 A18 L14 D6 N8 D23
A3 A3 B11 Vgs D13 NA# H3 A19 M1 A26 N9 D21
A4 SUSP# B12 KEN# D14 HOLD H12 DO M2 A29 N10 D17
A5 Vee B13 BE2# E1 A4 H13 D1 M3 Vee N11 D16
A6 Vgs B14 Vgg E2 A13 H14 D2 M4 Vss N12 D12
A7 Vee C1 A8 E3 Al2 J1 A20 M5 D31 N13 D11
A8 ERROR# C2 A7 E12 BEO# J2 Vss M6 D28 Ni4 D9
A9 Vss C3 A6 E13 FLUSH# | J3 Vss M7 Voo P1 A30
A10 Vee C4 A2 E14 ADS# J12 Vss M8 Vss P2 Vee
A1l D/C# C5 Vgo F1 A15 Ji3 Vss M9 D20 P3 D30
Al12 M/I0# C6 SMADS# F2 Vss J14 D3 M10 Vgsg P4 D29
A13 BE3# C7 SMi# F3 Vss K1 A21 M1 D15 P5 D26
At4 Voo C8 PEREQ F12 CLK2 K2 A22 Mi2 D10 P6 Vss
B1 Vgs Co RESET F13 A20M# K3 A25 M13 Vce P7 D24
B2 A5 C10 LOCK# F14 Vgs K12 D7 M14 HLDA P8 Vce
B3 A4 Ci1 Vgsg G1 A16 K13 D5 N1 A27 P9 D22
B4 SUSPA# Ci12 Vce G2 Vce K14 D4 N2 A31 P10 D19
B5 Vgs C13 BE1# G3 Vee L1 A23 N3 Vss P11 D18
B6 NC C14 BS16# Gi12 Voo L2 A24 N4 Vee P12 D14
B7 INTR D1 A1l G13 READY# | L3 A28 N5 D27 P13 D13
B8 NMI D2 A10 Gi4 Voo L12 Vee N6 D25 P14 Vgsg

Table 6—4. 132-Pin PGA TI486SXL Terminal Numbers Sorted by Signal Name
Signal Term. | Signal Term. | Sig- Term. | Signal Term. | Signal Term. | Signal Term.
Name No. Name No. nal No. Name No. Name No. Name No.
Name

A2 C4 A23 L1 D4 K14 | D26 P5 SUSP# A4 Vss A2

A3 A3 A24 L2 D5 K13 | b27 N5 SUSPA# B4 Vgg A6

A4 B3 A25 K3 D6 L14 | D28 Mé Vee At Vss A9

A5 B2 A26 M1 D7 K12 | D29 P4 Vce A5 Vgg B1

A6 C3 A27 N1 D8 L13 | D30 P3 Vece A7 Vss B5

A7 c2 A28 L3 D9 Ni4 | D31 M5 Vece A10 Vss B11

A8 C1 A29 M2 D10 M12 | ERROR# A8 Vce Al4 Vss B14

A9 D3 A30 P1 D11 N13 | FLUSH# E13 | Vce C5 Vss C11

A10 D2 A31 N2 D12 N12 | HLDA M14 | Voo c12 Vgs F2

A1 D1 ADS# E14 D13 P13 | HOLD D14 | Voe D12 Vss F3

A12 E3 BEO# E12 D14 P12 | INTR B7 vece G2 Vss F14

A13 E2 BE1# Ci3 D15 M11 KEN# B12 | Vce G3 Vss J2

Al4 E1 BE2# B13 D16 N11 LOCK# C10 | Vce G12 Vgs J3

A15 F1 BE3# A13 D17 N10 | M/IO# A12 | Voo G14 Vgs Ji12

A16 Gi BS16# C14 D18 P11 NA# D13 | Vce L12 Vgs J13

A17 H1 BUSY# B9 D19 P10 | NMI B8 vee M3 Vss M4

A18 H2 CLK2 F12 b20 M9 NC B6 Vee M7 Vss M8

A19 H3 D/C# A1 D21 N9 PEREQ Cc8 Vce M13 Vgs M10

A20 J1 DO H12 D22 P9 READY# Gi13 | Vce N4 Vss N3

A20M# F13 D1 H13 D23 N8 RESET Cc9 vVee N7 Vss P6

A21 K1 D2 H14 D24 P7 SMi# c7 Vce P2 Vss P14

A22 K2 D3 J14 D25 N6 SMADS# C6 Vee P8 W/R# B10

NC — Make no external connection

Note:

NC Terminals

Connecting or terminating (high or low) any NC terminal(s) may cause un-
predictable results or nonperformance of the microprocessor.

—_

Terminal Assignments

The terminal assignments for the 144-pin, QFP TI486SXL microprocessors
are shown as viewed from the top side (component side when mounted on a
PC board) in Figure 6-4. The signal names are listed in Table 6-5 and
Table 6-6 sorted by terminal number and signal name, respectively.

Figure 6—4. 144-Pin QFP TI486SXL Package Terminals (Top View)

A20 =
A21 —
VsS —j
VsS]
A22 —]
A23]
BS16# —]
D15 —
D14 —j
D13 —=]]
Vee =
Vss
D19 =}
D18
D17 ==
D16 —=)
Vee =
Vss o=
D12 =]
D11]
D10 ——j
D9 —mj
D8 —]
VCC =}
D7 =]
D6 —=}
D5 —]]
D4 —]
D3 —m
NC —]
Vee —
Vss —=]
D27 =]
D26 —}
D2]
D1 —=

moNQo Qo—am Owwmvmwowro Qouoor~ N
2O ORARROUB 22 BoT T 2220888580 en oy
™
ONONITOANTTONONOUTOAT—TODDONOUTONAT—TOOONONT M
109 72| p—= Vss
110 71 | F—= NC
11 70 | f—= Vss
a 2) \\;SS
113 68 cc
114 67 | b= sMi#
Hg 66 | fr— MEMW#
65 | f—
117 64 | F—= SUSPA#
118 63 | L—— SUSP#
119 62 | f— Vcc
120 61| k= A24
121 60 | L— A25
122 59 | k— A26
123 58 | 027
124 57 SS
125 56 E ¥CC
126 55| f— V¢e
127 TI486SXL 54 | = vss
128 53 | f—= INTR
129 52 | f— Vgo
130 51 | f—= NMI
131 50 | p— PEREQ
132 49 | b— ERROR#
133 48 | b—= Vss
134 47 | = NCN¢est
135 46 | F— BUSY#
136 45 | F— RESET
137 44 | = Voo
138 43 | F—= A20M#
139 Terminal # 1 Index Mark 42| o= FLUSH#
140 . 41 | f——= KEN#
141 (On Top Side) 40 | = FLT#
142 39 | f— NC
143 38 | F— LOCK#
144, 37 | = W/R#
Ot onoe e TN IRERP2RLARILLNIISHIIINS)
OU><H0 O<Qm##owooFoomwwmwwwN####o#%w###
Noo_l <>—QNNmmoowmwwwmwxwoFmonwggg
DO>§2 Z%>ODDD>>>>>>>>> dggg§>gg> Sos
as n

NC — Make no external connection
T This pin is Vs for the T1486SXL-G40 and TI486SXL2-G50. It is NC for all other devices.

Mechanical Specifications 6-7

Terminal Assignments

Table 6-5. 144-Pin QFP TI1486SXL Signal Names Sorted by Terminal Number

Term. Signal Term. Signal Term. Signal Term. Signal | Term. Signal Term. Signal
No. Name No. Name No. Name No. Name No. Name No. Name
1 DO 25 CLK2 49 ERROR#| 73 A2 97 Vss 121 D19
2 Vsg 26 ADS# 50 PEREQ 74 A3 98 Vco 122 D18
3 D24 27 BEO# 51 NMI 75 A4 99 D23 123 D17
4 D25 28 BE1# 52 Vgeo 76 A5 100 D22 124 D16
5 Vgo 29 SMADSH# 53 INTR 77 Ae 101 D21 125 Voo
6 HLDA 30 Vgo 54 Vgg 78 A7 102 D20 126 Vgs
7 HOLD 31 BE2# 55 Vgg 79 Vge 103 Vgo 127 D2
8 Vgs 32 BE3# 5% Vceo 80 Vsg 104 A16 128 D1
9 NA# 33 Vsg 57 Vssg 81 A3 105 Voo 129 D10
10 READY# | 34 M/IO# 58 A27 82 A30 106 Al17 130 D9
11 Voo 35 D/C# 59 A26 83 A29 107 A18 131 D8
12 D28 36 W/R# 60 A25 84 A28 108 A19 132 Vgo
13 D29 37 W/R# 61 A24 85 Vgeo 109 A20 133 D7
14 D30 38 LOCK# 62 Voo 86 A8 110 A21 134 D6
15 D31 33 NC 63 SUSP# 87 A9 11 Vsg 135 D5
16 Vgo 40 FLT# 64 SUSPA# | 88 A10 112 Vgg 136 D4
17 Vee 41 KEN# 65 NC 89 Af1 113 A22 137 D3
18 vgg 42 FLUSH# 66 MEMW# | 90 A12 114 A23 138 NC
19 vygg 43 A20M# 67 SMHi# 91 Vgo 115 BS16# 139 Vce
20 vgg 44 Nee 68 Voo 92 Vsg 116 D15 140 Vgs
21 vgg 45 RESET 69 Vgs 93 A3 117 D14 141 D27
22 vygg 46 BUSY# 70 Vss 94 Al4 118 D13 142 D26
23 vgg 47 NCNgest | 71 NC 95 A15 119 Voo 143 D2
24 vygg 48 Vgs 72 Vss 96 Vss 120 Vgg 144 D1

Table 6—6. 144-Pin QFP TI486SXL Terminal Numbers Sorted by Signal Name

Signal Term. | Signal Term. | Signal Term. | Signal Term. | Signal Term. | Signal Term.
Name No. | Name No. | Name No. | Name No. | Name No. | Name No.
A2 73 | A25 60 |D8 131 | ERROR# 49 |Vee 5 Vss 19
A3 74 | A26 59 | D9 130 | FLT# 40 Voo 1 Vss 20
A4 75 | A27 58 | D10 129 | FLUSH# 42 | Vce 16 |[Vss 21
A5 76 | A28 84 | DM 128 | HLDA 6 Voo 17 | Vss 22
A6 77 | A29 83 |D12 127 | HOLD 7 Vee 30 |Vss 23
A7 78 | A30 82 | D13 118 | INTR 53 | Voo 44 |Vsg 24
A8 86 | A3t 81 | D14 117 | KEN# 41 |Voe 52 |Vgs 33
A9 87 | ADS# 26 (D15 116 | LOCK# 38 |Vge 55 |Vss 48
A10 88 | BEO# 27 | D16 124 | M/IO# 34 |Vgoe 56 |Vss 54
A1 89 |BE1# 28 | D17 123 | MEMW# 66 |Vce 62 |Vss 57
A12 90 | BE2# 31 D18 122 | NA# 9 Voo 68 |Vss 69
A13 93 |BE3# 32 | D19 121 | NMI 51 Vee 79 |Vss 70
A14 94 | BSi6# 115 | D20 102 |NC 39 |Veoe 85 |Vsg 72
A15 95 | BUSY# 48 | D21 101 | NCNgcst 47 | Vece 91 Vss 80
A16 104 | CLK2 25 | D22 100 |NC 65 |Vco 98 |Vsg 92
A17 106 | D/C# 35 | D23 99 [NC 71 Vee 103 |Vss 96
A18 107 | DO 1 D24 3 NC 138 | Vceo 105 |Vgs 97
A19 108 (D1 144 | D25 4 PEREQ 50 |Vge 119 | Vgsg 111
A20 109 | D2 143 | D26 142 | READY# 10 | Vce 125 |Vss 112
A20M# 43 | D3 137 | D27 141 | RESET 45 | Voo 132 |Vss 120
A21 110 | D4 136 | D28 12 | SMi# 67 |Vce 139 |Vss 126
A22 113 |D5 135 | D29 13 | SMADS# 29 |Vss 2 Vss 140
A23 114 | D6 134 | D30 14 | SUSP# 63 |Vss 8 W/R# 36
A24 61 D7 133 | D31 15 | SUSPA# 64 |Vss 18 | WR# 37

NC — Make no external connection
* This pin is Voo for the TI486SXL-G40 and TI486SXL2-G50. It is NC for all other devices.

Note: NC Terminals

Connecting or terminating (high or low) any NC terminal(s) may cause un-
predictable results or nonperformance of the microprocessor.

6-8

Terminal Assignments

The terminal assignments for the 168-pin, PGA TI1486SXL microprocessors
are shown as viewed from the terminal side (bottom) in Figure 6-5 and as
viewed from the top side (component side when mounted on a PC board) in
Figure 6—6. The signal names are listed in Table 6—7 and Table 6—8 sorted by
terminal number and signal name, respectively. In addition, Table 6—-9 shows
a cross-reference between the 168-pin TI486SXL pinout and the 486SX pin-
out.

Figure 6-5. 168-Pin PGA TI486SXL Package Terminals (Bottom View)

Terminal # 1 Index Mark
(On Top Side)

—

(OEOEEEEEEEEEEE
000 00000000000
sg%%aa@a@aaaa@a

(=)
of (=))
of (=)o)

10

1

12

13

14

15

16

Res
erved

())(=)
(=)e0C)

TI1486SXL
(Bottom View)

9000000000

17

”@e@@e@@o@

NC — Make no external connection
1 This pin is Vg for the TI486SXL-G40 and TI486SXL2-G50. It is Vg for all other devices.

Mechanical Specifications

9

Terminal Assignments

Figure 6-6. 168-Pin PGA TI486SXL Package Terminals (Top View)

Terminal # 1 Index Mark
(On Top Side)

(DEEEEEEEEEEEE)
00000000000000
ggga@aaea@@eae

000
090

0@@@@@@@6666@@@66 °

TI486SXL
(Top View)

erved 10
11
12

13

14

15

16

17

0000000 00000000C;

000000060000000000))

coos
NC — Make no external connection

T This pin is VG5 for the TI486SXL-G40 and TI486SXL2-G50. It is VGG for all other devices.

Note: NC Terminals

Connecting or terminating (high or low) any NC terminal(s) may cause un-
predictable results or nonperformance of the microprocessor.

6-10

Terminal Assignments

Table 6—7. 168-Pin PGA TI486SXL Signal Names Sorted by Terminal Number

Term. Signal Term. Signal Term. Signal Term. Signal Term. Signal | Term. Signal
No. Name No. Name No. Name No. Name No. Name No. Name
Al D20 B12 SUSPA# D17 NC J15 BE2# P2 A29 R7 A15
A2 D22 B13 SMADS# E1 VSS J16 BE1# P3 A30 R8 Vce
A3 NC B14 NC E2 Vee J17 NC P15 HLDA R9 Vce
Ad D23 B15 NC E3 D10 K1 VSS P16 Vgo R10 Vcc
A5 NC B16 MEMW# E15 HOLD K2 Vee P17 VSS R11 Vce
A6 D24 B17 NC E16 - Vce K3 D14 Q1 A3l R12 A1l
A7 VSS C1 D11 E17 VSS K15 BEO# Q2 VSS R13 A8
A8 D29 c2 D18 F1 NC K16 Vgg Q3 A17 R14 Vge
A9 VSS C3 CLK2 F2 D8 K17 VSS Q4 A19 R15 A3

A10 Reserved C4 Voo F3 D15 L1 VSS Q5 A21 R16 NC
A1l VSS C5 Vgo F15 KEN# L2 D6 Q6 A4 R17 PEREQ
A12 ERROR# cé D27 F16 READY# L3 D7 Q7 A22 S1 A27
A13 NA# Cc7 D26 F17 BE3# L15 NC Q8 A20 S2 A2
A14 NC 07} D28 G1 VSS L16 Voo Q9 Ale S3 A28
A15 NMI C9 D30 G2 Vce L17 VSS Q10 A13 S4 BUSY#
A16 INTR C10 NC G3 D12 M1 VSS Qi1 A9 S5 Al4
A17 NC Ci11 FLT# G15 NC M2 Ve Q12 A5 S6 VSS
B1 D19 Ci2 NC G16- Vce M3 D4 Q13 A7 S7 A12
B2 D21 C13 SUSP# G17 VSS Mi15 D/C# Q14 A2 S8 VSS
B3 VSS Ci4 NC H1 VSS M16 Voo Q15 NC S9 VSS
B4 VSS C15 FLUSH# H2 D3 M17 VSS Q16 NC S10 VSS
B5 VSS C16 RESET H3 NC N1 D2 Q17 NC S11 VSS
B6 D25 C17 BSi6# H15 NC N2 D1 R1 A28 S12 VSS
B7 Vcec D1 D9 H16 Vce N3 NC R2 A25 S13 A10
B8 D31 D2 D13 H17 VSS N15 LOCK# R3 Vce S14 VSS
B9 Vce D3 D17 J1 Vee(st) N16 M/IO# R4 VSS S15 A6
B10 SMi# D15 A20M# J2 D5 N17 W/R# R5 A18 S16 A4
B11 Vge D16 NC J3 D16 P1 Do R6 Vce S17 ADS#

Table 6-8. 168-Pin PGA TI486SXL Terminal Numbers Sorted by Signal Name

Signal Term. | Signal Term. | Signal Term. | Signal Term. | Signal Term. | Signal Term.
Name No. | Name No. | Name No. | Name No. [Name No. | Name No.
A2 Q14 | A29 P2 | D16 J3 NC A3 SMADS# B13 |Vgs A9
A3 R15 | A30 P3 | D17 D3 |NC A5 SUSP# C13 |Vss Al
A4 S16 |A31 Qi D18 C2 |NC A14 | SUSPA# Bi2 |Vss B3
A5 Q12 | ADS# S17 | D19 B1 NC A17 |Vce B7 |Vss B4
A6 S15 | BEO# K15 | D20 Al NC B14 | Ve B9 Vss B5
A7 Q13 |BE1# J16 | D21 B2 NC B15 |Vce B11 |Vgs E1
A8 R13 |BE2# J15 | D22 A2 |NC B17 |Vgce C4 |Vss E17
A9 Q11 | BE3# F17 | D23 A4 NC C10 |Vce C5 |Vss G1
A10 S13 | BS16# C17 | D24 AB NC C12 |Vce E2 Vss G17
A1 R12 | BUSY# S4 | D25 B6 NC C14 | Ve E16 |Vss H1
Al12 S7 | CLK2 C3 |D26 C7 |NC D16 | Vce G2 |Vss H17
A13 Q10 | D/C# M15 | D27 C6 |NC D17 | Vce G16 |Vss K1
Al4 S5 | Do P1 D28 C8 |NC F1 Vee H16 |Vgs K17
A15 R7 | D1 N2 | D29 A8 NC G15 | Voesh J1 Vss L1
Al6 Q9 | D2 N1 D30 (03] NC H3 | Vce K2 Vss L17
A17 Q3 |D3 H2 | D31 B8 NC H15 | Vce K16 |Vss M1
A18 R5 | D4 M3 |ERROR# A12 |NC J17 i Vee L16 |Vss M17
A19 Q4 | D5 J2 FLT# Ci1 |[NC L15 |Vce M2 |Vgs P17
A20 Q8 |Dé6 L2 FLUSH# C15 |NC N3 | Vce M16 |Vgs Q2
A20M# D15 |D7 L3 HLDA P15 |NC Q15 (Voo P16 |Vss R4
A21 Q5 |D8 F2 HOLD E15 |NC Q16 |Vce R3 |Vgs S6
A22 Q7 |D9 D1 INTR A16 |NC Q17 |Vce R6 |Vgs S8
A23 S3 D10 E3 | KEN# F15 |NC R16 | Vce R8 |Vss S9
A24 Q6 | D11 C1 LOCK# N15 | PEREQ R17 | Vce R9 |Vss S10
A25 R2 |Di12 G3 | M/IO# N16 | READY# F16 |Vce R10 |Vgs S11
A26 S2 D13 D2 | MEMW# B16 | Reserved A10 | Vce R11 | Vgs S12
A27 S1 | D14 K3 |NA# - A13 | RESET ci6 |Vgoe R14 |Vgs S14
A28 R1 D15 F3 NMI A15 | SMi# B10 |Vss A7 | W/R# N17

NC — Make no external connection
1 This pin is Vg5 for the TI486SXL-G40 and TI486SXL2-G50. It is Vg for all other devices.

~

Mechanical Specifications 6-11

-9

Table 6-9. TI486SXL Signal Summary for 168-Pin PGA Pinout

Address Data Control Miscellaneous and Spares VCC/VSS
486SX 4s¢|s_sx Pin | 486SX 4ae|s_sx Pin | 486SX 486SXL Pin 486SX 486SXL Pin | 486X 486SXL Pin
A2 A2 Q4 |DO DO P1 |A2M# A20M# D15 |CLKSELwP) NC A3 |Veo Ve B7,B9
A3 A3 Ri5 |D1 D1 N2 |ADS# ADS# S17 |Reseved Reseved A10 | VoG Voo Bii,c4
A4 A4 Si6 |D2 D2 N1 |AHOLD NC A7 |NC ERROR# A12 |Voo Voo 5 E2
A5 A5 Qi2 |D3 D3 H2 |BEO# BEO# K15 | NC NA# A3 Voo Voo E16,G2
A6 A6 S15 |Da D4 M3 |BE# BE1# J16 | TDIsox) NC Ald | VS Vée G16 Hi6
A7 A7 Qi3 |D5 D5 J2 |BE2# BE2# J15 | SMi#s) SMi# B10 |Voosox9 Voot J1
A8 A8 RI3 |D6 D6 L2 |BE3# BE3# F17 |NC SUSPA# B12 | Voo Vo K2
A A9 Qi1 |D7 D7 L3 |BLAST# NC R16 | NC SMADS# B3 |Voo Voo K16,L16
A0 A10 S13 |D8 D8 F2 |BOFF# NG D17 | TMS NC B14 |Vco Voo M2, Mi6
A1 A1 R12 |D9 D9 D1 |BRDY# NC H15 | NMIDX) NC B15 |Voo Voo P16,R3
A2 A2 S7 |D10 D10 E3 |BREQ# NC Qi5 |TDOsDx ~ MEMW# B16 | Voo Véo R6,R8
A13 A3 Qi0 |D11 DIt C1 |BSs# NC D16 |SRESET(s) NC c10 |Véo Vée RO R10
A4 A14 S5 |D12 Di2 G3 |BSi6# BSie# C17 |UP#s) FLT# ci1 |Voo Voo Ri1, R4
A5 Al5 R7 |Di13 D13 D2 |CLK CLK2 C3 |SMIACT#s NC C12
A6 A6 Q9 |Di4 D14 K3 |D/C# D/C# Mi5 |NC SUSP# C13
A7 A7 Q3 |Di5 Di5 F3 |DPO NC N3 |FERR#ox) NC Cl4 |Vgs Vss A7, A9
A8 A8 R5 |D16 D16 J3 |DP NC F1 STPCLKs) NC G15 |Ves Vs A11,B3
A9 A19 Q4 |D17 Di7 D3 |DP2 NC H3 |NC PEREQ R17 |Ves Vas B4, B5
A20 A20 Q8 |Di8 Dis8 C2 |DP3 NC A5 |NC BUSY# S4 |Vss Vss E1 E17
A21 A21 Q5 |D19 D19 Bi1 |EADS# NC B17 ; Vss Vss G1, G17
A22 A2 Q7 |D20 D20 A1 |FLUSH# FLUSH# Ci5 Vss Vss H1. H17
A23 A23 S3 |D21 D21 B2 |HLDA HLDA P15 Vss Vas K1 K17
A24 A24 Q6 |D2 D22 A2 |HOLD HOLD E15 Vss Vss L1, L17
A25 A5 R2 |D23 D23 A4 |INTR INTR A16 Ves Vss M1, M17
A% A2 S2 |D24a D24 A6 |KEN# KEN# Fi5 Vss Vss P17, Q2
A27 A27 S1 |D25 D25 B6 |LOCK# LOCK# Ni5 Vss Vss R4, S6
A28 A28 R1 |D26 D26 C7 |MIO# MIO# Ni6 Vss Vs S8, S9
A29 A29 P2 |D27 D27 C6 |NMI NMI A15 Vss Vss 10, S11
A30 A3 P3 |D28 D28 C8 |PCD NC J17 , Vas Vas S12. 514
A31 A31 Qi |D29 D29 A8 |PCHK# NC Q17
D30 D30 C9 |PWT NC L15
D31 D31 B8 |PCLOK# NC Q16

RDY# READY# F16

RESET RESET Ci16

WR# W/R# N17

SjuBLIUBISSY [eullLLIg]

(LP) = Low Power. (S) = 486SX, (DX) = 486DX, and (DX4) = 486DX4
T This pin is Vs for the TI486SXL-G40 and TI486SXL2-GS50. It is Vg for all other devices.

Package Dimensions

6.2 Package Dimensions

The package dimensions for the TI486SXLC microprocessors are shown in
Figure 6—7. The package dimensions for the 132-pin, PGA T1486SXL micro-
processors are shown in Figure 68, package dimensions for the 144-pin QFP
versions are shown in Figure 6—9 and Figure 6—10, and the package dimen-
sions for the 168-pin PGA Ti486SXL are shown in Figure 6-11.

Figure 6—7. 100-Pin Thermally Enhanced Plastic QFP Package Dimensions (TI486SXLC)

PJF(S-PQFP-G100)

PLASTIC QUAD FLATPACK

0.888 (22,56)

0.600 (15,24) = ==
== — == 0.012 (0,30)
== == 0.008 (0,20) (] 0.008 (0,15) @ |
100 == O == 26
U i ' 0.006 (0,15) TYP
goupaopoopoogigoooaopaoi
1 25
0.766 (19.46) o x
0.734 (18,64) 0.151 (3,81)
» 0.890 (22,61) o 0.130(3,30)
0.870 (22,10)
, 0.012(23,16) o

0.020 (0,51) MIN

0.046 (1,17
0.036 (0,91)

L 0.180 (4,57) MAX

&

Seating Plane

[~ 0.004 (0,10)

4040093/A 10/93

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Falls within JEDEC MO-069

D. Thermally enhanced molded plastic package with a heat slug (HSL) exposed on bottom side of the package body.

Mechanical Specifications 6-13

Package Dimensions

Figure 6-8. 132-Pin Ceramic PGA Package Dimensions (TI486SXL)
CPGA-132 PIN

CERAMIC PIN GRID ARRAY

o~ e e e

o~~~

283 23382838
Pin # 1 Index Mark g S g g g g g g
(OnTopSide) : “_’ ‘u:; ; ;’ ‘5 ‘u,'; ;_’
R3S aFdese
IRERERR
~ \
(00ERREEEEEO | —

©OE
©OO
©O©
490,
©©
©©
©©

©©
©©
©©
©©
©©
©©
©©

©O
©OO©
©EOO

W ON O 1 A~ WO DN =

(JOIOI000I0/000.
@ [©@@O@O@O@OOO@©

-t
F -

TI486SXL
(BOTTOM VIEW)

@O@OOOOOOO

©OOO

4

©OO0)

Ol00/0,0/0,

©OOE©)
©OEEE

©OOOOE
QOOOO@O®O

©@OOOCPEEEEOO

>

CDEFG
[— 1,65 (0.065)

!

36,83 (1.450)

|HJKLMNP

Swedge Pin
Standoff (4) Places

—

1,27 (0.50)
MAX TYP

18,4 (0.725)
16,5 (0.650)
14,0 (0.550)
11,4 (0.450)
8,89 (0.350)
6,35 (0.250)
3,81 (0.150)
1,27 (8.050)

0,025 (0.001)R

MIN TYP

0,47 (0.0180) ____

Yy
4,57 (0.180)

3,05 (0.120)

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

I

Lwh

7/94

NOTES: A. Alllinear dimensions are in millimeters.

6-14

B. This drawing is subject

to change without notice.

Package Dimensions

Figure 6-9. 144-Pin Plastic QFP Dimensions (TI486SXL)

PCE(S-PQFP-G144) PLASTIC QUAD FLATPACK

: = 72
—
—]
=
== :D:Ii
=— :u:l T

0,38

== 022

:II:!
—
o—
o 1 1
o —
[1 m— |
o] -
—
— o

0,16 TYP

0,25 MIN

Seating plane °—7° MAX

1,03
0,73
Seating Plane
a] (010) |
7/94

1 A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-022
D. Thermally enhanced moided plastic package with a heat spreader (HSP).
E. Foot length is measured from lead tip to a position on backside of lead 0,25mm above seating plane (gage plane).

Mechanical Specifications 6-15

Package Dimensions

Figure 6—10. 144-Pin Ceramic QFP Package Dimensions (TI486SXL)

HBN (S-CQFP-G 144) CERAMIC QUAD FLATPACK
108 73
AP Js[sa[a[sfafafafafufatefotofofofafefofafotsfafefofatsfofefafafafs
NI nnnm
109 == == 72
T} S— -
= =
e == 030TYP
]} 1
= %%
== =
1 - 3 |
I — — -
[—m
= =5
== %
- — ——
== =5
144 ©= =D 37
O
NN
dhbathnd0n0ad0ha a8 e bt o0 ag0an: 0,16 NOM
1 36
le——— 275TYP —)
28,00 3,42TYP
h 2745 >0
31,45
30,05 o0
0,25 MIN °-7°
0,95
0,65
¥ S v 7
JL J— - ¥ Seating Plane

9/94

NOTES: A. Alllinear dimensions are in millimeters.
B. This drawing is subject to change without notice.

6-16

Package Dimensions

Figure 6—11. 168-Pin Ceramic PGA Package Dimensions (TI486SXL)

CPGA-168 PIN CERAMIC PIN GRID ARRAY
———— a5 TP ————¥ [40,64 (1.60) TYP ———————P)
S| O0PPOOEEEOREEOOOO®
RlOOOOOOOOOOOOEO®OOE
¢} NOIOICIOIOIOIOIOIOIOIOIOIOIONCIOIO)
P|OOO® ©JOJO)
N|©OO ©OO
M| ©O© ©EO
L] ©@O® @O
K| @O0 @O
N KOJOJO) @O
H| @G OJOIO)
G| @O (©JOJO)]
Fl©0O ©EO
E| @GO ©O0O
D| @GOG OJOJO)
ClPPOPPPOPOOPPROOOOOG
o B|OOOOOOOOOOOOOOOOO
/ A\@@@@@@@@@@@@@@@@@
1234567 891011121314151617
4.0 (0.160) TYP
L |
LT T I 1 .
—
046(0018)TYP 2,92 (0.115) TYP ——
2,54 (0.100) TYP

7/94

NOTES: A. Alllinear dimensions are in millimeters (inches).

B. This drawing is subject to change without notice.

Mechanical Specifications

6-17

Thermal Characteristics

6.3 Thermal Characteristics

The junction-to-ambient (typical) values vary for individual applications de-
pending on factors relating to how the device is mounted and the surrounding
environment such as:

u

a

Circuit trace density of the printed circuit board (PCB) and/or the presence
or absence of ground or power planes internal to the PCB that affect the
ability of the board to conduct heat away from the device

Whether the device is soldered to the PCB or is inserted into a socket

Orientation of the PCB that the device is mounted on and the proximity of
adjacent PCBs or system enclosure features that impede natural convec-
tion air circulation around the device

Ambient air temperature in close proximity to the device and the proximity
of other high-power devices in the system

Presence of airflow over the device and the attachment of an external heat
sink as indicated by the data in Table 6—10 and Table 6-11

For the 100-pin and 144-pin QFPs, the values shown for thermal resistance
in Table 6—10 and Table 6—12 with a heatsink are examples of the estimated
improvement in thermal performance.

Note:

The final responsibility for verifying designs incorporating any version of a Tl
microprocessor rests with the customer originating the design. Recom-
mended case temperature extremes are specified in Table 54, Table 5-5,
and Table 5-6.

- |

Table 6—10.TI486SXLC 100-Pin PQFP Thermal Resistance and Airflow

6-18

Thermal Resistance (°C/W)

TI1486SXLC 100-Pin PGFP

Without Heatsink With Heatsinkt
Airflow (Ft/Min) Redc Reda RgJa
0 2 36 32

100 2 aet

200
400 19
600 2 15 12

T Round, omni-directional heatsink. Dimensions are approximately 1.125" diameter by 0.42"

high.

Thermal Characteristics

Table 6—11. TI486SXL 132-Pin CPGA Thermal Resistance and Airflow

Thermal Resistance (°C/W)
TI486SXL 132-Pin CPGAT
Airflow (Ft/Min) Rgyc RgJa
0 3 20
100 3 17
200 3 15
/ 400 3 11
600 3 9

t Thermal resistance values shown are based on measurements made on similar ceramic PGA
packages.

Table 6—12.TI486SXL PQFP Thermal Resistance and Airflow

Thermal Resistance (°C/W)
TI486SXL 144-Pin PQFP*

Without Heatsink With Heatsink$
Airflow (FMin) RoJc Rgua 4 Roga
0 2 25 18
100 2 21l 13 4
R i o
A @&‘
200 2 & 19 R TS
400 14 LAl
600 2 12 6

¥ Values shown are based on measurements made on similar 28 mm QFP packages.
§ Pin-Fin heatsink. Dimensions are approximately 1.2” long, by 1.3” wide, by 0.49” high.

Table 6—13.TI486SXL 144-Pin CQFP Thermal Resistance and Airflow

Thermal Resistance (°C/W)
TI486SXL 144-Pin CQFPY
Airflow (Ft/Min) Rgua
0 33
100 28
200 24

{1 Thermal resistance values shown are based on measurements made on similar ceramic QFP
packages.

Mechanical Specifications 6-19

Thermal Characteristics

Table 6—14.TI486SXL 168-Pin CPGA Thermal Resistance and Airflow

Thermal Resistance (°C/W)
168-Pin Ceramic PGA Package
Airflow (FUMin) Reuc RgJa
0 3 18
100 3 ol 15
%§§
200 3 M 13
400 3 o 10
600 3 8

Thermal resistance values shown are based on measurements made on similar ceramic PGA
packages.

6.3.1 Airflow Measurement Setup

The wind tunnel used for airflow measurements is represented schematically
in Figure 6-12.
Figure 6—12. Wind Tunnel Schematic Diagram

Device test board

Temperature and
anemometer-type
airflow probe

> Aflow >

Wind tunnel cross-section is 6” by 6”.
R l 5 ” 24 » l

(Dimensions are approximate.)
78 ”

Typically, the devices undergoing thermal test are mounted on a test board
consisting of 0.062” thick FR4 printed circuit board material with one-ounce
copper etch. Surface-mount devices are soldered to the test board using
matching footprints with minimal circuit trace density required to electrically in-
terconnect the device to the board. PGA devices are typically inserted in a
socket that is soldered to the test board.

6-20

Thermal Characteristics

6.3.2 Thermal Parameter Definitions

The maximum die temperature (T jn3x) @and the maximum ambient tempera-
ture (Tamax) can be calculated using the following equations:

Timax = Tc + (Pmax x Reyc)
TAmax = TJ — (Pmax X Reya))

where:

Tymax = Maximum average junction temperature (°C)
T = Case temperature at top center of package (°C)
Pmax = Maximum device power dissipation (W)

Rgyc = Junction-to-case thermal resistance (°C/W)
Tamax = Maximum ambient temperature (°C)

T, = Average junction temperature (°C)

Reja = Junction-to-ambient thermal resistance (°C/W)

Values for Rgya and Rg g are given in Table 6-10 and Table 6—11 for various
airflows.

Mechanical Specifications 6-21

6-22

Chapter 7

Instruction Se

This chapter provides information pertaining to the TI1486SXL(C) microproces-
sor instruction set. Information is provided to explain the general instruction
format, fields, flags, clock-count summary, and detailed information on the
instruction encodings. All instructions are listed in the instruction set in Section
7.5, Instruction Set.

Topic Page

7-1

General Instruction Format

7.1 General Instruction Format

All of the TI486SXL(C) microprocessor family machine instructions follow the
general instruction format shown in Figure 7—1. These instructions vary in
length and can start at any byte address. An instruction consists of one or more
bytes that caninclude: prefix byte(s), at least one opcode byte, mod r/m byte,
s-i-b (ss, index, and base fields) byte, address displacement byte(s) and im-
mediate data byte(s). An instruction can be as short as one byte and as long
as 15 bytes. If there are more than 15 bytes in the instruction, a general protec-
tion fault (error code of 0) is generated.

Figure 7—1. General Instruction Format

[PPPPPPPP[TTTTTTTT]mod RRR r/m|ss index base]d32/16|8| none id32[16|8| none

7 07 0765320765320
\ A A A A A /
V Y \/ e Y Y%
optional prefix opcode mod r/m s-i-b address immediate
byte(s) (one or two bytes) byte byte displacement data
\ y (4, 2, 1 bytes, (4, 2, 1 bytes,
—V or none) or none)

register and address
mode specifier

P — prefix bit
T — opcode bit
R — opcode bit or reg bit

7-2

Instruction Fields

7.2 Instruction Fields

The generalinstruction format shows the larger fields that make up an instruc-
tion. Certain instructions have smaller encoding fields that vary according to
the class of operation. These fields define information such as the direction of
the operation, the size of the displacements, register encoding and sign exten-
sion. All the fields are described in Table 7-1, and subsequent paragraphs

provide greater detail.

Table 7—1. Instruction Fields

Field Name Description Number of Bits
‘Profix rapeat slomants m sing moructon. LOGK# assertan - | 8 perbyte
Opcode Identifies instruction operation. 1 or 2 bytes

w Specifies if data is byte or full size (full size is 16 or 32 bits). 1

d Specifies direction of data operation. 1

s Specifies if an immediate data field must be sign-extended. 1

reg General register specifier

mod r/m Address mode specifier for mod; 3 for r/m
ss Scale factor for scaled index address mode

index General register to be used as index register

base General register to be used as base register

sreg2 Segment register for CS, SS, DS, and ES

sreg3 Segment register for CS, SS, DS, ES, FS, and GS

eee Control, debug, and test register specifier

Address Address displacement operand 1, 2, or 4 bytes
displacement

Immediate data

Immediate data operand

1, 2, or 4 bytes

Instruction Set 7-3

Instruction Fields

7.2.1 Prefixes

Prefix bytes can be placed in front of any instruction. The prefix modifies the
operation of the immediately following instruction only. When more than one
prefix is used, the order is not important. There are five types of prefixes as

follows:

1) Segment override explicitly specifies which segment register an instruc-

tion will use.

2) Address size and operand size toggle between 16- and 32-bit addressing
modes. Prefixing the instruction for operand size or address size selects
the inverse of the current addressing mode. See also Section 2.1, Proces-

sor Initialization, page 2-2.

3) Repeat is used with a string instruction that causes the instruction to be

repeated for each element of the string.

4) Lockis used to assert the hardware LOCK# signal during execution of the
instruction.

Table 7-2 lists the encodings for each of the available prefix bytes. The oper-
and-size and address-size prefixes allow individual overriding of the default
value for operand size and effective-address size. The presence of these pre-
fixes selects the opposite (nondefault) operand size and/or effective-address

size as the case may be.

Table 7-2. Instruction Prefix Summary

Prefix Encoding Description

ES: 26h Override segment default, use ES for memory operand.
Cs: 2Eh Override segment default, use CS for memory operand.
SS: 36h Override segment default, use SS for memory operand.
DS: 3Eh Override segment default, use DS for memory operand.
FS: 64h Override segment default, use FS for memory operand.
GS: 65h Override segment default, use GS for memory operand.
Operand size 66h Make operand size attribute the inverse of the default.
Address size 67h Make address size attribute the inverse of the default.
LOCK FOh Assert LOCK# hardware signal.

REPNE F2h Repeat the following string instruction.

REP/REPE F3h Repeat the following string instruction.

7-4

" Instruction Fields

7.2.2 Opcode Field

7.2.3 w Field

The opcode field is either one or two bytes long and specifies the operation to
be performed by the instruction. Some operations have more than one op-
code, each specifying a different form of the operation. Some opcodes name
instruction groups. For example, opcode 0x80 names a group of operations
that have an immediate operand, and a register or memory operand. The
group opcodes use an opcode extension field of three bits in the following byte,
called the MOD R/M byte, to resolve the operation type. Opcodes for the entire
TI486SXL(C) microprocessor instruction set are listed in Table 7—17 on page
7-14. The opcodes are given in hex values unless shown within brackets ([]).
Values shown in brackets are binary values.

The 1-bit field indicates the operand size during 16- and 32-bit data operations
as shown in Table 7-3.

Table 7-3. w Field Encoding

Operand Size Operand Size
w Field 16-Bit Data Operations 32-Bit Data Operations
0 8 bits 8 bits
1 16 bits 32 bits

Instruction Set 7-5

Instruction Fields

7.2.4 d Field

The d field determines which operand is taken as the source operand and
which operand is taken as the destination as shown in Table 7—4.

Table 7—4. d Field Encoding

d Field Direction Of Operation Source Operand Designation Operand
0 Register — Register/Memory reg mod r/m or mod ss-index-base
1 Register/Memory — Register mod r/m or mod ss-index-base reg

7.2.5 reg Field

The reg field determines which general registers are to be used. The selected
register is dependent on whether 16- or 32-bit operation is current and the sta-
tus of the “w” bit as shown in Table 7-5.

Table 7-5. reg Field Encoding

16-Bit 32-Bit
Operation Operation 16-Bit 16-Bit 32-Bit 32-Bit
w Field Not w Field Not Operation Operation Operation Operation

reg Field Present Present w=0 w=1 w=0 w=1
000 AX EAX AL AX AL EAX
001 CX ECX CL CX CL ECX
010 DX EDX DL DX DL EDX
o1 BX EBX BL BX BL EBX
100 SP ESP AH SP AH ESP
101 BP EBP CH BP CH EBP

110 Sl ESI DH Sl DH ESI

111 DI EDI BH DI BH EDI

7-6

Instruction Fields

7.2.6 mod and r/m Field

The mod and r/m sub-fields, within the mod r/m byte, select the type of memory
addressing to be used. Some instructions use a fixed addressing mode (e.g.,
PUSH or POP) and therefore, these fields are not present. Table 7-6 lists the
addressing method when 16-bit addressing is used and a mod r/m byte is pres-
ent. Some mod r/m field encodings are dependent on the w field and are shown
in Table 7-7.

Table 7-6. mod r/m Field Encoding

32-Bit Address Mode
16-Bit Address Mode = With mod r/m Byte

mod r/m With mod r/m Byte And No s-i-b Byte Present

00 000 DS:[BX+SI] DS:[EAX]

00 001 DS:[BX+DI] DS:[ECX]

00010 SSS:[BP+SI] DS:[EDX]

00 011 SS:[BP+DI] DS:[EBX]

00 100 DS:[SI] s-i-b is present (see subsection 7.2.7)
00101 DS:[DI] DS:[d32]

00 110 DS:[d16] DS:ESI]

00 111 DS:[BX] DS:[EDI]

01 000 DS:[BX+SI+d8] DS:[EAX+d8]

01 001 DS:[BX|+DI+d8] DS:[EAX+d8]

01010 SS:[BP+Sl+d8] DS:[EDX+d8]

01 011 SS:[BP+DI+d8] DS:[EBX+d8]

01100 DS:[Si+d8] s-i-b is present (see subsection 7.2.7)
01101 DS:[DI+d8] SS:[EBP+d8]

01110 SS:[BP+d8] DS:[ESI+d8]

01111 DS:[BX+d8] DS:[EDI+d8]

10 000 DS:[BX+Sl+d16] DS:[EAX+d32]

10 001 DS:[BX+DI+d16] DS:[ECX+d32]

10010 SS:[BP+Sl+d16] DS:[EDX+d32]

10 011 SS:[BP+DI+d16] DS:[EBX+d32]

10 100 DS:[Sl+d16] s-i-b is present (see subsection 7.2.7)
10 101 DS:[Dl+d16] SS:[EBP+d32]

10 110 SS:[BP+d16] DS:[ESI+d32]

10 111 DS:[BX+d16] DS:[EDI+d32]

11 000

11111 See Table 7-7 See Table 7-7

Instruction Set

Instruction Fields

Table 7-7. mod r/m Field Encoding Dependent on w Field

16-Bit Operation 16-Bit Operation 32-3it Operation 32-Bit Operation

mod r/m w=0 w=1 w=0 w=1
11 000 AL AX AL EAX
11 001 oL cX cL ECX
11010 DL DX DL EDX
11 011 BL BX BL EBX
11100 AH SP AH ESP
11 101 CH BP CH EBP
11110 DH S| DH ES
11 111 BH DI BH EDI

7-8

Instruction Fields

7.2.7 mod and base Fields

In Table 7-6, the note “s-i-b present” (for certain entries) forces the use of the
mod base field as listed in Table 7-8.

Table 7-8. mod base Field Encoding

mod r/m

32-Bit Address Mode With mod r/m

Byte and No s-i-b Byte Present

00 000
00 001
00010
00 011
00100
00 101
00 110
00 111

DS:[EAX+(scaled index)]
DS:[ECX+(scaled index)]
DS:[EDX+(scaled index)]
DS:[EBX+(scaled index)]
SS:[ESP+(scaled index)]
DS:[EBP+(scaled index)]
DS:[ESl+(scaled index)]

DS:[EDI+(scaled index)]

01 000
01 001
01010
01011
01100
01101
01 110
01111

DS:[EAX+(scaled index)+d8]
DS:[ECX+(scaled index)+d8]
DS:[EDX+(scaled index)+d8]
DS:[EBX+(scaled index)+d8]
SS:[ESP+(scaled index)+d8]
SS:[EBP+(scaled index)+d8]
DS:[ESI+(scaled index)+d8]

DS:[EDI+(scaled index)+d8]

10 000
10 001
10010
10 011
10100
10 101
10 110
10 111

DS:[EAX+(scaled index)+d32]
DS:[ECX+(scaled index)+d32]
DS:[EDX+(scaled index)+d32]
DS:[EBX+(scaled index)+d32]
SS:[ESP+(scaled index)+d32]
SS:EBP+(scaled index)+d32]
DS:[ESl+(scaled index)+d32]

DS:[EDl+(scaled index)+d32]

Instruction Set 7-9

Instruction Fields

7.2.8 ss Field

The ssfield (Table 7-9) specifies the scale factor used in the offset mechanism
for address calculation. The scale factor multiplies the index value to provide
one of the components used to calculate the offset address.

Table 7-9. ss Field Encoding

ss Field Scale Factor
00 x1
01 x2
10 x4
11 x8

7.2.9 index Field

The index field (Table 7-10) specifies the index register used by the offset
mechanism for offset-address calculation. When no index register is used
(index field = 00), the ss value must be 00 or the effective address is
undefined.

Table 7—-10.index Field Encoding

index Field Index Register

000 EAX
001 ECX
010 EDX
011 EBX
100 none
101 EBP
110 ESI

111 EDI

7.2.10 sreg2 Field

The sreg2 field (Table 7—11) is a two-bit field that allows one of the four
286-type segment registers to be specified.

Table 7-11. sreg2 Field Encoding

sreg2 Field Segment Register

Selected
00 ES
01 CS
10 SS
11 DS

7-10

Instruction Fields

7.2.11 sreg3 Field

The sreg3 field (Table 7-12) is three-bit field that is similar to the sreg?2 field,
but allows use of the FS and GS segment registers.

Table 7-12.sreg3 Field Encoding

Segment Register

sreg3 Field Selected
000 ES
001 Ccs
010 SS
oM DS
100 FS
101 GS
110 undefined
11 undefined

7.2.12 eee Field

The eee field is used to select the control, debug, and test registers as indi-
catedin Table 7-13. The values shown are the only valid encodings for the eee
bits.

Table 7—-13.eee Field Encoding

eee Field Register Type Base Register
000 Control register CRoO
010 Control register CR2
011 Control register CR3
000 Debug register DRO
001 Debug register DR1
010 Debug register DR2
011 Debug register DR3
110 Debug register DR6
111 Debug register DR7
011 Test register TR3
100 Test register TR4
161 Test register TR5
110 Test register - TR6
11 Test register TR7

Instruction Set 7-11

Flags

7.3 Flags

The instruction set summary table lists nine flags that are affected by the
execution of instructions. The conventions shown in Table 7-14 are used to
identify the different flags. Table 7—15 lists the conventions used to indicate
what action the instruction has on the particular flag.

Table 7-14.Flag Abbreviations

Abbreviation Name of Flag
OF Overflow flag
DF Direction flag
IF Interrupt enable flag
TF Trap flag
SF Sign flag
ZF Zero flag
AF Auxiliary flag
PF Parity flag
CF Carry flag

Table 7—-15. Action of Instruction on Flag

Instruction Table

Symbol Action
m Flag is modified by the instruction
u Flag is not changed by the instruction
0 Flagis resetto 0
1 Flag is set to 1

7-12

Clock Count Summary / Instruction Set

7.4 Clock-Count Summary

The clock-count summaries presented in Table 7-17 are based on assump-
tions associated with each individual instruction. Abbreviations that indicate
the clock-count conditions have been developed to simplify the presentation.

7.4.1 Assumptions

The following assumptions have been made in presenting the clock-count val-
ues for the individual instructions.

oo ood

a

7.4.2 Abbreviations

The clock counts listed in the instruction set summary table are grouped by op-
erating mode and whether there is a register/cache hit or a cache miss. In
some cases, more than one clock count is shown in a column for a given
instruction, or a variable is used in the clock count. The abbreviations used for
these conditions are listed in Table 7-16.

Table 7—16.Clock-Count Abbreviations

7.5

The instruction has been prefetched, decoded, and is ready for execution.
Bus cycles do not require wait states.

There are no local-bus HOLD requests delaying processor access to the
bus.

No exceptions are detected during instruction execution.

If an effective address is calculated, it does not use two general register
components. One register, scaling, and displacement can be used within
the clock count shown. However, if the effective-address calculation uses
two general register components, add 1 to the clock count shown.

All clock counts assume aligned 16-bit memory/IO operands for cache-
miss counts.

If instructions access a misaligned 16-bit operand or a 32-bit operand on
even addresses, add two clock counts for read or write, and add four clock
counts for read and write.

If instructions access a 32-bit operand on odd addresses, add four clock
counts for read or write, and add eight clock counts for read and write.

Clock-Count
Symbol Explanation
/ Register operand/memory operand
n Number of times operation is repeated
L Level of the stack frame
| Conditional jump taken | conditional jump not taken
\ CPL <IOPL\CPL > IOPL

Instruction Set

The TI486SXLC and TI486SXL instruction set is provided in Table 7-17.
Instruction name, encoding, flags that are affected, and instruction clock
counts for each instruction are shown. The clock-count values are based on
the assumptions described in subsection 7.4.1.

Instruction Set 7-13

Pi-L

Table 7—17.Instruction Set

Real-Mode Protected-Mode
Flags Clocks Clocks Notes
olpli|T|s|z|alP cred/ | cache | s°% | Cache | Real | Protected
Instruction Opcode F|F|F F|F|F|F Hit Miss Hit Miss Mode Mode
AAA ASCII Adjust AL after Add 37 ufujulufu|u|miu 5 5
AAD ASCII Adjust AX before Divide D5 0A ufujulu{mmjuim 4 4
AAM ASCII Adjust AX after Multiply D4 0A ujujulufm{mlu|lm 17 17
AAS ASCII Adjust AL after Subtract 3F ufufujujuju|mju 5 5
ADC Add with Carry mfujuju|m|{m|m{m 1 2
Register to Register 1 [00dw] [11 reg r/m] 1 1
Register to Memory 1 [000w] [mod reg r/m] 3 5 3 5
Memory to Register 1 [001w] [mod reg r/m] 3 5 3 5
Immediate to Register/Memory 8 [00sw] [mod 010 r/m}t 1/3 5 1/3 5
Immediate to Accumulator 1 [010w]t 1 1
ADD Integer Add mjfujujujimfim|{m|m 1 2
Register to Register 0 [00dw] [11 reg r/m] 1 1
Register to Memory 0 [000w] [mod reg r/m] 3 5 3 5
Memory to Register 0 [001w] [mod reg r/m] 3 5 3 5
Immediate to Register/Memory 8 [00sw] [mod 000 r/m]t 1/3 5 1/3 5
Immediate to Accumulator 0 [010w]f 1 1
AND Boolean AND OjJujufjufm|mju|m 1 2
Register to Register 2 [00dw] [11 reg r/m] 1 1
Register to Memory 2 [000w] [mod reg r/m] 3 5 3 5
Memory to Register 2 [001w] [mod reg r/m] 3 5 3 5
Immediate to Register/Memory 8 [00sw] [mod 100 r/m]t 1/3 5 1/3 5
Immediate to Accumulator 2 [010w]t 1 1
ARPL Adjust Requested Privilege Level ulufufuju|m|ulfu 3 2
From Register/Memory 63 [mod reg r/m} 6/10 10
BOUND Check Array Boundaries 62 [mod reg r/m}] ujufujujujululju 1,4 2,5,6,7,8
If Out of range (Int 5) 11+int 11+int
if In Range 11 1
BSF Scan Bit Forward ujlujujulu|m|ul|u 1 2
Register/Memory, Register OF BC[mod reg r/m] 5/7+n 9+n 5/7+n 9+n

185 uoonisu|

18S uononsuy

Sl-2

Table 7—17. Instruction Set (Continued)

Real-Mode Protected-Mode
Flags Clocks Clocks Notes
o 1[T|s|z|A|P|C| oY | cache | 19 | Cache | Real | Protected
Instruction Opcode F FIF|F|F|F F Hit Miss Hit Miss Mode Mode
BSR Scan Bit Reverse u ulufu|mfu u 1 2
Register/Memory, Register OF BC[mod reg r/m] 5/7+n 9+n 5/7+n 9+n
BSWAP Byte Swap OF C[1 reg] u ufuful|ulu u 5 5
BT Test Bit u ujulufuiju m 1 2
Register/Memory, Inmediate OF BA[mod 100 r/m]t 3/4 5 3/4 5
Register/Memory, Register OF A3[mod reg r/m] 3/6 7 3/6 7
BTC Test Bit and Complement u ufujulul|u m 1 2
Register/Memory, Immediate OF BA[mod 111 r/m]t 4/5 6 4/5 6
Register/Memory, Register OF BB[mod reg r/m] 5/8 9 5/8 9
BTR Test Bit and Reset u ulufulufu m 1 2
Register/Memory, Inmediate OF BA[mod 110 r/m]t 4/5 6 4/5 6
Register/Memory, Register OF B3[mod reg r/m] 5/8 9 5/8 9
BTS Test Bit and Set u ufujujfuju m 1 2
Register/Memory OF BA[mod 101 r/m] 4/5 6 4/5 6
Register (short form) OF AB[mod reg r/m] 5/8 9 5/8 9
1 = immediate data 1 = 8-bit displacement § = 16-bit displacement § = 32-bit displacement m = Flag modified u = Flag unchanged
Notes: 1) Exception 13 fault (general protection) occurs in real mode if an operand reference is made that partially or fully extends beyond the maximum CS, DS, ES, FS, or GS segment

limit (FFFFh). Exception 12 fault (stack segment limit violation or not present) occurs in real mode if an operand reference is made that partially or fully extends beyond the maxi-

mum SS limit.

2) Exception 13 fault occurs if the memory operand in CS, DS, ES, FS, or GS cannot be used due to either a segment limit violation or an access rights violation. If a stack limit

is violated, an exception 12 occurs.

3) This is a protected mode instruction. Attempted execution in real mode will result in exception 6 (invalid opcode).

4) An exception may occur, depending on the value of the operand.

5) LOCK# is asserted during descriptor table accesses.
6) All segment descriptor accesses in the GDT or LDT made by this instruction automatically asserts LOCK# to maintain descriptor integrity in multiprocessor systems.
7) JMP, CALL, INT, RET, and IRET instructions referring to another code segment causes an exception 13, if an applicable privilege rule is violated.
8) The destination of a JMP, CALL, INT, RET, or IRET must be in the defined limit of a code segment or an exception 13 fault occurs.

188 uoionisul

~

91-

Table 7—17. Instruction Set (Continued)

Real-Mode Protected-Mode
Flags Clocks Clocks Notes
olp|1|T|s|{z|a|P|cC Cgi%/e Cache Cgi?\le Cache | Real | Protected

Instruction Opcode F{F| F{F/ F|F F|F|F Hit Miss Hit Miss Mode Mode
CALL Subroutine Call U |ufuju|u|fuiju]|u|u 1 2,6,7,8
Direct within Segment E8q 7 7
Register/Memory Indirect within Segment FF [mod 010 r/m] 8/9 10 8/9 10
Direct Intersegment 9A [unsigned full offset, 12 30

Call Gate to Same Privilege selector] 41 49

Call Gate to Different Privilege No Parameters 83 97

Cali Gate to Different Privilege Parameters 81+4x 95+4x

16-Bit Task to 16-bit TSS 262 263

16-Bit Task to 32-bit TSS 293 317

16-Bit Task to V86 Task 179 206

32-Bit Task to 16-bit TSS 238 258

32-Bit Task to 32-bit TSS 296 340

32-Bit Task to V86 Task 182 229
Indirect intersegment FF [mod 011 r/m] 14 17 14 34

Call Gate to Same Privilege 43 51

Call Gate to Different Privilege No Parameters 85 99

Call Gate to Different Privilege Parameters 86+4x | 100-+4x

16-Bit Task to 16-bit TSS 267 268

16-Bit Task to 32-bit TSS 208 322

16-Bit Task to V86 Task 181 211

32-Bit Task to 16-bit TSS 243 263

32-Bit Task to 32-bit TSS 301 345

32-Bit Task to V86 Task 184 230
CBW Convert Byte to Word 98 uju |ufuju|ufujuiu 3 3
CDQ Convert Doubleword to Quadword 929 ulujuiju|u|ujulu|lu 1 2
CLC Clear Carry Flag F8 ujuilufujuijuljuijui|o 1 1
CLD Clear Direction Flag FC u (0 |(ufuju|ufulfuu 1 1
CLI Clear Interrupt Flag FA utu |0 |ufuijfu|uuiju 5 5 9
CLTS Clear Task Switched Flag OF 06 uju |ulfuiju |ujulufu 4 4 10 1
CMC Complement the Carry Flag F5 Uufuijui|u|uifulujuim 1 1
CMP Compare Integers mjujujfulmm|m{mm 1 2
Register to Register 3 [10dw] [11 reg r/m] 1 1
Register to Memory 3 [101w] [mod reg r/m] 3 5 3 5
Memory to Register 3 [100w] [mod reg r/m] 3 5 3 5
Immediate to Register/Memory 8 [00sw] [mod 111 r/m]} 1/3 5 1/3 5
Immediate to Accumulator 3 [110wlt 1 1

188 uononsu|

18S uonansuy

Ll-L

Table 7—-17. Instruction Set (Continued)

Real-Mode Protected-Mode
Flags Clocks Clocks Notes
Reg/ Reg/
O/D|(I|T|S|Z|A|{P|C| Cache | Cache | Cache | Cache | Real | Protected

Instruction Opcode FIF|F|F|F|F|F|F|F Hit Miss Hit Miss | Mode Mode
CMPS Compare String A [011w] mljujuju|mim{m|m|m 8 9 8 9 1 2
CMPXCHG Compare and Exchange mjujujufm{mim|m|m
Register1, Register2 OF B[0OOwW] [11 reg2 reg1] 5 5
Memory, Register OF B[000w] [mod reg r/m] 7 8 7 8
CWD Convert Word to Doubleword 99 ujujujulujujujuiu 1 2
CWDE Convert Word to Doubleword Extended | 98 uju|u|uju|u|ujuju 3 3
DAA Decimal Adjust AL after Add 27 gujujujuimm{mimim 4 4
DAS Decimal Adjust AL after Subtract 2F ufujufu/m|m|im|m|m 4 4
DEC Decrement by 1 mfu|uju|m|{mim|{m|u 1 2
Register/Memory F {111w] [mod 001 r/m] 1/3 5 1/3 5
Register (short form) 4 (1 reg] 1 1
DIV Unsigned Divide F [011w] [mod 110 r/m] ujujufluju|uju|u|u 1,4 2,4
Accumulator by Register/Memory
Divisor: Byte) 13/15 17 13/15 17

Word 21/22 24 21/22 24

Doubleword 38/39 40 38/39 40
ENTER Enter New Stack Frame C8 [8-bit level]§ ufutufufujufuju]u 1 2
Level =0 7 7
Level =1 10 10 10 10
Level (L) > 1 6+4*L | 6+44*L | 6+4*L | 6+4°L
HLT Halt F4 ufuj{ujufujufuju]u 3 3 11

1t = immediate data 1 = 8-bit displacement § = 16-bit displacement = 32-bit displacement m = Flag modified u = Flag unchanged

Notes:

mum SS limit.

2) Exception 13 fault occurs if the memory operand in CS, DS, ES, FS, or GS cannot be used due to either a segment limit violation or an access rights violation. If a stack limit
is violated, an exception 12 occurs.

3) This is a protected mode instruction. Attempted execution in real mode will result in exception 6 (invalid opcode).

4) An exception may occur, depending on the value of the operand.

5) LOCK# is asserted during descriptor table accesses.
6) All segment descriptor accesses in the GDT or LDT made by this instruction automatically asserts LOCK# to maintain descriptor integrity in multiprocessor systems.

7) JMP, CALL, INT, RET, and IRET instructions referring to another code segment causes an exception 13, if an applicable privilege rule is violated.

8) The destination of a JMP, CALL, INT, RET, or IRET must be in the defined limit of a code segment or an exception 13 fault occurs.
9) An exception 13 fault occurs if CPL is greater than IOPL.
10)This instruction may be executed in real mode. In real mode, its purpose is primarily to initialize the CPU for protected mode.
11) An exception 13 fault occurs if CPL is greater than 0 (0 is the most privileged level).

1) Exception 13 fault (general protection) occurs in real mode if an operand reference is made that partially or fully extends beyond the maximum CS, DS, ES, FS, or GS segment
limit (FFFFh). Exception 12 fault (stack segment limit violation or not present) occurs in real mode if an operand reference is made that partially or fully extends beyond the maxi-

18S uononsuy

81-L

Table 7—-17. Instruction Set (Continued)

Real-Mode Protected-Mode
Flags Clocks Clocks Notes
0 s|z|a|p|c| Bed | cache | PeY | Cache | Real |Protected
Instruction Opcode F FI|F|F F Hit Miss Hit Miss Mode Mode
IDIV Integer (Signed) Divide u ufuju u 1.4 24
Accumulator by Register/Memory F [011w] [mod 111 r/m]
Divisor: Byte 14/15 18 14/15 18
Word 23/24 25 23/24 25
Doubleword 40/41 44 40/41 44
IMUL Integer (Signed) Multiply m uluiju m 1 2
Accumulator by Register/Memory F [011w] [mod 101 r/m]
Multiplier: Byte 3/5 7 3/5 7
Word 3/5 7 3/5 7
Doubleword 7/9 13 7/9 13
Register with Register/Memory OF AF[mod reg r/m]
Multiplier: Byte 3/5 7 3/5 7
Word 3/5 7 3/5 7
Doubleword 7/9 13 7/9 13
Register/Memory with Immediate to Register2 6 [10s1] [mod reg r/m]t
Multiplier: Byte 3/5 7 3/5 7
Word 3/5 7 3/5 7
Doubleword 7/9 13 7/9 13
IN /nput from I/O Port u uju fu u 9
Fixed Port E [010w] [port number] 16 16 16 17
Variable Port E [110w] 16 16 16 17
INC Increment by 1 m m|m|m u 1 2
Register/Memory F [111w] [mod 000 r/m] 1/3 5 1/3 5
Register (short from) 410 reg] 1 1
INS Input String from I/O Port 6 [110w] u uifuju u 20 20 14/20 6/21 1 2,9
INT Software Interrupt u uiuu u 1,4 5,6,7,8
INT i CD [i] 14 16
Protected Mode:
Interrupt or Trap to Same Privilege 57 58
Interrupt or Trap to Different Privilege 91 92
16-Bit Task to 16-bit TSS by Task Gate 265 266
16-Bit Task to 32-bit TSS by Task Gate 296 320
16-Bit Task to V86 Task by Task Gate 177 205
32-Bit Task to 16-bit TSS by Task Gate 241 261
32-Bit Task to 32-bit TSS by Task Gate 299 343
32-Bit Task to V86 Task by Task Gate 180 232
V86 to 16-bit TSS by Task Gate 241 261
V86 to 32-bit TSS by Task Gate 299 343
V86 to Privilege 0 by Trap Gate/Int Gate 106 114

18S uoonsu|

185 uoponssuy

61-L

Table 7-17. Instruction Set (Continued)

Real-Mode Protected-Mode
Flags Clocks Clocks Notes
Reg/ Reg/
O|D|I|T|S|Z|A|P|C| Cache | Cache | Cache | Cache | Real | Protected

Instruction Opcode F\F|\F|{F|F|F|F|F|F Hit Miss Hit Miss Mode Mode
INT Software Interrupt (Continued) um{O|lu|jujulu|ulu 1,4 5,6,7,8
INT3 CcC 14 16
Protected Mode:

Interrupt or Trap to Same Privilege 57 58

Interrupt or Trap to Different Privilege 91 92

16-Bit Task to 16-bit TSS by Task Gate 265 266

16-Bit Task to 32-bit TSS by Task Gate 296 320

16-Bit Task to V86 by Task Gate 177 205

32-Bit Task to 16-bit TSS by Task Gate 241 261

32-Bit Task to 32-bit TSS by Task Gate 299 343

32-Bit Task to V86 by Task Gate 180 232

V86 to 16-bit TSS by Task Gate 241 261

V86 to 32-bit TSS by Task Gate 299 343

V86 to Privilege 0 by Trap Gate/Int Gate 106 114
INTO CE ulufm{O|luftufulutu
If OF == 1 1 1 1
If OF == 1 (INT4) 15 17
Protected Mode:

Interrupt or Trap to Same Privilege 57 58

Interrupt or Trap to Different Privilege 91 92

16-Bit Task to 16-bit TSS by Task Gate 265 266

16-Bit Task to 32-bit TSS by Task Gate 296 320

16-Bit Task to V86 by Task Gate 177 205

32-Bit Task to 16-bit TSS by Task Gate 241 261

32-Bit Task to 32-bit TSS by Task Gate . 299 343

32-Bit Task to V86 by Task Gate 180 232

V86 to 16-bit TSS by Task Gate 241 261

V86 to 32-bit TSS by Task Gate 299 343

V86 to Privilege 0 by Trap Gate/Int Gate 106 114

1 = immediate data } = 8-bit displacement § = 16-bit displacement q = 32-bit displacement m = Flag modified u = Flag unchanged

Notes: 1) Exception 13 fault (general protection) occurs in real mode if an operand reference is made that partially or fully extends beyond the maximum CS, DS, ES, FS, or GS segment
limit (FFFFh). Exception 12 fault (stack segment limit violation or not present) occurs in real mode if an operand reference is made that partially or fully extends beyond the maxi-
mum SS limit.

2) Exception 13 fault occurs if the memory operand in CS, DS, ES, FS, or GS cannot be used due to either a segment limit violation or an access rights violation. If a stack limit
is violated, an exception 12 occurs.

3) This is a protected mode instruction. Attempted execution in real mode will result in exception 6 (invalid opcode).

4) An exception may occur, depending on the value of the operand.

5) LOCK# is asserted during descriptor table accesses.

6) All segment descriptor accesses in the GDT or LDT made by this instruction automatically asserts LOCK# to maintain descriptor integrity in multiprocessor systems.

7) JMP, CALL, INT, RET, and IRET instructions referring to another code segment causes an exception 13, if an applicable privilege rule is violated.

8) The destination of a JMP, CALL, INT, RET, or IRET must be in the defined limit of a code segment or an exception 13 fault occurs.

9) An exception 13 fault occurs if CPL is greater than IOPL.

188 uonoNJsu|

0c-L

Table 7—-17. Instruction Set (Continued)

Real-Mode Protected-Mode
Flags Clocks Clocks Notes
o] 1|T|S|Z CI:::%Ie Cache CZ?:?’:Ie Cache | Real | Protected

Instruction Opcode F FIFIF|F Hit | Miss | “p | Miss | Mode | Mode
INVD Invalidate Cache OF 08 u ujuju|u 7 7
INVLPG Invalidate TLB Entry OF 01[mod 111 r/m] u ujuful|u 5 5
IRET Interrupt Return CF m m{m|m|fm 2,5,6,7,8
Real Mode 14 14
Protected Mode 16 17

Within Task to Same Privilege 35 37

Within Task to Different Privilege 74 78
16-Bit Task to 16-bit TSS 259 260
16-Bit Task to 32-bit TSS 290 314
16-Bit Task to V86 Task 173 203
32-Bit Task to 16-bit TSS 235 255
32-Bit Task to 32-bit TSS 295 339
32-Bit Task to V86 Task 176 226
JB/JNAENC Jump on Below/Not u ujuifuifu 8
Above or Equal/Carry
8-Bit displacement 72t 41 41
Full displacement OF 829 5|2 6|3
JBE/JNA Jump on Below or Equal/Not Above u ujlujfuju 8
8-Bit displacement 76% 41 41
Full displacement OF 861 52 6/3
JCXZ Jump on CX Zero E3t u ujufulu 713 713
JENZ Jump on Equal/Zero u ufujfuju
8-Bit displacement 74% 41 41
Full displacement OF 849 512 6|3
JECXZ Jump on ECX Zero E3t u ujujuju 7|3 713
JLAINGE Jump on Less/Not Greater or Equal u ufujfuiju
8-Bit displacement 7Ct 411 41
Full displacement OF 8CY 5{2 6|3

18S uononusul

18S uononsyy

Table 7-17. Instruction Set (Continued)

Real-Mode Protected-Mode
Flags Clocks Clocks Notes
olpli|T|s|z|a|p|c| Y | cache | FY | cache | Real |Protected

Instruction Opcode F|F|F|F|F F|F|F Hit Miss Hit Miss Mode Mode
JLEANG Jump on Less or Equal/Not Greater ujlufujulu ujuju 8
8-Bit displacement 7E% 411 411
Full displacement OF 8EY 5|2 6|3
JMP Unconditional Jump ujujujfulu ufuilu 1 2,6,7,8
Short EB} 4 4
Direct within Segment E9q 5 6
Register/Memory Indirect within Segment FF [mod 100 r/m{ 7/8 10 8/9 10
Direct Intersegment EA [full offset, selector] 9 27

Call Gate Same Privilege Level 45 45

16-Bit Task to 16-bit TSS 265 266

16-Bit Task to 32-bit TSS 296 320

16-Bit Task to V86 Task 182 209

32-Bit Task to 16-bit TSS 241 261

32-Bit Task to 32-bit TSS 299 343

32-Bit Task to V86 Task 185 232
Indirect Intersegment FF [mod 101 r/m] 13 14 39 39

Call Gate Same Privilege Level 47 47

16-Bit Task to 16-bit TSS 270 271

16-Bit Task to 32-bit TSS 301 325

16-Bit Task to V86 Task 184 214

32-Bit Task to 16-bit TSS 246 268

32-Bit Task to 32-bit TSS 304 348

32-Bit Task to V86 Task 187 237
JNB/JAE/JNC Jump on Not Below/ ulujuijulu ujuifu 8
Above or Equal/Not Carry
8-Bit displacement 73% 41 41
Full displacement OF 834 5|2 63

1 = immediate data

mum S8 limit.

2) Exception 13 fault occurs if the memory operand in CS, DS, ES, FS, or GS cannot be used due to either a segment limit violation or an access rights violation. If a stack limit
is violated, an exception 12 occurs.

1 = 8-bit displacement

§ = 16-bit displacement

§ = 32-bit displacement
Notes: 1) Exception 13 fault (general protection) occurs in real mode if an operand reference is made that partially or fully extends beyond the maximum CS, DS, ES, FS, or GS segment
limit (FFFFh). Exception 12 fault (stack segment limit violation or not present) occurs in real mode if an operand reference is made that partially or fully extends beyond the maxi-

3) This is a protected mode instruction. Attempted execution in real mode will result in exception 6 (invalid opcode).

4) An exception may occur, depending on the value of the operand.

5) LOCK# is asserted during descriptor table accesses.
6) All segment descriptor accesses in the GDT or LDT made by this instruction automatically asserts LOCK# to maintain descriptor integrity in multiprocessor systems.
7) JMP, CALL, INT, RET, and IRET instructions referring to another code segment causes an exception 13, if an applicable privilege rule is violated.
8) The destination of a JMP, CALL, INT, RET, or IRET must be in the defined limit of a code segment or an exception 13 fault occurs.

m = Flag modified

u = Flag unchanged

185 uononisul

cc-L

Table 7-17. Instruction Set (Continued)

Real-Mode Protected-Mode
Flags Clocks Clocks Notes
olp|1|T|s|z]|a cedl | cache | 129/ | cache | Real | Protected
Instruction Opcode F FIF|F|F|F Hit Miss Hit Miss | Mode Mode
JNBE/JA Jump on Not Below or Equal/Above u ufufufulu 8
8-Bit displacement 77% 41 41
Full displacement OF 879 5|2 6|3
JNE/INZ Jump on Not Equal/Not Zero u ulufufulfu 8
8-Bit Displacement 75% 411 41
Full Displacement OF 859 512 6|3
JNLNGE Jump on Not Less/Greater or Equal u ujlulufutfu 8
8-Bit displacement 7D% 41 41
Full displacement OF 8DY 5|2 6|3
JNLE/G Jump on Not Less or Equal/Greater u ufujujuju 8
8-Bit displacement 7Ft 41 411
Full displacement OF 8F¢ 52 6|3
JNO Jump on Not Overflow u ujufujuiju 8
8-Bit displacement 71% 411 4/1
Full displacement OF 819 512 6|3
JNP/JPO Jump on Not Parity/Parity Odd u uju|uifuju 8
8-Bit displacement 7B% 4/1 401
Full displacement OF 8B¢ 5|2 6|3
JNS Jump on Not Sign u uju|ufuju 8
8-Bit displacement 79t 41 41
Full displacement OF 899 52 6|3
JO Jump on Overflow u uju|u|uju 8
8-Bit displacement 70% 41 41
Full displacement OF 809 52 63
JPNPE Jump on Parity/Parity Even u uju|ufuju 8
8-Bit displacement 7A% 411 41
Full displacement OF 8Aq 512 6|3
JS Jump on Sign u ujufufulfu 8
8-Bit displacement 78% 411 41
Full displacement OF 881 52 6|3
LAHF Load AH with Flags 9F u ujufufuiu 2 2

188 uonondsuf

185 uononsuy

g€e-L

Table 7-17. Instruction Set (Continued)

Real-Mode Protected-Mode
Flags Clocks Clocks Notes
olpfi|T|s|z|a|p|c| R | cache | Fe9 | cache | Real |Protected
Instruction Opcode F|F|F|F|F|F|F|F|F Hit Miss Hit Miss Mode Mode
LAR Load Access Rights vjutuluflulmjujufu 3 256,12
From Register/Memory OF 02[mod reg r/m] 1112 14
LDS Load Pointer to DS C5 [mod reg r/m] u ulujulufulu 6 7 19 22 1 2,6,13
LEA Load Effective Address 8D [mod reg r/m] ulujujufujufulu]u
No Index Register 2 2
With Index Register 3 3
LEAVE Leave Current Stack Frame Co ulufufu|lujujufulfu 5 6 5 6 1 2
LES Load Pointer to ES C4 [mod reg r/m] ujujuflujuju|u|ulfu 7 8 20 21 1 2,6,13
LFS Load Pointer to FS OF B4[mod reg r/m] ujlufululujujufulu 7 8 20 21 1 2,6,13
LGDT Load GDT Register OF 01[mod 010 r/m] ujujufujulufufulu 9 9 9 9 1,10 2,1
LGS Load Pointer to GS OF B5[mod reg r/m] ujujujujuijiujlujuju 7 8 7 8 1 2,6,13
LIDT Load IDT Register OF 01[mod 011 r/m] ujujufufufujulutfu 11 11 11 1 1,10 2,11
LLDT Load LDT Register ujlujufufuflu|u|uju 3 2,5,6,11
From Register/Memory OF 00[mod 010 r/m] 16/17 18
LMSW Load Machine Status Word ulu|ufulu|ujuluiju 1,10 2,11
From Register/Memory OF 01[mod 110 r/m] 5 8 5 8
LODS Load String A[110w] ujluiju ujujululu 6 6 1 2
LOOP Offset Loop/No Loop E2t ujuju ufufu|uju 8|4 94 8

1 = immediate data

mum SS limit.

2) Exception 13 fault occurs if the memory operand in CS, DS, ES, FS, or GS cannot be used due to either a segment limit violation or an access rights violation. If a stack limit
is violated, an exception 12 occurs.

1 = 8-bit displacement

§ = 16-bit displacement

§ = 32-bit displacement
Notes: 1) Exception 13 fault (general protection) occurs in real mode if an operand reference is made that partially or fully extends beyond the maximum CS, DS, ES, FS, or GS segment
limit (FFFFh). Exception 12 fault (stack segment limit violation or not present) occurs in real mode if an operand reference is made that partially or fully extends beyond the maxi-

3) This is a protected mode instruction. Attempted execution in real mode will result in exception 6 (invalid opcode).

4) An exception may occur, depending on the value of the operand.

5) LOCK# is asserted during descriptor table accesses.
6) All segment descriptor accesses in the GDT or LDT made by this instruction automatically asserts LOCK# to maintain descriptor integrity in multiprocessor systems.
7) JMP, CALL, INT, RET, and IRET instructions referring to another code segment causes an exception 13, if an applicable privilege rule is violated.
8) The destination of a JMP, CALL, INT, RET, or IRET must be in the defined limit of a code segment or an exception 13 fault occurs.
9) An exception 13 fault occurs if CPL is greater than IOPL.
10)This instruction may be executed in real mode. In real mode, its purpose is primarily to initialize the CPU for protected mode.
11) An exception 13 fault occurs if CPL is greater than 0 (0 is the most privileged level).

12)Any violation of privilege rules as
13)For segment load operations, the

ly to the selector operand does not cause a Protection exception, rather, the zero flag is cleared.
L, RPL, and DPL must agree with the privolege rules to avoid an exception 13 fault. The segment’s descriptor must indicate present or

m = Flag modified

u = Flag unchanged

exception 11 occurs (DS, DS, ES, FS, GS not present). If the SS register is loaded and a stack segment not present is detected, an exception 12 occurs.

185 uonoNSU|

~
1
»

Table 7-17. Instruction Set (Continued)

Real-Mode Protected-Mode
Flags Clocks Clocks Notes
(o] I S A Cl:;i%le Cache Cl:i%Ie Cache | Real | Protected
Instruction Opcode F F F F Hit Miss Hit Miss Mode Mode
LOOPNZ/LOOPNE Offset EO} u u u u 8|4 94 8
LOOPZ/LOOPE Offset E1t u u u u 8j4 94 8
LSL Load Segment Limit u u u u 3 2,5,6,12
From Register/Memory OF 03[mod reg r/m] 14/15 17
LSS Load Pointer to SS OF B2[mod reg r/m] u u u u 7 8 19 20 2,6,13
LTR Load Task Register OF 00[mod reg r/m] u u u u 2,5,6,11
From Register/Memory 16/17 18
MOV Move Data u u u u 1 2,6,13
Register to Register/Memory 8 [110w] [mod reg r/m] 1/2 2 1/2 2
Register/Memory to Register 8 [101w] [mod reg r/m] 1/2 4 1/2 4
Immediate to Register/Memory C [011w] [mod 000 r/m]t . 1/2 2 172 2
Immediate to Register (short form) B [w reg]t 1 1
Memory to Accumulator (short form) Aooowly 2 4 2 4
Accumulator to Memory (short form) A [001w]| 2 2 2 2
Register/Memory to Segment Register 8E [mod sreg3 r/m] 2/3 5 15/16 18
Segment Register to Register/Memory 8C [mod reg r/m] 1/3 3 1/3 3
MOV Move to/from Control/Debug/Test Registers u u u u 1
Register to CRO/CR2/CR3 OF 22[11 eee reg] 14/3/3 14/3/3
CRO/CR2/CR3 to Register OF 20[11 eee reg] 2/3/3 2/3/3
Register to DRO-DR3 OF 23[11 eee reg] 10 10
DRO0-DR3 to Register OF 21[11 eee reg] 9 9
Register to DR6-DR7 OF 23[11 eee reg] 10 10
DR6-DR?7 to Register OF 21[11 eee reg] 9 9
Register to TR3-5 OF 26[11 eee reg] 10 10
TR3-5 to Register OF 2411 eee reg] 11 11
Register to TR6-TR7 OF 26[11 eee reg] 8 8
TR6-TR7 to Register OF 24{11 eee reg] 9 9
MOVS Move String A010w] u u u u 5 5 5 5 1
MOVSX Move with Sign Extension u u u u 1
Register from Register/Memory E B[111w] [mod reg r/m] 2/3 5 2/3 5
MOVZX Move with Zero Extension u u u u 1 2
Register from Register/Memory OF B[011w] [mod reg r/m] 2/3 5 2/3 5

185 uononsuf

1S uoponusuy

Sc-L

Table 7-17. Instruction Set (Continued)

Real-Mode Protected-Mode
Flags Clocks Clocks Notes
oO|D|L|T|S|Z|A|P|C CF;f:%Ie Cache c'::%le Cache | Real | Protected

Instruction Opcode F|F|\F|{F|F|F|F|F|F Hit Miss Hit Miss | Mode Mode
MUL Unsigned Multiply F [011w] [mod 100 r/m] mjujujfufujujujuim 1 2
Accumulator with Register/Memory
Multiplier: Byte 3/5 7 3/5 7

Word 3/5 7 3/5 7

Doubleword 10/9 14 10/9 14
NEG Negate Integer F [011w] [mod 011 r/m] mjujujum{m m|m|m 1/3 1/3 1 2
NOP No Operation 90 gjufjujujujufufulu 1 1
NOT Boolean Complement F [011w] [mod 010 r/m] ujufutulululufulu 1/3 5 1/3 5 1 2
OR Boolean OR OQlujujufm{m|{m|{m|O 1
Register to Register 0 [10dw] [11 reg r/m] 1 1
Register to Memory 0 [100w] [mod reg r/m] 3 5 3 5
Memory to Register 0 [101w] [mod reg r/m] 3 5 3 5
Immediate to Register/Memory 8 [000w] [mod 001 r/m]t 1/3 5 1/3 5
Immediate to Accumulator 0 [110w]t 1 1
OUT Output to Port ujujujulujuju|ulu 9
Fixed Port E [011w] [port number] 18 18 14\34 14\35
Variable Port E [111w] 18 18 14\34 14\35
OUTS Output String 6 [111w] ujlujuljufujujufu]|u 20 20 14\34 14\34 1 2,9

1 = immediate data

mum SS limit.

} = 8-bit displacement

§ = 16-bit displacement

§ = 32-bit displacement

m = Flag modified
Notes: 1) Exception 13 fault (general protection) occurs in real mode if an operand reference is made that partially or fully extends beyond the maximum CS, DS, ES, FS, or GS segment
limit (FFFFh). Exception 12 fault (stack segment limit violation or not present) occurs in real mode if an operand reference is made that partially or fully extends beyond the maxi-

u = Flag unchanged

2) Exception 13 fault occurs if the memory operand in CS, DS, ES, FS, or GS cannot be used due to either a segment limit violation or an access rights violation. If a stack limit
is violated, an exception 12 occurs.

3) This is a protected mode instruction. Attempted execution in real mode will result in exception 6 (invalid opcode).

4) An exception may occur, depending on the value of the operand.

5) LOCK# is asserted during descriptor table accesses.

6) All segment descriptor accesses in the GDT or LDT made by this instruction automatically asserts LOCK# to maintain descriptor integrity in multiprocessor systems.

7) JMP, CALL, INT, RET, and IRET instructions referring to another code segment causes an exception 13, if an applicable privilege rule is violated.

8) The destination of a JMP, CALL, INT, RET, or IRET must be in the defined limit of a code segment or an exception 13 fault occurs.

9) An exception 13 fault occurs if CPL is greater than IOPL.

10)This instruction may be executed in real mode. In real mode, its purpose is primarily to initialize the CPU for protected mode.

11) An exception 13 fault occurs if CPL is greater than 0 (0 is the most privileged level).

12)Any violation of privilege rules as apply to the selector operand does not cause a Protection exception, rather, the zero flag is cleared.

13)For segment load operations, the CPL, RPL, and DPL must agree with the privolege rules to avoid an exception 13 fault. The segment’s descriptor must indicate present or
exception 11 occurs (DS, DS, ES, FS, GS not present). If the SS register is loaded and a stack segment not present is detected, an exception 12 occurs.

188 uononsu|

~

9¢-

Table 7-17. Instruction Set (Continued)

Real-Mode Protected-Mode
Flags Clocks Clocks Notes
o 1| T|S|Z|A C CF;?:%/e Cache czi%/e Cache | Real | Protected

Instruction Opcode F F|F|F|F|F F Hit Miss Hit Miss | Mode Mode
POP Pop Value off Stack u uflujujuju u 1 26,13
Register/Memory 8F [mod 000 r/m] 3/5 4/5 3/5 4/5
Register (short form) 511 reg] 3 4 3 4
Segment Register (ES, CS, SS, DS) [000 sreg2 110] 8 9 8 9
Segment Register (ES, CS, SS, DS, FS, GS) OF [10 sreg3 001] 8 9 8 9
POPA Pop All General Registers 61 u ujufufulju u 18 18 18 18 1 2
POPF Pop Stack into Flags 9D m m{mim|m|m m 4 5 1 2,14
PREFIX BYTES u ujufu|uitu u 9
Assert Hardware LOCK Prefix FO
Address Size Prefix 67
Operand Size Prefix 66
Segment Override Prefix:

Ccs 2E

DS 3E

ES 26

FS 64

GS 65

SS 36
PUSH Push Value onto Stack u ujufufulu u 1 2
Register/Memory FF [mod 110 r/m] 2/4 4 2/4 4
Register (short form) 5[0 reg] 2 2 2 2
Segment Register (ES, CS, SS, DS) [000 sreg2 110] 2 2 2 2
Segment Register (ES, CS, SS, DS, FS, GS) OF [10 sreg3 000] 2 2 2 2
Immediate 6 [10s0]t 2 2 2 2
PUSHA Push All General Registers 60 u ujujululu u 17 17 17 17 1
PUSHF Push Flags Register 9C u ujulufulu u 2 2 2 1
RCL Rotate Through Carry Left m ulujujufu m 1
Register/Memory by 1 D [000w] [mod 010 r/m] 9/9 10 9/9 10
Register/Memory by CL D [001w] [mod 010 r/m] 9/9 10 9/9 10
Register/Memory by Immediate C [000w] [mod 010 r/m]t 9/9 10 9/9 10
RCR Rotate Through Carry Right m ulufufuju m 1 2
Register/Memory by 1 D [000w] [mod 011 r/m 9/9 10 9/9 10
Register/Memory by CL D [001w] [mod 011 r/m 9/9 10 9/9 10
Register/Memory by Immediate C [000w] [mod 011 r/m]t 9/9 10 9/9 10

185 uonansuy)

18S uononisuy

le-L

Table 7-17.

Instruction Set (Continued)

Real-Mode Protected
Flags Clocks Mode Clocks Notes
olpfi|tis|z|a|p|c| Be¥ | cache | BY | cache | Real |Protected

Instruction Opcode F|F|F|F|F|F|F|FI|F Hit Miss Hit Miss | Mode Mode
REP INS /nput String F2 6[110w] ufuj{ujufu|u|u|fuju| 20+9n | 20+9n | 5+9n\ 5+9n\ 1 2,9

18+9n 19+9n
REP LODS Load String F2 A[110w] ujulujujujujulufu]| 4+5n 4+5n 4+5n 4+5n 1 2
REP MOVS Move String F2 A[010w] ujufujfuju|ulufu|u| 5+4n 5+4n 5+4n 5+4n 1
REP OUTS Output String F2 6[111w] ujujujujujuju|u]|u| 20+4n | 20+4n 5+4n\ 5+4n\ 1 2,9

18+4n 19+4n
REP STOS Store String F2 A[101w] ufuj{ufufu|u|lufuju/| 3+4n 3+4n 3+4n 3+4n 1
REPE CMPS Compare String F3 A[011w] mlufjulu|/m|m|m|m|m| 5+8n 5+8n 5+8n 5+8n 1
(Find nonmatch)
REPE SCAS Scan String F3 A[111w] mjufuju|m|m|mim|m| 4+5n 4+6n 4+5n 4+6n 1 2
(Find non-AL/AX/EAX)
REPNE CMPS Compare String F2 A[011w] mfjufujuim|m|{m{m|m| 5+8n 5+8n 5+8n 5+8n 1 2
(Find match)
REPNE SCAS Scan String F2 A[111w] miulu{ul{m|m|{m{m|{m| 4+5n 4+6n 4+5n 4+6n 1 2
(Find AL/AX/EAX) '

1 = immediate data

mum SS limit.

1 = 8-bit displacement

§ = 16-bit displacement

q = 32-bit displacement
Notes: 1) Exception 13 fault (general protection) occurs in real mode if an operand reference is made that partially or fully extends beyond the maximum CS, DS, ES, FS, or GS segment
limit (FFFFh). Exception 12 fault (stack segment limit violation or not present) occurs in real mode if an operand reference is made that partially or fully extends beyond the maxi-

m = Flag modified

u = Flag unchanged

2) Exception 13 fault occurs if the memory operand in CS, DS, ES, FS, or GS cannot be used due to either a segment limit violation or an access rights violation. If a stack limit

is violated, an exception 12 occurs.

3) This is a protected mode instruction. Attempted execution in real mode will result in exception 6 (invalid opcode).

4) An exception may occur, depending on the value of the operand.
5) LOCK# is asserted during descriptor table accesses.
6) All segment descriptor accesses in the GDT or LDT made by this instruction autom

7) JMP, CALL, INT, RET, and IRET instructions referring to another code segment causes an exception 13, if an applicable privilege rule is violated.
8) The destination of a JMP, CALL, INT, RET, or IRET must be in the defined limit of a code segment or an exception 13 fault occurs.

9) An exception 13 fault occurs if CPL is greater than IOPL.

10)This instruction may be executed in real mode. In real mode, its purpose is primarily to initialize the CPU for protected mode.
11) An exception 13 fault occurs if CPL is greater than 0 (0 is the most privileged level).
12)Any violation of privilege rules as apply to the selector operand does not cause a Protection exception, rather, the zero flag is cleared.
13)For segment load operations, the CPL, RPL, and DPL must agree with the privolege rules to avoid an exception 13 fault. The segment’s descriptor must indicate present or

exception 11 occurs (DS, DS, ES, FS, GS not present). If the SS register is loaded and a stack segment not present is detected, an exception 12 occurs.
14)The IF bit of the flag register is not updated if CPL is greater than IOPL. The IOPL and VM fields of the flag register are updated only if CPL = 0.

atically asserts LOCK# to maintain descriptor integrity in multiprocessor systems.

185 uononIsuy

8c-L

Table 7-17. Instruction Set (Continued)

Real-Mode Protected-Mode
Flags Clocks Clocks Notes
olp|i(T|s|z(a|p|c| B9 | cache | BY | cache | Real |Protected

Instruction Opcode F|F|F F|F|F | F|F|F Hit Miss Hit Miss Mode Mode
RET Return from Subroutine ujlufujujujujufulu 1 2,5,6,7,8
Within Segment C3 10 10
Within Segment Add Immediate to SP C2§ 10 10
Intersegment CcB 13 13 26 26
Intersegment Add Immediate to SP CAS§ 13 13 26 27
Protected Mode: Different Privilege Level

Intersegment 69 72

Intersegment Add Immediate to SP 69 72
ROL Rotate Left m{u{u|{ulufu]u|ulm o 2
Register/Memory by 1 D [000w] [mod 000 r/m] 2/4 6 2/4 6
Register/Memory by CL D [001w] [mod 000 r/m] 3/5 7 3/5 7
Register/Memory by Immediate C [000w] [mod 000 r/m]t 2/4 6 2/4 6
ROR Rotate Right mjujujufu|luluju|m 1 2
Register/Memory by 1 D [000w] [mod 001 r/m] 2/4 6 2/4 6
Register/Memory by CL D [001w] [mod 001 r/m] 3/5 7 3/5 7
Register/Memory by Immediate C [000w] [mod 001 r/m]t 2/4 6 2/4 6
RSDC Restore Segment Register and OF 79 [mod sreg3 r/m] ujujujufujufuju]u 14 14 15 15
Descriptor
RSLDT Restore LDTR and Descriptor OF 78 [mod 000 r/m] ujufufulujujufulu 14 14 15 15
RSM Resume from SMM Mode oF AA ujujulujujujulfuiu 76 76 15 15
RSTS Restore TSR and Descriptor OF 7D [mod 000 r/m] ujufufulujujujul|u 14 14 15 15
SAHF Store AH in Flags 9E ujlu|ufulmim|u|[m|m 2 2
SAL Shift Left Arithmetic mjujuju|(m|m|u|m|m
Register/Memory by 1 D [000w] [mod 100 r/m] 2/4 6 2/4 6
Register/Memory by CL D [001w] [mod 100 r/m] 3/5 7 3/5 7
Register/Memory by Immediate C [000w] [mod 100 r/m]t 2/4 6 2/4 6
SAR Shift Right Arithmetic mjujululm|m{m|m|m
Register/Memory by 1 D [000w] [mod 111 r/m] 2/4 6 2/4 6
Register/Memory by CL D [001w] [mod 111 r/m] 3/5 7 3/5 7
Register/Memory by Immediate C [000w] [mod 111 r/m]t 2/4 5 2/4 8

1eg uoljoniisuy

18S uojonusuy

6¢c-L

Table 7—-17. Instruction Set (Continued)

Real-Mode Protected-Mode
Flags Clocks Clocks Notes
ODII|T|S|Z|A|P|C Cl:?:?ile Cache cRai%/e Cache | Real | Protected
Instruction Opcode FIF|F{F|F|F|F|F|F Hit Miss Hit Miss | Mode Mode
SBB Integer Subtract with Borrow mfiujujuimimim| mim 1 2
Register to Register 1 [10dw] [11 reg r/m] 1 1
Register to Memory 1 [100w] [mod reg r/m] 3 5 3 5
Memory to Register 1[101w] [mod reg r/m] 3 5 3 5
Immediate to Register/Memory 8 [00sw] [mod 011 r/m]t 1/3 5 1/3 5
Immediate to Accumulator (short form) 1 [110w]t 1 1
SCAS Scan String A111w] mjujlujuimimimimim 6 6 6 6 1
SETB/SETNAE/SETC Set Byte on Below/ ujujufujujufujuiu
Not Above or Equal/Carry
To Register/Memory OF 92[mod 000 r/m] 2/2 2 2/2 2
SETBE/SETNA Set Byte on Below or Equal/ ujujujujlujujujutu 2
Not Above
To Register/Memory OF 96 [mod 000 r/m] 2/2 2 2/2 2
SETE/SETZ Set Byte on Equal/Zero Register/ ujufujfulujujufu|u 2
Memory OF 94 [mod 000 r/m] 2/2 2 2/2 2
SETL/SETNGE Set Byte on Less/ ujujufufujujuiufu 2
Not Greater or Equal
To Register/Memory OF 9C[mod 000 r/m] 2/2 2 2/2 2
SETLE/SETNG Set Byte on Less or Equal/ ufujujufujufujulu 2
Not Greater
To Register/Memory OF 9E[mod 000 r/m] 2/2 2 2/2 2
1t = immediate data 1 = 8-bit displacement § = 16-bit displacement § = 32-bit displacement m = Flag modified u = Flag unchanged

Notes: 1) Exception 13 fault (general protection) occurs in real mode if an operand reference is made that partially or fully extends beyond the maximum CS, DS, ES, FS, or GS segment
limit (FFFFh). Exception 12 fault (stack segment limit violation or not present) occurs in real mode if an operand reference is made that partially or fully extends beyond the maxi-
mum S8 limit.

2) Exception 13 fault occurs if the memory operand in CS, DS, ES, FS, or GS cannot be used due to either a segment limit violation or an access rights violation. If a stack limit
is violated, an exception 12 occurs.

3) This is a protected mode instruction. Attempted execution in real mode will result in exception 6 (invalid opcode).

4) An exception may occur, depending on the value of the operand.

5) LOCK# is asserted during descriptor table accesses.

6) All segment descriptor accesses in the GDT or LDT made by this instruction automatically asserts LOCK# to maintain descriptor integrity in multiprocessor systems.

7) JMP, CALL, INT, RET, and IRET instructions referring to another code segment causes an exception 13, if an applicable privilege rule is violated.

8) The destination of a JMP, CALL, INT, RET, or IRET must be in the defined limit of a code segment or an exception 13 fault occurs.

15)All memory accesses using this instruction are noncacheable as this instruction uses SMM address space.

18s uononusuy

0¢-£L

Table 7—-17. Instruction Set (Continued)

Real-Mode Protected-Mode
Flags Clocks Clocks Notes
0 I{Ts|z ced/ | cache | 9 | Cache | Real | Protected
Instruction Opcode F FIFIFIF Hit Miss Hit Miss | Mode Mode
SETNB/SETAE/SETNC Set Byte on Not Below/ u uflufulu 2
Above or Equal/Not Carry
To Register/Memory OF 93[mod 000 r/m] 2/2 2 2/2 2
SETNBE/SETA Set Byte on Not Below or u ujujfuifu 2
Equal/ Above
To Register Memory OF 97[mod 000 r/m] 2/2 2 2/2 2
SETNE/SETNZ Set Byte on Not Equal/ u ujuifufu 2
Not Zero
To Register/Memory OF 95[mod 000 r/m] 2/2 2 2/2 2
SETNL/SETGE Set Byte on Not Less/ u ulufuifu 2
Greater or Equal
To Register/Memory OF 9D [mod 000 r/m} 2/2 2 2/2 2
SETNLE/SETG Set Byte on Not Less or u ujujulu 2
Equal/Greater
To Register/Memory OF 9F[mod 000 r/m] 2/2 2 212 2
SETNO Set Byte on Not Overflow u uflufuju 2
To Register/Memory OF 91[mod 000 r/m] 2/2 2 2/2 2
SETNP/SETPO Set Byte on Not Parity/ u ulujuiju 2
Parity Odd
To Register/Memory OF 9B[mod 000 r/m] 2/2 2 2/2 2
SETNS Set Byte on Not Sign u ufufulu 2
To Register/Memory OF 99[mod 000 r/m] 2/2 2 2/2 2
SETO Set Byte on Overflow u ujfujulu 2
To Register/Memory OF 90[mod 000 r/m] 2/2 2 2/2 2
SETP/SETPE Set Byte on Parity/Parity Even u ufufuju 2
To Register/Memory OF 9A[mod 000 r/m] 212 2 22 2
SETS Set Byte on Sign u ujujfuiju 2
To Register/Memory OF 98[mod 000 r/m] 2/2 2 2/2 2
SGDT Store GDT Register u ulujuiu 1,10 2
To Register/Memory OF 01[mod 00 r/m] 6 6 6 6
SHL Shift Left Logical m ufu|mim 1 2
Register/Memory by 1 D [000w] [mod 100 r/m] 1/3 5 1/3 5
Register/Memory by CL D [001w] [mod 100 r/m] 2/4 6 2/4 6
Register/memory by Immediate C [000w] [mod 100 r/m]t 1/3 5 1/3 5

188 uononsu|

Table 7—-17. Instruction Set (Continued)

Real-Mode Protected-Mode
Flags Clocks Clocks Notes
olpl1|T|s|z|a|p|c| ¥ | cache | BY | cache | Real | Protected
Instruction Opcode F|F|F|F|F|F|F|F|F Hit Miss Hit Miss | Mode Mode
SHLD Shift Left Double ufufulufm{m|u|m|m
Register/memory by Immediate OF A4[mod reg r/m]{ 1/3 5 1/3 5
Register/Memory by CL OF A5[mod reg r/m] 3/5 7 3/5 7
SHR Shift Right Logical mjujlujulm{mf{u|m|m 1 2
Register/Memory by 1 D [000w] [mod 101 r/m] 1/3 5 1/3 5
Register/Memory by CL D [001w] [mod 101 r/m] 2/4 6 2/4 6
Register/Memory by Immediate C [000w] [mod 101 r/m]t 13 4 1/3 4
SHRD Shift Right Double ujujujulm|mju{mim
Register/Memory by Immediate OF AC[mod reg r/m]t 13 5 1/3 5
Register/Memory by CL OF AD[mod reg r/m] 3/5 7 3/5 7
SIDT Store IDT Register ufujululululuiulju 1,10 2
To Register/Memory OF 01[mod 001 r/m} 8 8 8 8
SLDT Store LDT Register ujujujujujuiujulu 3 2
To Register/Memory OF 00[mod 000 r/m] 2/3
SMSW Store Machine Status Word OF 01[mod 100 r/m] ufulujujfujufuiulu 2/4 4 2/4 1,10 2,11
STC Set Carry Flag F9 ujujulufu|ujujul1 1
STD Set Direction Flag FD ulijufujujufufulu 2
STI Set Interrupt Flag FB uluf(tjulufufujulu 4 9

1 = immediate data

} = 8-bit displacement

§ = 16-bit displacement

{ = 32-bit displacement

m = Flag modified

u = Flag unchanged

18 uononsy|

1e-L

Notes: 1) Exception 13 fault (general protection) occurs in real mode if an operand reference is made that partially or fully extends beyond the maximum CS, DS, ES, FS, or GS segment

limit (FFFFh). Exception 12 fault (stack segment limit violation or not present) occurs in real mode if an operand reference is made that partially or fully extends beyond the maxi-
mum SS limit.

2) Exception 13 fault occurs if the memory operand in CS, DS, ES, FS, or GS cannot be used due to either a segment limit violation or an access rights violation. If a stack limit
is violated, an exception 12 occurs.

3) This is a protected mode instruction. Attempted execution in real mode will result in exception 6 (invalid opcode).

4) An exception may occur, depending on the value of the operand.

5) LOCK# is asserted during descriptor table accesses.

6) All segment descriptor accesses in the GDT or LDT made by this instruction automatically asserts LOCK# to maintain descriptor integrity in multiprocessor systems.

7) JMP, CALL, INT, RET, and IRET instructions referring to another code segment causes an exception 13, if an applicable privilege rule is violated.

8) The destination of a JMP, CALL, INT, RET, or IRET must be in the defined limit of a code segment or an exception 13 fault occurs.

9) An exception 13 fault occurs if CPL is greater than IOPL.

10)This instruction may be executed in real mode. In real mode, its purpose is primarily to initialize the CPU for protected mode.

11) An exception 13 fault occurs if CPL is greater than 0 (0 is the most privileged level).

185 uotionuisuy

(4504

Table 7—17. Instruction Set (Continued)

Real-Mode Protected-Mode
Flags Clocks Clocks Notes
Reg/ Reg/
O|D|1 |T|[S|Z|A|P|C Cache Cache | Real | Protected
Cache : Cache .
Instruction Opcode F|F/{F F|F/F|F F|F Hit Miss Hit Miss Mode Mode
STOS Store String A[101w] ujujufulufujujul|u 3 3 3 3 1
STR Store Task Register ujujufufujujujuiu 3
To Register/Memory OF 00[mod 001 r/m] 1/2 2
SUB Integer Subtract mijujuju|mim|m|m|m 1 2
Register to Register 2 [10dw] [11 reg r/m] 1 1
Register to memory 2 [100w] [mod reg r/m] 3 5 3 5
Memory to Register 2 [101w] [mod reg r/mj 3 5 3 5
Immediate to Register/Memory 8 [00sw] [mod 101 r/m]t 1/3 5 1/3 5
Immediate to Accumulator (short form) 2 [110w]t 1 1
SVDC Save Segment Register and Descriptor | OF 78 [mod sreg3 r/m}] ujujufufujujujuju 22 22 15 15
SVLDT Save LDTR and Descriptor OF 7A [mod 000 r/m} ujujufu|lujujululfu 22 22 15 15
SVTS Save TSR and Descriptor OF 7C [mod 000 r/m] ujujufjufujufufulu 22 22 15 15
TEST Test Bits Ofujululm|miu{m|O 1 2
Register/Memory and Register 8 [010w] [mod reg r/m] 1/3 5 1/3 5
Immediate Data and Register/Memory F [011w] jmod 000 r/m]t 1/3 5 1/3 5
Immediate Data and Accumulator A [100w]t 1 1
VERR Verify Read Access ujulufujumfufuju 3 2,5,6,12
To Register/Memory OF 00[mod 100 r/m] 9/10 12
VERW Verify Write Access ujujufujumiujulu 3 2,5,6,12
To Register/Memory OF 00[mod 101 r/m] 9/10 12
WAIT Wait Until FPU Not Busy 9B uju|lufujujujujulu 5 5 5
WBINVD Write-Back and Invalidate Cache OF 09 ujujufujujujufuijfu 8
XADD Exchange and Add mijujujuimimim|m|m
Register1, Register2 OFC[000w] [11 reg2 reg1] 3 3
Memory, Register OFC[000w] [mod reg r/m) 6 6 6 6
XCHG Exchange ujulufujujujuluifu 1,16 2,16
Register/Memory with Register 8 [011w] [mod reg r/m] 3/5 5 3/5 5
Register with Accumulator 9 [0 reg] 3 3

1S uononsuy)

185 uononsuy

€e-L

Table 7-17. Instruction Set (Continued)

Real-Mode Protected-Mode
Flags Clocks Clocks Notes
olplt|T|s|z|a|p|c| Y | cache | BY | cache | Real | Protected
. F|F|\F|F|F|F|F|F|F . Miss : Miss | Mode Mode

Instruction Opcode Hit Hit

XLAT Translate Byte D7 uju|luflu|lu|ujujulfu 3 5 3 5

XOR Boolean Exclusive OR Oju|lujuim{m|u{m|O 1 2
Register to Register 3 [00dw] [11 reg r/m} 1 1

Register to Memory 3 [000w] [mod reg r/m}] 3 5 3 5

Memory to Register 3 [001w] [mod reg r/m 3 5 3 5

Immediate to Register/Memory 8 OOSW% [mod 110 r/m]t 1/3 5 1/3 5

Immediate to Accumulator (short form) 3[010w]t 1 1
1 = immediate data 1 = 8-bit displacement § = 16-bit displacement q = 32-bit displacement m = Flag modified u = Flag unchanged

Notes:

) Exception 13 fault (general protectione(occurs in real mode if an operand reference is made that partially or fully extends beyond the maximum CS, DS, ES, FS, or GS segment
limit FSFSFIFh). Exception 12 fault (stack segment limit violation or not present) occurs in real mode if an operand reference is made that partially or fully extends beyond the maxi-
mum imit.

2) Excef)tion 13 fault oceurs if the memory operand in CS, DS, ES, FS, or GS cannot be used due to either a segment limit violation or an access rights violation. If a stack limit
is violated, an exception 12 occurs.

3) This is a protected mode instruction. Attempted execution in real mode will result in exception 6 (invalid opcode).

4) An exception may occur, depending on the value of the operand.

5) LOCK# is asserted during descriptor table accesses.

6) All segment descriptor accesses in the GDT or LDT made by this instruction automatically asserts LOCK# to maintain descriptor integrity in multiprocessor systems.

7) JMP, CALL, INT, RET, and IRET instructions referring to another code segment causes an exception 13, if an applicable privilege rule is violated.

8) The destination of a JMP, CALL, INT, RET, or IRET must be in the defined limit of a code segment or an exception 13 fault occurs.

9) An exception 13 fault occurs if CPL is greater than IOPL.

10)This instruction may be executed in real mode. In real mode, its purpose is primarily to initialize the CPU for protected mode.

11) An exception 13 fault occurs if CPL is greater than 0 (0 is the most privileged level).

12)Any violation of privilege rules as a&gly to the selector operand does not cause a Protection exception, rather, the zero flag is cleared.

13)For segment load operations, the CPL, RPL, and DPL must agree with the Frivolege rules to avoid an exception 13 fault. The segment’s descriptor must indicate present or
excelptlon 11 occurs (DS, DS, ES, FS, GS not é)resent). If the SS register is loaded and a stack segment not present is detected, an exception 12 occurs.

14)The IF bit of the flag register is not updated if CPL is greater than IOPL. The IOPL and VM fields of the flag register are updated only if CPL = 0.

15)All memory accesses using this instruction are noncacheable as this instruction uses SMM address space.

16)LOCK(# is automatically asserted, regardless of the presence or absence of the LOCK prefix.

188 uononusuy

7-34

Appendix A

_SMM Programmer’s Guide

This programmers guide provides detailed information including examples
pertinent to programming the TI486SXL(C) system management mode
(SMM). Included are SMI examples, testing/debugging SMM code, power
management features, loading SMM programs, detection of CPU type,
presence of SMM-capable devices, creating macros, and altering SMM code
limits.

Topic Page

A-1

SMM Overview

A.1 SMM Overview

A.1.1 Introduction

This programmer’s guide has been written to aid programmers in the creation
of software using the TI486SXL(C) family of microprocessors system man-
agement mode (SMM). SMM is currently implemented in all versions of the
T1486SXL(C) microprocessors.

For an introduction to SMM and additional information, refer to Section A.3,
SMM Features Comparison (page A-4), which compares the differences be-
tween the T1486SXLC and the TI486SXL and other industry offerings that im-
plement SMM, and Subsection A.14.3, Clearing the VM Flag Bit (page A-42),
which contains important information concerning SMM programming.

A.1.2 SMM Implementation

A-2

SMM operation in the T1486SXL(C) microprocessors is similar to related op-
erations performed by the Advanced Micro Devices and Intel Corporation mi-
croprocessors. Each of these three microprocessors switches into real mode
upon entry into the SMM interrupt handler. Each manufacturer’s CPU has
unique SMM code locations. The TI CPU has a programmable location and
size for the SMM memory region. Each of the manufacturer’s processors
saves the programmer-visible register contents upon entry and also saves the
nonprogrammer-visible register contents. The TI CPU automatically saves the
minimal register information, reducing the entry and exit clock count to 140.
This compares with Intel’s clock overhead for entry and exit of 804 clocks and
AMD’s minimum of 694 clocks. (See Section A.3, SMM Feature Comparison
(page A-4), for a comparison of SMM overhead.)

The SMM implementation provides unique instructions that save additional
segment registers as required by the programmer, in addition to the x86 MOV
instruction that saves the general-purpose registers.

Although all three manufacturers’ CPUs provide 1/O trapping, the
TI486SXL(C) microprocessors SMM simplifies identification of /O type and
instruction restarting. The TICPU SMM process is unique in its ability to permit
software relocation and sizing of the SMM address region. This flexibility facili-
tates run-time changes to SMM support. This software flexibility allows an op-
erating system or debugger to change, modify, or disable the SMM code.

TI486SXL(C) Microprocessor Power Management Features

A.2 TI486SXL(C) Microprocessor Power Management Features

The TI486SXL.(C) microprocessor family provides several methods and levels
of power management. The fully static design, suspend mode, system man-
agement mode (SMM), and 3.3-V operation can be used to achieve optimum
CPU and system power management. Table A-1 summarizes the various
power management options:

Table A—1.Power Management Options

Option Power Savings

Reduced Clock Frequency Icc = (12 x foLk2 (MHz) + 150 MA@ 5 V
Lower Supply Voltage (Vce) Icc = (130 x Vo) — 256 mA @ 25 MHz
Suspend Mode 2% of typical Igg

Remove Clock 25% of typical Igc

Suspend Mode and Remove Clock 400 uA

Remove Power O pA

A.2.1 Reducing the Clock Frequency

The T1486SXL(C) microprocessor family is a fully static design; the input clock
frequency can be reduced or stopped without a loss of internal CPU data or
state. The system designer can make decisions to reduce the clock by using
the SMM capabilities to support Advanced Power Management (APM) soft-
ware APl in concert with chipset capabilities. When the clock is removed, then
restarted, CPU execution begins with the instruction where the clock was re-
moved. It should be noted that the clock-doubled versions of TI486SXL(C)
family must be brought into the nonclock-doubled mode before scaling or stop-
ping the input CLK2.

A.2.2 Suspend Mode

The TI1486SXL(C) microprocessor family supports suspend mode operation
that can be entered either through software or hardware initiation.

Software initiates suspend mode through execution of a halt (HLT) instruction.
After HLT is executed, the CPU enters suspend mode and asserts suspend
acknowledge (SUSPA#), if enabled.

Hardware initiates suspend mode by using the SUSP# and SUSPA# pins of
the microprocessor. When SUSP# is asserted the CPU completes any pend-
ing instructions and bus cycles and then enters suspend mode. Once in sus-
pend mode, the SUSPA# pin is asserted by the CPU.

SMM Programmer’s Guide A-3

SMM Feature Comparison

A.3 SMM Feature Comparison
The SMM features of the TI486SXLC and TI486SXL microprocessors are

compared with other versions of microprocessors in Table A-2.

Table A—2.SMM Features

Feature

TI486SXLC

TI486SXL

386SL

AMD

SMM Entry Point

Base of SMM space
(0 to 32M bytes less
4K bytes)

Base of SMM space
(0 to 4G bytes less
4K bytes)

38000h

Reset vector

CPU State Save Top of SMM space Top of SMM space 3FFA8h-3FFFFh 60000h—600CAh
Area and 60100h—60126h
SMM Space Programmable Programmable 38000/30000h Entire address

(4K to 16M) (4K 10 4G) (32K/64K) space

Data Auto-Saved

8 32-bit registers
1 16-bit register
1 4-bit register

8 32-bit registers
1 16-bit register
1 4-bit register

44 32-bit registers
9 16-bit registers

53 32-bit registers
8 16-bit registers

SMM Memory None None 8-bit on 8-MHz Nonpipelined
Restrictions XD Bus No dynamic bus siz-
ing
Normal Mode Yes Yes Yes No
SMM-Memory
Access
Hardware Pins 2 2 NA — Must use 4
82360
Incremental CPU Yes Yes No No
State Save
Instructions
I/O Trapping Yes Yes Yes Yes
SMi# Input Yes Yes Yes No
Masking

t Address region 4 register is 32 bits wide to support 4G-byte physical address space.

A-4

SMM Hardware Considerations

A.4 SMM Hardware Considerations

A4.1 SMM

Pins

The following sections provide an overview of TI486SXL(C) SMM coding and
information helpful in developing SMM code.

The SMI# and SMADS# pins are used to implement SMM. The bidirectional
SMI# pin is used by the chipset to signal the CPU that an SMI has occurred.
While the CPU is in the process of servicing an SMM interrupt, the same pin
is used to send a signal to the chipset to indicate that the SMM processing is
occurring. The SMADS# address strobe is generated instead of the ADS# ad-
dress strobe while executing or accessing data in SMM address space.

A.4.2 SMI# Pin Timing

In order to enter the system management mode, the SMi# pin must be as-
serted for at least four CLK2 periods. See Figure A—1. Once the CPU recog-
nizes the active SMI input, the CPU drives the SMI input low for the duration
of the SMI routine. The SMI routine is terminated with an SMI-specific resume
(RSM) instruction. When the RSM instruction is executed, the CPU drives the
SMI# pin high for two CLK2 periods. The SMI# pin bidirectional design:

(1 Prohibits more than one SMI interrupt from becoming active.
[Provides feedback to the chip-set/core logic that an SMI is in process.

[Provides compatibility with other SMM hardware interfaces.

Figure A-1. SMI# Timing

CLK2

o1 ¢2 |

o1 92101 02 lo1 92 Lot 92 lo1 g2 1ot 02 o1 92 lo1 o2 1ot 921 g2 le1 ¢ |
SMi# : } \

|] | | |
N| | I | |
|\ | | |]
| | I | I
I

Ol — — — — —

1 2 3

=wme [Ndicates that TI486SXLC drives the SMI# pin.

A.4.3 Address Strobes

The TI486SXL(C) microprocessor has two address strobes, ADS# and
SMADS#. ADS# is the address strobe used during normal operations. The
SMADSH# address strobe replaces ADS# during SMM operations when data
is written, read, or fetched in the SMM defined region. Using a separate ad-
dress strobe increases chipset compatibility and control.

During an SMM interrupt routine, control can be transferred to main memory
via a JMP, CALL, Jcc (conditional jump, cc = condition code) instruction or

SMM Programmer’s Guide A-5

SMM Hardware Considerations

execution of a software interrupt (INT). Execution in main memory causes
ADS# to be generated for code and data outside of the defined SMM address
region. (It is assumed, but not required, that the chipset ultimately translates
SMADS# and a particular address to some other address.) To access code in
main memory that overlaps the SMM address space, the MMAC bit (CCR1,
bit 3) must be set. This allows ADS# strobes to be generated for MOV instruc-
tions that overlap main memory while in SMM mode. It is not possible to
execute code in main memory that overlaps SMM space while in the SMM
mode.

SMADS# can also be generated for memory reads, writes, and code fetches
within the defined SMM region when the SMAC bit, configuration control 1 reg-
ister (CCR1) bit 2, is set while in normal mode. (See subsection 2.5.4, Configu-
ration Registers on page 2-26, for further information on CCR1). The genera-
tion of SMADS# permits a program in normal space to jump into SMM code
space. Care should be taken to be in real mode before the jump occurs into
SMM space. A routine should be followed to initialize used registers to their
real-mode state. The RSM instruction should not be used after jumping into
SMM space unless return information is first written into the SMM context area
before the RSM instruction is executed.

A.4.4 Chipset READY#

A-6

The T1486SXL(C) microprocessors have one READY# input. chipsets that im-
plement the dual READY lines can OR the two ready lines together for the
single READY#. The AMD implementation of SMM provides for two READY
lines from the chipset, one for SMM space (SREADY#) and one for the normal
READY#.

SMM Software Considerations

A.5 SMM Software Considerations

At the start of the SMM routine, before control is transferred to code executing
at SMM base, some of the CPU state is saved at the end of SMM memory. This
is one area where the CPU SMM state is unique. The CPU saves the minimum
CPU state information necessary for an interrupt handler to execute and return
to the interrupted context. The information is saved at the top of the defined
SMM region (starting at SMM base + size — 30h). Of the typically used program
registers, only the CS, EFLAGS, CRO, and DR7 are saved upon entry. This
requires that data accesses use a CS segment override to save other registers
and access data. To use any other register, the SMM programmer must first
save the contents using the SVDC instruction for segment registers or MOV
operations for general purpose registers (See Section A.7, SMM Instruction
Summary and Macros, page A-12). It is possible to save all the CPU registers
as needed.

Unique to the TI486SXL(C) microprocessors is the saving of the previous IP
before the SMI and the next IP to be executed after exiting the SMI handler.
Upon execution of an RSM instruction, control is returned to the NEXT IP. The
value of the NEXT IP may need to be modified for restarting OUTSx/INSx
instructions; this modification is a simple move (MOV) of the PREVIOUS IP
value to the NEXT IP location. Execution is then returned to the I/O instruction,
rather than the instruction after the next I/O instruction. (The restarting of I/O
instructions may also require modifications to the ESI, ECX, and ED! depend-
ing on the instruction. See Section A.8, SMI Handler Example (page A-17), for
typical code used.)

Figure A—2 and Table A—3 describe the SMM memory space header. The P
and | bits indicate whether a INSxYOUTSx and REP prefix were being
executed. IN/OUT instructions are restarted by changing NEXT IP and leaving
the SMI handler.

Note:

The only area in the SMM header that the programmer should consider alter-
ing is the NEXT IP. Altering any other header values can have unpredictable
results.

The EFLAGS, CRO, and DR7 registers are set to the reset values upon entry
to the SMI handler. This has implications for setting break points using the de-
bug registers. Break points cannot be set prior to the SMI using debug regis-
ters. The INT 3 debug code trap technique can be used, however, it must be
used prior to the occurrence of the SMi in SMM space. Once the SMI has oc-
curred and the debugger has control in SMM space, the debug registers can
be used for the remaining SMI execution.

SMM Programmer’s Guide A7

SMM Software Considerations

Figure A—2. SMM Memory Space Header

31 0
Top of SMM —» DR7
Address Space -4h
EFLAGS
-8h
CRO
-Ch
Current IP 10h
Next IP
31 16 15 0!.14h
Reserved CS Selector 18h
-18
CS Descriptor (Bits 63—32)
-1Ch
34 CS Descriptor (Bits 31-0) 210 20h
Reserved ' P{1
-24h
Reserved
-28h
Reserved
-2Ch
ESI or EDI
-30h
Table A-3. SMM Memory Space Header
Name Description Size
DR7 The contents of the debug register 7 4 Bytes
EFLAGS The contents of the extended flag-word register 4 Bytes
CRO The contents of the control register 0 4 Bytes
Current IP The address of the instruction executed prior to servicing the SMI interrupt 4 Bytes
Next IP The address of the next instruction that will be executed after exiting the SMM mode 4 Bytes
CS Selector Code segment register selector for the current code segment 2 Bytes
CS Descriptor Code register descriptor for the current code segment 8 Bytes
P REP INSx/OUTSx Indicator 1 Bit
P = 1 if current instruction has a REP prefix
P =0if current instruction does not have REP prefix
| IN, INSx, OUT, or OUTSx Indicator 1 Bit
| = 1 if current instruction performed is an IO WRITE
I = 0 if current instruction performed is an 1/O READ
ESI or EDI Restored ESI or EDI value. Used when it is necessary to repeat an REP OUTSx or 4 Bytes

REP INSx instruction when one of the I/O cycles caused an SMI# trap

Note: INSx = INS, INSB, INSW, or INSD instruction.
Note: OUTSx = OUTS, OUTSB, OUTSW, or OUTSD instruction.

A-8

SMM Software Considerations

A.5.1 Exiting the SMI Handler

When the RSM instruction is executed at the end of the SMI handler, the IP
is loaded from the top of the SMM at the address (SMMbase +SMMsize — 14h)
called SMI_NEXTIP. This permits the instruction to be restarted. The values
of ECX, ESI, and EDI, prior to the execution of the instruction that was inter-
rupted by SMI, can be restored from information in the header that pertains to
the INx and OUTx instructions. The only registers that are restored from the
SMM header are CS, NEXT_IP, EFLAGS, CRO, and DR?7.

A.5.2 Accessing Main Memory At the Same Address as SMM Code

To access main memory overlapping the SMM space (i.e., generate ADS#
from memory MOV instructions rather than SMADS#) set the MMAC (main
memory access) bitin CCR1. The following code enables MMAC:

Example A-1. Accessing Main Memory Overlapping SMM Space

mov al, Oclh ;select CCR1

out 22h, al

in al, 23h ;get CCR1 current value
mov ah, al ;save it

mov al, Oclh

out 22h, al

mov al, ah

or al, 08h ;set MMAC

out 23h, al
;Now all non—cs—prefixed data memory access will use ADS#;
;Code fetches will continue from SMM memory using SMADS#
H

;Disable MMAC

mov al, Oclh ;select CCR1

out 22h, al

mov al, ah ;get old value of CCR1
out 23h, al ;and restore it

A.5.3 Miscellaneous Execution Details

The following list provides additional details pertaining to the execution of
instructions associated with SMM/SMI functions.

1 Execution of SMM code begins at the start of SMM space. This is the value
entered onto the base portion of AAR4. The CS base will be set to the
ARR4 SMM base, and EIP will be equal to 0. CS limit will be the size of
the SMM segment set in ARRA4.

[The A20#input to the CPU is ignored for all SMM space accesses. These
are all accesses which use SMADS#.

[All SMM instructions can be executed outside the SMM defined space,
provided that SMAC bit is set in CCR1 or execution of an SMI handler is
in progress. (An SMI handler is “in progress” during the time the CPU is
driving the SMI pin low.)

SMM Programmer’s Guide A9

SMM Software Considerations

[d Setting the MMAC bit permits the reading and writing of main memory
addresses that overlap SMM memory while an SMI is in progress.

O ltis not possible to execute code in main memory that overlaps SMM
memory addresses while an SMI is in progress.

O NMIis the only enabled interrupt at the entry to the SMI handier. It is ad-
vised that system designers provide laiches to disable NMI while the SMI
is in progress.

[The SMI handler can execute calls, jumps, and other changes of flow and
will generate software interrupts and faults using the current definition of
the IDT. (Note that on entry to the SM! handler, the IDT is not set to the
reset real-mode value of 0:0.)

1 The SMihandler cango from real mode to protected mode and vice-versa.
Almost anything that can be done normally can also be done during the
SMI service routine.

1 SMM memory is not cached.

O lithe location of SMM space is beyond 1M byte, the value in CS truncates
the segment above 16 bits. This would prohibit doing calls or INTS from
real mode without restoring the 32-bit features of the 486 because of the
incorrect return address on the stack.

[Anundefined opcode exceptionis typically generated when conditions are
not correct to permit the execution of SMM instructions.

[To execute outside the SMM region (BIOS, debugger, etc.) the CS limit
must be changed after entry to the SMI handler. The limit of the CS seg-
ment register is set to the size of the SMM region in ARR4. This means
that EIP cannot become larger than the SMM region size. Since jumps in
real mode do not change the CS limit, this has implications for software
interrupts and jumps out of SMM space. (See Section A.13, Altering SMM
Code Limits on page A-34 for details and options.)

O Segment registers other than the CS have the limits set in the nonpro-
grammer-visible portion that were present before the SMI. To avoid a
protection error due to limit or other violation, the RSDC SMM instruction
should be used to change the limit of the register in use. (See Section A.12,
Format of Data Used by SVDC/RSDC Instructions on page A-32.)

A-10

Enabling SMM

A.6 Enabling SMM

The enabling and setup of SMM in the CPU is done by setting all four of the
SMM registers/bits to the values shown in Table A—4 by using the code sup-

Table A—4.Setting SMM Register Bits

plied in Example A-2.

See subsection 2.5.4, Configuration Registers (page 2-26), for further in-
formation on CCR1 and ARR4.

Register/Bit Locationt Value Description

SMI CCR1 bit 1 1 Enable SMI pin

SM4 CCR1 bit7 1 Make ARR4 as SMM space
SM_loc ARR4 bits 124 Start SMM region SMM base address
SM_size ARR4 bits 3-0 > 4KB and < 16MB SMM size

Example A-2. SMM Setup

Setup example

;SMM Location =
;SMM Size = 8KB

mov
out
in

or

mov
out
out
mov
out
mov
out
mov
out
mov
out

al, Oclh
22h, al
ah, 23h
ah, 082h
al, Oclh
22h, al
23h, ah
al, Oceh
22h, al
al, Och
23h, al
al, Ocfh
22h, al
al, 082h
23h, al

0C8000H

e s N Ne Ne Ne Ne Ne e

~e we Ne ~o

index to CCR1

select CCR1 register

read current CCR1 value

enable SMI and SM4 region

index to CCRI1

select CCR1 register

write new value to CCR1

index ARR4 SMM base address bits <23-16>
select

set ARR4 SMM base address upper bits
write value

index ARR4 SMM base address bits <15-12>
and 4 bits for SMM size

set SMM lower address bits and SMM size
write value

SMM Programmer’s Guide A-11

SMM Instruction Summary and Macros

A.7 SMM Instruction Summary and Macros

A-12

The T1486SXL(C) microprocessor responds to seven instructions when itis in
SM mode that are not standard instructions. The seven instructions include:

[Two that save and restore a segment register and its descriptor
d Two that save and restore the task register

O Two that save and restore the LDT register

[- One that exits SM mode

The instructions that save and restore registers are needed because the CPU
saves a minimum amount of information in the SM header (for speed). If one
or more of the segment registers in the SM interrupt handler needs to be modi-
fied, the previous values need to be preserved as they are not automatically
saved in the header. The instructions that save and restore segment registers
are provided for this purpose. Similarly, the instructions that save and restore
the Task register and LDT register allow creation of an SM interrupt handler
that enters protected mode and acts as a task dispatcher.

The seven SM instructions summarized in Table A—5 are valid only when CPL
is 0 and either:

[0 The SMAC, SMI, and SM4 bits are set and a valid SMM region is defined
(the SMM size defined to be greater than 0).

[The SMI# pin is driven low by the CPU. (The CPU drives SMi# low after
it recognizes the SMI interrupt and continues to drive it low until RSM is
executed. See Figure A—1 page A-5.)

SMM Instruction Summary and Macros

Table A-5.SMM Instruction Set with Clock Counts

Instruction Mnemonic Opcode Clocks Description

rsdc rst_seg OF 79 14 Restores a segment register from
an 80-bit memory location.t

rsldt rst_ldt OF 7B 14 Restores the local-descriptor-
table register from an 80-bit
memory location.t

rsts rst_tr OF 7D 14 Restores the task register from an
80-bit memory location.t

svdc sav_seg OF 78 22 Saves a segment register at an
80-bit memory location.¥

svidt sav_|dt OF 7A 22 Saves the local-descriptor-table
register at an 80-bit memory loca-
tion.¥

svis sav_tr OF7C 22 Saves the task register at an

80-bit memory location.¥

rsm exit_sm OF AA 58 Restores the state of the CPU
from the data saved in the header
at the top of SM memory (the
header is created by the proces-
sor when it recognizes an SMI).
This instruction takes the proces-
sor out of SM mode and returns it
to the task that was executing
when the SMI occurred.

T The restore includes the descriptor information that is not visible to applications.
¥ The save includes the descriptor information that is not visible to applications.

The values in the second column in Table A-5, titled Mnemonic, are arbitrary
since there is no current assembler support for the SM instructions. That
means that the code will probably be generated manually. In generating the
code other arbitrary names may be preferred. The names shown in the first
column of Table A-5 are the instruction names that have been added to the
TI486SXL(C) instruction set. The mnemonics are a bit more descriptive and
are used in the example macros, Example A-3. These examples for generat-
ing SM instruction code have been rewritten from earlier versions.

The third column in Table A-5 provides the basic opcode for the SM instruc-
tions. In addition to these basic codes, the first six SM instructions listed can
be prefixed with a segment override and/or an address size override, and they
require a mod r/m byte and a memory offset.

The include file shown in Example A—3 contains some macros that will be use-
ful within an SM interrupt handler. These macros implement versions of the
seven special SMinstructions shown in Table A—5. These macros can be used
as is, or modified to suit the particular application.

SMM Programmer’s Guide A-13

SMM Instruction Summary and Macros

Example A-3. Macros That Implement the Special SM Instructions

COMMENT *

File: SM.MAC

Copyright (c) 1994 Texas Instruments, Incorporated

This include file defines a set of macros for generating System Management (SM)
mode instruction opcodes, since no assembler directly supports these SM
instructions.

There are six SM instructions that are used to save and restore registers that
are not automatically saved when SM mode is entered, and one instruction for
exiting from SM mode. These instructions support many addressing modes, but
the macros in this file only implement one mode—a 16-bit memory reference
(within the code segment as a CS: override is also used). These macros could
be made much more complex to allow other addressing modes, but the additional
complexity wouldn’t provide much useful benefit.

Each of the macros that implements a register save or restore takes as a
parameter an offset in the code segment where the register should be saved to
or restored from. The two macros that save and restore segment registers also
take the name of a segment register as a parameter.

Here is a small portion of code that shows how the macros in this file are used:

<<<<<<< BEGIN EXAMPLE CODE >>>>>>>

.CODE

smi_entry_point:

sav_seg old_ds,ds

sav_seqg old_es,es

sav_seg old_fs,fs

sav_seg old_gs,gs

sav_seg old_ss,ss

sav_1ldt old_1dt

sav_tr old tr

mov dword ptr cs:old eax,eax
mov cs:old_ebx,ebx

Save segment registers

~e

Save LDTR and TR

~

Save other registers

~

rst_seg ds,old_ds
rst_seg es,old_es
rst_seg fs,old f£s
rst_seg gs,old_gs

Restore segment registers

~

A-14

SMM Instruction Summary and Macros

rst_seg
rst_1ldt
rst_tr
mov
mov
exit_sm

old_ds dt
old es dt
old_fs dt
old _gs dt
old ss dt
old_tr dt
old_ldt dt
old_eax dd
old ebx dd

ss,old_ss
old_ 1ldt
old_tr

eax,dword ptr cs:old eax
ebx,dword ptr cs:old_ebx

NN W) W)))) Y

-

<<<<<<< END EXAMPLE CODE >>>>>>>

~

~e

~e

~

Restore LDTR and TR
Restore other registers

Exit SM interrupt handler

10 bytes in code segment

>

addr dt

-~

NOTE: The location at addr must be 10 bytes in size and it must reside

within the code segment. It should be defined as:

e Ne Ne e we we

sav_seg MACRO
SMMac
ENDM

rst_seg MACRO
SMMac
ENDM

sav_1ldt MACRO
SMMac
ENDM

rst_ldt MACRO
SMMac
ENDM

sav_ts MACRO
SMMac
ENDM

rst_ts MACRO
SMMac

addr, reg
sav_seg, addr,

reg, addr
rst_seg, addr,

addr
sav_1ldt, addr,

addr
rst_ldt, addr,

addr

reqg,

reg,

1dt,

ldt,

78h

7%h

7Ah

7Bh

sav_ts, addr, ts, 7Ch

addr

rst_ts, addr, ts, 7Dh

~e

~e

~

~e

~

~e

Save one of the segment registers

Restore one of the segment registers

Save the LDT register

Restore the LDT register

Save the Task register

Restore the Task register

SMM Programmer’s Guide A-15

SMM Instruction Summary and Macros

ENDM

exit_sm MACRO ; Exit from SM mode
DB 00Fh, OAAh

ENDM

SMMac MACRO mname, addr, reg, op

;3 CS: override and SM instruction opcode
db 2Eh
db 0Fh, op

; mod r/m byte

ifidni <reg>, <cs>
db 00Eh
elseifidni <reg>, <ds>
db 01Eh
elseifidni <reg>, <fs>
db 026h
elseifidni <reg>, <gs>
db 02Eh
elseifidni <reg>, <ss>
db 016h
elseifidni <reg>, <es>
db 006h
elseifidni <reg>, <ts>
db 006h
elseifidni <reg>, <ldt>
db 006h
else

ECHO ERROR in macro <mname>:
ECHO Register parameter unknown: <reg>
ECHO Register parameter must be either CS, DS, ES, FS,
ECHO or LDT
.ERR
endif

;s 16—bit displacement
dw offset addr

ENDM

A-16

GS, ss, Ts,

SMI Handler Example

A.8 SMI Handler Example
This section contains fragments of typical coding found in SMI handlers.

Example A—4. Typical Coding Found In SMI Handlers

SMBASE= 0C8000H ; base address of SMM space
SMSIZE= 2 ; SMM space size is 8k bytes
SMEND = SMSIZE SHL (SMSIZE-1) ;works for most cases

INCLUDE SM.MAC ;see Section Example A-3, page A-14
.MODEL SMALL
.386P
.CODE
COMMENT ~

Execution begins here in real mode, with CS defined at the SMBASE and EIP=0

S

public smi_start
smi_start:

jmp $skipdata ;skip data area, makes it easy for
;assembler
EAXsave dd ?
DSsave dt ?
DStemp db 0f£fh, 0ffh, 0,0,0,92h,8fh,0,0,0 ;4gig present segment
$skipdata:
mov dword ptr cs:[EAXsave],eax; save EAX
sav_seg [DSsave], ds s save DS
rst_seg ds, [DStemp] ; setDS

COMMENT *

We need to extend the limits of DS so that we don’t get a fault when we use it to ac-
cess low memory. It may be not present with a limit of 0, and these values won’t be
changed when we set it using a real mode load.

~

;Determine Why Are We In The SMI Handler

COMMENT *

chipset/Core logic unique instructions will follow. The chipset will be used to deter-
mine what caused the SMM interrupt to occur. The BIOS could also “Jjump” to this point
in the SMM region. '

Decision Tree:

a) If timer, go to timer expired
b) If port i/o occurred to a trapped location, go to port_io_caused
c) If the cpu was turned off, go to cpu_turned off

~

;timer expired;

SMM Programmer’s Guide A-17

SMI Handler Example

COMMENT ~
A chipset timer has expired. Unique code would appear to determine which timer. De-
pending on the purpose of the timer the handler could;

1) Reduce the clock frequency

2) Execute a halt instruction and enter suspend mode
3) Turn current off to the CPU

4) Turn off a peripheral device

5) Reset the timer and increment a counter

A

reduce_clock:

COMMENT ~

To go to a lower CPU current requirement the CPU clock can be reduced. The CPU clock
can be reduced from its current setting to a lower value. That value could be zero.
Since the CPU is a static device and will maintain the state of all its registers in
the absence of a clock input there is no state saving requirement. It is assumed that
by writing to the chipset it will reduce or zero the clock. If the clock is stopped
then the next instruction to be executed will be one in this SMI handler immediately
following the point where the chipset turned the clock off.

jmp end timer:

execute_halt:

COMMENT *

To go to a lower CPU current consumption the SMI handler will now execute a HLT
instruction. The HLT instruction will put the CPU into a low power sleep mode until a
non-SMI interrupt occurs. Interrupt(s) will need to be enabled to permit the interrupt
to wake-up the CPU. A common choice would be the keyboard interrupt. A flag would need
to be set in main memory to indicate that the SMI handler should be jumped into or SMI
created, to permit it to restore the state/context of the CPU, prior to the halt for
servicing the interrupt. The interrupt in low memory must point to the BIOS handler
for the return to be made to the SMI handler. An interrupt handler in SMM space could
also service the interrupt rather than a BIOS routine.

A

;[Alternatively the chipset could pull the SUSP# CPU pin low to enter]
;[suspend mode. The chipset would have to pull SUSP# high to exit]
;[suspend mode.]

:To be sure that BIOS will get control on intr
;check for keyboard interrupt vector pointing to BIOS
;if not BIOS, save existing and set to BIOS vector or jump to can_not_halt
;Set a flag in main memory indicating SMI HALT executed
;If an SMM space interrupt handler is used then IDTR and/or the vector
;swould need to be updated to the SMM space routine.
mov ax, 0 ; point to bottom segment
mov ds, ax ; ds segment is now in main memory
mov [485], 1 ; set BIOS flag in main memory
;<set cpu state for bios int>

hlt ; last instruction executed here
;<the chipset could remove the clock to go to suspend mode now>
nop

can_not_halt: ;CPU state will not be correct at interrupt

jmp end_timer

A-18

SMI Handler Example

turn_off cpu:

set bit in main memory to indicate to the BIOS that SMI handler
turned power off to CPU and CPU state should be restored by
the SMI handler

~e No N~

mov ax, 0 ; point to bottom segment:
mov ds, ax ; ds segment is now in main memory
mov [485], 1 ; set BIOS flag in memory

(save entire CPU state. See Restore CPU state label)

(chipset specific instructions to be executed to remove power to
cpu)

jmp end_timer

e Ne e we

turn_off_peripheral:

; chipset specific instructions to turn off peripheral and enable
; chipset I/0 trapping of the devices io range or enable timer
; to allow polling of peripheral requirements.

jmp end_timer

reset_timer:

chipset specific instructions to be executed to reset a timer and
possibly increment a counter to maintain number to time out occurred
for a particular device.

jmp end_timer

~e ~e o~

end_timer:

jmp done

port_io_caused:

COMMENT *

The SMM support for I/0 being interrupted provides information that permits the re-
starting of the I/O instruction without investigating the actual code where the
instruction is located.

Many things can be done at this point beyond turning on a powered down peripheral. The
CPU clock could now be speeded up in anticipation of heavy CPU processing require-
ments, timers could be reset, etc.

A

;** Restart the interrupted instruction

mov eax,dword ptr [SMEND+SMI_PREVIOUSIP]
mov dword ptr [SMEND+SMI_NEXTIP],eax
mov al,byte ptr cs:[SMEND+SMI_ BITS]
;test for REP instruction

bt al,2 ;rep instruction?

; (result to Carry)
adc ecx,0 ;if so, increment ecx
test al,1 shl 1 ;test bit 1 to see

;if an OUTS or INS
jnz out_instr

SMM Programmer’s Guide A-19

SMI Handler Example

COMMENT * .
** A port read (INx) instruction caused the chipset to generate an SMI instruc-
tion. Restore EDI saved by SMI microcode.
mov edi, dword ptr cs:[SMEND+SMI_EDIESI]
jmp commonl
out_instr:

COMMENT *
** A port write (OUTx) instruction caused the chipset to generate an SMI
instruction. Restore ESI saved by SMI microcode.
mov esi, dword ptr cs:[SMEND+SMI_EDIESI]
commonl:
jmp done

cpu_turned_off:

COMMENT *

This handler turned off the current to the CPU. Before it did, the handler set a bit
in main memory or battery-backed-up CMOS indicating that this event happened. At re-
set, BIOS will determine that this was the case and "jump” into the SMI handler. SMI
handler will then restore the entire state/context of the CPU prior to current being
removed. The bit in main memory would also be cleared indicating that the SMI handler
had removed current.

point to bottom segment

ds segment is now in main memory

clear BIOS flag in main memory

restore ds to SMM area

mov ax, 0
mov ds, ax
mov [485], O
mov ax, cs
mov ds, ax

~e Ne Ne e

A-20

SMI Handler Example

{Restore Complete CPU State}

eax
ebx

ecx

edx

edi

esi

ebp

esp

cs ;use rst_seg
ds juse rst_seg
ss juse rst_seg
es sjuse rst_seg
fs juse rst_seg
gs ;use rst_seg
ldtr

gdtr

idtr

tr

eflags

cr0

cr2

cr3

dro

dril

dr2

dr3

dré

dr7

cecr0

ccrl

cer2

Save the configuration registers with index C3h through FFh
for future product compatibility

N NGO NE NE NS NE NS NG NS NG Ne Ne NE Ne Ne Ne Ne Ne Ne e NS Ne N N6 N NG NS Ne W NS we W wo

arrl
arr2
arr3
arré
jmp done

~e we we e

done:
mov eax,cs:[EAXsave]
rst_seg ds,[DSsave]
exit_sm ; return

SMM Programmer’s Guide A-21

Loading SMM Memory With an SMM Program from Main Memory

A.9 Loading SMM Memory With an SMM Program From Main Memory

To load SMM memory with an SMl interrupt handler it is important that the SMI
interrupt does not occur before the handler is ready to accept it. This can be
done by not having SMAC = 0 and SMI = 1 (in the CCR1 register) before the
SMI handler is installed. It is necessary to set SM4 = 1 (in the CCR1 register)
and ARR4 with appropriate values before using the SMM memory. To load
SMM memory with a program it is first necessary to enable SMM with the ex-
ception of the SMI# pin by setting SMAC. (See Section A.6, Enabling SMM,
page A-11.) The SMM region is then mapped over main memory at the same
location. This is done by the generation of SMADS# for memory access for the
SMi. A REP MOV instruction can then be used to transfer the program to the
location. Then, turn off SMAC to activate potential SMIs.

Example A-5. SMI Handler Routine

.MODEL MEDIUM

. STACK
i
: MACROS
iodlay_macro ; Short delay for I/O operations
jexz $+2
jexz $+2
endm
segcs_ macro ; CS: override prefix
db 02Eh
endm
include SM.MAC ; See Example A—3 page A-14
.CODE
i
; SMI HANDTLER ROUTINE

When an SM interrupt occurs, the code segment base is set to the SM area
start as defined in ARR4, and the IP is set to 0. This means the first SM
handler instruction must be at offset 0-—that is why this loader program
begins with the SM handler code. The offsets referenced in the SMI portion
of this program will be correct in SM mode as well.

e Ne Ne Ne we we N

A-22

Loading SMM Memory With an SMM Program from Main Memory

smi_code_start:

Save DS, ES, TS, LDT, AX, and CX (only AX and CX are used by the handler—the
other registers are only saved to show how the macros are used).

N~ Ne we ~e

sav_seg old_ds, ds

sav_seqg old_es, es

sav_tr old_tr

sav_ldt old_1ldt

mov dword ptr cs:old_eax, eax
mov dword ptr cs:old_ecx, ecx

The main handler code goes here ... The code below simply writes a down
count to port 80—your code will be much more complex and useful.

Ne Ne Ne ~e

; Write port 80 values

mov al, OFFh
decloop:
out 80h, al
mov cx, 8FFFh
loop $; Delay
dec al
jnz decloop

Restore registers saved at start of handler, then exit from SM mode.

~e ~o o~

rst_segds, old ds
rst_seg es, old es
rst_tr old_tr
rst_1ldt old_ldt

mov eax, dword ptr cs:o0ld eax
mov ecx, dword ptr cs:old_ecx
exit_sm Exit SM mode—resume the interrupted

program

smi_code_end:

The locations below are for saving registers that are used in the SMI routine
but are not automatically saved when an SM interrupt occurs. Some of the
registers saved below are not actually used by the code in this example, but
they are saved/restored just to demonstrate how the SM macros shown earlier
are used.

Ne Ne Ne Ne Ne v e

SMM Programmer’s Guide A-23

Loading SMM Memory With an SMM Program from Main Memory

old_ds dt
old es dt
old_tr dt
old_1ldt dt
old_eax dd
old ecx dd

LAV IV N I VL

-

CEDURES USED BY T HE LOADER

-]
]
o

Read a value from a register in AL via I/0 ports 22 and 23. Return the value
in AL.

e No we e

r22_23 proc near
out 22h, al
iodlay_
in al, 23h
ret

r22_23 endp

Write the value in AH to a register in AL via I/0 ports 22 and 23.

~e ~o ~e

w22_23 proc near
out 22h, al
iodlay _
mov al, ah
out 23h, al
ret

w22_23 endp

LOADER ENTRY POINT

~e Ne o~

entry point:

Set ARR4 registers for 64K SMM area at 000A0000: ARR4 = 000A0S

~e Ne we

mov ax, 00CDh
call w22_23
mov ax, OACEh

call w22_23

A-24

Loading SMM Memory With an SMM Program from Main Memory

mov ax, 05CFh
call w22_23

Set ARR4 control bit in CCR1 to make ARR4 == SMM memory. Set SMI enable bit
and SMAC bit to allow non—CS-based data writes to go to the SM area.

)

mov al, 0Clh

call r22_23

or al, 86h ; SM4=1; SMAC = 1; SMI = 1
mov ah, al

mov al, 0Clh

call w22_23

Copy SMI code to A000:0000

~e ~o o~

Xor ax, ax

mov si, ax ; SMI code starts at offset 0 of this CS

mov di, ax ; and offset 0 of SM memory too.

mov ax, 0A000h ; SM memory segment

mov es, ax

mov cx, offset smi_code_end; Number of bytes of SM handler
; code

segcs_

rep movsb ; Copy from EXE memory space to SM mem

The SM handler is now in place. Disable access to SM memory leaving the SMI
bit set, so that SM interrupts can now occur.

e w8 we we

mov al, 0Clh

call r22 23

and al, OFBh ; SMAC =0
mov ah, al

mov al, 0Clh

call w22_23

Exit to DOS

~ Ne o~

mov ax, 04c00h
int 21h
END entry_point

SMM Programmer’s Guide A-25

Detection of a Tl Microprocessor

A.10 Detection of a Tl Microprocessor

Itis possible, with a small amount of code, to detect if the CPU is a Tl micropro-
cessor and if the CPU is the TI486SXL(C) family or a TI486xLC/E family. The
foliowing assembler code accomplishes this task.

Example A—6. Detection of a TI Microprocessor

;Purpose: To detect if the CPU is Texas Instruments microprocessor, and then
; determine if it is a TI486SXLC Family.

;To detect if Texas Instruments:

; The undefined flags of the TI microprocessor remain unchanged

; following a divide. An Intel part will modify some of the

; undefined flags. Check by saving the flags, do a divide, and;

; then compare the new flags with the old flags.

;To detect if TI486SXLC Family:

; The cache test registers in the TI486SXLC Family differ from the ;
TI486xLCE due to the difference in cache size. Bit 9 in TR4 is
used to determine if the processor is of the TI486SXLC Family by
seeing if it can be toggled.

The code that follows is a procedure that returns the CPU detected
; in AX.

N~ we o~

.MODEL SMALL
.486P

;Values that code will return in AX:

CPU_Not TI EQU 0
CPU_TI486xLCE EQU 1
CPU_TI486SXLC EQU 2
TR5_Write EQU 1
TR5_Read EQU
CR EQU 0Ah
LF EQU 0Dh
.CODE
DetectCPU PROC
StartDetect:

;s NOTE:

; This procedure returns a value in AX.
: Value in BX is destroyed and not saved.
; Value in top-half of EAX is destroyed.

CLI
AreWeTI486:
;Assume that CPU is at least a 386 CPU.
MOV AX, 0 ;set flags to known value
CMP AX, AX
PUSHF ;save old flags
POP AX
MOV flags_before, AX
MOV AX, dividend ; setup for DIV instruction
MOV DX, 0
MOV BX, divisor
DIV BX

A-26

Detection of a Tl Microprocessor

PUSHF . ;save new flags
POP AX
MoV flags_after, AX
MOV AX, flags_mask ;isolate bits we are interested in and compare
AND AX, flags_before
MoV BX, flags_mask
AND BX, flags_after
CMP AX, BX ;flags same before and after?
JINZ NotTI ;no — don’t have TI CPU
WeAreTI486:
;Now check to see if CPU is TI486xXLCE or TI486SXLC
MOV EAX, 0200h ;attempt to set bit 9 of TR4
MOV TR4, EAX
MOV EAX, TR5 Write ;must do write,
;then read operation on test registers
MOV TR5, EAX
MOV EAX. TR5_Read
MOV TR5, EAX
MOV EAX, TR4 sread TR4 back
AND EAX, 0200h ;isolate bit 9
CMP EAX, 0200h ;did it stay set?
JNE FoundTI486SXLC ;no — found TI486SXLC
FoundTI486XLCE:
;CPU is a TI486xLCE
MOV AX, CPU_TI486xLCE
JMP Done
FoundTI486SXLC:
;CPU is TI486SXLC
MOV AX, CPU_TI486SXLC
JMP Done
NotTI:
;CPU is not a TI486
MOV AX, CPU_NotTI
JMP Done
Done:
sleave return value in AX
RET
DetectCPU ENDP -
.DATA
flags_before DW ?
flags_after DW ?
flag mask bW 08D5h
dividend DW OFFFFh
divisor DW 4h
result DW 0
END

SMM Programmer’s Guide A-27

Detection of SMM Capable Version

A.11 Detection of SMM Capable Version

At power-up/reset the EDX register contains part type and stepping informa-
tion as shown in Table A-6.

Table A-6.EDX Register Data At Power-Up/Reset

EDX Stepping SMM Available
0410h A No
0411h B Yes

The following technique can be used to identify the stepping of a TI486SXL(C)
microprocessor after the reset information in EDX is lost. The method uses two
functions: the mixed C and assembler function isb() and assembly language
ilegal opcode handler interrupt handler ill_op. The function isb() returns a 1
toindicate when a B step partis present, 0 otherwise. The functionisb() installs
an illegal opcode handler, ill_op. Then isb() sets up conditions to execute an
SMM segment save instruction, SVDC. If an A step part is present the illegal
opcode handler is invoked. The ill_op process then modifies the return ad-
dress on the stack to return to the instruction after the SVDC instruction. The
storage location used by the SVDC instruction is then checked to see if it
changed. If it has changed, the part being tested is a B step part. This detection
technique must be run at protection ring 0.

Example A-7. Detection of SMM Capable Version

//***
//********************************* isb.c kkkkhkhkhdhhohhhhkddhhdhhhhkhkhkhhhkddhk

//***

#define TRUE 1
#defube FALSE 0

int old_off;
int old_seg;

extern ill_op();
//***

// Function: isb ()
// Returns:1 if TI486SXL(C) B step
/7 0 if TI486SXL(C) A step

//***

isb ()
{
int i, b_step;
char mem[10};
for (i=0; i<10; mem[i++]1=0;

asm {

.386
extrn _ill op:near

A-28

Detection of SMM Capable Version

;***

j**k*x*%% get present illegal opcode handler
;***

push
push
mov
int
mov
mov
pop
pop

es
bx

ax, 3506h
21h
old_seg, es
old off, bx
bx

es

;***

;**%%%% install new illegal opcode handler
;***

push
push
push
mov
mov
mov
mov
int
pop
pop
pop

dx

bx

ds

ax, 2506h
dx, OFFSET _ill op
bx, cs
ds, bx
21h

ds

bx

dx

char save_ccrl, save_cf, save_ce, save_cd;

;***

j**%%%% Set SM4 and SMAC and SMI bit to allow SMM instructions
PR L L TS 2 T2

mov
out
in

nov
or

mov
mov
out
mov
out

al, Oclh

22h, al

al, 23h

byte ptr [save_ccrl, al
al, 86h

ah, al

al, Oclh

22h, al

al, ah

23h, al

;***

j***%%% Setup nonzero SMM region
;***

mov
out
in

mov
mov
out
mov
out

al, Ocfh

22h, al

al, 23h

byte ptr [save cf], al

.al, Ocfh

22h, al
al, 1
23h, al

SMM Programmer’s Guide A-29

Detection of SMM Capable Version

;***

;¥**%%%% Set SMM region to the top of memory to

p**%*%** ayoid overlapping with this program
;***

mov al, Ocdh
out 22h, al
in al, 23h
mov byte ptr [save_cd], al
mov al, Oceh
out 22h, al
in al, 23h
mov byte ptr [save_ce], al
mov al, Ocdh
out 22h, al
mov al, 0ffh
out 23h, al
mov al, Oceh
out 22h, al
mov al, Oh
out 23h, al
mov al, Ocfth
out 22h, al
in al, 23h
and al, 0fh
out 23h, al

;xxx%x%% flush prefetch after changing configuration
jmp $+2

;***
;*%*%%* Execute SMM instruction sav_seg
;***
;sav_seg word ptr mem, ds
Word ptr mem == ss:[bx]
lea bx, mem
db 36h 0fh 78h 1fh

;***

;**%%x%x* restore configuration registers
;***

mov al, Ocdh

out 22h, al

mov al, byte ptr save_cd
out 23h, al

mov al, Oceh

out 22h, al

mov al, byte ptr save_ce
out 23h, al

mov al, Ocfh

out 22h, al

mov al byte ptr save_cf
out 23h, al

mov al, Oclh

out 22h, al

mov al byte ptr save_ccrl
out 23h, al

A-30

Detection of SMM Capable Version

;***

;**%x** restore old illegal opcode handler
;***

push dx

push bx

push ds

mov ax, 2506h

mov dx, OFFSET old_off
mov bx, OFFSET old_seg
mov ds, bx

int 21h

pop ds

pop bx

pop dx

) // isb asm region

for (i=0, b_step=FALSE; i<10; ++i)
if (mem{i] != 0)
{
b step = TRUE;
break;

}

return (b_step);
} // isb ()

pREXRKEXK KKK KKK kX KKk kR *% Dad Op.ASIM *FFFAKFRFERFXRC AR KR IR IR

public _ill op
assumecs:_TEXT

_TEXT segment byte public ‘CODE’
_ill_op proc near

pop ax
add ax, 5
push ax
iret

_ill op endp

_TEXT ends

end

SMM Programmer’s Guide A-31

Format of Data Used by SVDC/RSDC Instructions

A.12 Format of Data Used by SVDC/RSDC Instructions

Example A-8.

The SVDC/RSDC instructions should be used to change limits and read/write
access privilege levels of the application and system segment descriptor reg-
isters, see Table 2—7 (page 2-22), before they are used by SMM code. The
instructions use a 10 byte area composed of two major portions of the system
address register set, see Figure 2—7 (page 2-17), value/contents, and the non-
programmer-visible internal descriptor that has the format shown in
Example A-8. Example A-9 (page A-33) loads a real-mode system segment
(SS) descriptor and nonprogrammer-visible region values.

System segment-descriptor registers are described in Subsection 2.5.2.2,
Descriptors, page 2-21.

Internal Descriptor Format

| Segment Register Descriptor <8 bytes>|Segment Register Selector <2 bytes>|

1)

Segment Register Selector: This is the segment if the segment register
;was loaded in real mode or the selector if the segment register was

;loaded in protected mode. In real mode, this is also equal to the segment
;base divided by 10h and clipped to 16 bits.

dw | selector or Segment |

:2) Segment Register Descriptor, which is the actual descriptor if the
;segment was loaded in protected mode, or a pseudo-descriptor if the segment
;register was loaded in real mode.

dw | Limit [15:0] |

dw | Base [15:0] |

db | Base [23:16] |

db | | DPL | 1 | DseTy[2:0] | A | ; DscTy is descriptor ;type (DT)
db |6 | D| r | AVL | Limit [19:16]

db | Base [31:24] |

A-32

Format of Data Used by SVDC/RSDC Instructions

Example A-9. Load SS Descriptor Values (Real Mode)

;Load SS descriptor (nonprogrammer—visible region) values appropriate to ;REAL mode.

INCLUDE SM.MAC

old val
real_mode:

sav_seg
rst_seg
mov
mov

; see Example A-3 page A-14

dt ? ; location to store old ss value
dw 0ffffh ; limit

dw 0 ; base

db 0 ; base

db 10010011B ; 93h, data segment

db 0 ; G=0, D=0, upper limit=0

db 0 ; high portion of base

dw 0 ; selector/segment

[old val], ss
ss,[real_mode]
ax, cs
ds, ax

SMM Programmer’s Guide A-33

Altering SMM Code Limits

A.13 Altering SMM

A-34

Code Limits

When the CPU acknowledges an external SM interrupt and switches into sys-
tem management mode, the CPU is put into real mode. In section 2.8.5, SM/
Service Routine Execution on page 2-54, it is stated that the code segment
register is loaded with the base and limits defined by the ARR4 register. If the
defined SMM address space is a 16K region, the CS segment limit will be 16K.
This is in contradiction to the normal segment limit of 64K for real mode.

This does not normally cause the programmer any problems, since the CS
register can access any address in the SMM address space. The only time this
can become a problem is if the SMM code jumps to code outside the SMM ad-
dress space. An example of this might be jumping to a BIOS routine to save
a block of memory to the disk drive. The BIOS routine might expect the CS
code segment limit to be 64K, and might require it to be, depending on the off-
set of the routine, or any routine it calls. The BIOS procedure might be at offset
38416 of the BIOS segment for example. If, as stated above, our SMM limit
is 16K, then the CPU would generate a segment overrun fault when it at-
tempted to jump to offset 38416 of the BIOS segment.

There are several solutions to this problem. One solution is to never execute
code outside of the SMM space. Another solution is to have an SMM space
of 64K, or larger, so that the CS code segment limit is 64K or more. The third
solution is to change the CS limits while in the SMM code.

When in real mode, the hidden portion of the segment registers are not acces-
sible to the programmer, unlike in protected mode. With the new SMM instruc-
tion RSDC, a complete 80-bit segment register and descriptor cache entry can
be read from memory into a segment register, thus changing the segment lim-
its and attributes, even when in real mode. This could be done to make the DS
segment have a 4G limit, enabling real mode SMM code to access all of
memory with a 32-bit offset, without ever leaving real mode. However, the
RSDC instruction will not work with the CS register! The only way to change
the limits of the CS segment is to switch to protected mode, do a far jump to
a segment descriptor that has the desired segment limit and attributes, and
switch back to real mode.

To do this, several things must happen. A GDT with at least one valid entry
must be set up (this entry is a descriptor for the code segment that the interseg-
ment jump is made to). Save the old GDTR register contents (using SGDT),
and the register should be loaded to point to the new table (using LGDT). Save
the old CRO value, and switch into protected mode with paging off. Do an inter-
segment jump to the code segment in the GDT, thus changing the CS segment
limit. Next, restore the CRO value, which switches back to real mode. Restore
the saved GDTR value.

Testing/Debugging SMM Code

A.14 Testing/Debugging SMM Code
There are several ways to debug SMM code:

(1 Emulation Technology TI486SXLC microprocessor pod with an HP
16500/550 Logic Analyzer

B Supports selective trace capture

B SMM instruction disassembly

1 Periscope — software only
W Full screen debugging
H TSR
B Single stepping and break points

(1 DOS debug — software only
H Single stepping and break points

[Other selected logic analyzers

A.14.1 Software Only Debugging

It is possible to write an SMI handler and debug it as a TSR. Use a debugger
that can set break points at any address in memory. Use the following code
sequence as a model of how to build the SMI handler as a TSR. This code se-
quence also contains a section that loads the CS nonprogrammer-visible sec-
tion to change the limit. This is required so that a protection error does not oc-
cur when code is executed outside of the SMM region. Itis assumed that ADS#
and SMADS# from the CPU are ORed together by the chipset or externallogic.
Also, the chipset should support programmable SMM locations.

This code marks the SMI handler address in the user interrupt INT 66 location
(0:198h). This is done so that the programmer can determine the location of
the SMM region and set break points.

The debugger is able to set a code break point outside of the SMI handler using
INT 3 only. This is because the debug control register DR7 is set to the reset
value upon entry to the SMI handler. This causes break conditions in DR0-3
to be disabled. Debug registers can be used if set after entry to the SMI handler
and DR0-3 are saved.

Using a TSR to debug SMI has some limitations:
O Other code could overwrite the region.

J Jumps or calls must be to known offsets.

SMM Programmer’s Guide A-35

Testing/Debugging SMM Code

A.14.2 Software Debugging Example

The following is an example that can be used for the first step in debugging SMI
code:

Example A—10. Debugging SMI Code

.MODEL SMALL
.STACK

.386P

INCLUDE SM.MAC

RD_WR EQU 12h sread/write
EX_RD EQU 1ah ;execute/readable
COMMENT ~

This is an example of SMI code which can exist below the 1 MByte boundary. It must be
before the 1 MByte boundary because it uses the value in the cs register in order to
form fixups based on its location as well as for the jump to return to real mode.

A

.CODE

smi_handler:

jmp Sover ;pass data area for assembler
db 100 dup (?)
stacksmilabel

i
;our smi handler gdt

.
r

gdt dg 0 ;null
ADDR = 0
LIMT = 100000h
g_big = §$ — gdt
aw (LIMT—1 and Offffh)
dw (ADDR and Offffh)
db ((ADDR SHR 16) and 0ffh)
db RD_WR OR (0 SHL 5) OR (1 SHL 7)
db (((LIMT—1) SHR 16) AND Ofh) OR (0 SHL 6) OR (1 SHL 7)
db ((ADDR SHR 24) and 0ffh)
g_code = $—gdt
ADDR = 0
LIMT = 100000h
dw (LIMT-1 and O0ffffh)
dw (ADDR and Offffh)
db ‘((ADDR SHR 16) and 0ffh)
db EX RD OR (0 SHL 5) OR (1 SHL 7)
db (((LIMT—1) SHR 16) AND Ofh) OR (0 SHL 6) OR (1 SHL 7)
db ((ADDR SHR 24) and 0ffh)

A-36

Testing/Debugging SMM Code

GDTSIZE = ($—gdt)

csareadb
dsareadb
ssareadb
esareadb
fsareadb
gsareadb
tsareadb

gdtsave df?
gdtnewdw

eaxsave dd
ebxsave dd
ecxsave dd
edxsave dd
espsave dd

$over:
COMMENT *

10
10
10
10
10
10
10

GDTSIZE — 1

dd

LAV ERCV I LV)

dup
dup
dup
dup
dup
dup
dup

?

(?)
(?)
(?)
(?)
(?)
(?)
(?)

;address

The debugger may want to use ss,ds,es,fs,gs. The limits may be shortened if the pro-
gram had been running in protected mode. We therefore extend the limits of these reg-

isters before we enable the debugger.

A

sav_seg [ssarea],ss
sav_seg [dsarea],ds
sav_seg [esarea],es
sav_seqg [fsarea],fs
sav_seg [gsarea],gs
cs:[eaxsave],eax
cs: [ebxsave],ebx
cs:[espsave],esp

mov
mov
mov

COMMENT *

Clear VM flag in Eflags (See Section A.14.3).

A

rst_seg ss, [gdt+g_big]
offset smistack

mov
mov
mov
mov
push
mov
push
push
iretd
@ae:
sgdt

esp,

ax,
ss,

cs
ax

eax, 0
eax

eax,
eax,

eax

fword ptr cs:

cs
offset @F

;save the stack pointer

SMM Programmer’s Guide

A-37

Testing/Debugging SMM Code

COMMENT *
fixup code for smi base

A

;patch gdt

mov eax,cs ;segment of us here
shl eax,4
mov ebx,offset gdt ;offset to here
add ebx,eax
mov dword ptr [gdtnew+2],ebx ;define gdt base
;patch far jump into protected mode
mov ebx,offset $next0
add ebx,eax
mov dword ptr cs:[patchl],ebx
;patch far jump back to real mode
mov word ptr cs:[patch2],cs

start here

COMMENT *
extend the limits for the code segment

db 66h
lgdt fword ptr [gdtnew]
mov eax,cr0
or al,l
mov cr0,eax
db 66h
db Oeah
patchl dd ?
dw g_code
$next0: mov bx,g_big ;extend the limits of the data segments
mov ss,bx
mov ds, bx
mov es,bx
mov fs,bx
mov gs,bx
Xor al,1
mov cr0,eax ;back to real mode
db Oeah
dw offset $nextl
patch2 dw ? ;far jump to set cs and writable bit

$nextl:

A-38

Testing/Debugging SMM Code

COMMENT *
define a valid stack

A

mov ax,cs

mov ss,ax

mov esp,offset stacksmi
COMMENT ~

x%x%%% Insert user specific smi code here & set breakpoints. #***

db 66h

lgdt fword ptr cs:[gdtsave]

rst _seg ss,[ssarea]

rst_seg ds, [dsarea]

rst_seg es, [esarea]

rst_seg fs,[sarea]

rst_seg gs,[gsarea]

mov eax,dword ptr cs:[eaxsave]
mov ebx,dword ptr cs:[ebxsave]
mov esp,dword ptr cs:[espsave]
exit sm

smi_handlere:
SMI SIZE = offset smi_handlere — offset smi_ handler
Install PROC '

;*%*%% Enable SMM Region ***x%%
; Don’t enable SMI yet because we’re not ready for it.

mov al, Oclh ;select CCR1

out 22h,al

in al, 23h ;read CCR1

or al, 80h ;enable SMADS# and SMM region (not SMI)
mov ah, al

mov al, Oclh ;select CCR1

out 22h, al

mov al, ah

out 23h, al swrite new CCR1 value
mov eax,offset endresident

mov ebx,cs

shl ebx, 4

add eax,ebx

add eax,0fffh

and eax,NOT 0fffh ;eax = start of smi space
mov edx,eax

push edx

SMM Programmer’s Guide A-39

Testing/Debugging SMM Code

kkhhkhkhhkhhhhhhhhdhdhdhhbrhhhdhhhdhhrdrddrdbrbrbhdhdbdhddddhhhdhhddrdhddhdbkhhrdhd

* Load SMI address and size into ARR4

e No Ne Ne N we N

Fkk ok k cd ce cf
Fokdek ok Kk
**%%*%x* Config Reg 31-28 27-24, 23-20 19-16, 15-12 <size>
*%xk%x%%x Address 31-28 27-24, 23-20 19-16, 15-12 11-8, 7-4 3-0
mov al, Ocdh ;region 4 1lst word
out 22h, al
mov eax, edx ;get smi handler address
shr eax, 24 ;move address <31-24> to al
out 23h, al ; [7-0]=>smbase[31—-24]
mov al, Oceh ;region 4 2nd word
out 22h, al
mov eax, edx ;get smi handler address
shr eax, 16 smove address <23-16> to al
out 23h, al ; [7-01=>smbase[23-16]
mov al, Ocfh ;region 4 3rd word
out 22h, al
mov eax, edx ;get smi handler address
shr eax, 8 ;move address <15-12> to al
and al, 0fo0h ;clear bottom nibble
or al, 1 ;select 4KB SMI size
out 23h, al ;and [3—0]=>smsize
;**
pop edx ;start of smi area
mov eax,edx
add edx,1000h ;reserve 4k for smi handler
mov ebx,es ;current psp
shl ebx, 4 ;
sub edx,ebx ;bytes to reserve
she edx, 4 sparagraphs to reserve in dx
push dx
shr eax,4 ;paragraph of smi handler
mov es,ax . ;save for later
mov ds,ax
mov dx, 0 ;always starts at 0
mov ax, 2566h ;int 66h vector at 0:198h
int 21h
pop dx ;tsr address

A-40

Testing/Debugging SMM Code

;move the code to the smi_area

mov al, Oclh ;select CCR1

out 22h, al

in al, 23h ;read CCR1

mov ah, al ;save old value

mov al, Oclh ;select CCR1

out 22h, al

mov al, ah ;get old value

or al, 04h ;enable SMAC

out 23h,al sbe clean on ah for later

RELOCATE = 0
IF RELOCATE

sub esi,esi
sub edi,edi
mov cx,cs
mov ds,cx
mov ecx, (SMI_SIZE+3)/4
rep movs dword ptr es:[edi],dword ptr ds:{esi]
ELSE
;put the far jump at the start of the smi_area to above code
mov byte ptr es:[0],0eah
mov word ptr ex:[1l],offset smi_handler
mov word ptr ex:[3],cs
ENDIF
;restore smi state and enable SMI
mov al, Oclh ;select CCR1
out 22h, al
mov al, ah ;get old value
or al, 02h ;set SMI bit to enable SMI
out 23h,al ;be clean on ah for later
COMMENT *

SMIs may happen at any time now.

A

;dx = offset in this segment to tsr
mov ax, 3100h ;Request function 31h, error code=0
int 21h ; Terminate—and—Stay—Resident
Install ENDP
;——end of resident code——
endresident label byte

db 2000h dup (?)

END Install

;**

SMM Programmer’s Guide A-41

Testing/Debugging SMM Code

A.14.3 Clearing the VM Flag Bit
The following condition is known to exist:

If the CPU is in V86 mode and is interrupted by an SMI, the VM bit in the
EFLAGS register is not cleared as it should be during real-mode operation. Not
clearing this bit can cause protection errors of valid instructions that are being
executed inthe SMI handler. This can be resolved by adding the following code
after saving all used registers:

rst_seg ss, [gdt+g_big] ; change ss limit to 4 Gbytes

mov esp, offset smistack ; create new stack pointer

mov ax, cs

mov ss, ax ; new stack segment

mov eax, 0

push eax ; flags after iretd

mov eax, cs

push eax ; segment after iretd

mov eax, offset @F

push eax ; offset after iretd

iretd

@e:

I L)
Note:

See the debugging example in Section A.14, Testing/Debugging SMM Code,
for usage of above code.

A-42

Appendix B

BIOS Modifications Guid

To reap full benefit from the TI1486SXL(C) family of microprocessors, the sys-
tem BIOS should be modified to support the internal registers that control the
on-chip cache, clock doubling, and other features. This appendix serves as a
guide to some of the changes that need to be considered, and includes sample
assembler code for controlling the cache.

There are three considerations that are discussed in relation to the internal
cache registers and clock double enable:

[Power-up and hard reset

1 Protected-mode to real-mode switching

1 Soft reset— (conTROD) (DELETE)

In each case, the state of the CPU cache registers and the clock-double enable
bit must be known to determine when and how to change their values.

Topic Page

B-1

Differences Between the TI486xLC/E BIOS and the TI486SXL(C) BIOS

B.1 Differences Between the TI486SLC/DLC BIOS and the TI486SXL(C) BIOS

B-2

The T1486SLC/DLC BIOS requires some modifications to fully support the
new features of the TI486SXL(C) family of microprocessors.

If the BIOS currently tests the internal cache before enabling it, the test routine
will require modification. Due to the larger size of the TI486SXL(C) cache, the
cache test registers have changed from those in the TI486SLC/DLC. (See
Table 2—-17 on page 2-36.) It is not necessary to test the Ti486SXL(C) cache
prior to enabling it during the boot process.

In addition to changing the cache test registers, the cache organization selec-
tion bit has been redefined. In the TI486SLC/DLC, configuration control regis-
ter 0 (CCRO) bit 6 is used to select between a direct-mapped and a two-way,
set-associative, internal cache organization. For the TI486SXL(C) family, the
cache is always two-way set associative and CCRO bit 6 is defined to enable
clock-doubled mode. BIOS prepared to support the TI486SLC/DLC can allow
the user to select the cache organization, but BIOS prepared for the
T1486SXL(C) should comprehend that the cache-organization selection is not
available.

If the BIOS supports software clock switching, a modification to support clock-
doubled feature may be desirable. Switching to high-speed mode should en-
able bit 6 of CCRO and thus put the CPU in clock-doubled mode. Switching
down the CPU speed should disable bit 6 of CCRO and put the CPU in
nonclock-doubled mode. If the BIOS is APM (advanced power management)
compliant, the use of 1x and 2x modes should be implemented as well.

Note:

When the TI486SXL(C) is in clock-doubled mode, the CLK2 input must not
be scaled or stopped. First, the processor must be placed in nonclock-
doubled mode; then, the CPU clock speed can be changed.

When the TI486SXL(C) family microprocessors are reset, the cache and the
clock-doubled features are disabled by default.

Power-Up and Hard Reset / Protected-Mode to Real-Mode Switching

B.2 Power-Up and Hard Reset

During power-up and hard reset, the system is booted into the operating sys-
tem. Due to the reset line to the CPU going active, the internal cache and the
clock-doubled feature are disabled, making the CPU act similar to a 386. If the
cache and the clock-doubled feature are enabled prior to the reset, they must
be turned on at some point before the OS is booted. A convenient time may
be during final chipset initialization, understanding that the cache should re-
main off during memory sizing. Many BIOSs provide the user an option to dis-
able the system cache using the setup screen. Because most user cache-con-
trol options are stored in nonvolatile RAM, the flag responses and potentially
other flags should be checked before turning the cache on.

B.3 Protected-Mode to Real-Mode Switching

Protected-mode to real-mode switching can be implemented to handle cases
where the OS has been booted, applications are running, and the CPU needs
to be reset from protected to real mode. The object is to switch CPU modes
and jump back into the OS or application at some saved return address. When
the CPU is reset, the internal cache and the clock-doubled feature are dis-
abled. Before returning controf to the application, the cache and clock doubling
should be turned back on, but only if they were enabled before the reset oc-
curred. This is accomplished by checking the cache-enable flag in the nonvol-
atile RAM to see if the user enabled caching from the setup screen. However,
if the BIOS allows the user to turn off the cache by a hot-key combination (per-
haps as part of speed switching), other checks may need to be performed to
see if the cache should be turned back on.

BIOS Modification Guide B-3

Soft Reset— CONTROL-ALT-DELETE / Turning the Internal Cache On and Off

B.4 Soft Reset— (controD (AT (BELETED

The objective of a soft reset is to reset the system and reboot the OS, similar

- to power-up and hard reset, but a hard reset of the CPU is not generated. Thus,

the CPU’s internal cache and clock doubling are not disabled. Since the cache
is not disabled, this can negatively impact memory-sizing code, such as gener-
ating memory-size mismatch errors. In this situation, disable the internal
cache and enable it prior to booting if it was enabled by the user in setup.

B.5 Turning the internal Cache On and Off

When the TI486SXL(C) family of microprocessors internal cache is turned on
or off, the following guidelines should be observed in the order presented:

1) Turn off interrupts—CLI

2) Turn off cache using Control Register 0 (CRO) bit 30 and flush using
WBINVD

3) Manipulate cache registers
4) Turn on cache and flush using WBINVD
5) Turn on interrupts—STI

This sequence ensures that the process is not interrupted until complete and
that no cache coherency issues arise when the cache is turned back on. When
manipulating the cache registers it is a good idea to explicitly set each register
instead of relying on default values.

Turning the Internal Cache On and Off

Example B—1. Turning Internal Cache Off

Some example assembler code for turning the cache off follows:

CacheOut MACRO index, value
MOV AL, index
ouT 22h, AL
MOV AL, value
ouT 23h, AL

CacheOut ENDM

CLI

MOV EAX, CRO

OR EAX, 40000000h : set bit 30, turn off cache
MOV CRO, EAX

WBINVD ; for external cache coherency
CacheOut 0COh, 00h

CacheOut 0OClh, 00h

CacheOut 0C4h, 00h

CacheOut 0C5h, 00h

CacheOut 0Cé6h, OFh

CacheOut 0C7h, 00h

CacheOut 0Cc8h, 00h

CacheOut 0C%h, 00h

CacheOut 0CAh, 00h

CacheQut 0CBh, 00h

CacheOut 0CCh, 00h

CacheOut 0CDh, 00h

CacheOut 0CEh, 00h

CacheQut 0CFh, 00h

WBINVD

STI

MOV EX, 4C00h

INT 21h ; return to DOS

BIOS Modification Guide B-5

Turning the Internal Cache On and Off

Example B-2. Turning Internal Cache On

CLI
Mov
OR
MOV
WBINVD

CacheOut
CacheOut

CacheOut
CacheOut
CacheOut

CacheOut
CacheOut
CacheOut

CacheOut
CacheOut
CacheOut

CacheOut
CacheOut
CacheOut

MOV
AND
MOV
WBINVD
STI
MOV
INT

Turn on the microprocessor internal cache by modifying some of the register
values as shown. The CacheOut macro definition remains the same:

EAX, CRO
EAX, 40000000h ; set bit 30, turn on cache
CRO, EAX
; for external cache coherency
0COh, 23h ; set bits NC1l, NCO, BARB
0Clh, 00h
0C4h, 00h
0C5h, 00h
0cé6h, 00h
0C7h, 00h
0csh, 00h
0C%h, 00h
0CAh, 00h
0CBh, 00h
0cch, 00h
0CDh, 00h
0CEh, 00h
0CFh, 00h
EAX, CRO
EAX, NOT 40000000h
CRO, EAX ; clear CD bit
EX,4C000h
21lh ; return to DOS

Appendix C

This appendix provides design considerations, address bit A20 masking, and
general cache invalidation procedures.

Topic Page

C-1

Design Considerations

C.1 Design Considerations

The following conventions should be employed in connecting the
TI486SXL(C) terminals to the PWB:

1 Connect (short) all VCC terminals to the positive supply voltage.

[Connect (short) all Vgg (GND) terminals to the system ground.

[Forthe TI486SXL in the 144-pin package connect (short) both W/R# ter-
minals (terminals 36 and 37) together and connect to W/R# signal source.

O Leave electrically open (unconnected) all NC terminals.

Note:

Connecting or terminating (high or low) any NC terminal(s) can cause unpre-
dictable results or nonperformance of the microprocessor.

The final responsibility for verifying designs incorporating T1486SXL(C) micro-
processors rests with the customer originating the motherboard design.

Address Bit A20 Masking

C.2 Address Bit A20 Masking

The A20M, address bit 20 mask, is an anomaly in PC designs resulting from
the fact that truncated addresses can be generated by an 8086/8088 outside
the physical address range of Oh—FFFFFh. For example, an 8086/8088 sys-
tem that contains FFFFh in a segment register and OFFFh in an offset register
results in an address of 100FFEh that requires 21 bits to address. Since the
8086/8088 has only 20 address bits (A0—A19), the most significant bit of the
resultant address would need to appear on an A20 bit if the 8086/8088 had
one.

Since the 8086/8088 address bus is not wide enough, only the first 20 bits of
the address are seen by the system. Using the address 100FFEh, generated
in the previous example, the 8086/8088 system read/write address is per-
formed at location FFEh and not at 100FFEh. The 80286 and later micropro-
cessors implement at least 24 address bits and perform the read/write to ad-
dress location 100FFEh. Thus, software applications can produce different re-
sults when run on an 8086/8088 system versus an 80286 or later microproces-
sor system.

Systems that use 80286 or later microprocessors compensated for this anom-
aly by adding circuits to generate an A20 mask (referred to as the A20 mask
orthe A20 gate, or similar). The A20 mask consists of software-controlled logic
that forces azero onthe A20 address line regardless of the actual value of A20.
The software-controlled A20 mask can also instruct the mask to permit the true
value to be passed to the system when required.

It is important to note that the A20 mask logic is external to the processor in
both 80286 and 80386 designs. The processor generates the actual address
but the system logic can be set to ignore or not ignore the A20 pin. Normally,
the A20 pin is ignored when these processors are executing in real mode and
emulating an 8086/8088.

This is animportant consideration when replacing an 80386SX/DX device with
a T1486-type device. The TI486SXL(C) microprocessors implement an inter-
nal cache and, if the system is in a state that ignores the A20 address input,
the processor must know so that it can also ignore the A20 address input.

If the A20M bit of configuration control register 0 (CCRO) is set, the
TI1486SXL(C) microprocessor knows that the A20M input provides the true val-
ue required. However, if the TI486SXL(C) is inserted into a socket designed
for the 80386SX/DX, the TI486SXL(C) A20M pin is placed at a pin location that
is not used by the 80386SX/DX. The system hardware needs to be modified
to provide the A20M connection.

The NCO bit of CCRO is a software-only solution to the A20 mask function.
When set, the TI486SXL(C) microprocessor does not cache the first 64K bytes
of memory above each 1M byte boundary. This solution means that, even if
the value of the A20 address is not known, the processor does not cache data
to the affected addresses.

Design Considerations and Cache Flush C-3

General Cache Invalidation

C.3 General Cache Invalidation

When the FLUSH bit in configuration control register 0 (CCRO) is set, the
FLUSH# input, when asserted low, invalidates the contents of the
TI486SXL(C) internal cache. This can be used to assure that data stored inthe
TI486SXL(C) internal cache does not differ from data stored in system
memory. Additionally, the cache can be invalidated by execution of the
486-compatible invalidate instructions (INVD,WBINVD) or in response to a
