
~TEXAS .
INSTRUMENTS

TI486SXLC and TI486SXL
, ; : Microprocessors

-. . .
. ,.,,' ..

1994 PC Systems Logic Products
==~===============-~

TI486SXLC and TI486SXL
Microprocessors

Reference Guide

~TEXAS
INSTRUMENTS Printed on Recycled Paper

Important Notice

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

TI warrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty. Specif­
ic testing of all parameters of each device is not necessarily performed, except those mandated
by government requirements.

Certain applications using semiconductor products may involve potential risks of death, person­
al injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer.
Use of TI products in such applications requires the written approval of an appropriate TI officer.
Questions concerning potential risk applications should be directed to TI through a local SC
sales office.

In order to minimize risks associated with the customer's applications, adequate design and op­
erating safeguards should be provided by the customer to minimize inherent or procedural haz­
ards.

TI assumes no liability for applications assistance, customer product design, software perform­
ance, or infringement of patents or services described herein. Nor does TI warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask
work right, or other intellectual property right of TI covering or relating to any combination, ma­
chine, or process in which such semiconductor products or services might be or are used.

Copyright © 1994, Texas Instruments Incorporated

About This Manual

Preface

Read This First

This manual describes the TI486SXL(C) microprocessor product family. Each
chapter except for chapters 3 and 4 cover all versions of the microprocessors.
both the TI486SXLC and the T1486SXL. Chapter 3 explicitly covers the
TI486SXLC series and chapter 4 explicitly covers the TI486SXL series. This
document contains the following chapters:

Chapter 1 Product Overview

Chapter 1 introduces the features of the TI486SXLC and TI486SXL micropro­
cessor series and defines the differences between them. Each series offers
a 3.3-volt version (TI486SXLC-V and TI486SXL-V) for battery-powered
applications. A functional block diagram, logic symbol, and I/O signal identifi­
cations are provided for each of the two series of microprocessors. Additional
material describes selected system architectures such as the execution
pipeline, the on-chip cache memory, and the power-management techniques.
The system-management mode (SMM) permits the TI486SXL(C) family of mi­
croprocessors to respond to and service interrupts with a higher priority than
standard 486 processors.

Chapter 2 Programming Interface

Chapter 2 describes the internal operations of the TI486SXL(C) family of mi­
croprocessors mainly from an application programmer's point of view. In­
cluded in this chapter are descriptions of processor initialization, the register
sets, memory addressing, various types of interrupts, system-management
mode, and the shutdown and halt process. Overviews of real, virtual-8086,
and protected operating modes are also included.

Chapter 3 TI486SXLC Microprocessor Bus Interface

Chapter 3 provides a summary of the TI486SXLC series processor signals
and descriptions of all inputs/outputs, functional timing and bus operations (in­
cluding pipelined and nonpipelined addressing), various interfaces, and power
management.

iii

About This Manual

Chapter 4 TI486SXL Microprocessor Bus Interface

Chapter 4 provides a summary of the TI486SXL series processor signals and
descriptions of all inputs/outputs, functional timing and bus operations (includ­
ing pipelined and nonpipelined addressing), various interfaces, and power
management.

Chapter 5 Electrical Specifications

Chapter 5 provides electrical specifications for the TI486SXL(C) family, includ­
ing specifications for the 3.3-volt versions. The specifications include electrical
connection requirements for all package pins, maximum ratings, recom­
mended operating conditions, dc electrical characteristics, and ac characteris­
tics.

Chapter 6 Mechanical Specifications

Chapter 6 provides mechanical specifications for the TI486SXL(C) family that
include pin assignments, package physical dimensions, and package thermal
characteristics.

Chapter 7 Instruction Set

Chapter 7 summarizes the instruction set for the TI486SXL(C) family and pro­
vides detailed information of the instruction encoding. The instruction set is the
same for all TI486SXL(C) microprocessors. Instructions are listed in an
instruction set summary table that provides information on the flags affected
and the instruction clock counts for each instruction.

Appendix A SMM Programmer's Guide

Appendix A provides detailed information including examples pertinent to pro­
gramming the TI486SXL(C) system management mode (SMM). Included are
system-management interrupt (SMI) examples, testing/debugging SMM
code, power management features, loading SMM programs, detection of CPU
type, presence of SMM-capable devices, creating macros, and altering SMM
code limits.

Appendix B BIOS Modifications Guide

Appendix B discusses some BIOS changes that may need to be considered
by the PC designer. The areas considered are power-on and hard reset, pro­
tected-mode to real-mode switching, and soft reset. Examples of assembler
code for turning the cache on and off are provided.

Appendix C Design Considerations and Cache Flush

iv

Appendix C provides design considerations, address bit A20 masking, and
general cache invalidation procedures.

About This Manual/Style and Symbol Conventions

Appendix D OEM Modifications for 168-Pin CPGA

Appendix 0 describes the potential modifications an OEM needs to implement
on an existing 486SXlDXlDX4 motherboard to take advantage of the
TI486SXL 168 pin CPGA. A system implementation is described for a 3.3-V
system that supports a 5-V ISA and a 3.3-V VL bus and another implementa­
tion for a mixed 3.3-V/5-V system that supports a 5-V ISA and a 5-V VL bus.

Appendix E Thermal Management in Microprocessor-Based Systems

Appendix E provides the reader with basic thermal concepts and the relation­
ship between thermal measurements and the system. In addition, problems
associated with comparing thermal specifications from different manufactur­
ers are discussed. Finally, corrective activity within JEDEC is detailed.

Appendix F Ordering Information

Appendix F provides detailed ordering information showing what the compo­
nents of the part number mean and a description of each microprocessor of­
fered. Versions offered include 5-volt and 3.3-volt versions, each of which are
rated to operate at different speeds. The TI486SXLC series devices are pack­
aged in the quad flat pack, and the TI486SXL series devices are packaged in
quad flat pack and ceramic PGA packages.

Appendix G Glossary

Appendix G contains explanations for the terms, abbreviations, and acronyms
used in this manual.

Style and Symbol Conventions

This document uses the following conventions.

o Program code listings and program code examples are shown in a spe­
cial typeface similar to a typewriter's.

Here is a sample assembler code program listing:

CLI
MOV EAX, CRO ; set bit 30, turn off cache
OR EAX, 40000000h ; for external cache coherency

o In the instruction syntax descriptions, the instruction is in a bold typeface
and a description of the instruction is in italic typeface. Here is an example
of an instruction syntax and description:

RSM Resume from SMM Mode

o Square brackets ([and]) identify the location and sequence for specifying
register andlor memory options in the instruction opcode. Here's an exam­
ple of an opcode that requires register and memory parameters:

Reference: Instruction ADD Integer Add (Register to Memory)

Opcode = 0 [OOOw] [mod reg rim]

Read This First v

Information About Cautions and Warnings / Trademarks

Information About Cautions and Warnings

Trademarks

vi

This book may contain cautions and warnings.

The information in a caution or a warning is provided for your protection.
Please read each caution and warning carefully.

AMD is a trademark of Advanced Micro Devices.

EPIC is a trademark of Texas Instruments Incorporated.

Intel is a trademark of Intel Corp.

Contents

1 Product Overview ... 1-1
1 .1 Features. .. 1-2
1.2 Introduction. .. 1-4
1 .3 TI486SXLC Series Overview 1-5
1 .4 TI486SXL Series Overview .. 1-9
1 .5 Differences Between the TI486SXLC Series and TI486SXL Series 1-15
1 .6 Differences Between the TI486SXL(C) Family and the TI486SLC/DLC Family 1-16
1 .7 Execution Pipeline ... 1-17
1 .8 On-Chip Cache .. 1-17
1 .9 Clock-Doubled Mode .. 1-18
1 .10 Power Management ... 1-18

1 .10.1 System-Management Mode (SMM) 1-18
1.10.2 Suspend Mode and Static Operation 1-18
1.10.3 3.3-V Operation .. 1-19
1.10.4 Mixed 3.3-V and 5-V Operation 1-19

2 Programming Interface .. 2-1
2.1 Processor Initialization .. 2-2
2.2 Real Mode Versus Protected Mode ... 2-5
2.3 Instruction-Set Overview. .. 2-6

2.3.1 Lock Prefix ... 2-7
2.3.2 Register Sets ... 2-7
2.3.3 Address Spaces ... 2-8

2.4 Application Register Set .. 2-10
2.4.1 General Purpose Registers .. 2-11
2.4.2 Segment Registers and Selectors 2-12
2.4.3 Instruction Pointer Register .. 2-14
2.4.4 Flag Word Register 2-14

2.5 System Register Set .. :.. 2-16
2.5.1 Control Registers 2-18
2.5.2 Descriptor-Registers and Descriptors 2-19
2.5.3 Task Register .. 2-23
2.5.4 Configuration Registers ... 2-26
2.5.5 Debug Registers ... 2-31
2.5.6 Test Registers. .. 2-33

2.6 Memory Address Space .. 2-37
2.6.1 Offset Mechanism .. 2-37
2.6.2 Real-Mode Memory Addressing 2-38
2.6.3 Protected-Mode Memory Addressing. .. 2-39

vii

Contents

2.7 Interrupts and Exceptions .. , 2-43
2.7.1 Interrupts .. 2-43
2.7.2 Exceptions. .. 2-44
2.7.3 Interrupt Vectors. .. 2-45
2.7.4 Interrupt and Exception Priorities 2-46
2.7.5 Exceptions in Real Mode .. 2-47
2.7.6 Error Codes ... 2-48

2.8 System-Management Mode .. 2-49
2.8.1 SMM Operations ... 2-50
2.8.2 SMM Memory Space Header .. 2-51
2.8.3 SMM Instructions .. 2-52
2.8.4 SMM Memory Space. .. 2-54
2.8.5 SMI Service Routine Execution " 2-54
2.8.6 CPU States Related to SMM and Suspend Mode , 2-55

2.9 Shutdown and Halt .. 2-57
2.10 Protection .. 2-57

2.10.1 Privilege Levels .. 2-58
2.10.2 1/0 Privilege Levels ... 2-58
2.10.3 Privilege Level Transfers .. 2-58
2.10.4 Initialization and Transition to Protected Mode 2-59

2.11 Virtual-8086 Mode ... 2-60
2.11.1 Memory Addressing .. 2-60
2.11 .2 Protection ... 2-60
2.11.3 Interrupt Handling .. 2-60
2.11.4 Entering and Leaving V86 Mode. .. 2-61

3 TI486SXLC Microprocessor Bus Interface ... 3-1

viii

3.1 Input/Output Signals .. 3-2
3.1 .1 TI486SXLC Terminal Function Descriptions 3-4
3.1.2 Signal States During Reset and Hold Acknowledge 3-12

3.2 Bus-Cycle Definition ... 3-13
3.2.1 Clock Doubling Using Software Control .. 3-13
3.2.2 Power Management .. 3-15

3.3 Reset Timing and Internal Clock Synchronization 3-17
3.4 Bus Operation and Functional Timing .. 3-19

3.4.1 Bus Cycles Using Nonpipelined Addressing .. 3-20
3.4.2 Bus Cycles Using Pipelined Addressing 3-24
3.4.3 Locked BusCydes ... 3-31
3.4.4 Interrupt-Acknowledge Cycles .. 3-31
3.4.5 Halt and Shutdown Cycles ... 3-33
3.4.6 Internal Cache Interface ... 3-36
3.4.7 Address Bit-20 Masking ... 3-38
3.4.8 Hold-Acknowledge State .. 3-39
3.4.9 Coprocessor Interface ... 3-42
3.4.10 SMM Interface ' 3-43
3.4.11 Power Management .. 3-45
3.4.12 Float.. 3-48

Contents

4 TI486SXL Microprocessor Bus Interface .. 4-1
4.1 Input/Output Signals .. 4-2

4.1.1 TI486SXL Terminal Function Descriptions 4-4
4.1.2 Byte Enable Line Definitions ... 4-13
4.1.3 Write Duplication as a Function of BE3# - BEO# .. 4-14
4.1.4 Generating A 1 - AO Using BE3# - BEO# 4-14
4.1.5 Signal States During Reset and Hold Acknowledge 4-14

4.2 Bus-Cycle Definition ... 4-16
4.2.1 Clock Doubling Using Software Control .. 4-16
4.2.2 Power Management .. 4-18

4.3 Reset Timing and Internal Clock Synchronization 4-20
4.4 Bus Operation and Functional Timing .. 4-22

4.4.1 Bus Cycles Using Nonpipelined Addressing .. 4-23
4.4.2 Bus Cycles Using Pipelined Addressing 4-27
4.4.3 Bus Cycles Using BS16# .. 4-34
4.4.4 Locked Bus Cycles ~ .. 4-37
4.4.5 Interrupt-Acknowledge Cycles .. 4-37
4.4.6 Halt and Shutdown Cycles .. 4-39
4.4.7 Internal Cache Interface ... 4-42
4.4.8 Address Bit-20 Masking ... 4-45
4.4.9 Hold Acknowledge State .. 4-46
4.4.10 Coprocessor Interface ... 4-49
4.4.11 SMM Interface ... 4-50
4.4.12 Power Management .. 4-52
4.4.13 Float (144-Pin QFP and 168-Pin PGA Pinouts Only) 4-55

5 Electrical Specifications .. 5-1
5.1 Electrical Connections -. 5-2

5.1.1 Power and Ground Connections and Decoupling 5-2
5.1.2 Pullup/Pulidown Resistors .. 5-2
5.1.3 NC Designated Terminals. 5-3
5.1.4 Unused Signal Input Terminals .. 5-3

5.2 Absolute Maximum Ratings .. 5-4
5.3 Recommended Operating Conditions ... 5-5

5.3.1 3.3-Volt Microprocessors With 5-Volt Tolerant Inputs, Outputs, and I/Os 5-5
5.3.2 3.3-Volt Microprocessors ... 5-6
5.3.3 5-Volt Microprocessors ... 5-6

5.4 DC Electrical Characteristics ... 5-7
5.4.1 3.3-Volt Microprocessors With 5-Volt Tolerant Inputs, Outputs, and I/Os 5-7
5.4.2 3.3-Volt Microprocessors ... 5-9
5.4.3 5-Volt Microprocessors .. 5-12

5.5 AC Characteristics .. 5-16
5.5.1 Measurement Points for AC Characteristics .. 5-16
5.5.2 CLK2 Timing Measurement Points .. 5-19
5.5.3 AC Data Characteristics Tables. .. 5-19
5.5.4 RESET Setup and Hold Timing .. 5-29
5.5.5 TI486SXLC Switching Waveforms 5-29
5.5.6 TI486SXL Switching Waveforms. .. 5-32

Table of Contents ix

Contents

6 Mechanical Specifications ... 6-1
6.1 Terminal Assignments .. 6-2
6.2 Package Dimensions , ... " " '" " 6-13
6.3 Thermal Characteristics .. 6-18

6.3.1 Airflow Measurement Setup .. " 6-20
6.3.2 Thermal Parameter Definitions 6-21

7 Instruction Set .. 7-1
7.1 General Instruction Format ... 7-2
7.2 Instruction Fields ... 7-3

7.2.1 Prefixes .. 7-4
7.2.2 Opcode Field ... 7-5
7.2.3 w Field ... 7-5
7.2.4 d Field '" " " 7-6
7.2.5 reg Field ... 7-6
7.2.6 mod and rim Field '" " " . " , 7-7
7.2.7 mod and base Fields '" " .. " 7-9
7.2.8 ss Field ... 7-10
7.2.9 index Field ... 7-10
7.2.10 sreg2 Field .. 7-10
7.2.11 sreg3 Field .. 7-11
7.2.12 eee Field .. 7-11

7.3 Flags ... " 7-12
7.4 Clock-Count Summary ... 7-13

7.4.1 Assumptions ... 7-13
7.4.2 Abbreviations .. 7-13

7.5 Instruction Set ... " 7-13

A SMM Programmer's Guide ... A-1

x

A.1 SMM Overview .. A-2
A.1.1 Introduction ... A-2
A.1.2 SMM Implementation .. A-2

A.2 TI486SXL(C) Microprocessor Power Management Features. " .. " '" , ... A-3
A.2.1 Reducing the Clock Frequency .. A-3
A.2.2 Suspend Mode .. A-3

A.3 SMM Feature Comparison ... A-4
A.4 SMM Hardware Considerations " " A-5

A.4.1 SMM Pins .. A-5
A.4.2 SMI# Pin Timing ... A-5
A.4.3 Address Strobes .. A-5
A.4.4 Chipset READY# .. A-6

A.5 SMM Software Considerations ... A-7
A.5.1 Exiting the SMI Handler .. A-9
A.5.2 Accessing Main Memory At the Same Address as SMM Code A-9
A.5.3 Miscellaneous Execution Details ... " " " A-9

A.6 Enabling SMM .. A-11
A.7 SMM Instruction Summary and Macros A-12
A.8 SM I Handler Example ;............... A-17
A.9 Loading SMM Memory With an SMM Program From Main Memory A-22
A.10 Detection of a TI Microprocessor .. A-26
A.11 Detection of SMM Capable Version .. A-28

Contents

A.12 Format of Data Used by SVDC/RSOC Instructions A-32
A.13 Altering SMM Code Limits .. A-34
A.14 Testing/Debugging SMM Code .. A-3S

A.14.1 Software Only Debugging ... A-3S
A.14.2 Software Debugging Example .. A-36
A.14.3 Clearing the VM Flag Bit ... A-42

B BIOS Modifications Guide B-1
B.1 Differences Between the TI486SLC/OLC BIOS and the TI486SXL(C) BIOS B-2
B.2 Power-Up and Hard Reset .. B-3
B.3 Protected-Mode to Real-Mode Switching B-3
B.4 Soft Reset-(CONTROL)(ALTJ (DELETE) •.•••••••••••.••••••••••••••••••••••.••••••• B-4
B.S Turning the Internal Cache On and Off .. B-4

C Design Considerations and Cache Flush .. C-1
C.1 Design Considerations .. C-2
C.2 Address Bit A20 Masking , , C-3
C.3 General Cache Invalidation .. C-4

C.3.1 Systems With No Secondary Cache or With a Parallel Secondary Cache ... C-4
C.3.2 Systems With a Serial Secondary Cache ' C-S

o TI4B6SXL OEM Modifications for 16B-Pin CPGA 0-1
0.1 Boards Supporting TI486SXL and Intel .. 0-2
0.2 Boards Supporting TI486SXL and a 4860X O-S
0.3 Boards Supporting TI486SXL and a 4860X4 0-6
0.4 Boards Supporting the VL Bus ... 0-7

0.4.1 Cache Snooping .. 0-7
0.4.2 VL-Bus Clock " " .. 0-7
0.4.3 VL-Bus Slot 10 Settings .. 0-8

O.S Power Planes for 3.3-V and 3.3-V/S-V Systems Using TI486SXL or 4860X4 0-9
0.S.1 Power Planes for 3.3-V Systems 0-9
0.S.2 Power Planes for Mixed 3.3-V/S-V Systems 0-10

0.6 Chipset Support ... 0-11

E Thermal Management in Microprocessor-Based Systems E-1
E.1 Introduction .. E-2

E.1.1 Thermal Impedance ... E-3
E.1.2 Power. .. E-3
E.1.3 Junction Temperature .. E-3

E.2 Modes,of Heat Transfer ... E-4
E.2.1 Integrated Circuit Thermal Resistance " E-S
E.2.2 PWB Conductivity ... E-7
E.2.3 Proximity of Integrated Circuit on Board E-8
E.2.4 Airflow.. .. E-8

E.3 Thermal Specifications of Integrated Circuits E-9
E.3.1 System Dependence of RSJA and RSCA E-9
E.3.2 Measurement of T A " .. E-10
E.3.3 Definition of Q .. E-10

E.4 TI Thermal Specification Methodology .. E-11
E.S Guidelines. .. E-14
E.6 Current Trends and Theory of Correction E-14
E.7 Conclusions ... E-1S

Table of Contents ' xi

Contents

F Ordering Information .. F-1
F.1 Part Number Components ... F-1
F.2 Part Numbers for Microprocessors Offered F-2

G Glossary .. G-1

xii

Figures

1-1 TI486SXLC Functional Block Diagram ... 1-6
1-2 TI486SXLC Logic Symbol 1-7
1-3 TI486SXLC Input and Output Signals .. 1-8
1-4 TI486SXL Functional Block Diagram. .. 1-10
1-5 TI486SXL Logic Symbol (132-Pin PGA Package) 1-11
1-6 TI486SXL Logic Symbol (144-Pin QFP and 168-Pin PGA Packages) 1-12
1-7 TI486SXL Input and Output Signals for 132-Pin PGA Package 1-13
1-8 TI486SXL Input and Output Signals for 144-Pin QFP and 168-Pin PGA Package 1-14
2-1 TI486SXLC Memory and I/O Address Spaces 2-8
2-2 TI486SXL Memory and I/O Address Spaces , 2-8
2-3 Application Register Set .. 2-10
2-4 General Purpose Registers .. 2-11
2-5 Segment Selector Register .. 2-12
2-6 EFLAGS Register 2-14
2-7 System Register Set. .. 2-17
2-8 Control Registers .. 2-18
2-9 Descriptor-Table (System-Address) Registers 2-20
2-10 Application- and System-Segment Descriptors 2-21
2-11 Gate Descriptor .. 2-23
2-12 Task (System-Address) Register ... 2-23
2-13 32-Bit Task-State Segment (TSS) Table : 2-24
2-14 16-Bit Task-State Segment (TSS) Table ... 2-25
2-15 TI486SXLC Address Region Registers (ARR1-ARR4) 2-29
2-16 TI486SXL Address Region Registers~(ARR1-ARR4) 2-30
2-17 TI486SXLC Debug Registers .. 2-31
2-18 TI486SXL Debug Registers ... 2-32
2-19 Test Registers ... 2-33
2-20 Offset Address Calculation .. 2-37
2-21 Real-Mode Address Calculation. " , , 2-38
2-22 Protected-Mode Address Calculation ... 2':39
2-23 Selector Mechanism .. 2-40
2-24 Paging Mechanism .. 2-41
2-25 Directory- and Page-Table Entry (DTE and PTE) Format 2-41
2-26 Error-Code Format 2-48
2-27 TI486SXLC Memory and 110 Address Spaces 2-49
2-28 TI486SXL Memory and I/O Address Spaces .. 2-50
2-29 SMM Execution Flow Diagram ... 2-51
2-30 SMM Memory Space Header .. 2-52
2-31 SMM and Suspended-Mode Flow Diagram 2-56

Table of Contents xiti

Figures

3-1 TI486SXLC Functional Signal Groupings 3-2
3-2 Internal Processor Clock Synchronization 3-17
3-3 Bus Activity From RESET Until First Code Fetch 3-18
3-4 Fastest Nonpipelined Read Cycles ... 3-20
3-5 Various Nonpipelined Bus Cycles (No Wait States) 3-21
3-6 Various Nonpipelined Bus Cycles With Different Numbers of Wait States 3-22
3-7 Nonpipelined Bus States .. 3-23
3-8 Fastest Pipelined Read Cycles. .. 3-25
3-9 Various Pipelined Cycles (One Wait State) 3-27
3-10 Fastest Transition to Pipelined Address Following Idle Bus State 3-28
3-11 Transitioning to Pipelined Address During Burst of Bus Cycles 3-29
3-12 Complete Bus States ... 3-30
3-13 Interrupt-Acknowledge Cycles ... 3-32
3-14 Nonpipelined Halt Cycle .. 3-34
3-15 Pipelined Shutdown Cycle. .. 3-35
3-16 Nonpipelined Cache Fills Using KEN# (With Different Numbers of Wait States) 3-36
3-17 Pipelined Cache Fills Using KEN# (With Different Numbers of Wait States) 3-37
3-18 Masking A20 Using A20M# During Burst of Bus Cycles 3-38
3-19 Requesting Hold From Bus-Idle State ... 3-40
3-20 Requesting Hold From Active Nonpipelined Bus 3-41
3-21 Requesting Hold from Active Pipelined Bus .. 3-42
3-22 SMI# Timing ... 3-43
3-23 I/O Trap Timing .. 3-44
3-24 SUSP#-Initiated Suspend Mode. .. 3-45
3-25 HALT-Initiated Suspend Mode ... 3-46
3-26 Stopping CLK2 During Suspend Mode .. 3-47
3-27 Entering and Exiting Float ... 3-48
4-1 TI486SXL Functional Signal Groupings .. 4-2
4-2 Internal Processor Clock Synchronization 4-20
4-3 Bus Activity From RESET Until First Code Fetch 4-21
4-4 Fastest Nonpipelined Read Cycles ... 4-23
4-5 Various Nonpipelined Bus Cycles (No Wait States) 4-24
4-6 Various Nonpipelined Bus Cycles With Different Numbers of Wait States 4-25
4...:.7 Nonpipelined Bus States .. 4-26
4-8 Fastest Pipelined Read Cycles ... 4-28
4-9 Various Pipelined Cycles (One Wait State) 4-30
4-10 Fastest Transition to Pipelined Address Following Idle Bus State 4-31
4-11 Transitioning to Pipelined Address During Burst of Bus Cycles 4-32
4-12 Complete Bus States .. 4-33
4-13 Nonpipelined Bus Cycles Using 8S16# ... 4-35
4-14 Pipeliningand BS16# ... 4-36
4-15 Interrupt-Acknowledge Cycles ... 4-38
4-16 Nonpipelined Halt Cycle .. 4-40
4-17 Pipelined Shutdown Cycle. .. 4-41
4-18 Nonpipelined Cache Fills Using KEN# .. 4-42
4-19 Nonpipelined Cache Fills Using KEN# and BS16# .. 4-43
4-20 Pipelined Cache Fills Using KEN# .. 4-44
4-21 Masking A20 Using A20M# During Burst of Bus Cycles 4-45
4-22 Requesting Hold From Bus-Idle State ... 4-47
4-23 Requesting Hold From Active Nonpipelined Bus ; .. 4-48
4-24 Requesting Hold from Active Pipelined Bus. .. 4-49

xiv

Figures

4-25 SMI# Timing ... 4-50
4-26 1/0 Trap Timing .. 4-51
4-27 SUSP#-Initiated Suspend Mode. .. 4-52
4-28 HALT-Initiated Suspend Mode ... 4-53
4-29 Stopping CLK2 During Suspend Mode , .. , , , 4-54
4-30 Entering and Exiting Float ... 4-55
5-1 Internal Pullup/Pulidown-IV Characteristic .. 5-3
5-2 TI486SXLC Drive Level and Measurement Points for AC Characteristics 5-17
5-3 TI486SXL Drive Level and Measurement Points for AC Characteristics 5-18
5-4 CLK2 Timing Measurement Points ... 5-19
5-5 RESET Setup and Hold Timing .. 5-29
5-6 TI486SXLC Input Signal Setup and Hold Timing 5-29
5-7 TI486SXLC Output Signal Valid Delay Timing 5-30
5-8 TI486SXLC Data Write Cycle Valid Delay Timing 5-30
5-9 TI486SXLC Data Write Cycle Hold Timing 5-31
5-10 TI486SXLC Output Signal Float Delay and HLDA Valid Delay Timing 5-31
5-11 TI486SXL Input Signal Setup and Hold Timing 5-32
5-12 TI486SXL Output Signal Valid Delay Timing 5-33
5-13 TI486SXL Data Write Cycle Valid Delay Timing 5-33
5-14 TI486SXL Data Write Cycle Hold Timing .. 5-34
5-15 TI486SXL Output Signal Float Delay and HLDA Valid Delay Timing 5-34
6-1 TI486SXLC Terminal Assignments .. 6-2
6-2 132-Pin PGA TI486SXL Package Terminals (Bottom View) 6-4
6-3 132-Pin PGA TI486SXL Package Terminals (Top View) 6-5
6-4 144-Pin QFP TI486SXL Package Terminals (Top View) 6-7
6-5 168-Pin PGA TI486SXL Package Terminals (Bottom View) 6-9
6-6 168-Pin PGA TI486SXL Package Terminals (Top View) 6-10
6-7 1 OO-Pin Thermally Enhanced Plastic QFP Package Dimensions (TI486SXLC) 6-13
6-8 132-Pin Ceramic PGA Package Dimensions (TI486SXL) 6-14
6-9 144-Pin Plastic QFP Dimensions (TI486SXL) 6-15
6-10 144-Pin Ceramic QFP Package Dimensions (TI486SXL) 6-16
6-11 168-Pin Ceramic PGA Package Dimensions (TI486SXL) 6-17
6-12 Wind Tunnel Schematic Diagram .. 6-20
7-1 General Instruction Format ... 7-2
A-1 SMI# Timing .. A-5
A-2 SMM Memory Space Header ... A-8
C-1 Cache Invalidation for the TI486SXLC and the 132-pin TI486SXL C-4
C-2 Cache Invalidation for the 144- and the 168-Pin TI486SXL C-5
C-3 FLUSH# for 144-Pin and 168-Pin TI486SXL C-5
D-1 FLUSH# Logic With a Serial Secondary Cache D-2
D-2 FLUSH# Logic With Level-2 Serial Cache .. D-3
D-3 Hardware Flush .. , D-7
D-4 3.3-V VL-Bus Implementation " " , , D-9
D-5 Mixed 3.3-V/5-V VL-Bus Implementation .. D-10
E-1 Effect of Component Operating Temperature on Component Failure Rate E-2
E-2 Die Using a Temperature-Sensitive Electrical Parameter E-4
E-3 Diode Voltage Versus Temperature for a Typical Bipolar Device E-4
E-4 Metal Within Projected Footprint of Integrated Circuit E-8
E-5 Plotting Die Thermal Data .. E-12
E-6 Wind Tunnel Schematic Diagram .. E-13

Table of Contents xv

Tables

1-1 TI486SXLC Product Offering ... 1-3
1-2 TI486SXL Product Offering .. 1-3
1-3 TI486SXLC Microprocessors ... 1-5
1-4 TI486SXL Microprocessors .. 1-9
1-5 TI486SXLC and TI486SXL Signal Differences 1-15
1-6 TI486SXL and TI486SLC/DLC Feature Differences .. 1-16
2-1 TI486SXLC Initialized Register Contents ... 2-3
2-2 TI486SXL Initialized Register Contents .. 2-4
2-3 Real Mode Versus Protected Mode .. 2-5
2-4 Segment Register Selection Rules ... 2-13
2-5 EFLAGS Definitions ... :.... 2-15
2-6 CRO Bit Definitions ... 2-19
2-7 Segment Descriptor Bit Definitions ... 2-22
2-8 Gate Descriptor Bit Definitions ... 2-23
2-9 TI486SXLC Configuration Control Registers 2-26
2-10 TI486SXL Configuration Control Registers 2-26
2-11 CCRO Bit Definitions. .. 2-27
2-12 CCR1 Bit Definitions .. 2-28
2-13 ARR1-ARR4 Block Size Field ... 2-30
2-14 DR6 and DR7 Field Definitions. .. 2-32
2-15 TR6 and TR7 Bit Definitions ... 2-34
2-16 TR6 Attribute Bit Pairs .. 2-34
2-17 TR3-TR5 Bit Definitions 2-36
2-18 Memory Addressing Modes ... 2-38
2-19 Directory and Page-Entry (DTE and PTE) Bit Definitions 2-42
2-20 Interrupt-Vector Assignments .. 2-46
2-21 Interrupt and Exception Priorities ... 2-47
2-22 Exception Changes in Real Mode .. 2-47
2-23 Error-Code Bit Definitions ... 2-48
2-24 SMM Memory Space Header .. 2-52
2-25 SMM Instruction Set .. 2-53
2-26 Descriptor Types Used for Control Transfer. .. 2-59
3-1 TI486SXLC Signal Summary ... 3-3
3-2 TI486SXLC Terminal Functions ... 3-4
3-3 Signal States During Reset and Hold Acknowledge .. 3-12
3-4 Bus Cycle Types .. 3-13
3-5 Signal States During Suspend Mode. .. 3-16

xvi

Tables

4-1 TI486SXL Signal Summary. .. 4-3
4-2 TI486SXL Terminal Functions. .. 4-4
4-3 Byte Enable Line Definitions .. 4-13
4-4 Write Duplication as a Function of BE3#-BEO# 4-14
4-5 Generating A 1-AO Using BE3#-BEO# ... , 4-14
4-6 Signal States During Reset and Hold Acknowledge , 4-15
4-7 Bus-Cycle Types .. , 4-16
4-8 Signal States During Suspend Mode. .. 4-19
5-1 Terminals Connected to Internal Pullup and Pulldown Resistors 5-2
5-2 Terminals Requiring External Pullup Resistors 5-3
5-3 Absolute Maximum Ratings .. 5-4
5-4 TI486SXL-G Recommended Operating Conditions 5-5
5-5 TI486SXLC-V and TI486SXL-V Recommended Operating Conditions 5-6
5-6 TI486SXLC and TI486SXL Recommended Operating Conditions. 5-6
5-7 T1486SXL-G40 Electrical Characteristics ... 5-7
5-8 T1486SXL2-G50 Electrical Characteristics .. 5-8
5-9 TI486SXLC-V25 Electrical Characteristics .. 5-9
5-10 TI486SXL -V 40 Electrical Characteristics .. 5-10
5-11 T1486SXL2-V50 Electrical Characteristics , 5-11
5-12 T1486SXLC-040 Electrical Characteristics 5-12
5-13 T1486SXLC2-050 Electrical Characteristics _ , 5-13
5-14 TI486SXL -040 Electrical Characteristics .. 5-14
5-15 T1486SXL2-050 Electrical Characteristics 5-15
5-16 Measurement Points for AC Characteristics 5-16
5-17 AC Characteristics for TI486SXL -G40 .. 5-20
5-18 AC Characteristics for TI486SXL2 -G 50 .. , 5-21
5-19 AC Characteristics for TI486SXLC-V25 ... 5-22
5-20 AC Characteristics for T1486SXL-V40 .. 5-23
5-21 AC Characteristics for T1486SXL2-V50 ... 5-24
5-22 AC Characteristics for T1486SXLC-040 ... 5-25
5-23 AC Characteristics for T1486SXLC2-050 , 5-26
5-24 AC Characteristics for TI486SXL -040 .. 5-27
5-25 AC Characteristics for TI486SXL2 -0 50 ... 5-28
6-1 TI486SXLC Signal Names Sorted by Terminal Number. .. 6-3
6-2 TI486SXLC Terminal Numbers Sorted by Signal Name. .. 6-3
6-3 132-Pin PGA TI486SXL Signal Names Sorted by Terminal Number _ 6-6
6-4 132-Pin PGA TI486SXL Terminal Numbers Sorted by Signal Name 6-6
6-5 144-Pin QFP TI486SXL Signal Names Sorted by Terminal Number 6-8
6-6 144-Pin QFP TI486SXL Terminal Numbers Sorted by Signal Name. 6-8
6-7 168-Pin PGA TI486SXL Signal Names Sorted by Terminal Number , 6-11
6-8 168-Pin PGA TI486SXL Terminal Numbers Sorted by Signal Name , 6-11
6-9 TI486SXL Signal Summary for 168-Pin PGA Pinout 6-12
6-10 TI486SXLC 100-Pin PQFP Thermal Resistance and Airflow 6-18
6-11 TI486SXL 132-Pin CPGA Thermal Resistance and Airflow 6-19
6-12 TI486SXL 144-Pin PQFP Thermal Resistance and Airflow , 6-19
6-13 TI486SXL 144-Pin CQFP Thermal Resistance and Airflow. .. 6-19
6-13 TI486SXL 168-Pin CPGA Thermal Resistance and Airflow 6-20
7-1 Instruction Fields .. 7-3
7-2 Instruction Prefix Summary ... 7-4
7-3 w Field Encoding .. 7-5

Table of Contents xvii

Tables

7-4 d Field Encoding , , 7-6
7-5 reg Field Encoding .. 7-6
7-6 mod rIm Field Encoding ... , .. 7-7
7-7 mod rIm Field Encoding Dependent on w Field , " 7-8
7-8 mod base Field Encoding .. 7-9
7-9 ss Field Encoding .. 7-10
7-10 index Field Encoding ... 7-10
7-11 sreg2 Field Encoding ... 7-10
7-12 sreg3 Field Encoding ... 7-11
7-13 eee Field Encoding " , 7-11
7-14 Flag Abbreviations ... 7-12
7-15 Action of Instruction on Flag ... 7-12
7-16 Clock-Count Abbreviations .. 7-13
7-17 Instruction Set ... , " 7-14
A-1 Power Management Options ... A-3
A-2 SMM Features .. A-4
A-3 SMM Memory Space Header A-8
A-4 Setting SMM Register Bits .. A-11
A-5 SMM Instruction Set with Clock Counts ... A-13
A-6 EDX Register Data At Power-Up/Reset ... A-28
D-1 VL -Bus Skew 0-7
0-2 VL-Bus Slot ID Settings .. D-8
E-1 Thermal Conductivity of Packaging Materials E-5
E-2 Thermal Performance of Various 486-Class Microprocessors E-6
E-3 Thermal Conductivity of PWBs With Various Amounts of Copper E-7
E-4 RE>JA Versus Board Type .. E-8
E-5 R E>JA Versus Airflow .. E-9
F-1 TI486SXLC and TI486SXL Part Numbers .. F-2
F-2 TI486SLC/E and TI486DLC/E Part Numbers. .. F-3

xviii

Examples

A-1 Accessing Main Memory Overlapping SMM Space A-9
A-2 SMM Setup ... A-11
A-3 Macros That Implement the Special SM Instructions A-14
A-4 Typical Coding Found In SMI Handlers .. A-17
A-5 SMI Handler Routine ... A-22
A-6 Detection of a TI Microprocessor . A-26
A-7 Detection of SMM Capable Version ... A-28
A-8 Internal Descriptor Format ... A-32
A-9 Load SS Descriptor Values (Real Mode) .. A-33
A-10 Debugging SMI Code ... A-36
8-1 Turning Internal Cache Off ... 8-5
8-2 Turning Internal Cache On ... 8-6

Table of Contents xix

xx

Chapter 1

Product Overview

This chapter introduces the features of the TI486SXLC series and TI486SXL
series of microprocessors and defines the differences between them. The
TI486SXL series offers a -G version that operates at 3.3 volts and features 5-V
tolerant I/Os for use in either 3.3-volt-only or mixed 3.3-V/5-V systems. A
functional block diagram, logic symbol, and I/O signal identifications are
provided for the TI486SXLC and TI486SXL series of microprocessors.
Additional material describes selected system architectures such as the
execution pipeline, the on-chip cache memory, and the power-management
techniques. The system-management mode (SMM) permits the TI486SXL(C)
family of microprocessors to respond to and service interrupts with a higher
priority than standard 486 processors.

Topic Page

1.1 . 'C'c' ,:, . , . , , . , , 'c'c' . , , , . , , , , , .,'•..... c" •......• 1 .. 2

1.2 Introduction c ~ c. • . • . .• 1-4

1.3 TI486SXLC Series Overview •...•.•.•.• , .• '. , •.. , ..••••.••.. ,c.. 1-5

1.4 . TI486SXL Secrias Overview •. 0 •• 0 ~ • • • • • •• 1-9

1.5 Differences Between c the TI486SXLC Series cand
TI486SXL Series ~ ;•. ~ ... ~ • . • • • 1-15

1.6 Differences Between the TI486SXL(C) Family· and
TI486SLC/DLCFamily .••.•••.•.•• :., ...•.•..••.•• ~ ...•••....•. 1-16

1.7 Execution Pipeline . ~ ~ .. :o ~ 0;'" ~ cc. 1-17.

1.8 Ori-ChipCache. ~ :.. •• • . . •.• • . . • .•• • •. •• . . . • • •1";17

1.9 'Clock-Doubled Mode,. "w co;'o' •• ; o' ••• 1 .. 18

1.10 Power Management·:~ c' ••• -: • ~ •••••••••.•.. ; ;.; •.•••• 0 0 ••••• ;. 1-18

1-1

Features

1.1 Features

1-2

The TI486SXLC and TI486SXL series microprocessors are attractive for new
486-compatible system designs as they are instruction-set and footprint com­
patible with existing platforms. Additionally, they implement high-performance
levels, including clock-doubled CPUs with on-chip 8K-byte cache, advanced
power-management techniques, and industry-standard pinouts that simplify
implementation of energy-efficient desktop and/or battery-powered notebook
systems. Their expanded features are:

o 486 architecture and performance

• 486-compatible instruction set and register set

• On-chip 8K-byte, 32-bit instruction/data cache configured as two-way
set associative

• Clock-doubled 3.3-V with 5-V tolerant I/Os, and 5-V versions

• Highly optimized, variable-length pipeline

• On-chip 16-bit hardware multiplier

o High-performance, footprint-compatible upgrade path for existing
TI486SLC and TI486DLC platforms

• Clock speeds up to 50 MHz

• Industry standard footprints:
TI486SXLC series uses 100-pin QFP (486SLC footprint)
TI486SXL series uses 132-pin PGA (486DLC footprint), 144-pin plas­
tic or ceramic QFP (486DLC footprint), and a 168-pin CPGA (4868X
footprint)

o Advanced power-management features for battery-powered notebook
and energy-efficient desktop PC systems

• System-management mode (SMM)

• High-priority system-management interrupt (8MI) with separate
memory-address space

• Suspend mode (initiated by either hardware or software)

• Dynamic clock scaling

• Fully static device permits clock-stop state

• 3.3-V versions provide approximately 60-percent power savings

• 3.3-V versions with 5-V tolerant inputs and outputs (available in the
TI486SXL series) can be used in 3.3-V-only or mixed 3.3-V/5-V
systems

Features

Features (Continued)

o Texas Instruments EPICTM submicron CMOS technology

o TI4B6SXLC series features 32-bit internal and 16-bit external buses. The
product offering is shown in Table 1-1 .

Table 1-1. TI486SXLC Product Offering

TI486SXLC Series Supply Voltage Speed (MHz)

Device Part Number (V) Core Bus Package
TX486SXLC-V25-PJF 3.3 25 25 100-pin QFP
TX486SXLC-040-PJF 5 40 40,20t

TX486SXLC2-050-PJF 5 50 25

t These microprocessors can be operated as nonclock-doubled 40 MHz or clock-doubled 20/40
MHz.

0 TI4B6SXL series features 32-bit internal and 32-bit external buses. The-
product offering is shown in Table 1-2

Table 1-2. TI486SXL Product Offering

TI486SXL Series Supply Voltage Speed (MHz)

Device Part Number (V) Core Bus Package
TX486SXL -040S-GA 5 40 40,20t 132-pin PGA
TX486SXL2-050S-GA 5 50 25

TX486SXL -040-PCE 5 40 40,20t 144-pin TEP

TX486SXL-G40-HBN 3.3-V, 5-V tolerant 40 40,20t 144-pin ce-
TX486SXL2-G50-HBN 3.3-V, 5-V tolerant 50 25 ramic QFP

TX486SXL -040-H BN 5 40 40,20t

TX486SXL2-050-HBN 5 50 25

TX486SXL -G40-GA 3.3-V, 5-V tolerant 40 40,20t 16B-pin PGA
TX486SXL2-G50-GA 3.3-V, 5-V tolerant 50 25

TX486SXL-V40-GA 3.3 40 40,20t

TX486SXL2-V50-GA 3.3 50 25

TX486SXL -040-GA 5 40 40,20t

TX486SXL2-050-GA 5 50 25

t These microprocessors can be operated as nonclock-doubled 40 MHz or clock-doubled 20/40
MHz.

For an explanation of the part numbers see Appendix F.

Product Overview 1-3

Introduction

1.2 Introduction

1-4

The Texas Instruments TI486SXL(C) microprocessor family is comprised of
advanced x86-compatible processors that offer clock-doubled features for in­
creased system performance. Each provides an internaI8K-byte, 32-bit cache
and integrated power management on a single chip.

The fully static, 486 instruction-set-compatible TI486SXLC series micropro­
cessors are backward compatible with the TI486SLC/E. The TI486SXLC2
microprocessors contain a clock-doubled feature for increased system
performance of up to 50 MHz. The TI486SXLC series is an ideal solution for
battery-powered applications as it typically draws only 0.1-mA supply current
while the input clock is stopped in suspend mode. The TI486SXLC-V25 offers
additional power savings as it operates from a 3.3-V power supply.

The fully static, 486 instruction-set-compatible TI486SXL series microproces­
sors are available in three package types: a 132-pin PGA, 144-pin QFPs, and
a 168-pin PGA. The 132-pin PGA TI486SXL and TI486SXL2 are backward
compatible with the TI486DLC/E, the 144-pin QFP TI486SXL and TI486SXL2
are backward compatible with the 486DLC footprint, and the 168-pin PGA
TI486SXL and TI486SXL2 have the same footprint as the 486SX pinout (see
Appendix D, OEM Modifications for 168-Pin CPGA). The TI486SXL2 micro­
processors contain a clock-doubled feature for increased system performance
of up to 50 MHz. The TI486SXL series is an ideal solution for battery-powered
applications as it typically draws only 0.1 mA while the input clock is stopped
in suspend mode. The T1486SXL-V40 and T1486SXL2-V50 offer additional
power savings as they operate from a 3.3-V power supply. The TI486SXL -G40
and T1486SXL2-G50 offer the equivalent power savings with the added capa­
bility to operate in either 3.3-V-only systems or in mixed 3.3-V/5-V systems.

The TI486SXL series microprocessors support 8-,16-, and 32-bit data types
and operate in real, virtual-8086, and protected modes. The TI486SXL(C) mi­
croprocessor family achieves high performance through use of a highly opti­
mized, variable-length pipeline combined with a RISC-like, single-cycle
execution unit, an on-chip hardware multiplier, and an 8K-byte integrated
instruction and data cache.

T1486SXLC Series Overview

1.3 TI486SXLC Series Overview

The TI486SXLC series of microprocessors are implemented using Texas
Instruments EPICTM submicron CMOS technology. The combination of high­
performance 486 operation, internal 8K-byte cache, advanced power
management, and small-form-factor package makes the TI486SXLC series
ideal for notebooklsubnotebook applications. A summary of the product
offering is shown in Table 1-3. Figure 1-1 is a functional block diagram and
Figure 1-2 is the logic symbol for the TI486SXLC microprocessors.

Table 1-3. TI486SXLC Microprocessors

Speed (MHz)
Device Supply Voltage (V) Core Bus Packaget

TI486SXLC-V25 3.3 25 25 100-pin QFP

T1486SXLC-040 5 40 40,20+

T1486SXLC2-050 5 50 25

t Pinout and footprint compatible with TI486SLC/E.
+ These microprocessors can be operated as nonclock-doubled 40 MHz or clock-doubled 20/40

MHz.

Product Overview 1-5

T1486SXLC Series Overview

Figure 1-1. TI486SXLC Functional Block Diagram
r----------------------·--------T--------,

1 Core 1
1 Clock 16-byte

1"- 1
Decoder 4-- Instruction - I

Queue
~ I Bus Clock - CLK2 1

1 Clock control

: 1 1"-

Control Immediate 1
.... SUSP# !

"
, , 1 32 1/ Suspend

SUSPA# I 1
~/

Mode
Internal ROM 1 Control I~

Address Data Bus

Sequencer 4 ~ Microcode ROM 1 .. SMI# I ..

1
SMM ~

Control SMADS#l ...
1 I"

.l
Control Immediate 1 Memory Enhanced 386SX- 1 (fDala Bus Compatible 1 , ,r Bus Interface

1
Execution Unit

1 Byte 1
Branch Control 3-lnput .+ Muxes __ 1 .. Data D15-DO I - .. /

Limit Multiplier Adder Shift Register & I/O
Buffers /16 : Unit Unit Unit Unit File 1 Regs

L
Execution Pipeline 1 1

---------r-------------J 1 ..
1

~ "
,

Bus
Control 1

Control
~ I"

Memory Prefetch 8 KByte 1
Management --+- -----.. Instr/Data - 1 Unit ~

Unit Cache
1 , Instruction A23-A1
1

.~
Address Bus BHE#, ~LE#! ..

Cache and Memory
... Address

Management Data Address Bus I .. Buffers /26 1
.~

1 1 TI486SXLC Microprocessor ..1 Interface 1
------------------------------- ---------

1-6

Tl486SXLC Series Overview

Figure 1-2. TI486SXLC Logic Symbolt

«I>
TI486SXLC

MICROPROCESSOR

CLK2

RESET

NMI

INTR

SMI#

FLT#

KEN#

FLUSH#

PEREQ

BUSY#

ERROR#

SUSP#

SUSPA#

A20M#

DO
•
•
•

D15

... '" ~

~

~

I'-

I'-

~

I'-

/'

'"

2x Clock Input

Reset

Non-Maskable Req.

Interrupt Maskable Req.
Control Bus

~ System Mgmt Int. Cycle
Control

~ Float

~ Cache Enable I Internal
Cache

~ Cache Flush Interface

~ Extension Req.
Coprocessor

~ Extension Busy
Interface

~ Extension Error

~ Suspend Req·1 Power

Suspend Ack. Management

~ Address Bit 20 Mask

I

0
•

V< Data) •
•
15

Hold Request .
Bus I

....

Arbitration Hold Ack.

Bus Ready l./1

Next Address Req.
k---l ____

....

Address Strobe v ~

SMM Address Strobe v ~

Data/Control v

Bus Memory I/O v
Cycle

Definition Write/Read v

Bus Lock ~

I Byte High En. 'V
~

Byte
Enables Byte Low En. V i"'-,.

I

1

Addresvv
•

I •
•

23

HOLD

HLDA

READY#

NA#

ADS#

SMADS#

D/C#

M/IO#

W/R#

LOCK#

BHE#

BLE#

A1

•
•
•

A23

tThis symbol is in accordance with ANSI/IEEE Std 91-1991 and IEC Publication 617-12.

Product Overview 1-7

T1486SXLC Series Overview

The TI486SXLC includes two power-management signals (SUSP# and
SUSPA#). two cache-interface signals (FLUSH# and KEN#). an A20 mask
input (A20M#). and two SMM signals (SMADS# and SMI#) that are additions
to the 386SXsignai set. The TI486SXLC series has the same signal set as the
TI486SLC/E microprocessor and the complete list of TI486SXLC signals is
shown in Figure 1-3 .

. Figure 1-3. TI486SXLC Input and Output Signals

1-8

A20M# ----. 6.

BUSY# ----.

CLK2 ----.

ERROR# ----.

FLT# ----.

FLUSH# ----. •

INTR ----.

HOLD ----.

KEN# ----. •

NA# ----.

NMI----'

PEREQ ----.

SUSP# ----. •

REAOY# ----.

RESET ----.

TI486SXLC
Microprocessor

• Internal Cache Interface

• Power Management

6. A20 Mask

• System Management Mode

•
•
•

A23-A1

AOS#

BHE#

BLE#

015-00

O/C#

HLOA

LOCK#

M/IO#

SUSPA#

SMAOS#

SMI#

W/R#

TJ486SXL Series Overview

1.4 TI486SXL Series Overview

The TI486SXL series of microprocessors are implemented using Texas
Instruments EPIC submicron CMOS technology. The combination of
high-performance 486 operation, internal 8K-byte cache, 32-bit external data
path, and advanced power-management features makes the TI486SXL series
ideal for energy-efficient desktop and notebook applications. A summary of
the product offering is shown in Table 1-4. Figure 1-4 is a functional block
diagram and Figure 1-5 and Figure 1-6 are logic symbols for the 132-pin,
144-pin, and 168-pin TI486SXL microprocessors.

Table 1-4. TI486SXL Microprocessors

Speed (MHz)
Device Supply Voltage (V) Core Bus Package

TI486SXL -G40 3.3-V, 5-V tolerant 40 40,20t 144-pin OFP=I=, and
168-pin PGA §

T1486SXL2-G50 3.3-V, 5-V tolerant 50 25

TI486SXL -V 40 3.3 40 40,20t 168-pin PGA§

T1486SXL2-V50 3.3 50 25

TI486SXL -040 5 40 40,20t 132-pin PGA=I=,
144-pin OFP*, and

T1486SXL2-0501l 5 50 25 168-pin PGA §

t These microprocessors can be operated as nonclock-doubled 40 MHz or clock-doubled 20/40
MHz.

+ Pinout and footprint compatible with TI486DLC/E
§ Footprint compatible with 486SX. See Appendix 0, OEM Modifications for 168-Pin CPGA.
11 Available in 144-pin ceramic QFP and 168-pin PGA

Product Overview 1 -9

T1486SXL Series Overview

Figure 1-4. TI486SXL Functional Block Diagram

r----------------------·--------r---------
I Core I

I I Clock

16-byte I ~
Clock I ~ , Bus CLK2

Decoder 4-- Instruction ...- Clock control
I Queue I ,..-

I I
I Suspend

_ SUSP# I
Control Immediate

I Mode SUSPA# ! ,. ,r ,r
I 32/ Control I-

I ROM I Internal SMI#
Address Data Bus SMM - I"

Sequencer ... Microcode ROM I Control SMADS# I ~
I I-

I I I n I Memory Control Immediate I tiData Bus 386DX-Compatible I , ,r Bus Interface
I

Execution Unit I Byte I
Branch Control 3-lnput ,+ Muxes Data 031-00 I /

Limit Multiplier Adder Shift Register and 1/0 I Buffers /32 I Unit Unit Unit Unit File I Registers

I I
Execution Pipeline I I I ---------

_____________ -1

I .. I

~ -- I I
"

, Control I.. I Bus ..
I Control

.... 1-
Memory

~ Prefetch ---+
8 KByte I I

Management InstrlData ~ .. I Unit ... -- I Unit Cache I I

I f Instruction I I
4 A31-A2 I

Address Bus 1 • BE3#~BEO# ,
Cache and Memory 1"- Address

Management Data Address Bus I ..
Buffers /34 I

I"
I I

TI486SXL Microprocessor I I L ______________________________ ~ _________ !

1-10

Tl486SXL Series Overview

Figure 1-5. TI486SXL Logic Symbolt (132-Pin PGA Package)

<I>
TI486SXL

MICROPROCESSOR
(132-pin PGA)

CLK2 ----I> 2x Clock Input
Bus I

Hold Request I-..... ~-­

Hold Ack. 1---Arbitration
RESET ---I Reset

NMI Bus Size 16 V1
Non-Maskable Req.

INTR Maskable Req.
Interrupt Bus Ready V1
Control Bus

SMJ# ~ .. '" ~ System Mgmt Int. Cycle Next Address Req. ./1 ~ ~ ...
Control

Address Strobe v ~

KEN# '" '" Cache Enable I Internal SMM Address Strobe V ~

'"
Cache

FLUSH# ~ Cache Flush Interface

Data/Control V

PEREQ ~ Extension Req. Bus Memory I/O V

BUSY# '" ~ Extension Busy
Coprocessor Cycle

Write/Read V Interface Definition
ERROR# '" ~ Extension Error Bus Lock

SUSP# '" '" Suspend Req'l Power
Byte Enable 3 V "-

SUSPA# /' Suspend Ack. Management Byte Byte Enable 2 V "-

A20M# '" ~ Address Bit 20 Mask
Enables Byte Enable 1 V

DO
•
•
•

031

I

o
•
•
•

31

V< Data)

Byte Enable 0 V "-

I Addrese>v

I

2
•
•
•

31

tThis symbol is in accordance with ANSI/IEEE Std 91-1991 and lEG Publication 617-12.

HOLD

HLDA

BS16#

READY#

NA#

ADS#

SMADS#

D/C#

M/IO#

W/R#

LOCK#

BE3#

BE2#

BE1#

BEO#

A2

•
•
•

A31

Product Overview 1-11

Tl486SXL Series Overview

Figure 1-6. TI486SXL Logic Symbolt (144-Pin QFP and 168-Pin PGA Packages)

CLK2 ----I'> 2x Clock Input

RESET ----I

NMI

INTR

SMI# "'"

Reset

Non-Maskable Req.

Maskable Req.

~ System Mgmt Int.

<I>
TI486SXL

MICROPROCESSOR
(144-pin QFP and

168-pin PGA)

Busl
Arbitration

Hold Request I--.... ~I---­

Hold Ack. 1----

Interrupt
Control Bus

Cycle

Bus Size 16 1/1 -

Bus Ready 1/1 ~

Next Address Req. 1/'1 ...

HOLD

HLDA

BS16#

READY#

NA#
Control

Address Strobe V "'- ADS#
FLT# '"

I"--

I'--

I"--

KEN# ----'--">I

FLUSH# ---L.::::oI

MEMW# --~

'"
'"

PEREQ -----I

BUSY# -----L.:::.I

ERROR# -----L.::>I

~ Float

~ Cache Enable
Internal

~ Cache Flush Cache
Memory Write Interface

(ISA bus)

~ Extension Req.

~ Extension Busy Coprocessor
Interface

~ Extension Error

SUSP# '" ~ Suspend Req'l Power

SUSPA# ---,,/'-1 Suspend Ack. Management

A20M# '" ~ Address Bit 20 Mask

00-----1
•
•
•

031 ----I

o
•
•
•

31

SMM Address Strobe V ...,::"'->----

Data/Control V

Memory I/O V
Bus

Cycle Write/Read V
Definition

Write/Read + V

Bus Lock r-...

Byte Enable 3 V"r-...>---__

Byte Byte Enable 2 V r-...

Enables Byte Enable 1 V I-='r-...>--__

SMADS#

D/C#

M/IO#

W/R#

W/R#

LOCK#

BE3#

BE2#

BE1#

Byte Enable 0 V r-... BEO#

I Addresvv

2
•
•
•

31

1---- A2

•
•
•

1---- A31

tThis symbol is in accordance with ANSI/IEEE Std 91-1991 and lEG Publication 617-12.
+ 144-pin QFP has W/R# on pins 36 and 37. These terminals must be connected together.

1-12

T1486SXL Series Overview

The TI486SXL includes two power-management signals (SUSP# and
SUSPA#), two cache-interface signals (FLUSH# and KEN#), an A20 mask
input (A20M#), and two SMM signals (SMAOS# and SMI#) that are additions
to the 3860X signal set. The 132-pin PGA TI486SXL has the same signal set
as the TI486DLC/E microprocessor while the 144-pin QFP and the 168-pin
PGA have two additional inputs, MEMW#, and FLT#. MEMW# is part of the
cache interface and FLT# can be used to float the bidirectional and output
signals. (See Appendix 0, OEM Modifications for 168-Pin CPGA.). The
complete list of TI486SXL signals is shown in Figure 1-7 for the 132-pin PGA
and Figure 1-8 for the144-pin QFP and 168-pin PGA.

Figure 1-7. TI486SXL Input and Output Signals for 132-Pin PGA Package

A20M#---' •

BS16# ---.

BUSY#---'

CLK2 ----.

ERROR#---'

FLUSH#---' •

INTR ---.

HOLD ----.

KEN#---' •

NA#---'

NMI---'

PEREQ---'

SUSP# ----. •

READY# ----.

RESET ----.

TI486SXL
Microprocessor

132-pin PGA

• Internal Cache Interface

• Power Management

• A20 Mask
• System Management Mode

•
•
•

A31-A2

AOS#

BE3#-BEO#

031-00

O/C#

HLOA

LOCK#

M/IO#

SUSPA#

SMAOS#

SMI#

W/R#

Product Overview 1-13

Tl486SXL Series Overview

Figure 1-8. TI486SXL Input and Output Signals for 144-Pin QFP and 168-Pin PGA Package

1-14

A20M# ----.

BS16# ----.

BUSY# ----.

CLK2 ----.

ERROR# ----.

FLT#

FLUSH# ----. •

INTR ----.

HOLO ----.

KEN# ----. •

MEMW#----' •

NA# ----.

NMI----'

PEREQ ----.

SUSP# ----. •

REAOY# ----.

RESET ----.

TI486SXL
Microprocessor
144-pin QFP and

168-pin PGA

• Internal Cache Interface

• Power Management

.... A20 Mask

• System Management Mode

•
•
•

A31-A2

AOS#

BE3#-BEO#

031-00

O/C#

HLOA

LOCK#

M/IO#

SUSPA#

SMAOS#

SMI#

W/R#

W/R#t

t 144-pin QFP has W/R# on pins 36 and 37. These terminals must be connected together.

Differences Between the Tl486SXLC Series and Tl486SXL Series

1.5 Differences Between the TI486SXLC Series and TI486SXL Series

The TI486SXLC and the 132-pin TI486SXL are the same except for how the
pin signals are routed and utilized on the processors. Thus, the bus interfaces

/ are different but the CPU core and cache/memory management are the same.
The TI486SXLC has a physical address range of 16M bytes and the TI486SXL
has a physical address range of 4G bytes. Table 1-5 describes the signal
differences between the TI486SXLC and T1486SXL.

Table 1-5. TI486SXLC and TI486SXL Signal Differences

TI486SXLC TI486SXL TI486SXL (144-pin QFP
Description (100-pin QFP) (132-pin PGA) and 168-pin PGA)

Data bus 16 bits wide (015-00) 32 bits wide (031-00) 32 bits wide (031-00)

Address bus A23-A1 A31-A2 A31-A2

Byte enables 2 byte enables used 4 byte enables used 4 byte enables used
(BHE#, BLE#) (BE3#-BEO#) (BE3#-BEO#)

Float bus signal (FLT#) supported not supported supported

Bus size 16 signal (BS16#) not supported supported supported

MEMW# ISA signal not supported not supported supported

The 144-pin QFP and the 168-pin PGA TI486SXL differs from both the
TI486SXLC and the 132-pin PGA TI486SXL by the addition of one signal,
MEMW#. This signal is part of the cache flush logic that is implemented
on-chip in the 144- and 168-pin versions of the T1486SXL. For a more detailed
description of this logic, see Appendix C, Design Considerations and Cache
Flush and Appendix 0, OEM Modifications for 168-Pin CPGA. The 144-pin
QFP and the 168-pin PGA TI486SXL contain the TI486SXLC signal FLT# that
is not implemented in the 132-pin PGA T1486SXL. This signal can be used to
float all bidirectional and output signals of the TI486SXL microprocessor when
it is used in conjunction with an upgrade socket. The 144-pin QFP differs from
the 168-pin PGA by the addition of a second W/R# input. As these two W/R#
inputs must be connected together, these devices are functionally the same.

Product Overview 1-15

Differences Between the Tl486SXL(C) Family and the Tl486SLCIDLC Family

1.6 Differences Between the TI486SXL(C) Family and the TI486SLC/DLC
Family

The TI486SXLC and the TI486SLC/E are the same in all respects except for
the cache size, cache organization, and the clock-doubled feature. The
TI486SXL and the TI486DLC/E are also the same in all respects except for the
same new features shown in Table 1-6. Signal differences between the
TI486SXLC and the 132-pin PGA TI486SXL, listed in Table 1-5, also apply for
the TI486SLC/E and TI486DLC/E, respectively.

Table 1-6. TI486SXL and TI486SLCIDLC Feature Differences

Description TI486SXL(C) Family TI486SLC/DLC Family

Cache size 8K bytes 1 K byte

Cache organization Two-way set Two-way set associative
associative or direct mapped

Clock doubled Supported Not supported

1-16

Execution Pipeline / On-Chip Cache

1.7 Execution Pipeline

The execution path in the TI486SXL(C} family of microprocessors consists of
five pipelined stages optimized for minimal instruction-cycle times. These five
stages are:

o Code fetch
o Instruction decode
o Microcode ROM access
o Execution
o Memory/register file write-back

These stages have been designed with hardware interlocks that permit execu­
tion overlap for successive instructions.

The 16-byte instruction-prefetch queue fetches code in advance and prepares
it for decode, helping to minimize overall execution time. The instruction de­
coder then decodes four bytes of instructions per clock, eliminating the need
for a queue of decoded instructions. Sequential instructions are decoded
quickly and provided to the microcode. Nonsequential operations do not have
to wait for a queue of decoded instructions to be flushed and refilled before
execution continues. As a result, both sequential and nonsequential instruc­
tion execution times are minimized.

The execution stage takes advantage of a RISC-like, single-cycle execution
unit and a 16-bit hardware multiplier. The write-back stage provides single­
cycle, 32-bit access to the on-chip cache and posts all writes to the cache and
system bus using a two-deep write buffer. Posted writes allow the execution
unit to proceed with program execution while the bus-interface unit completes
the write cycle.

1.8 On-Chip Cache

The 8K-byte, 32-bit on-chip cache in the TI486SXL(C} family of microproces­
sors maximizes overall performance by quickly supplying instructions and
data to the internal execution pipeline. An external memory access takes a
minimum of two clock cycles (zero wait states). For cache hits, the TI486SXL
series eliminates these two clock cycles by overlapping cache accesses with
normal execution pipeline activity. In addition, bus bandwidth is gained by
presenting instructions and data to the execution pipeline at up to 32 bits at a
time compared to 16 bits per cycle for an external memory access.

The TI486SXL(C} cache is an 8K-byte, write-through unified instruction and
data cache with lines that are allocated only during memory read cycles. The
cache is configured as two-way set associative, and the cache organization
consists of 1024 sets each containing two lines of four bytes each.

Product Overview 1-17

Clock-Doubled Mode / Power Management

1.9 Clock-Doubled Mode

The TI486SXL(C) family of microprocessors is designed with a clock-doubled
feature that provides an immediate performance increase and upgrade path
from the TI486SLC/DLC family of products. The clock-doubled feature can be
enabled using software by setting bit 6 of the Configuration Control register O.

When the microprocessor is in clock-doubled mode, the internal core is oper­
ating at the CLK2 frequency while the external bus interface remains at half
the CLK2 frequency. This provides a speed increase in the on-chip cache,
instruction decode, and instruction execution while the external interface re­
mains the same.

In addition to the clock-doubled feature, the TI486SXL(C) microprocessor
family also supports dynamic clock scaling that enables the CLK2 input to be
scaled up or down. To take advantage of this feature (scaling or stopping the
CLK2 input) the processor must first be brought into the nonclock-doubled
mode. Dynamic clock scaling is transparent to the user since the processor
continues instruction execution in nonclock-doubled mode until the desired
frequency is reached within the PLL lock range to initiate clock-doubled mode.
This allows for increased bandwidth on demand without restriction to the user.

1.10 Power Management

The TI486SXL(C) family incorporates advanced power-managementfeatures
such as suspend mode, static operation, and operation at 3.3 V. These capa­
bilities are attractive for battery-powered notebook and energy-efficient desk­
top PC systems.

1.10.1 System-Management Mode (SMM)

System-management mode (SMM) provides an additional interrupt and a
separate address space that can be used for system power management or
software-transparent emulation of liD peripherals. SMM is entered using the
system-management interrupt (SMI#) that has a higher priority than any other
interrupt. While running in protected SMM address space, the SMI interrupt
routine can execute without interfering with the operating system or
application programs.

After receiving an SMI# interrupt, portions of the CPU state are automatically
saved, SMM is entered and program execution begins at the base of SMM
address space. The location and size of the SMM memory is programmable
in the TI486SXL(C) microprocessor family. Seven SMM instructions have
been added to the 486 instruction set that permit saving and restoring the total
CPU state when in SMM mode.

1.10.2 Suspend Mode and Static Operation

1-18

The power-management features in the TI486SXL(C) family of microproces­
sors allow a dramatic reduction in the current required when the microproces-

Power Management

sor is in suspend mode (typically less than three percent of the operating cur­
rent). Suspend mode is entered either by a hardware- or software-initiated
action. Using the hardware to initiate suspend mode involves a two-pin hand­
shake using the SUSP# and SUSPA# signals.

The software initiates suspend mode through execution of the HALT instruc­
tion. Once in suspend mode, the microprocessor power consumption can be
further reduced by stopping the external clock input.

Note:

For the clock-doubled versions of the TI486SXL(C} microprocessor family,
suspend mode can be initiated while in clock-doubled mode as long as the
external input clock is not stopped. The external input clock can be stopped
after the microprocessor has been put into nonclock-doubled mode.

Since these microprocessors are static devices, no internal CPU data is lost
when the clock input is stopped.

1.10.3 3.3-V Operation

The TI486SXLC-V and TI486SXLC2-V versions operate from a 3.3-V supply.
Power consumed is typically only 30 percent of the power consumed while
operating at 5 V. The TI486SXLC-V25 operates at 25-MHz speed.

The TI486SXL-V and TI486SXL2-V versions operate from a 3.3-V supply.
Power consumed is typically only 30 percent of the power consumed by a mi­
croprocessor operating at 5 V. The T1486SXL-V40 can be operated in
clock-doubled mode at 40-MHz core and 20-MHz bus speeds, or in nonclock­
doubled mode with both the core and bus speeds at 40 MHz. The
T1486SXL2-V50 operates at 50 MHz core and 25-MHz bus speeds in the
clock-doubled mode.

1.10.4 Mixed 3.3-V and 5-V Operation

The TI486SXL-G and TI486SXL2-G versions operate from both a 3.3-V and
a 5-V supply. These microprocessors feature 5-V tolerant inputs and outputs
meaning that they can be incorporated in system designs that utilize both
3.3-V and 5-V devices. These devices can be used in 3.3-V-only systems by
connecting the 5-V supply pin (VCCS) to the 3.3-V supply. The microprocessor
power consumption is typically only 30 percent of the power consumed by a
microprocessor operating at 5 V. The TI486SXL -G40 can be operated in
clock-doubled mode at 40-MHz core and 20-MHz bus speeds, or in nonclock­
doubled mode with both the core and bus speeds at 40 MHz. The
T1486SXL2-G50 operates at 50-MHz core and 25-MHz bus speeds in the
clock-doubled mode.

Product Overview 1-19

1-20

Chapter 2

Programming Interface

In this chapter, the internal operations of the TI486SXL(C) family of micropro­
cessors are described mainly from an application programmer's point of view.
Included in this chapter are descriptions of processor initialization, the register
sets, memory addressing, various types of interrupts, system-management
mode, and the shutdown and halt process. Overviews of real, virtual-8086,
and protected operating modes are also included.

Topic Page

2.1 Processor Initialization•.•..•.. '. 2-2

2.2 Real ModeVersus Protected Mode 2-5

2.3 Instruction-Set Overview 2-6

2.4 Application Register Set•.......................... 2-10

2.5 System Register Set oi 2-16

2.6 Memory Address Space ~ ... ; ~ 2-37

2.7 Interrupts and Exceptions ~ ~ • 2-43

2.S System-Management Mode 2-49

2.9 Shutdown and Halt, •...................................•...... 2-57

2.10 Protection _ ;. -.. 2-57

2.11 Virtual-S086 Mode 2-60

2-1

Processor Initialization

2.1 Processor Initialization

2-2

Each TI486SXL(C) family microprocessor is initialized when the RESET sig­
nal is asserted. The processor is placed in real mode and the registers listed
in Table 2-1 or Table 2-2 are set to their initialized values. RESET invalidates
and disables the cache, and turns off paging. For the clock-doubled versions
of the TI486SXL(C) microprocessor family RESET returns the processor to
the nonclock-doubled mode. When RESET is asserted, the microprocessor
terminates all local bus activity and all internal execution. During the time that
RESET is asserted, the internal pipeline is flushed and no instruction execu­
tion or bus activity occurs.

Approximately 350 to 450 CLK2 clock cycles (additional 220 + 60 if self-test is
requested) after deassertion of RESET, the processor begins executing
instructions at the top of physical memory (address location FF FFFOh for the
TI486SXLC series and FFFF FFFOh for the TI486SXL series). When the first
intersegment JUMP or CALL is executed, address lines A23-A20 for the
TI486SXLC series or A31-A20 for the TI486SXL series are driven low for
code-segment-relative memory-access cycles. While these address lines are
low, the microprocessor executes instructions only in the lowest 1 M byte of
physical address space until system-specific initialization occurs via program
execution.

Processor Initialization

Table 2-1. TI486SXLC Initialized Register Contents

Register Register Name Initialized Contents Comments

EAX Accumulator xx xxxxh 00 OOOOh indicates self-test
passed.

EBX Base xx xxxxh

ECX Count xx xxxxh

EDX Data xx 0400h + Revision ID Revision ID = 10h

EBP Base Pointer xx xxxxh

ESI Source Index xx xxxxh

EDI Destination Index xx xxxxh

ESP Stack Pointer xx xxxxh

EFLAGS Flag Word 00 0002h

EIP Instruction Pointer 00 FFFOh

ES Extra Segment OOOOh Base address set to 00 OOOOh
Limit set to FFFFh

CS Code Segment FOOOh Base address set to 00 OOOOh
Limit set to FFFFh

SS Stack Segment OOOOh

DS Data Seglllent OOOOh Base address set to 00 OOOOh
Limit set to FFFFh

FS Extra Segment OOOOh

GS Extra Segment OOOOh

IDTR Interrupt-Descriptor Table Base=O, Limit=3FFh

CRO Machine Status Word 00 0010h

CCRO Configuration Control a OOh

CCR1 Configuration Control 1 xx xxx a (binary)

ARR1 Address Region 1 OOOFh 4G-byte noncacheable region

ARR2 Address Region 2 OOOOh

ARR3 Address Region 3 OOOOh

ARR4 Address Region 4 OOOOh

DR? Debug 00 OOOOh

Note: x = Undefined value

Programming Interface 2-3

Processor Initialization

Table 2-2. TI486SXL Initialized Register Contents

Register Register Name Initialized Contents

EAX Accumulator xxxx xxxxh

EBX Base xxxx xxxxh

ECX Count xxxx xxxxh

EDX Data xxxx 0421 h + Revision ID

EBP Base Pointer xxx x xxxxh

ESI Source Index xxxx xxxxh

EDI Destination Index xxxx xxxxh

ESP Stack Pointer xxxx xxxxh

EFLAGS Flag Word 00000002h

EIP Instruction Pointer 0000 FFFOh

ES Extra Segment OOOOh

CS Code Segment FOOOh

SS Stack Segment OOOOh

DS Data Segment OOOOh

FS Extra Segment OOOOh

GS Extra Segment OOOOh

IDTR Interrupt-Descriptor Table Base=O, Limit=3FFh

CRO Machine Status Word 00000010h

CCRO Configuration Control 0 OOh

CCR1 Configuration Control 1 xxxx xxxO (binary)

ARR1 Address Region 1 OOOFh

ARR2 Address Region 2 OOOOh

ARR3 Address Region 3 OOOOh

ARR4 Address Region 4 OOOOh

DR? Debug OOOOOOOOh

Note: x = Undefined value

2-4

Comments

0000 OOOOh indicates self-test passed

Revision ID = 10h

Base address set to 0000 OOOOh
Limit set to FFFFh

Base address set to 0000 OOOOh
Limit set to FFFFh

Base address set to 0000 OOOOh
Limit set to FFFFh

4G-byte noncacheable region

Real Mode Versus Protected Mode

2.2 Real Mode Versus Protected Mode

When powered up or reset, the microprocessor is initialized to real mode. Real
mode establishes conditions that are backward compatible with the
8086/8088 microprocessors. Addressing capabilities are limited to the range
that is available on those two microprocessors, and the default operand size
is 16 bits.

The microprocessor can be switched from the real mode into protected mode,
where the extended capabilities of The TI486SXL(C) are available for use.
Protected mode provides enhanced memory management capabilities that in­
clude segment- and page-level protection.

Table 2-3 provides a comparison of real mode and protected mode. The mi­
croprocessor is in protected mode when the PE bit in Control register a is set.
After this bit is set, an intersegment JMP is used to load the CS register and
to flush the instruction-decode pipeline.

Table 2-3. Real Mode Versus Protected Mode

Real Mode

Physical Memory is limited to 1 M byte.

Default operand size is 16 bits.

Segments are fixed at 64K bytes.

Physical addresses are generated by
multiplying the segment register value by
16 and adding an offset to the product.

Protected Mode

Physical memory is limited to 4G bytes.
Virtual memory of up to 4T bytes is avail­
able.

Default operand size is 32 bits.

Segment size can vary from 1 byte to 4G
bytes.

Physical address are generated by ap­
plying paging, if enabled, to linear ad­
dresses. Linear addresses are gener­
ated by adding an offset to a value calcu­
lated from information contained in seg­
ment descriptors. The value in a segment
register determines which of several pos­
sible segment descriptors will be used.

No hardware protection is provided for Segments can be given combinations of
segment access or use. read, write, and execute permissions. At­

tempted access beyond the end of a seg­
ment is monitored.

There is no privileged code. Code can have one of four privilege lev­
els, with some processor instructions re­
stricted to the most privileged level.

Programming Interface 2-5

Instruction-Set Overview

2.3 Instruction-Set Overview

2-6

The TI486SXL(C) microprocessor family instruction set can be divided into
eight types of operations:

o Arithmetic
o Bit manipulation
o Control transfer
o Data transfer
o High-level-language support
o Operating-system support
o Shift/rotate
o String manipulation

All instructions operate on as few as zero operands and as many as three op­
erands. An NOP (no operation) instruction is an example of a zero operand
instruction. Two-operand instructions allow the specification of an explicit
source and destination pair as part of the instruction. These two-operand
instructions can be divided into eight groups according to operand types:

o Register to register
o Register to memory
o Memory to register
o Memory to memory
o Register to 110
o 110 to register
o Immediate data to register
o Immediate data to memory

An operand can be held in the instruction itself (as in an immediate operand),
in a register, in an 1/0 port, or in memory. An immediate operand is prefetched
as part of the opcode for the instruction.

Operand lengths of 8, 16, or 32 bits are supported. Operand lengths of 8 or
32 bits are generally used when executing code written for 386- or 486-class
(32-bit code) processors. Operand lengths of 8 or 16 bits are generally used
when executing 8086 or 80286 code (16-bit code). The default length of an op­
erand can be overridden by placing one or more instruction prefixes in front
of the opcode. For example, by using prefixes, a 32-bit operand can be used
with 16-bit code or a 16-bit operand can be used with 32-bit code.

Chapter 7, Instruction Set, lists each instruction in the TI486SXL(C) micropro­
cessor family instruction set along with the associated opcodes, execution
clock counts, and effects on the Flag Word register.

2.3.1 Lock Prefix

2.3.2 Register Sets

Instruction-Set Overview

The LOCK prefix can be placed before certain instructions that read, modify,
then write back to memory. The prefix asserts the LOCK# signal to indicate to
the external hardware that the CPU is in the process of running multiple, indi­
visible memory accesses. The LOCK prefix can be used with the following
instructions:

o Bit test instructions (BTS, BTR, BTC)
o Exchange instructions (XADD, XCHG, CMPXCHG)
o One-operand arithmetic and logical instructions

(DEC, INC, NEG, NOT)
o Two-operand arithmetic and logical instructions

(ADC, ADD, AND, OR, SBB, SUB, XOR)

An invalid-opcode exception is generated if the LOCK prefix is used with any
other instruction or with the above instructions when no write operation to
memory occurs (i.e., the destination is a register).

There are 43 accessible registers in the TI486SXL(C) microprocessor and
these registers are grouped into two sets. The application register set contains
the registers frequently used by applications programmers, and the system
register set contains the registers typically reserved for use by operating-sys­
tems programmers.

The application register set is made up of:

o Eight 32-bit General Purpose registers
o Six 16-bit Segment registers
Dane 32-bit Flag Word register
Dane 32-bit Instruction Pointer register

The system register set is made up of the remaining registers that include:

o Three 32-bit Control registers
o Two 48-bit and two 16-bit System Address registers
o Two 8-bit and four 16-bit (TI486SXLC) or 24-bit (TI486SXL) Configuration

registers
o Six 32-bit Debug registers
o Five 32-bit Test registers

Each application register is discussed in Section 2.4, Application Register Set,
page 2-10.

Each system register is discussed in Section 2.5, System Register Set, page
2-16.

Programming Interface 2-7

Instruction-Set Overview

2.3.3 Address Spaces

The microprocessor can directly address either memory or liD space.
Figure 2-1 and Figure 2-2 illustrate the range of addresses available for
memory address space and liD address space.

Figure 2-1. TI486SXLC Memory and 110 Address Spaces

Physical
Memory Space

FFFFFFh~----------~

Physical
Memory

16M bytes

00 OOOOh '__ __________ _

FF FFFFh

8000FFh

8000F8h

00 FFFFh

Accessible
Programmed

I/O Space

..-- Coprocessor
Space

------..-- TI486SXLC
Configuration
Register I/O
Space
000023h
000022h

00 OOOOh a...-_______ __

Figure 2-2. TI486SXL Memory and 110 Address Spaces

2-8

Physical
Memory Space

FFFF FFFFh ~--------~

Physical
Memory
4G bytes

0000 OOOOh __________ _

FFFF FFFFh

800000FFh

800000F8h

0000 FFFFh

Accessible
Programmed

I/O Space

..-- Coprocessor
Space

-----. ..-- TI486SXL
Configuration
Register I/O
Space
00000023h
00000022h

0000 OOOOh a...-_____ __

Instruction-Set Overview

2.3.3.1 Memory Address Space Range

For the TI486SXLC series, the addresses for physical memory range between
00 OOOOh and FF FFFFh (16M bytes). For the TI486SXL series, the addresses
for physical memory range between 0000 OOOOh and FFFF FFFFh (4G bytes).
Memory address space is accessed as bytes, words (16 bits), or doublewords
(32 bits). Wordsand doublewords are stored in consecutive memory bytes
with the low-order byte located in the lowest address. The physical address
of a word or doubleword is the byte address of the low-order byte.

Section 2.6, Memory Address Space, page 2-37, discusses in detail:
o Memory addressing modes that are used to calculate the physical address
o Memory management mechanisms, segmentation and paging, that can

be used to protect address spaces and also create an environment that
lets a small amount of physical memory simulate a large address space.

2.3.3.2 lID Address Space Range

The accessible I/O address space for both the TI486SXLC and TI486SXL mi­
croprocessors ranges between 00 OOOOh and 00 FFFFh (64K bytes). The co­
processor communication space for the TI486SXLC series exists in upper I/O
space between 80 00F8h and 80 OOFFh. The coprocessor communication
space for the TI486SXL series exists in the upper I/O space between 8000
00F8h and 8000 OOFFh. These coprocessor liD ports are automatically ac­
cessed by the CPU whenever an ESC opcode is executed. The liD locations
22h and 23h are used for Configuration register access on all versions of the
TI486SXL(C) microprocessors.

The TI486SXL(C) family of microprocessors address space is accessed using
IN and OUT instructions to addresses referred to as ports. The accessible liD
address space is 64K bytes and can be accessed as 8-bit, 16-bit, or 32-bit
ports. The execution of any IN or OUT instruction causes M/IO# to be driven
low, thereby selecting the liD space instead of memory space for loading or
storing data. The upper eight address bits of the TI486SXLC processor and
the upper sixteen bits of the TI486SXL processor are driven low during IN and
OUT instruction port accesses.

The microprocessor Configuration registers reside within the I/O address
space at port addresses 22h and 23h and are accessed using the standard IN
and OUT instructions. The Configuration registers are modified by writing the
index of the Configuration register to port 22h and then transferring the data
through port 23h. Accesses to the on-chip Configuration registers do not gen­
erate external 110 cycles. However, each port 23h operation must be preceded
by a port 22h write with a valid index value, otherwise the second and later port
23h operations are directed off-chip and generate external liD cycles without
modifying the on-chip Configuration registers. Also, writes to port 22h outside
of the microprocessor index range (COh to CFh) result in external I/O cycles
and do not affect the on-chip Configuration registers. Reads of port 22h are
always directed off-chip.

Programming Interface 2-9

Application Register Set

2.4 Application Register Set

The Application register set (Figure 2-3) consists of the registers most often
used by the applications programmer. These registers are generally accessi­
ble and are not protected from read or write access.

The General Purpose registers contents are frequently modified by assembly
language instructions and typically contain arithmetic and logical-instruction
operands.

The Segment registers contain segment selectors that index into tables lo­
cated in memory. These tables hold the base address for each segment as well
as other information related to memory addressing.

The Flag Word register contains control bits used to reflect the status of pre­
viously executed instructions. This register also contains control bits that affect
the operation of some instructions.

The Instruction Pointer is a 32-bit register that points to the next instruction that
the processor executes. This register is automatically incremented by the pro­
cessor as execution progresses.

Figure 2-3. Application Register Set

31 16 15 8 7 o

--AH---¥----AL -- EAX

--SH---¥----BL -- EBX

--CH---o/----CL -- ECX

--OH---o/----OL--

SI

EOX General

ESI
Purpose
Registers

01 EOI

BP EBP

SP ESP

15 0

CS

SS

OS
Segment

ES Registers

FS

GS

31 16 15 0

IP I EIP } Instruction

Flag Word EFLAGS
Pointer and
Registers

2-10

Application Register Set

2.4.1 General Purpose Registers

The General Purpose registers are divided into four Data, two Pointer, and two
Index registers as shown in Figure 2-4.

Figure 2-4. General Purpose Registers

31

(ESP)

(ESP)

(ESI)

(EDI)

Data Registers

16 15 8 7 o

--AH---¥----,AI-- A (Accumulator)

--SH---'¥----8[-- B (Base)

--cH---Cf----cr-- C (Count)

--OH---o/----[)[-- D (Data)

Pointer and Index Registers

SP

SP

SI

01

BP (Base Pointer)

SP (Stack Pointer)

SI (Source Index)

DI (Destination Index)

2.4.1. 1 Data Registers

The Data registers are used by the applications programmer to manipulate
data structures and to hold the results of logical and arithmetic operations. Dif­
ferent portions of the general Data registers can be addressed by using differ­
ent names. An E prefix identifies the complete 32-bit register. An X suffix with­
out the E prefix identifies the lower 16 bits of the register. The lower two bytes
of the register can be addressed with an H suffix to identify the upper byte or
an L suffix to identify the lower byte. When a source operand value specified
by an instruction is smaller than the specified destination register, the upper
bytes of the destination register are not affected when the operand is written
to the register.

2.4.1.2 Pointer and Index Registers

The Pointer and Index registers are:

BP or EBP
8P or ESP
81 or E81
01 or EDI

Base Pointer
Stack Pointer
Source Index
Destination Index

These registers can be addressed as 16- or 32-bit registers, with the E prefix
indicating 32 bits. These registers can be used as General Purpose registers;
however, some instructions use a fixed assignment of these registers. For ex­
ample, the string operations always use E81 as the source pointer, EDI as the
destination pointer, and ECX as a counter. The instructions using fixed regis­
ters include double-precision multiply and divide, liD access, string opera­
tions, translate, loop, variable shift and rotate, and stack operations.

Programming Interface 2-11

Application Register Set

The TI486SXL(C) processors implement a stack using the ESP register. This
stack is accessed during the PUSH and POP instructions, procedure calls,
procedure returns, interrupts, exceptions, and interrupt/exception returns.
The microprocessor automatically adjusts the value of the ESP during opera­
tion of these instructions. The EBP register can be used to reference data
passed on the stack during procedure calls. Local data can also be placed on
the stack and referenced relative to BP. This register provides a mechanism
to access stack data in high-level languages.

2.4.2 Segment Registers and Selectors

Segmentation provides a means of defining data structures inside the memory
space of the microprocessor. There are three basic types of segments: code,
data, and stack. Segments are used automatically by the processor to deter­
mine the memory locations of code, data, and stack references.

There are six 16-bit Segment registers:

CS Code Segment
DS Data Segment
FS Additional Data Segment
GS Additional Data Segment
SS Stack Segment
ES Extra Segment

In real and virtual-8086 operating modes, a Segment register holds a 16-bit
segment base. The 16-bit segment base is multiplied by 16 and a 16-bit or
32-bit offset is then added to it to create a linear address. The offset size is de­
pendent on the current address size. In real mode and in virtual-8086 mode
with paging disabled, the linear address is also the physical address. In virtual-
8086 mode with paging enabled, the linear address is translated to the physi­
cal address using the current page tables.

In protected mode, a Segment register holds a segment selector containing
a 13-bit index, a table indicator (TI) bit, and a two-bit requested-privilege-Ievel
(RPL) field as shown in Figure 2-5.

Figure 2-5. Segment Selector Register

15 3 2 o

2-12

Index

TI = Table Indicator

RPL = Requested Privilege Level

The index points into a descriptor table in memory and selects one of 8192
(213) segment descriptors contained in the descriptor table. A segment des­
criptor is an eight-byte value used to describe a memory segment by defining
the segment base, the segment limit, and access control information.

Application Register Set

To address data within a segment, a 16-bit or 32-bit offset is added to the seg­
ment's base address. Once a segment selector has been loaded into a Seg­
ment register, an instruction needs to specify the offset only.

The table indicator (TI) bit of the selector defines the descriptor table into which
the index points. If TI = 0, the index references the global-descriptor table
(GOT). IfTI = 1, the index references the local-descriptor table (LOT). The GOT
and LOT are described in more detail later in this chapter.

The requested privilege level (RPL) field contains a 2-bit segment privilege
level (00 = most privileged, 11 = least privileged). The RPL bits are used when
the Segment register is loaded to determine the effective privilege level (EPL).
If the RPL bits indicate less privilege than the program, the RPL overrides the
current privilege level and the EPL is the lower privilege level. If the RPL bits
indicate more privilege than the program, the current privilege level overrides
the RPL and again the EPL is the lower privilege level.

When a Segment register is loaded with a segment selector, the segment
base, segment limit, and access rights are also loaded from the descriptor
table into a user-invisible or hidden portion of the Segment register, i.e.,
cached on-chip. The CPU does not access the descriptor table again until
another Segment register load occurs. If the descriptor tables are modified in
memory, the Segment registers must be reloaded with the new selector val­
ues.

The processor automatically selects a default Segment register for memory
references. Table 2-4 describes the selection rules. In general, data refer­
ences use the selector contained in the OS register, stack references use the
SS register, and instruction fetches use the CS register. While some of these
selections can be overridden, instruction fetches, stack operations, and the
destination write of string operations cannot be overridden. Special segment
override prefixes allow the use of alternate Segment registers including the
use of the ES, FS, and GS Segment registers.

Table 2-4. Segment Register Selection Rules

Implied (Default)
Type of Memory Reference Segment

Code fetch CS

Destination of PUSH, PUSHF, INT, CALL, PUSHA SS
instructions

Source of POP, POPA, POPF, IRET, RET instructions SS

Destination of STOS, MOVS, REP STOS, REP ES
MOVS instructions

Other data references with effective address using
Base registers of:

EAX, EBX, ECX, EDX, ESI, EDI OS
EBP, ESP SS

Segment Override
Prefix

None

None

None

None

CS, ES, FS, GS, SS
CS, OS, ES, FS,GS

Programming Interlace 2-13

Application Register Set

2.4.3 Instruction Pointer Register

The (extended) Instruction Pointer (EIP) register shown in Figure 2-3 on page
2-10 contains the offset into the current code segment of the next instruction
to be executed. The register is normally incremented with each instruction
execution unless implicitly modified through an interrupt, exception, or an
instruction that changes the sequential execution flow (e.g., jump, call).

2.4.4 Flag Word Register

The Flag Word register, EFLAGS, contains status information and controls
certain operations on the microprocessor. The lower 16 bits of this register are
referred to as the Flag register, FLAGS, that is used when executing 8086 or
80286 code. The flag bits are shown in Figure 2-6 and defined in Table 2-5.

Figure 2-6. EFLAGS Register

2-14

EFLAGS

/
(\,

/
3 2 2 1 1 1 1 1 1 1 1
1 4 3 8 7 6 5 4 3 2 0

I I
0 0 0 0 0 0 0 0 0 0 0 0 0

A V R 0 N 10 0 D
C M F T PL F F

I

Alignment Check -- S ~
Virtual-8086 Mode -- S

Resume Flag --. D
Nested Task Flag _. - S

I/O Privilege Level -- S
Overflow -- A

Direction Flag -- C
Interrupt Enable -- S

Trap Flag -- D
Sign Flag -- A
Zero Flag -- A

Auxiliary Carry -- S
Parity Flag -- A
Carr Fla --A y g

A = arithmetic flag, D = debug flag, S = system flag, C = control flag
o or 1 indicates reserved

FLAGS
\

(\,
\

9 8 7 6 5 4 3 2 1 0

I T S Z
0

A
0

P
1

C
F F F F F F F

Application Register Set

Table 2-5. EFLAGS Definitions

Bit Position

a

2

4

6

7

8

9

10

11

12, 13

14

16

17

18

Name

CF

PF

AF

ZF

SF

TF

IF

DF

Function

Carry flag. CF is set when an operation results in a carry out of (addition) or borrow
into (subtraction) the most significant bit, cleared otherwise.

Parity flag. PF is set when the low-order eight bits of the result contain an even
number of ones, cleared otherwise.

Auxiliary carry flag. AF is set when an operation results in a carry out of (addition)
or borrow into (subtraction) bit position 3, cleared otherwise.

Zero flag. ZF is set if result is zero, cleared otherwise.

Sign flag. SF is set equal to high-order bit of result (0 indicates positive, 1 indicates
negative).

Trap enable flag. Once TF is set, a single-step interrupt occurs after the next
instruction completes execution. TF is cleared by the single-step interrupt.

Interrupt enable flag. When IF is set, maskable interrupts (INTR input pin) are
acknowledged and serviced by the CPU.

Direction flag. When cleared, DF causes string instructions to auto-increment
(default) the appropriate Index registers (ESI and/or EDI). Setting DF causes
auto-decrement of the Index registers.

OF Overflow flag. Set if the operation resulted in a carry or borrow into the sign bit of
the result but did not result in a carry or borrow out of the high-order bit. Also set if
the operation resulted in a carry or borrow out of the high-order bit but did not result
in a carry or borrow into the sign bit of the result.

10PL I/O privilege level. While executing in protected mode, 10PL indicates the
maximum current privilege level (CPL) permitted to execute I/O instructions without
generating an exception 13 fault or consulting the I/O permission bit map. 10PL also
indicates the maximum CPL allowing alteration of the IF bit when new values are
popped into the EFLAGS register.

NT Nested task. While executing in protected mode, NT indicates that the execution
of the current task is nested within another task.

RF Resume flag. RF is used in conjunction with Debug register breakpoints. It is
checked at instruction boundaries before breakpoint exception processing. If set,
any debug fault is ignored on the next instruction.

VM Virtual-8086 mode flag. If VM is set while in protected mode, the microprocessor
switches to virtual-8086 operation handling segment loads as the 8086 does, but
generating exception 13 faults on privileged opcodes. The VM flag can be set by
the I RET instruction (if current privilege level = 0) or by task switches at any privilege
level.

AC Alignment-check enable. In conjunction with the AM flag in CRO, the AC flag
determines whether or not misaligned accesses to memory cause a fault. If AC is
set, alignment faults are enabled.

Programming Interface 2-15

System Register Set

2.5 System Register Set

2-16

The System register set (Figure 2-7) consists of registers not generally used
by application programmers. These registers are typically used by system­
level programmers who generate operating systems and memory-manage­
ment programs.

The Control registers control aspects of the microprocessor such as paging,
coprocessor functions, and segment protection. When paging is enabled and
a paging exception occurs, the Control registers retain the linear address of
the access that caused the exception.

The Descriptor Table registers and the Task register can also be referred to as
System Address or Memory Management registers. These registers consist
of two 48-bit and two 16-bit registers. These registers specify the location of
the data structures that control the segmentation used by the microprocessor.
Segmentation is a method of memory management.

The Configuration registers are used to control the clock-doubled operation
(for the TI486SXLC2 and T1486SXL2), on-chip cache operation, power-man­
agement features, and system-management mode. The clock-doubling,
cache, power-management, and SMM features can be enabled or disabled by
writing to these registers. Noncacheable areas of physical memory are also de­
fined through the use of these registers.

The Debug registers provide debugging facilities for the microprocessor and
enable the use of data-access breakpoints and code-execution breakpoints.

The Test registers provide a mechanism to test the contents of both the on-chip
8K-byte cache and the translation lookaside buffer (TLB). The TLB is used as
a cache for translating linear addresses to physical addresses when paging
is enabled. In the following sections, the System register set is described in
greater detail.

Figure 2-7. System Register Set

31 16 15

I
Page-Fault Linear Address Register

Page-Directory Base Register

47 16 15

Base Limit

Base Limit

Selector

Selector

o

o

7 0

CCRO

23 15 CCR1

i Address Region 1

I Address Region 2
I
I

I Address Region 3

: Address Region 4

31 (TI486SXL only)

31

CCRO = Configuration Control 0
CCR1 = Configuration Control 1

Linear Breakpoint Address 0

Linear Breakpoint Address 1

Linear Breakpoint Address 2

Linear Breakpoint Address 3

Breakpoint Status

Breakpoint Control

Cache Test

Cache Test

Cache Test

TLB Test Control

TLB Test Status

o

0

CRO

CR2

CR3

GDTR

IDTR

LDTR

TR

CCRO

CCR1

ARR1

ARR2

ARR3

ARR4

DRO

DR1

DR2

DR3

DR6

DR7

TR3

TR4

TR5

TR6

TR7

System Register Set

}

Control
Registers

} System Address
(Descriptor Table)
Registers

System Address
(Task Register)

Configuration
Registers

Debug
Registers

Test
Registers

Programming Interface 2-17

System Register Set

2.5.1 Control Registers

The Control registers (CRO, CR2, and CR3) are shown in Figure 2-8. The CRO
register contains system control flags that control operating modes and indi­
cate the general state of the CPU. The lower 16 bits of CRO are referred to as
the machine status word (MSW). The CRO bit definitions are described in
Table 2-6. The reserved bits in CRO should not be modiJied.

Figure 2-8. Control Registers

31 12 11 0

Page-Directory Base Register (PDBR) CR3

P C
G D o

2-18

3 3 2
1 0 9

= Reserved

Page-Fault Linear Address

0

5 1
8

1
6

\-----------, V

MSW

T
S

4 3

CR2

E M P CRG M P E

2 0

/

When paging is enabled and a page fault is generated, the CR2 register retains
the 32-bit linear address of the address that caused the fault. CR3 contains the
20-bit base address of the page directory. The page directory must always be
aligned to a 4K-byte page boundary; therefore, the lower 12 bits of CR3 are
reserved.

When operating in protected mode, any program can read the Control regis­
ters. Privilege level 0 (most privileged) programs can modify the contents of
these registers.

System Register Set

Table 2-6. eRO Bit Definitions

Bit Position Name Function

a PE Protected mode enable. Enables the segment-based protection mechanism. If PE =
1, protected mode is enabled. If PE = 0, the CPU operates in real mode, with
segment-based protection disabled, and addresses are formed as in an 8086-class
CPU.

2

3

4

5

16

18

29

30

31

MP Monitor processor extension. If MP = 1 and TS = 1, a WAIT instruction causes fault
7. The TS bit is set to 1 on task switches by the CPU. Floating-point instructions are
not affected by the state of the MP bit. The MP bit should be set to 1 during normal
operations.

EM

TS

a

WP

AM

a

CD

PG

Emulate processor extension. If EM = 1, all floating-point instructions cause a fault 7.

Task switched. Set whenever a task-switch operation is performed. Execution of a
floating-point instruction with TS = 1 causes a device-not-available (DNA) fault. If
MP = 1 and TS = 1, a WAIT instruction also causes a DNA fault.

. Reserved. Do not modify.

Reserved. Do not modify.

Write protect. Protects read-only pages from supervisor write access. The 386-type
CPU allows a read-only page to be written from privilege levels 0-2. The TI486SXL(C)
CPU is compatible with the 386-type CPU when WP = O. WP = 1 forces a fault on a
write to a read-only page from any privilege level.

Alignment-check mask. If AM = 1 , the AC bit in the EFLAGS register is unmasked and
allowed to enable alignment-check faults. Setting AM = a prevents AC faults from
occurring.

Reserved. Do not modify.

Cache disable. If CD = 1, no further cache fills occur. However, data already present
in the cache continues to be used if the requested address hits in the cache. The cache
must also be invalidated to completely disable any cache activity.

Paging enable. If PG = 1 and protected mode is enabled (PE = 1), paging is enabled.

2.5.2 Descriptor-Table Registers and Descriptors

The Global-, Interrupt-, and Local-Oescriptor-Table registers (GOTR, IOTR
and LOTR) are used 10 specify the location of the data structures that control
segmented memory management.

2.5.2.1 Descriptor-Table (System-Address) Registers

The GOTR, IOTR, and LOTR, shown in Figure 2-9, are loaded using the
LGOT, L10T, and LLOT instructions, respectively. The values of these r~gisters
are stored using the corresponding store instructions. The GOTR and IOTR
load instructions are privileged instructions when operating in protected mode.
The LOTR can be accessed only in protected mode.

The Global-Oescriptor-Table register (GOTR) holds a 32-bit base address and
16-bit limit for the global-descriptor table (GOT). The GOT is an array of up to
8192 8-byte descriptors. When a Segment register is loaded from memory, the
TI bit in the segment selector chooses either the GOT or the local-descriptor

Programming Interface 2-19

System Register Set

table (LOT) to locate a descriptor. If TI = 0, the index portion of the selector is
used to locate a given descriptor within the GOT table. The contents of the
GOTR are completely visible to the programmer. The first descriptor in the
GOT (location 0) is not used by the CPU and is referred to as the null descriptor.
If the GOTR is loaded while operating in 16-bit operand mode, the micropro­
cessor accesses a 32-bit base value but the upper 8 bits are ignored, resulting
in a 24-bit base address.

The Interrupt-Oescriptor-Table register (IOTR) holds a 32-bit base address
and 16-bit limit for the interrupt-descriptor table (lOT). The lOT is an array of
256 8-byte interrupt descriptors, each of which is used to point to an interrupt
service routine. Every interrupt that can occur in the system must have an
associated entry in the lOT. The contents of the IOTR are completely visible
to the programmer.

Figure 2-9. Descriptor-Table (System-Address) Registers

48

2-20

16 15 o

Base Address Limit GOTR

Base Address Limit IOTR

Selector LOTR

The Local-Oescriptor-Table register (LOTR) holds a 16-bit selector for the lo­
cal-descriptor table (LOT). The LOT is an array of up to 8192 8-byte descrip­
tors. When the LOTR is loaded, the LOTR selector indexes an LOT descriptor
that must reside in the global-descriptor table (GOT). The contents of the se­
lected descriptor are cached on-chip in the hidden portion of the LOTR. The
CPU does not access the GOT again until the LOTR is reloaded. If the LOT
description is modified in memory in the GOT, the LOTR must be reloaded to
update the hidden portion of the LOTR.

When a Segment register is loaded from memory, the TI bit in the segment se­
lector chooses either the GOT or the LOT to locate a segment descriptor. If
TI = 1 , the index portion of the selector is used to locate a given descriptor with­
in the LOT. Each task in the system may be given its own LOT, managed by
the operating system. The LOTs provide a method for isolating a given task's
segments from other tasks in the system.

2.5.2.2 Descriptors

System Register Set

The three types of descriptors are:

o Application-segment descriptors that define code, data, and stack seg­
ments

o System-segment descriptors that define an LOT segment or a TSS

o Gate descriptors that define task gates, interrupt gates, trap gates, and
call gates

Application-segment descriptors can be located in either the LOT or GOT. Sys­
tem-segment descriptors can be located only in the GOT. Oependent on the
gate type, gate descriptors can be located in either the GOT, LOT, or lOT.
Figure 2-10 illustrates the descriptor format for both application-segment des­
criptors and system-segment descriptors. Table 2-7 lists the corresponding
bit definitions.

Figure 2-10. Application- and System-Segment Descriptors

31 24 23 22 21 20 19 16 15 14 13 12 11 8 7 o
A

0 Base 31-24 G 0 0 V Limit 19-16 P DPL Type Base 23-16
L T

+4

Base 15-0 Limit 15-0

Programming Interface 2-21

System Register Set

Table 2-7. Segment Descriptor Bit Definitions

Bit Memory
Position Offset

31-24 +4
7-0 +4
31-16 +0

19-16 +4
15-0 +0

23 +4

22 +4

20 +4

15 +4

14-13 +4

12 +4

11-8 +4

11 +4

10 +4

9 +4

8 +4

2-22

Name Description

Base 31-24 Segment base address. A 32-bit linear address that points to the be-
Base 23-16 ginning of the segment.
Base15-0

Limit 19-16 Segment limit. In real mode, segment limit is always 64K bytes
Limit 15-0 (OFFFFh).

G Limit granularity:
0= byte granularity
1 = 4K-byte (page) granularity

D Default length for operands and effective addresses. Valid for code
and stack segments only:

0= 16 bit
1 = 32 bit

AVL Segment available

P Segment present

DPL Descriptor privilege level

DT Descriptor type:
0= system
1 = application

Type Segment type. System descriptor (DT = 0):
0010 = LDT descriptor
1001 = TSS descriptor, task not busy
1011 = TSS descriptor, task busy

E Application descriptor (DT = 1):
0= data
1 = executable

C/D If E is 0:
o = expand up, limit is upper bound of segment
1 = expand down, limit is lower bound of segment

If E is 1:
o = nonconforming
1 = conforming (runs at privilege level of calling procedure)

RIW If E is 0:
o = nonreadable
1 = readable

If E is 1:
o = nonwritable
1 = writable

A o = not accessed
1 = accessed

Gate descriptors provide protection for executable segments operating at dif­
ferent privilege levels. Figure 2-11 illustrates the format for gate descriptors
and Table 2-8 lists the corresponding bit definitions.

Task-gate descriptors are used to switch the CPU's context during a task
switch. The selector portion of the task-gate descriptor locates a task-state
segment. Task-gate descriptors can be located in the GOT, LOT, or lOT.

System Register Set

Figure 2-11. Gate Descriptor
31 16 15 14 13 12 11 8 7 o

Offset 31 -1 6 P DPL 0 Type 0 0 0 Parameters +4

Selector 15-0 Offset 15-0 +0

Table 2-8. Gate Descriptor Bit Definitions

Bit Memory
Position Offset

31-16 +4
15-0 +0

31-16 +0

15 +4

14-13 +4

11-8 +4

4-0 +4

Name Description

Offset 31-1 6 Offset used during a call gate to calculate the branch target
Offset 15-0

Selector 15-0 Segment selector used during a call gate to calculate the branch target

Segment present P

DPL Descriptor privilege level

Type Segment type:
0100 = 16-bit call gate
0101 = tack gate
0110= 16-bit interrupt gate
0111 = 16-bit trap gate
1100 = 32-bit call gate
1110 = 32-bit interrupt gate
1111 = 32-bit trap gate

Parameters Number of 32-bit parameters to copy from the caller's stack to the
called procedure's stack

Interrupt-gate descriptors are used to enter a hardware interrupt service rou­
tine. Trap-gate descriptors are used to enter exceptions or software interrupt
service routines. Trap-gate and interrupt-gate descriptors can be located only
in the IDT.

Call-gate descriptors are used to enter a procedure (subroutine) that executes
at the same or a more-privileged level. A call-gate descriptor primarily defines
the procedure entry point and the procedure's privilege level.

2.5.3 Task Register

The Task register (TR) holds a 16-bit selector for the current task-state seg­
ment (TSS) table as shown in Figure 2-12. The TR is loaded and stored via
the LTR and STR instructions, respectively. The TR can be accessed only dur­
ing protected mode and can be loaded only when the privilege level is 0 (most
privileged).

Figure 2-12. Task (System-Address) Register

15 o

Selector

Programming Interface 2-23

System Register Set

When the TR is loaded, the TR selector field indexes a TSS descriptor that
must reside in the global-descriptor table (GDT). The contents of the selected
descriptor are cached on-chip in the hidden portion of the TR.

During task switching, the processor saves the current CPU state in the TSS
before starting a new task. The TR points to the current TSS. The TSS can be
either a 286-type TSS (16-bit) or a 386/486-type TSS (32-bit) as shown in
Figure 2-13 and Figure 2-14. An I/O permission bit map is referenced in the
32-bit TSS by the I/O map base address.

Figure 2-13. 32-Bit Task-State Segment (TSS) Table

31
I/O Map Base Address

0 0 0 0 000000000

0 0 0 0 0 0 0 0 0 0 0 o 0

0 0 0 0 0 0 0 0 0 0 0 o 0

0 0 0 0 0 0 0 0 0 0 0 o 0

0 0 0 0 0 0 0 0 0 0 0 o 0

0 0 0 0 0 0 0 0 0 0 0 o 0

0 0 0 0 0 0 0 0 0 0 0 o 0

0 0 0 0 0 0 0 0 0 0 0 o 0

0 0 0 0 0 0 0 0 0 0 0 o 0

0 0 0 0 0 0 0 0 0 0 0 o 0

0 0 0 0 0 0 0 0 0 0 0 o 0

0= Reserved

2-24

16 15
000

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

EOI

ESI

EBP

ESP

EBX

EOX

ECX

EAX

EFLAGS

EIP

CR3

o 0 0

ESP for CPL = 2

000

ESP for CPL = 1

000

ESP for CPL = 0

000

0000000000

Selector For Task's LOT

GS

FS

OS

ss
cs
ES

SS for CPL = 2

SS for CPL = 1

SS for CPL = 0

Back Link (Old TSS Selector)

o
o 01 T +64h

+60h

+5Ch

+58h

+54h

+50h
+4Ch

+48h
+44h

+40h

+3Ch

+38h
+34h

+30h

+2Ch

+28h
+24h

+20h
+1Ch

+18h

+14h
+10h

+Ch

+8h
+4h

+Oh

Figure 2-14. 16-Bit Task-State Segment (TSS) Table

Selector For Task's LOT

OS

SS

CS

ES

DI

81

BP

SP

BX

OX

CX

AX

FLAGS

IP

SP For Privilege Level 2

SS For Privilege Level 2

SP For Privilege Level1

SS For Privilege Level 1

SP For Privilege Level 0

SS For Privilege Level 0

Back Link (Old TSS Selector)

System Register Set

+2Ah

+28h

+26h

+24h

+22h

+20h

+1Eh

+1Ch

+1Ah

+18h

+16h

+14h

+12h

+10h

+Eh

+Ch

+Ah

+8h

+6h

+4h

+2h

+Oh

Programming Interface 2-25

System Register Set

2.5.4 Configuration Registers

The TI486SXL(C) family microprocessors contain six registers that do not ex­
ist on other 80x86 microprocessors. These registers include two Configuration
Control registers (CCRO and CCR1) and four Address Region registers (ARR1
through ARR4) as listed in Table 2-9 and Table 2-10. The CCR and ARR reg­
isters exist in liD memory space and are selected by a register index number
via I/O port 22h. I/O port 23h is used for data transfer.

Table 2-9. TI486SXLC Configuration Control Registers

Register Name Register Index Width

Configuration Control 0 (CCRO) COh 8

Configuration Control 1 (CCR1) C1h 8

Address Region 1 (ARR1) C5h-C6h 16

Address Region 2 (ARR2) C8h-C9h 16

Address Region 3 (ARR3) CBh-CCh 16

Address Region 4 (ARR4) CEh-CFh 16

Note: The following register index numbers are reserved: C2h, C3h, C4h, C7h, CAh, CDh, and
DOh through FFh.

Table 2-10. TI486SXL Configuration Control Registers

2-26

Register Name Register Index Width

Configuration Control 0 (CCRO) COh 8

Configuration Control 1 (CCR1) C1h 8

Address Region 1 (ARR1) C4h-C6h 24

Address Region 2 (ARR2) C7h-C9h 24

Address Region 3 (ARR3) CAh-CCh 24

Address Region 4 (ARR4) CDh-CFh 24

Note: The following register index numbers are reserved: C2h, C3h, and DOh through FFh.

Each liD port 23h data transfer must be preceded by an liD port 22h register
selection, otherwise the second and later liD port 23h operations are directed
off-chip and produce external 110 cycles. If the register index number is outside
the COh-CFh range, external 110 cycles also occur.

System Register Set

The CCRO register (Table 2-11) determines if the 64K-byte memory area on
1 M-byte boundaries and the 640K-byte to 1 M-byte area are cacheable. This
register also enables certain functions associated with cache control, suspend
mode, and the clock-doubled mode.

Table 2-11. CCRO Bit Definitions

Bit Position

°

2

3

4

5

6

7

Register Index Description

NCO Noncacheable 1 M-byte boundaries:
If 1, sets the first 64K bytes at each 1 M-byte boundary as noncacheable.

NC1 Noncacheable upper memory area:

A20M

KEN

FLUSH

BARB

CKD

SUS

If 1, sets 640K-byte to 1 M-byte memory region noncacheable.

Enable A20M# pin:
If 1, enables A20M#; otherwise pin is ignored.

Enable KEN# pin:
If 1, enables KEN#; otherwise pin is ignored.

Enable FLUSH# pin:
If 1, enables FLUSH#; otherwise pin is ignored.

Enable cache flush during hold:
If 1, enables flushing of the internal cache when hold state is entered.

Enable clock double:
If 1 , enables clock-double mode.
If 0, disables clock-double mode.

Enable suspend pins:
If 1, enables SUSP# and SUSPA#.
If 0, SUSPA# floats; SUSP# is ignored.

Programming Interface 2-27

System Register Set

The CCR1 register (Table 2-12) is used to set up internal cache operation and
system-management mode (SMM). The ARR registers (Figure 2-15 on page
2-29, Figure 2-16 on page 2-30, and Table 2-9 and Table 2-10 on page 2-26)
are used to define the location and size of the memory regions associated with
the internal cache. ARR1-ARR3 define three write-protected or noncache­
able memory regions as designated by CCR1 bits WP1-WP3. ARR4 defines
an SMM memory space or noncacheable memory region as defined by CCR1
bit SM4. Other CCR1 bits enable SMM pins and control SMM memory access.
The SMAC bit allows access to defined SMM space while not in an SMI service
routine. The MMAC bit allows access to main memory that overlaps with SMM
memory while in an SMI service routine for data access only.

Table 2-12. CCR 1 Bit Definitions

Bit Position

°

2

3

4

5

6

7

2-28

Register Index Description

Reserved

SMI Enable SMM pins:

SMAC

MMAC

WP1

WP2

WP3

SM4

If 1, SMI# and SMADS# are enabled.
If 0, SMI# is ignored and SMADS# floats.

System management memory access:
If 1, noncode-segment prefixed data reads and writes to addresses within
the SMM memory space cause external bus cycles to be issued with
SMADS# active. SMI# is ignored.
If 0, no effect on access.

Main memory access:
If 1 , all noncode-segment prefixed data reads and writes which occur within
an SMI service routine (or when SMAC = 1) access main memory instead
of SMM memory space.
If 0, no effect on access.

Access region 1 control:
If 1, region 1 is write protected and cacheable.
If 0, region 1 is noncacheable.

Access region 2 control:
If 1, region 2 is write protected and cacheable.
If 0, region 2 is noncacheable.

Access region 3 control:
If 1, region 3 is write protected and cacheable.
If 0, region 3 is noncacheable.

Access region 4 control:
If 1, region 4 is noncacheable SMM memory space.
If 0, region 4 is noncacheable. SMI# input ignored.

System Register Set

The ARR registers define address regions using a starting address and a block
size. The noncacheable region block sizes range from 4K bytes to 4G bytes
(Table 2-13). A block size of zero disables the address region. The starting ad­
dress of the address region must be on a block size boundary. For example,
a 128K-byte block is allowed to have a starting address of OK bytes, 128K
bytes, 256K bytes, etc. The SMM memory region size is restricted to a maxi­
mum of 16M bytes. The block size must be defined for SMI# to be recognized.

Figure 2-15. TI486SXLC Address Region Registers (ARR1-ARR4)

Register Index = C5h Register Index = C6h'
__ -----------A~----------__ __----------~A~----------__ r 'r ,
7 0 7 4 3 0

I ~tarting Address : I Size I ARR1
A23 A 16 . A 15 A 12_ .

Address Region 1

Register Index = C8h Register Index = C9h

__ ----------~A~----------__ __-----------A~----------__ r 'r ,
7 0 7 4 3 0

I ~tarting Address : I Size I ARR2
A23 A16 . A15 A12 .

Address Region 2

Register Index = CBh Register Index = CCh

__ -----------A-----------__ __----------~A~----------__ r 'r ,
7 0 7 4 3 0

I Starting Address : I Size I ARR3
A23 A16 . A15 A12 .

Address Region 3

Register Index = CEh Register Index = CFh

__ -----------A-----------__ __-----------A~----------__ r 'r ,
7 0 7 4 3 0

I Starting Address : I Sizet I ARR4
A23 A16 . A15 A12 .

Address Region 4

tARR4 (Size) must be 4K bytes to 16M bytes if ARR4 is defined as SMM memory space.

Programming Interface 2-29

System Register Set

Figure 2-16. TI486SXL Address Region Registers (ARR1-ARR4)

Register Index = C4h Register Index = C5h Register Index = C6h
A A A

('('(,
7 o 7 o 7 43 0 , ,

Starting Address Size ARR1
A31 A24, A23 A16,A15 A12

Address Region 1

Register Index = C7h Register Index = C8h Register Index = C9h
A A A

('('(,
7 o 7 o 7 43 0 , ,

Starting Address Size ARR2
A31 A24. A23 A16.A15 A12

Address Region 2

Register Index = CAh Register Index = CBh Register Index = CCh
A A A

('('(,
7 o 7 o 7 43 0

I I

Starting Address Size ARR3
A31 A24.A23 A16.A15 A12

Address Region 3

Register Index = CDh Register Index = CEh Register Index = CFh
A A A.

('('(,
7 o 7 o 7 43 0 , ,

Starting Address Sizet ARR4
A31 A24,A23 A16,A15 A12

Address Region 4

t ARR4 (Size) must be 4K bytes to 16M bytes if ARR4 is defined as SMM memory space.

Table 2-13.ARR1-ARR4 Block Size Field

Bits 3-0 Block Size Bits 3-0 Block Size

Oh Disabled 8h 512K bytes

1h 4K bytes 9h 1 M bytes

2h 8K bytes Ah 2M bytes

3h 16K bytes Bh 4M bytes

4h 32K bytes Ch 8M bytes

5h 64K bytes Dh 16M bytes

6h 128K bytes Eh 32M bytes

7h 256K bytes Fh 4G bytes

2-30

System Register Set

2.5.5 Debug Registers

Six Debug registers (DRO-DR3, DRS, and DR?), shown in Figure 2-1? and
Figure 2-18, support debugging on the TI48SSXL(C) family of microproces­
sors. Memory addresses loaded in the Debug registers, referred to as break­
points, generate a debug exception when a memory access of the specified
type occurs to the specified address. A breakpoint can be specified for a partic­
ular kind of memory access such as a read or a write. Code and data break­
points can also be set allowing debug exceptions to occur whenever a given
data access (read or write) or code access (execute) occurs. The size of the
debug target can be set to 1 , 2, or 4 bytes. The Debug registers are accessed
via MOV instructions that can be executed only at privilege level o.

Figure 2-17. TI486SXLC Debug Registers

332222222222111111111
1098765432109876543209876543210

LEN I RIW I LEN I RIW I LEN I RIW I LEN I RIW o 0 G 0011~1~1~1~ I~I~ G L G L
332 2 1 1 00 D 1 1 0 0 DR7

o 0 0 0 000 o 0 o 0 o 0 0 o 0 BIB 0 o 1 1 1 1 1 1 1 1 B B B B
T S 3 2 1 0

DR6

Reserved DR5

Reserved DR4

Breakpoint 3 Linear Address DR3

Breakpoint 2 Linear Address DR2

Breakpoint 1 Linear Address DR1

Breakpoint 0 Linear Address DRO

All bits marked as 0 or 1 are reserved and should not be modified.

The Debug Breakpoint (n) Linear Address registers DRO-DR3 each contain
the linear address for one of four possible breakpoints. Each breakpoint is fur­
ther specified by bits in the Debug Control register (DR?). For each breakpoint
address in DRO-DR3, there are corresponding fields L, RIW, and LEN in DR?
that specify the type of memory access associated with the breakpoint.

The RIW field can be used to specify execution as well as data-access break­
points. Instruction-execution and data-access breakpoints are always taken
before execution of the instruction that matches the breakpoint.

The Debug Status register (DRS) reflects conditions that were in effect at the
time the debug exception occurred. The contents of the DRS register are not
automatically cleared by the processor after a debug exception occurs and
therefore should be cleared by software at the appropriate time. Table 2-14
lists the field definitions for the DRS and DR? registers.

Programming Interface 2-31

System Register Set

Figure 2-18. TI486SXL Debug Registers

332222222222111111111
1098765432109876543209876543210

LEN RIW LEN RIW LEN R!W LEN RIW o 0
G

000
G L G L GIL G L G L

3 3 2 2 1 1 0 0 D E E 3 3 2 2 1 1 0 0 DR7

o 0 o 0 o 0 o 0 o 0 0 0 o 0 o 0 B B 1 011 1 1 1 1 1 1 B B B B
T S 3 2 1 0

DR6

Breakpoint 3 Linear Address DR3

Breakpoint 2 Linear Address DR2

Breakpoint 1 Linear Address DR1

Breakpoint 0 Linear Address DRO

All bits marked as 0 or 1 are reserved and should not be modified.

Table 2-14. DR6 and DR7 Field Definitions

Register Field

DR6 Bi

BT

BS

DR7 RlWi

LENi

Gi

Li

GD

2-32

Number
Of Bits Description

2

2

Bi is set by the processor if the conditions described by DRi, RIWi, and
LENi occurred when the debug exception occurred, even if the breakpoint
is not enabled via the Gi or Li bits.

BT is set by the processor before entering the debug handler if a task
switch has occurred to a task with the T bit in the TSS set.

BS is set by the processor if the debug exception was triggered by the
single-step-execution mode (TF flag in EFLAGS set).

Applies to the DRi Breakpoint (n) Linear Address register:
00 - Break on instruction execution only
01 - Break on data writes only
10 - Not used
11 - Break on data reads or writes

Applies to the DRi Breakpoint (n) Linear Address register:
00 - One-byte length
01 - Two-byte length
10 - Not used
11 - Four-byte length

If set to 1, breakpoint in DRi is globally enabled for all tasks and is not
cleared by the processor as the result of a task switch.

If set to 1, breakpoint in DRi is locally enabled for the current task and is
cleared by the processor as the result of a task switch.

Global disable of Debug register access. GD bit is cleared whenever a
debug exception occurs.

Code execution breakpoints can also be generated by placing the breakpoint
instruction (lNT3) at the location where control is to be regained. The single-

.'V ,HI1I Hp.{ll.c:m~r Set

step feature can be enabled by setting the TF flag in the EFLAGS register. This
causes the processor to perform a debug exception after the execution of
every instruction.

2.5.6 Test Registers

The five Test registers, shown in Figure 2-19, are used in testing the CPU's
translation look-aside buffer (TLB) and on-chip cache. TR6 and TR7 are used
for TLB testing, and TR3-TR5 are used for cache testing. Table 2-15 and
Table 2-16 list the bit definitions for the TR6 and TR7 registers.

Figure 2-19. Test Registers

TLB Physical Address TR7

31 12 11 10 9 8 7 6 5 4 3 2 0

TLB Linear Address V I D I D# I U I U# I R I R# I 0 0 0 o I C I TR6

31 12 11 10 9 8 7 6 5 4 3 2 0

Set Selection TR5

31 12 11 10 9 8 7 6 5 4 0
,...- Valid --....

Cache Tag Addresst TR4

31 24 12 11 9 8 7 6 5 4 3 2 0

Cache Data I TR3

31 0

= Reserved

t Bits 31-24 are reserved on the TI486SXLC.

2.5.6.1 TLB Test Registers

The microprocessor TLB is a four-way set-associative memory with eight en­
tries per set. Each TLB entry consists of a 24-bit tag and 20-bit data. The 24-bit
tag represents the high-order 20 bits of the linear address, a valid bit, and three
attribute bits. The 20-bit data portion represents the upper 20 bits of the physi­
cal address that corresponds to the linear address.

The TLB Test-Control register (TR6) contains a command bit, the upper 20 bits
of a linear address, a valid bit, and the attribute bits used in the test operation.
The contents of TR6 are used to create the 24-bit TLB tag during both write
and read (TLB lookup) test operations. The command bit defines whether the
test operation is a read or a write.

The TLB Test-Data register (TR7) contains the upper 20 bits of the physical
address (TLB data field), two LRU bits, and a control bit. During TLB write op­
erations, the physical address in TR7 is written into the TLB entry selected by

Programming Interface 2-33

System Register Set

the contents of TR6. During TLB lookup operations, the TLB data selected by
the contents of TR6 is loaded into TR7.

Table 2-15. TR6 and TR7 Bit Definitions

Register
Name

TR6

TR7

Bit
Position

31-12

Description

Linear address
TLB lookup: The TLB is interrogated per this address. If one and only one match

occurs in the TLB, the rest of the fields in TR6 and TR7 are updated per the
matching TLB entry.

TLB write: A TLB entry is allocated to this linear address.

11 Valid bit (V)
TLB lookup: Always set to 1
TLB write: If set, indicates that the TLB entry contains valid data. If clear, target entry

is invalidated.

10-9 Dirty attribute bit and its complement (D, D#). (Refer to Table 2-16.)

8-7 User/supervisor attribute bit and its complement (U, U#). (Refer to Table 2-16.)

6-5 Read/write attribute bit and its complement (R, R#). (Refer to Table 2-16.)

o Command bit (C)
If 0, TLB write

31-12

If 1, TLB lookup

Physical address
TLB lookup: data field from the TLB
TLB write: data field written into the TLB

11 Page-level cache disable bit (PCD). Corresponds to the PCD bit of a page-table
entry

10 Page-level cache write-through bit (PWT). Corresponds to the PWT bit of a
page-table entry

9-7 LRU bits
TLB lookup: LRU bits associated with the TLB entry prior to the TLB lookup
TLB write: ignored

4 PL bit
TLB lookup: If 1, read hit occurred. If 0, read miss occurred.
TLB write: If 1 , REP field is used to select the set. If 0, the pseudo-LRU replacement

algorithm is used to select the set.

3-2 Set selection (REP)
TLB lookup: If PL is 1, set in which the tag was found. If PL is 0, undefined data
TLB write: If PL is 1, selects one of the four sets for replacement. If PL is 0, ignored

Table 2-16. TR6 Attribute Bit Pairs

Bit (B) Bit Complement (B#) Effect on TLB Lookup Effect on TLB Write

0 0 Do not match Undefined
0 1 Match if the bit is 0 Clear the bit
1 0 Match if the bit is 1 Set the bit
1 1 Match if the bit is 1 or 0 Undefined

2-34

System Register Set

2.5.6.2 Cache Test Registers

The microprocessor on-chip cache is 8K bytes in size and is configured as two­
way set associative.

The cache memory is physically split into two 4K-byte blocks each containing
1024 lines. Associated with each 4K-byte block are 256 twenty-bit tags imply­
ing there are four lines in a block that are associated with the same tag. These
four lines are consecutive at 16-byte boundaries. For each byte in a line, there
is a valid bit indicating which of the four data bytes actually contain valid data.
In addition, there is a valid bit associated with each block of four lines, which
when reset, indicates that none of the 16-bytes in the four lines of that block
contain valid data.

The LRU bit indicates which of the two sets was more recently accessed. The
LRU bit is uninitialized for a given set after RESET or FLUSH#. The set's LRU
bit will remain uninitialized until the first read allocation to that set occurs. The
first cache allocation to a given set will be to way 1 and the LRU bit will than
be equal to 1. In a similar manner, the tag and valid bits of a given set and way
are uninitialized until a read allocation occurs and the block valid bit is set.

The microprocessor contains three Test registers that allow testing of its inter­
nal cache. Using these registers, cache test writes and reads can be per­
formed. Cache test writes cause the data in TR3 to be written to the selected
wayand entry in the cache. Cache test reads allow inspection of the data, valid
bits, and the LRU bit for the cache entry. For data to be written to the allocated
entry, the valid bits for the entry must be set prior to the write of the data. Bit
definitions for the cache Test registers are shown in Table 2-17.

Programming Interface 2-35

System Register Set

Table 2-17. TR3- TR5 Bit Definitions

Register Name

TR3

TR4

TR5

2-36

Bit Position Description

31-0 Cache data
Cache read: data accessed from the cache
Cache write: to be written into the cache

31-12 Tag address
Cache read: tag address from which data is read
Cache write: data written into the tag address of the selected set

7 LRU
Cache read: the LRU bit associated with the cache set
Cache write: ignored

6-3 Valid bits
Cache read: four valid bits for the accessed line, (one bit per byte)
Cache write: valid bits written into the line

2 Block valid bit

12

Cache read: the block valid bit associated with the cache way
Cache write: the block valid bit written into the selected way

If 0, block is invalid (all 16 bytes are invalid).
If 1, block is valid (one or more bytes may be valid in 16-byte line).

Way selection
If 0, way 0 is selected.
If 1, way 1 is selected.

11 -4 Set selection. Selects one of 256 sets

3-2 Line selection. Selects one of four lines

1-0 Control bits. These bits control reading or writing the cache.
If 00, ignored
If 01, cache write
If 1 0, cache read
If 11, cache invalidate

2.6 Memory Address Space

The TI486SXLC directly addresses up to 16M bytes of physical memory and
the TI486SXL directly addresses up to 4G bytes of physical memory. Memory
address space is accessed as bytes, words (16 bits), ordoublewords (32 bits).
Words and doublewords are stored in consecutive memory bytes with the low­
order byte located in the lowest address. The physical address of a word or
doubleword is the byte address of the low-order byte.

With the TI486SXL(C) microprocessor family, memory can be addressed us­
ing nine different addressing modes. These addressing modes are used to cal­
culate an offset address often referred to as an effective address. Depending
on the operating mode of the CPU, the offset is then combined using memory­
management mechanisms to create and address a physical memory location.

Memory-management mechanisms on the microprocessor consist of seg­
mentation and paging. Segmentation allows each program to use several in­
dependent, protected address spaces. Paging supports a memory subsystem
that simulates a large address space using a small amount of RAM and disk
storage for physical memory. Either or both of these mechanisms can be used
for management of the microprocessor memory address space.

2.6.1 Offset Mechanism

The offset mechanism computes an offset (effective) address by summing up
to three values: the base, the index, and the displacement. The base, if pres­
ent, is the value in one of eight 32-bit General registers at the time of the execu­
tion of the instruction. The index, like the base, is a value that is determined
from one of the 32-bit General registers (except the ESP register) when the
instruction is executed. The index differs from the base in that the index is first
multiplied by a scale factor of 1, 2, 4 or 8 before the summation is made. The
third component of the memory address calculation is the displacement which
is a value of up to 32 bits in length supplied as part of the instruction.
Figure 2-20 illustrates the calculation of the offset address.

Figure 2-20. Offset Address Calculation

Index

Base Displacement

Offset Address
(Effective Address)

Programming Interface 2-37

Memory Address Space

Nine valid combinations of the base, index, scale factor, and displacement can
be used with the TI486SXL(C) family instruction set. These combinations are
listed in Table 2-18. The base and index both refer to contents of a register as
indicated by [Base] and [Index].

Table 2-18. Memory Addressing Modes

Scale Displacement
Addressing Mode Base Index Factor (SF) (DP) Offset Address (OA) Calculation

Direct X OA=DP

Register indirect X OA = [BASE]

Based X X OA = [BASE] + DP

Index X X OA = [INDEX] + DP

Scaled index X X X OA = ([INDEX] * SF) + DP

Based index X X OA = [BASE] + [INDEX]

Based scaled X X X OA = [BASE] + ([INDEX] * SF)
index

Based index with X X X OA = [BASE] + [INDEX] + DP
displacement

Based scaled index X X X X OA = [BASE] + ([INDEX] * SF) + DP
with displacement

2.6.2 Real-Mode Memory Addressing

In real-mode operation, the TI486SXL(C) family of microprocessors address
only the lowest 1 M bytes (220) of memory. To calculate a physical memory ad­
dress, the 16-bit segment base address located in the selected Segment reg­
ister is shifted left by four bits and then the 16-bit offset address is added. For
the TI486SXLC, the resulting 20-bit address is then extended with four zeros
in the upper address bits to create the 24-bit physical address. For the
TI486SXL, the resulting 20-bit address is then extended with 12 zeros in the
upper address bits to create the 32-bit physical address. Figure 2-21 illus­
trates the real-mode address calculation. Address offsets larger than 65,535
cause a general protection fault. Physical addresses beyond 1 M byte cause
a segment-limit-overrun exception.

Figure 2-21. Real-Mode Address Calculation

2-38

Offset Address
Offset Mechanism 1-------------,

Selected Segment 1--_---1

Register
x16

Linear Address = Physical Address

Memory Address Space

The addition of the base address and the offset address can result in a carry.
Therefore, the resulting address can actually contain up to 21 significant ad­
dress bits that address memory in the first 64K bytes above 1 M byte.

2.6.3 Protected-Mode Memory Addressing

In protected mode, three mechanisms calculate a physical memory address.

o Offset mechanism that produces the offset or effective address as in real
mode

o Selector mechanism that produces the base address

o Optional paging mechanism that translates a linear address to the physi­
cal memory address

The offset and base address are added together to produce the linear address
as illustrated in Figure 2-22. If paging is not used, the linear address is used
as the physical memory address. If paging is enabled, the paging mechanism
is used to translate the linear address into the physical address. The offset
mechanism is described earlier in this section and applies to both the real and
protected modes. The selector and paging mechanisms are described in the
following paragraphs.

Figure 2-22. Protected-Mode Address Calculation

Offset Mechanism
Offset Address

Base Address

Linear Address Optional
Paging Mechanism

Physical
Memory
Address

Selector Mechanism 1---------------'

2.6.3.1 Selector Mechanism

Memory is divided into an arbitrary number of segments, each containing usu­
ally much less than the 232-byte (4G-byte) maximum.

The six Segment registers (CS, OS, SS, ES, FS and GS) each contain a 16-bit
selector that is used when the register is loaded to locate a segment descriptor
in either the global-descriptor table (GOT) or the local-descriptor table (LOT).
The segment descriptor defines the base address, limit, and attributes of the
selected segment and is cached on the microprocessor as a result of loading
the selector. The cached descriptor contents are not visible to the programmer.
When a memory reference occurs in protected mode, the linear address is
generated by adding the segment base address in the hidden portion of the
Segment register to the offset address. If paging is not enabled, this linear ad­
dress is used as the physical memory address. Figure 2-23 illustrates the op­
eration of the selector mechanism.

Programming Interface 2-39

Memory Address Spac~

Figure 2-23. Selector Mechanism
15 O} Selector

Load

... Segment
Descriptor

I Index J Til RPL J Selector ---1 ----...,.----
-

Segment
Descriptor

(Accessed
Segment
Register)

Global-Descriptor Table Local-Descriptor Table

Memory
Reference

... ... Descriptor
Cache 1-----~ Base Address

2.6.3.2 Paging Mechanism

2-40

The paging mechanism supports a memory subsystem that simulates a large
address space with a small amount of RAM and disk storage. The paging
mechanism either translates a linear address to its corresponding physical ad­
dress or generates an exception if the required page is not currently present
in RAM. When the operating system services the exception, the required page
is loaded into memory and the instruction is then restarted. Pages are always
4K bytes in size and are aligned to 4K-byte boundaries.

A page is addressed by using two levels of tables as illustrated in Figure 2-24.
The upper 10 bits of the 32-bit linear address are used to locate an entry in the
page-directory table. The page-directory table acts as a master index of up to
1 K individual 32-bit pointers to second-level page tables. The selected entry
in the page-directory table, referred to as the directory-table entry, identifies
the starting address of the second-level page table. The page-directory table
itself is a page and is therefore aligned to a 4K-byte boundary. The physical
address of the current page directory is stored in the CR3 Control register, also
referred to as the Page-Directory Base register (PDBR).

Figure 2-24. Paging Mechanism

Linear Address

31 22 21 12 11 o

Directory-Table Index Page-Table Index Page-Frame Offset
(DTI) (PTI) (PFO)

Directory Table Page Table Page Frame
4KB 4 KB 4 KB

~ Physical Data

~ PTE -

~ DTE r---

.. 8 Control Register

o o o

Bits 12-21 of the 32-bit linear address, referred to as the page-table index, lo­
cate a 32-bit entry in the second-level page table. This page-table entry (PTE)
contains the base address of the desired page frame. The second-level page­
table addresses up to 1 K individual page frames. A second-level page table
is 4K bytes in size and is itself a page. The lower 12 bits of the 32-bit linear
address, referred to as the page-frame offset, locate the desired data within
the page frame.

Since the page-directory table can point to 1 K page tables, and each page
table can point to 1 K page frames, a total of 1 M page frames can be imple­
mented. Since each page contains 4K bytes, up to 4G bytes of virtual memory
can be addressed by the microprocessor with a single page-directory table.

In addition to the base address of the page table orthe page frame, each direc­
tory-table entry or page-table entry contains attribute bits and a present bit, as
illustrated in Figure 2-25 and listed in Table 2-19.

Figure 2-25. Directory- and Page-Table Entry (DTE and PTE) Format

31 12 11 10 9 8 7 6 5 4 3 2 o

Base Address Available o A PCD U/S W/R P

= Reserved

Programming Interface 2-41

Memory Address Space

Table 2-19. Directory- and Page-Table Entry (DTE and PTE) Bit Definitions

Bit Position Field Name Description

31-12

11-9

8-7

6

5

4

3

2

o

Base
Address

D

A

PCD

U/S

Specifies the base address of the page or page-table

Undefined and available to the programmer

Reserved and not available to the programmer

Dirty bit. If set, indicates that a write access has occurred to the page (PTE only,
undefined in DTE)

Accessed flag. If set, indicates that a read access or write access has occurred
to the page

Page caching disable flag. If set, indicates that the page is not cacheable in the
on-chip cache

Reserved and not available to the programmer

User/supervisor attribute. If set (user), page is accessible at all privilege levels.
If clear (supervisor), page is accessible only when CPL :::; 2.

W/R Write/read attribute. If set (write), page is writable. If clear (read), page is read
only.

P Present flag. If set, indicates that the page is present in RAM memory and
validates the remaining DTE/PTE bits. If clear, indicates that the page is not
present in memory and that the remaining DTE/PTE bits can be used by the
programmer

If the present bit (P) is set in the DTE, the page table is present and the ap­
propriate page-table entry is read. If P = 1 in the corresponding PTE (indicating
that the page is in memory), the accessed and dirty bits are updated and the
operand is fetched. Both accessed bits (DTE and PTE) are set, if necessary,
to indicate that the table and the page have been used to translate a linear ad­
dress. The dirty bit (D) is set before the first write is made to a page.

The present bits must be set to validate the remaining bits in the DTE and PTE.
If either of the present bits is not set, a page fault is generated when the DTE
or PTE is accessed. If P = 0, the remaining DTE/PTE bits are available for use
by the operating system. For example, the operating system can use these bits
to record where on the hard disk the pages are located. A page fault is also
generated if the memory reference violates the page-protection attributes.

2.6.3.3 Trans/ation Look-Aside Buffer

2-42

The translation look-aside buffer (TLB) is a cache for the paging mechanism
and replaces the two-level page-table lookup procedure for cache hits. The
TLB is a four-way, set-associative, 32-entry, page-table cache that automati­
cally keeps the most commonly used page-table entries in the processor. The
32-entry TLB coupled with a 4K page size results in coverage of 128K bytes
of memory addresses.

The TLB must be flushed when entries in the page tables are changed. The
TLB is flushed whenever the CR3 register is loaded. An individual entry in the
TLB can be flushed using the INVLPG instruction.

Interrupts and Exceptions

2.7 Interrupts and Exceptions

2.7.1 Interrupts

The processing of either an interrupt or an exception changes the normal se­
quential flow of a program by transferring program control to a selected service
routine. Except for SMM interrupts, the location of the selected service routine
is determined by one of the interrupt vectors stored in the interrupt-descriptor
table.

All true interrupts are hardware interrupts and are generated by signal sources
external to the CPU. All exceptions, including so-called software interrupts,
are produced internally by the CPU.

External events can interrupt normal program execution by using one of the
three interrupt pins on the TI486SXL(C) family of microprocessors.

o Nonmaskable Interrupt (NMI pin)
o Maskable Interrupt (INTR pin)
o SMM Interrupt (SMI# pin)

For most interrupts, program transfer to the interrupt routine occurs after the
current instruction has been completed. When the execution returns to the
original program, it begins immediately following the interrupted instruction.

The NMI interrupt cannot be masked by software and always uses interrupt
vector 2 to locate its service routine. Since the interrupt vector is fixed and is
supplied internally, no interrupt-acknowledge bus cycles are performed. This
interrupt is usually reserved for unusual situations such as parity errors and
has priority over INTR interrupts.

Once NMI processing has started, no additional NMls are processed until an
IRET instruction is executed, typically at the end of the NMI service routine.
If NMI is re-asserted prior to the execution of the IRET instruction, one and only
one NMI rising edge is stored and then processed after execution of the next
IRET.

During the NMI service routine, maskable interrupts are still enabled. If an un­
masked INTR occurs during the NMI service routine, the INTR is serviced and
execution returns to the NMI service routine following the next IRET. If a HALT
instruction is executed within the NMI service routine, the microprocessor re­
starts execution only in response to RESET, an unmasked INTR, or an SMM
interrupt. NMI does not restart CPU execution under this condition.

The INTR interrupt is unmasked when the interrupt enable flag (IF) in the
EFLAGS register is set to 1. With the exception of string operations, INTR in­
terrupts are acknowledged between instructions. Long string operations have
interrupt windows between memory moves that allow INTR interrupts to be ac­
knowledged.

When an INTR interrupt occurs, the CPU performs two locked interrupt-ac­
knowledge bus cycles. During the second cycle, the CPU reads an 8-bit vector
that is supplied by an external interrupt controller. This vector selects which of

Programming Interface 2-43

Interrupts and Exceptions

2.7.2 Exceptions

the 256 possible interrupt handlers will be executed in response to the inter­
rupt.

The SMM interrupt has higher priority than either the INTR or NMI. After SMI#
is asserted, program execution is passed to an SMI service routine that runs
in SMM address space reserved for this purpose. The remainder of this sub­
section (2.7.2, Exceptions, through 2.7.6, Error Codes, page 2-48) does not
apply for SMM interrupts. SMM interrupts are described in Section 2.8, Sys­
tem-Management Mode, page 2-49.

Exceptions are generated by an interrupt instruction or a program error. Ex­
ceptions are classified as traps, faults, or aborts depending on the mechanism
used to report them and the restartability of the instruction that first caused the
exception.

2.7.2.1 Trap Exceptions

A trap exception is reported immediately following the instruction that gener­
ated the trap exception. Trap exceptions are generated by execution of a soft­
ware interrupt instruction during single stepping, at a breakpoint, or by soft­
ware interrupt instruction (INTO, INT3, INTn, BOUND) by a single-step opera­
tion, or by a data breakpoint.

Software interrupts can be used to simulate hardware interrupts. For example,
an INTn instruction causes the processor to execute the interrupt service rou­
tine pointed to by the nth vector in the interrupt table. Execution of the interrupt
service routine occurs regardless of the state of the IF flag in the EFLAGS reg­
ister.

The one-byte INT3, or breakpoint-interrupt (vector 3), is a particular case of
the INTn instruction. By inserting this one-byte instruction in a program, the
user can set breakpoints in code that can be used during debug.

Single-step operation is enabled by setting the TF bit in the EFLAGS register.
When TF is set, the CPU generates a debug exception (vector 1) after the
execution of every instruction. Data breakpoints also generate a debug excep­
tion and are specified by loading the Debug registers (DRO-DR7) with the ap­
propriate values.

2.7.2.2 Fault Exceptions

2-44

A fault exception is caused by a program error and is reported prior to comple­
tion of the instruction that generated the exception. By reporting the fault prior
to instruction completion, the CPU is left in a state that allows the instruction
to be restarted and the effects of the faulting instruction to be nullified. Fault
exceptions include divide-by-zero errors, invalid opcodes, page faults, and co­
processor errors. Debug exceptions (vector 1) are also handled as faults (ex­
cept for data breakpoints and single-step operations). After execution of the
fault service routine, the instruction pointer points to the instruction that caused
the fault.

2.7.2.3 Abort Exceptions

An abort exception is a type of fault exception severe enough that the CPU
cannot restart the program at the faulting instruction. Abort exceptions include
the double fault (vector 8) and coprocessor segment overrun (vector 9).

2.7.3 Interrupt Vectors

When the CPU services an interrupt or exception, the current program's
instruction pointer and flags are pushed onto the stack to allow resumption of
execution of the interrupted program. In protected mode, the processor also
saves an error code for some exceptions. Program control is then transferred
to the interrupt handler (also called the interrupt service routine). Upon execu­
tion of an IRET at the end of the service routine, program execution resumes
at the instruction-pointer address saved on the stack when the interrupt was
serviced.

2.7.3.1 Interrupt-Vector Assignments

Each interrupt (except SMI#) and each exception is assigned one of 256 inter­
rupt-vector numbers (Table 2-20). The first 32 interrupt-vector assignments
are defined or reserved. INT instructions acting as software interrupts can use
any of the interrupt vectors, 0 through 255. The nonmaskable hardware inter­
rupt (NMI) is assigned vector 2.

In response to a maskable hardware interrupt (INTR), the microprocessor is­
sues interrupt-acknowledge bus cycles used to read the vector number from
external hardware. These vectors should be in the vector range of 32-255 be­
cause vectors 0-31 are predefined.

2.7.3.2 Interrupt-Descriptor Table

The interrupt-vector number is used by the microprocessor to locate an entry
in the interrupt-descriptor table (lOT). In real mode, each lOT entry consists
of a four-byte far pointer to the beginning of the corresponding interrupt service
routine. In protected mode, each lOT entry is an eight-byte descriptor. The In­
terrupt-Oescriptor-Table register (IOTR) specifies the beginning address and
limit of the lOT. Following reset, the 10TR contains a base address of Oh with
a limit of 3FFh.

The lOT can be located anywhere in physical memory as determined by the
10TR register. The lOT can contain different types of descriptors: interrupt
gates, trap gates, and task gates. Interrupt gates are used mainly to enter a
hardware interrupt handler. Trap gates are generally used to enter an excep­
tion handler or software interrupt handler. If an interrupt gate is used, the inter­
rupt enable flag (IF) in the EFLAGS register is cleared before the interrupt han­
dier is entered. Task gates are used to make the transition to a new task.

Programming Interface 2-45

Interrupts and Exceptions

Table 2-20. Interrupt-Vector Assignments

Interrupt Vector

o

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18-31

32-255

0-255

Function

Divide error

Debug exception

NMI interrupt

Breakpoint

Interrupt on overflow

BOUND range exceeded

Invalid opcode

Device not available

Double fault

Coprocessor segment overrun

Invalid TSS

Segment not present

Stack fault

General-protection fault

Page fault

Reserved

Coprocessor error

Alignment-check exception

Reserved

Maskable hardware interrupts

Programmed interrupt

Exception Type

Fault

Trap (see Note)

Trap

Trap

Fault

Fault

Fault

Abort

Abort

Fault

Fault

Fault

Fault

FaultlTrap

Fault

Fault

Trap

Trap

Note: Some debug exceptions may report traps on the previous instruction and faults on the
next instruction.

2.7.4 Interrupt and Exception Priorities

2-46

As the TI486SXL(C) family of microprocessors executes instructions, each fol­
lows a consistent policy for prioritizing exceptions and hardware interrupts as
listed in Table 2-21. SMM interrupts always take precedence. Debug traps for
the previous instruction and next instruction are handled in the next priority.
When NMI and maskable INTR interrupts are both detected at the same
instruction boundary, the microprocessor services the NMI interrupt first.

The microprocessor checks for exceptions in parallel with instruction decoding
and execution. Several exceptions can result in a single instruction. However,
only one exception is generated upon each attempt to execute the instruction.
Each exception service routine should make the appropriate corrections to the
instruction and then restart the instruction. In that way, exceptions can be serv­
iced until the instruction executes properly.

The microprocessor supports instruction restart after all faults except when an
instruction causes a task switch to a task whose task-state segment (TSS) is

Interrupts and Exceptions

partially not present. A TSS can be partially not present if the TSS is not page
aligned and one of the pages (where the TSS resides) is not currently in
memory.

Table 2-21. Interrupt and Exception Priorities

Priority Description

2

3

4

5

6

7

8

9

10

Debug traps and faults from previous
instruction

Debug traps for next instruction

Nonmaskable hardware interrupt

Maskable hardware interrupt

Faults resulting from fetching the next
instruction

Faults resulting from instruction decoding

WAIT instruction and TS = 1 and MP = 1

ESC instruction and EM = 1 or TS = 1

Coprocessor-error exception

Segmentation faults (for each memory
reference required by the instruction) that
prevent transferring the entire memory operand

11 Page faults that prevent transferring the entire
memory operand

12 Alignment-check fault

2.7.5 Exceptions in Real Mode

Notes

Includes single-step trap and data breakpoints
specified in the Debug registers

Includes instruction execution breakpoints
specified in the Debug registers

Caused by N M I asserted

Caused by INTR asserted and IF = 1

Includes segment not present,
general-protection fault, and page fault

Includes illegal opcode, instruction too long,
and privilege violation

Device not available exception generated

Device not available exception generated

Caused by ERROR# asserted

Includes segment not present, stack fault, and
general-protection fault

Many of the exceptions described in Table 2-20 are not applicable in real
mode. Exceptions 10, 11, and 14 do not occur in real mode. Other exceptions
have slightly different meanings in real mode, as listed in Table 2-22.

Table 2-22. Exception Changes in Real Mode

Vector Number Protected-Mode Function Real Mode Function

8 Double fault

10 Invalid TSS

11 Segment not present

12 Stack fault

13 General-protection fault

14 Page fault

Interrupt table limit overrun

SS segment limit overrun

CS,DS,ES,FS,GSsegme~

limit overrun

Programming Interface 2-47

Interrupts and Exceptions

2.7.6 Error Codes

When operating in protected mode, the following exceptions generate a 16-bit
error code:

o Double fault
o Alignment check
o Invalid TSS
o Segment not present
o Stack fau It
o General-protection fault
o Page fault

The error-code format is shown in Figure 2-26 and the error-code bit defini­
tions are listed in Table 2-23. Bits 15-3 (selector index) are not meaningful
if the error code was generated as the result of a page fault. The error code
is always zero for double faults and alignment-check exceptions.

Figure 2-26. Error-Code Format

15 3 2 o

Selector Index S2 S1 SO

Table 2-23. Error-Code Bit Definitions

Selector
Fault Index
Type (Bits 15-3) S2 (Bit 2) S1 (Bit 1) SO (Bit 0)

Page fault Reserved Fault caused by: Fault occurred during: Fault occurred during:
o = not present page o = read access o = supervisor access
1 = page-level protec- 1 = write access 1 = user access

tion violation

lOT fault Index of faulty Reserved If set, the exception
lOT selector occurred while trying to

invoke exception or
hardware interrupt handler.

Segment Index of faulty TI bit of faulty selector 0 If set, the exception
fault selector occurred while trying to

invoke exception or
hardware interrupt handler.

2-48

System-Management Mode

2.8 System-Management Mode

System-management mode (SMM) provides an additional interrupt that can
be used for system power management or software-transparent emulation of
I/O peripherals. SMM is entered using the software-management interrupt
(SMI#) which has a higher priority than any other interrupt, including NMI. After
receiving an SMI#, portions of the CPU state are automatically saved, SMM
is entered and program execution begins at the base of SMM space
(Figure 2-27 and Figure 2-28). Running in protected SMM address space,
the interrupt routine does not interfere with the operating system or any ap­
plication program.

Seven SMM instructions have been added to the TI486SXL(C) microproces­
sor family instruction set that permit saving and restoring the total CPU state
when in SMM mode. Two new pins, SMI# and SMADS#, support SMM func­
tions.

Figure 2-27. TI486SXLC Memory and 110 Address Spaces

Physical
Memory Space

FFFFFFh~--------------------~

Physical
Memory

16M bytes

OOOOOOh ______________________ __
Non-SMM Mode

ADS#Active

FF FFFFh

4K bytes to
16M bytes

Potential
SMM Addres Space

Defined
SMM

Address
Space

OOOOOOh ______________________ __

SMM Mode

SMADS#
Active

ADS#
Active

Programming Interface 2-49

System-Management Mode

Figure 2-28. TI486SXL Memory and liD Address Spaces

FFFF FFFFh

Physical
Memory Space

Physical
Memory
4G bytes

0000 OOOOh ______ _
Non-SMM Mode

ADS#Active

FFFF FFFFh

4K bytes to
16M bytes

Potential
SMM Address Space

Defined
SMM

Address
Space

0000 OOOOh ______ _

SMM Mode

SMADS#
Active

ADS#
Active

2.8.1 SMM Operations

2-50

SMM operation is summarized in Figure 2-29. Entering SMM requires the
assertion of SMI# for at least four CLK2 periods. For the SMI# input to be rec­
ognized, the following Configuration register bits must be set as shown below:

SMI
8MAC
8M4
ARR4

CCR1 (1)
CCR1 (2)
CCR1 (7)
SIZE(3-0)

= 1
=0
= 1
>0

The Configuration registers are discussed in subsection 2.5, System Register
Set, page 2-16. After recognizing SMI# and prior to executing the SMI service
routine, some of the CPU-state information is changed. Prior to modification,
this information is automatically saved in the 8MM memory-space header lo­
cated at the top of the 8MM memory space. After the header is saved, the CPU
enters real mode and begins executing the 8MI service routine starting at the
SMM memory base address.

The 8MI service routine is user definable and may contain system or power­
management software. If the power-management software forces the CPU
to power down, or if the 8MI service routine modifies more than what is auto­
matically saved, the complete CPU-state information must be saved.

System-Management Mode

Figure 2-29. SMM Execution Flow Diagram

SMI# Sampled Active

CPU State Stored in SMM
Address-Space Header

Program Flow Transfers
to SMM Address Space

CPU Enters Real Mode

Execution Begins at SMM
Address-Space Base Address

RSM Instruction Restores CPU
State Using Header Information

Normal Execution Resumes

A complete CPU-state save is performed by using MOV instructions to save
normally accessible information, and by using the SMM instructions to save
CPU information that is not normally accessible to the programmer. As will be
explained, SMM instructions (SVDC, SVLDT, and SVTS) are used to store the
LDTR, TSR, and Segment registers and their associated descriptor cache en­
tries in aO-bit memory locations. After power up or at the end of the SM I service
routine, the MOV and additional SMM instructions (RSDC, RSLDT, and RSTS)
are used to restore the CPU state. The SMM RSM instruction returns the CPU
to normal execution.

2.8.2 SMM Memory Space Header

With every SMI interrupt, certain CPU-state information is automatically saved
in the SMM memory space header located at the top of SMM address space
(Table 2-24 and Figure 2-30). The header contains CPU-state information
that is modified when servicing an SMI interrupt. Included in this information
are two pointers. The current IP points to the instruction executing when the
SMI was detected. The next IP points to the instruction that will be executed
after exiting SMM. Also saved are the contents of Debug register? (DR?), the
extended Flag Word register (EFLAGS), and Control register 0 (CRO). If SMM
has been entered due to an 1/0 trap for a REP INSx or REP OUTSx instruction,
the current IP and next IP fields (Table 2-24) contain the same addresses and
the I and P fields contain valid information.

Programming Interface 2-51

SV~5tel77-"lIarla!J,ement Mode

Table 2-24. SMM Memory Space Header

Name

DR?

EFLAGS

CRO

Current IP

Description

The contents of the Debug register?

The contents of the extended flag register

The contents of the Control register 0

The address of the instruction executed prior to servicing the SMI interrupt

Size

4 bytes

4 bytes

4 bytes

4 bytes

Next IP The address of the next instruction that will be executed after exiting the SMM mode 4 bytes

CS Selector Code Segment register selector for the current code segment

CS Descriptor Code register descriptor for the current code segment

P REP INSx/OUTSxt Indicator
P is 1 if current instruction has a REP prefix
P is 0 if current instruction does not have REP prefix

IN, INSx, OUT, or OUTSx Indicator
I is 1 if current instruction performed is an I/O WRITE
I is 0 if current instruction performed is an I/O READ

2 bytes

8 bytes

1 bit

1 bit

ESI or EDI Restored ESI or EDI value. Used when it is necessary to repeat a REP OUTSx or 4 bytes
REP INSx instruction when one of the 1/0 cycles caused an SMI# trap

t INSx = INS, INSB, INSW, or INSD instruction, and OUTSx = OUTS, OUTSB, OUTSW, or OUTSD instruction.

Figure 2-30. SMM Memory Space Header

31
Top of SMM ----.
Address Space

2.8.3 SMM Instructions

31

31

o
DR?

EFLAGS

CRO

Current IP

Next IP
16 15 0

Reserved I CS Selector

CS Descriptor (Bits 63-32)

CS Descriptor (Bits 31-0) 2 1 0

Reserved Ipl'l
Reserved

Reserved

ESI or EDI

-4h

-8h

-Ch

-10h

-14h

-18h

-1Ch

-20h

-24h

-28h

-2Ch

-30h

The TI486SXL(C) microprocessor family automatically saves the minimal
amount of CPU-state information when entering SMM that allows fast SMI ser­
vice routine entry and exit. After entering the SMI service routine, the MOV,
SVDC, SVLDT, and SVTS instructions can be used to save the complete CPU

2-52

Sv~)teln-lI.l/an'aaj9mI9nt Mode

state information. If the SMI service routine either modifies more than what is
automatically saved or forces the CPU to power down, the complete CPU­
state information must be saved. Since the TI486SXL(C) microprocessors are
static devices, their internal state is retained when the input clock is stopped.
Therefore, an entire CPU-state save is not necessary prior to stopping the in­
put clock.

The new SMM instructions, listed in Table 2-25, can be executed only if:
(a) the current privilege level (CPL) = 0 and the SMAC bit (CCR1 , bit 2) is set;
or (b) CPL = 0 and the CPU is in an SMI service routine (SMI# = 0). If both these
conditions are not met and an attempt is made to execute an SMM instruction,
an invalid-opcode exception is generated. These instructions can be executed
outside of defined SMM space provided the above conditions are met. All of
the SMM instructions (except RSM) save or restore 80 bits of data, allowing
the saved values to include the hidden portion of the register contents.

Table 2-25. SMM Instruction Set

Instruction Opcode Format Description

SVOC OF 78 [mod sreg3 rim] SVOC mem80t, sreg3 Save Segment register and Descriptor

RSOC

SVLOT

RSLOT

SVTS

RSTS

RSM

Saves reg OS, ES, FS, GS, or SS to mem80

OF 79 [mod sreg3 rim] RSOC sreg3, mem80 Restore Segment register and Descriptor
Restores reg OS, ES, FS, GS, or SS from
mem80
(eS is automatically restored with RSM)

OF 7 A [mod 000 rim] SVLOT mem80 Save LDTR and Descriptor
Saves local-descriptor table (LOTR) to
mem80

OF 7B [mod 000 rim] RSLOT mem80 Restore LDTR and Descriptor
Restores local-descriptor table (LOTR) from
mem80

OF 7C [mod 000 rim] SVTS mem80 Save TSR and Descriptor
Save Task-State register (TSR) to mem80

OF 70 [mod 000 rim] RSTS mem80 Restore TSR and Descriptor
Restores Task-State register (TSR) from
mem80

OF AA RSM Resume Normal Mode
Exits SMM mode. The CPU state is restored
using the SMM memory space header and
execution resumes at interrupted point.

t mem80 = 80-bit memory location.

Programming Interface 2-53

System-Management Mode

2.8.4 SMM Memory Space

SMM memory space is defined by assigning address region 4 to SMM memory
space. This assignment is made by setting bit 7 (SM4) in the on-chip CCR1
register. ARR4, also an on-chip Configuration register, specifies the base ad­
dress and size of the SMM memory space. The base address must be a multi­
ple of the SMM memory space size. For example, a 32K-byte SMM memory
space must be located at a 32K-byte address boundary. The memory space
size can range from 4K bytes to 16M bytes.

SMM memory space accesses can use address pipelining, and are always
noncacheable. SMM accesses ignore the state of the A20M# input and drive
the A20 address bit to the unmasked value.

Access to the SMM memory space can be made while not in SMM mode by
setting the system-management access (SMAC) bit in the CCR1 register. This
feature can be used to initialize the SMM memory space.

While in SMM mode, SMADS# address strobes are generated instead of
ADS# for SMM memory accesses. Any memory accesses outside the defined
SMM space result in normal memory accesses and ADS# strobes. Data
(noncode) accesses to main memory that overlap defined SMM memory
space are allowed if bit 3 in CCR1 (MMAC) is set. In this case, ADS# strobes
are generated for data accesses only and SMADS# strobes continue to be
generated for code accesses.

2.8.5 SMI Service Routine Execution

2-54

Upon entry into SMM after the SMM header has been saved, the CRO,
EFLAGS, and DR7 registers are set to their reset values. The Code Segment
(CS) register is loaded with the base and limits defined by the ARR4 register
and the SMI service routine begins execution at the SMM base address in real
mode.

The routine must then save the value of any registers that can be changed by
the SMI service routine. For data accesses immediately after entering the SMI
service routine, the routine must use CS as a segment override. I/O port ac­
cess is possible during the routine but care must be taken to save registers
modified by the I/O instructions. Before using a Segment register, the regis­
ter's descriptor-cache contents should be saved using the SVDC instruction.
While executing in SMM space, execution flow can transfer to normal memory
locations.

Hardware interrupts (INTRs and NMls) can be serviced during an SMI service
routine. If interrupts are to be serviced while operating in SMM memory space,
the SMM memory space must be within the 0 to 1 M-byte address range to as­
sure proper return to the SMI service routine after handling the interrupt.
INTRs are automatically disabled when entering SMM since the IF flag is set
to its reset value. However, NMls remain enabled. If it is desired to disable NMI,
it should be done immediately after entering the SMI service routine by the sys­
tem hardware logic.

Within the SMI service routine, protected mode can be entered and exited as
required, and real- or protected-mode device drivers can be called.

System-Management Mode

To exit the SMI service routine, a resume (RSM) instruction, rather than an
IRET, is executed. The RSM instruction causes the microprocessor to restore
the CPU state using the SMM header information and resume execution at the
interrupted point. If the full CPU state was saved by the programmer, the stored
values should be reloaded prior to executing the RSM instruction using the
MOV and the RSDC, RSLDT, and RSTS instructions.

2.8.6 CPU States Related to SMM and Suspend Mode

The state diagram shown in Figure 2-31 illustrates the various CPU states
associated with SMM and suspend mode. While in the SMI service routine, the
TI486SXL(C) microprocessor family can enter suspend mode either by
executing a HALT instruction or by asserting the SUSP# input.

During SMM operation and while in SUSP#-initiated suspend mode, an occur­
rence of either NMI or INTR is latched. In order for INTR to be latched, the IF
flag must have been set. The INTR or NMI is serviced after exiting suspend
mode.

If suspend mode is entered via a HALT instruction from the operating system
or application software, the reception of an SMI# interrupt causes the CPU to
exit suspend mode and enter SMM. If suspend mode is entered via the hard­
ware (SUSP# = 0) while the operating system or application software is active,
the CPU latches one occurrence of INTR#, NMI, and SMI#.

Programming Interface 2-55

System-Management Mode

Figure 2-31. SMM and Suspended-Mode Flow Diagram

2-56

NMI or INTR

HALT*

RESET------~~~~
as/Application

Software

Non-SMM Oerations -----------
SMM Operations

* Instructions
(INTR and NMI

Latched)

IRET*

SUSP# = 0

SUSP# = 1

(INTR, NMI, and SMI Latched)

INTR and NMI

Shutdown and Halt / Protection

2.9 Shutdown and Halt

2.10 Protection

Shutdown occurs when a severe error is detected that prevents further proces­
sing. An NMI input can bring the processor out of shutdown if the IDT limit is
large enough to contain the NMI interrupt vector (at least OOOFh) and the stack
has enough room to contain the vector and flag information (Le., stack pointer
is greater than OOOSh). Otherwise, shutdown can be exited only by a processor
reset.

The halt (HLT) instruction stops program execution and prevents the proces­
sor from using the local bus until restarted. The microprocessor then enters
a low-power suspend mode. INTR with interrupts enabled (IF bit in
EFLAGS = 1), SMI, NMI, or RESET forces the CPU out of the halt state. If in­
terrupted, the saved code segment and instruction pointer specify the instruc­
tion following the HL T.

Segment protection and page protection are safeguards built into the
TI486SXL(C) microprocessor family protected-mode architecture that deny
unauthorized or incorrect access to selected memory addresses. These safe­
guards allow multitasking programs to be isolated from each other and from
the operating system. Page protection is discussed in subsection 2.6.3, Pro­
tected-Mode Memory Addressing, page 2-39. This section concentrates on
segment protection.

Selectors and descriptors are the key elements in the segment-protection
mechanism. The segment base address, size, and privilege level are estab­
lished by a segment descriptor. Privilege levels control the use of privilege
instructions, 1/0 instructions, and access to segments and segment descrip­
tors. Selectors are used to locate segment descriptors.

Segment accesses are divided into two basic types, those involving code seg­
ments (e.g., control transfers) and those involving data accesses. The ability
of a task to access a segment depends on:

o the segment type
o the instruction requesting access
o the type of descriptor used to define the segment
o the associated privilege levels

Data stored in a segment can be accessed only by code executing at the same
or a more privileged level. A code segment or procedure can be called only by
a task executing at the same or a less privileged level.

2. 10.1 Privilege Levels

The values for privilege levels range between 0 and 3. Level 0 is the highest
privilege level (most privileged), and level 3 is the lowest privilege level (least
privileged). The privilege level in real mode is effectively O.

The descriptor privilege level (DPL) is the privilege level defined for a segment
in the segment descriptor. The DPL field specifies the minimum privilege level
needed to access the memory segment pointed to by the descriptor.

Programming Interface 2-57

Protection

The current privilege level (CPL) is defined asthe current task's privilege level.
The CPL of an executing task is stored in the hidden portion of the Code Seg­
ment register and essentially is the DPL for the current code segment.

The requested privilege level (RPL) specifies a selector's privilege level and
is used to distinguish between the privilege level of a routine actually acces­
sing memory (the CPL), and the privilege level of the original requestor (the
RPL) of the memory access. The lower privilege level (0 is highest) of RPL and
CPL is called the effective privilege level (EPL). Therefore, if RPL = 0 in a seg­
ment selector, the effective privilege level is always determined by the CPL.
If RPL = 3, the effective privilege level is always 3 regardless of CPL.

For a memory access to succeed, the effective privilege level (EPL) must be
at least as privileged as the descriptor privilege level (EPL ~ DPL). If the EPL
is less privileged than the DPL (EPL < DPL), a general-protection fault is gen­
erated. For example, if a segment has a DPL = 2, an instruction accessing the
segment succeeds only if executed with an EPL ~ 2.

2.10.2 1/0 Privilege Levels

The 1/0 privilege level (IOPL) allows the operating system executing at
CPL = 0 to define the least-privileged level at which 10PL-sensitive instruc­
tions can be used unconditionally. The 10PL-sensitive instructions include
CLI, IN, OUT, INS, OUTS, REP INS, REP OUTS, and STI. Modification of the
IF bit in the EFLAGS register is also sensitive to the 1/0 privilege level.

The 10PL is stored in the EFLAGS register. An 1/0 permission bit map is avail­
able as defined by the 32-bit task-state segment (TSS). Since each task can
have its own TSS, access to individual 1/0 ports can be granted through sepa­
rate 1/0 permission bit maps.

If CPL ::;; 10PL, 10PL-sensitive operations can be performed. If CPL > 10PL,
a general-protection fault is generated if the current task is associated with a
16-bit TSS. If the current task is associated with a 32-bit TSS and CPL > 10PL,
the CPU consults the 1/0 permission bit map in the TSS to determine on a port­
by-port basis whether or not I/O instructions (IN, OUT, INS, OUTS, REP INS,
REP OUTS) are permitted, and the remaining 10PL-sensitive operations gen­
erate a general-protection fault.

2.10.3 Privilege Level Transfers

A task's CPL can be changed only through intersegment control transfers us­
ing gates or task switches to a code segment with a different privilege level.
Control transfers result from exception and interrupt servicing and from execu­
tion of the CALL, JMP, INT, IRET, and RET instructions.

2.10.3. 1 Control Transfers

2-58

The five types of control transfers are summarized in Table 2-26. Control
transfers can be made only when the operation causing the control transfer
references the correct descriptor type. Any violation of these descriptor-usage
rules causes a general-protection fault.

Protection

Table 2-26. Descriptor Types Used for Control Transfer

Descriptor Descriptor
Type Of Control Transfer Operation Types Referenced Table

Intersegment within the same privilege JMP, CALL, RET, IRET Code segment GOT or LOT
level

Intersegment to the same or a more CALL Call gate GOT or LOT
privileged level. Interrupt within task

Interrupt instruction, Excep- interrupt lOT (could change CPL level) Trap or
tion, External interrupt gate

Intersegment to a less privileged level RET,IRET Code segment GOT or LOT
(changes task CPL)

Task switch via TSS

Task switch via task gate

Task switch via task gate

2.10.3.2 Gates

CALL, JMP Task-state GOT
segment

CALL, JMP Task gate GOT or LOT

IRET, Interrupt instruction, Task gate lOT
Exception, External interrupt

Any control transfer that changes the CPL within a task results in a change of
stack. The initial values for the stack segment (SS) and stack pointer (ESP)
for privilege levels 0, 1, and 2 are stored in the TSS. Ouring a JMP or CALL
control transfer, the SS and ESP are loaded with the new stack pointer and the
previous stack pointer is saved on the new stack. When returning to the origi­
nal privilege level, the RET or IRETinstruction restores the less-privileged
stack.

Gate descriptors provide protection for privilege transfers among executable
segments. Gates are used to transition to routines of the same or a more privi­
leged level. Call gates, interrupt gates, and trap gates are used for privilege
transfers within a task. Task gates are used to transfer between tasks.

Gates conform to the standard rules of privilege.· In other words, gates can be
accessed by a task if the effective privilege level (EPL) is the same or more
privileged than the gate descriptor's privilege level (OPL).

2.10.4 Initialization and Transition to Protected Mode

The TI486SXL(C) microprocessor family switches to real mode immediately
after RESET. While operating in real mode, the system tables and registers
should be initialized. The GOTR and IOTR must point to a valid GOT and lOT,
respectively. The size of the lOT should be at least 256 bytes, and the GOT
must contain descriptors that describe the initial code and data segments.

The processor can be placed in protected mode by setting the PE bit in the
CRO register. After enabling protected mode, the CS register should be loaded
and the instruction-decode queue should be flushed by executing an interseg­
ment JMP. Finally, all data Segment registers should be initialized with ap­
propriate selector values.

Programming Interface 2-59

Virtua/-8086 Mode

2.11 Virtual-SOS6 Mode

Both real mode and virtual-8086 (V86) mode are supported by the
TI486SXL(C) microprocessor family, allowing execution of 8086 application
programs and 8086 operating systems. V86 mode allows the execution of
8086-type applications, yet still permits use of the TI486SXL(C) microproces­
sor-protection mechanism. V86 tasks run at privilege level 3. Upon entry, all
segment limits are set to FFFFh (64K) as in real mode.

2.11.1 Memory Addressing

2.11.2 Protection

While in V86 mode, Segment registers are used in the same manner as in real
mode. The contents of the Segment register are shifted left four bits and added
to the offset to form the segment base linear address. The TI486SXL(C) micro­
processor family permits the operating system to select which programs use
the V86 address mechanism and which programs use protected-mode ad­
dressing for each task.

The TI486SXL(C) microprocessor family also permits the use of paging when
operating in V86 mode. Using paging, the 1 M-byte address space of the V86
task can be mapped to anywhere in the 4G-byte linear address space of the
microprocessor CPU. As in real mode, linear addresses that exceed 1 M byte
cause a segment-limit-overrun exception.

The paging hardware allows multiple V86 tasks to run concurrently, and pro­
vides protection and operating-system isolation. The paging hardware must
be enabled to run multiple V86 tasks or to relocate the address space of a V86
task to physical address space above 1 M byte.

All V86 tasks operate at the lowest privilege level (level 3) and are subject to
all of the microprocessor protected-mode protection checks. As a result, any
attempt to execute a privileged instruction within a V86 task results in a gener­
al-protection fault.

In V86 mode, a slightly different set of instructions is sensitive to the 1/0 privi­
lege level (IOPL) than in protected mode. These instructions are: CLI, INTn,
IRET, POPF, PUSHF, and STI. The INT3, INTO and BOUND variations of the
INT instruction are not 10PL sensitive.

2.11.3 Interrupt Handling

2-60

To fully support the emulation of an 8086-type machine, interrupts in V86 mode
are handled as follows. When an interrupt or exception is serviced in V86
mode, program execution transfers to the interrupt service routine at privilege
level 0 (i.e., transition from V86 to protected mode occurs) and the VM bit in
the EFLAGS register is cleared. The protected-mode interrupt service routine
then determines if the interrupt came from a protected-mode or V86 applica­
tion by examining the VM bit in the EFLAGS image stored on the stack. The
interrupt service routine can then choose to allow the 8086 operating system

Virtual-8086 Mode

to handle the interrupt or can emulate the function of the interrupt handler. Fol­
lowing completion of the interrupt service routine, an IRET instruction restores
the EFLAGS register (restores VM = 1) and segment selectors and control re­
turns to the interrupted V86 task.

2.11.4 Entering and Leaving Va6 Mode

V86 mode is entered from protected mode either by executing an I RET instruc­
tion at CPL = 0 or by task switching. If an IRET is used, the stack must contain
an EFLAGS image with VM = 1. If a task switch is used, the TSS must contain
an EFLAGS image containing a 1 in the VM bit position. The POPF instruction
cannot be used to enter V86 mode since the state of the VM bit is not affected.
V86 mode can be exited only as the result of an interrupt or exception. The
transition out must use a 32-bit trap or interrupt gate that must point to a non­
conforming privilege level 0 segment (DPL = 0), or a 32-bit TSS. These restric­
tions are required to permit the trap handler to IRET back to the V86 program.

Programming Interface 2-61

2-62

Chapter 3

TI486SXLC Microprocessor Bus Interface

This chapter provides a summary of the TI486SXLC series processor signals
and descriptions of all inputs/outputs, functional timing and bus operations (in­
cluding pipelined and nonpipelined addressing), various interfaces, and power
management.

Topic Page

3.1 InputlOutputSignals .~ •...••............ ~ .•... \ ..• ~•• 'o •• ~ .•• 3 .. 2

3~2 Bus-Cycle Definition ~; •. ~ .•.•. '3-13

3.3 . ResetTimingand InternafClockSyhchronization .' •. '" ~ .3 .. 17
"" ~ , , ~ : ;:' " ," e ' , ' , " ',' ~ ,

3.4 BusOperationand:Functi,onaITiirlihg ~ .•.•• cO.·3-1~

3-1

Input/Output Signals

3.1 Input/Output Signals

This section describes the TI486SXLC series microprocessors' input and out­
put signals. The discussion of these signals is arranged by functional groups
as shown in Figure 3-1. Table 3-1 gives a brief description of each signal.

Figure 3-1. TI486SXLC Functional Signal Groupings

2x Clock CLK2 TI486SXLC INTR

NMI } Interrupt
Control

Reset RESET SMI#

{ A23-A1
KEN# } Internal Address

Bus BLE# Cache
FLUSH# Interface

BHE#

Data D15-DO A20M# Address
Bus Bit-20 Mask

{
W/R# PEREQ

Bus D/C# BUSY# } Coprocessor
Cycle Interface

Definition M/IO# ERROR#

LOCK# HOLD
} Bus

{
NA# HLDA Arbitration

Bus READY# SUSP# } Cycle Power
Control ADS# SUSPA# Management

SMADS# FLT# Float
Control

3-2

Input/Output Signals

Table 3-1. TI486SXLC Signal Summary

Signal

ADS#

A20M#

A23-A1

BHE#

BlE#

BUSY#

ClK2

015-00

D/C#

ERROR#

FlT#

FlUSH#

HlDA

HOLD

INTR

KEN#

lOCK#

M/IO#

NA#

NMI

PEREQ

READY#

RESET

SMADS#

SMI#

SUSP#

SUSPA#

W/R#

Signal Name

Address strobe

Address bit-20 mask

Address bus lines

Byte-high enable

Byte-low enable

Processor extension busy

2X clock input

Data bus lines

Data/control

Processor extension error

Float

Cache flush

Hold acknowledge

Hold request

Maskable interrupt request

Cache enable

Bus lock

Memory/input-output

Next address request

Nonmaskable interrupt request

Processor extension request

Bus ready

Reset

SMM address strobe

System management interrupt

Suspend request

Suspend acknowledge

Write/read

Signal Group

Bus-cycle control

None

Address bus

Address bus

Address bus

Coprocessor interface

None

None

Bus-cycle definition

Coprocessor interface

None

Internal cache interface

Bus arbitration

Bus arbitration

Interrupt control

Internal cache interface

Bus-cycle definition

Bu~-cycle definition

Bus-cycle control

Interrupt control

Coprocessor interface

Bus-cycle control

None

Bus-cycle control

Interrupt control

Power management

Power management

Bus-cycle definition

The following sections describe the signals and their functional characteris­

tics. Additional signal information can be found in Chapter 5, Electrical Specifi­

cations. Chapter 5 documents the dc and ac characteristics for the signals in­
cluding voltage levels, propagation delays, setup times, and hold times. Speci­

fied setup and hold times must be met for proper operation of the TI486SXLC

series microprocessors.

Tl486SXLC Microprocessor Bus Interface 3-3

Input/Output Signals

3.1.1 TI486SXLC Terminal Function Descriptions

Table 3-2 identifies and describes each of the TI486SXLC package terminals.

Table 3-2. TI486SXLC Terminal Functions

Terminal
Name No.

A1 18
A2 51
A3 52
A4 53
A5 54
A6 55
A7 56
A8 58
A9 59
A10 60
A11 61
A12 62
A13 64
A14 65
A15 66
A16 70
A17 72
A18 73
A19 74
A20 75
A21 76
A22 79
A23 80

ADS# 16

A20M# 31

3-4

Description

Address Bus (active high). The address bus (A23-A 1) signals are 3-state outputs that
provide addresses for physical memory and 1/0 ports. All address lines can be used for
addressing physical memory allowing a 16M-byte address space (00 OOOOh to FF
FFFFh). During 1/0 port accesses, A23-A16 are driven low (except for coprocessor
accesses). This permits a 64K-byte 1/0 address space (00 OOOOh to 00 FFFFh).

During all coprocessor 1/0 access address lines A22-A 16 are driven low and A23 is
driven high. This allows A23 to be used by external logic to generate a coprocessor
select signal. Coprocessor command transfers occur with address 80 00F8h and
coprocessor data transfers occur with addresses 80 OOFCh and 80 OOFEh. A23-A 1 float
while the CPU is in a hold-acknowledge or float state.

Address Strobe (active low). This 3-state output indicates that the TI486SXLC
microprocessor has driven a valid address (A23-A 1, BHE#, BLE#) and bus-cycle
definition (M/IO#, D/C#, W/R#) on the appropriate output pins. During nonpipelined bus
cycles, ADS# is active for the first clock of the bus cycle. During address pipelining,
ADS# is asserted during the previous bus cycle and remains asserted until READY# is
returned for that cycle. ADS# floats while the microprocessor is in a hold-acknowledge
or float state.

Address Bit-20 Mask (active low). This input causes the microprocessor to mask (force
low) physical address bit 20 when driving the external address bus or performing an
internal cache access. When the processor is in real mode, asserting A20M# emulates
the 1 M-byte address wraparound that occurs on the 8086. The A20 signal is never
masked when paging is enabled regardless of the state of the A20M# input. The A20M#
input is ignored following reset and can be enabled using the A20M bit in the CCRO
Configuration register.

A20M# is internally connected to a pullup resistor to prevent it from floating active when
left unconnected.

Input/Output Signals

Table 3-2. TI486SXLC Terminal Functions (Continued)

Terminal

Name

BHE#
BLE#

BUSY#

CLK2

O/C#

No.

19
17

34

15

24

Description

Byte Enables (active low). Byte-low enable (BLE#) and byte-high enable (BHE#)
3-state outputs indicate which byte(s} of the 16-bit data bus are selected for data transfer
during the current bus cycle. BLE# selects the low byte (07-00) and BHE# selects the
high byte (015-08).

When BHE# and BLE# are asserted, both bytes (all 16 bits) of the data bus are selected.
BLE# and BHE# float while the CPU is in a hold-acknowledge or float state.

BHE# = BLE# = 1 never occurs during a bus cycle.

Coprocessor Busy (active low). This input indicates to the TI486SXLC that the
coprocessor is currently executing an instruction and is unable to accept another
opcode. When the microprocessor encounters a WAIT instruction or any coprocessor
instruction that operates on the coprocessor stack (Le., load, pop, arithmetic operation),
BUSY# is sampled. BUSY# is continually sampled and must be recognized as inactive
before the CPU supplies the coprocessor another instruction. However, coprocessor
instructions FNINIT and FNCLEX are allowed to execute even if BUSY# is active
because they are used for coprocessor initialization and exception clearing.

BUSY# is internally connected to a pullup resistor to prevent it from floating active when
left unconnected.

2X Clock Input (active high). This input signal is the basic timing reference for the
TI486SXLC microprocessors. The CLK2 input is internally divided by two to generate
the internal processor clock. The external CLK2 is synchronized to a known phase of
the internal processor clock by the falling edge of the RESET signal. External timing
parameters are defined with respect to the rising edge of CLK2.

For the TI486SXLC2 microprocessors, the CLK2 input is used internally to generate the
internal core processor clock and the internal bus interface clock. The external CLK2 is
synchronized to a known phase of the internal processor clock by the falling edge of the
RESET signal. External timing parameters are defined with respect to the rising edge
of CLK2.

Data/Control. This 3-state, bus-cycle-definition signal is low during control cycles and
is high during data cycles. Control cycles are issued during functions such as a halt
instruction, interrupt servicing, and code fetching. Data bus cycles include data access
from either memory or 110.

Tl486SXLC Microprocessor Bus Interface 3-5

Input/Output Signals

Table 3-2. TI486SXLC Terminal Functions (Continued)

Terminal

Name No.

00 1
01 100
02 99
03 96
04 95
05 94
06 93
07 92
08 90
D9 89
010 88
011 87
012 86
013 83
014 82
015 81

ERROR# 36

FLT# 28

FLUSH# 30

3-6

Description

Oata Bus (active high). The data bus (015-00) signals are 3-state bidirectional signals
that provide the data path between the microprocessor and external memory and I/O
devices. The data bus inputs data during memory-read, I/O-read, and
interrupt-acknowledge cycles and outputs data during memory and I/O-write cycles.
Oata read operations require that specified data setup and hold times be met for correct
operation. The data bus signals float while the CPU is in a hold-acknowledge or float
state.

Coprocessor Error (active low). This input indicates that the coprocessor generated an
error during execution of an instruction. ERROR# is sampled by the microprocessor
whenever a coprocessor instruction is executed. If ERROR# is sampled active, the
processor generates exception 16 that is then serviced by the exception handling
software.

Certain coprocessor instructions do not generate an exception 16 even if ERROR# is
active. These instructions, which involve clearing coprocessor error flags and saving the
coprocessor state, are: FNINIT, FNCLEX, FNSTSW, FNSTCW, FNSTENV, FNSAVE.

ERROR# is internally connected to a pullup resistor to prevent it from floating active
when left unconnected.

Float (active low). This input forces all bidirectional and output signals to a 3-state
condition. Floating the signals allows the microprocessor signals to be driven externally
without physically removing the device from the circuit. The microprocessor must be
reset following assertion or deassertion of FLT#. It is recommended that FLT# be used
only for test purposes.

FLT# is internally connected to a pullup resistor to prevent it from floating active when
left unconnected.

Cache Flush (active low). This input invalidates (flushes) the entire cache. Use of
FLUSH# to maintain cache coherency is optional. The cache may also be invalidated
during each hold-acknowledge cycle by setting the BARB bit in the CCRO Configuration
register. The FLUSH# input is ignored following reset and can be enabled using the
FLUSH bit in the CCRO Configuration register.

FLUSH# is internally connected to a pullup resistor to prevent it from "floating active when
left unconnected.

Input/Output Signals

Table 3-2. TI486SXLC Terminal Functions (Continued)

Terminal

Name No.

HOLD 4

HLDA 3

INTR 40

Description

Hold Request (active high). This input indicates that another bus master requests
control of the local bus. The bus arbitration (HOLD, HLDA) signals allow the
microprocessor to relinquish control of its local bus when requested by another bus
master device. Once the processor has relinquished its bus (3-stated), the bus master
device can then drive the local bus signals.

After recognizing the HOLD request and completing the current bus cycle or sequence
of locked bus cycles, the microprocessor responds by floating the local bus and
asserting the hold-acknowledge (HLDA) output.

Once HLDA is asserted, the bus remains granted to the requesting bus master until
HOLD becomes inactive. When the microprocessor recognizes HOLD is inactive, it
simultaneously drives the local bus and drives HLDA inactive. External pullup resistors
may be required on some of the microprocessor 3-state outputs to ensure that they
remain inactive while in a hold-acknowledge state.

The HOLD input is not recognized while RESET is active. If HOLD is asserted while
RESET is active, RESET has priority and the microprocessor places the bus into an idle
state instead of a hold-acknowledge state. The HOLD input is also recognized during
suspend mode provided that the CLK2 input has not been stopped. HOLD is level
sensitive and must meet specified setup and hold times for correct operation.

Hold Acknowledge (active high). This output indicates that the microprocessor is in a
hold-acknowledge state and has relinquished control of its local bus. While in the
hold-acknowledge state, the microprocessor drives HLDA active and continues to drive
SUSPA#, if enabled. The other microprocessor outputs are in the high-impedance state
allowing the requesting bus master to drive these signals. If the on-chip cache can
satisfy bus requests, the microprocessor continues to operate during hold-acknowledge
states. A20M# is internally recognized during this time.

The microprocessor deactivates HLDA when the HOLD request is driven inactive. The
microprocessor stores an NMI rising edge during a hold-acknowledge state for
processing after HOLD is inactive. The FLUSH# input is also recognized during a
hold-acknowledge state. If SUSP# is asserted during a hold-acknowledge state, the
microprocessor mayor may not enter suspend mode depending on the state of the
internal execution pipeline. Table 3-3 summarizes the state of the microprocessor
signals during hold acknowledge.

Maskable Interrupt Request. This level-sensitive input causes the processor to
suspend execution of the current instruction stream and begin execution of an interrupt
service routine. The INTR input can be masked (ignored) through the Flag Word register
IF bit. When unmasked, the microprocessor responds to the INTR input by issuing two
locked interrupt-acknowledge cycles. To assure recognition of the INTR request, INTR
must remain active until the start of the first interrupt-acknowledge cycle.

T1486SXLC Microprocessor Bus Interface 3-7

Input/Output Signals

Table 3-2. TI486SXLC Terminal Functions (Continued)

Terminal

Name

KEN#

LOCK#

M/IO#

NA#

No.

29

Description

Cache Enable (active low). This input indicates that the data being returned during the
current cycle is cacheable. When KEN# is active and the microprocessor is performing
a cacheable code-fetch or memory-data-read cycle, the cycle is transformed into a
cache fill. Use of the KEN# input to control cacheability is optional. The Noncacheable
Region registers can also be used to control cacheablity. Memory addresses specified
by the Noncacheable Region registers are not cacheable regardless of the state of
KEN#. I/O accesses, locked reads, SMM address space accesses, and
interrupt-acknowledge cycles are never cached.

During cached code fetches, two contiguous read cycles are performed to completely
fill the 4-byte cache line. KEN# must be asserted during both read cycles to cause a
cache line fill. During memory data reads, the microprocessor performs as many read
cycles as necessary to supply the required data to complete the current operation. Valid
bits are maintained for each byte in the cache line and each block of four lines, thus
allowing data operands of less than four bytes to reside in the cache.

If two read cycles are performed with the same address (A23-A2), KEN# must be
asserted during both cycles to cache the data in these cycles. If the data is cached, the
microprocessor ignores the state of the byte enables (BHE# and BLE#) and all data on
the bus is cached. The KEN# input is ignored following reset and can be enabled using
the KEN bit in the CCRO Configuration register.

KEN# is internally connected to a pullup resistor to prevent it from floating active when
left unconnected.

26 LOCK (active low). This 3-state, bus-cycle-definition signal is asserted to deny access
of the CPU bus to other bus masters. The LOCK# signal may be explicitly activated
during bus operations by including the LOCK prefix on certain instructions. LOCK# is
always asserted during descriptor and page table updates, interrupt- acknowledge
sequences, and when executing the XCHG instruction. The microprocessor does not
enter the hold-acknowledge state in response to HOLD while the LOCK# output is
active.

23 Memory/IO. This 3-state, bus-cycle-definition signal is low during I/O read and write
cycles and is high during memory cycles.

6 Next Address Request (active low). This input requests address pipelining by the
system hardware. When asserted, the system indicates that it is prepared to accept
new bus-cycle definition and address signals (M/IO#, D/C#, W/R#, A23-A 1, BHE#, and
BLE#) from the microprocessor even if the current bus cycle has not been terminated
by assertion of READY#. If the microprocessor has an internal bus request pending and
the NA# input is sampled active, the next bus-cycle definition and address signals are
driven onto the bus.

NC 27,45, Make no external connection.
46

3:-8

Note: NC Terminals

Connecting or terminating (high or low) any NC terminal(s) may cause un­
predictable results or nonperformance of the microprocessor.

Input/Output Signals

Table 3-2. TI486SXLC Terminal Functions (Continued)

Terminal

Name No.

NMI 38

PEREQ 37

READY# 7

RESET 33

SMADS# 20

Description

Nonmaskable Interrupt Request. This rising-edge-sensitive input causes the processor
to suspend execution of the current instruction stream and begin execution of an NMI
interrupt service routine. The NMI interrupt service request cannot be masked by
software. Asserting NMI causes an interrupt which internally supplies interrupt vector
2h to the CPU core. External interrupt-acknowledge cycles are not necessary since the
NMI interrupt vector is supplied internally. Once NMI processing has started, no
additional NMls are processed until an IRET instruction is executed.

The microprocessor samples NMI at the beginning of each phase two (<1>2) clock period.
To assure recognition, NMI must be inactive for at least eight CLK2 periods and then be
active for at least eight CLK2 periods. Additionally, specified setup and hold times must
be met to assure recognition at a particular clock edge.

Coprocessor Request (active high). This input indicates that the coprocessor is ready
to transfer data to or from the CPU. The coprocessor can assert PEREQ in the process
of executing a coprocessor instruction. The microprocessor internally stores the current
coprocessor opcode and performs the correct data transfers to support coprocessor
operations using PEREQ to synchronize the transfer of required operands.

PEREQ is internally connected to a pulldown resistor to prevent this signal from floating
active when left unconnected.

Ready (active low). This input is generated by the system hardware to indicate that the
current bus cycle can be terminated. During a read cycle, assertion of READY# indicates
that the system hardware has presented valid data to the CPU. When READY# is
sampled active, the microprocessor latches the input data and terminates the cycle.
During a write cycle, READY# assertion indicates that the system hardware has
accepted the microprocessor output data. READY# must be asserted to terminate every
bus cycle, including halt and shutdown indication cycles.

Reset (active high). When asserted, RESET suspends all operations in progress and
places the microprocessor into a reset state. RESET is a level-sensitive synchronous
input and must meet specified setup and hold times to be properly recognized by the
microprocessor. The microprocessor begins executing instructions at physical address
location FF FFFOh approximately 400 CLK2s after RESET is driven inactive (low).

While RESET is active, the microprocessor is initialized to nonclock-doubled mode (for
the TI486SXLC2) and all other input pins, except FLT#, are ignored. The remaining
signals are initialized to their reset state during the internal processor reset sequence.
The reset signal states for the microprocessor are shown in Table 3-3.

SMM Address Strobe (active low). SMADS#, a 3-state output, is asserted instead of the
ADS# during SMM bus cycles and indicates that SMM memory is being accessed.
SMADS# floats while the CPU is in a hold-acknowledge or float state. The SMADS#
output is disabled (floated) following reset and can be enabled using the SMI bit in the
CCR1 Configuration register.

Tl486SXLC Microprocessor Bus Interface 3-9

Input/Output Signals

Table 3-2. TI486SXLC Terminal Functions (Continued)

Terminal

Name

SMI#

SUSP#

SUSPA#

Vee

3-10

No.

47

43

44

8
9
10
21
32
39
42
48
57
69
71
84
91
97

Description

System Management Interrupt (active low). This 3-state, bidirectional, level-sensitive
input/output signal is an interrupt with higher priority than the NMI interrupt. SMI# must
be active for at least four CLK2 clock periods to be recognized by the microprocessor.
After the 8M I is acknowledged, the SM 1# pin is driven low by the microprocessor for the
duration of the SMI service routine. The SMI# input is ignored following reset and can
be enabled using the SMI bit in the CCR1 Configuration register.

SMI# is internally connected to a pullup resistor to prevent it from floating active when
left unconnected.

Suspend Request (active low). This input requests the microprocessor to enter
suspend mode. After recognizing SUSP# active, the processor completes execution of
the current instruction, any pending decoded instructions, and associated bus cycles.
In addition, the microprocessor waits for the coprocessor to indicate a not-busy status
(BUSY# = 1) before entering suspend mode and asserting suspend acknowledge
(SUSPA#).

SUSP# is internally connected to a pullup resistor to prevent it from floating active when
left unconnected.

Suspend Acknowledge (active low). This output indicates that the microprocessor has
entered the suspend mode as a result of SUSP# assertion or execution of a HALT
instruction.

5-V Power Supply. All pins must be connected and used.

Input/Output Signals

Table 3-2. TI486SXLC Terminal Functions (Continued)

Terminal

Name No.

Vss 2 "
5
11
12
13
14
22
35
41
49
50
63
67
68
77
78
85
98

W/R# 25

Description

Ground Pins. All pins must be connected and used.

Write/Read. This 3-state, bus-cycle-definition signal is low during read cycles (data is
read from memory or I/O) and is high during write bus cycles (data is written to memory
or I/O).

Tl486SXLC Microprocessor Bus Interface 3-11

Input/Output Signals

3.1.2 Signal States During Reset and Hold Acknowledge

RESET is the highest priority input signal. When RESET is asserted, the mi­
croprocessor aborts any current bus cycle and establishes real-mode bus­
cycle definition with active buses. See Table 3-3 and Section 3.3, Reset Tim­
ing and Internal Clock Synchronization, page 3-17.

The hold-acknowledge state (Th) is entered in response to assertion of the
HOLD input during which the microprocessor floats all output and bidirectional
signals, except for HLDA and SUSPA#. In the hold-acknowledge state, all in­
puts except HOLD, FLUSH#, FLT#, SUSP# and RESET are ignored. See
Table 3-3 and subsection 3.4.8, Hold Acknowledge State, page 3-39. The
hold-acknowledge state provides the mechanism for an external device to ac­
quire the system bus.

Table 3-3. Signal States During Reset and Hold Acknowledge

Signal State Signal State During
Signal Name During Reset Hold Acknowledge

A20M# Ignored Input recognized

A23-A1 1 Float

ADS# Float

BHE#, BLE# 0 Float

BUSY# Initiates self test Ignored

D15-DO Float Float

D/C# Float

ERROR# Ignored Ignored

FLT# Input recognized Input recognized

FLUSH# Ignored Input recognized

HLDA 0

HOLD Ignored Input recognized

INTR Ignored Input recogn'ized

KEN# Ignored Ignored

LOCK# 1 Float

M/IO# 0 Float

NA# Ignored Ignored

NMI Ignored Input recognized

PEREQ Ignored Ignored

READY# Ignored Ignored

RESET Input recognized Input recognized

SMADS# Float Float

SMI# Ignored Input recognized

SUSP# Ignored Input recognized

SUSPA# Float Driven

W/R# 0 Float

3-12

Bus-Cycle Definition

3.2 Bus-Cycle Definition

The bus-cycle-definition signals consist of four 3-state outputs (M/IO#, D/C#,
W/R#, LOCK#) that define the type of bus-cycle operation being performed.
Table 3-4 defines the bus cycles for the possible states of these signals.
M/IO#, D/C#, and W/R# are the primary bus-cycle-definition signals and are
driven valid as ADS# (address strobe) becomes active. During nonpipelined
cycles, the LOCK# output is driven valid along with M/IO#, D/C# and W/R#.
During pipelined addressing, LOCK# is driven at the beginning of the bus
cycle, which is after ADS# becomes active for that cycle. The bus-cycle-defini­
tion signals are active low and float while the microprocessor is in a hold-ac­
knowledge or float state.

Table 3-4. Bus Cycle Types

MIl 0# D/C# W/R# LOCK# Bus Cycle Type

0 0 0 0 Interrupt acknowledge

0 0 0

0 0 1 X

0 X 0

0 0 I/O data read

0 I/O data write

0 X 0

0 0 Memory code read

0 Halt: A23-A1=2h, BHE#=1 and BLE#=O
Shutdown: A23-A1=Oh, BHE#=1 and BLE#=O

0 0 Locked memory data read

0 Memory data read

0 Locked memory data write

Memory data write

x = Don't care
- = Does not occur

3.2.1 Clock Doubling Using Software Control

The clock-doubled feature of the TI486SXLC2 is enabled/disabled using
Configuration Control register 0 (CCRO), bit 6. The following can be used for
software enabling/disabling of CKD:

Set CKD programming sequence:

mov aI, OCOh
out 22h, al
in aI, 23h
mov ah, al
or ah, 40h
mov aI, OCOh
out 22h, al
mov aI, ah
out 23h, al

;select CCRO

;read CCRO
;save in AH
iset AH<6>
iselect CCRO

iwrite CCRO

Tl486SXLC Microprocessor Bus Interface 3-13

Bus-Cycle Definition

Reset CKD programming sequence:

mov ai, OCOh
out 22h, al
in ai, 23h
mov ah, al
and ah, OBFh
mov ai, OCOh
out 22h, al
mov ai, ah
out 23h, al

iselect CCRO

iread CCRO
isave in AH
ireset AH<6>
iselect CCRO

iwrite CCRO

3.2.1.1 Entering Clock-Doubled Mode

The TI486SXLC2 microprocessors power up in the nonclock-doubled mode.
To enter the clock-doubled mode, set CLK2 to the desired frequency inside the
phase-locked loop (PLL) lock range (see Table 5-5 and Table 5-6) and issue
the set CKD programming sequence. Approximately 20 ~s after the final OUT
instruction has exited the processor pipeline, the PLL locks and the CPU
enters clock-doubled mode. Until the PLL is locked, the processor continues
to operate in the nonclock-doubled mode.

3.2.1.2 Clock-Scaling Sequence

When the processor is in clock-doubled mode and the CLK2 input is to be
scaled or stopped, the reset CKD programming sequence should be issued.
The final OUT instruction exiting the processor pipeline causes the CKD bit to
be reset and puts the processor into nonclock-doubled mode. This must occur
prior to scaling or stopping the CLK2 input in order to prevent a synchronization
errorfrom occurring. This may be ensured by issuing aJUMP instruction, such
as JMP $+2, before scaling CLK2.

To return the processor to clock-doubled mode, set CLK2 to the desired fre­
quency inside the PLL lock range and issue the set CKD programming se­
quence. Approximately 20 ~s after the final OUT instruction has exited the pro­
cessor pipeline, the PLL locks and the processor enters clock-doubled mode.

3.2.1.3 Suspend Mode

3-14

Suspend mode can be initiated when the TI486SXLC2 microprocessor is in
clock-doubled mode as long as the CLK2 input is not scaled or stopped. Sus­
pend mode does not disable the PLL; instead, changing the CLK2 frequency
causes the PLL to lose lock.

For more detailed information on entering and exiting suspend in nonclock­
doubled mode, refer to subsection 3.2.2, Power Management.

In order to get the lowest possible power state, bring the microprocessor out
of clock-doubled mode, enter the suspend mode (using software or hardware),
and stop the CLK2 input.

Bus-Cycle Definition

3.2.2 Power Management

The power-management signals allow the TI486SXLC series microproces­
sors to enter suspend mode. Suspend-mode circuitry allows the microproces­
sor to consume minimal power while maintaining the entire internal CPU state.

3.2.2.1 Suspend Request (SUSP#)

Suspend request (SUSP#) is an active-low input that requests the TI486SXLC
series microprocessors to enter suspend mode. With the TI486SXLC2 micro­
processors you should follow the procedure in subsection 3.2.1 to enter non­
clock-doubled mode prior to scaling or stopping the CLK2 input. After recog­
nizing SUSP# is active, the processor completes execution of the current
instruction, any pending decoded instructions, and associated bus cycles. In
addition, the microprocessor waits for the coprocessor to indicate a not-busy
condition (BUSY#=1) before entering suspend mode and asserting suspend
acknowledge (SUSPA#). During suspend mode, internal clocks are stopped
and only the logic associated with monitoring RESET, HOLD, and FLUSH# re­
mains active. With SUSPA# asserted, the CLK2 input to the microprocessor
can be stopped in either phase. Stopping the CLK2 input further reduces cur­
rent required by the microprocessor.

To resume operation, the CLK2 input is restarted (if stopped), followed by
deassertion of the SUSP# input. The TI486SXLC2 processors can enter
clock-doubled mode (subsection 3.2.1.1, Entering Clock-Doubled Mode) once
the CLK2 input reaches the desired frequency within the PLL lock range. The
processor then resumes instruction fetching and begins execution in the
instruction stream at the point it had stopped. The SUSP# input is level sensi­
tive and must meet specified setup and hold times to be recognized at a partic­
ular clock edge. The SUSP# input is ignored following reset and can be en­
abled using the SUSP bit in the CCRD Configuration register.

3.2.2.2 Suspend Acknowledge (SUSPA#)

The suspend acknowledge (SUSPA#) output indicates that the TI486SXLC
series microprocessor has entered the suspend mode as a result of SUSP#
assertion or execution of a HALT instruction. If SUSPA# is asserted and the
CLK2 input is switching, the microprocessor continues to recognize FLT#, RE­
SET, HOLD, and FLUSH#. In addition, the TI486SXLC2 microprocessor may
stay in clock-doubled mode while the CLK2 input is switching. If suspend mode
was entered as the result of a HALT instruction, the microprocessor also con­
tinues to monitor the NMI input and an unmasked INTR input. Detection of
INTR or NMI forces the microprocessor to exit suspend mode and begin
execution of the appropriate interrupt service routine. The CLK2 input to the
processor can be stopped after SUSPA# has been asserted to further reduce
the power requirement of the microprocessor. For this case, the TI486SXLC2
microprocessor must be brought out of clock-doubled mode prior to stopping
the CLK2 input to prevent a synchronization error. The SUSPA# output is dis­
abled (floated) following reset and can be enabled using the SUSP bit in the
CCRD Configuration register.

Tl486SXLC Microprocessor Bus Interface 3-15

Bus-Cycle Definition

Table 3-5 shows the state of the TI486SXLC series microprocessor signals
when the device is in suspend mode.

Table 3-5. Signal States During Suspend Mode

Signal State During Signal State During Halt-
Signal Name Hold Acknowledge Initiated Suspend Mode

A20M# Ignored Ignored

A23-A1

AOS#

BHE#, BLE# 0 0

BUSY# Ignored Ignored

015-00 Float Float

O/C#

ERROR# Ignored Ignored

FLT# Input recognized Input recognized

FLUSH# Input recognized Input recognized

HLOA 0 0

HOLD Input recognized Input recognized

INTR Latched Input recognized

KEN# Ignored Ignored

LOCK#

M/IO# 0 0

NA# Ignored Ignored

NMI Latched Input recognized

PEREQ Ignored Ignored

REAOY# Ignored Ignored

RESET Input recognized Input recognized

SMAOS#

SMI# Latched Input recognized

SUSP# Input recognized Ignored

SUSPA# 0 0

W/R# 0 0

3-16

Reset Timing and Internal Clock Synchronization

3.3 Reset Timing and Internal Clock Synchronization

RESET is the highest priority input signal and is capable of interrupting any
processor activity when it is asserted. When RESET is asserted, the micropro­
cessor aborts any bus cycle. Idle, hold-acknowledge, and suspend states are
also discontinued and the reset state is established. RESET is used when the
microprocessor is powered up to initialize the CPU to a known valid state and
to synchronize the internal CPU clock with external clocks. The TI486SXLC2
microprocessors are initialized to nonclock-doubled mode upon RESET going
active.

RESET must be asserted for at least 15 CLK2 periods to ensure recognition
by the microprocessor. If the self-test feature is to be invoked, RESET must
be asserted for at least 80 CLK2 periods. RESET pulses of less than 15 CLK2
periods may not have sufficient time to propagate throughout the microproces­
sor and may not be recognized. RESET pulses of less than 80 CLK2 periods
followed by a self-test request may incorrectly report a self-test failure when
no true failure exists.

Provided the RESET falling edge meets specified setup and hold times, the
internal processor clock phase is synchronized as illustrated in Figure 3-2.
The TI486SXLC internal processor clock is half the frequency of the CLK2 in­
put and each CLK2 cycle corresponds to an internal CPU clock phase (<1».
Phase two (<1>2) of the internal clock is defined to be the second rising edge of
CLK2 following the falling edge of RESET. The TI486SXLC2 internal core
clock is the same frequency as the CLK2 input and the internal bus interface
clock is half the frequency of the CLK2 input. Phase two of the internal clock
is defined to be the second rising edge of CLK2 following the falling edge of
RESET.

Figure 3-2. Internal Processor Clock Synchronization

<I> 2 or <1>1 <I> 2 or <1>1

CLK2

I
I

RESET ~ I
I

INTERNAL~
PROCESSOR

CLOCK
I I

<1>2

I I
I I
I I
I I
I I
I I

~~ __ -IV-
I I

Tl486SXLC Microprocessor Bus Interface 3-17

Reset Timing and Internal Clock Synchronization

Following the falling edge of RESET (and after self test if it was requested),
the microprocessor performs an internal initialization sequence for approxi­
mately 400 CLK2 periods. The microprocessor self-test feature is invoked if
the BUSY# input is in the active (low) state when RESET falls inactive. The
self-test sequence requires approximately (220 + 60) CLK2 periods to com­
plete. Even if the self test indicates a problem, the microprocessor attempts
to proceed with the reset sequence. Figure 3-3 illustrates the bus activity and
timing during the microprocessor reset sequence.

Figure 3-3. Bus Activity From RESET Until First Code Fetch

~ Reset .10IIII Internal .1 Cycle 1
I ~15ClK2 periods if not 1 Initialization I Nonplpelined
I going to request self test. 1 (If self test is performed, add 1 (Read)
I ~ 80 ClK2 periods before 2020 + 60* to these numbers T1 T2

I requsting self-test. I 1 2 3 ~7 ~8 ~9 (~2'~3~4;';95'
CLK2 J1IU1JlJ1J I U U WI Y U Y L

: ,------'oS \ · Approximately
RESET ---? \ I I

x?oooa
1<\>21<1>11<1>21<1>11<1>2 <\>1 <1>21<1>11<1>21

ClK \. . r-\. r1\. r1\
(Internal) \.../ ~(1 '-./ 1 "-

I ~ BUSY# ~\ High for no Self Test (see Note) \~
~ Low to Begin Self Test .~

ERROR#~~ma
BHE#'BLE#,~ I :
W/R#, M/IO#, ~ lO~ if Valid

HLDA~ " IS II I :
A23-A1 ~ 'i'; ;~ ','; IV

O/C#, ~ I High i \ Valid

lOCK# U to 30 ClK2 ~ I

ADS# ~Hi;~ ,/, "~

NA#~~ma"
READY#~~~
015-00 ~--~s------ (Floating) ----.;c,-----.;c,--i---t-

1 1

SUSPA# ~--~s------ (Floating) ----.;c,-----.;c,--I---.L-
, 1 I

Note: BUSY# should be held stable for 80 ClK2 periods before and after the ClK2 period in which RESET falling edge occurs.

3-18

Upon completion of self-test, the EAX register contains 0000 OOOOh if the
microprocessor passed its internal self test with no problems detected. Any
nonzero value in the EAX register indicates that the microprocessor is faulty.

Bus Operation and Functional Timing

3.4 Bus Operation and Functional Timing

The TI486SXLC series microprocessor communicates with the external sys­
tem through separate, parallel buses for data and address. This is commonly
called a demultiplexed address/data bus. This demultiplexed bus eliminate,s
the need for address latches required in muttiplexed address/data bus config­
urations where the address and data are presented on the same pins at differ­
ent times.

TI486SXLC series microprocessor instructions can act on memory data oper­
ands consisting of 8-bit bytes, 16-bit words, or 32-bit double words. The micro­
processor bus architecture allows for bus transfers of these operands without
restrictions on physical address alignment. Any byte boundary may require
more than one bus cycle to transfer the operand. This feature is transparent
to the programmer.

The microprocessor data bus (D15-DO) is a 16-bit-wide bidirectional bus. Th,e
microprocessor drives the data bus during write bus cycles, and the external
system hardware drives the data bus during read bus cycles. The address bus
provides a 24-bit value using 23 signals for the 23 upper-order address bits
(A23-A1), defining which 16-bit word is being accessed, and two byte-enable
signals (BHE# and BLE#) to directly indicate which of the two bytes within the
word is active.

Every bus cycle begins with the assertion of the address strobe (ADS#). ADS#
indicates that the microprocessor has issued a new address and new bus­
cycle-definition signals. A bus cycle is defined by four signals: M/IO#, W/R#,
D/C#, and LOCK#. M/IO# defines if a memory or I/O operation is occurring,
W/R# defines the cycle to be read or write, and D/C# indicates whether a data
or control cycle is in effect. LOCK# indicates that the current cycle is a locked
bus cycle. Every bus cycle completes when the system hardware returns
READY# asserted.

The TI486SXLC series microprocessor performs the following bus-cycle
types:
o Memory read
o Locked memory read
o Memory write
o Locked memory write
o I/O read (or coprocessor read)
o I/O write (or coprocessor write)
o Interrupt acknowledge (always locked)
o HalVshutdown

When the microprocessor has no pending bus requests, the bus enters the idle
state. There is no encoding of the idle state on the bus-cycle-definition signals;
however, the idle state can be identified by the absence of further assertions
of ADS# following a completed bus cycle.

It should be noted that all bus diagrams apply for all TI486SXLC series micro­
processors. The TI486SXLC2 clock-doubled feature does not change the ex­
ternal microprocessor bus interface.

T1486SXLC Microprocessor Bus Interface 3-19

Bus Operation and Functional Timing

3.4.1 Bus Cycles Using Nonpipelined Addressing

The shortest time unit of bus activity is a bus state, commonly called a T state.
A bus state is one internal processor clock period in duration (two CLK2 peri­
ods in nonclock-doubled mode and one CLK2 period in clock-doubled mode).
A complete data transfer occurs during a bus cycle, composed of two or more
bus states.

3.4.1.1 Nonpipelined Bus States

The first state of a nonpipelined bus cycle is called T1. During phase one (<1>1,
first CLK2) of T1, the address bus and bus-cycle-definition signals are driven
valid and,to signal their availability, address strobe (ADS#) is simultaneously
asserted.

The second bus state of a nonpipelined cycle is called T2. T2 terminates a bus
cycle with the assertion of the READY# input and valid data is either input or
output depending on the bus-cycle type. The fastest microprocessor bus cycle
requires only these two bus states. READY# is ignored at the end of the T1
state.

Three consecutive bus read cycles, each consisting of two bus states, are
shown in Figure 3-4.

Figure 3-4. Fastest Nonpipelined Read Cycles

~
Cycle 1 I Cycle 2 Cycle 3

Nonpipelined ~~ Nonpipelined Nonpipelined

I (Read) I (Read) (Read)

I T1 I T2 I T1 I T2 I
I <1> 1 I <1>2 I <1> 1 I <1>2 I <1>"1 I <1>2 I <1> 1 I <1>2 I

CLK2

I I I I I I I
A23-A1, BHE#,

~ +d1 ~ V~lid2 ~ +id3 ~ BLE#, M/IO#,
O/C#, W/R#

I I I I I I I

AOS# ~ V ~ :1 l\ :1 l'--I I I I I I
NA#

I I I I I I I
I I I I I I I
I I I I I I I
I I I I I I I
I I I I I I I

REAOY# I I I I I I I
I I I
I I I

LOCK# ~ +id1 ~ +id2 ~ ~alid3 ~
015-00 ~--t--~--t--~--t--~ (Input During Read)

I I I I I I I
Note: Fastest nonpipelined bus cycles consist of T1 and T2.

3-20

Bus Operation and Functional Timing

3.4.1.2 Nonpipelined Read and Write Cycles

Any bus cycle can be performed with nonpipelined address timing. Figure 3-5
shows a mixture of read and write cycles with nonpipelined address timing.
When a read cycle is performed, the microprocessor floats its data bus and the
externally addressed device then drives the data. The microprocessor re­
quires that all data-bus pins be driven to a valid logic state (high or low) at the
end of each read cycle, when READY# is asserted. When a read cycle is ac­
knowledged by READY# asserted in the T2 bus state, the microprocessor
latches the information present at its data-bus pins and terminates the cycle.

When a write cycle is performed, the data bus is driven by the microprocessor
beginning in phase two of T1. When a write cycle is acknowledged, the write
data remains valid throughout phase one of the next bus state to provide write­
data hold time.

Figure 3-5. Various Nonpipelined Bus Cycles (No Wait States)
, ,

Cycle 1
,

Cycle 2
,

Cycle 3
, ,

Cycle 4
,

, Idle , Nonpipelined , Nonpipelined , Nonpipelined , Idle , Nonpipelined , Idle
, , (Write) , (Read) , (Write) , , (Read) ,
, t4 ~ ~ ., t4 .,
,

Ti
,

T1 T2
,

T1 T2
,

T1 T2
,

Ti
,

T1 T2
,

Ti

CLK2
, , I , I ,

I
,

I
,

A23-A1.~
BHE#, BLE#, ==
M/IO#, D/C#

V~lid 1 ~ Vflid2 ~ V~lid3 ~ V~lid4 ~
I I , I I I I I I I I

W/R#~ I ~ I V I

~
I -I I I I

I I I I I I I
I I I I

ADS# I I I I I I I

NA#

REAOY#~i _: _:.-: 9h
+ +. •

_ ! End Cycle 1 i End Cycle 2 : End CY~ ! End Cycle 4

LOCK# Valid 1 X Valid 2 ~ Valid 3 Valid 4 ~
I i

015- 00 1---+-< : O~1: >1--$\: out~ >+--1--<$)---
Note: Idle states are shown here for diagram variety only.

Tl486SXLC Microprocessor Bus Interface 3-21

Bus Operation and Functional Timing

3.4. 1.3 Nonpipelined Wait States

Once a bus cycle begins, it continues until acknowledged by the external sys­
tem hardware using the READY# input. Acknowledging the bus cycle at the
end of the first T2 results in the shortest possible bus cycle, requiring only T1
and T2. If READY# is not immediately asserted however, T2 states are re­
peated indefinitely until the READY# input is sampled active. These intermedi­
ate T2 states are referred to as wait states. If the external system hardware
is not able to receive or deliver data in two bus states, it withholds the READY#
signal and at least one wait state is added to the bus cycle. Thus, on an ad­
dress-by-address basis the system is able to define how fast a bus cycle com­
pletes.

Figure 3-6 illustrates nonpipelined bus cycles with one wait state added to
cycles 2 and 3. READY# is sampled inactive at the end of the first T2 state in
cycles 2 and 3. Therefore, the T2 state is repeated until READY# is sampled
active at the end of the second T2 and the cycle is then terminated. The micro­
processor ignores the READY# input at the end of the T1 state.

Figure 3-6. Various Nonpipelined Bus Cycles With Different Numbers of Wait States

I I Cycle 1 I Cycle 2 I I Cycle 3 I
I Idle I Nonpipelined I Nonpipelined I Idle I Nonpipelined I Idle

: ~ (Read) ~ (Write) ~ ~ (Read) ~

I Ti I T1 T2 I .. T1 T2 T2 I Ti I T1 T2 T2 I Ti

CLK2

I I I I I I I I I

B~~:~~~~ ~~~~~~ ___ va~;li_d_1 __ ~~~ __ ~ __ va_li_d~2: ____ -+~~~~~ __ ~: __ v_al_id~~~ __ ~~~~

~ : V: I ~I::~
W/R#I. I_I I ~

I I I I I I
I I ~~----~---

AOS# I I '----J I I I I I I

NA#~ __ ~
READY#~: ~ i \%l~!~: I!llt
~+ ~ I ; ~ I •

_~ I; End Cycle 1 I: : End CY~~ :1 ! End Cycle 3
LOCK# ~ V~lid 1 X ,valid 2, ~ ,Valid ~ _

i ~

015-00 -.,---+----+- In 1 < Out 2 }-I---+---+- In 3 -i I i-$: : : iii-$-iii iii
Note: Idle states are shown here for diagram variety only,

3-22

Bus Operation and Functional Timing

3.4.1.4 Initiating and Maintaining Nonpipelined Cycles

The bus states and transitions for nonpipelined addressing are illustrated in
Figure 3-7. The bus transitions between four possible states: T1, T2, Ti, and
Th. Active bus cycles consist of T1 and T2 states, with T2 being repeated for
wait states. Bus cycles always begin with a single T1 state. T1 is always fol­
lowed by a T2 state. If a bus cycle is not acknowledged during a given T2 and
NA# is inactive, T2 is repeated resulting in a wait state. When a cycle is ac­
knowledged during T2, the following state is T1 of the next bus cycle if a bus
request is pending internally. If no internal bus request is pending, the Ti state
is entered. If the HOLD input is asserted and the microprocessor is ready to
enter the hold-acknowledge state, the Th state is entered.

Figure 3-7. Nonpipelined Bus States

HOLD Asserted

Bus States:

HOLD Negated
No Request

HOLD Asserted

READY# Asserted
HOLD Negated

No Request

Request Pending
HOLD Negated

READY# Asserted
HOLD Asserted

Always

READY# Asserted
HOLD Negated

Request Pending

T1 - First clock of a nonpipelined bus cycle (CPU drives new address and asserts ADS#)
T2 - Subsequent clocks of a bus cycle when NA# has not been sampled asserted in the current bus cycle
Ti - Idle state
Th - Hold acknowledge (CPU asserts HLDA)

The fastest bus cycle consists of two states: T1 and T2.

Tl486SXLC Microprocessor Bus Interface 3-23

Bus Operation and Functional Timing

Because of the demultiplexed nature of the bus, the address pipelining option
provides a mechanism for the external hardware to have an additional T state
of access time without inserting a wait state. After the reset sequence and fol­
lowing any idle bus state, the processor always uses nonpipelined address
timing. Pipelined or nonpipelined address timing is then determined on a
cycle-by-cycle basis using the NA# input. When address pipelining is not used,
the address and bus-cycle definition remain valid during all wait states. When
wait states are added and nonpipelined address timing is necessary, negate
NA# during each T2 state of the bus cycle except the last one.

3.4.2 Bus Cycles Using Pipelined Addressing

The address pipelining option allows the system to request the address and
bus-cycle definition of the next internally pending bus cycle before the current
bus cycle is acknowledged with READY# asserted. If address pipelining is
used, the external system hardware has an extra T state of access time to
transfer data. The address pipelining option is controlled on a cycle-by-cycle
basis by the state of the NA# input.

3.4.2.1 Pipelined Bus States

3-24

Pipelined addressing is always initiated by asserting NA# during a nonpipe­
lined bus cycle. Within the nonpipelined bus cycle, NA# is sampled at the be­
ginning of phase two of each T2 state and is only acknowledged by the micro­
processor during wait states. When address pipelining is acknowledged, the
address (BHE#, BLE#, and A23-A 1) and bus-cycle definition (W/R#, D/C#,
and M/IO#) of the next bus cycle are driven before the end of the nonpipelined
cycle. The address status output (ADS#) is asserted simultaneously to indi­
cate validity of these signals. Once in effect, address pipelining is maintained
in successive bus cycles by continuing to assert NA# during the pipelined bus
cycles.

As in nonpipelined bus cycles, the fastest bus cycles using pipelined address
require only two bus states. Figure 3-8 illustrates the fastest read cycles using
pipelined address timing. The two bus states for pipelined addressing are T1 P
and T2P or T1 P and T21. The T1 P state is entered following completion of the
bus cycle in which the pipelined address and bus-cycle-definition information
was made available and is the first bus state of every pipelined bus cycle. In
other words, the T1 P state follows a T2 state if the previous cycle was nonpipe­
lined, and follows a T2P state if the previous cycle was pipelined.

Bus Operation and Functional Timing

Figure 3-8. Fastest Pipelined Read Cycles

I

~

CLK2

Cycle 1
Pipelined
(Read)

Cycle 2
Pipelined
(Read)

Cycle 3
Pipelined
(Read)

A23-A1,BHE#, --~------~~----~------~~----~------~~------~---
BLE#, M/IO#,

O/C#, W/R# --..------_r-~----...,..------~...Jo..----_.,..------~~------....._---

AOS#

NA# I
I
I

R~O~ I

I

LOCK# ~ ~alid 1 ~ ~alid 2 ~ ~alid 3 ~
015-00 ~ __ 1, __ ~ __ 1, __ ~ __ I, __ ~

(InputOuringRead) ~ ~ ~ ~
I , I , I , I

Note: Fastest pipelined bus cycles consist of T1 P and T2P.

Within the pipelined bus cycle, NA# is sampled at the beginning of phase two
(<1>2) of the T1 P state. If the microprocessor has an internally pending bus re­
quest and NA# is asserted, the T1 P state is followed by a T2P state and the
address and bus-cycle definition for the next pending bus request is made
available. If no pending bus request exists, the T1 P state is followed by a T21
state regardless of the state of NA# and no new address or bus-cycle informa­
tion is driven.

The pipelined bus cycle is terminated in either the T2P or T21 states with the
assertion of the READY# input and valid data is either input or output depend­
ing on the bus cycle type. READY# is ignored at the end of the T1 P state.

3.4.2.2 Pipelined Read and Write Cycles

Any bus cycle can be performed with pipelined address timing. When a read
cycle is performed, the microprocessor floats its data bus and the externally
addressed device drives the data. When a read cycle is acknowledged by
READY# asserted in either the T2P or T21 bus state, the microprocessor
latches the information present at its data pins and terminates the cycle.

When a write cycle is performed, the data bus is driven by the microprocessor
beginning in phase two (<1>2) of T1 P. When a write cycle is acknowledged, the

Tl486SXLC Microprocessor Bus Interface 3-25

Bus Operation and Functional Timing

write data remains valid throughout phase one (<PI) of the next bus state to pro­
vide write-data hold time.

3.4.2.3 Pipelined Wait States

Once a pipelined bus cycle begins, it continues until acknowledged by the ex­
ternal system hardware using the microprocessor READY# input. Acknowl­
edging the bus cycle at the end of the first T2P or T21 state results in the short­
est possible pipelined bus cycle. If READY# is not immediately asserted, how­
ever, T2P or T21 states are repeated indefinitely until the READY# input is
sampled active. Additional T2P or T21 states are referred to as wait states.

Figure 3-9 illustrates pipelined bus cycles with one wait state added to cycles
1 through 3. Cycle 1 is a pipelined cycle with NA# asserted during T1 P and a
pending bus request. READY# is sampled inactive at the end of the first T2P
state in cycle 1 . Therefore, the T2P state is repeated until READY# is sampled
active at the end of the second T2P and the cycle is then terminated. The mi­
croprocessor ignores the READY# input at the end of the T1 P state. ADS#,
the address, and the bus-cycle-definition signals for the pending bus cycle are
all valid during each of the T2P states. Also, asserting NA more than once dur­
ing the cycle has no additional effects. Pipelined addressing can only output
information for the next bus cycle.

Cycle 2 in Figure 3-9 illustrates a pipelined cycle, with one wait state, where
NA# is not asserted until the second bus state in the cycle. In this case, the
CPU enters the T2 state following T1 P because NA# is not asserted. During
the T2 state the microprocessor samples NA# asserted. Because a bus re­
quest is pending internally, and READY# is not active, the CPU enters the T2P
state and asserts ADS#, a valid address, and bus-cycle-definition information
for the pending bus cycle. The cycle is then terminated by an active READY#
at the end of the T2P state.

Cycle 3 of Figure 3-9 illustrates the case where no internal bus request exists
until the last state of a pipelined cycle with wait states. In cycle 3, NA# is as­
serted in T1 P, requesting the next address. Because the CPU does not have
an internal bus request pending, The T21 state is entered. However, by the end
of the T21 state, a bus request exists. Because READY# is not asserted, a wait
state is added. The CPU then enters the T2P state and asserts ADS#, a valid
address, and bus-cycle-definition information for the pending bus cycle. As
long as the CPU enters the T2P state at some point during the bus cycle, pipe­
lined addressing is maintained. NA# needs to be asserted only once during the
bus cycle to request pipelined addressing.

Bus Operation and Functional Timing

Figure 3-9. Various Pipelined Cycles (One Wait State)

CLK2

A23-A1,
BHE#,
BLE#,

M/IO#,
O/C#

W/R#

AOS#

NA#

REAOY#

LOCK#

015-00

I~
Cycle 1

.I~
Cycle 2

~~ Pipelined Pipelined
(Write) I (Read) I

I I
T2P I T2P I

I I I

Cycle 3 Cycle 4
~~ Pipelined Pipelined
I (Write) (Read)

I
T21 T2P I

I I I
~ I r r
~ AOS# is asserted as soon

as the CPU has another
bus cycle to perform,
which is not always
immediately after NA# is
asserte .

I
I I I I

As long as the CPU enters the T2P
state during cycle 3, address pipelining
is maintained in cycle 4.

I I I I I I
Asserting NA# more than NA# could have been asserted in
once during any cycle has I T1 P if desired. Assertion now is I
no additional effects. I the latest time possible to allow I

I I I the CPU to enter T2P state to I
I I I I mainfain pipeli~ing in cyc!e 3. I I

~ i ~!. i , ! A0$w ~'WQ~ez$~~
~ : Valid 1: ~ : Valid 2: ~ : valid~ ~ valid~
tU1 X: OU1:l I r--r--+--$-<: ~Ut3: ~-

I
I I I I I I I

TI486SXLC Microprocessor Bus Interface 3-27

Bus Operation and Functional Timing

3.4.2.4 Initiating and Maintaining Pipelined Cycles

Pipelined addressing is always initiated by asserting NA# during a nonpipe­
lined bus cycle with at least one wait state. The first bus cycle following reset,
an idle bus, or a hold-acknowledge state is always nonpipelined. Therefore,
the microprocessor always issues at least one nonpipelined bus cycle follow­
ing reset, idle, or hold acknowledge before pipelined addressing takes effect.

Once a bus cycle is in progress and the current address has been valid for one
entire bus state, the NA# input is sampled at the end of every phase one until
the bus cycle is acknowledged. Once NA# is sampled active, the microproces­
sor is free to drive a new address and bus-cycle definition on the bus as early
as the next bus state and as late as the last bus state in the cycle.

Figure 3-10 illustrates the fastest transition possible to pipelined addressing
following an idle bus state. In cycle 1, NA# is driven during state T2. Thus,
cycle 1 makes the transition to pipelined address timing, since it begins with
T1 but ends with T2P. Because the address for cycle 2 is available before cycle
2 begins, cycle 2 is called a pipelined bus cycle, and it begins with a T1 P state.
Cycle 2 begins as soon as READY# assertion terminates cycle 1 .

Figure 3-10. Fastest Transition to Pipelined Address Following Idle Bus State

Idle 1
Cycle 1

1
Cycle 2

1
Cycle 3

1
Cycle 4

1 Nonpipelined Pipelined Pipelined Pipelined Idle
1 (Write) 1 (Read) 1 (Write) 1 (Read) 1

"1l1li "1l1li "1l1li "1l1li .. ~
1 I I 1 I 1 I 1 I I I
I T1 I T2 I T2P I T1P I T2P 1 T1P I T2P 1 T1P I T21 I T21 1 Ti Ti

CLK2

A23-A1 ~
BHE#, BLE#;
M/IO#, D/C# ~~~~---r"--~~-'-----"'~-""'--~~--""--~~~~~~~~

W/R# ~~~'-1-71 '----,----!---r

ADS#

Note: Following any idle bus state (Ti) the address is always nonpipelined and NA# is sampled only during wait states. To start
address pipelining after an idle state requires a nonpipelined cycle with at least one wait state (cycle 1 above). The pipe­
lined cycles (2, 3, and 4 above) are shown with various numbers of wait states.

3-28

Bus Operation and Functional Timing

Figure 3-11 illustrates transitioning to pipelined addressing during a burst of
bus cycles. Cycle 2 makes the transition to pipelined addressing. Comparing
cycle 2 to cycle 1 of Figure 3-10 (on page 3-28) illustrates that a transition
cycle is the same when it occurs and consists of at least T1, T2 (NA# is as­
serted at that time), and T2P (provided the microprocessor has an internal bus
request already pending). T2P states are repeated if wait states are added to
the cycle. Cycles 2, 3, and 4 in Figure 3-11 show that once address pipelining
is achieved it can be maintained with two-state bus cycles consisting only of
T1P and T2P.

Once a pipelined bus cycle is in progress, pipelined timing is maintained for
the next cycle by asserting NA# and detecting that the microprocessor enters
T2P during the current bus cycle. The current bus cycle must end in state T2P
for pipelining to be maintained in the next cycle. T2P is identified by the asser­
tion of ADS#. Figure 3-10 and Figure 3-11 each show pipelining ending after
cycle 4. This occurs because the microprocessor does not have an internal
bus request prior to the acknowledgment of cycle 4.

Figure 3-11. Transitioning to Pipelined Address During Burst of Bus Cycles

I I Cycle 1 I Cycle 2 I Cycle 3 I Cycle 4 I
I Idle I Nonpipelined I Nonpipelined I Pipelined I Pipelined I Idle
I -'= (Write) I (Read) I. (Write) I (Read) .J ...
�----·,..-------~·~14.-----------~·"r~------~·~~~------~r~I~~~

I Ti I T1 T2 I T1 : T2P I T1 P : T2P I T1 P I Ti

CLK2

A23-A1,. : BHE#,~~~~~~--------~P7---------P~--~----~--~----~~~~~~
BLE#, X

M/IO#, ~~~~---.....,.---~---r---~---"--~!---r----+~~~~~
O/C# I I

I I

AOS#

READY# __ :_:~: .: .: ~
LOCK# • V~lid 1 ~ : Valid 2: ~ V+d 3 ~ V+d 4 ~

I I I : I I r.::S: I I _6 I
015-00 i---i-< I Out1 >-i--i-~< Out 3 I >-t-~i

Note: Following any idle bus state (Ti), addresses are nonpipelined bus cycles, NA# is sampled only during wait states. There­
fore, to begin address pipelining during a group of nonpipelined bus cycles requires a nonpipelined cycle with at least one
wait state (cycle 2 above).

Tl486SXLC Microprocessor Bus Interface 3-29

Bus Operation and Functional Timing

The complete bus-state-transition diagram, including operation with pipelined
address, is given in Figure 3-12. This is a superset of the diagram for nonpipe­
lined address. The three additional bus states for pipelined address are
shaded.

Figure 3-12. Complete Bus States

HOLD Asserted

Request Pending.
HOLD Negated

READY# Asserted.
HOLD Negated.

No Request

Bus States:

HOLD Asserted

READY# Asserted.
HOLD Asserted

READY# Asserted.
HOLD Asserted

HOLD Negated.
Request Pending

_-r- READY# Asserted.
HOLD Negated.

No Request

READY# Asserted.
HOLD Negated.
Request Pending

READY# Asserted.
HOLD Negated.
Request Pending

NA# Asserted •
(HOLD Asserted +

No Request)

I
(No Request + I

HOLD Asserted) • I
NA# Asserted •

READY# Negated I
I I
I I
NA# Negatedl

READY# Negated.
NA# Asserted •
HOLD Negated

Request Pending

READY# Negated
Request Pending
HOLD Asserted

READY# Negated

NA# Asserted •
HOLD Negated.
Request Pending

READY# Asserted

T1 - First clock of a nonpipelined bus cycle (CPU drives new address and asserts ADS#)
T2 - Subsequent clocks of a bus cycle when NA# has not been sampled asserted in the current bus cycle
T21 - Subsequent clocks of a bus cycle when NA# has been sampled asserted in the current bus cycle but there

is not yet an internal bus request pending (CPU does not drive a new address or assert ADS#)
T2P - Subsequent clocks of a bus cycle when NA# has been sampled asserted in the current bus cycle and

there is an internal bus request pending (CPU drives new address and asserts ADS#)
T1 P - First clock of a pipelined bus cycle
Ti - Idle state
Th - Hold acknowledge state (CPU asserts HLDA)

3-30

Bus Operation and Functional Timing

3.4.3 Locked Bus Cycles

When the LOCK# signal is asserted, the TI486SXLC series microprocessors
do not allow other bus master devices to gain control of the system bus.
LOCK# is driven active in response to executing certain instructions with the
LOCK prefix. The LOCK prefix allows indivisible read/modify/write operations
on memory operands. LOCK# is also active during interrupt-acknowledge
cycles.

LOCK# is activated on the CLK2 edge that begins the first locked bus cycle
and is deactivated when READY# is returned at the end of the last locked bus
cycle. When using nonpipelined addressing, LOCK# is asserted during
phase one (<PI) of T1. When using pipelined addressing, LOCK# is driven valid
during phase one of T1 P.

Figure 3-4 through Figure 3-6 on pages 3-20 through 3-22 illustrate LOCK#
timing during nonpipelined cycles and Figure 3-8 through Figure 3-11 on
pages 3-25 through 3-29 cover the pipelined-address case.

3.4.4 Interrupt-Acknowledge Cycles

The TI486SXLC series microprocessors are interrupted by an external source
via an input request on the INTR input (when interrupts are enabled). The mi­
croprocessor responds with two locked interrupt-acknowledge cycles. These
bus cycles are similar to read cycles. Each cycle is terminated by READY#
sampled active as shown in Figure 3-13.

Tl486SXLC Microprocessor Bus Interface 3-31

Bus Operation and Functional Timing

Figure 3-13. Interrupt-Acknowledge Cycles

AOS#

Interrupt
Acknowledge

Cycle 1

Idle
(4 Bus States)

Interrupt
Acknowledge

Cycle 2
I Idle
I

·14

I T2 :

Note: Interrupt vector (0-255) is read on 07-00 at end of second interrupt-acknowledge bus cycle. Because each interrupt­
acknowledge bus cycle is followed by idle bus states, asserting NA# has no practical effect.

3-32

The state of the A2 pin distinguishes the first and second interrupt-acknowl­
edge cycles. The address driven during the first interrupt-acknowledge cycle
is 4h (A23-A3, A1, BLE#=O; A2, BHE#=1). The address driven during the se.,
cond interrupt-acknowledge cycle is Oh (A23-A 1, BLE#=O; BHE#=1).

To assure that the interrupt-acknowledge cycles are executed indivisibly, the
LOCK# output is asserted from the beginning of the first interrupt-acknowl­
edge cycle until the end of the second interrupt-acknowledge cycle. In clock­
doubled mode, four idle bus states (Ti) are inserted by the microprocessor
between the two interrupt-acknowledge cycles. In nonclock-doubled mode,
eight idle bus states are inserted.

The interrupt vector is read at the end of the second interrupt cycle. The vector
is read by the microprocessor from 07-00 of the data bus. The vector
indicates the specific interrupt number (from 0-255) requiring service.
Throughout the balance of the two interrupt cycles, 015-00 float. At the end
of the first interrupt-acknowledge cycle, any data presented to the micropro­
cessor is ignored.

Bus Operation and Functional Timing

3.4.5 Halt and Shutdown Cycles

Executing the HLT instruction or detecting a severe error causes the micropro­
cessor to either halt operation or shutdown further processing. When halt or
shutdown occurs the microprocessor signals the condition through a halt- or
shutdown-indication cycle.

3.4.5.1 Halt Indication Cycle

Executing the HLT instruction causes the microprocessor execution unit to
cease operation. Signaling its entrance into the halt state, a halt indication
cycle is performed. The halt indication cycle is identified by the state ofthe bus­
cycle-definition signals (M/IO#=1, D/C#=O, W/R#=1, LOCK#=1) and an ad­
dress of 2h (A23-A2=O, A 1 =1, BHE#=1, BLE#=O). The halt indication cycle
must be acknowledged by asserting READY#. A halted microprocessor re­
sumes execution when INTR (if interrupts are enabled), NMI, or RESET is as­
serted. Figure 3-14 illustrates a nonpipelined halt cycle.

T1486SXLC Microprocessor Bus Interface 3-33

Bus Operation and Functional Timing

Figure 3-14. Nonpipelined Halt Cycle

3-34

1 Cycle 1 1

1 Nonpipelined 1

1 (Write)
1

1II1II .1II1II
1

1
1 T1 T2 1
1

CLK2

Cycle 2 1

Nonpipelined 1
(Halt)

1

~11111
1

T1 T2 1

Idle

Ti Ti Ti Ti

1

1

1

~

AI'~~ ~ +dl (i ~
.II

CPU remains halted I
untillNTR, NMI, or 1

~~.-~~~~ RESET is ~sserted. I

A2~~~ ~ +dl ~ i
I I I

ADS# 1\ V i\ :1
I I I r I I I I I

NA#

READY# i~i~i~
1 1 1 I~ I 1 1 1

: 1 : 1 ill I I
I I I Halt cycle must be acknowledged by 1 1 I

I 1 I asserting READY# . Wait states may be I I I
I added to the cycle if desired. 1 1 1

LOCK# ~ vruif I ~ !

: : : : : I. I I I DIS-DO Out X: Out I X Undefined >--r (Floating) t---i---l
I I 1 1 1 I

Bus Operation and Functional Timing

3.4.5.2 Shutdown Indication Cycle

Figure 3-15.

CLK2

Shutdown occurs when a severe error is detected that prevents further proces­
sing. The TI486SXLC series microprocessor shuts down as a result of a
protection fault while attempting to process a double fault as well as the condi­
tions referenced in Chapter 2, Programming Interface. A shutdown indication
cycle is performed signaling its entrance into the shutdown state. The shut­
down indication cycle is identified by the state of the bus-cycle-definition sig­
nals (M/IO#=1, D/C#=O, W/R#=1, LOCK#=1) and an address of Oh
(A23-A 1 =0, BHE#=1 , BLE#=O). The shutdown indication cycle must be ac­
knowledged by asserting READY#. A shutdown microprocessor resumes
execution only when NM lor RESET is asserted. Figure 3-15 illustrates a shut­
down cycle using pipelined addressing.

Pipelined Shutdown Cycle

1 Cycle 1 I
1 Pipelined ,
1 (Read) I
I, ...
1 I
1 T1P T2P ,
1

Cycle 2 I
Pipelined I

(Shutdown) I
~
I

T1P T2P ,

Idle

Ti Ti Ti Ti

1
1

1

~

BHE# , 1 CPU remains :7 11~" M/IO# Valid 1 1 shutdown until NMI, or
W/R# --r----f BLE# is IIOW for 1 I RESET is a~serted. 1

: :

Shutdown cycle ~II
A23-A1,&.---'""\ 1

BLE#, Valid 1
D~# --r·-----~~----~I------~~~~~~~~~~~~~~~~~~~

-+,I __ -t,l II !I ,I I, I, !, I,

ADS#I i\ V 1 I I I I I
I I 1 1 I I I I I

NA#~ ~
~i~i ___

1 i 1 til 1 1

READY#

1 I I I I I 1 1
1 Shutdown cycle must be acknowledged by asserting READY#. 1 1

1 Wait states may be added to th,e cycle if desired. 1 1

1 I 1 1

vali~1 (~
D1S-DO ~-t--~-< I: undefin~)--~ (Floating) t---+---~
~I~ ill 1 1

LOCK#

I 1 I I I , 1 , ,

Tl486SXLC Microprocessor Bus Interface 3-35

Bus Operation and Functional Timing

3.4.6 Internal Cache Interface

3.4.6.1 Cache Fills

The TI486SXLC cache is an 8K-byte write-through unified instruction/data
cache with lines that are allocated only during memory read cycles. The cache
is configured as two-way set associative, and the cache organization consists
of 1024 sets each containing two lines of four bytes each.

Any unlocked memory-read cycle can be cached by the TI486SXLC series mi­
croprocessor. The microprocessor does not cache accesses automatically to
memory addresses specified by the Noncacheable-Region registers. Addi­
tionally, the KEN# input can be used to enable caching of memory accesses
on a cycle-by-cycle basis. The microprocessor acknowledges the KEN# input
only if the KEN enable bit is set in the CCRO Configuration register.

As shown in Figure 3-16 and Figure 3-17, the microprocessor samples the
KEN# input one CLK2 before READY# is sampled active. If KEN# is asserted
and the current address is not set as noncacheable per the Noncacheable-Re­
gion registers, the microprocessor fills two bytes of a line in the cache with the
data present on the data bus pins. The states of BHE# and BLE# are ignored
if KEN# is asserted for the cycle.

Figure 3-16. Nonpipelined Cache Fills Using KEN# (With Different Numbers of Wait States)

3-36

CLK2

A23-A1, BHE#,
BLE#,

O/C#, M/IO#, W/R#

AOS#

NA#

KEN#

REAOY#

LOCK#

015-00
(Input Ouring Read)

I

~

I

~
I

i\
I
I
I
I
I

Cycle 1
Nonpipelined

(Read-Cache Fill)

I

+id1

I

V
I
I
I
I
I

~
I
I
I
I

~ +d1

I

~
I

i\
I
I
I

Cycle 2
Nonpipelined

(Read-Cache Fill)

I

Valid2 :

I I

V I
I

I I
I I
I I
I I I

I I I

--I I I
I
I I

I

~ Valid2 :

I

• I
I
I
I
I
I
I
I
I

~
I
I

• ~ __ l __ ~ __ L ___ J __ ~_J
I I I I

I I I I I I I

Bus Operation and Functional Timing

Figure 3-17. Pipelined Cache Fills Using KEN# (With Different Numbers of Wait States)

CLK2

A23-A1, BHE#,
BLE#,O/C#, Valid 1 Valid 2 Valid 3

M/IO#, W/R# -"'---~~"""--.,...----..,.----!l-~--........ -------
AOS#

NA#

KEN#

REAOY#

LOCK#

015-00
(Input During Read)

X Valid 1 X Valid 2 X Valid 3

3.4.6.2 Flushing the Cache

To maintain cache coherency with external memory, the TI486SXLC series mi­
croprocessor cache contents should be invalidated when previously cached
data is modified in external memory by another bus master. The microproces­
sor invalidates the internal cache contents during execution of the INVD and
WBINVD instructions following assertion of HLDA if the BARB bit is set in the
CCRD Configuration register or following assertion of FLUSH# if the FLUSH
bit is set in CCRD.

The microprocessor samples the FLUSH# input on the rising edge of CLK2
corresponding to the beginning of phase two (<1>2) of the internal processor
clock. If FLUSH# is asserted, the microprocessor invalidates the entire con­
tents of the internal cache. The actual point in time where the cache is invali­
dated depends upon the internal state of the execution pipeline. FLUSH# must
be asserted for at least two CLK2 periods and must meet specified setup and
hold times to be recognized on a specific CLK2 edge.

Tl486SXLC Microprocessor Bus Interface 3-37

Bus Operation and Functional Timing

3.4.7 Address Bit-20 Masking

The TI486SXLC series microprocessor can be forced to provide 8086 1 M-byte
address wraparound compatibility by setting the A20 bit in the CCRO Configu­
ration register and asserting the A20M# input. When the A20M# is asserted,
the 20th bit in the address to both the internal cache and the external bus pin
is masked (zeroed).

As shown in Figure 3-18, the microprocessor samples the A20M# input on the
rising edge of CLK2 corresponding to the beginning of phase two (<1>2) of the
internal processor clock. If A20M# is asserted and paging is not enabled, the
microprocessor masks the A20 signal internally starting with the next cache
access and externally starting with the next bus cycle. If paging is enabled, the
A20 signal is not masked regardless of the state of A20M#. A20 remains
masked until the access following detection of an inactive state on the A20M#
pin. A20M# must be asserted for a minimum of two CLK2 periods and must
meet specified setup and hold times to be recognized on a specific CLK2 edge.

Figure 3-18. Masking A20 Using A20M# During Burst of Bus Cycles

1
Idle 1

.14
1

Ti 1

CLK2

1 1

A19-A1'~
A23-A21,

BHE#, BLE#,
M/IO#, D/C#

Cycle 1 1 Cycle 2
Nonpipelined 1 Nonpipelined

(Write) .14 (Read)

1

T1 T2 1 T1 T2

1 1 1 I

V~lid1 ~ +d2 ~
I 1

W/R# m~~'-l--l' '-_--+-1 --..if

ADS#

A20M#

3-38

1 Cycle 3 1 Cycle 4 1
1 Pipelined 1 Pipelined 1 Idle

.~
(Write) .. 14 (Write) .I~

1 1

T2P 1 T1P T2P 1 T1P T21 1 Ti

I 1

~ +id4

Bus Operation and Functional Timing

An alternative to using the A20M# pin is provided by the NCO bit in the CCRO
Configuration register. The microprocessor does not automatically cache
accesses to the first 64K bytes and to 1 M byte + .64K bytes if the NCO bit is set.
This prevents data within the wraparound memory area from residing in the
internal cache and eliminates the need for masking A20 to the internal cache.

3.4.8 Hold-Acknowledge State

The hold-acknowledge state provides the mechanism for an external device
in a TI486SXLC microprocessor system to acquire the system bus while the
microprocessor is held in an inactive bus state. This allows external bus
masters to take control of the microprocessor bus and directly access system
hardware in a shared manner. The microprocessor continues to execute
instructions out of the internal cache (if enabled) until a system bus cycle is
required.

The hold-acknowledge state (Th) is entered in response to assertion of the
HOLD input. In the hold-acknowledge state, the microprocessor floats all out­
put and bidirectional signals, except for HLDA and SUSPA#. HLDA is asserted
as long as the microprocessor remains in the hold-acknowledge state and all
inputs except HOLD, FLUSH#, FLT#, SUSP# and RESET are ignored.

State Th can be entered directly from a bus-idle state, as in Figure 3-19, or
after the completion of the current physical bus cycle if the LOCK signal is not
asserted, as in Figure 3-20 and Figure 3-21. The CPU samples the HOLD in­
put on the rising edge of CLK2 corresponding to the beginning of phase one
(<1>1) of internal processor clock. HOLD is a synchronous input and can be as­
serted at any CLK2 edge, provided setup and hold requirements are met in ev­
ery bus state.

The hold-acknowledge state is exited in response to the HOLD input being ne­
gated. The next bus start is an idle state (Ti) if no bus request is pending, as
in Figure 3-19. If an internal bus request is pending, as in Figure 3-20 and
Figure 3-21 , the next bus state is T1. State Th is also exited in response to
RESET being asserted. If HOLD remains asserted when RESET goes inac­
tive, the microprocessor enters the hold-acknowledge state before performing
any bus cycles provided HOLD is still asserted when the CPU is ready to per­
form its first bus cycle.

If a rising edge occurs on the edge-triggered NMI input while in state Th, the
event is remembered as a nonmaskable interrupt 2 and is serviced when the
state is exited.

T1486SXLC Microprocessor Bus Interface 3-39

Bus Operation and Functional Timing

Figure 3-19. Requesting Hold From Bus-Idle State

CLK2

HOLD
(Note 1)

HLDA

I
Idle ~ Hold Acknowledge .1 Idle I I

I I I I I
I Ti I Th I Th I Th Ti

III i ~~~ ___ ---+

I I I i I I IV I I· 1\ I
i ~ I I I. i

~I Iii -.: I

A23-A1, BHE#, BLE#, -----i
l
-' (Floating) ~I ---- I

D/C#, M/IO#, W/R# _

ADS#
(Note 2)

I I I I I I
I ~ I I I , I
I I ~----I-. (Floating) l _____ LI I
I I I I I I

NA#~

~ADW

I I __ I I I
----1-' (Floating) 1-----

I I I
I I I I I

D15-DO - ------I-------l-, (Floating) ..1------.1-------1
I I I I I I

LOCK#

Notes: 1) HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold requirements are

3-40

met in every bus state. Violating setup or hold requirements will result in incorrect operation.

2) For maximum design flexibility the CPU has no internal pullup resistors on its outputs. External pullups may be re­
quired on ADS# and other outputs to keep them negated during hold-acknowledge period.

Bus Operation and Functional Timing

Figure 3-20. Requesting Hold From Active Nonpipelined Bus

CLK2

HOLD
(See Note)

HLDA

T1

Cycle 1
Nonpipelined

(Read)

T2 T2

Hold Acknowledge

Th

I
I

Th

HOLD asserted no later
than READY# asserted

I
I I

T1

Cycle 2
Nonpipelined

(Write)

T2

A23-A1, BHE#, _~,..-_--i. ___ --l...._-+-_"" I I ,..---....I:~--.......
BLE#, BLE#, -- (FIO~, ting) ---K, '"--___ \l""l"'a_lid_2 __ ~

D/C#, M/IO#, W/R# -,!,-~--..,.....---..,...--+-~ -.
, , I ,

_--i---+-~ I I '1/
,~-- (Floflting) ---1\1 ' ..
, , '-------",

ADS#

,

NA#

READY#

(Negated, or last locked cycle) , I I :

LOCK# I : Valid 1: r-- (Florting) ---K----.... \l-al-id-2-.......

I I I I I

015-00 -i----~- (Floating) +-- 6 - (Flolting) ---~-< : Out 2
, , '~I I '----------,
, , , , I I ,

Note: HOLD is a synchronous input and can be asserted at any CLK2 edge provided setup and hold requirements are met in
every bus state. Violating setup or hold requirements will result in incorrect operation.

Tl486SXLC Microprocessor Bus Interface 3-41

Bus Operation and Functional Timing

Figure 3-21. Requesting Hold from Active Pipelined Bus

T1P

CLK2

HOLD
(See Note) ~~~

HLDA

Cycle 1
Pipelined

(Write)

T21 T21

Hold Acknowledge

Th Th

1

I
I

Cycle 2
Nonpipelined

(Read)

T1 1 T2

A23-A1, BHE#, ----r--~~~~~~~~'" I 1,.. ____________
BLE#, D/C#, -- (Floating) ---K Valid 2
M/IO#, W/R# -T"""--+---+-~~~~~~~-¥ I 1 "----...,1---.....,

1 I I I

,..-+--+-----i----.....
I
'--- (FI~ating) --{ V ADS#

J
NA# ~ •

~II~I ~:~: :
I I I I
V(Negated. or last locked cycle) 1 1 1 : :

~ ; Valid 1; r-- (Flatting) ---{ . Valid 2 .

I 1 I 1 1

D15-DO O~t X i O~t 1 : }-r--- (Fla~ting) --l--~

READY#

LOCK#

I 1 I I 1 1

Note: HOLD is a synchronous input and can be asserted at any CLK2 edge provided setup and hold requirements are met in
every bus state. Violating setup or hold requirements will result in incorrect operation.

3.4.9 Coprocessor Interface

3-42

The data-bus, address-bus, and bus-cycle-definition signals, as well as the co­
processor interface signals (PEREQ, BUSY#, ERROR#), are used to control
communication between the TI486SXLC microprocessor and a coprocessor.
Coprocessor or ESC opcodes are decoded by the microprocessor and the op­
code and operands are then transferred to the coprocessor via liD port ac­
cesses to addresses 80 00F8h, 80 OOFCh, or 80 OOFEh. Address 80 00F8h
functions as the control-port address and 80 OOFCh and 80 OOFEh are used
for operand transfers.

Bus Operation and Functional Timing

Coprocessor cycles can be either read or write and can be either nonpipelined
or pipelined. Coprocessor cycles must be terminated by READY# and, as with
any other bus cycle, can be terminated as early as the second bus state of the
cycle.

BUSY#, ERROR# and PEREQ are asynchronous level-sensitive inputs used
to synchronize CPU and coprocessor operation. All three signals are sampled
at the beginning of phase one (<PI) and must meet specified setup and hold
times to be recognized at a given CLK2 edge.

3.4.10 SMM Interface

System management mode (SMM) uses two TI486SXLC microprocessor
pins, SMI# and SMADS#. The bidirectional SMI# pin is a nonmaskable inter­
rupt that is a higher priority than the NMI input. SMI# must be active for at least
four CLK2 periods to be recognized by the microprocessor. Once the micro­
processor recognizes the active SMI# input, the CPU drives the SMI# pin low
for the duration of the SMI service routine.

The SMADS# pin outputs the SMM address strobe that indicates an SMM
memory bus cycle is in progress and a valid SMM address is on the address
bus. The SMADS# functional timing, output delay times, and float delay times
are identical to the main memory address strobe (ADS#) timing.

3.4.10.1 SMI Handshake

The functional timing for SMI# interrupt is shown in Figure 3-22. Five signifi­
cant events take place during an SMI# handshake:

1) The SMI# input pin is driven active (low) by the system logic.
2) The CPU samples SMI# active on the rising edge of CLK2 phase one (<PI).
3) Four CLK2s after sampling the SMI# active, the CPU switches the SMI#

pin to an output and drives SMI# low.
4) Following execution of the RSM instruction, the CPU drives the SMI# pin

high for two CLK2s indicating completion of the SMI service routine.
S) The CPU stops driving the SMI# pin high and switches the SMI# pin to an

input in preparation for the next SMI interrupt. The system logic is respon­
sible for maintaining the SMI# pin at the inactive (high) level after the pin
has been changed to an input.

Figure 3-22. SMI# Timing

CLK2

SMI# ~I '-1-]1 - ---r--~~((\vl-I _~II/ I)),
I I I I
I I I I
1 2 3 4

Indicates that TI486SXLC drives the SMI# pin.

I
I
I
I
5

Tl486SXLC Microprocessor Bus Interface 3-43

Bus Operation and Functional Timing

3.4.10.2 lID Trapping

The TI486SXLC series provides liD trapping that can be used to facilitate pow­
er management of liD peripherals. When an liD bus cycle is issued, the liD
address is driven onto the address bus and can be decoded by external logic.
If a trap to the 8MI handler is required, the SMI# input should be activated at
least three CLK2 edges prior to returning the READY# input for the liD cycle.
The timing for creating an liD trap via the 8MI# input is shown in Figure 3-23.
The microprocessor immediately traps to the 8MI interrupt handler following
execution of the liD instruction, and no other instructions are executed be­
tween completion of the liD instruction and entering the 8MI service routine.
The liD trap mechanism is not active during coprocessor accesses.

Figure 3-23. 110 Trap Timing

CLK2

Address,
Byte Enables

ADS#

READY#

SMI#

3-44

~
1

1 T1
1 I

110 CYCLE
(Read or Write)

T2 T2
I I

1 1

1

T2 1

I 1

~~.,..---r---V+ ,..---,.--: : -----I~
1 1 1 1 -----;.:\ :1: :
1 1 1 1

~ ,I \'---........ : ~~~~~~ ~II
1 1

:\ II 1 '-+-1 - 1 --........... I..J
1 I
14-- 3 CLK2s ~

Bus Operation and Functional Timing

3.4.11 Power Management

The power-management features in the TI486SXL(C) family of microproces­
sors allow a dramatic reduction in the current required when the microproces­
sor is in suspend mode (typically less than three percent of the operating cur­
rent). Suspend mode is entered either by a hardware- or software-initiated
action. Using the hardware to initiate suspend mode involves a two-pin hand­
shake using the SUSP# and SUSPA# signals. Using the software involves ini­
tiati ng the suspend mode th roug h execution of the HALT instruction. Additional
power management can be achieved by stopping and restarting the input
clock. This technique is available because the TI486SXLC series micropro­
cessors are static devices, meaning that clock can be stopped and restarted
without loss of any internal CPU data.

3.4.11.1 SUSP#-initiated Suspend Mode

The TI486SXLC series microprocessor enters suspend mode when the
SUSP# input is asserted and execution of the current instruction, any pending
decoded instructions, and associated bus cycles are completed. The micro­
processor also waits for the coprocessor to indicate a not-busy status
(BUSY#=1) prior to entering suspend mode. The SUSPA# output is then as­
serted. The microprocessor responds to SUSP# and asserts SUSPA# only if
the SUSP bit is set in the CCRD Configuration register.

Figure 3-24 illustrates the microprocessor functional timing for SUSP#-initi­
ated suspend mode. SUSP# is sampled on the phase two (<1>2) CLK2 rising
edge and must meet specified setup and hold times to be recognized at a par­
ticular CLK2 edge. The time from assertion of SUSP# to activation of SUSPA#
varies depending on which instructions were decoded prior to assertion of
SUSP#. The minimum time from SUSP# sampled active to SUSPA# asserted
is two CLK2s. As a maximum, the microprocessor can execute up to two
instructions and associated bus cycles prior to asserting SUSPA#. The time
required for the microprocessor to deactivate SUSPA# once SUSP# has been
sampled inactive is four CLK2s.

Figure 3-24. SUSP#-Initiated Suspend Mode

CLK2

SUSP#

BUSY#

SUSPA#

1 1
<1>1 I <1>2 1 <1>1 I <1>2 1 <1>1 I <1>2

1 2 CLK2s 1

~ Min ---.1
1

<I> 1 I <I> 2 <1>1 I <1>2 <I> 1 I <I> 2

14------- 4 CLK2s ----6

Tl486SXLC Microprocessor Bus Interface 3-45

Bus Operation and Functional Timing

If the microprocessor is in a hold-acknowledge state and SUSP# is asserted,
the processor mayor may not enter suspend mode depending on the state of
the microprocessor internal execution pipeline. If the microprocessor is in a
SUSP#-initiated suspend state and the CLK2 input is not stopped, the proces­
sor recognizes and acknowledges the HOLD input and stores the occurrence
of FLUSH#, NMI, and INTR (if enabled) for execution once suspend mode is
exited.

3.4.11.2 HALT-Initiated Suspend Mode

The TI486SXLC series microprocessor also enters suspend mode as a result
of executing a HALT instruction. The SUSPA# output is asserted no more than
17 CLK2s following a READY# sampled active for the HALT bus cycle as
shown in Figure 3-25. Suspend mode is then exited upon recognition of an
NMI or an unmasked INTR. SUSPA# is deactivated 12 CLK2s after sampling
of an active NMI or unmasked INTR. If the microprocessor is in a HALT-initi­
ated suspend mode and the CLK2 input is not stopped, the processor recog­
nizes and acknowledges the HOLD input and stores the occurrence of
FLUSH# for execution once suspend mode is exited.

Figure 3-25. HALT-Initiated Suspend Mode

CLK2

READY#

NMI

SUSPA#

3-46

Nonpipelined HALT

T1 T2 Ti Ti Ti

(1 ((1
~j~1 --~----~--~I--~Jji I
1 1 12 1
1 1'- CL~2S ~I

_ -~(I 1
) 1 1

I
17 CLK2s Max ~I~-----+-------

1

1

1

Bus Operation and Functional Timing

3.4.11.3 Stopping the Input Clock

Because the TI486SXLC series microprocessors are static devices, the input
clock (CLK2) can be stopped and restarted without loss of any internal CPU
data. This assumes, of course, that the TI486SXLC2 microprocessor is in non­
clock-doubled mode when the input clock is stopped. (Refer to subsection
3.2.1, Clock Doubling Using Software Control, page 3-13.) CLK2 can be
stopped in either phase one (</>1) or phase two (<1>2) of the clock and in either
a logic-high or logic-low state. However, entering suspend mode prior to stop­
ping CLK2 dramatically reduces the CPU current requirements. Therefore, the
recommended sequence for stopping CLK2 of the TI486SXLC2 series micro­
processor from clock-doubled mode is:

1) Bring the processor out of clock-doubled mode
2) Initiate suspend mode
3) Wait for assertion of SUSPA# by the processor
4) Stop the input clock

Note:

Suspend mode can be entered while in clock-doubled mode as long as CLK2
is not scaled or stopped.

For all other cases, including the TI486SXLC2 in nonclock-doubled mode, the
recommended sequence is:

1) Initiate suspend mode
2) Wait for assertion of SUSPA# by the processor
3) Stop the input clock

The TI486SXLC series microprocessor remains suspended until CLK2 is re­
started and suspend mode is exited as described above. While CLK2 is
stopped, the microprocessor can no longer sample and respond to any input
stimulus including the HOLD, FLUSH#, NMI, INTR, and RESET inputs.
Figure 3-26 illustrates the recommended sequence for stopping CLK2 using
SUSP# to initiate suspend mode. CLK2 should be stable for a minimum of 10
clock periods before SUSP# is deasserted.

Figure 3-26. Stopping CLK2 During Suspend Mode

I I I 1 1 I I

CLK2 M I $1 I $2 I $1 JiAAiJi}
1

~~------~((~----------------~((:
)j)j 1

SUSP#
------~((~-------------

(I J'))
)~

____ ---...((~----------------~((I
)j)) 1 BUSY#

((~--------~((~-------------))))

1 0 CLK2s Min --+1-4-------------.,
,

-------...((.,..--- '
)) \ ((((((1r-__ ..JI11

~---~)~)---~)~)--------~))
SUSPA#

Tl486SXLC Microprocessor Bus Interface 3-47

Bus Operation and Functional Timing

3.4.12 Float

Activating the FLT# input floats all TI486SXLC bidirectional and output signals.
Asserting FLT# electrically isolates the microprocessor from the surrounding
circuitry. This feature is useful in board-level test environments. Since the mi­
croprocessor is packaged in a surface-mount QFP, it is not usually socketed
and cannot be removed from the motherboard when in-circuit emulation (ICE)
is needed. Float capability allows connection of an emulator by clamping the
emulator probe onto the microprocessor QFP without removing it from the cir­
cuit board.

FLT# is an asynchronous, active-low input. It is recognized on the rising edge
of CLK2. When recognized, it aborts the current bus state and floats the out­
puts of the microprocessor as shown in Figure 3-27. FLT# must be asserted
for a minimum of 16 CLK2 cycles. To exit the float condition, RESET should
be asserted and held asserted until after FLT# is deasserted.

Asserting the FLT# input unconditionally aborts the current bus cycle and
forces the microprocessor into the float mode. As a result, the microproces­
sors are not guaranteed to enter float in a valid state. After deactivating FLT#,
the CPU is not guaranteed to exit float in a valid state. The microprocessor
RESET input must be asserted prior to exiting float to ensure that the micropro­
cessor is reset and that it returns in a valid state.

Figure 3-27. Entering and Exiting Float

CLK2

FLT# , ___________ --.11
CONTROL ~ Valid }-------------------{ _____ ..JX ___ _

DATA -1}--{ Valid }------------------{ _____ L
ADDRESS ~ Valid }------------------{ __ -..JX __ _

RESET
____ -.-.61

3-48

Chapter 4

TI486SXL Microprocessor Bus Interface

This chapter provides a summary of the TI486SXL series processor signals
and descriptions of all inputs/outputs, functional timing and bus operations (in­
cluding pipelined and nonpipelined addressing), various interfaces, and power
management.

Topic Page

4~1 I nputlO utput Signals .' •.. ~. ~ ~ •..••••••••••• ~ • ;, ~ •. L •.•••.. ~'~ .. •. . .• 4 .. 2
" " ;-

BU$.. Cy'CI~ Definition; ~~ ~ .i •• ~. ~ ••••• ~ L4;'15
" ~~" ': ' '0 " "i 0 ,'; " ,

Re$et '·nlllingaRCI:lijternaICI()ck$ynchr;Qnizati9n'; •. ~ :.' •••••..•• ~.' . ~." 4;.19

~u~Qperatiohantt :~:UR9tio,ri~al :;i:ni~9.·

4-1

Input/Output Signals

4.1 Input/Output Signals

This section describesthe TI486SXL series microprocessors' input and output
signals. The discussion of these signals is arranged by functional groups as
shown in Figure 4-1. Table 4-1 gives a brief description of each signal.

Figure 4-1. TI486SXL Functional Signal Groupings

2x Clock CLK2 TI486SXL INTR 1 NMI Interrupt

J Control

Reset RESET SMI#

Address { A31-A2 KEN#
Bus } Internal

BE3#--BEO# FLUSH# Cache
Interface

tMEMW#
Data D31-DO
Bus

A20M# Address
Bit-20 Mask

-+W/R#

W/R# PEREQ
Bus-Cycle

D/C# } Coprocessor Definition BUSY#
M/IO# Interface

ERROR#
LOCK#

HOLD
} Bus BS16#

HLDA Arbitration
NA#

Bus-Cycle
READY#

SUSP# } Power
Control

SUSPA# Management
ADS#

SMADS# t FLT# Float Control

t 144-pin QFP and 168-pin PGA pinout only
-+ 144-pin QFP pinout only

4-2

Table 4-1. TI486SXL Signal Summary

Signal Signal Name

AOS# Address Strobe

A20M# Address Bit-20 Mask

A31-A2 Address Bus Lines

BE3#-BEO# Byte enables

BS16# Bus size 16

BUSY# Processor extension busy

CLK2 2X clock input

031-00 Data bus

D/C# Data/control

ERROR# Processor extension error

FLT#t Float

FLUSH# Cache flush

HLDA Hold acknowledge

HOLD Hold request

INTR Maskable interrupt request

KEN# Cache enable

LOCK# Bus lock

MEMW#t ISA memory write

M/IO# Memory/input-output

NA# Next address request

NMI Nonmaskable interrupt request

PEREQ Processor extension request

READY# Bus ready

RESET Reset

SMADS# SMM address strobe

SMI# System management interrupt

SUSP# Suspend request

SUSPA# Suspend acknowledge

W/R#+- Write/read

t 144-pin OFP and 168-pin PGA pinout only.

Input/Output Signals

Signal Group

Bus-cycle control

None

Address bus

Address bus

Bus-cycle control

Coprocessor interface

None

None

Bus-cycle definition

Coprocessor interface

None

Internal cache interface

Bus arbitration

Bus arbitration

Interrupt control

Internal Cache interface

Bus-cycle definition

Internal cache interface

Bus-cycle definition

Bus-cycle control

Interrupt control

Coprocessor interface

Bus-cycle control

None

Bus-cycle control

Interrupt control

Power management

Power management

Bus-cycle definition

+- 144-pin OFP has W/R# on pins 36 and 37. These terminals must be connected together.

The following sections describe the signals and their functional characteris­
tics. Additional signal information can be found in Chapter 5, Electrical Specifi­
cations. Chapter 5 documents the dc and ac characteristics for the signals in­
cluding voltage levels, propagation delays, setup times, and hold times. Speci­
fied setup and hold times must be met for proper operation of the TI486SXL
series microprocessors.

Tl486SXL Microprocessor Bus Interface 4-3

Input/Output Signals

4.1.1 TI486SXL Terminal Function Descriptions

Table 4-2 identifies and describes each of the TI486SXLC package terminals.

Table 4-2. TI486SXL Terminal Functions

132-
Name pin

A2 C4
A3 A3
A4 B3
A5 B2
A6 C3
A7 C2
A8 C1
A9 03

A10 02
A11 01
A12 E3
A13 E2
A14 E1
A15 F1
A16 G1
A17 H1
A18 H2
A19 H3
A20 J1
A21 K1
A22 K2
A23 L1
A24 L2
A25 K3
A26 M1
A27 N1
A28 L3
A29 M2
A30 P1
A31 N2

AD8# E14

A20M# F13

4-4

Terminal
No.
144-
pin

73
74
75
76
77
78
86
87
88
89
90
93
94
95
104
106
107
108
109
110
113
114
61
60
59
58
84
83
82
81

26

43

168-
pin

014
R15
816
012
815
013
R13
011
813
R12
87

010
85
R7
09
03
R5
04
08
05
07
83
06
R2
82
81
R1
P2
P3
Q1

817

015

Description

Address Bus (active high). The address bus (A31-A2) signals are three-
state outputs that provide addresses for physical memory and I/O ports. All
address lines can be used for addressing physical memory allowing a
4G-byte address space (0000 OOOOh to FFFF FFFFh). During 1/0 port
accesses, A31-A 16 are driven low (except for coprocessor accesses). This
permits a 64-Kbyte 1/0 address space (0000 OOOOh to 0000 FFFFh).

During all coprocessor 1/0 access address lines A30-A 16 are driven low and
A31 is driven high. This allows A31 to be used by external logic to generate
a coprocessor select signal. Coprocessor command transfers occur with
address 8000 00F8h and coprocessor data transfers occur with address
8000 OOFCh. A31-A2 float while the CPU is in a hold-acknowledge or float
state.

Address 8trobe (active low). This 3-state output indicates thafthe TI4868XL
microprocessor has driven a valid address (A31-A2, BE3#-BEO#) and
bus-cycle definition (M/IO#, D/C#, W/R#) on the appropriate output pins.
During nonpipelined bus cycles, AD8# is active for the first clock of the bus
cycle. During address pipelining, AD8# is asserted during the previous bus
cycle and remains asserted until READY# is returned for that cycle. AD8#
floats while the microprocessor is in a hold-acknowledge or float state.

Address Bit-20 Mask (active low). This input causes the microprocessor to
mask (force low) physical address bit 20 when driving the external address
bus or performing an internal cache access. When the processor is in real
mode, asserting A20M# emulates the 1 M-byte address wraparound that
occurs on the 8086. The A20 signal is never masked when paging is enabled
regardless of the state of the A20M# input. The A20M# input is ignored
following reset and can be enabled using the A20M bit in the CCRO
Configuration register.

A20M# is internally connected to a pullup resistor to prevent it from floating
active when left unconnected.

Input/Output Signals

Table 4-2. TI486SXL Terminal Functions (Continued)

Terminal
No.

132- 144-
Name pin pin

BE3# A13 32
BE2# B13 31
BE1# C13 28
BEO# E12 27

BS16# C14 115

BUSY# B9 48

CLK2 F12 25

168-
pin

F17
J15
J16
K15

C17

S4

C3

Description

Byte Enables BE3#-BEO# (active low). These 3-state outputs determine
which bytes within the 32-bit data bus are transferred during a memory or I/O
access (Table 4-3). During a memory write, one or both of the upper bytes
(0 and C) of the data bus can be duplicated in the lower bytes (B and A) of
the bus. This duplication is dependent on BE3#-BEO# as listed in Table 4-4.

Generating A1-AO using BE3#-BEO# can be achieved by using the
following equations:

AO = (BEO# • BE2#) + (BEO# • BE1 #)
A1 = BEO#. BE1#

The relationship between A1-AO and BE3#-BEO# is shown in Table 4-5.

Bus Size 16 (active low). This input allows connection of the 32-bit
microprocessor data bus to an external 16-bit data bus. When this input is
activated, the microprocessor performs multiple bus cycles to couple read
and write accesses from devices that cannot provide (accept) 32 bits of data
in a single cycle. During bus cycles with BS16# active, data is transferred
using data bus signals 015-00 only.

Coprocessor Busy (active low). This input indicates to the TI486SXL that the
coprocessor is currently executing an instruction and is unable to accept
another opcode. When the microprocessor encounters a WAIT instruction or
any coprocessor instruction that operates on the coprocessor stack (Le.,
load, pop, arithmetic operation), BUSY# is sampled. BUSY# is continually
sampled and must be recognized as inactive before the CPU supplies the
coprocessor with another instruction. However, the following coprocessor
instructions are allowed to execute even if BUSY# is active because they are
used for coprocessor initialization and exception clearing: FNINIT, FNCLEX.

BUSY# is internally connected to a pullup resistor to prevent it from floating
active when left unconnected.

2X Clock Input (active high). This input signal is the basic timing reference
for the TI486SXL series microprocessors. The CLK2 input is internally
divided by two to generate the internal processor clock. The external CLK2
is synchronized to a known phase of the internal processor clock by the falling
edge of the RESET signal. External timing parameters are defined with
respect to the rising edge of CLK2.

For the TI486SXL2 microprocessors, the CLK2 input is used internally to
generate the internal core processor clock and the internal bus interface
clock. The external CLK2 is synchronized to a known phase of the internal
processor clock by the falling edge of the RESET signal. External timing
parameters are defined with respect to the rising edge of CLK2.

Tl486SXL Microprocessor Bus Interface 4-5

Input/Output Signals

Table 4-2. TI486SXL Terminal Functions (Continued)

132-
Name pin

O/C# A11

00 H12
01 H13
02 H14
03 J14
04 K14
05 K13
06 L14
07 K12
08 L13
09 N14

010 M12
011 N13
012 N12
013 P13
014 P12
015 M11
016 N11
017 N10
018 P11
019 P10
020 M9
021 N9
022 P9
023 N8
024 P7
025 N6
026 P5
027 N5
028 M6
029 P4
030 P3
031 M5

ERROR# A8

4-6

Terminal
No.
144-
pin

35

1
144
143
137
136
135
134
133
131
130
129
128
127
118
117
116
124
123
122
121
102
101
100
99
3
4

142
141
12
13
14
15

49

168-
pin

M15

P1
N2
N1
H2
M3
J2
L2
L3
F2
01
E3
C1
G3
02
K3
F3
J3
03
C2
81
A1
B2
A2
A4
A6
86
C7
C6
C8
A8
C9
88

A12

Description

Oata/Control. This 3-state, bus-cycle-definition signal is low during control
cycles and is high during data cycles. Control cycles are issued during
functions such as a halt instruction, interrupt servicing, and code fetching.
Oata bus cycles include data access from either memory or 1/0.

Oata Bus (active high). The data bus (031-00) signals are 3-state
bidirectional signals that provide the data path between the microprocessor
and external memory and 1/0 devices. The data bus inputs data during
memory read, 1/0 read, and interrupt-acknowledge cycles and outputs data
during memory and 1/0 write cycles. Oata read operations require that
specified data setup and hold times be met for correct operation. The data
bus signals float while the CPU is in a hold-acknowledge or float state.

Coprocessor Error (active low). This input indicates that the coprocessor
generated an error during execution of an instruction. ERROR# is sampled
by the microprocessor whenever a coprocessor instruction is executed. If
ERROR# is sampled active, the processor generates exception 16, that is
then serviced by the exception handling software.

Certain coprocessor instructions do not generate an exception 16 even if
ERROR# is active. These instructions, which involve clearing coprocessor
error flags and saving the coprocessor state, are: FNINIT, FNCLEX,
FNSTSW, FNSTCW, FNSTENV, FNSAVE.

ERROR# is internally connected to a pullup resistor to prevent it from floating
active when left unconnected.

Input/Output Signals

Table 4-2. TI486SXL Terminal Functions (Continued)

Terminal
No.

132- 144-
Name pin pin

FLT# 40

FLUSH# E13 42

HOLD 014 7

168-
pin

C11

C15

E15

Description

Float (active low). This input forces all bidirectional and output signals to a
3-state condition. Floating the signals allows the microprocessor signals to
be driven externally without physically removing the device from the circuit.
The microprocessor must be reset following assertion or deassertion of
FLT#. This signal may be used in conjunction with an upgrade socket.

FLT# is internally connected to a pullup resistor to prevent it from floating
active when left unconnected.

Cache Flush (active low). This input invalidates (flushes) the entire cache.
Use of FLUSH#to maintain cache coherency is optional. The cache may also
be invalidated during each hold-acknowledge cycle by setting the BARB bit
in the CCRO Configuration register. The FLUSH# input is ignored following
reset and can be enabled using the FLUSH bit in the CCRO Configuration
register.

FLUSH# is internally connected to a pullup resistor to prevent it from floating
active when left unconnected.

Hold Request (active high). This input indicates that another bus master
requests control of the local bus. The bus arbitration (HOLD, HLDA) signals
allow the microprocessor to relinquish control of its local bus when requested
by another bus master device. Once the processor has relinquished its bus
(3-stated), the bus master device can then drive the local bus signals.

After recognizing the HOLD request and completing the current bus cycle or
sequence of locked bus cycles, the microprocessor responds by floating the
local bus and asserting the hold acknowledge (HLDA) output.

Once HLDA is asserted, the bus remains granted to the requesting bus
master until HOLD becomes inactive. When the microprocessor recognizes
HOLD is inactive, it simultaneously drives the local bus and drives HLDA
inactive. External pullup resistors may be required on some of the
microprocessor 3-state outputs to ensure that they remain inactive while in
a hold-acknowledge state (or float state for the 144-pin QFP and 168-pin
CPUs).

The HOLD input is not recognized while RESET is active. If HOLD is asserted
while RESET is active, RESET has priority and the microprocessor places
the bus into an idle state instead of a hold-acknowledge state. The HOLD
input is also recognized during suspend mode provided that the CLK2 input
has not been stopped. HOLD is level-sensitive and must meet specified
setup and hold times for correct operation.

Tl486SXL Microprocessor Bus Interface 4-7

Input/Output Signals

Table 4-2. TI486SXL Terminal Functions (Continued)

132-
Name pin

HLDA M14

INTR B7

KEN# B12

4-8

Terminal
No.
144-
pin

6

53

41

168-
pin

P15

Description

Hold Acknowledge (active high). This output indicates that the
microprocessor is in a hold-acknowledge state and has relinquished control
of its local bus. While in the hold-acknowledge state, the microprocessor
drives HLDA active and continues to drive SUSPA#, if enabled. The other
microprocessor outputs are in the high-impedance state allowing the
requesting bus master to drive these signals. If the on-chip cache can satisfy
bus requests, the microprocessor continues to operate during
hold-acknowledge states. A20M# is internally recognized during this time.

The microprocessor deactivates HLDA when the HOLD request is driven
inactive. The microprocessor stores an NMI rising edge during a
hold-acknowledge state for processing after HOLD is inactive. The FLUSH#
input is also recognized during a hold-acknowledge state. If SUSP# is
asserted during a hold-acknowledge state, the microprocessor mayor may
not enter suspend mode depending on the state of the internal execution
pipeline. Table 4-6 summarizes the state of the microprocessor signals
during hold acknowledge.

A 16 Maskable Interrupt Request. This level-sensitive input causes the processor
to suspend execution of the current instruction stream and begin execution
of an interrupt service routine. The INTR input can be masked (ignored)
through the Flag Word register IF bit. When unmasked, the microprocessor
responds to the INTR input by issuing two locked interrupt-acknowledge
cycles. To assure recognition of the INTR request, INTR must remain active
until the start of the first interrupt-acknowledge cycle.

F15 Cache Enable (active low). This input indicates that the data being returned
during the current cycle is cacheable. When KEN# is active and the
microprocessor is performing a cacheable code fetch or memory data read
cycle, the cycle is transformed into a cache fill. Use of the KEN# input to
control cacheability is optional. The noncacheable region registers can also
be used to control cacheablity. Memory addresses specified by the
noncacheable region registers are not cacheable regardless of the state of
KEN#. I/O accesses, locked reads, SMM address space accesses, and
interrupt-acknowledge cycles are never cached.

During cached code fetches with BS16# asserted, two contiguous read
cycles are performed to completely fill the 4-byte cache line. KEN# must be
asserted during both read cycles to cause acache line fill. If BS16# is inactive,
only one bus cycle is required and KEN# must be asserted for the data to be
cached. During memory data reads, the microprocessor performs as many
read cycles as necessary to supply the required data to complete the current
operation. Valid bits are maintained for each byte in the cache line and for
each block of four lines, thus allowing data operands of less than four bytes
to reside in the cache.

If two read cycles are performed with the same address (A31-A2), KEN#
must be asserted during both cycles to cache the data in these cycles. If the
data is cached, the microprocessor ignores the state of the byte enables
(BE3#- BEO#) and four bytes of data (2 bytes if BS 16# is asserted) is cached.
The KEN# input is ignored following reset and can be enabled using the KEN
bit in the CCRO Configuration register.

KEN# is internally connected to a pullup resistor to prevent it from floating
active when left unconnected.

Input/Output Signals

Table 4-2. TI486SXL Terminal Functions (Continued)

Name

LOCK#

MEMW#

M/IO#

NA#

NC

132-
pin

C10

Terminal
No.
144-
pin

38

168-
pin

N15

Description

LOCK (active low). This 3-state, bus-cycle-definition signal is asserted to
deny access of the CPU bus to other bus masters. The LOCK# signal may
be explicitly activated during bus operations by including the LOCK prefix
on certain instructions. LOCK# is always asserted during descriptor and
page table updates, interrupt-acknowledge sequences, and when
executing the XCHG instruction. The microprocessor does not enter the
hold-acknowledge state in response to HOLD while the LOCK# output is
active.

66 816 Memory Write (active low). This input is used in the cache interface logic
which flushes the cache in systems that hold the CPU during DMA and
MASTER cycles.

A 12 34 N16 Memory/IO. This 3-state, bus-cycle-definition signal is low during I/O read

D13 9

86 39
65
71
138

and write cycles and is high during memory cycles.

A 13 Next Address Request (active low). This input requests address pipelining
by the system hardware. When asserted, the system indicates that it is
prepared to accept new bus-cycle definition and address signals (M/IO#,
D/C#, W/R#, A31-A2, 8S16#, and 8E3#-8EO#) from the microprocessor
even if the current bus cycle has not been terminated by assertion of
READY#. If the microprocessor has an internal bus request pending and the
NA# input is sampled active, the next bus-cycle definition and address
signals are driven onto the bus.

A3 Make no external connection.
A5

A14
A17
814
815
817
C10
C12
C14
D16
D17
F1

G15
H3

H15
J17
L15
N3

Q15
Q16
Q17
R16

Note: NC Terminals

Connecting or terminating (high or low) any NC terminal(s) may cause un­
predictable results or nonperformance of the microprocessor.

Tl486SXL Microprocessor Bus Interface 4-9

Input/Output Signals

Table 4-2. TI486SXL Terminal Functions (Continued)

Name

NMI

PEREa

Terminal
No.

132- 144- 168-
pin pin pin Description

B8 51 A 15 Nonmaskable Interrupt Request. This rising-edge-sensitive input causes

C8 50

the processor to suspend execution of the current instruction stream and
begin execution of an NMI interrupt service routine. The NMI interrupt service
request cannot be masked by software. Asserting NMI causes an interrupt
which internally supplies interrupt vector 2h to the CPU core. External
interrupt-acknowledge cycles are not necessary since the NMI interrupt
vector is supplied internally. Once NMI processing has started, no additional
NMls are processed until an IRET instruction is executed.

The microprocessor samples NMI at the beginning of each phase two (<1>2)
clock period. To assure recognition, NMI must be inactive for at least eight
CLK2 periods and then be active for at least eight CLK2 periods. Additionally,
specified setup and hold times must be met to assure recognition at a
particular clock edge.

R17 Coprocessor Request (active high). This input indicates that the
coprocessor is ready to transfer data to or from the CPU. The coprocessor
can assert PEREa in the process of executing a coprocessor instruction. The
microprocessor internally stores the current coprocessor opcode and
performs the correct data transfers to support coprocessor operations using
PEREa to synchronize the transfer of required operands.

PEREa is internally connected to a pulldown resistor to prevent this signal
from floating active when left unconnected.

READY# G13 10 F16 Ready (active low). This input is generated by the system hardware to
indicate that the current bus cycle can be terminated. During a read cycle,
assertion of READY# indicates that the system hardware has presented valid
data to the CPU. When READY# is sampled active, the microprocessor
latches the input data and terminates the cycle. During a write cycle,
READY# assertion indicates that the system hardware has accepted the
microprocessor output data. READY# must be asserted to terminate every
bus cycle, including halt and shutdown indication cycles.

Reserved

RESET C9

SMADS# C6

4-10

A10

45 C16 Reset (active high). When asserted, RESET suspends all operations in

29

progress and places the microprocessor into a reset state. RESET is a
level-sensitive synchronous input and must meet specified setup and hold
times to be properly recognized by the microprocessor. The microprocessor
begins executing instructions at physical address location FF FFFOh
approximately 400 CLK2s after RESET is driven inactive (low).

While RESET is active, the microprocessor is initialized to nonclock-doubled
mode (for the T1486SXL2) and all other input pins are ignored. The remaining
signals are initialized to their reset state during the internal processor reset
sequence. The reset signal states for the microprocessor are shown in
Table 4-6.

B13 SMM Address Strobe (active low). SMADS#, a three-state output, is
asserted instead of the ADS# during SMM bus cycles and indicates that SMM
memory is being accessed. SMADS# floats while the CPU is in a
hold-acknowledge or float state. The SMADS# output is disabled (floated)
following reset and can be enabled using the SMI bit in the CCR1
Configuration register.

Input/Output Signals

Table 4-2. TI486SXL Terminal Functions (Continued)

Terminal
No.

132- 144- 168-
Name pin pin pin Description

SMI# C7 67 B10 System Management Interrupt (active low). This 3-state, bidirectional,
level-sensitive, input/output signal is an interrupt with higher priority than the
NMI interrupt. SMI# must be active for at least four CLK2 clock periods to
be recognized by the microprocessor. After the SMI is acknowledged, the
SMI# pin is driven low by the microprocessor for the duration of the SMI
service routine. The SMI# input is ignored following reset and can be
enabled using the SMI bit in the CCR1 Configuration register.

SMI# is internally connected to a pullup resistor to prevent it from floating
active when left unconnected.

SUSP# A4 63 C13 Suspend Request (active low). This input requests the microprocessor to
enter suspend mode. After recognizing SUSP# active, the processor
completes execution of the current instruction, any pending decoded
instructions, and associated bus cycles. In addition, the microprocessor
waits for the coprocessor to indicate a not-busy status (BUSY# = 1) before
entering suspend mode and asserting suspend acknowledge (SUSPA#).

SUSP# is internally connected to a pullup resistor to prevent it from floating
active when left unconnected.

SUSPA# B4 64 B12 Suspend Acknowledge (active low). This output indicates that the
microprocessor has entered the suspend mode as a result of SUSP#
assertion or execution of a HALT instruction.

Vee A1 5 B7 Power Supply. All pins must be connected and used.
AS 11 B9
A7 16 B11
A10 17 C4
A14 30 C5
C5 44 E2
C12 52 E16
012 55 G2
G2 56 G16
G3 62 H16

G12 68 K2
G14 79 K16
L12 85 L16
M3 91 M2
M7 98 M16
M13 103 P16
N4 105 R3
N7 119 R6
P2 125 R8
P8 132 R9

139 R10
R11
R14

VCC5 47 J1 5-V Power Supply

Tl486SXL Microprocessor Bus Interface 4-11

Input/Output Signals

Table 4-2. TI486SXL Terminal Functions (Continued)

Terminal
No.

132- 144- 168-
Name pin pin pin Description

Vss A2 2 A7 Ground Pins. All pins must be connected and used.
A6 8 A9
A9 18 A11
B1 19 B3
B5 20 B4
B11 21 B5
B14 22 E1
C11 23 E17
F2 24 G1
F3 33 G17
F14 48 H1
J2 54 H17
J3 57 K1

J12 69 K17
J13 70 L1
M4 72 L17
M8 80 M1

M10 92 M17
N3 96 P17
P6 97 Q2

P14 111 R4
S6
S8
S9
S10
S11
812
S14

W/R# B10 36 N17 Write/Read. This 3-state, bus-cycle-definition signal is low during read
37 cycles (data is read from memory or I/O) and is high during write bus cycles

(data is written to memory or I/O).

4.1.2 Byte Enable Line Definitions

These 3-state outputs determine which bytes within the 32-bit data bus are
transferred during a memory or liD access. See Table 4-3.

Table 4-3. Byte Enable Line Definitions

4-12

Byte Enable Line

BEO#

BE1#

BE2#

BE3#

Byte Transferred

07-00

015-08

023-016

031-024

InpuVOufpuf Signals

4.1.3 Write Duplication as a Function of BE3# - BEQ#

During a memory write, one or both of the upper bytes (D and C) of the data
bus can be duplicated in the lower bytes (B and A) of the bus. This duplication
is dependent on BE3#-BEO# as listed in Table 4-4.

Table 4-4. Write Duplication as a Function of BE3#-BEO#

BE3#-BEO# 031-024 023-016 015-08 07-00 Duplicated Data

0000 0 C B A No

0001 0 C B X No

0011 0 C 0 C Yes

0111 0 X 0 X Yes

1000 X C B A No

1001 X C B X No

1011 X C X C Yes

1100 X X B A No

1101 X X B X No

1110 X X X A No

Note: BE3# - BEO# combinations not listed do not occur during TI486SXL bus cycles.
A = logical write data D7 - DO
B = logical write data D15 - D8
C = logical write data D23 - D16
D = logical write data D31 - D24
X = Don't care

4.1.4 Generating A 1 - AQ Using BE3# - BEQ#

Generating A 1-AO using BE3#-BEO# can be achieved by using the following
equations:

AO = (BEO# • BE2#) + (BEO# • BE1 #)

A1 = BEO#. BE1#

The relationship between A1-AO and BE3#-BEO# is shown in Table 4-5.

Table 4-5. Generating A 1-AO Using BE3#-BEO#

A31-A2 A1 AO BE3# BE2# BE1# BEO#

0 0 X X X 0

0 X X 0

0 X 0

0

Note: X = Don't care

4.1.5 Signal States During Reset and Hold Acknowledge

RESET is the highest priority input signal. When RESET is asserted, the mi­
croprocessor aborts any current bus cycle and establishes real-mode bus-

TI486SXL Microprocessor Bus Interface 4-13

Input/Output Signals

cycle definition with active buses. See Table 3-3 and Section 4.3, Reset Tim­
ing and Internal Clock Synchronization, page 4-19.

The hold-acknowledge state (Th) is entered in response to assertion of the
HOLD input during which the microprocessor floats all output and bidirectional
signals, except for HLDA and SUSPA#. In the hold-acknowledge state, all in­
puts except HOLD, FLUSH#, FLT#, SUSP# and RESET are ignored. See
Table 3-3 and subsection 4.4.9, Hold Acknowledge State, page 4-45. The
hold-acknowledge state provides the mechanism for an external device to ac­
quire the system bus.

Table 4-6. Signal States During RESET and Hold Acknowledge

Signal State Signal State During
Signal Name During Reset Hold Acknowledge

A20M# Ignored Input recognized

A31-A2 1 Float

ADS# 1 Float

BE3#-BEO# 0 Float

BS16# Ignored Ignored

BUSY# Initiates self test Ignored

D31-DO Float Float

D/C# Float

ERROR# Ignored Ignored

FLT#t Input recognized Input recognized

FLUSH# Ignored Input recognized

HLDA 0 1

HOLD Ignored Input recognized

INTR Ignored Input recognized

KEN# Ignored Ignored

LOCK# 1 Float

MEMW#t Ignored Input recognized

M/IO# 0 Float

NA# Ignored Ignored

NMI Ignored Input recognized

PEREQ Ignored Ignored

READY# Ignored Ignored

RESET Input recognized Input recognized

SMADS# Float Float

SMI# Ignored Input recognized

SUSP# Ignored Input recognized

SUSPA# (Float Driven

W/R#':t. 0 Float

t 144-pin OFP and 168-pin PGA only
':t. 144-pin OFP has W/R# on pins 36 and 37. These terminals must be connected together.

4-14

Bus-Cycle Definition

4.2 Bus-Cycle Definition

The bus-cycle-definition signals consist of four 3-state outputs (M/IO#, D/C#,
W/R#, LOCK#) that define the type of bus-cycle operation being performed.
Table 4-7 defines the bus cycles for the possible states of these signals.
M/IO#, D/C#, and W/R# are the primary bus-cycle-definition signals and are
driven valid as ADS# (Address Strobe) becomes active. During nonpipelined
cycles, the LOCK# output is driven valid along with M/IO#, D/C# and W/R#.
During pipelined addressing, LOCK# is driven at the beginning of the bus
cycle, which is after ADS# becomes active for that cycle. The bus-cycle-defini­
tion signals are active low and float while the microprocessor is in a hold-ac­
knowledge or float state.

Table 4-7. Bus-Cycle Types

4.2.1

M/IO# D/C# W/R# LOCK# Bus-Cycle Type

0 0 0 0 Interrupt acknowledge

0 0 0

0 0 X

0 X 0

0 0 I/O data read

0 liD data write

0 X 0

0 0 Memory code read

0 Halt: A31-A2 = Oh, BE3#-BEO# = 1011
Shutdown: A31-A2 = Oh, BE3#-BEO# =1110

0 0 Locked memory data read

0 Memory data read

0 Locked memory data write

Memory data write

X = don't care
- = does not occur

Clock Doubling Using Software Control

The clock-doubled feature of the Tl486SXL2 is enabledldisabled using
Configuration Control register 0 (CCRO) bit 6. The following can be used for
software enablingldisabling of CKD:

Set CKD programming sequence:

mov aI, OCOh
out 22h, al
in aI, 23h
mov ah, al
or ah, 40h
mov aI, OCOh
out 22h, al
mov aI, ah
out 23h, al

;select CCRO

;read CCRO
;save in AH
;set AH<6>
;select CCRO

;write CCRO

Tl486SXL Microprocessor Bus Interface 4-15

Bus-Cycle Definition

Reset CKD programming sequence:

mov al, OCOh
out 22h, al
in al, 23h
mov ah, al
and ah, OBFh
mov al, OCOh
out 22h, al
mov al, ah
out 23h, al

;select CCRO

;read CCRO
;save in AH
;reset AH<6>
;select CCRO

;write CCRO

4.2.1.1 Entering Clock-Doubled Mode

The TI486SXL2 microprocessors power up in the nonclock-doubled mode. To
enter the clock-doubled mode, set CLK2 to the desired frequency inside the
phase-locked loop (PLL) lock range (see Table 5-5 and Table 5-6) and issue
the set CKD programming sequence. Approximately 20 ~s after the final OUT
instruction has exited the processor pipeline, the PLL locks and the CPU
enters clock-doubled mode. Until the PLL is locked, the processor continues
to operate in the nonclock-doubled mode.

4.2.1.2 Clock-Scaling Sequence

When the processor is in clock-doubled mode and the CLK2 input is to be
scaled or stopped, the reset CKD programming sequence should be issued.
The final OUT instruction exiting the processor pipeline causes the CKD bit to
be reset and puts the processor into nonclock-doubled mode. This must occur
prior to scaling or stopping the CLK2 input in order to prevent a synchronization
error from occurring. This may be ensured by issuing a JUMP instruction, such
as JMP $ + 2, before scaling CLK2.

To return the processor to clock-doubled mode, set CLK2 to the desired fre­
quency inside the PLL lock range and issue the set CKD programming se­
quence. Approximately 20 ~s after the final OUT instruction has exited the pro­
cessor pipeline, the PLL locks and the processor enters clock-doubled mode.

4.2.1.3 Suspend Mode

4-16

Suspend mode can be initiated when the TI486SXL2 microprocessor is in
clock-doubled mode as long as the CLK2 input is not scaled or stopped. Sus­
pend mode does not disable the PLL; instead, changing the CLK2 frequency
causes the PLL to lose lock.

For more detailed information on entering and exiting suspend in nonclock­
doubled mode, refer to subsection 4.2.2, Power Management.

In order to get the lowest possible power state, bring the microprocessor out
of clock-doubled mode, enterthe suspend mode (using software or hardware),
and stop the CLK2 input.

Bus-Cycle Definition

4.2.2 Power Management

The power management signals allow the TI486SXL series microprocessors
to enter suspend mode. Suspend-mode circuitry allows the microprocessor to
consume minimal power while maintaining the entire internal CPU state.

4.2.2.1 Suspend Request (SUSP#)

Suspend Request (SUSP#) is an active-low input that requests the TI486SXL
series microprocessors to enter suspend mode. With the TI486SXL2 micro­
processors you should follow the procedure in subsection 4.2.1 to enter non­
clock-doubled mode prior to scaling or stopping the CLK2 input. After recog­
nizing SUSP# is active, the processor completes execution of the current
instruction, any pending decoded instructions, and associated bus cycles. In
addition, the microprocessor waits for the coprocessor to indicate a not-busy
condition (BUSY#=1) before entering suspend mode and asserting suspend
acknowledge (SUSPA#). During suspend mode, internal clocks are stopped
and only the logic associated with monitoring RESET, HOLD, and FLUSH# re­
mains active. With SUSPA# asserted, the CLK2 input to the microprocessor
can be stopped in either phase. Stopping the CLK2 input further reduces cur­
rent required by the microprocessor.

To resume operation, the CLK2 input is restarted (if stopped), followed by
deassertion of the SUSP# input. The TI486SXL2 processors can enter clock­
doubled mode (subsection 4.2.1.1, Entering Clock-Doubled Mode) once the
CLK2 input reaches the desired frequency within the PLL lock range. The pro­
cessor then resumes instruction fetching and begins execution in the instruc­
tion stream at the point it had stopped. The SUSP# input is level sensitive and
must meet specified setup and hold times to be recognized at a particular clock
edge. The SUSP# input is ignored following reset and can be enabled using
the SUSP bit in the CCRO Configuration register.

4.2.2.2 Suspend Acknowledge (SUSPA#)

The Suspend Acknowledge (SUSPA#) output indicates that the TI486SXL se­
ries microprocessor has entered the suspend mode as a result of SUSP#
assertion or execution of a HALT instruction. If SUSPA# is asserted and the
CLK2 input is switching, the microprocessor continues to recognize RESET,
HOLD, and FLUSH#. In addition, the TI486SXL2 microprocessor may stay in
clock-doubled mode while the CLK2 input is switching. If suspend mode was
entered as the result of a HALT instruction, the microprocessor also continues
to monitor the NMI input and an unmasked INTR input. Detection of INTR or
NMI forces the microprocessor to exit suspend mode and begin execution of
the appropriate interrupt service routine. The CLK2 input to the processor can
be stopped after SUSPA# has been asserted to further reduce the power re­
quirement of the microprocessor. For this case, the TI486SXL2 microproces­
sor must be brought out of clock-doubled mode prior to stopping the CLK2 in­
put to prevent a synchronization error. The SUSPA# output is disabled
(floated) following reset and can be enabled using the SUSP bit in the CCRO
Configuration register.

Tl486SXL Microprocessor Bus Interface 4-17

Bus-Cycle Definition

Table 4-8 shows the state of the TI486SXL series microprocessor signals
when the device is in suspend mode.

Table 4-8. Signal States During Suspend Mode

Signal State During Signal State During Halt-
Signal Name Hold Acknowledge Initiated Suspend Mode

A20M# Ignored Ignored

A31-A2

ADS#

BE3#-BEO# 0 0

8S16# Ignored Ignored

BUSY# Ignored Ignored

031-00 Float Float

O/C#

ERROR# Ignored Ignored

FLT#t Input recognized Input recognized

FLUSH# Input recognized Input recognized

HLOA 0 0

HOLD Input recognized Input recognized

INTR Latched Input recognized

KEN# Ignored Ignored

LOCK#

MEMW#t Input recognized Input recognized

M/IO# 0 0

NA# Ignored Ignored

NMI Latched Input recognized

PEREQ Ignored Ignored

REAOY# Ignored Ignored

RESET Input recognized Input recognized

SMAOS#

SMI# Latched Input recognized

SUSP# Input recognized Ignored

SUSPA# 0 0

W/R#+ 0 0

t 144-pin QFP and 168-pin PGA only
+ 144-pin QFP has duplicate W/R# inputs on pins 36 and 37

4-18

Reset Timing and Internal Clock Synchronization

4.3 Reset Timing and Internal Clock Synchronization

RESET is the highest priority input signal and is capable of interrupting any
processor activity when it is asserted. When RESET is asserted, the micropro­
cessor aborts any bus cycle. Idle, hold -acknowledge, and suspend states are
also discontinued and the reset state is established. RESET is used when the
microprocessor is powered up to initialize the CPU to a known valid state and
to synchronize the internal CPU clock with external clocks. The TI486SXL2 mi­
croprocessors are initialized to nonclock-doubled mode upon RESET going
active.

RESET must be asserted for at least 15 CLK2 periods to ensure recognition
by the microprocessor. If the self-test feature is to be invoked, RESET must
be asserted for at least 80 CLK2 periods. RESET pulses of less than 15 CLK2
periods may not have sufficient time to propagate throughout the microproces­
sor and may not be recognized. RESET pulses of less than 80 CLK2 periods
followed by a self-test request may incorrectly report a self-test failure when
no true failure exists.

Provided the RESET falling edge meets specified setup and hold times, the
internal processor clock phase is synchronized as illustrated in Figure 4-2.
The TI486SXL internal processor clock is half the frequency of the CLK2 input
and each CLK2 cycle corresponds to an internal CPU clock phase (cp). Phase
two (<1>2) of the internal clock is defined to be the second rising edge of CLK2
following the falling edge of RESET. The TI486SXL2 internal core clock is the
same frequency as the CLK2 input and the internal bus interface clock is half
the frequency of the CLK2 input. Phase two of the internal clock is defined to
be the second rising edge of CLK2 following the falling edge of RESET.

Figure 4-2. Internal Processor Clock Synchronization

CLK2

RESET

INTERNAL
PROCESSOR

CLOCK

<\> 2 or <\>1 <\> 2 or <\>1 <\>2 <\> 1

I I I
I I I

! ~-~--~-------------------+!--------~!----I I I

- ~'--__ --IV-
I I

Tl486SXL Microprocessor Bus Interface 4-19

Reset Timing and Internal Clock Synchronization

Following the falling edge of RESET (and after self-test if it was requested),
the microprocessor performs an internal initialization sequence for approxi­
mately 400 CLK2 periods. The microprocessor self-test feature is invoked if
the BUSY# input is in the active (low) state when RESET falls inactive. The
self-test sequence requires approximately (220 + 60) CLK2 periods to com­
plete. Even if the self-test indicates a problem, the microprocessor attempts
to proceed with the reset sequence. Figure 4-3 illustrates the bus activity and
timing during the microprocessor reset sequence.

Figure 4-3. Bus Activity From RESET Until First Code Fetch

I... Reset .1'" Internal ~ Cycle 1

I Initialization Nonplpehned
~ 15 CLK2 periods if not I I (R d)

1 going to request self-test. I (If self-test is performed, add I ea
1 ~ 80 CLK2 periods before 2020 + 60* to these numbers T1 T2

n h,~es;;g~-tt· I 1 2 3 ~7 ~8 ~91~:r~3;::4;;95'
CLK2 -' ~ U LJ LJ W) U U W) Y U Y L

II ~ '; * Approximately

RESET -----(" I I

x?oooa
1<1>21<1>11<1>21<1>11<1>2<1>1 <1>21<1>11<1>2.1

CLK \. r\. r1\ r1\
(Internal) \..../ '-.,(I \..../ . I '-

BUSY# ~\ High to, no SeW-Test (see Note) \~~
~ Low to Begin SeltTest ~

ERROR#~ BB
~I BE3#-~7~:: ~ LO: II I', V vali~

M/IO#, HLOA Up to 30 CLK2 ------.I :: 1 :

A36/t#~ ~ Hi9j~ '/; '/; K Vali~
LOCK# Up to 30 CLK2 ~ 1

ADS# ~Hi9\~ 'i, "~
A20M#, BS16#, ~ ~b<XXXXXXXXXXXXX
FLUSH#,KEN#,~~~~
NA#,REAOY#, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

SUSP

031-00 ~~~~~~ --~~------ (Floating) ----,r-----,r-------
SUSPA# ~--~s------ (Floating) ----,r-----,r-------

Note: BUSY# should be held stable for 80 CLK2 periods before and after the CLK2 period in which RESET falling edge occurs.

4-20

Upon completion of self-test, the EAX register contains 0000 OOOOh if the
microprocessor passed its internal self-test with no problems detected. Any·
nonzero value in the EAX register indicates that the microprocessor is faulty.

Bus Operation and Functional Timing

4.4 Bus Operation and Functional Timing

The TI486SXL series microprocessor communicates with the external system
through separate, parallel buses for data and address. This is commonly
called a demultiplexed address/data bus. This demultiplexed bus eliminates
the need for address latches required in multiplexed address/data bus config­
urations where the address and data are presented on the same pins at differ­
ent times.

TI486SXL series microprocessor instructions can act on memory data oper­
ands consisting of 8-bit bytes, 16-bit words, or 32-bit double words. The micro­
processor bus architecture allows for bus transfers of these operands without
restrictions on physical address alignment. Any byte boundary may require
more than one bus cycle to transfer the operand. This feature is transparent
to the programmer.

The microprocessor data bus (031-00) is a bidirectional bus that can be con­
figured as either a 16-bit or 32-bit wide bus as determined by 8S16#. The bus
is 16 bits wide when 8S16# is asserted. When 32 bits wide, memory and I/O
spaces are physically addressed as arrays of 32-bit double words. The micro­
processor drives the data bus during write bus cycles, and the external system
hardware drives the data bus during read bus cycles.

Every bus cycle begins with the assertion of the address strobe (AOS#). AOS#
indicates that the microprocessor has issued a new address and new bus­
cycle-definition signals. A bus cycle is defined by four signals: M/IO#, W/R#,
O/C#, and LOCK#. M/IO# defines if a memory or I/O operation is occurring,
W/R# defines the cycle to be read or write, and O/C# indicates whether a data
or control cycle is in effect. LOCK# indicates that the current cycle is a locked
bus cycle. Every bus cycle completes when the system hardware returns
REAOY# asserted.

The TI486SXL series microprocessor performs the following bus-cycle types:
o Memory read
o Locked memory read
o Memory write
o Locked memory write
o I/O read (or coprocessor read)
o I/O write (or coprocessor write)
o Interrupt acknowledge (always locked)
o HalVshutdown

When the microprocessor has no pending bus requests, the bus enters the idle
state. There is no encoding ofthe idle state on the bus-cycle-definition signals;
however, the idle state can be identified by the absence of further assertions
of AOS# following a completed bus cycle.

It should be noted that all bus diagrams apply for all TI486SXL series micropro­
cessors. The TI486SXL2 clock-doubled feature does not change the external
microprocessor bus interface.

Tl486SXL Microprocessor Bus Interface 4-21

Bus Operation and Functional Timing

4.4.1 Bus Cycles Using Nonpipelined Addressing

The shortest time unit of bus activity is a bus state, commonly called a T state.
A bus state is one internal processor clock period in duration (two CLK2 peri­
ods in nonclock-doubled mode and one CLK2 period in clock-doubled mode).
A complete data transfer occurs during a bus cycle, composed of two or more
bus states.

4.4. 1. 1 Nonpipelined Bus States

The first state of a nonpipelined bus cycle is called T1. During phase one (first
CLK2) of T1 , the address bus and bus-cycle-definition signals are driven valid
and, to signal their availability, address strobe (ADS#) is simultaneously as­
serted.

The second bus state of a nonpipelined cycle is called T2. T2 terminates a bus
cycle with the assertion of the READY# input and valid data is either input or
output depending on the bus-cycle type. The fastest microprocessor bus cycle
requires only these two bus states. READY# is ignored at the end of the T1
state.

Three consecutive bus read cycles, each consisting of two bus states, are
shown in Figure 4-4.

Figure 4-4. Fastest Nonpipelined Read Cycles

~
Cycle 1

-.~
Cycle 2 .I~ Cycle 3

~ Nonpipelined Nonpipelined I Nonpipelined

I (Read)
I

(Read)
I

(Read)
I

I T1 I T2
<1>2 I I T2

<1>2 I I T2
<1>2 I <I> 1 I <1>2 I <I> 1 I <1>2 I <I> 1 I <1>2 I <I> 1 I

CLK2
(Input)

A31-A2,

~ V~lid 1 ~ +id2 ~ ~alid3 ~ BE3#-BEO#,
M/IO#, O/C#, W/R#

A08# i\ V 1\ :1 :\ :1 :'--I I I r I I I
NA# I I I I I I I

I I I I I I I
I I I I I I I
I I I I I I I

B816# I I I I I I I
I I I I I I I
I I I I I I I

REAOY# I I I I
I

LOCK# ~ +id1 ~ +id2 ~ +id3 ~
031-00 ~--+--~--+--~--+--~ (Input During Read)

I I I I I I

Note: Fastest nonpipelined bus cycles consist of T1 and T2.

4-22

Bus Operation and Functional Timing

4.4.1.2 Nonpipelined Read and Write Cycles

Any bus cycle can be performed with nonpipelined address timing. Figure 4-5
shows a mixture of read and write cycles with nonpipelined address timing.
When a read cycle is performed, the microprocessor floats its data bus and the
externally addressed device then drives the data. The microprocessor re­
quires that all data-bus pins be driven to a valid logic state (high or low) at the
end of each read cycle, when READY# is asserted. When a read cycle is ac­
knowledged by READY# asserted in the T2 bus state, the microprocessor
latches the information present at its data-bus pins and terminates the cycle.

When a write cycle is performed, the data bus is driven by the microprocessor
beginning in phase two of T1. When a write cycle is acknowledged, the write
data remains valid throughout phase one of the next bus state to provide write­
data hold time.

Figure 4-5. Various Nonpipelined Bus Cycles (No Wait States)

1 1 Cycle 1 1 Cycle 2 1 Cycle 3 1 1 Cycle 4 1

1 Idle 1 Nonpipelined 1 Nonpipelined 1 Nonpipelined 1 Idle 1 Nonpipelined 1 Idle

1 I~
(Write)

.I~
(Read)

.I~
(Write)

.1 I~
(Read)

.1

1 1 1 1 1 / 1 1
/

1

1 Ti 1 T1 T2 1 T1
/

T2 1 T1
/

T2 1 Ti 1 T1
/

T2 1 Ti

CLK2

~~~~~~~~~~~~~ ___ va~;'i_~_1 __ ~:~)(~ __ V~f'_id_2 __ ~~~~ __ va~;li_d_3 __ ~:~~~~~ ___ v_a~;lid_4 __ ~~:~~~ 
W/R# "l"I"l'$Wt~~~""--+-i ---\.~ i r i ~~~~---i..i --~~~~ 

A:: 
/ / / / 

/ / /Bus Size/ /Bus Size/ /Bus Sizel / /Bus Size/ / 

BS16#~+_+ _+ ~+ ~ 
REAOY#~:~i~:~:~ 
~+~+ ~; ~; ~ 
_~ I; End Cycle 1 Ii End Cycle 2 ;1 End Cy_~ I; End Cycle 4 I: 

LOCK# ~ V~lid 1 X V~lid 2 )( V~lid 3 ~ V~lid 4 >@??OX 
r ~ i ~ 

031-00-1---1-< : 0"11: >1-~<: O~~ >t--1--$-~ 
Note: Idle states are shown here for diagram variety only. 

Tl486SXL Microprocessor Bus Interface 4-23 



Bus Operation and Functional Timing 

4.4.1.3 Nonpipelined Wait States 

Once a bus cycle begins, it continues until acknowledged by the external sys­
tem hardware using the READY# input. Acknowledging the bus cycle at the 
end of the first T2 results in the shortest possible bus cycle, requiring only T1 
and T2. If READY# is not immediately asserted however, T2 states are re­
peated indefinitely until the READY# input is sampled active. These intermedi­
ate T2 states are referred to as wait states. If the external system hardware 
is not able to receive or deliver data in two bus states, it withholds the READY# 
signal and at least one wait state is added to the bus cycle. Thus, on an ad­
dress-by-address basis the system is able to define how fast a bus cycle com­
pletes. 

Figure 4-6 illustrates nonpipelined bus cycles with one wait state added to 
cycles 2 and 3. READY# is sampled inactive at the end of the first T2 state in 
cycles 2 and 3. Therefore, the T2 state is repeated until READY# is sampled 
active at the end of the second T2 and the cycle is then terminated. The micro­
processor ignores the READY# input at the end of the T1 state. 

Figure 4-6. Various Nonpipelined Bus Cycles With Different Numbers of Wait States 

I I Cycle 1 I Cycle 2 I I Cycle 3 I 
I Idle I Nonpipelined I Nonpipelined I Idle I Nonpipelined I Idle 
I ~ (Read) I (Write) ~ I (Read) I 
I I ·r I r ~ 
I Ti I T1 : T2 I T1 T2 T2 I Ti I T1 T2 T2 I Ti 

CLK2 

BE~~t~:..kwmL V~lid 1:X Valid ~ :~: Valid ~ bxxxxd 
M/IO#, O/C# "'~~~~~-""""'i ---+----~----,i~-.....,.~~~~---~--,...i ---f~~~~ 

~ I IV I I_I I ~ 
W/R# I. I I "-lo~~~o.a.-_ .... I __ .....I..I __ ..... ~~~~ 

I I I I I I I 
I I 

AOS# I I I I I I I I I 

NA#~~~ 
I . I I Bus Sizel I I Bus Sizel I I I Bus Size I I 

BS16#~+~+~+_ 
~~~II 

READY#~:~i"':~:~:~
~+~I +~I +
_~ I: End Cycle 1 I; : End CY.~ :1 ! End Cycle 3 I

LOCK# _ V~lid 1 X ,Valid ~ _ ,Valid ~ Wxxxxx!
1 1 ~

031-00 ~---+----+- In 1 < Out 2 }-f---+---+- In 3 -1 1 1-$: : : III-<$)-
1 1 1 1 1 1

Note: Idle states are shown here for diagram variety only.

4-24

Bus Operation and Functional Timing

4.4.1.4 Initiating and Maintaining Nonpipelined Cycles

The bus states and transitions for nonpipelined addressing are illustrated in
Figure 4-7. The bus transitions between four possible states: T1, T2, Ti, and
Th. Active bus cycles consist of T1 and T2 states, with T2 being repeated for
wait states. Bus cycles always begin with a single T1 state. T1 is always fol­
lowed by a T2 state. If a bus cycle is not acknowledged during a given T2 and
NA# is inactive, T2 is repeated resulting in a wait state. When a cycle is ac­
knowledged during T2, the following state is T1 of the next bus cycle if a bus
request is pending internally. If no internal bus request is pending, the Ti state
is entered. If the HOLD input is asserted and the microprocessor is ready to
enter the hold-acknowledge state, the Th state is entered.

Figure 4-7. Nonpipelined Bus States

Bus States:

HOLD Asserted

HOLD Negated
No Request

HOLD Negated
Request Pending

HOLD Asserted

READY# Asserted
HOLD Negated

No Request

Request Pending
HOLD Negated

READY# Asserted
HOLD Asserted

Always

READY# Asserted
HOLD Negated

Request Pending

T1 - First clock of a nonpipelined bus cycle (CPU drives new address and asserts ADS#)
T2 - Subsequent clocks of a bus cycle when NA# has not been sampled asserted in the current bus cycle
Ti - Idle state
Th - Hold acknowledge (CPU asserts HLDA)

The fastest bus cycle consists of two states: T1 and T2.

Tl486SXL Microprocessor Bus Interface 4-25

Bus Operation and Functional Timing

Because of the demultiplexed nature of the bus, the address pipelining option
provides a mechanism for the external hardware to have an additional T state
of access time without inserting a wait state. After the reset sequence and fol­
lowing any idle bus state, the processor always uses nonpipelined address
timing. Pipelined or nonpipelined address timing is then determined on a
cycle-by-cycle basis using the NA# input. When address pipelining is not used,
the address and bus-cycle definition remain valid during all wait states. When
wait states are added and nonpipelined address timing is necessary, negate
NA# during each T2 state of the bus cycle except the last one.

4.4.2 Bus Cycles Using Pipelined Addressing

The address pipelining option allows the system to request the address and
bus-cycle definition of the next internally pending bus cycle before the current
bus cycle is acknowledged with READY# asserted. If address pipelining is
used, the external system hardware has an extra T state of access time to
transfer data. The address pipelining option is controlled on a cycle-by-cycle
basis by the state of the NA# input.

4.4.2. 1 Pipelined Bus States

4-26

Pipelined addressing is always initiated by asserting NA# during a nonpipe­
lined bus cycle. Within the nonpipelined bus cycle, NA# is sampled at the be­
ginning of phase two of each T2 state and is only ac~nowledged by the micro­
processor during wait states. When address pipelining is acknowledged, the
address (BE3#-BEO#, and A31-A2) and bus-cycle definition (W/R#, D/C#,
and M/IO#) of the next bus cycle are driven before the end of the nonpipelined
cycle. The address status output (ADS#) is asserted simultaneously to indi­
cate validity of these signals. Once in effect, address pipelining is maintained
in successive bus cycles by continuing to' assert NA# during the pipelined bus
cycles.

As in nonpipelined bus cycles, the fastest bus cycles using pipe lined address
require only two bus states. Figure 4-8 illustrates the fastest read cycles using
pipelined address timing. The two bus states for pipelined addressing are T1 P
and T2P or T1 P and T21. The T1 P state is entered following completion of the
bus cycle in which the pipelined address and bus-cycle-definition information
was made available and is the first bus state of every pipelined bus cycle. In
other words, the T1 P state follows a T2 state if the previous cycle was nonpipe­
lined, and follows a T2P state if the previous cycle was pipelined.

Bus Operation and Functional Timing

Figure 4-8. Fastest Pipelined Read Cycles

CLK2

A31-A2,
BE3#-BEO#,

I
~

Cycle 1
Pipelined
(Read)

Cycle 2
Pipelined
(Read)

Cycle 3
Pipelined
(Read)

M/IO#, D/C#, W/R# -or----~~a..---..,...---~:F_.a.---..,.._--~':!I_~--..,....-

AD8#

NA#

B816#

READY#

LOCK#

D31-DO
(Input During Read) ~--t--~--t--~--t--~

I I I I I I I
Note: Fastest pipelined bus cycles consist of T1 P and T2P.

Within the pipelined bus cycle, NA# is sampled at the beginning of phase two
(<jl2) of the T1 P state. If the microprocessor has an internally pending bus re­
quest and NA# is asserted, the T1 P state is followed by a T2P state and the
address and bus-cycle definition for the next pending bus request is made
available. If no pending bus request exists, the T1 P state is followed by a T21
state regardless of the state of NA# and no new address or bus-cycle informa­
tion is driven.

The pipelined bus cycle is terminated in either the T2P or T21 states with the
assertion of the READY# input and valid data is either input or output depend­
ing on the bus-cycle type. READY# is ignored at the end of the T1 P state.

4.4.2.2 Pipelined Read and Write Cycles

Any bus cycle can be performed with pipelined address timing. When a read
cycle is performed, the microprocessor floats its data bus and the externally
addressed device drives the data. When a read cycle is acknowledged by
READY# asserted in either the T2P or T21 bus state, the microprocessor
latches the information present at its data pins and terminates the cycle.

Tl486SXL Microprocessor Bus Interface 4-27

Bus Operation and Functional Timing

When a write cycle is performed, the data bus is driven by the microprocessor
beginning in phase two (<1>2) of T1 P. When a write cycle is acknowledged, the
write data remains valid throughout phase one (<1>1) of the next bus state to pro­
vide write-data hold time.

4.4.2.3 Pipelined Wait States

4-28

Once a pipelined bus cycle begins, it continues until acknowledged by the ex­
ternal system hardware using the microprocessor READY# input. Acknowl­
edging the bus cycle at the end of the first T2P or T21 state results in the short­
est possible pipelined bus cycle. If READY# is not immediately asserted, how­
ever, T2P or T21 states are repeated indefinitely until the READY# input is
sampled active. Additional T2P or T21 states are referred to as wait states.

Figure 4-9 illustrates pipelined bus cycles with one wait state added to cycles
1 through 3. Cycle 1 is a pipelined cycle with NA# asserted during T1 P and a
pending bus request. READY# is sampled inactive at the end of the first T2P
state in cycle 1. Therefore, the T2P state is repeated until READY# is sampled
active at the end of the second T2P and the cycle is then terminated. The mi­
croprocessor ignores the READY# input at the end of the T1 P state. ADS#,
the address, and the bus-cycle-definition signals for the pending bus cycle are
all valid during each of the T2P states. Also, asserting NA more than once dur­
ing the cycle has no additional effects. Pipelined addressing can only output
information for the next bus cycle.

Cycle 2 in Figure 4-9 illustrates a pipelined cycle, with one wait state, where
NA# is not asserted until the second bus state in the cycle. In this case, the
CPU enters the T2 state following T1 P because NA# is not asserted. During
the T2 state the microprocessor samples NA# asserted. Because a bus re­
quest is pending internally, and READY# is not active, the CPU enters the T2P
state and asserts ADS#, a valid address, and bus-cycle-definition information
for the pending bus cycle. The cycle is then terminated by an active READY#
at the end of the T2P state.

Cycle 3 of Figure 4-9 illustrates the case where no internal bus request exists
until the last state of a pipelined cycle with wait states. In cycle 3, NA# is as­
serted in T1 P, requesting the next address. Because the CPU does not have
an internal bus request pending, The T21 state is entered. However, by the end
of the T21 state, a bus request exists. Because READY# is not asserted, a wait
state is added. The CPU then enters the T2P state and asserts ADS#, a valid
address, and bus-cycle-definition information for the pending bus cycle. As
long as the CPU enters the T2P state at some point during the bus cycle, pipe­
lined addressing is maintained. NA# needs to be asserted only once during the
bus cycle to request pipelined addressing.

Bus Operation and Functional Timing

Figure 4-9. Various Pipelined Cycles (One Wait State)

I~
Cycle 1 Cycle 2

~ ... Cycle 3
~ ... Cycle 4

Pipelined ~I ... Pipelined Pipelined Pipelined
(Write) I (Read) I (Write) I (Read)

I I I
T2P I T2P I T21 T2P I

CLK2

A31-A2, __ ~ __ ~~ __ ~ __________ ~ ____ ~~ ________ ~~~~~ ________ ~
BE3#- BEO#, Valid 2
M/IO#, O/C# --,.--------I~--~----~I------r------+.~---:------+-;~~~~--.,-----~

W/R#

AOS#

I
I
I
I
I

8S16# *'
I

REAOY# l"A,A~~Aj~A~

LOCK#

I
I
I
I
I
I
I
I

I

I I 'I I I AOS# is asserted as soon
as the CPU has another
bus cycle to perform, which is
not always immediately after
NA# is asserted.

I

I

1 1 1 1
As long as the CPU enters the T2P
state during cycle 3, address
pipelining is maintained in cycle 4.

I I I

NA# could have been asserted in
T1 P if desired. Assertion now is
the latest time possible to allow
the CPU to enter T2P state to
maintain pipelining in cycle 3.

o I '

Valid 2 Valid 3

I I I I I I

031-00 _~ ... u_t X"--"'I"': --~--~}--r--f--¢x,...l:----'-~-ut-3-"""'-
1 I 1 I I

TI486SXL Microprocessor Bus Interface 4-29

Bus Operation and Functional Timing

4.4.2.4 Initiating and Maintaining Pipelined Cycles

Pipelined addressing is always initiated by asserting NA# during a nonpipe­
lined bus cycle with at least one wait state. The first bus cycle following reset,
an idle bus, or a hold-acknowledge state is always nonpipelined. Therefore,
the microprocessor always issues at least one nonpipelined bus cycle follow­
ing reset, idle, or hold acknowledge before pipelined addressing takes effect.

Once a bus cycle is in progress and the current address has been valid for one
entire bus state, the NA# input is sampled at the end of every phase one until
the bus cycle is acknowledged. Once NA# is sampled active, the microproces­
sor is free to drive a new address and bus-cycle definition on the bus as early
as the next bus state and as late as the last bus state in the cycle.

Figure 4-10 illustrates the fastest transition possible to pipelined addressing
following an idle bus state. In cycle 1, NA# is driven during state T2. Thus,
cycle 1 makes the transition to pipelined address timing, since it begins with
T1 but ends with T2P. Because the address for cycle 2 is available before cycle
2 begins, cycle 2 is called a pipelined bus cycle, and it begins with a T1 P state.
cycle 2 begins as soon as READY# assertion terminates cycle 1.

Figure 4-10. Fastest Transition to Pipelined Address Following Idle Bus State

CLK2

Idle 1

1

"'14
1

Ti 1 T1

Cycle 1
Nonpipelined

(Write)

Cycle 2
Pipelined 1

(Read) 1

"'14

I T2
I : T2P : T1P

1

: T2P 1

W/R# ~~~'-l-/~ '-____ "+--¥

AOS#

LOCK#"

1 1

031-00...L--..L-{
1 1

Cycle 3
Pipelined 1

(Write) 1

"'14

I 1
T1 P I T2P 1 T1 P

Cycle 4
Pipelined
(Read)

I T21 I
1

T21 1 Ti

Note: Following any idle bus state (Ti) the address is always nonpipelined and NA# is sampled only during wait states. To start
address pipelining after an idle state requires a nonpipelined cycle with at least one wait state (cycle 1 above). The pipe­
lined cycles (2, 3, and 4 above) are shown with various numbers of wait states.

4-30

Bus Operation and Functional Timing

Figure 4-11 illustrates transitioning to pipelined addressing during a burst of
bus cycles. Cycle 2 makes the transition to pipelined addressing. Comparing
cycle 2 to cycle 1 of Figure 4-10 (on page 4-30) illustrates that a transition
cycle is the same when it occurs and consists of at least T1, T2 (NA# is as­
serted at that time), and T2P (provided the microprocessor has an internal bus
request already pending). T2P states are repeated if wait states are added to
the cycle. Cycles 2, 3, and 4 in Figure 4-11 show that once address pipelining
is achieved it can be maintained with two-state bus cycles consisting only of
T1P and T2P.

Once a pipelined bus cycle is in progress, pipelined timing is maintained for
the next cycle by asserting NA# and detecting that the microprocessor enters
T2P during the current bus cycle. The current bus cycle must end in state T2P
for pipelining to be maintained in the next cycle. T2P is identified by the asser­
tion of ADS#. Figure 4-10 and Figure 4-11 each show pipelining ending after
cycle 4. This occurs because the microprocessor does not have an internal
bus request prior to the acknowledgment of cycle 4.

Figure 4-11. Transitioning to Pipelined Address During Burst of Bus Cycles

I I Cycle 1 I Cycle 2 I Cycle 3 I Cycle 4 I
I Idle I Nonpipelined I Nonpipelined I Pipelined I Pipelined I Idle
I - I _ (Write) I (Read) 1_ (Write) I (Read) .. L
�----·,..-------~··14~----------~.Mr~---I--~·~14~------~~~I~~~~

I Ti I T1 T2 I T1 T2 T2P I T1 P I T2P I T1 P I Ti

CLK2

AOS#

BS 16# "\/\/\./\/\/V\/\.I\/\/\,/\/\/ /\/\.I\/\I',/\/\/ /\/\/\/\I',/\/\)'\/\/\/\I

READY#~

¢m$
I

LOCK# Valid 1
i

I I ~I __ "",--
031-00 -1---r--{ Out 1

I I I
Note: Following any idle bus state (Ti), addresses are nonpipelined bus cycles, NA# is sampled only during wait states. There­

fore, to begin address pipelining during a group of nonpipelined bus cycles requires a nonpipelined cycle with at least one
wait state (cycle 2 above).

Tl486SXL Microprocessor Bus Interface 4-31

Bus Operation and Functional Timing

The complete bus-state-transition diagram, including operation with pipelined
address, is given in Figure 4-12. This is a superset of the diagram for nonpipe­
lined address. The three additional bus states for pipelined address are
shaded.

Figure 4-12. Complete Bus States

HOLD Asserted

Request Pending.
HOLD Negated

READY# Asserted.
HOLD Negated.

No Request

Bus States:

HOLD Asserted

READY# Asserted.
HOLD Asserted

READY# Asserted.
HOLD Asserted

HOLD Negated.
Request Pending

~--r- READY# Asserted.
HOLD Negated.

No Request

READY# Asserted.
HOLD Negated.
Request Pending

READY# Asserted.
HOLD Negated.
Request Pending

NA# Asserted.
(HOLD Asserted +

No Request)

I
(No Request + I

HOLD Asserted) •
NA# Asserted • I

READY# Negated I
I I
I I

READY# Negated
Request Pending
HOLD Asserted

READY# Negated

NA# Negatedl

NA# Asserted.
HOLD Negated •
Request Pending

READY# Asserted

T1 - First clock of a nonpipelined bus cycle (CPU drives new address and asserts ADS#)
T2 - Subsequent clocks of a bus cycle when NA# has not been sampled asserted in the current bus cycle
T21 - Subsequent clocks of a bus cycle when NA# has been sampled asserted in the current bus cycle but there

is not yet an internal bus request pending (CPU does not drive a new address or assert ADS#)
T2P - Subsequent clocks of a bus cycle when NA# has been sampled asserted in the current bus cycle and

there is an internal bus request pending (CPU drives new address and asserts ADS#)
T1 P - First clock of a pipelined bus cycle
Ti - Idle state
Th - Hold acknowledge state (CPU asserts HLDA)

4-32

Bus Operation and Functional Timing

4.4.3 Bus Cycles Using BS16#

Assertion of B816# during a bus cycle effectively changes the TI4868XL mi­
croprocessor 32-bit bus into a 16-bit data bus. Although slower, the 16-bit data
bus usually requires less hardware interface circuitry and generally offers
greater compatibility with 16-bit devices.

4.4.3.1 Nonpipelined Cycles

With B816# asserted, all operand transfers physically occur on data bus lines
015-00. With B816# asserted during a 32-bit nonpipelined read or write,
additional bus cycles are issued by the CPU to transfer the data.

For data reads with only the two upper bytes selected (BE3# and/or BE2# as­
serted), data is read from 015-00.

For data writes with only the two upper bytes selected (BE3# and/or BE2# as­
serted), data is duplicated on 015-00 and no further action is required.

For data reads with all four bytes selected (at least BE1 #, BE2# asserted and
possibly BEO# and/or BE3# also asserted), the CPU performs two 16-bit read
cycles using data lines 015-00. Lines 031-016 are ignored.

Oata writes with all four bytes selected (at least BE1#, BE2# asserted and
possibly BEO# and/or BE3# also asserted), the CPU performs two 16-bit write
cycles using data lines 015-00. Bytes 0 and 1 (corresponding to BEO#, BE1 #)
are sent on the first bus cycle (part one) and bytes 2 and 3 (corresponding to
BE2#, BE3#) are sent on the second bus cycle (part two). BEO# and BE1 # are
always negated during the second 16-bit bus cycle. Figure 4-13 illustrates two
nonpipelined bus cycles using B816#.

TI486SXL Microprocessor Bus Interface 4-33

Bus Operation and Functional Timing

Figure 4-13. Nonpipelined Bus Cycles Using BS 16#

CLK2

Transfer Requiring Two Cycles Transfer Requiring Two Cycles
on 16-Bit Data Bus on 16-Bit Data Bus

---------~~-------- --------~~~--------(~(,
, Cycle 1 , Cycle 1 A , Cycle 2 , Cycle 2A ,

Idle , Nonpipelined , Nonpipelined , Pipelined , Pipelined ,Idle
~ Write, Part One , Write, Part Two ~ Read, Part One ~ Read, Part Two J
, --,~ --I ,~ --I

Ti ,T1 I T2 , T1 I T2 , T1 I T2, T1 I T1 , Ti

BE1#,BEO#~~~I[J;~=7)A~IW~azy!s ~ln~ac~ti~ve~=J~~=7AA~IW~a~YS~I~na~c~tiv~e~~~!~~ ~ During Part 2 I "---..,.....----{ Duri~g Part 2 I

BE3~~1E~~: ~ ya:lid 1: :x Valid 2: :vxxxmxxxxxxxx M/IO#,D/C#-'l;~~~~ i ~
~ I I k I I _~~I~~

W/R#~ I I 1\ I i~
~ III i ~

I
AD8#

NA# Qon't J\ Don't A :X Don't x x x l2on't x x x x xx X
J\xx XXfI0I\!) xx X x x xxxx XXxl\x..)< Care Care X Care x xxx x x Care X X x x

~~. ~l I ..~ ~~

I I I I
)(,XXx x x x :'\. I x X" I X X " I, X X :" x XY'x
,XX x x x x x X ('\. I: x x x x x X" I:XXXX :'\,. IXJ\ :" Xx~ XX xxx xx x n x J\Xll>. IX X X xx Xli>. I, X X xx Xli>.

B816#

I ." I ." ." I ."

I I I 16-Bit I I 16-Bit I I 16-Bit I I 16-Bit I
~e: IBUSSize:.e:.e:

READY#_I.I~I_I
I I I I

LOCK#m : va:id1: ~ : V+2 : ~
I I : d15-dO: ~31-d16: I d15-dO I d31-d16 I

D15-DO -I---r-.-{ Out X Out >-+--$--t--qr-t----
I I ~31-d16 I Ignored I Ignored I

D31-
D161---r-<: : out: : >-t--CP--l--Y--r---

Note: Dn = physical data pin n
dn = logical data bit n

4.4.3.2 Pipelined Cycles

4-34

The input signal NA# is a request to the CPU to drive the address, byte en­
ables, and bus status signals for the next bus cycle as soon as they become
internally available. Pipelining this address allows the system logic to antici­
pate the next bus-cycle operation.

The CPU cannot acknowledge both address pipelining and 8S16# for the
same bus cycle. If NA# is already sampled when 8S16# is asserted, the data
bus remains 32 bits wide. If NA# and 8S16# are asserted in the same window,
NA# is ignored and 8S16# remains effective (the data bus becomes 16 bits
wide). Figure 4-14 illustrates the interaction between NA# and 8816#.

Bus Operation and Functional Timing

Figure 4-14. Pipelining and as 16#

CLK2

BE1#,BEO#

A Transfer Requiring Two Cycles
on 16-Bit Bus

~-------------~~------------~ (~

Previous II Cycle 1 A I Cycle 1 B Cycle 2
Cycle Pipelined I Nonpipelined Nonpipelined

____ ~.~~~--W--rit-e-,P-a-rt-O-n-e--~.14~----W-r-ite-,-P-art_T'_w_o __ ~~. ______ R_e_a_d ______ ~
I I

T2P I T2 I T1

-+~------~----------~ I

Idle

BE~,kE~~:~ __ ~ ____ ~ ___ v~a:l_id_1 __ ~~ ____ ~ ________ ~:~)(~ __ va~~li_d_2 __ ~:)(~ __ Va_li~d_3 __ ~
M/IO#, O/C# --r i i

W/R# j;',..-----IIf---.j....---r-: ---+-: ----+-:----1----1\.:\ : : :
AOS# t-Y---+---.L..l-~W : U ~"--____ ! ----'

I I NA# must be negated in these T's to allow
I I I recognit:on of ass~rted BS1 ~# in final T2s.

NA# \1V\/'\AA,f\AA,/V

I

I I I , 16-Bit I I 16-Bit I I: I
~1~IBUSSizel~IBUSSizel ~I I

REAOY# ~ . ~ I "I ~ I ~ I tiiiilpii" Bl&

LOCK#~ : : V~lid1 d31)16 :x:'alid~ ~
I d15-dO : d15-dO: : d : I I d15-dO I

015-00 .,--q:>--<: ~ut . X . O~t >-.,---+--q::>---i
i d31-d16: : d

J

31-
0

d
ut
16 : : : I I d31 -d16 I

031-016 -,--q:>--<'-r----,.._-..,..... __ or-. -----r--..,...-J>---~--+-_q:>_-1
I I I I I I I I I I I I

On = physical data pin n
dn = logical data bit n
Cycle 1 A is pipelined. Cycle 1 B cannot be pipelined, but its address can be inferred from cycle 1 to externally simulate
address pipelining during cycle 1 B.

Tl486SXL Microprocessor Bus Interface 4-35

Bus Operation and Functional Timing

4.4.4 Locked Bus Cycles

When the LOCK# signal is asserted, the TI486SXL series microprocessors do
not allow other bus master devices to gain control of the system bus. LOCK#
is driven active in response to executing certain instructions with the LOCK
prefix. The LOCK prefix allows indivisible read/modify/write operations on
memory operands. LOCK# is also active during interrupt-acknowledge cycles.

LOCK# is activated on the CLK2 edge that begins the first locked bus cycle
and is deactivated when READY# is returned at the end of the last locked bus
cycle. When using nonpipelined addressing, LOCK# is asserted during phase
one (<PI) of T1. When using pipelined addressing, LOCK# is driven valid during
phase one of T1 P.

Figure 4-4, Figure 4-5, Figure 4-6, and Figure 4-13 on pages 4-22, 4-23,
4-24, and 4-34 illustrate LOCK# timing during nonpipelined cycles and
Figure 4-8, Figure 4-9, Figure 4-10, Figure 4-11, and Figure 4-14 on pages
4-27,4-29,4-30,4-31 and 4-35 cover the pipelined-address case.

4.4.5 Interrupt-Acknowledge Cycles

4-36

The TI486SXL microprocessors are interrupted by an external source via an
input request on the INTR input (when interrupts are enabled). The micropro­
cessor responds with two locked interrupt-acknowledge cycles. These bus
cycles are similar to read cycles. Each cycle is terminated by READY#
sampled active as shown in Figure 4-15.

Bus Operation and Functional Timing

Figure 4-15. Interrupt-Acknowledge Cycles

CLK2

Idle I
I

·14

Interrupt
Acknowledge

Cycle 1

Idle
(4 Bus States)

Interrupt
Acknowledge

Cycle 2

I T2 I T2 :

BE3#-BE1# ~
I h ;{4 A31-A3,

BEO#, M/IO#,
O/C#, W/R#

A2

LOCK#

AOS#

NA#

BS16#

REAOY#

1

I

,
I

I

x x xx
lI. X xx

I
I

: :
I
I
I

!
I

I
I

I
y

I
I

x x xx
X x

I
I
I /)'1

if j I
I

I / I I
I I I I
I I I
I L I

I :
X\ .'~!:I0~edA)\x

lK
XXi \x x\ Xx

xx x x x xx x x
I

~\l I

I T

I I

I

! t?[:

i VI1 I
I I I ~ I I I I
I I I I I I)'i
I I r 1\ I I I
I I I I I

I

I
x x x xY I '\ V0l0x xx x x x x X x x x x x X I

: ~ I

I ~ 1m.
I I 1

I I I : Ignored I I I I I I Vector

07-00 i--i--i--i--<P-i---~--i--t--i--i-~-
I I I I Ignored I I I I I I Ignored

D31-DSj--j--i--1-Y1---j--t--t--j--j-Y-
Note: Interrupt vector (0-255) is read on 07-00 at end of second interrupt-acknowledge bus cycle. Because each interrupt-

acknowledge bus cycle is followed by idle bus states, asserting NA# has no practical effect.

The state of the A2 pin distinguishes the first and second interrupt-acknowl­
edge cycles. The address driven during the first interrupt-acknowledge cycle
is 4h (A31-A3 = 0, A2 = 1, BE3#-BE1# = 1, and BEO# = 0). The address
driven during the second interrupt-acknowledge cycle is Oh (A31-A2 = 0,
BE3#-BE1# = 1, and BEO# = 0).

To assure that the interrupt-acknowledge cycles are executed indivisibly, the
LOCK# output is asserted from the beginning of the first interrupt-acknowl­
edge cycle until the end of the second interrupt-acknowledge cycle. In clock­
doubled mode, four idle bus states (Ti) are inserted by the microprocessor
between the two interrupt-acknowledge cycles. In nonclock-doubled mode,
eight idle bus states are inserted.

The interrupt vector is read at the end of the second interrupt cycle. The vector
is read by the microprocessor from 07-00 of the data bus. The vector
indicates the specific interrupt number (from 0-255) requiring service.
Throughout the balance of the two interrupt cycles, 031-00 float. At the end
of the first interrupt-acknowledge cycle, any data presented to the micropro­
cessor is ignored.

Tl486SXL Microprocessor Bus Interface 4-37

Bus Operation and Functional Timing

4.4.6 Halt and Shutdown Cycles

Executing the HLT instruction or detecting a severe error causes the micropro­
cessor to either halt operation or shutdown further processing. When halt or
shutdown occurs the microprocessor signals the condition through a halt- or
shutdown-indication cycle.

4.4.6.1 Halt Indication Cycle

4-38

Executing the HLT instruction causes the microprocessor execution unit to
cease operation. Signaling its entrance into the halt state, a halt indication
cycle is performed. The halt indication cycle is identified by the state of the bus­
cycle-definition signals (M/IO# = 1, D/C# = 0, W/R# = 1, LOCK# = 1) and an
address of 2h (A31-A2 = 0, BE3# = 1, BE2# = 0, BE1 #-BEO# = 1). The halt
indication cycle must be acknowledged by asserting READY#. A halted micro­
processor resumes execution when INTR (if interrupts are enabled), NMI, or
RESET is asserted. Figure 4-16 illustrates a nonpipelined halt cycle.

Figure 4-16.

CLK2

BEO#. BE1#,
BE3#, M/IO#,

W/R#

Bus Operation and Functional Timing

Nonpipelined Halt Cycle

I Cycle 1 I Cycle 2 I I
I Nonpipelined I Nonpipelined I Idle I
I.

(Write)

~
(Halt)

~~ ~ I
I T1 T2 I T1 T2 I Ti Ti Ti Ti I

I
I

I I I I I

~ ;
:

I ~ CPU remai'ns halted
Valid 1 / II until INTR, NMI, or

- • " ~~~~~~~..¥,. RESET is asserted.

A3k~~~~~ _____ V~~I_id_1 ____ ~~~ ____ ~i ____ ~~~~~~~~~~~~~~~~~~
I I I I
~ V 1'\ IV

ADS# I \ I \. I I I I
I I I I I I I I I

NA#
I I I I I I I I I

BSI6#~~H~

REAOY#i~i~'i~
'~'~'l I I I I I I I I
I I I Halt cycle must b~ aknowledged by I I I
I I I asserting READY#. Wait states may be I I I
I I I added to the cycle if desired. I I I

LOCK# ~ vali~1 (i ~

031-00 : Oul X: OUll: X : undefined:)--~ (Floating) t---i---~
I I I I I I

Tl486SXL Microprocessor Bus Interface 4-39

Bus Operation and Functional Timing

4.4.6.2 Shutdown Indication Cycle

Shutdown occurs when a severe error is detected that prevents further proces­
sing. The TI486SXL series microprocessor shuts down as a result of a protec­
tion fault while attempting to process a double fault as well as the conditions
referenced in Chapter 2, Programming Interface. A shutdown indication cycle
is performed signaling its entrance into the shutdown state. The shutdown in­
dication cycle is identified by the state of the bus-cycle-definition signals
(M/IO# = 1, D/C# = 0, W/R# = 1, LOCK# = 1) and an address of Oh
(A31-A2 = 0, BE3#-BE1 # = 1, and BEO# = 0). The shutdown indication
cycle must be acknowledged by asserting READY#. A shutdown microproces­
sor resumes execution only when NMI or RESET is asserted. Figure 4-17
illustrates a shutdown cycle using pipelined addressing.

Figure 4-17. Pipelined Shutdown Cycle

1 Cycle 1 I Cycle 2 I I
1 Pipelined I Pipelined I Idle I
14

(Read) I (Shutdown) I
~ 1 ~ .jII

1 T1P T2P I T1P T2P I Ti Ti Ti Ti I
I

CLK2 I

BE3# BE1#: 7 II :~ CPU rem1ins : - , Valid 1 I shutdown until NMI, orl M/IO#, W/R# I,.----r I 1 RESET is, asserted. I

4-40

A31-A2 : Valid 1 ~ i ~I
BEO#,,..------~--~----t------~.~~~~~~~~~~~~~~~~~~ D/C#

I I I II I I I I I
--i-I ---;"I~I "'---.../fr I 1 1 1 1 1

ADS# I I '-. I I I I I I

NA#~ ~
~I I:~.

B816# ~ i ~

REAOY#!~ ~l~
1 1 ~ 1 1 1 1
1 I Shutdown cycle must be acknowledged by asserting READY#. 1 I

1 1 Wait states may be added to the cycle if desired. 1 1

LOCK#: vali1 1 7 ! ~

031-00 ¢>--t--~ -<: undefine~ >--~ (Floating) t---t---~

Bus Operation and Functional Timing

4.4.7 Internal Cache Interface

4.4.7. 1 Cache Fills

The TI486SXL cache is an 8K-byte write-through unified instruction/data
cache with lines that are allocated only during memory read cycles. The cache
is configured as two-way set associative, and the cache organization consists
of 1024 sets each containing two lines of four bytes each.

Any unlocked memory read cycle can be cached by the TI486SXL series mi­
croprocessor. The microprocessor does not cache accesses automatically to
memory addresses specified by the Noncacheable-Region registers. Addi­
tionally, the KEN# input can be used to enable caching of memory accesses
on a cycle-by-cycle basis. The microprocessor acknowledges the KEN# input
only if the KEN enable bit is set in the CCRO Configuration register.

As shown in Figure 4-18, the microprocessor samples the KEN# input one
CLK2 before READY# is sampled active. If KEN# is asserted and the current
address is not set as noncacheable per the Noncacheable-Region registers,
the microprocessor fills two bytes of a line in the cache with the data present
on the data bus pins.

Figure 4-18. Nonpipelined Cache Fills Using KEN#

CLK2

A31-A2,
BE3#-BEO#,

O/C#, M/IO#, W/R#

A08#

B816#

NA#

KEN#

REAOY#

LOCK#

031-00

1

1

14

1

~
1

~
1

1

+id1

1

V
$Wr

1

~
1

f\
1

Cycle 2
Nonpipelined

(Read - Cache Fill)

Valid 2

V

1

•
~ -I I

I I
I 1

I I I I I

-- ~ I 1 1 1 1
I 1

__ I~ 1 1 I
1 I I

~ V~lid1 ~ : valid2: •

~--+--~--~---~--~-~ -T-f1~1 I~I

Tl486SXL Microprocessor Bus Interface 4-41

Bus Operation and Functional Timing

As shown in Figure 4-19 and Figure 4-20 on page 4-43, the microprocessor
samples the KEN# input one CLK2 before READY# is sampled active. If KEN#
is asserted and the current address is not set as noncacheable per the
Noncacheable-Region registers, the microprocessor fills two bytes of a line in
the cache with the data present on the data bus pins. The states of
BE3#-BEO# are ignored if KEN# is asserted for the cycle.

Figure 4-19. Nonpipelined Cache Fills Using KEN# and 8S16#

4-42

CLK2

A31-A2,
BE3#-BEO#,

O/C#, M/IO#, W/R#

I
I
~

I

~
I

Cycle 1
Nonpipelined

(Read - Cache Fill)

Valid 1

I

~
I

Cycle 2
Nonpipelined

(Read - Cache Fill)

I

:
Valid 2

I

I

•
A08# i\ V i\ V I I

B816# ~ ~ -I I I
KEN# must be asserted during both read

NA#

cycles in order for the cache fill to occur.

KEN# 1"1. I I I
REAOY# I

I
I I I

~ +d1 ~ : valid< •
I d1S-dO I I d1S-dO I

031-00 ~ __ ~I __ ~ __ LI ___ ..JI __ ~_..JI
(Input During Read) --.:;..J ~ ~

I I I I I I I

LOCK#

On = physical data pin n
dn = logical data bit n

Bus Operation and Functional Timing

Figure 4-20. Pipelined Cache Fills Using KEN#

CLK2

A31-A2,
BE3#-BEO#,

D/C#, M/IO#, W/R#

AD8#

NA#

B816#

KEN#

READY#

LOCK#

D31-DO
(Input During Read)

I
I
l1li

Valid 1

Cycle 1
Pipelined

(Read - Cache Fill)

Cycle 2
Pipelined

(Read - Cache Fill)

I
I

Valid 3

W~_
... -~ I I I I

\1/: \1 ;,.......:-
~ .1 ~ 1

I

-f-I
I

Valid 1 Valid 2 Valid 3

4.4.7.2 Flushing the Cache

To maintain cache coherency with external memory, the TI486SXL series mi­
croprocessors cache contents should be invalidated when previously cached
data is modified in external memory by another bus master. The microproces­
sor invalidates the internal cache contents during execution of the INVD and
WBINVD instructions following assertion of HLDA if the BARB bit is set in the
CCRD Configuration register or following assertion of FLUSH# if the FLUSH
bit is set in CCRD.

The microprocessor samples the FLUSH# input on the rising edge of CLK2
corresponding to the beginning of phase two (<1>2) of the internal processor
clock. If FLUSH# is asserted, the microprocessor invalidates the entire con­
tents of the internal cache. The actual point in time where the cache is invali­
dated depends upon the internal state of the execution pipeline. FLUSH# must
be asserted for at least two CLK2 periods and must meet specified setup and
hold times to be recognized on a specific CLK2 edge.

Tl486SXL Microprocessor Bus Interface 4-43

Bus Operation and Functional Timing

4.4.8 Address Bit-20 Masking

Figure 4-21.

4-44

The TI486SXL series microprocessor can be forced to provide 8086 1 M-byte
address wraparound compatibility by setting the A20 bit in the CCRO Configu­
ration register and asserting the A20M# input. When the A20M# is asserted,
the 20th bit in the address to both the internal cache and the external bus pin
is masked (zeroed).

As shown in Figure 4-21, the microprocessor samples the A20M# input on the
rising edge of CLK2 corresponding to the beginning of phase 2 (<1>2) of the in­
ternal processor clock. If A20M# is asserted and paging is not enabled, the mi­
croprocessor masks the A20 signal internally starting with the next cache ac­
cess and externally starting with the next bus cycle. If paging is enabled, the
A20 signal is not masked regardless of the state of A20M#. A20 remains
masked until the access following detection of an inactive state on the A20M#
pin. A20M# must be asserted for a minimum of two CLK2 periods and must
meet specified setup and hold times to be recognized on a specific CLK2 edge.

Masking A20 Using A20M# During Burst of Bus Cycles

1 Cycle 1 1 Cycle 2 1 Cycle 3 1

Idle 1 Nonpipelined 1 Nonpipelined 1 Pipelined 1

I (Write) I (Read) I. (Write) I

Cycle 4
Pipelined

(Write)

·tll .14 ·r ·r
Ti 1 T1 I T2 1 T1 I T2 I T2P 1 T1 P I T2P 1 T1 P I T21

1

1 Ti

Bus Operation and Functional Timing

An alternative to using the A20M# pin is provided by the NCO bit in the CCRO
Configuration register. The microprocessor does not automatically cache ac­
cesses to the first 64K bytes and to 1 M byte + 64K bytes if the NCO bit is set.
This prevents data within the wraparound memory area from residing in the
internal cache and eliminates the need for masking A20 to the internal cache.

4.4.9 Hold Acknowledge State

The hold-acknowledge state provides the mechanism for an external device
in a TI486SXL microprocessor system to acquire the system bus while the
microprocessor is held in an inactive bus state. This allows external bus
masters to take control of the microprocessor bus and directly access system
hardware in a shared manner. The microprocessor continues to execute
instructions out of the internal cache (if enabled) until a system bus cycle is
required.

The hold-acknowledge state (Th) is entered in response to assertion of the
HOLD input. In the hold-acknowledge state, the microprocessor floats all out­
put and bidirectional signals, except for HLDA and SUSPA#. HLDA is asserted
as long as the microprocessor remains in the hold-acknowledge state and all
inputs except HOLD, FLUSH#, SUSP# and RESET are ignored.

State Th can be entered directly from a bus-idle state, as in Figure 4-22, or
after the completion of the current physical bus cycle if the LOCK signal is not
asserted, as in Figure 4-23 and Figure 4-24. The CPU samples the HOLD in­
put on the rising edge of CLK2 corresponding to the beginning of phase one
(</>1) of internal processor clock. HOLD is a synchronous input and can be as­
serted at any CLK2 edge, provided setup and hold requirements are met in ev­
ery bus state.

The hold-acknowledge state is exited in response to the HOLD input being ne­
gated. The next bus start is an idle state (Ti) if no bus request is pending, as
in Figure 4-22. If an internal bus request is pending, as in Figure 4-23 and
Figure 4-24, the next bus state is T1 . Th is also exited in response to RESET
being asserted. If HOLD remains asserted when RESET goes inactive, the
microprocessor enters the hold-acknowledge state before performing any bus
cycles provided HOLD is still asserted when the CPU is ready to perform its
first bus cycle.

If a rising edge occurs on the edge-triggered NMI input while in Th state, the
event is remembered as a nonmaskable interrupt 2 and is serviced when the
state is exited.

Tl486SXL Microprocessor Bus Interface 4-45

Bus Operation and Functional Timing

Figure 4-22. Requesting Hold From Bus-Idle State

CLK2

HOLO
(Note 1)

HLOA

A31-A2,
BE3#-BEO#,

O/C#, M/IO#, W/R#

AOS#
(Note 2)

BS16#,
NA#,

REAOY#

LOCK#

031-00

I
I
I
I

Idle

Ti

III I
I
I
I

~--~V

Th

Hold Acknowledge Idle

I I
I Th I Th Ti

I I
I I

i~i I ~~~I--------~

I I

: :\----1
I I I I I I

~
I 1 __ : ----+- (Floating) i----- I

I I I
I I I I I I
I ~ I I I I I
I I '-----.1-- (Floating) -.1------1-' I
I I I I I I

I I I I I I

~----+- (Floating) 1-----_.
I I I I I I

--+------I------.J.-, (Floating) ..J------I------I
II I I I I

Notes: 1) HOLD is a synchronous input and can be asserted at any CLK2 edge, provided setup and hold requirements are

4-46

met in every bus state. Violating setup or hold requirements will result in incorrect operation.

2) For maximum design flexibility the CPU has no internal pullup resistors on its outputs. External pullups may be re­
quired on ADS# and other outputs to keep them negated during hold-acknowledge period.

Bus Operation and Functional Timing

Figure 4-23. Requesting Hold From Active Nonpipelined Bus

Cycle 1 Hold Acknowledge Cycle 2
1 Nonpipelined 1 1 Nonpipelined 1

~
(Read)

I ~ .14
(Write)

~ I I
1 T1 T2 T2 1 Th Th 1 T1 T2 1

1

CLK2 1

HOLD

(See Note) - -----i------i---- : \
I I ~~------~------~

HLDA

HOLD asserted no later
than READY# asserted

1

1

A31-A2,--~~--~-----~--~-~ 1 I~ ____ ~~ ____ ~
-- (Fla1ating) ---K'-____ \l"Tt_lid __ 2 __ ~ BE3#-BEO#,

D/C#, M/IO#, W/R# -+-..a.-----..,...-----...,...--~-__f

ADS#

I 1 I

~-- (Flo~ting) ---i VI I I ,~ ____ ~.

I I 1 I

1

NA#

BS16#

READY#

(Negaled, or lasl locked cycle) '- ! I :

; Valid 1; (-- (Fla~ling) ---K\", __ ---,I"""'\l_al_id_2_~
I I I 1 1

D31-DO -+---- (~Iaaling) '-+---$--- (~Iaaling) .-~-<\",-~: _O_u_t2_~

LOCK#

Note: HOLD is a synchronous input and can be asserted at any CLK2 edge provided setup and hold requirements are met in every bus state.
Violating setup or hold requirements will result in incorrect operation.

Tl486SXL Microprocessor Bus Interface 4-47

Bus Operation and Functional Timing

Figure 4-24. Requesting Hold from Active Pipelined Bus

CLK2

HOLD
(See Note)

HLDA

1

I ..
1

1
1 T1P

Cycle 1 Hold Acknowledge Cycle 2
Nonpipelined

(Read)
Pipelined 1

(Write)
.1II1II

1

T21 T21 1 Th

HOLD asserted in same bus
state as NA# asserted.

I I
1 1

1 1

1

.. 1II1II
1

Th 1 T1 T2

1

1 1

1 1

A31-A2, -"'---+--':""""71:'~~~~~~~ 1 1 :

BE3#-BEO#, -- (Flo1ating) ---K
1

Valid 2
D/C#, M/IO#, W/R# -.,---~-.,......~~~~~~~ ..

I I 1 I

-+--........ --~---~I '--- (FI~ating) --{ V ADS#

NA# ~
BS1~$'! ! ~
~

IIIIII

READY# ~ I~: :
I 1 I I

~
(Negated. or last locked cycle) ~ I I : :

_ : Valid 1 . -- (Flotting) --i ~alid 2 .

I 1 1 I

D31-~ -O ~-t ""II"'x--_ : ---O ~ t 1--....... : -~>+--. (Flo~ting) ---i--~

LOCK#

I I 1 1 I 1

Note: HOLD is a synchronous input and can be asserted at any CLK2 edge provided setup and hold requirements are met in
every bus state. Violating setup or hold requirements will result in incorrect operation.

4.4.10 Coprocessor Interface

4-48

The data-bus, address-bus, and bus-cycle-definition signals, as well as the co­
processor interface signals (PEREQ, BUSY#, ERROR#), are used to control
communication between the TI486SXL series microprocessor and a copro­
cessor. Coprocessor or ESC opcodes are decoded by the microprocessor and
the opcode and operands are then transferred to the coprocessor via I/O port
accesses to addresses 8000 00F8h and 8000 OOFCh. Address 8000 00F8h
functions as the control-port address and 8000· OOFCh is used for operand
transfers.

Bus Operation and Functional Timing

Coprocessor cycles can be either read or write and can be either nonpipelined
or pipelined. Coprocessor cycles must be terminated by READY# and, as with
any other bus cycle, can be terminated as early as the second bus state of the
cycle.

BUSY#, ERROR#, and PEREQ are asynchronous level-sensitive inputs used
to synchronize CPU and coprocessor operation. All three signals are sampled
at the beginning of phase one (<1>1) and must meet specified setup and hold
times to be recognized at a given CLK2 edge.

4.4.11 SMM Interface

System Management Mode (SMM) uses two TI486SXL microprocessor pins,
SMI# and SMADS#. The bidirectional SMI# pin is a nonmaskable interrupt that
is a higher priority than the NMI input. SMI# must be active for at least four
CLK2 periods to be recognized by the microprocessor. Once the microproces­
sor recognizes the active SMI# input, the CPU drives the SMI# pin low for the
duration of the SMI service routine.

The SMADS# pin outputs the SMM address strobe that indicates an SMM
memory bus cycle is in progress and a valid SMM address is on the address
bus. The SMADS# functional timing, output delay times, and float delay times
are identical to the main memory address strobe (ADS#) timing.

4.4.11.1 SMI Handshake

The functional timing for SMI# interrupt is shown in Figure 4-25. Five signifi­
cant events take place during an SMI# handshake:

1) The SM 1# input pin is driven active (low) by the system logic.
2) The CPU samples SMI# active on the rising edge of CLK2 phase one (<1>1).
3) Four CLK2s after sampling the SMI# active, the CPU switches the SMI#

pin toan output and drives SMI# low.
4) Following execution of the RSM instruction, the CPU drives the SMI# pin

high for two CLK2s indicating completion of the SMI service routine.
5) The CPU stops driving the SMI# pin high and switches the SMI# pin to an

input in preparation for the next SMI interrupt. The system logic is respon­
sible for maintaining the SMI# pin at the inactive (high) level after the pin
has been changed to an input.

Figure 4-25. SMI# Timing

CLK2
(Input)

SMI# ~~i--~--~i----~)(~)l--~i/
I I I I
I I I I
234

Indicates that TI486SXL drives the SMI# pin.

I
I
I
I
5

Tl486SXL Microprocessor Bus Interface 4-49

Bus Operation and Functional Timing

4.4.11.2 liD Trapping

The TI4868XL series provides I/O trapping that can be used to facilitate power
management of I/O peripherals. When an I/O bus cycle is issued, the I/O ad­
dress is driven onto the address bus and can be decoded by external logic. If
a trap to the SMI handler is required, the 8MI# input should be activated at
least three CLK2 edges prior to returning the READY# input for the I/O cycle.
The timing for creating an I/O trap via the SMI# input is shown in Figure 4-26.
The microprocessor immediately traps to the SMI interrupt handler following
execution of the I/O instruction, and no other instructions are executed be­
tween completion of the I/O instruction and entering the 8MI service routine.
The I/O trap mechanism is not active during coprocessor accesses.

Figure 4-26. liD Trap Timing

I

CLK2
(Input)

14

T1
I

1/0 CYCLE
(Read or Write)

T2 T2
I I

T2
I

I I I

Address, ~ V :I'd \mozxxxxxxxxxx
Byte Enables "'~~~~~~--Io. __ ____ a.,...I_~_"""" ___ --10~--11'~~~~~~~

4-50

ADS#
(Output)

READY#

SMI#

I I I I
------~:\ V: :

I I I I

~ ! \,--_~i ~~~~~~ ~II
I I

: \'-+I----------IlooJ/
I I I I

j4-- 3 CLK2s ~

Bus Operation and Functional Timing

4.4.12 Power Management

The power-management features in the TI486SXL(C} family of microproces­
sors allow a dramatic reduction in the current required when the microproces­
sor is in suspend mode (typically less than three percent of the operating cur­
rent). Suspend mode is entered either by a hardware- or software-initiated
action. Using the hardware to initiate suspend mode involves a two-pin hand­
shake using the SUSP# and SUSPA# signals. Using the software involves ini­
tiating the suspend mode through execution ofthe HALT instruction. Additional
power management can be achieved by stopping and restarting the input
clock. This technique is available because the TI486SXLC series micropro­
cessors are static devices, meaning that clock can be stopped and restarted
without loss of any internal CPU data.

4.4.12.1 SUSP#-initiated Suspend Mode

The TI486SXL series microprocessor enters suspend mode when the SUSP#
input is asserted and execution of the current instruction, any pending de­
coded instructions, and associated bus cycles are completed. The micropro­
cessor also waits forthe coprocessor to indicate a not-busy status (BUSY#=1)
prior to entering suspend mode. The SUSPA# output is then asserted. The
microprocessor responds to SUSP# and asserts SUSPA# only if the SUSP bit
is set in the CCRO Configuration register.

Figure 4-27 illustrates the microprocessor functional timing for SUSP#-initi­
ated suspend mode. SUSP# is sampled on the phase two ($2) CLK2 rising
edge and must meet specified setup and hold times to be recognized at a par­
ticular CLK2 edge. The time from assertion of SUSP# to activation of SUSPA#
varies depending on which instructions were decoded prior to assertion of
SUSP#. The minimum time from SUSP# sampled active to SUSPA# asserted
is two CLK2s. As a maximum, the microprocessor can execute up to two
instructions and associated bus cycles prior to asserting SUSPA#. The time
required for the microprocessor to deactivate SUSPA# once SUSP# has been
sampled inactive is four CLK2s.

Figure 4-27. SUSP#-Initiated Suspend Mode

I I
<\>1 I <\>2 I <\>1 I <\>2 I <\>1 I <\>2 <\> 1 I<\>2 <\>1 I <\>2 <\> 1 I<\>2

CLK2

SUSP#

BUSY#

~--- 4 CLK2s -----

SUSPA#

Tl486SXL Microprocessor Bus Interface 4-51

Bus Operation and Functional Timing

If the microprocessor is in a hold-acknowledge state and SUSP# is asserted,
the processor mayor may not enter suspend mode depending on the state of
the microprocessor internal execution pipeline. If the microprocessor is in a
SUSP#-initiated suspend state and the CLK2 input is not stopped, the proces­
sor recognizes and acknowledges the HOLD input and stores the occurrence
of FLUSH#, NMI, and INTR (if enabled) for execution once suspend mode is
exited.

4.4.12.2 Halt-Initiated Suspend Mode

The TI486SXL series microprocessor also enters suspend mode as a result
of executing a HALT instruction. The SUSPA# output is asserted no more than
17 CLK2s following READY# sampled active for the HALT bus cycle as shown
in Figure 4-28. Suspend mode is then exited upon recognition of an NMI or
an unmasked INTR. SUSPA# is deactivated 12 CLK2s after sampling of an ac­
tive NMI or unmasked INTR. If the microprocessor is in a HALT-initiated sus­
pend mode and the CLK2 input is not stopped, the processor recognizes and
acknowledges the HOLD input and stores the occurrence of FLUSH# for
execution once suspend mode is exited.

Figure 4-28. HALT-Initiated Suspend Mode

I I
~ Nonpipelined HALT 4
I I
I T1 T2 I AA
I I ((I I I ((I I

--\ /~----+-II ---~)) I I I I)) I I

Ti Ti Ti

CLK2

ADS# I\'-___ ..J. I I I I I I

BE3#,BE1#, : ~I: ~I I I I ~I I
BEQ#, M/IO#, YJ/

W/R#, 'I

A31-A2,-\ ~I ~. ~ BE2#,D/C# _~...,....,. ________ ~~~~~~~~

READY#

NMI

SUSPA#

I (I I I I ((I I
) 1 1)) 1 1

1 1 12 L I
I I'-CL~2Sl __ -r-- (I 1

) 1 1

I
17 CLK2s Max -11.~-----f---.1

1

1

I
1

1

4.4.12.3 Stopping the Input Clock

4-52

Because the TI486SXL series microprocessors are static devices, the input
clock (CLK2) can be stopped and restarted without loss of any internal CPU

Bus Operation and Functional Timing

data. This assumes, of course, that the TI486SXL2 microprocessor is in non­
clock-doubled mode when the input clock is stopped. (Refer to subsection
4.2.1, Clock Doubling Using Software Control, page 4-15.) CLK2 can be
stopped in either phase one (<1>1) or phase two (<1>2) of the clock and in either
a logic-high or logic-low state. However, entering suspend mode prior to stop­
ping CLK2 dramatically reduces the CPU current requirements. Therefore, the
recommended sequence for stopping CLK2 of the TI486SXLC2 series micro­
processor from clock-doubled mode is:

1) Bring the processor out of clock-doubled mode
2) Initiate suspend mode
3) Wait for assertion of SUSPA# by the processor
4) Stop the input clock

Note:

Suspend mode can be entered while in clock-doubled mode as long as CLK2
is not scaled or stopped.

For all other cases, including the TI486SXLC2 in nonclock-doubled mode, the
recommended sequence is:

1) Initiate suspend mode
2) Wait for assertion of SUSPA# by the processor
3) Stop the input clock

The TI486SXL series microprocessor remains suspended until CLK2 is re­
started and suspend mode is exited as described above. While CLK2 is
stopped, the microprocessor can no longer sample and respond to any input
stimulus including the HOLD, FLUSH#, NMI, INTR, and RESET inputs.
Figure 4-29 illustrates the recommended sequence for stopping CLK2 using
SUSP# to initiate suspend mode. CLK2 should be stable for a minimum of 10
clock periods before SUSP# is deasserted.

Figure 4-29. Stopping CLK2 During Suspend Mode

I I I
I <1>1 I <1>2 I <1>1 I <1>2 I <1>1

1 I

CLK2 hll ~AAN-Lt-
SUSP#

BUSY#

SUSPA#

1 __ ----~((~------------
\ 1 rI))

-------~((~----------------~((~--+---~()))))
1

-------\((((1 (('r---------..... ((.... -------------)))) I))))
1 --- 1 0 CLK2s Min -----.t.1

1

_____ ---\((~----~ I

)) \ _______ ((~----___*.((~--------...... (~(_____ V
))))))

Tl486SXL Microprocessor Bus Interface 4-53

Bus Operation and Functional Timing

4.4.13 Float (144-Pin QFP and 168-Pin PGA Pinouts Only)

Activating the FLT # input on the 144-pin or 168-pin TI486SXL floats all bidirec­
tional and output signals. Asserting FL T # electrically isolates the microproces­
sor from the surrounding circuitry. This feature is useful in systems designs
that contain an upgrade socket.

FLT# is an asynchronous, active-low input. It is recognized on the rising edge
of CLK2. When recognized, it aborts the current bus state and floats the out­
puts of the microprocessor as shown in Figure 4-30. FLT# must be asserted
for a minimum of 16 CLK2 cycles. To exit the float condition, RESET should
be asserted and held asserted until after FLT# is deasserted.

Asserting the FLT# input unconditionally aborts the current bus cycle and
forces the microprocessor into the float mode. As a result, the microproces­
sors are not guaranteed to enter float in a valid state. After deactivating FLT#,
the CPU is not guaranteed to exit float in a valid state. The microprocessor
RESET input must be asserted prior to exiting float to ensure that the micropro­
cessor is reset and that it returns in a valid state.

Figure 4-30. Entering and Exiting Float

CLK2

FLT# , ____________ ,

CONTROL ~ Valid }_------------------{~ ______ X~ __ _

DATA --{}-{ Valid }------------------{ _____ C
ADDRESS ~o....-__ v_al_id __ _'}------------------{ ____ X __ _

RESET ------,

4-54

Chapter 5

Electrical Specifications

Electrical specifications for the TI486SXL(C) family of microprocessors are
provided in this chapter. The specifications include electrical connection re­
quirements for all package pins, maximum ratings, recommended operating
conditions, dc electrical characteristics, and ac characteristics.

Topic Page

5:2· Absolvt~ 'Maximl;lmR~tings .. · .. 0 .; ~ ••• " ••• ' ••••••• o 5-4
. .

·5.3flecQrnrt1e.,d~d O'pel'~~ing CQrlcfitions .;. d ; '0 .••••••• ' .~ •• 5-5

5.4. DC Electti~al·Characteri$ties ' ~ •.. " .~ ...• ~ ' 5~ 7
, ~, " _ " ' , < " ,:' J , ' , -, , >

5~!? ·ACCha.ra.ct~ristics~ ' : .. ~ 0:; .~;; , •••••• ; '0. "'0 •• ~.. • • . • •. 5.:16

5-1

Electrical Connections

5.1 Electrical Connections

This section provides specific requirements for power and ground connec­
tions, decoupling, termination of inputs with internal pullup/pulldown resistors,
termination of system functional inputs requiring external pullup resistors, ter­
mination of unused inputs, and connection to terminals designated NC.

5.1.1 Power and Ground Connections and Decoupling

The high-frequency operation of the TI486SXL(C) microprocessors makes it
necessary to install and test the devices using standard high-frequency tech­
niques. The high clock frequencies used in the microprocessors and their out­
put buffer circuits can cause transient power surges when several output buff­
ers switch output levels simultaneously. These effects can be minimized by fil­
tering the dc power leads with low-inductance decoupling capacitors, using
low-impedance wiring, and by making connection to all of the V CC, V CC5, and
Vss (GNO) terminals.

5.1.2 Pullup/Pulidown Resistors

Table 5-1 list~ the input terminals that are internally connected to pullup and
pulldown resistors (see Figure 5-1). The pullup resistors are connected to
VCC and the pulldown resistors are connected to VSS. When unused, these
inputs do not require connection to external pullup or pulldown resistors.

Note:

The internal pullup and pulldown resistors are designed to tie off the individu­
al internal signal associated with that pin. External signals should not be ter­
minated to any of these pins.

Table 5-1. Terminals Connected to Internal Pullup and Pulldown Resistors

TI486SXLC TI486SXL TI486SXL TI486SXL
Signal 100-Terminal 132-Terminal 144-Terminal 168-Terminal Resistor

A20M# 31 F13 43 D15 Pullup

8USY# 34 89 48 S4 Pullup

8S16# C14 115 C17 Pullup

ERROR# 36 A8 49 A12 Pullup

FLT# 28 40 C11 Pullup

FLUSH# 30 E13 42 C15 Pullup

KEN# 29 812 41 F15 Pullup

MEMW# 66 816 Pullup

PEREQ 37 C8 50 R17 Pulldown

SMI# 47 C7 67 810 Pullup

SUSP# 43 A4 63 C13 Pullup

5-2

Electrical Connections

Figure 5-1. Internal PulluplPulldown-IV Characteristic

60

50

« 40
:::t
I -c: 30 CI)

j

0
20

10

0

/
/

V
I

/
/
o 0.5 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Voltage-V

It is recommended that the ADS# and LOCK# output terminals be connected
to pullup resistors, as indicated in Table 5-2. The external pullups ensure that
the signals remain negated during hold-acknowledge states.

Table 5-2. Terminals Requiring External Pullup Resistors

TI486SXLC TI486SXL TI486SXL TI486SXL External
Signal 100-Terminal 132-Terminal 144-Terminal 168-Terminal Resistor

ADS# 16 E14 26 S17 20-kQ pullup

LOCK# 26 C10 38 N15 20-kQ pullup

5.1.3 NC Designated Terminals

Terminals designated NC should be left disconnected. Connecting or terminat­
ing any NC terminal(s) to a pullup resistor, pulldown resistor, or an active signal
can cause unpredictable results or nonperformance of the microprocessor.

5.1.4 Unused Signal Input Terminals

All signal inputs not used by the system designer and not listed in Table 5-1
should be connected eitherto VSsortoVCc. Connect active-high inputs to Vss
through a 20-k,Q (±100/0) pulldown resistor and active-low inputs to V CC
through a 20-k,Q (±1 0%) pullup resistor to prevent possible spurious operation.

Electrical Specifications 5-3

Absolute Maximum Ratings

5.2 Absolute Maximum Ratings

The absolute maximum ratings provide specific limits regarding power supply
and input voltages, input and output current limits, and operating and storage
temperatures.

Table 5-3 specifies the absolute maximum ratings for the TI486SXL(C) family
of microprocessors.

Table 5-3. Absolute Maximum Ratings Over Operating Free-Air Temperature Range
(Unless Otherwise Noted)t

Parameter Min Max Unit

TI486SXLC and TI486SXL With respect to VSS -0.5 6.5 V

Supply voltage, VCC TI486SXLC-V, TI486SXL -V,
With respect to V SS -0.3 5.5 V TI486SXLC-G, and TI486SXL-G

Voltage on any terminal With respect to V SS -0.5 VCC+0.5 V

Case temperature Power applied -65 110 °C

Storage temperature No bias -65 150 °C

t Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress
ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended
operating conditions is not implied. Exposure to absolute-maxi mum-rated conditions for extended periods may affect device
reliability.

5-4

Recommended Operating Conditions

5.3 Recommended Operating Conditions

Recommended operating conditions provide specific values for power supply
and input voltages, required input threshold ranges, output drive currents
available for system interfacing, and operating levels for clamp currents and
case temperature.

5.3.1 3.3-Volt Microprocessors With 5-Volt Tolerant Inputs, Outputs, and II0s

Table 5-4 presents the recommended operating conditions for the
TI486SXL-G 3.3-V microprocessors with 5-V-tolerant inputs, outputs, and
liDs.

During power up and power down conditions, the 3.3-V V CC terminals and the
5-VVCC5 terminal should be ramped simultaneously asthe 3.3-VVCCvoltage
should not exceed the 5-V VCC5 voltage by more than 1 V or the device may
not initialize correctly. Conversely, the 5-V V CC5 can exceed the 3.3-V V CC by
up to 2.25 V.

Table 5-4. TI486SXL -G Recommended Operating Conditions

Min Max Unit

VCC Supply voltage t With respect to V SS See Note 1 3 3.6 V

VCC5 Supply voltage:j: With respect to V SS See Note 2 3 5.25 V

VIH High -level input voltage 2 VCC5+ 0.3 V

VIL Low-level input voltage -0.3 0.6 V

VILC CLK2 low-level input voltage -0.3 0.5 V

VIHC CLK2 high -level input voltage VCC-0.3 VCC5+ 0.3 V

IOH High -level output current VOH = VOH(min) -2 rnA

IOL Low-level output current VOL = VOL(max) 5 rnA

PLLLOCK
Phase -locked loop frequency With respect to CLK 2

32 50 MHz
lock range frequency

TI486SXLC in 100-pin
0 85 QFP

Case temperature
Power TI486SXL in 132- and

0 85 °c tc applied 168-pin PGA

TI486SXL in 144-pin
0 85 QFP

Notes: 1) V CC should be no more than 1 V greater than V CC5 during power up or the device may not initialize correctly.

2) VCC5 should be connected to the 3.3-V supply in a3.3-V~only system. In mixed systems (3.3/5 V) VCC5 should be
connected to the 5-V supply.

Electrical Specifications 5-5

Recommended Operating Conditions

5.3.2 3.3-Volt Microprocessors

Table 5-5 presents the recommended operating conditions for the
TI486SXLC-V and TI486SXL-V 3.3-V microprocessors.

Table 5-5. TI486SXLC-V and TI486SXL-V Recommended Operating Conditions

Min "Max Unit

VCC Supply voltage With respect to V SS 3 3.6 V

VIH High -level input voltage 2 VCC+0.3 V

VIL Low-level input voltage -0.3 0.6 V

VILC CLK2 low-level input voltage -0.3 0.5 V

VIHC CLK2 high -level input voltage VCC-0.3 VCC+0.3 V

IOH High -level output current VOH = VOH(min) -2 rnA

IOL Low-level output current VOL = VOL(max) 5 rnA

PLLLOCK
Phase -locked loop frequency With respect to CLK2

32 50 MHz lock range frequency

TI486SXLC in 100-pin
0 85 OFP

tc Case temperature
Power TI486SXL in 132- and °c applied 168-pin PGA 0 85

TI486SXL in 144-pin OFP 0 85

5.3.3 5-Volt Microprocessors

Table 5-6 presents the recommended operating conditions for the
TI486SXLC and TI486SXL 5-V microprocessors.

Table 5-6. TI486SXLC and TI486SXL Recommended Operating Conditions

Min Max Unit

VCC Supply voltage With respect to V SS 4.75 5.25 V

VIH High -level input voltage 2 VCC+0.3 V

VIL Low-level input voltage -0.3 0.8 V

VILC CLK2 low-level input voltage -0.3 0.8 V

VIHC CLK2 high -level input voltage 3.7 VCC+0.3 V

IOH High -level output current VOH=VOH(min) -1 rnA

IOL Low-level output current VOL = VOL(max) 5 rnA

PLLLOCK
Phase -locked loop frequency With respect to CLK 2

32 50 MHz lock range frequency

TI486SXLC in 100-pin
0 100 OFP

tc Case temperature
Power TI486SXL in 132- and

0 85 °C applied 168-pin PGA

TI486SXL in 144-pin
0 100 OFP

5-6

DC Electrical Characteristics

5.4 DC Electrical Characteristics

The dc electrical characteristics tables provide specific data regarding the ca­
pabilities of the TI486SXL(C) family microprocessors to interface directly with
either CMOS- or TTL-type system functions. Devices are offered for operation
in 3.3 and 5-volt mixed, 3.3-volt only, and 5-volt only systems.

5.4.1 3.3-Volt Microprocessors With 5-Volt-Tolerant Inputs, Outputs, and 1I0s

o Table 5-7 covers the 3.3-V 40, 20-MHz TI486SXL-G40.
o Table 5-8 on page 5-8 covers the 3.3-V 50-MHz TI486SXL2-G50.

Table 5-7. T1486SXL-G40 Electrical Characteristics at Recommended Operating
Conditions (Typical values are at VCC = 3.3 \I, VCC5 = 5 \I, and 1A = 25°C)

T1486SXL-G40
Parameter Test Conditions Unit

Min Typ Max

VOL Low-level output voltage IOL=3 rnA 0.4 V

10H =-1 rnA 2.4
VOH High-level output voltage V

10H =-0.2mA VCC-O.4

II Input current (leakage) VIN = 0, VIN ~ VCC See Note 1 -,: ±15 ~A

IIH
High-level input current at

VIN = 2.4, See Note 2 200 ~A PEREQ

IlL Low-level input current VIL = 0.45 V, See Note 3 -400 ~A

ICC Supply current (Active mode) 20 MHz (CLK2 = 40 MHz) ~ 300 400 rnA

ICCSM Supply current (Suspend mode)
20 MHz

15 rnA (CLK2 = 40 MHz) See Note 4

ICCSS Standby supply current
o MHz, Suspended/CLK2 stopped,

0.1 1 rnA See Note 4

CIN Input capacitance fc = 1 MHz, See Note 5 10 pF

COUT Output or I/O capacitance fc = 1 MHz, See Note 5 12 pF

CCLK Input capacitance CLK2 fc = 1 MHz, See Note 5 20 pF

Notes: 1) Applicable for all input terminals except those with an internal pullup resistor. See Table 5-1.

2) PEREQ has an internal pulldown resistor.

3) Applicable for all inputs that have an internal pullup resistor. See Table 5-1.

4) All inputs at 0 or VCC. All inputs held static, (except CLK2 as indicated). All outputs unloaded (static lOUT = 0 rnA).

5) Not 1 00% tested

Electrical Specifications 5-7

DC Electrical Characteristics

Table 5-8. T1486SXL2-G50 Electrical Characteristics at Recommended Operating
Conditions (Typical values are at VCC = 3.3 V, VCC5 = 5 V, and 1A = 25°C)

T1486SXL2-G50
Parameter Test Conditions Unit

Min Typ Max

VOL Low-level output voltage 10L= 3 rnA 0.4 V

10H =-1 rnA 2.4
VOH High-level output voltage V

IOH =-0.2 rnA VCC-O.4

II Input current (leakage) VIN = 0, VIN ;::: VCC See Note 1

~
±15 ~A

IIH
High-level input current at

VIN = 2.4, See Note 2 200 ~A PEREa

IlL Low-level input current VIL = 0.45 V, See Note 3 -400 ~A

ICC Supply current (Active mode) 25 MHz (CLK2 = 50 MHz) '%~ 365 500 rnA

ICCSM Supply current (Suspend mode)
25 MHz

20 rnA (CLK2 = 50 MHz) See Note 4

ICCSS Standby supply current
o MHz, Suspended/CLK2 stopped,

0.1 1 rnA See Note 4

CIN Input capacitance fc = 1 MHz, See Note 5 10 pF

COUT Output or 1/0 capacitance fc = 1 MHz, See Note 5 12 pF

CCLK Input capacitance CLK2 fc = 1 MHz, See Note 5 20 pF

Notes: 1) Applicable for all input terminals except those with an internal pullup resistor. See Table 5-1.

2) PEREQ has an internal pulldown resistor.

3) Applicable for all inputs that have an internal pullup resistor. See Table 5-1.

4) All inputs at 0 or VCC. All inputs held static, (except CLK2 as indicated). All outputs unloaded (static lOUT = 0 rnA).

5) Not 100% tested

5-8

DC Electrical Characteristics

5.4.2 3.3-Volt Microprocessors

o Table 5-9 covers the 3.3-V 25-MHz TI486SXLC-V25.
o Table 5-10 on page 5-10 covers the 3.3-V 40,20 MHz TI486SXL-V40.
o Table 5-11 on page 5-11 covers the 3.3-V 50,25 MHz T1486SXL2-V50

Table 5-9. TI486SXLCB- V25 Electrical Characteristics at Recommended Operating
Conditions (Typical values are at Vee = 3.3 V and fA = 25°C)

TI486SXLC-V25
Parameter Test Conditions Unit

Min Typ Max

VOL Low-level output voltage 10L= 3 rnA 0.4 V

10H =-1 rnA 2.4
VOH High-level output voltage V

10H =-0.2 rnA VCC-O.4

II Input current (leakage) VIN = 0, VIN ~ VCC See Note 1

~
±15 /-LA

IIH
High-level input current at

VIN = 2.4, See Note 2 200 /-LA PEREQ

IlL Low-level input current VIL = 0.45 V, See Note 3 -400 /-LA

ICC Supply current (Active mode) 25 MHz ~ 225 285 rnA

ICCSM Supply current (Suspend mode) 25 MHz See Note 4 6 rnA

ICCSS Standby supply current
o MHz, Suspended/CLK2 stopped,

0.1 1 rnA See Note 4

CIN Input capacitance fc = 1 MHz, See Note 5 10 pF

COUT Output or I/O capacitance fc = 1 MHz, See Note 5 12 pF

CCLK Input capacitance CLK2 fc = 1 MHz, See Note 5 20 pF

Notes: 1) Applicable for all input terminals except those with an internal pullup resistor. See Table 5-1.

2) PEREa input has an internal pulldown resistor.

3) Applicable for all inputs that have an internal pullup resistor. See Table 5-1.

4) All inputs at 0 or VCC. All inputs held static, (except CLK2 as indicated). All outputs unloaded (static lOUT = 0 rnA).

5) Not 100% tested

Electrical Specifications 5-9

DC Electrical Characteristics

Table 5-10. T1486SXL·V40 Electrical Characteristics at Recommended Operating
Conditions (Typical values are at Vee = 3.3 V and 1A = 25°C)

T1486SXL-V40
Parameter Test Conditions

Min Typ Max

VOL Low-level output voltage 10L= 3 mA 0.4

10H =-1 mA 2.4
VOH High-level output voltage

10H =-0.2 mA VCC-O.4

II Input current (leakage) VIN = 0, VIN ~ VCC See Note 1 ±15

IIH
High-level input current at

VIN = 2.4, See Note 2
-;: 200 PEREQ

IlL Low-level input current VIL = 0.45 V, See Note 3 -400

ICC Supply current (Active mode) 20 MHz (CLK2 = 40 MHz) 300 400

ICCSM Supply current (Suspend mode)
20 MHz ~
(CLK2 = 40 MHz) See Note 4 15

ICCSS Standby supply current
o MHz, Suspended/CLK2 stopped,

0.1 1 See Note 4

CIN Input capacitance fc = 1 MHz, See Note 5 10

COUT Output or I/O capacitance fc = 1 MHz, See Note 5 12

CCLK Input capacitance CLK2 fc = 1 MHz, See Note 5 20

Notes: 1) Applicable for all input terminals except those with an internal pullup resistor. See Table 5-1.

2) PEREa has an internal pulldown resistor.

3) Applicable for all inputs that have an internal pullup resistor. See Table 5-1.

Unit

V

V

IlA

IlA

IlA

mA

mA

mA

pF

pF

pF

4) All inputs at 0 orVcc. All inputs held static, (except CLK2 as indicated). All outputs unloaded (static lOUT = 0 mAl.

5) Not 100% tested

5-10

DC Electrical Characteristics

Table 5-11. T1486SXL2- V50 Electrical Characteristics at Recommended Operating
Conditions (Typical values are at Vee = 3.3 V and 1A = 25°C)

T1486SXL2-V50
Parameter Test Conditions

Min Typ Max

VOL Low-level output voltage 10L= 3 rnA 0.4

IOH=-1 rnA 2.4
VOH High-level output voltage

IOH =-0.2 rnA VCC-O.4

II Input current (leakage) VIN = 0, VIN ~ VCC See Note 1 ±15

IIH
High-level input current at

VIN = 2.4, See Note 2 ~200 PEREQ

IlL Low-level input current VIL = 0.45 V, See Note 3 -400

ICC Supply current (Active mode) 25 MHz (CLK2 = 50 MHz) ~ 365 500

ICCSM Supply current (Suspend mode)
25 MHz

20 (CLK2 = 50 MHz) See Note 4

ICCSS Standby supply current
o MHz, Suspended/CLK2 stopped,

0.1 1 See Note 4

CIN Input capacitance fc = 1 MHz, See Note 5 10

COUT Output or 1/0 capacitance fc = 1 MHz, See Note 5 12

CCLK Input capacitance CLK2 fc = 1 MHz, See Note 5 20

Notes: 1) Applicable for all input terminals except those with an internal pullup resistor. See Table 5-1.

2) PEREQ has an internal pulldown resistor.

3) Applicable for all inputs that have an internal pullup resistor. See Table 5-1.

Unit

V

V

/lA

/lA

/lA

rnA

rnA

rnA

pF

pF

pF

4) All inputs at 0 or VCC. All inputs held static, (except CLK2 as indicated). All outputs unloaded (static lOUT = 0 rnA).

5) Not 100% tested

Electrical Specifications 5-11

DC Electrical Characteristics

5.4.3 5-Volt Microprocessors

o Table 5-12 covers the 5-V 40, 20-MHz TI486SXLC-040.
o Table 5-13 on page 5-13 covers the 5-V 50, 25-MHz TI486SXLC2-050.
o Table 5-14 on page 5-14 covers the 5-V 40, 20-MHz TI4868XL-040.
o Table 5-15 on page 5-15 covers the 5-V 50. 25-MHz TI486SXL2-050.

Table 5-12. TI486SXLC-040 Electrical Characteristics at Recommended Operating
Conditions (Typical values are at Vee = 5 V and TA = 25°C)

TI486SXLC -040
Parameter Test Conditions

Min Typ Max

VOL Low-level output voltage 10L = 5 mA 0.4

10H =-1 mA 2.4
VOH High-level output voltage

10H =-0.2 mA VCC-0.5

II Input current (leakage) VIN = 0, VIN ~ VCC See Note 1 _'0k~ ±15

IIH
High-level input current at

VIN = 2.4, See Note 2 200 PEREQ

IlL Low-level input current VIL = 0.45 V, See Note 3 -400

ICC Supply current (Active mode) 20 MHz (CLK2 = 40 MHz) 580 725

ICCSM Supply current (Suspend mode)
20 MHz

10 (CLK2 = 40 MHz) See Note 4

ICCSS Standby supply current
o MHz, Suspended/CLK2 stopped

0.1 1 See Note 4

CIN Input capacitance fc = 1 MHz, See Note 5 10

COUT Output or 1/0 capacitance fc = 1 MHz, See Note 5 12

CCLK Input capacitance CLK2 fc = 1 MHz, See Note 5 20

Notes: 1) Applicable for all input terminals except those with an internal pullup resistor. See Table 5-1.

2) PEREQ has an internal pulldown resistor.

3) Applicable for all inputs that have an internal pullup resistor. See Table 5-1.

Unit

V

V

~A

~A

~A

mA

mA

mA

pF

pF

pF

4) All inputs at 0 or VCC. All inputs held static, (except CLK2 as indicated). All outputs unloaded (static lOUT = 0 mA).

5) Not 100% tested

5-12

DC Electrical Characteristics

Table 5-13. T1486SXLC2-050 Electrical Characteristics at Recommended Operating
Conditions (Typical values are at Vee = 5 V and TA = 25°C)

TI486SXLC2 -050
Parameter Test Conditions Unit

Min Typ Max

VOL Low-level output voltage IOL=5 mA 0.45 V

IOH=-1 mA 2.4
VOH High-level output voltage V

10H =-0.2 mA VCC-0.5

II Input current (leakage) VIN = 0, VIN ~ VCC See Note 1 ±15 /lA

High-level input current at ~ IIH PEREQ VIN = 2.4, See Note 2 200 /lA

IlL Low-level input current VIL = 0.45 V, See Note 3 , -400 /lA

ICC Supply current (Active mode) 25 MHz (CLK2 = 50 MHz)
,,:::::;=

640 850 mA

ICCSM Supply current (Suspend mode)
25 MHz

9 mA (CLK2 = 50 MHz) See Note 4

ICCSS Standby supply current
o MHz, Suspended/CLK2 stopped,

0.1 1 mA See Note 4

CIN Input capacitance fc = 1 MHz, See Note 5 10 pF

COUT Output or I/O capacitance fc = 1 MHz, See Note 5 12 pF

CCLK Input capacitance CLK2 fc = 1 MHz, See Note 5 20 pF

Notes: 1) Applicable for all input terminals except those with an internal pullup resistor. See Table 5-1.

2) PEREa has an internal pulldown resistor.

3) Applicable for all inputs that have an internal pullup resistor. See Table 5-1.

4) All inputs at 0.4 or VCC-O.4 (CMOS levels). All inputs held static, (except CLK2 as indicated). All outputs unloaded
(static lOUT = 0 mA).

5) Not 100% tested

Electrical Specifications 5-13

DC Electrical Characteristics

Table 5-14. TI486SXL -040 Electrical Characteristics at Recommended Operating
Conditions (Typical values are at nominal Vee = 5 Vand 1A = 25°C)

T1486SXL-040
Parameter Test Conditions

Min Typ Max

VOL Low-level output voltage 10L= 5 mA 0.45

10H =-1 mA 2.4
VOH High-level output voltage

10H =-0.2 mA VCC-0.5

II Input current (leakage) VIN = 0, VIN ;::: VCC See Note 1 ±15

IIH
High-level input current at

VIN = 2.4, See Note 2 ~200 PEREQ

IlL Low-level input current VIL = 0.45 V, See Note 3 -400

ICC Supply current (Active mode) 20 MHz (CLK2 = 40 MHz) 600 800

ICCSM Supply current (Suspend mode)
20 MHz

10 (CLK2 = 40 MHz) See Note 4

ICCSS Standby supply current
o MHz, Suspended/CLK2 stopped,

0.1 1 See Note 4

CIN Input capacitance fc = 1 MHz, See Note 5 10

COUT Output or 1/0 capacitance fc = 1 MHz, See Note 5 12

CCLK Input capacitance CLK2 fc = 1 MHz, See Note 5 20

Notes: 1) Applicable for all input terminals except those with an internal pullup resistor. See Table 5-1.

2) PEREQ input has an internal pulldown resistor.

3) Applicable for all inputs that have an internal pullup resistor. See Table 5-1.

Unit

V

V

IlA

IlA

IlA

mA

mA

mA

pF

pF

pF

4) All inputs at 0 or VCC. All inputs held static, (except CLK2 as indicated). All outputs unloaded (static lOUT = 0 mA).

5) Not 100% tested

5-14

ADVANCE INFORMATION concerns new products in the sampling or
preproduction phase of development. Characteristic data and other
specifications are subject to change without notice.

DC Electrical Characteristics

Table 5-15. T1486SXL2-050 Electrical Characteristics at Recommended Operating
Conditions (Typical values are at nominal Vee = 5 V and TA = 25°C)

T1486SXL2-050
Parameter Test Conditions

Min Typ Max

VOL Low-level output voltage 10L= 5 mA 0.45

10H =-1 mA 2.4
VOH High-level output voltage

10H =-0.2 mA VCC-0.5

II Input current (leakage) VIN = 0, VIN ;::: VCC See Note 1 ±15

~ IIH
High-level input current at

VIN = 2.4, See Note 2 200 PEREQ

IlL Low-level input current VIL = 0.45 V, See Note 3 -400

ICC Supply current (Active mode) 25 MHz (CLK2 = 50 MHz) 670 900

ICCSM Supply current (Suspend mode)
25 MHz

10 (CLK2 = 50 MHz) See Note 4

ICCSS Standby supply current
o MHz, Suspended/CLK2 stopped,

0.1 1 See Note 4

CIN Input capacitance fc = 1 MHz, See Note 5 10

COUT Output or 1/0 capacitance fc = 1 MHz, See Note 5 12

CCLK Input capacitance CLK2 fc = 1 MHz, See Note 5 20

Notes: 1) Applicable for all input terminals except those with an internal pullup resistor. See Table 5-1.

2) PEREQ input has an internal pulldown resistor.

3) Applicable for all inputs that have an internal pullup resistor. See Table 5-1.

Unit

V

V

JlA

JlA

JlA

mA

mA

mA

pF

pF

pF

4) All inputs at 0 or VCC. All inputs held static, (except CLK2 as indicated). All outputs unloaded (static lOUT = 0 mA).

5) Not 100% tested

ADVANCE INFORMATION concerns new products in the sampling or
preproduction phase of development. Characteristic data and other
specifications are subject to change without notice.

Electrical Specifications 5-1 5

AC Characteristics

5.5 AC Characteristics

The ac characteristics provide detailed information regarding measurement
points, specific timing requirements for setup and hold times, and propagation
delay times of the TI486SXL(C) microprocessors.

5.5.1 Measurement Points for AC Characteristics

The rising-clock-edge reference level VREFC, and other reference levels are
specified in Table 5-16 for the TI486SXL(C) family of microprocessors. Input
or output signals must cross these levels during testing.

Table 5-16. Measurement Points for AC Characteristics

5-16

Symbol TI486SXLC-V and TI486SXL-V TI486SXLC and TI486SXL Unit

VREFC 1.5 2 V

VREF 1.2 1.5 V

VIHC VCC-0.3 VCC-O.B V

VILC 0.6 O.B V

VIHD 2.3 3 V

VILD 0 0 V

Figure 5-2 and Figure 5-3 show delays (A and B) and input setup and hold
times (C and D). Input setup and hold times (C and D) are specified minimums,
defining the smallest acceptable sampling window during whic~ a synchro­
nous input signal must be stable for correct operation.

The TI486SXLC microprocessor outputs A23-A 1, ADS#, BHE#, BLE#,
D/C#, HLDA, LOCK#, M/IO#, SMADS#, SMI#, and W/R# change only at the
beginning of phase one (Figure 5-2, <1>1). Outputs D15-DO (write cycles) and
SUSPA# change at the beginning of phase two (<1>2).

The TI486SXLC microprocessor inputs BUSY#, D15-DO (read cycles), ER­
ROR#, FLT#, HOLD, PEREQ, and READY# are sampled at the beginning of
phase one (Figure 5-2, <1>1). Inputs A20M#, FLUSH#, INTR, KEN#, NA#, NMI,
SMI# and SUSP# are sampled at the beginning of phase two (<1>2).

The TI486SXL microprocessor outputs A31-A2, ADS#, BE3#- BEO#, D/C#,
HLDA, LOCK#, M/IO#, SMADS#, SMI#, and W/R# change only at the begin­
ning of phase one (Figure 5-3, <1>1). Outputs D31-DO (write cycles) and SUS­
PA# change at the beginning of phase two (<1>2).

The TI486SXL microprocessor inputs BUSY#, D31-DO (read cycles), ER­
ROR#, HOLD, PEREQ, and READY# are sampled at the beginning of phase 1
(Figure 5-3, <1>1). Inputs A20M#, BS16, FLUSH#, INTR, KEN#, NA#, NMI,
SMI# and SUSP# are sampled at the beginning of phase two (<1>2).

AC Characteristics

Figure 5-2. TI486SXLC Drive Level and Measurement Points for AC Characteristics

CLK2:

OUTPUTS:
A23-Al, ADS#

BHE#, BLE#, D/C#,
HLDA, LOCK#,

M/IO#, SMADS#,
SMI#, W/R#

OUTPUTS:
. D15-DO,

SUSPA#

INPUTS:
A20M#,

FLUSH#,
INTR, KEN#,

NA#, NMI, SMI#,
SUSP#

INPUTS:
BUSY#,

D15-DO,
ERROR#, FLT#,
HOLD, PEREQ,

READY#

Tx
I <1>1 I <1>2 I

v~----~-----l-----~----~
1411 0 ~Max I I

~Min I I :
Valid I
Output n VREF I

I
I I
I I
~ 0 Max I
I I

Valid
Output n

I
I
I
I

I
I
I
I

~
.V Valid V _

REF Input REF

I
I
I
I
I
I
I
~

• Valid ~

LEGEND: A - Maximum Output Delay Specification
B - Minimum Output Delay Specification
C - Minimum Input Setup Specification
D - Minimum Input Hold Specificaton

Electrical Specifications 5-17

AC Characteristics

Figure 5-3. TI486SXL Drive Level and Measurement Points for AC Characteristics
Tx

<\>1

CLK2:

I
I <\>2

OUTPUTS:
l-----~_ Max

A31-A2, ADS#
BE3#-BEO#, D/C#,

HLDA, LOCK#,
M/IO#, SMADS#,

SMI#,W/R#

OUTPUTS:
D31-DO, SUSPA#

INPUTS:

Valid
Output n

I

~------~~-Max

Valid
Output n

I
I
I
I

I

A20M#, BS16,
FLUSH#, INTH,

KEN#, NA#, NMI,
SMI#, SUSP#

~
• Valid _

VREF Inpul VRE~

I
I
I
I
I
I
I
I
I
I
I

INPUTS:
BUSY#, D31-DO,
ERROR#, HOLD,

PEREQ,READY#

.EGEND: A - Maximum Output Delay Specification
B - Minimum Output Delay Specification
C - Minimum Input Setup Specification
D - Minimum Input Hold Specificaton

5-18

~
.V Valid V ~ REF Inpul RE~

AC Characteristics

5.5.2 CLK2 Timing Measurement Points

The CLK2 timing measurement points are illustrated in Figure 5-4 for the
TI486SXL(C) family of microprocessors.

Figure 5-4. CLK2 Timing Measurement Points

~ T1 ~
I I I
j4--T2a~ I
II4--T2b~ I

VIHC~-----= :\¥----~=----~~:\~ CLK2 vREFC---- ---- ----
VILC -- ----- --- -----T
~ ~T5 Ii+-T3b-+1 1 ~ ~T4

I I
j4--T3a~

5.5.3 AC Data Characteristics Tables

Parametric ac characteristics include output delays, input setup requirements,
input hold requirements, and output float delays are based on the measure­
ment points identified in Figure 5-2 on page 5-17, Figure 5-3 on page 5-18,
and Figure 5-4.

Electrical Specifications 5-19

AC Characteristics

5.5.3.1 AC Data for 3.3-Volt Microprocessors with 5-Volt Tolerant Outputs

o Table 5-17 covers the 3.3-V 40, 20-MHz TI486SXL-G40.
o Table 5-18 on page 5-21 covers the 3.3-V 50-MHz TI486SXL2-G50.

Table 5-17. A C Characteristics for TI486SXL -G40, V CC =3 V to 3.6 V,
VCC5 =4.75 V to 5.25 Vor 3 V to 3.6 V, TC,= 0 to 85°C

SYM- TI486SXlG40
BOl PARAMETER UNIT

MIN MAX

CLK2 clock-doubled frequency range 32 40 MHz

T1 CLK2 period 12.5
T2a CLK2 high time 5
T2b CLK2 high time 3.25
T3a CLK2 low time 5 ns
T3b CLK2 low time 3.25
T4 CLK2 fall time 4
T5 CLK2 rise time 4

T6 A31-A2 valid delay 3 12.5
T6a SMI# valid delay 3 12.5 ns
T7 A31-A2 float delay 3 17

T8 BE3# - BEO#, LOCK# valid delay 3 12.5 ns T9 BE3# - BEO#, LOCK# float delay 3 17

T10 AOS#, O/C#, M/IO#, W/R# valid delay 3 12.5
T10a SMAOS# valid delay 3 12.5 ns

T11 AOS#, O/C#, M/IO#, W/R# float delay 3 17
T11a SMAOS# float delay 3~7

ns

T12 031-00 write data, SUSPA# valid delay ~O20 T12a 031-00 write data hold time ns
T13 031-00 write data, SUSPA# float delay 14.5

T14 HOLA valid delay 17 ns

T15 A20M#, FLUSH#, KEN#, NA#, SUSP# setup time 5 ns
T16 A20M#, FLUSH#, KEN#, NA#, SUSP# hold time 2

T17 BS16# setup time 5 ns T18 BS16# hold time 2

T19 REAOY# setup time 5 ns
T20 REAOY# hold time 3

T21 031-00 read data setup time 5 ns
T22 031-00 read data hold time 3

T23 HOLD setup time 4 ns
T24 HOLD hold time 2

T25 RESET setup time 4.5 ns
T26 RESET hold time 2

T27 NMI, INTR setup time 5
T27a SMI# setup time 5 ns
T28 NMI, INTR hold time 5
T28a SMI# hold time 5

T29 PEREO, ERROR#, BUSY# setup time 5 ns
T30 PEREO, ERROR#, BUSY# hold time 3

T31 Clock-doubled PLL lock time 20 IlS

Notes: 1) Input clock can be stopped, therefore minimum CLK2 frequency is 0 MHz.
2) These parameters are not tested. They are guaranteed by design characterization.

FIGURE NOTES

5-4 Note 1
5-4 Note 2
5-4 Note 2
5-4 Note 2
5-4 Note 2
5-4 Note 2
5-4 Note 2

5-12,5-15 CL = 50 pF
5-12,5-15 CL = 50 pF
5-15 Note 3

5-12,5-15 CL = 50 pF
5-15 Note 3

5-12,5-15 CL = 50 pF
5-12,5-15 CL = 50 pF

5-15 Note 3
5-15 Note 3

5-12,5-13 CL = 50 pF,
5-14 Note 5
5-15 Notes 3,6

5-15 CL = 50 pF

5-11
5-11

5-11
5-11

5-11
5-11

5-11
5-11

5-11
5-11

5-4
5-4 Note 5

5-10 Note 4
5-10 Note 4
5-10 Note 4
5-10 Note 4

5-10 Note 4
5-10 Note 4

Note 7

3) Float condition occurs when maximum output current becomes less than II in magnitude. Float is not 100% tested.
4) These following inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for

testing purposes, to assure recognition within a specific CLK2 period.
5) Not 100% tested.
6) SUSPA# floats only in response to activation of FLT#. SUSPA# does not float during a hold-acknowledge state.
7) Delay time from setting CKO in CCRO to entering clock-doubled mode.

5-20

AC Characteristics

Table 5-18. AC Characteristics for TI486SXL2-G50, Vee = 3 V to 3.6 V,
VCC5 = 4.75 Vto 5.25 Vor3 Vto 3.6 V, Tc = 0 to 85°C

T1486SXL2-G50
SYMBOL PARAMETER UNIT FIGURE NOTES

MIN MAX

CLK2 clock-doubled
32 50 MHz frequency range

T1 CLK2 period 20 5-4 Note 1
T2a CLK2 high time 7 5-4 Note 2
T2b CLK2 high time 4 5-4 Note 2
T3a CLK2 low time 7 ns 5-4 Note 2
T3b CLK2 low time 5 5-4 Note 2
T4 CLK2 fall time 7 5-4 Note 2
T5 CLK2 rise time 7 5-4 Note 2

T6 A31-A2 valid delay 3 21 5-12,5-15 CL = 50 pF
T6a SMI# valid delay 3 30 ns 5-12,5-15 CL = 50 pF
T7 A31-A2 float delay 4 30 5-15 Note 3

T8 BE3# - BEO#, LOCK# valid delay 2.5 18 5-12,5-15 CL = 50 pF
T9 BE3# - BEO#, LOCK# float delay 4 30 ns 5-15 Note 3

T10 AOS#, O/C#, M/IO#, W/R# valid delay

~
5-12,5-15 CL = 50 pF

T10a SMAOS# valid delay ns 5-12,5-15 CL = 50 pF

T11 AOS#, O/C#, M/IO#, W/R# float delay 30 5-15 Note 3
T11a SMAOS# float delay 30 ns 5-15 Note 3

T12 031-00 write data, SUSPA# valid delay ~ 27 5-12,5-13 CL = 50 pF,
T12a 031-00 write data hold time 2 ns 5-14 Note 5
T13 031-00 write data, SUSPA# float delay 4 22 5-15 Notes 3,6

T14 HOLA valid delay 2 22 ns 5-15 CL = 50 pF

T15 A20M#, FLUSH#, KEN#, NA#, SUSP# setup time 5 5-11
T16 A20M#, FLUSH#, KEN#, NA#, SUSP# hold time 3.5

ns 5-11

T17 BS16# setup time 7 5-11
T18 BS16# hold time 2 ns 5-11

T19 REAOY# setup time 9 ns
5-11

T20 REAOY# hold time 4 5-11

T21 031-00 read data setup time 7 5-11
T22 031-00 read data hold time 5

ns 5-11

T23 HOLO setup time 9 5-11
T24 HOLO hold time 3.5

ns 5-11

T25 RESET setup time 8 ns 5-4
T26 RESET hold time 3 5-4 Note 5

T27 NMI, INTR setup time 6 5-10 Note 4
T27a SMI# setup time 6 ns 5-10 Note 4
T28 NMI, INTR hold time 6 5-10 Note 4
T28a SMI# hold time 6 5-10 Note 4

T29 PEREQ, ERROR#, BUSY# setup time 6 ns
5-10 Note 4

T30 PEREQ, ERROR#, BUSY# hold time 5 5-10 Note 4

T31 Clock-doubled PLL lock time 20 Ils Note 7

Notes: 1) Input clock can be stopped, therefore minimum CLK2 frequency is 0 MHz.
2) These parameters are not tested. They are guaranteed by design characterization.
3) Float condition occurs when maximum output current becomes less than II in magnitude. Float is not 100% tested.
4) These following inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for

testing purposes, to assure recognition within a specific CLK2 period.
5) Not 100% tested.
6) SUSPA# floats only in response to activation of FLT#. SUSPA# does not float during a hold-acknowledge state.
7) Oelay time from setting CKO in CCRO to entering clock-doubled mode.

Electrical Specifications 5-21

AC Characteristics

5.5.3.2 AC Data for 3.3-Volt Microprocessors

o Table 5-19 covers the 3.3-V 25-MHz TI486SXLC-V25.
o Table 5-20 on page 5-23 covers the 3.3-V 40, 20 MHz TI486SXL-V40.
o Table 5-21 on page 5-24 covers the 3.3-V 50 MHZ TI486SXL2-050.

Table 5-19. AC Characteristics for TI486SXLC-V25, Vee = 3 V to 3.6 V
Te = O°C to 85°C

SYM- T1486SXlC-V25

BOl
PARAMETER UNIT FIGURE

MIN MAX

T1 CLK2 period 20 5-4
T2a CLK2 high time 7 5-4
T2b CLK2 high time 4 5-4
T3a CLK2 low time 7 ns 5-4
T3b CLK2 low time 5 5-4
T4 CLK2 fall time 7 5-4
T5 CLK2 rise time 7 5-4

T6 A23-A 1 valid delay 3 21 5-7,5-10
T6a SMI# valid delay 3 30 ns 5-7,5-10
T7 A23-A 1 float delay 4 30 5-10

T8 BHE#, BLE#, LOCK# valid delay 2.5 18 ns 5-7,5-10
T9 BHE#, BLE#, LOCK# float delay 4 30 5-10

T10 AOS#, O/C#, M/IO#, W/R# valid delay 4 19 ns
5-7,5-10

T10a SMAOS# valid delay 4 19 5-7,5-10

T11 AOS#, O/C#, M/IO#, W/R# float delay

Jf! ns
5-10

T11a SMAOS# float delay 5-10

T12 015-00 write data, SUSPA# valid delay 27 5-7,5-8
T12a 015-00 write data hold time ns 5-9
T13 015-00 write data, SUSPA# float delay 22 5-10

T14 HOLA valid delay 2 22 ns 5-10

T15 NA#, SUSP#, FLUSH#, KEN#, A20M# setup time 5 ns 5-6
T16 NA#, SUSP#, FLUSH#, KEN#, A20M# hold time 3.5 5-6

T19 REAOY# setup time 9 ns
5-6

T20 REAOY# hold time 4 5-6

T21 015-00 read data setup time 7 ns 5-6
T22 015-00 read data hold time 5 5-6

T23 HOLO setup time 9 ns 5-6
T24 HOLO hold time 3.5 5-6

T25 RESET setup time 8 ns 5-5
T26 RESET hold time 3 5-5

T27 NMI, INTR setup time 6 5-6
T27a SMI# setup time 6 5-6
T28 NMI, INTR hold time 6 ns 5-6
T28a SMI# hold time 6 5-6

T29 PEREQ, ERROR#, BUSY# setup time 6 ns 5-6
T30 PEREQ, ERROR#, BUSY# hold time 5 5-6

Notes: 1) Input clock can be stopped, therefore minimum CLK2 frequency is 0 MHz.
2) These parameters are not tested. They are guaranteed by design characterization.

NOTES

Note 1
Note 2
Note 2
Note 2
Note 2
Note 2
Note 2

CL = 50 pF
CL = 50 pF
Note 3

CL = 50 pF
Note 3

CL = 50 pF
CL = 50 pF

Note 3
Note 3

CL = 50 pF,
Note 5
Notes 3, 6

CL = 50 pF

Note 5

Note 4
Note 4
Note 4
Note 4

Note 4
Note 4

3) Float condition occurs when maximum output current becomes less than II in magnitude. Float is not 100% tested.
4) These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing pur­

poses, to assure recognition within a specific CLK2 period.
5) Not 100% tested.
6) SUSPA# floats only in response to activation of FLT#. SUSPA# does not float during a hold acknowledge state.

ADVANCE INFORMATION concerns new products in the sampling or
preproduction phase of development. Characteristic data and other
specifications are subject to change without notice.

5-22

AC Characteristics

Table 5-20. AC Characteristics for TI486SXL-V40, Vee =3 V to 3.6 V,
Te = 0 to 85°C

SYM· T1486SXl·V40
PARAMETER UNIT FIGURE NOTES BOl MIN MAX

CLK2 clock-doubled frequency range 32 40 MHz

T1 CLK2 period 12.5 5-4 Note 1
T2a CLK2 high time 5 5-4 Note 2
T2b CLK2 high time 3.25 5-4 Note 2
T3a CLK2 low time 5 ns 5-4 Note 2
T3b CLK2 low time 3.25 5-4 Note 2
T4 CLK2 fall time 4 5-4 Note 2
T5 CLK2 rise time 4 5-4 Note 2

T6 A31-A2 valid delay 3 12.5 5-12,5-15 CL = 50 pF
T6a SMI# valid delay 3 12.5 ns 5-12,5-15 CL = 50 pF
T7 A31-A2 float delay 3 17 5-15 Note 3

T8 BE3# - BEO#, LOCK# valid delay 3 12.5 ns 5-12,5-15 CL = 50 pF
T9 BE3# - BEO#, LOCK# float delay 3 17 5-15 Note 3

T10 AOS#, O/C#, M/IO#, W/R# valid delay 3 12.5 5-12,5-15 CL = 50 pF
T10a SMAOS# valid delay 3 12.5 ns 5-12,5-15 CL = 50 pF

T11 AOS#, O/C#, M/IO#, W/R# float delay 3 17 5-15 Note 3
T11a SMAOS# float delay 3 17,

ns 5-15 Note 3

T12 031-00 write data, SUSPA# valid delay ~. 5-12,5-13 CL = 50 pF,
T12a 031-00 write data hold time

2 4.5
ns 5-14 NoteS

T13 031-00 write data, SUSPA# float delay 5-15 Notes 3,6

T14 HOLA valid delay 17 ns 5-15 CL = 50 pF

T15 A20M#, FLUSH#, KEN#, NA#, SUSP# setup time "g
ns 5-11

T16 A20M#, FLUSH#, KEN#, NA#, SUSP# hold time 2 5-11

T17 BS16# setup time 5 ns
5-11

T18 BS16# hold time 2 5-11

T19 REAOY# setup time 5 ns
5-11

T20 REAOY# hold time 3 5-11

T21 031-00 read data setup time 5 ns 5-11
T22 031-00 read data hold time 3 5-11

T23 HOLD setup time 4 5-11
T24 HOLD hold time 2 ns 5-11

T25 RESET setup time 4.5 ns 5-4
T26 RESET hold time 2 5-4 NoteS

T27 NMI, INTR setup time 5 5-10 Note 4
T27a SMI# setup time 5 ns 5-10 Note 4
T28 NMI, INTR hold time 5 5-10 Note 4
T28a SMI# hold time 5 5-10 Note 4

T29 PEREQ, ERROR#, BUSY# setup time 5 ns
5-10 Note 4

T30 PEREQ, ERROR#, BUSY# hold time 3 5-10 Note 4

T31 Clock-doubled PLL lock time 20 I-ts Note 7

Notes: 1) Input clock can be stopped, therefore minimum CLK2 frequency is 0 MHz.
2) These parameters are not tested. They are guaranteed by design characterization.
3) Float condition occurs when maximum output current becomes less than II in magnitude. Float is not 100% tested.
4) These following inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for

testing purposes, to assure recognition within a specific CLK2 period.
5) Not 100% tested.
6) SUSPA# floats only in response to activation of FLT#. SUSPA# does not float during a hold-acknowledge state.
7) Delay time from setting CKO in CCRO to entering clock-doubled mode.

Electrical Specifications 5-23

AC Characteristics

Table 5-21. AC Characteristics for TI486SXL2-V50, Vee = 3 V to. 3.6 V,
Te = 0 to 85°C

T1486SXL2-V50
SYMBOL PARAMETER UNIT

MIN MAX

CLK2 clock-doubled frequency range 32 50 MHz

T1 CLK2 period 20
T2a CLK2 high time 7
T2b CLK2 high time 4
T3a CLK2 low time 7 ns
T3b CLK2 low time 5
T4 CLK2 fall time 7
T5 CLK2 rise time 7

T6 A31-A2 valid delay 3 21
T6a SMI# valid delay 3 30 ns
T7 A31-A2 float delay 4 30

T8 BE3# - BEO#, LOCK# valid delay 2.5 18
T9 BE3# - BEO#, LOCK# float delay 4 30

ns

T10 AOS#, O/C#, M/IO#, W/R# valid delay 4 19
T10a SMAOS# valid delay 4 $~O~ ns

T11 AOS#, O/C#, M/IO#, W/R# float delay «'30 T11a SMAOS# float delay 30 ns

T12 031-00 write data, SUSPA# valid delay 27
T12a 031-00 write data hold time ns
T13 031-00 write data, SUSPA# float delay 4 22

T14 HOLA valid delay 2 22 ns

T15 A20M#, FLUSH#, KEN#, NA#, SUSP# setup time 5
T16 A20M#, FLUSH#, KEN#, NA#, SUSP# hold time 3.5 ns

T17 BS16# setup time 7
T18 BS16# hold time 2 ns

T19 REAOY# setup time 9
T20 REAOY# hold time 4

ns

T21 031-00 read data setup time 7
T22 031-00 read data hold time 5

ns

T23 HOLO setup time 9
T24 HOLO hold time 3.5

ns

T25 RESET setup time 8
T26 RESET hold time 3

ns

T27 NMI, INTR setup time 6
T27a SMI# setup time 6 ns T28 NMI, INTR hold time 6
T28a SMI# hold time 6

T29 PEREQ, ERROR#, BUSY# setup time 6
T30 PEREQ, ERROR#, BUSY# hold time 5

ns

T31 Clock-doubled PLL lock time 20 Ils

Notes: 1) Input clock can be stopped, therefore minimum CLK2 frequency is 0 MHz.
2) These parameters are not tested. They are guaranteed by design characterization.

FIGURE NOTES

5-4 Note 1
5-4 Note 2
5-4 Note 2
5-4 Note 2
5-4 Note 2
5-4 Note 2
5-4 Note 2

5-12,5-15 CL = 50 pF
5-12,5-15 CL = 50 pF
5-15 Note 3

5-12,5-15 CL = 50 pF
5-15 Note 3

5-12,5-15 CL = 50 pF
5-12,5-15 CL = 50 pF

5-15 Note 3
5-15 Note 3

5-12,5-13 CL = 50 pF,
5-14 Note 5
5-15 Notes 3,6

5-15 CL = 50 pF

5-11
-5-11

5-11
5-11

5-11
5-11

5-11
5-11

5-11
5-11

5-4
5-4 Note 5

5-10 Note 4
5-10 Note 4
5-10 Note 4
5-10 Note 4

5-10 Note 4
5-10 Note 4

Note 7

3) Float condition occurs when maximum output current becomes less than II in magnitude. Float is not 100% tested.
4) These following inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for

testing purposes, to assure recognition within a specific CLK2 period.
5) Not 100% tested.
6) SUSPA# floats only in response to activation of FLT#. SUSPA# does not float during a hold-acknowledge state.
7) Oelay time from setting CKO in CCRO to entering clock-doubled mode.

5-24

AC Characteristics

5.5.3.3 AC Data for 5-Volt Microprocessors

o Table 5-22 covers the 5-V 40,20 MHz TI486SXLC-040.
o Table 5-23 on page 5-26 covers the 5-V 50 MHz TI486SXLC2-050.
o Table 5-24 on page 5-27 covers the 5-V 40,20 MHz TI486SXL-040.
o Table 5-25 on page 5-28 covers the 5-V 50 MHz T1486SXL2-050

Table 5-22. AC Characteristics for TI486SXLC-040, Vee = 4.75 V to 5.25 \I,
Te = 0 to 100°C

TI486SXLC-040
SYMBOL PARAMETER UNIT FIGURE

MIN MAX

CLK2 clock-doubled frequency range 32 40 MHz

T1 CLK2 period 12.5 5-4
T2a CLK2 high time 5 5-4
T2b CLK2 high time 3.25 5-4
T3a CLK2 low time 5 ns 5-4
T3b CLK2 low time 3.25 5-4
T4 CLK2 fall time 4 5-4
T5 CLK2 rise time 4 5-4

T6 A23-A 1 valid delay 3 12.5 5-7,5-10
T6a SM 1# valid delay 3 12.5 ns 5-7,5-10
T7 A23-A 1 float delay 3 17 5-10

T8 BHE#, BLE#, LOCK# valid delay 3 12.5 ns 5-7,5-10
T9 BHE#, BLE#, LOCK# float delay 3 17 5-10

T10 AOS#, O/C#, M/IO#, W/R# valid delay 3 12. 5-7,5-10
T10a SMAOS# valid delay 3 ns 5-7,5-10

T11 AOS#, O/C#, M/IO#, W/R# float delay 3 17 5-10
T11a SMAOS# float delay 17 ns 5-10

T12 015-00 write data, SUSPA# valid delay 20 5-7,5-8
T12a 015-00 write data hold time ns 5-9
T13 015-00 write data, SUSPA# float delay 3 14.5 5-10

T14 HOLA valid delay 3 17 ns 5-10

T15 NA#, SUSP#, FLUSH#, KEN#, A20M# setup time 5 ns 5-6
T16 NA#, SUSP#, FLUSH#, KEN#, A20M# hold time 2 5-6

T19 REAOY# setup time 5 ns
5-6

T20 REAOY# hold time 3 5-6

T21 015-00 read data setup time 5 ns 5-6
T22 015-00 read data hold time 3 5-6

T23 HOLD setup time 4 ns 5-6
T24 HOLD hold time 2 5-6

T25 RESET setup time 4.5 ns 5-5
T26 RESET hold time 2 5-5

T27 NMI, INTR setup time 5 5-6
T27a SMI# setup time 5 ns 5-6
T28 NMI, INTR hold time 5 5-6
T28a SMI# hold time 5 5-6

T29 PEREQ, ERROR#, BUSY# setup time 5 ns 5-6
T30 PEREQ, ERROR#, BUSY# hold time 3 5-6

T31 Clock-doubled PLL lock time 20 (ls

Notes: 1) Input clock can be stopped, therefore minimum CLK2 frequency is 0 MHz.
2) These parameters are not tested. They are guaranteed by design characterization.

NOTES

Note 1
Note 2
Note 2
Note 2
Note 2
Note 2
Note 2

CL = 50 pF
CL = 50 pF
Note 3

CL = 50 pF
Note 3

CL = 50 pF
CL = 50 pF

Note 3
Note 3

CL = 50 pF,
Note 5
Notes 3,6

CL = 50 pF

Note 5

Note 4
Note 4
Note 4
Note 4

Note 4
Note 4

Note 7

3) Float condition occurs when maximum output current becomes less than II in magnitude. Float is not 100% tested.
4) These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing pur-

poses, to assure recognition within a specific CLK2 period.
5) Not 100% tested.
6) SUSPA# floats only in response to activation of FLT#. SUSPA# does not float during a hold acknowledge state.
7) Delay time from setting CKO in CCRO to entering clock-doubled mode.

ADVANCE INFORMATION concerns new products in the sampling or
preproduction phase of development. Characteristic data and other
specifications are subject to change without notice.

Electrical Specifications 5-25

AC Characteristics

Table 5-23. AC Characteristics for TI486SXLC2-050, Vee = 4.75 V to 5.25 V
Te = 0 to 100°C

T1486SXLC2-050
SYMBOL PARAMETER UNIT FIGURE

MIN MAX

CLK2 clock-doubled frequency range 32 50 MHz

T1 CLK2 period 20 5-4
T2a CLK2 high time 7 5-4
T2b CLK2 high time 4 5-4
T3a CLK2 low time 7 ns 5-4
T3b CLK2 low time 5 5-4
T4 CLK2 fall time 7 5-4
T5 CLK2 rise time 7 5-4

T6 A23-A 1 valid delay 4 21 5-7,5-10
T6a SMI# valid delay 4 30 ns 5-7,5-10
T7 A23-A 1 float delay 4 30 5-10

T8 BHE#, BLE#, LOCK# valid delay 4 21 5-7,5-10
T9 BHE#, BLE#, LOCK# float delay 4 30

ns
5-10

T10 AOS#, O/C#, M/IO#, W/R# valid delay 4 21 5-7,5-10
T10a SMAOS# valid delay 4

ns
5-7,5-10

T11 AOS#, O/C#, M/IO#, W/R# float delay 4 0 5-10
T11a SMAOS# float delay 30

ns
5-10

T12 015-00 write data, SUSPA# valid delay 27 5-7,5-8
T12a 015-00 write data hold time ns 5-9
T13 015-00 write data, SUSPA# float delay 4 22 5-10

T14 HOLA valid delay 4 22 ns 5-10

T15 NA#, SUSP#, FLUSH#, KEN#, A20M# setup time 5 5-6
T16 NA#, SUSP#, FLUSH#, KEN#, A20M# hold time 3

ns 5-6

T19 REAOY# setup time 9 ns
5-6

T20 REAOY# hold time 4 5-6

T21 015-00 read data setup time 7 5-6
T22 015-00 read data hold time 5

ns 5-6

T23 HOLD setup time 9 5-6
T24 HOLD hold time 3

ns
5-6

T25 RESET setup time 8 ns
5-5

T26 RESET hold time 3 5-5

T27 NMI, INTR setup time 6 5-6
T27a SMI# setup time 6 5-6
T28 NMI, INTR hold time 6 ns 5-6
T28a SMI# hold time 6 5-6

T29 PEREa, ERROR#, BUSY# setup time 6 5-6
T30 PEREa, ERROR#, BUSY# hold time 5

ns 5-6

T31 Clock-doubled PLL lock time 20 J-ts

Notes: 1) Input clock can be stopped, therefore minimum CLK2 frequency is 0 MHz.
2) These parameters are not tested. They are guaranteed by design characterization.

NOTES

Note 1
Note 2
Note 2
Note 2
Note 2
Note 2
Note 2

CL = 50 pF
CL = 50 pF
Note 3

CL = 50 pF
Note 3

CL = 50 pF
CL = 50 pF

Note 3
Note 3

CL = 50 pF,
Note 5
Notes 3,6

CL = 50 pF

Note 5

Note 4
Note 4
Note 4
Note 4

Note 4
Note 4

Note 7

3) Float condition occurs when maximum output current becomes less than II in magnitude. Float is not 100% tested.
4) These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing pur-

poses, to assure recognition within a specific CLK2 period.
5) Not 100% tested.
6) SUSPA# floats only in response to activation of FLT#. SUSPA# does not float during a hold acknowledge state.
7) Delay time from setting CKO in CCRO to entering clock-doubled mode. '

5-26

AC Characteristics

Table 5-24. AC Characteristics for TI486SXL -040, Vee =4.75 V to 5.25 V,
(for Te see Table 5-6)

SYM- T1486SXl-040
BOl PARAMETER UNIT FIGURE NOTES

MIN MAX

CLK2 clock-doubled frequency range 32 40 MHz

T1 CLK2 period 12.5 5-4 Note 1
T2a CLK2 high time 5 5-4 Note 2
T2b CLK2 high time 3.25 5-4 Note 2
T3a CLK2 low time 5 ns 5-4 Note 2
T3b CLK2 low time 3.25 5-4 Note 2
T4 CLK2 fall time 4 5-4 Note 2
T5 CLK2 rise time 4 5-4 Note 2

T6 A31-A2 valid delay 3 12.5 5-12,5-15 CL = 50 pF
T6a SMI# valid delay 3 12.5 ns 5-12,5-15 CL = 50 pF
T7 A31-A2 float delay 3 17 5-15 Note 3

T8 BE3# - BEO#, LOCK# valid delay 3 12.5 ns
5-12,5-15 CL = 50 pF

T9 BE3# - BEO#, LOCK# float delay 3 17 5-15 Note 3

T10 AOS#, O/C#, M/IO#, W/R# valid delay 3 12.5 5-12,5-15 CL = 50 pF
T10a SMAOS# valid delay 3 12.5 ns 5-12,5-15 CL = 50 pF

T11 AOS#, O/C#, M/IO#, W/R# float delay 3 17 5-15 Note 3
T11a SMAOS# float delay 3 11 ns 5-15 Note 3

T12 031-00 write data, SUSPA# valid delay

~
5-12,5-13 CL = 50 pF,

T12a 031-00 write data hold time 2 ns 5-14 Note 5
T13 031-00 write data, SUSPA# float delay 14.5 5-15 Notes 3,6

T14 HOLA valid delay =~ 17 ns 5-15 CL = 50 pF

T15 A20M#, FLUSH#, KEN#, NA#, SUSP# setup time '~·5
ns 5-11

T16 A20M#, FLUSH#, KEN#, NA#, SUSP# hold time 2 5-11

T17 BS16# setup time 5 ns
5-11

T18 BS16# hold time 2 5-11

T19 REAOY# setup time 5 ns
5-11

T20 REAOY# hold time 3 5-11

T21 031-00 read data setup time 5 ns 5-11
T22 031-00 read data hold time 3 5-11

T23 HOLO setup time 4 ns
5-11

T24 HOLO hold time 2 5-11

T25 RESET setup time 4.5 ns
5-4

T26 RESET hold time 2 5-4 Note 5

T27 NMI, INTR setup time 5 5-10 Note 4
T27a SMI# setup time 5 ns 5-10 Note 4
T28 NMI, INTR hold time 5 5-10 Note 4
T28a SMI# hold time 5 5-10 Note 4

T29 PEREQ, ERROR#, BUSY# setup time 5 ns 5-10 Note 4
T30 PEREQ, ERROR#, BUSY# hold time 3 5-10 Note 4

T31 Clock-doubled PLL lock time 20 !lS Note 7

Notes: 1) Input clock can be stopped, therefore minimum CLK2 frequency is 0 MHz.
2) These parameters are not tested. They are guaranteed by design characterization.
3) Float condition occurs when maximum output current becomes less than II in magnitude. Float is not 100% tested.
4) These following inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for

testing purposes, to assure recognition within a specific CLK2 period.
5) Not 100% tested.
6) SUSPA# floats only in response to activation of FLT#. SUSPA# does not float during a hold-acknowledge state.
7) Oelay time from setting CKO in CCRO to entering clock-doubled mode.

Electrical Specifications 5-27

AC Characteristics

Table 5-25. AC Characteristics for TI486SXL2-050, Vee = 4.75 V to 5.25 V,
(for Te see Table 5-6)

T1486SXL2-050
SYMBOL PARAMETER UNIT FIGURE

MIN MAX

CLK2 clock-doubled frequency range 32 50 MHz

T1 CLK2 period 20 5-4
T2a CLK2 high time 7 5-4
T2b CLK2 high time 4 5-4
T3a CLK2 low time 7 ns 5-4
T3b CLK2 low time 5 5-4
T4 CLK2 fall time 7 5-4
T5 CLK2 rise time 7 5-4

T6 A31-A2 valid delay 3 21 5-12,5-15
T6a SMI# valid delay 3 30 ns 5-12,5-15
T7 A31-A2 float delay 4 30 5-15

T8 BE3# - BEO#, LOCK# valid delay 2.5 18 ns 5-12,5-15
T9 BE3# - BEO#, LOCK# float delay 4 30 5-15

T10 AOS#, O/C#, M/IO#, W/R# valid delay 4 19 5-12,5-15
T10a SMAOS# valid delay 4 .~~o~~

ns 5-12,5-15

T11 AOS#, O/C#, M/IO#, W/R# float delay 1f'30 5-15
T11a SMAOS# float delay 30 ns 5-15

T12 031-00 write data, SUSPA# valid delay 27 5-12,5-13
T12a 031-00 write data hold time ns 5-14
T13 031-00 write data, SUSPA# float delay 4 22 5-15

T14 HOLA valid delay 2 22 ns 5-15

T15 A20M#, FLUSH#, KEN#, NA#, SUSP# setup time 5 ns 5-11
T16 A20M#, FLUSH#, KEN#, NA#, SUSP# hold time 3.5 5-11

T17 BS16# setup time 7 ns 5-11
T18 BS16# hold time 2 5-11

T19 REAOY# setup time 9 ns 5-11
T20 REAOY# hold time 4 5-11

T21 031-00 read data setup time 7 ns 5-11
T22 031-00 read data hold time 5 5-11

T23 HOLD setup time 9 ns 5-11
T24 HOLD hold time 3.5 5-11

T25 RESET setup time 8 ns 5-4
T26 RESET hold time 3 5-4

T27 NMI, INTR setup time 6 5-10
T27a SMI# setup time 6 ns 5-10
T28 NMI, INTR hold time 6 5-10
T28a SMI# hold time 6 5-10

T29 PEREQ, ERROR#, BUSY# setup time 6 ns
5-10

T30 PEREQ, ERROR#, BUSY# hold time 5 5-10

T31 Clock-doubled PLL lock time 20 I-ls

Notes: 1) Input clock can be stopped, therefore minimum CLK2 frequency is 0 MHz.
2) These parameters are not tested. They are guaranteed by design characterization.

NOTES

Note 1
Note 2
Note 2
Note 2
Note 2
Note 2
Note 2

CL = 50 pF
CL = 50 pF
Note 3

CL = 50 pF
Note 3

CL = 50 pF
CL = 50 pF

Note 3
Note 3

CL = 50 pF,
Note 5
Notes 3,6

CL = 50 pF

Note 5

Note 4
Note 4
Note 4
Note 4

Note 4
Note 4

Note 7

3) Float condition occurs when maximum output current becomes less than II in magnitude. Float is not 100% tested.
4) These following inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for

testing purposes, to assure recognition within a specific CLK2 period.
5) Not 100% tested.
6) SUSPA# floats only in response to activation of FLT#. SUSPA# does not float during a hold-acknowledge state.
7) Delay time from setting CKO in CCRO to entering clock-doubled mode.

5-28

AC Characteristics

5.5.4 RESET Setup and Hold Timing

RESET setup and hold timing for the TI486SXL(C) family of microprocessors
are illustrated in Figure 5-5.

Figure 5-5. RESET Setup and Hold Timing

CLK2 ., I
I ~ T25 .,(I

~
j

I
RESET I ()~

T26~

5.5.5 TI486SXLC Switching Waveforms

Switching waveforms for the TI486SXLC microprocessors are illustrated in
Figure 5-6, Figure 5-7, Figure 5-8, Figure 5-9, and Figure 5-10 on pages
5-29 through 5-31.

Figure 5-6. TI486SXLC Input Signal Setup and Hold Timing

<1>2 <1>1 <1>2

CLK2
'---...II

READY# ~ ::: ---~ .. :~-::: ~
HOLD_ X%.

I+-T21-...... -

D1S-DOR

I+- T29 :~ T30 ----.lX%. PEREQ,ERROR#,~
BUSY# rI//////// IX.

~~~~~--------~------~~~~~ 

<1>1 

NA#, SUSP#, 
FLUSH#, KEN#, 

A20M# 

~ T1S ~ T16----.1 

~ -
NMI, INTR, SMI# 

ADVANCE INFORMATION concerns new products in the sampling or 
preproduction phase of development. Characteristic data and other 
specifications are subject to change without notice. 

Electrical Specfications 5-29 



AC Characteristics 

Figure 5-7. TI486SXLC Output Signal Valid Delay Timing 

<1>2 <1>1 

CLK2 

T8 

BHE#, 
BLE# 

LOCK# T10,T10a 

AOS#,O/C#, M/IO#, 
SMAOS#, W/R# 

T6,T6a 

A23-A1, SMI# 

SUSPA# 

Figure 5-8. TI486SXLC Data Write Cycle Valid Delay Timing 

CLK2 

W/R# 

'------' I 
I 
I 
I 

<1>2 

Valid n+1 

Valid n+1 

Valid n+1 

<1>1 

I I I 

T12 ~ .: Min ~ Max 

015-00 Valid 

<1>1 

-----------~~ I I~------~~~------------
I I 

5-30 



AC Characteristics 

Figure 5-9. TI486SXLC Data Write Cycle Hold Timing 

</>1 

CLK2 
I -.-1 
I I 

k\ ~dn+1 
I ~--------~------------------------

T12a I I Min 

W/R# 

015-00 Valid n Valid n+1 

Figure 5-10. TI486SXLC Output Signal Float Delay and HLDA Valid 
Delay Timing 

CLK2 

BHE#, BLE#, 
LOCK# 

AOS#,O/C#, 
\I1/10#,SMAOS#, 

W/R# 

A23-A1 

015-00 (Write 
Data), SUSPA# 

HLOA 

</>2 

T11,T11a 

T14 

Th Ti or T1 
</>1 I </>2 </>1 I </>2 

I 

Electrical Specifications 5-31 



AC Characteristics 

5.5.6 TI486SXL Switching Waveforms 

Switching waveforms for the TI486SXL microprocessors are illustrated in 
Figure 5-11, Figure 5-12, Figure 5-13, Figure 5-14, and Figure 5-15 on 
pages 5-32 through 5-34. 

Figure 5-11. TI486SXL Input Signal Setup and Hold Timing 

</>2 </>1 

CLK2 

--- I '---.I I 
~ T19 ---~Ie---T20 ~ I 

REAOY#. : ~ 
~ T23-..... -411--HOLO. 
~T21 T22~~ 

031-00. ~ 
~ T29 : T30 ~~. 

PEREQ,ERROR#, ~ 
BUSY#~~ 

~~~~------------------~~~~ 

NA#, SUSP#,
FLUSH#, KEN#,
NENW#, A20M#

BS16

NMI, INTR, SMI#

5-32

I
~ T15,T32 ~ T16,T33 ~

AC Characteristics

Figure 5-12. TI486SXL Output Signal Valid Delay Timing

<1>2 <1>1

CLK2

T8----~--------~~

BE3#-BEO# Valid n+1
LOCK#

T10

ADS#, D/C#,
M/IO#, SMADS#, Valid n+1

W/R#
T6,T6a

A31-A2, SMI# Valid n+1

SUSPA# Valid n

Figure 5-13. TI486SXL Data Write Cycle Valid Delay Timing

<1>1 <1>2 <1>1

CLK2
'------' I

I

W/R# / I
--.J I I I

T12 r ~ Min ~ Max

D31-DO -----------r-_""''''''"'~~---v-a-lid---

I

Electrical Specifications 5-33

AC Characteristics

Figure 5-14. TI486SXL Data Write Cycle Hold Timing

<1>1 <1>2 <1>1

CLK2
I ---'I
I I

K : Valid n+1

I ~--------~---------------------
T12a~M' 1-. W/R#

031-00 Valid n Valid n+1

Figure 5-15. TI486SXL Output Signal Float Delay and HLDA Valid Delay Timing

CLK2

BE3#-BEO#,
LOCK#

AOS#,O/C#,
M/IO#, SMAOS#,

W/R#

A31-A2

031-00
(Write Oata),

SUSPA#

HLOA

5-34

<1>2

T11,T11a

T14

I I
I Th I
I <1>1 I <1>2 I <1>1

Ti or T1
I
I

<1>2

Chapter 6

Mechanical Specifications

Mechanical specifications include pin assignments, package dimensions, and
thermal characteristics for each of the TI486SXL(C) microprocessors.

The TI486SXL(C) microprocessors are supplied in the following packages:

o 100-pin, thermally enhanced plastic quad flat package

o 132-pin, ceramic pin grid array package

o 144-pin, thermally enhanced plastic quad flat package

o 144-pin, ceramic quad flat package

o 168-pin, ceramic pin grid array package

Pin assignments provide both a pin locator drawing and two pin listings. One
pin listing is alphabetically by pin name and the other is (alpha)numerically by
pin number.

A pinout cross-reference, comparing industry-standard 486SX pinouts, is sup­
plied for the 168-pin package at the end of the pin-assignment data.

Industry-standard dimensioned drawings are supplied for each package.

Thermal characteristics are supplied on each package that includes airflow
measurement setup data for correlation purposes.

Topic Page

6.1 Pin"AsSlgnments... ••• •.. ~~. ~ .. ~••. 'c" •••• ,6 .. 2
"",,' '"'''H''' " "/i":oc,

6.2 P,ckage:DimensiCjFls",,;, ~~ .~ •. ; ~,; ~ ..• , '.; .• 6-13

6.3: •• :rl'lermaiChara~terisfic~,. ~ , •••. ~ ~.' • ,.a •• ,on .!O • •••••• ~ ••• , ••• , ••• ' •• 6-18

6-1

Terminal Assignments

6.1 Terminal Assignments

The terminal assignments for the TI486SXLC microprocessors are shown in
Figure 6-1. The signal names are shown in Table 6-1 sorted by terminal num­
bers and in Table 6-2 sorted by signal names.

Figure 6-1. TI486SXLC Terminal Assignments

DO
Vss

HLDA
HOLD

Vss
NA#

READY#
Vcc
Vcc
Vcc
Vss
Vss
Vss
Vss

CLK2
ADS#
BLE#

A1
BHE#

SMADS#
Vcc
VSS

M/IO#
D/C#
W/R#

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

gmro~~~~~N~omro~~~~~N~omro~~
~mmmmmmmmmmrorororororororororo~~~~

0
, Terminal # 1 Index Mark

(On Top Side)

(Top View)

~~romo~N~~~~~romo~N~~~~~romo
NNNN~~~~~~~~~~~~~~~~~~~~~

75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51

A20
A19
A18
A17
Vcc
A16
Vcc
VSS
VSS
A15
A14
A13
VSS
A12
A11
A10
A9
A8
Vcc
A7
A6
A5
A4
A3
A2

NC - Make no external connection

6-2

Note: NC Terminals

Connecting or terminating (high or low) any NC terminal(s) may cause un­
predictable results or nonperformance of the microprocessor.

Terminal Assignments

Table 6-1. TI486SXLC Signal Names Sorted by Terminal Number

Term. Signal Term. Signal Term. Signal Term. Signal Term. Signal
No. Name No. Name No. Name No. Name No. Name

1 00 21 Vee 41 Vss 61 A11 81 015
2 Vss 22 Vss 42 Vee 62 A12 82 014
3 HLOA 23 M/IO# 43 susP# 63 Vss 83 013
4 HaLO 24 O/C# 44 SUSPA# 64 A13 84 Vcc
5 Vss 25 W/R# 45 NC 65 A14 85 Vss
6 NA# 26 LOCK# 46 NC 66 A15 86 012
7 REAOY# 27 NC 47 SMI# 67 Vss 87 011
8 VCC 28 FLT# 48 VCC 68 Vss 88 010
9 Vec 29 KEN# 49 Vss 69 Vee 89 09
10 Vec 30 FLUSH# 50 Vss 70 A16 90 08
11 Vss 31 A20M# 51 A2 71 Vee 91 Vce
12 Vss 32 Vce 52 A3 72 A17 92 07
13 Vss 33 RESET 53 A4 73 A18 93 06
14 Vss 34 BUSY# 54 A5 74 A19 94 05
15 eLK2 35 Vss 55 A6 75 A20 95 04
16 AOS# 36 ERROR# 56 A7 76 A21 96 03
17 BLE# 37 PEREa 57 Vee 77 Vss 97 Vec
18 A1 38 NMI 58 A8 78 Vss 98 Vss
19 BHE# 39 Vec 59 A9 79 A22 99 02
20 SMAOS# 40 INTR 60 A10 80 A23 100 01

Table 6-2. TI486SXLC Terminal Numbers Sorted by Signal Name

Signal Term. Signal Term. Signal Term. Signal Term. Signal Term.
Name No. Name No. Name No. Name No. Name No.

A1 18 A21 76 011 87 PEREQ 37 Vcc 97
A2 51 A22 79 012 86 REAOY# 7 Vss 2
A3 52 A23 80 013 83 RESET 33 Vss 5
A4 53 AOS# 16 014 82 SMAOS# 20 VSS 11
A5 54 A20M# 31 015 81 SMI# 47 VSS 12
A6 55 BHE# 19 O/C# 24 SUSP# 43 VSS 13
A7 56 BLE# 17 ERROR# 36 SUSPA# 44 VSS 14
A8 58 BUSY# 34 FLT# 28 Vcc 8 VSS 22
A9 59 CLK2 15 FLUSH# 30 Vcc 9 VSS 35
A10 60 00 1 HaLO 4 Vce 10 VSS 41
A11 61 01 100 HLOA 3 Vee 21 VSS 49
A12 62 02 99 INTR 40 Vcc 32 VSS 50
A13 64 03 96 KEN# 29 Vce 39 VSS 63
A14 65 04 95 LOCK# 26 Vcc 42 VSS 67
A15 66 05 94 M/IO# 23 Vcc 48 VSS 68
A16 70 06 93 NA# 6 Vec 57 VSS 77
A17 72 07 92 NMI 38 Vce 69 VSS 78
A18 73 08 90 Ne 27 Vee 71 VSS 85
A19 74 09 89 NC 45 Vcc 84 VSS 98
A20 75 010 88 NC 46 Vce 91 W/R# 25

Ne - Make no external connection

Note: NC Terminals

Connecting or terminating (high or low) any NC terminal(s) may cause un­
predictable results or nonperformance of the microprocessor.

Mechanical Specifications 6-3

Terminal Assignments

The terminal assignments for the 132-pin PGA TI486SXL microprocessors
are shown as viewed from the terminal side (bottom) in Figure 6-2 and as
viewed from the top side (component side when mounted on a PC board) in
Figure 6-3. The signal names are listed in Table 6-3 and Table 6-4 sorted by
terminal number and signal name respectively.

Figure 6-2. 132-Pin PGA TI486SXL Package Terminals (Bottom View)

Terminal # 1 Index Mark
(On Top Side)

BCD E F G H J K L M N p

1 \G8G88GGGGGGGGG
2 80GGG8G888GGGG
3 G88GGGG8GGGGGG
4 8800 88G
5 888 GGG
6 8G8 GGG
7 888 88G

TI486SXL

8 888 (Bottom View) GGG
9 888 GGG

10 888 GGG
11 888 888
12 88888888888888
13 88888888988988
14 888889GGGGG8GG
NC - Make no external connection

6-4

Terminal Assignments

Figure 6-3. 132-Pin PGA TI486SXL Package Terminals (Top View)

Terminal # 1 Index Mark
(On Top Side)

p N M L K J H G FED C B

GG8GGGG88GG8G 1

888GG8G88G888G 2

88888888888888 3

888 888 4

888 88G 5

888 eGG 6

888 88G 7
TI486SXL

888 (Top View)

888 8

888 8SG 9

888 88G 10

888 8G8 11

8888888G888888 12

88888888888888 13

GG8GGGGGG888GG 14

NC - Make no external connection

Note: NC Terminals

Connecting or terminating (high or low) any NC terminal(s) may cause un­
predictable results or nonperformance of the microprocessor.

Mechanical Specifications 6-5

Terminal Assignments

Table 6-3. 132-Pin PGA TI486SXL Signal Names Sorted by Terminal Number

Term. Signal Term. Signal Term. Signal Term. Signal Term. Signal Term. Signal
No. Name No. Name No. Name No. Name No. Name No. Name

A1 VCC B9 BUSY# 03 A9 H1 A17 L13 08 N7 VCC
A2 VSS 810 W/R# 012 VCC H2 A18 L14 06 N8 023
A3 A3 811 VSS 013 NA# H3 A19 M1 A26 N9 021
A4 SUSP# 812 KEN# 014 HOLO H12 00 M2 A29 N10 017
A5 VCC 813 8E2# E1 A14 H13 01 M3 VCC N11 016
A6 VSS 814 VSS E2 A13 H14 02 M4 VSS N12 012
A7 VCC C1 A8 E3 A12 J1 A20 M5 031 N13 011
A8 ERROR# C2 A7 E12 8EO# J2 VSS M6 028 N14 09
A9 VSS C3 A6 E13 FLUSH# J3 VSS M7 VCC P1 A30
A10 VCC C4 A2 E14 AOS# J12 VSS M8 VSS P2 VCC
A11 O/C# C5 VCC F1 A15 J13 VSS M9 020 P3 030
A12 M/IO# C6 SMAOS# F2 VSS J14 03 M10 VSS P4 029
A13 BE3# C7 SMI# F3 VSS K1 A21 M11 015 P5 026
A14 VCC C8 PEREQ F12 CLK2 K2 A22 M12 010 P6 VSS
81 VSS C9 RESET F13 A20M# K3 A25 M13 VCC P7 024
B2 A5 C10 LOCK# F14 VSS K12 07 M14 HLOA P8 VCC
83 A4 C11 VSS G1 A16 K13 05 N1 A27 P9 022
84 SUSPA# C12 VCC G2 VCC K14 04 N2 A31 P10 019
B5 VSS C13 BE1# G3 VCC L1 A23 N3 VSS P11 018
86 NC C14 8S16# G12 VCC L2 A24 N4 VCC P12 014
87 INTR 01 A11 G13 REAOY# L3 A28 N5 027 P13 013
88 NMI 02 A10 G14 VCC L12 VCC N6 025 P14 VSS

Table 6-4. 132-Pin PGA TI486SXL Terminal Numbers Sorted by Signal Name

Signal Term. Signal Term. Sig- Term. Signal Term. Signal Term. Signal Term.
Name No. Name No. nal No. Name No. Name No. Name No.

Name

A2 C4 A23 L1 04 K14 026 P5 SUSP# A4 VSS A2
A3 A3 A24 L2 05 K13 027 N5 SUSPA# 84 VSS A6
A4 83 A25 K3 06 L14 028 M6 VCC A1 VSS A9
A5 82 A26 M1 07 K12 029 P4 VCC A5 VSS 81
A6 C3 A27 N1 08 L13 030 P3 VCC A7 VSS 85
A7 C2 A28 L3 09 N14 031 M5 VCC A10 VSS 811
A8 C1 A29 M2 010 M12 ERROR# A8 VCC A14 VSS 814
A9 03 A30 P1 011 N13 FLUSH# E13 VCC C5 VSS C11
A10 02 A31 N2 012 N12 HLOA M14 VCC C12 VSS F2
A11 01 AOS# E14 013 P13 HOLO 014 VCC 012 VSS F3
A12 E3 8EO# E12 014 P12 INTR 87 VCC G2 VSS F14
A13 E2 BE1# C13 015 M11 KEN# B12 VCC G3 VSS J2
A14 E1 8E2# B13 016 N11 LOCK# C10 VCC G12 VSS J3
A15 F1 8E3# A13 017 N10 M/IO# A12 VCC G14 VSS J12
A16 G1 8S16# C14 018 P11 NA# 013 VCC L12 VSS J13
A17 H1 BUSY# 89 019 P10 NMI 88 VCC M3 VSS M4
A18 H2 CLK2 F12 020 M9 NC B6 VCC M7 VSS M8
A19 H3 O/C# A11 021 N9 PEREQ C8 VCC M13 VSS M10
A20 J1 00 H12 022 P9 REAOY# G13 VCC N4 VSS N3
A20M# F13 01 H13 023 N8 RESET C9 VCC N7 VSS P6
A21 K1 02 H14 024 P7 SMI# C7 VCC P2 VSS P14
A22 K2 03 J14 025 N6 SMAOS# C6 VCC P8 W/R# 810

NC - Make no external connection

Note: NC Terminals

Connecting or terminating (high or low) any NC terminal(s) may cause un­
predictable results or nonperformance of the microprocessor.

6-6

Terminal Assignments

The terminal assignments for the 144-pin, QFP TI486SXL microprocessors
are shown as viewed from the top side (component side when mounted on a
PC board) in Figure 6-4. The signal names are listed in Table 6-5 and
Table 6-6 sorted by terminal number and signal name, respectively.

Figure 6-4. 144-Pin QFP TI486SXL Package Terminals (Top View)

A20
A21
VSS
VSS
A22
A23

BS16#
015
014
013

VCC
VSS
019
018
017
016

VCC
VSS
012
011
010
09

V
08
CC
07
06
05
04
03
NC

VCC
VSS
027
026
02
01

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

126 TI486SXL
127
128
129
130
131
132
133
134
135
136
137
138

~ ~~ Terminal # 1 Index Mark
141/ (On Top Side)
142
143
144
a O~~M~~m~romo~NM~~m~romo~~M~~m
~~M~~m~rom~~~~~~~~~~~~N~~~NN~NMMMMMMM

NC - Make no external connection
t This pin is VCC5 for the T1486SXL-G40 and TI486SXL2-G50. It is NC for all other devices.

72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37

VSS
NC
VSS
VSS
VCC
SMI#
MEMW#
NC
SUSPA#
SUSP#
VCC
A24
A25
A26
A27
VSS
VCC
VCC
VSS
INTR
VCC
NMI
PEREQ
ERROR#
VSS
NCNCC5t
BUSY#
RESET
VCC
A20M#
FLUSH#
KEN#
FLT#
NC
LOCK#
W/R#

Mechanical Specifications 6-7

Terminal Assignments

Table 6-5. 144-Pin QFP TI486SXL Signal Names Sorted by Terminal Number

Term. Signal Term. Signal Term. Signal Term. Signal Term. Signal Term. Signal
No. Name No. Name No. Name No. Name No. Name No. Name

1 00 25 eLK2 49 ERROR# 73 A2 97 Vss 121 019
2 Vss 26 AOS# 50 PEREa 74 A3 98 Vee 122 018
3 024 27 BEO# 51 NMI 75 A4 99 023 123 017
4 025 28 BE1# 52 Vcc 76 A5 100 022 124 016
5 Vce 29 SMAOS# 53 INTR 77 A6 101 021 125 Vcc
6 HLOA 30 Vce 54 Vss 78 A7 102 020 126 Vss
7 HOLO 31 BE2# 55 Vce 79 Vce 103 Vee 127 02
8 Vss 32 BE3# 56 Vce 80 Vss 104 A16 128 011
9 NA# 33 Vss 57 Vss 81 A31 105 Vec 129 010
10 REAOY# 34 M/IO# 58 A27 82 A30 106 A17 130 09
11 Vcc 35 O/C# 59 A26 83 A29 107 A18 131 08
12 028 36 W/R# 60 A25 84 A28 108 A19 132 Vec
13 029 37 W/R# 61 A24 85 Vce 109 A20 133 07
14 030 38 LoeK# 62 Vcc 86 A8 110 A21 134 06
15 031 39 NC 63 susP# 87 A9 111 Vss 135 05
16 Vce 40 FLT# 64 SUSPA# 88 A10 112 Vss 136 04
17 Vcc 41 KEN# 65 NC 89 A11 113 A22 137 03
18 Vss 42 FLUSH# 66 MEMW# 90 A12 114 A23 138 NC
19 Vss 43 A20M# 67 SMI# 91 Vce 115 BS16# 139 Vce
20 Vss 44 Vce 68 Vcc 92 Vss 116 015 140 Vss
21 Vss 45 RESET 69 Vss 93 A13 117 014 141 027
22 Vss 46 BUSY# 70 Vss 94 A14 118 013 142 026
23 Vss 47 NCNce5t 71 Ne 95 A15 119 Vec 143 02
24 Vss 48 Vss 72 Vss 96 Vss 120 Vss 144 01

Table 6-6. 144-Pin QFP TI486SXL Terminal Numbers Sorted by Signal Name

Signal Term. Signal Term. Signal Term. Signal Term. Signal Term. Signal Term.
Name No. Name No. Name No. Name No. Name No. Name No.

A2 73 A25 60 08 131 ERROR# 49 Vcc 5 Vss 19
A3 74 A26 59 09 130 FLT# 40 Vce 11 Vss 20
A4 75 A27 58 010 129 FLUSH# 42 Vee 16 Vss 21
A5 76 A28 84 011 128 HLOA 6 Vcc 17 Vss 22
A6 77 A29 83 012 127 HOLO 7 Vcc 30 Vss 23
A7 78 A30 82 013 118 INTR 53 Vec 44 Vss 24
A8 86 A31 81 014 117 KEN# 41 Vcc 52 Vss 33
A9 87 AOS# 26 015 116 LoeK# 38 Vcc 55 Vss 48
A10 88 BEO# 27 016 124 M/IO# 34 Vec 56 Vss 54
A11 89 BE1# 28 017 123 MEMW# 66 Vcc 62 Vss 57
A12 90 BE2# 31 018 122 NA# 9 Vce 68 Vss 69
A13 93 BE3# 32 019 121 NMI 51 Vee 79 Vss 70
A14 94 BS16# 115 020 102 Ne 39 Vcc 85 Vss 72
A15 95 BUSY# 48 021 101 NCNec5t 47 Vcc 91 Vss 80
A16 104 CLK2 25 022 100 NC 65 Vec 98 Vss 92
A17 106 O/C# 35 023 99 NC 71 Vcc 103 Vss 96
A18 107 00 1 024 3 NC 138 Vcc 105 Vss 97
A19 108 01 144 025 4 PEREa 50 Vce 119 Vss 111
A20 109 02 143 026 142 REAOY# 10 Vcc 125 Vss 112
A20M# 43 03 137 027 141 RESET 45 Vcc 132 Vss 120
A21 110 04 136 028 12 SMI# 67 Vce 139 Vss 126
A22 113 05 135 029 13 SMAOS# 29 Vss 2 Vss 140
A23 114 06 134 030 14 susP# 63 Vss 8 W/R# 36
A24 61 07 133 031 15 SUSPA# 64 Vss 18 W/R# 37

Ne - Make no external connection
t This pin is VCC5 for the T1486SXL-G40 and TI486SXL2-G50. It is NC for all other devices.

Note: NC Terminals

Connecting or terminating (high or low) any NC terminal(s) may cause un­
predictable results or nonperformance of the microprocessor.

6-8

Terminal Assignments

The terminal assignments for the 168-pin, PGA TI486SXL microprocessors
are shown as viewed from the terminal side (bottom) in Figure 6-5 and as
viewed from the top side (component side when mounted on a PC board) in
Figure 6-6. The signal names are listed in Table 6-7 and Table 6-8 sorted by
terminal number and signal name, respectively. In addition, Table 6-9 shows
a cross-reference between the 168-pin TI486SXL pinout and the 486SX pin­
out.

Figure 6-5. 168-Pin PGA TI486SXL Package Terminals (Bottom View)
Terminal # 1 Index Mark
(On Top Side)

8 C 0 E F G H J K L M N p Q R s

1 8888G88~8888G88G
288888888080888888
388888888888888888
4888 888
5888 888
6888 888
788G GGG
a 888 888
~~a TI486SXL a~~

9 ~~V (Bottom View) V~~

10 @88 888
11888 0088
12 888 888
13 888 088
14 888 888
15 88888888888888888
16 88888888888888888
17 88888888888888888

NC - Make no external connection
tThis pin is VCC5 for the T1486SXL-G40 and TI486SXL2-G50. It is VCC for all other devices.

Mechanical Specifications 6-9

Terminal Assignments

Figure 6-6. 168-Pin PGA TI486SXL Package Terminals (Top View)

s R Q p N M L K J H

Terminal # 1 Index Mark
(On Top Side)

G FED C B

G8GGGGGG~GGG8GB8
88888888808888888
88888888888888888
888 888
GGG G88
88G G88
GGG 888
888 888
a~f::::\ TI486SXL aaa \!J\JV (Top View) \J\J\!J
888 G8@
888 888
888 888
888 888
888 888
88888888888888888
88888888888888888
88GG8GGGGGG8G8888

NC - Make no external connection
t This pin is VCC5 for the T1486SXL-G40 and TI486SXL2-G50. It is VCC for all other devices.

Note: NC Terminals

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Connecting or terminating (high or low) any NC terminal(s) may cause un­
predictable results or nonperformance of the microprocessor.

6-10

Terminal Assignments

Table 6~7. 168-Pin PGA TI486SXL Signal Names Sorted by Terminal Number

Term. Signal Term. Signal Term. Signal Term. Signal Term. Signal Term. Signal
No. Name No. Name No. Name No. Name No. Name No. Name

A1 020 812 SUSPA# 017 NC J15 8E2# P2 A29 R7 A15
A2 022 813 SMAOS# E1 VSS J16 8E1# P3 A30 R8 VCC
A3 NC 814 NC E2 VCC J17 NC P15 HLOA R9 VCC
A4 023 815 NC E3 010 K1 VSS P16 VCC R10 VCC
A5 NC 816 MEMW# E15 HaLO K2 VCC P17 VSS R11 VCC
A6 024 817 NC E16 VCC K3 014 Q1 A31 R12 A11
A7 VSS C1 011 E17 VSS K15 8EO# Q2 VSS R13 A8
A8 029 C2 018 F1 NC K16 VCC Q3 A17 R14 VCC
A9 VSS C3 CLK2 F2 08 K17 VSS Q4 A19 R15 A3

A10 Reserved C4 VCC F3 015 L1 VSS Q5 A21 R16 NC
A11 VSS C5 VCC F15 KEN# L2 06 Q6 A24 R17 PEREQ
A12 ERROR# C6 027 F16 REAOY# L3 07 Q7 A22 S1 A27
A13 NA# C7 026 F17 8E3# L15 NC Q8 A20 S2 A26
A14 NC C8 028 G1 VSS L16 VCC Q9 A16 S3 A23
A15 NMI C9 030 G2 VCC L17 VSS Q10 A13 S4 8USY#
A16 INTR C10 NC G3 012 M1 VSS Q11 A9 S5 A14
A17 NC C11 FLT# G15 NC M2 VCC Q12 A5 S6 VSS
81 019 C12 NC G16 Vec M3 04 Q13 A7 S7 A12
82 021 C13 SUSP# G17 VSS M15 O/C# Q14 A2 S8 VSS
83 VSS C14 NC H1 VSS M16 VCC Q15 NC S9 VSS
84 VSS C15 FLUSH# H2 03 M17 VSS Q16 NC S10 VSS
85 VSS C16 RESET H3 NC N1 02 Q17 NC S11 VSS
86 025 C17 8S16# H15 NC N2 01 R1 A28 S12 VSS
87 VCC 01 09 H16 VCC N3 NC R2 A25 S13 A10
88 031 02 013 H17 VSS N15 LOCK# R3 VCC S14 VSS
89 VCC 03 017 J1 VCC(5t) N16 M/IO# R4 VSS S15 A6
810 SMI# 015 A20M# J2 05 N17 W/R# R5 A18 S16 A4
811 VCC 016 NC J3 016 P1 00 R6 VCC S17 AOS#

Table 6-8. 168-Pin PGA TI486SXL Terminal Numbers Sorted by Signal Name

Signal Term. Signal Term. Signal Term. Signal Term. Signal Term. Signal Term.
Name No. Name No. Name No. Name No. Name No. Name No.

A2 014 A29 P2 016 J3 NC A3 SMAOS# 813 VSS A9
A3 R15 A30 P3 017 03 NC A5 SUSP# C13 VSS A11
A4 S16 A31 Q1 018 C2 NC A14 SUSPA# 812 VSS 83
A5 012 AOS# S17 019 81 NC A17 VCC 87 VSS 84
A6 S15 8EO# K15 020 A1 NC 814 VCC 89 VSS 85
A7 Q13 8E1# J16 021 82 NC 815 VCC 811 VSS E1
A8 R13 8E2# J15 022 A2 NC 817 VCC C4 VSS E17
A9 Q11 8E3# F17 023 A4 NC C10 VCC C5 VSS G1
A10 S13 8S16# C17 024 A6 NC C12 VCC E2 VSS G17
A11 R12 8USY# S4 025 86 NC C14 VCC E16 VSS H1
A12 S7 CLK2 C3 026 C7 NC 016 VCC G2 VSS H17
A13 Q10 O/C# M15 027 C6 NC 017 VCC G16 VSS K1
A14 S5 00 P1 028 C8 NC F1 VCC H16 VSS K17
A15 R7 01 N2 029 A8 NC G15 VCC(5t) J1 VSS L1
A16 Q9 02 N1 030 C9 NC H3 VCC K2 VSS L17
A17 Q3 03 H2 031 88 NC H15 VCC K16 VSS M1
A18 R5 04 M3 ERROR# A12 NC J17 VCC L16 VSS M17
A19 Q4 05 J2 FLT# C11 NC L15 VCC M2 VSS P17
A20 Q8 06 L2 FLUSH# C15 NC N3 VCC M16 VSS Q2
A20M# 015 07 L3 HLOA P15 NC 015 VCC P16 VSS R4
A21 Q5 08 F2 HaLO E15 NC 016 VCC R3 VSS S6
A22 07 09 01 INTR A16 NC 017 VCC R6 VSS S8
A23 S3 010 E3 KEN# F15 NC R16 VCC R8 VSS S9
A24 06 011 C1 LOCK# N15 PEREQ R17 VCC R9 VSS S10
A25 R2 012 G3 M/IO# N16 REAOY# F16 VCC R10 VSS S11
A26 S2 013 02 MEMW# 816 Reserved A10 VCC R11 VSS S12
A27 S1 014 K3 NA# A13 RESET C16 VCC R14 VSS S14
A28 R1 015 F3 NMI A15 SMI# 810 VSS A7 W/R# N17

NC - Make no external connection
tThis pin is VCC5 for the T1486SXL-G40 and TI486SXL2-G50. It is VCC for all other devices.

Mechanical Specifications 6-11

~ Table 6-9. TI486SXL Signal Summary for 168-Pin PGA Pinout
I\)

Address Data Control

486SX
486SX

Pin 486SX
486SX

Pin 486SX 486SXL Pin L L

A2 A2 014 DO DO P1 A20M# A20M# 015
A3 A3 R15 01 01 N2 AOS# AOS# S17
A4 A4 S16 02 02 N1 AHOLO NC A17
AS AS 012 03 03 H2 8EO# 8EO# K15
A6 A6 S15 04 04 M3 8E1# 8E1# J16
A7 A7 013 05 05 J2 8E2# 8E2# J15
A8 A8 R13 06 06 L2 8E3# 8E3# F17
A9 A9 011 07 07 L3 8LAST# NC R16
A10 A10 813 08 08 F2 80FF# NC 017
A11 A11 R12 09 09 01 8ROY# NC H15
A12 A12 87 010 010 E3 8REO# NC 015
A13 A13 010 011 011 C1 888# NC 016
A14 A14 S5 012 012 G3 8816# 8816# C17
A15 A15 R7 013 013 02 CLK CLK2 C3
A16 A16 09 014 014 K3 O/C# O/C# M15
A17 A17 03 015 015 F3 OPO NC N3
A18 A18 R5 016 016 J3 OP1 NC F1
A19 A19 04 017 017 03 OP2 NC H3
A20 A20 08 018 018 C2 OP3 NC AS
A21 A21 05 019 019 81 EA08# NC 817
A22 A22 07 020 020 A1 FLU8H# FLU8H# C15
A23 A23 S3 021 021 82 HLOA HLOA P15
A24 A24 06 022 022 A2 HOLD HOLD E15
A25 A25 R2 023 023 A4 INTR INTR A16
A26 A26 82 024 024 A6 KEN# KEN# F15
A27 A27 81 025 025 86 LOCK# LOCK# N15
A28 A28 R1 026 026 C7 M/IO# M/IO# N16
A29 A29 P2 027 027 C6 NMI NMI A15
A30 A30 P3 028 028 C8 PCO NC J17
A31 A31 01 029 029 A8 PCHK# NC 017

030 030 C9 PWT NC L15
031 031 88 PCLOK# NC 016

ROY# REAOY# F16
RE8ET RE8ET C16
W/R# W/R# N17

-

(LP) = Low Power. (S) = 486SX, (OX) = 4860X, and (OX4) = 4860X4
t This pin is Vee5 for the T1486SXL-G40 and TI486SXL2-G50. It is Vee for all other devices.

Miscellaneous and Spares

486SX 486SXL Pin

CLKSEL(LP) NC A3
Reserved Reserved A10
NC ERROR# A12
NC NA# A13
TOI(s/ox) NC A14
SMI#(s) SMI# 810
NC SUSPA# 812
NC SMAOS# 813
TM8 NC 814
NMI(ox) . NC 815
TOO(s/OX) MEMW# 816
SRESET(s) NC C10
UP#(S) FLT# C11
8MIACT#(s) NC C12
NC 8USP# C13
FERR#(ox) NC C14
8TPCLK(s) NC G15
NC PEREO R17
NC 8USY# 84

VCCNSS

486SX 486SXL

Vee Vee
Vee Vee
Vee Vee
Vee Vee
Vee Vee
Vee5(OX4) Vee(5t)
Vee Vee
Vee Vee
Vee Vee
Vee Vee
Vee Vee
Vee Vee
Vee Vee

Vss Vss
Vss Vss
Vss Vss
Vss Vss
Vss Vss
Vss Vss
Vss Vss
Vss Vss
Vss Vss
Vss Vss
Vss Vss
Vss Vss
Vss Vss
Vss Vss

Pin

87, 89
811, C4
C5, E2
E16, G2
G16, H16
J1
K2

K16, L16
M2, M16
P16,R3
R6,R8
R9,R10
R11,R14

A7,A9
A11,83
84,85
E1,E17
G1, G17
H1, H17
K1, K17
L1, L17
M1, M17
P17,02
R4,86
88,89
810,811
812,814

Q)I
~
S·
~
::t=.
~ cO·
:=:!
:3
CI)
:=:!
Cij

Package Dimensions

6.2 Package Dimensions

The package dimensions for the TI486SXLC microprocessors are shown in
Figure 6-7. The package dimensions for the 132-pin, PGA TI486SXL micro­
processors are shown in Figure 6-8, package dimensions forthe 144-pin QFP
versions are shown in Figure 6-9 and Figure 6-10, and the package dimen­
sions for the 168-pin PGA TI486SXL are shown in Figure 6-11 .

Figure 6-7. 100-Pin Thermally Enhanced Plastic QFP Package Dimensions (TI486SXLC)

PJF(S-PQFP-G100) PLASTIC QUAD FLATPACK

25
0.766(19,46) sa --~
0.734 (18,64)

0.890(22,61) sa -----.tl
0.870 (22,10)

0.912 (23,16) sa ___ ~
0.888 (22,56)

50

~
y 0.025 (O,64) 1

L 0.012 (0,3O} 1-$-1 0.006 (0,15) @ 1
0.008 (0,20). . .

26

t
0.151 (3,81)
0.130 (3,30)

~

0.046 (1,17)
0.036 (0,91)

0.006 (0,15) TYP

il ~ Seating Plane t 1 =1 0.004{O,10j

0.1;: (4,57) MA~ '-----'------'--------'----'--~
40400931 A 10/93

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Falls within JEDEC MO-069
D. Thermally enhanced molded plastic package with a heat slug (HSL) exposed on bottom side of the package body.

Mechanical Specifications 6-13

Package Dimensions

Figure 6-8. 132-Pin Ceramic PGA Package Dimensions (TI486SXL)

CPGA-132 PIN CERAMIC PIN GRID ARRAY

Pin # 1 Index Mark
(On Top Side)

1,27 (0.50)
MAXTYP

o I I I I I I I 1_ 18,4(0.725) ~Ir--
1 '~@@@@@@@@@@@@~ - 16,5(0.650)
2 @@@@@@@I@@@@@@@ - 14,0(0.550)
3 @@@@@@@@@@@@@@ - 11,4(0.450)
4 @@@~ @@@ - 8,89(0.350)
5 @@@ @@@ - 6,35(0.250)
6 @@@ I @@@ - 3,81 (0.150)
7@@)@_-L_@@@-0-1,27(8.050)
8 @@@ TI486SXL @@@
9 @@@ (BOTT~M VIEW) @@@

10 @@@ @@@
11 @@@ @@@

0,025 (0.001)R
MINTYP

no
U'

"&

12 @@@@@@@@@@@@@@
13 @@@@@@@I@@@@@@@
14 ~ 0 @@@@@@@@@@@Q ~

0,47(0.0180) L

4,57 (0,180)1 J
D E F G

1,65 (0.065) Swedge Pin
Standoff (4) Places

------- 36,83 (1.450) -----. 3,05 (0.120)

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.

6-14

7/94

Package Dimensions

Figure 6-9. 144-Pin Plastic QFP Dimensions (TI486SXL)

PCE(S-PQFP-G144)

109

144

108 73

o

1 36

k- 22,75 sa TVP --------.t.1
~------------ 28,20 sa -----------.

27,80
31,45 sa ------~
30,95

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-022

PLASTIC QUAD FLATPACK

72

~
L ~ 1-$-1 o,13@1

0,65

37

0,16TVP

7/94

D. Thermally enhanced molded plastic package with a heat spreader (HSP).
E. Foot length is measured from lead tip to a position on backside of lead O,25mm above seating plane (gage plane).

Mechanical Specifications 6-15

Package Dimensions

Figure 6-10. 144-Pin Ceramic QFP Package Dimensions (TI486SXL)

HBN (S-CaFP-G 144) CERAMIC aUAD FLATPACK

108 73

109

144 o

1 36

I~ ... ----- 22,75 TVP -------al~1
28,00 sa
27,45

31,45
30,95 sa

72

~ 0,30TVP

T
~

37

f
3,42TVP

~

i
0,25 MIN

0,95
0,65

S~_~M

4,07 MAX ~c>IO,10 I

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.

6-16

0,16 NOM

9/94

~':Ji"v':Ji'ya Dimensions

Figure 6-11. 168-Pin Ceramic PGA Package Dimensions (TI486SXL)

CPGA-168 PIN CERAMIC PIN GRID ARRAY

i44.S(1.7S)TYPi -~--- 40,64 (1.60) TYP -----~

S @@@@@@@@@@@@@@@@@
R @@@@@@@@@@@@@@@@@
Q @@~@@@@@@@@@@@~@@
p @@@ @@@
N @@@ @@@
M @@@ @@@
L @@@ @@@
K @@@ @@@
J @@@ @@@
H @@@ @@@
G @@@ @@@
F @@@ @@@
E @@@ @@@
0 @@@ @@@
c @@~@@@@@@@@@@@~@@

0
B @@@@@@@@@@@@@@@@@
A @@@@@@@@@@@@@@@@@

1 2 3 4 5 6 7 8 9 1011121314151617

4.0 (0.160)TYP rt
H f ~ ffiHHHHHHl U n 1

~ ~ 0,46 (0.018) TYP ---.jj.- ~
2,92 (0.115) TYP

2,54 (0.100) TYP

7/94

NOTES: A. All linear dimensions are in millimeters (inches).
B. This drawing is subject to change without notice.

Mechanical Specifications 6-17

Thermal Characteristics

6.3 Thermal Characteristics

The junction-to-ambient (typical) values vary for individual applications de­
pending on factors relating to how the device is mounted and the surrounding
environment such as:

o Circuit trace density of the printed circuit board (PCB) and/or the presence
or absence of ground or power planes internal to the PCB that affect the
ability of the board to conduct heat away from the device

o Whether the device is soldered to the PCB or is inserted into a socket

o Orientation of the PCB that the device is mounted on and the proximity of
adjacent PCBs or system enclosure features that impede natural convec­
tion air circulation around the device

o Ambient air temperature in close proximity to the device and the proximity
of other high-power devices in the system

o Presence of airflow over the device and the attachment of an external heat
sink as indicated by the data in Table 6-10 and Table 6-11

For the 1 ~O-pin and 144-pin QFPs, the values shown for thermal resistance
in Table 6-10 and Table 6-12 with a heatsink are examples of the estimated
improvement in thermal performance.

Note:

The final responsibility for verifying designs incorporating any version of a TI
microprocessor rests with the customer originating the design. Recom­
mended case temperature extremes are specified in Table 5-4, Table 5-5,
and Table 5-6.

Table 6-10. TI486SXLC 1 DO-Pin PQFP Thermal Resistance and Airflow

6-18

Thermal Resistance (OelW)

TI486SXLC 100-Pin PGFP

Without Heatsink With Heatsinkt

Airflow (FtlMin) RaJC RaJA RaJA

o 2 36 32

100

200

400

600 2 15 12

t Round, omni-directional heatsink. Dimensions are approximately 1.125" diameter by 0.42"
high.

Thermal Characteristics

Table 6-11. TI486SXL 132-Pin CPGA Thermal Resistance and Airflow

Thermal Resistance (OCIW)

TI486SXL 132-Pin CPGA t

Airflow (FtiMin) ReJC RSJA

0 3 20

100 3 17

200 3 15

400 3 11

600 3 9

t Thermal resistance values shown are based on measurements made on similar ceramic PGA
packages.

Table 6-12. TI486SXL PQFP Thermal Resistance and Airflow

Thermal Resistance caCIW)

TI486SXL 144-Pin PQFP:j:

Without Heatsink With Heatsink§

Airflow (FtiMin) RSJC RSJA RSJA

o 2 25 18

100

200

400

600 2 12 6

:j: Values shown are based on measurements made on similar 28 mm QFP packages.
§ Pin-Fin heatsink. Dimensions are approximately 1.2" long, by 1.3" wide, by 0.49" high.

Table 6-13. TI486SXL 144-Pin CQFP Thermal Resistance and Airflow

Thermal Resistance (OCIW)

TI486SXL 144-Pin CQFP1f

Airflow (FtiMin) RSJC RSJA

o 3 33

100 3 28

200 3 24

1f Thermal resistance values shown are based on measurements made on similar ceramic QFP
packages.

Mechanical Specifications 6-19

Thermal Characteristics

Table 6-14. TI486SXL 168-Pin CPGA Thermal Resistance and Airflow

Thermal Resistance eCIW)

168-Pin Ceramic PGA Package

Airflow (FtlMin) RSJC RSJA

0 3 18

100 3 15

200 3 13

400 3 10

600 3 8

Thermal resistance values shown are based on measurements made on similar ceramic PGA
packages.

6.3.1 Airflow Measurement Setup

The wind tunnel used for airflow measurements is represented schematically
in Figure 6-12.

Figure 6-12. Wind Tunnel Schematic Diagram

Device test board

~

6-20

Temperature and

~ anemometer-type
airflow probe

~
~

~ I I

> > Airflow I
Fan

I
I I
I I

I I I
Wind tunnel cross-section is 6" by 6".

5 " 24" ..
(Dimensions are approximate.)

~ ~I~
" p 78

Typically, the devices undergoing thermal test are mounted on a test board
consisting of 0.062" thick FR4 printed circuit board material with one-ounce
copper etch. Surface-mount devices are soldered to the test board using
matching footprints with minimal circuit trace density required to electrically in­
terconnect the device to the board. PGA devices are typically inserted in a
socket that is soldered to the test board.

Thermal Characteristics

6.3.2 Thermal Parameter Definitions

The maximum die temperature (T Jmax) and the maximum ambient tempera­
ture (T Amax) can be calculated using the following equations:

Tjmax = T C + (P max x RSJC)
TAmax = TJ - (Pmax x RSJA))

where:

T Jmax = Maximum average junction temperature (OC)
T C = Case temperature at top center of package (OC)
Pmax = Maximum device power dissipation (W)
RSJC = Junction-to-case thermal resistance (OC/W)
T Amax = Maximum ambient temperature (OC)
T J = Average junction temperature (OC)
RSjA = Junction-to-ambient thermal resistance (OC/W)

Values for RSJA and RSJC are given in Table 6-10 and Table 6-11 for various
airflows.

Mechanical Specifications 6-21

6-22

Chapter 7

Instruction Set

This chapter provides information pertaining to the TI486SXL(C) microproces­
sor instruction set. Information is provided to explain the general instruction
format, fields, flags, clock-count summary, and detailed information on the
instruction encodings. All instructions are listed in the instruction set in Section
7.5, Instruction Set.

Topic Page

7.1 Generallostructh;:m Format .. , ~ .••• , , •.•••• , .. ~ .••••..• , ~ 7-2

7.2~ Instruction Fields, •.••. • d~:;', ••••• , •• " •••• , ••

7.3 Flags •• '," •• ",.:~ . " ,',. ,,';' .; .. ", .. ,'. ,.,::.', '~ ,,", . ,,~ ',', ','. "". , • ~:; • , ~,~ • '. '. ~' .• ",' •. ' ~ ,.':7:-1'2

7.4 Clock .. CountSuininary " ~~, •. , . ~ •• ~~. ~ .. ~ •.• ~ ,7 .. 13

7.5 Instruction Set. , " ... ,.~, ,;, 7-13

7-1

General Instruction Format

7.1 General Instruction Format

All of the TI486SXL(C) microprocessor family machine instructions follow the
general instruction format shown in Figure 7-1. These instructions vary in
length and can start at any byte address. An instruction consists of one or more
bytes that can include: prefix byte(s), at least one opcode byte, mod rim byte,
s-i-b (ss, index, and base fields) byte, address displacement byte(s) and im­
mediate data byte(s). An instruction can be as short as one byte and as long
as 15 bytes. If there are more than 15 bytes in the instruction, a general protec­
tion fault (error code of 0) is generated.

Figure 7-1. General Instruction Format

7-2

I p p p p p p p PiT T T T T T TTl mod R R R rim I ss index base I d321161al none id321161al none

7 07 0765320765320

optional prefix opcode
byte(s) (one or two bytes)

mod rim
byte

s-i-b
byte

address
displacement

/ (4, 2, 1 bytes, ,'-------- ~-----',) V or none

P - prefix bit
T - opcode bit
R - opcode bit or reg bit

register and address
mode specifier

immediate
data

(4, 2, 1 bytes,
or none)

Instruction Fields

7.2 Instruction Fields

The general instruction format shows the larger fields that make up an instruc­
tion. Certain instructions have smaller encoding fields that vary according to
the class of operation. These fields define information such as the direction of
the operation, the size of the displacements, register encoding and sign exten­
sion. All the fields are described in Table 7-1, and subsequent paragraphs
provide greater detail.

Table 7-1. Instruction Fields

Field Name

Prefix

Opcode

w

d

s

reg

mod rim

ss

index

base

sreg2

sreg3

eee

Address
displacement

Immediate data

Description Number of Bits

Specifies segment register override, address and operand size, 8 per byte
repeat elements in string instruction, LOCK# assertion.

Identifies instruction operation.

Specifies if data is byte or full size (full size is 16 or 32 bits).

Specifies direction of data operation.

Specifies if an immediate data field must be sign-extended.

General register specifier

Address mode specifier

Scale factor for scaled index address mode

General register to be used as index register

General register to be used as base register

Segment register for CS, SS, OS, and ES

Segment register for CS, SS, OS, ES, FS, and GS

Control, debug, and test register specifier

Address displacement operand

Immediate data operand

1 or 2 bytes

3

2 for mod; 3 for rim

2

3

2

2

3

3

1 , 2, or 4 bytes

1, 2, or 4 bytes

Instruction Set 7-3

Instruction Fields

7.2.1 Prefixes

Prefix bytes can be placed in front of any instruction. The prefix modifies the
operation of the immediately following instruction only. When more than one
prefix is used, the order is not important. There are five types of prefixes as
follows:

1) Segment override explicitly specifies which segment register an instruc­
tion will use.

2) Address size and operand size toggle between 16- and 32-bit addressing
modes. Prefixing the instruction for operand size or address size selects
the inverse of the current addressing mode. See also Section 2.1 , Proces­
sor Initialization, page 2-2.

3) Repeat is used with a string instruction that causes the instruction to be
repeated for each element of the string.

4) Lock is used to assert the hardware LOCK# signal during execution of the
instruction.

Table 7-2 lists the encodings for each of the available prefix bytes. The oper­
and-size and address-size prefixes allow individual overriding of the default
value for operand size and effective-address size. The presence of these pre­
fixes selects the opposite (nondefault) operand size and/or effective-address
size as the case may be.

Table 7-2. Instruction Prefix Summary

Prefix Encoding Description

ES: 26h Override segment default, use ES for memory operand.

CS: 2Eh Override segment default, use CS for memory operand.

SS: 36h Override segment default, use SS for memory operand.

OS: 3Eh Override segment default, use OS for memory operand.

FS: 64h Override segment default, use FS for memory operand.

GS: 65h Override segment default, use GS for memory operand.

Operand size 66h Make operand size attribute the inverse of the default.

Address size 67h Make address size attribute the inverse of the default.

LOCK FOh Assert LOCK# hardware signal.

REPNE F2h Repeat the following string instruction.

REP/REPE F3h Repeat the following string instruction.

7-4

7.2.2 Opcode Field

7.2.3 vv Field

Instruction Fields

The opcode field is either one or two bytes long and specifies the operation to
be performed by the instruction. Some operations have more than one op­
code, each specifying a different form of the operation. Some opcodes name
instruction groups. For example, opcode Ox80 names a group of operations
that have an immediate operand, and a register or memory operand. The
group opcodes use an opcode extension field of three bits in the following byte,
called the MOD RIM byte, to resolve the operation type. Opcodes for the entire
TI486SXL(C) microprocessor instruction set are listed in Table 7-17 on page
7-14. The opcodes are given in hex values unless shown within brackets ([]).
Values shown in brackets are binary values.

The 1-bit field indicates the operand size during 16- and 32-bit data operations
as shown in Table 7-3.

Table 7-3. w Field Encoding

Operand Size Operand Size
w Field 16-Bit Data Operations 32-Bit Data Operations

o 8 bits 8 bits

16 bits 32 bits

Instruction Set 7-5

Instruction Fields

7.2.4 d Field

The d field determines which operand is taken as the source operand and
which operand is taken as the destination as shown in Table 7-4.

Table 7-4. d Field Encoding

d Field Direction Of Operation Source Operand Designation Operand

o Register -7 Register/Memory reg mod rim or mod ss-index-base

Register/Memory -7 Register mod rim or mod ss-index-base reg

7.2.5 reg Field

The reg field determines which general registers are to be used. The selected
register is dependent on whether 16- or 32-bit operation is current and the sta­
tus of the "w" bit as shown in Table 7-5.

Table 7-5. reg Field Encoding

16-Bit 32-Bit
Operation Operation 16-Bit 16-Bit 32-Bit 32-Bit

w Field Not w Field Not Operation Operation Operation Operation
reg Field Present Present w=o w=1 w=o w=1

000 AX EAX AL AX AL EAX

001 CX ECX CL CX CL ECX

010 DX EDX DL DX DL EDX

011 BX EBX BL BX BL EBX

100 SP ESP AH SP AH ESP

101 BP EBP CH BP CH EBP

110 SI ESI DH SI DH ESI

111 DI EDI BH DI BH EDI

7-6

Instruction Fields

7.2.6 mod and rIm Field

The mod and rim sub-fields, within the mod rim byte, select the type of memory
addressing to be used. Some instructions use a fixed addressing mode (e.g.,
PUSH or POP) and therefore, these fields are not present. Table 7-6 lists the
addressing method when 16-bit addressing is used and a mod rim byte is pres­
ent. Some mod rim field encodings are dependent on the w field and are shown
in Table 7-7.

Table 7-6. mod rim Field Encoding

32-Bit Address Mode
16-Bit Address Mode With mod rIm Byte

mod rIm With mod rIm Byte And No s-i-b Byte Present

00000 DS:[BX+SI] DS:[EAX]

00001 DS:[BX+DI] DS:[ECX]

00010 SSS:[BP+SI] DS:[EDX]

00011 SS:[BP+DI] DS:[EBX]

00100 DS:[SI] s-i-b is present (see subsection 7.2.7)

00101 DS:[DI] DS:[d32]

00110 DS:[d16] DS:[ESI]

00 111 DS:[BX] DS:[EDI]

01 000 DS:[BX+SI+d8] DS:[EAX+d8]

01 001 DS:[BXI+DI+d8] DS:[EAX+d8]

01 010 SS:[BP+SI+d8] DS:[EDX+d8]

01 011 SS:[BP+DI+d8] DS:[EBX+d8]

01 100 DS:[SI+d8] s-i-b is present (see subsection 7.2.7)

01 101 DS:[DI+d8] SS:[EBP+d8]

01 110 SS:[BP+d8] DS:[ESI+d8]

01 111 DS:[BX+d8] DS:[EDI+d8]

10000 DS:[BX+SI+d16] DS:[EAX+d32]

10001 DS:[BX+DI+d16] DS:[ECX+d32]

10010 SS:[BP+SI+d16] DS:[EDX+d32]

10011 SS:[BP+DI+d16] DS:[EBX+d32]

10100 DS:[SI+d16] s-i-b is present (see subsection 7.2.7)

10101 DS:[DI+d16] SS:[EBP+d32]

10 110 SS:[BP+d16] DS:[ESI+d32]

10 111 DS:[BX+d16] DS:[EDI+d32]

11 000
11 111 See Table 7-7 See Table 7-7

Instruction Set 7-7

Instruction Fields

Table 7-7. mod rim Field Encoding Dependent on w Field

16-Bit Operation 16-Bit Operation 32-Bit Operation 32-Bit Operation
mod rIm w=o w=1 w=o w=1

11 000 AL AX AL EAX

11 001 CL CX CL ECX

11 010 OL OX OL EOX

11 011 BL BX BL EBX

11 100 AH 8P AH ESP

11 101 CH BP CH EBP

11 110 OH 81 OH E81

11 111 BH 01 BH EOI

7-8

Instruction Fields

7.2.7 mod and base Fields

In Table 7-6, the note "s-i-b present" (for certain entries) forces the use of the
mod base field as listed in Table 7-8.

Table 7-8. mod base Field Encoding

mod rIm

00000

00001

00010

00011

00100

00101

00110

00 111

01 000

01 001

01 010

01 011

01 100

01 101

01 110

01 111

10000

10001

10010

10011

10100

10101

10 110

10 111

32-Bit Address Mode With mod rIm
Byte and No s-i-b Byte Present

DS:[EAX+(scaled index)]

DS:[ECX+(scaled index)]

DS:[EDX+(scaled index)]

DS:[EBX+(scaled index)]

SS:[ESP+(scaled index)]

DS:[EBP+(scaled index)]

DS:[ESI+(scaled index)]

DS:[EDI+(scaled index)]

DS:[EAX+(scaled index)+d8]

DS:[ECX+(scaled index)+d8]

DS:[EDX+(scaled index)+d8]

DS:[EBX+(scaled index)+d8]

SS:[ESP+(scaled index)+d8]

SS:[EBP+(scaled index)+d8]

DS:[ESI+(scaled index)+d8]

DS:[EDI+(scaled index)+d8]

DS:[EAX+(scaled index)+d32]

DS:[ECX+(scaled index)+d32]

DS:[EDX+(scaled index)+d32]

DS:[EBX+(scaled index)+d32]

SS:[ESP+(scaled index)+d32]

SS:[EBP+(scaled index)+d32]

DS:[ESI+(scaled index)+d32]

DS:[EDI+(scaled index)+d32]

Instruction Set 7-9

Instruction Fields

7.2.8 ss Field

The ss field (Table 7-9) specifies the scale factor used in the offset mechanism
for address calculation. The scale factor multiplies the index value to provide
one of the components used to calculate the offset address.

Table 7-9. ss Field Encoding

7.2.9 index Field

ss Field

00

01

10

11

Scale Factor

x1

x2

x4

x8

The index field (Table 7-10) specifies the index register used by the offset
mechanism for offset-address calculation. When no index register is used
(index field = 00), the ss value must be 00 or the effective address is
undefined.

Table 7-10. index Field Encoding

7.2.10 sreg2 Field

index Field Index Register

000 EAX

001 ECX

010 EOX

011 EBX

100 none

101 EBP

110 ESI

111 EDI

The sreg2 field (Table 7-11) is a two-bit field that allows one of the four
286-type segment registers to be specified.

Table 7-11. sreg2 Field Encoding

7-10

sreg2 Field

00

01

10

11

Segment Register
Selected

ES

CS

SS

OS

7.2.11 sreg3 Field

Instruction Fields

The sreg3 field (Table 7-12) is three-bit field that is similar to the sreg2 field,
but allows use of the FS and GS segment registers.

Table 7-12.sreg3 Field Encoding

7.2.12 eee Field

Segment Register
sreg3 Field Selected

000 ES

001 CS

010 SS

011 DS

100 FS

101 GS

110 undefined

111 undefined

The eee field is used to select the control, debug, and test registers as indi­
cated in Table 7-13. The values shown are the only valid encodings for the eee
bits.

Table 7-13.eee Field Encoding

eee Field Register Type Base Register

000 Control register CRO

010 Control register CR2

011 Control register CR3

000 Debug register DRO

001 Debug register DR1

010 Debug register DR2

011 Debug register DR3

110 Debug register DR6

111 Debug register DR?

011 Test register TR3

100 Test register TR4

101 Test register TR5

110 Test register TR6

111 Test register TR?

Instruction Set ? -11

Flags

7.3 Flags

The instruction set summary table lists nine flags that are affected by the
execution of instructions. The conventions shown in Table 7-14 are used to
identify the different flags. Table 7-15 lists the conventions used to indicate
what action the instruction has on the particular flag.

Table 7-14. Flag Abbreviations

Abbreviation

OF

DF

IF

TF

SF

ZF

AF

PF

CF

Table 7-15.Action of Instruction on Flag

7-12

Instruction Table
Symbol

m

u

o

Name of Flag

Overflow flag

Direction flag

Interrupt enable flag

Trap flag

Sign flag

Zero flag

Auxiliary flag

Parity flag

Carry flag

Action

Flag is modified by the instruction

Flag is not changed by the instruction

Flag is reset to 0

Flag is set to 1

Clock Count Summary / Instruction Set

7.4 Clock-Count Summary

7.4.1 Assumptions

The clock-count summaries presented in Table 7-17 are based on assump­
tions associated with each individual instruction. Abbreviations that indicate
the clock-count conditions have been developed to simplify the presentation.

The following assumptions have been made in presenting the clock-count val­
ues for the individual instructions.

o The instruction has been prefetched, decoded, and is ready for execution.
o Bus cycles do not require wait states.
o There are no local-bus HOLD requests delaying processor access to the

bus.
o No exceptions are detected during instruction execution.
o If an effective address is calculated, it does not use two general register

components. One register, scaling, and displacement can be used within
the clock count shown. However, if the effective-address calculation uses
two general register components, add 1 to the clock count shown.

o All clock counts assume aligned 16-bit memory/IO operands for cache­
miss counts.

o If instructions access a misaligned 16-bit operand or a 32-bit operand on
even addresses, add two clock counts for read or write, and add four clock
counts for read and write.

o If instructions access a 32-bit operand on odd addresses, add four clock
counts for read or write, and add eight clock counts for read and write.

7.4.2 Abbreviations

The clock counts listed in the instruction set summary table are grouped by op­
erating mode and whether there is a register/cache hit or a cache miss. In
some cases, more than one clock count is shown in a column for a given
instruction, or a variable is used in the clock count. The abbreviations used for
these conditions are listed in Table 7-16.

Table 7-16. Clock-Count Abbreviations

7.5 Instruction Set

Clock-Count
Symbol

/

n

L

Explanation

Register operand/memory operand

Number of times operation is repeated

Level of the stack frame

Conditional jump taken I conditional jump not taken

CPL ~ IOPL \ CPL > IOPL

The TI486SXLC and TI486SXL instruction set is provided in Table 7-17.
Instruction name, encoding, flags that are affected, and instruction clock
counts for each instruction are shown. The clock-count values are based on
the assumptions described in subsection 7.4.1.

Instruction Set 7 -13

~ Table 7-17. Instruction Set s-
CI)

~ 2"
Real-Mode Protected-Mode

Flags Clocks Clocks Notes

()

g"
0 0 I T S Z A P C

Reg! Cache Regl Cache Real Protected
F F F F F F F F F Cache Miss Cache Miss Mode Mode

Instruction Opcode Hit Hit

~

AAA ASCII Adjust AL after Add 37 u u u u u u m u m 5 5

AAD ASCII Adjust AX before Divide D50A u u u u m m u m u 4 4

AAM ASCII Adjust AX after Multiply D40A u u u u m m u m u 17 17

AAS ASCII Adjust AL after Subtract 3F u u u u u u m u m 5 5

ADC Add with Carry m u u u m m m m m 1 2
Register to Register 1 [OOdw] [11 reg rim] 1 1
Register to Memory 1 [OOOw] [mod reg rim] 3 5 3 5
Memory to Register 1 [001 w] [mod reg rim] 3 5 3 5
Immediate to RegisterlMemory 8 [OOsw] [mod 010 r/m]t 1/3 5 1/3 5
Immediate to Accumulator 1 [010w]t 1 1

ADD Integer Add m u u u m m m m m 1 2
Register to Register o [OOdw] [11 reg rim] 1 1
Register to Memory o [OOOw] [mod reg rim] 3 5 3 5
Memory to Register o [001w] [mod reg rim] 3 5 3 5
Immediate to RegisterlMemory 8 [OOsw] [mod 000 r/m]t 1/3 5 1/3 5
Immediate to Accumulator o [010w]t 1 1

AND Boolean AND 0 u u u m m u m 0 1 2
Register to Register 2 [OOdw] [11 reg rim] 1 1
Register to Memory 2 [OOOw] [mod reg rim] 3 5 3 5
Memory to Register 2 [001 w] [mod reg rim] 3 5 3 5
Immediate to RegisterlMemory 8 [OOsw] [mod 100 r/m]t 1/3 5 1/3 5
Immediate to Accumulator 2 [010w]t 1 1

ARPL Adjust Requested Privilege Level u u u u u m u u u 3 2
From RegisterlMemory 63 [mod reg rim] 6/10 10

BOUND Check Array Boundaries 62 [mod reg rim] u u u u u u u u u 1,4 2,5,6,7,8
If Out of range (Int 5) 11 +int 11 +int
If In Range 11 11

BSF Scan Bit Forward u u u u u m u u u 1 2
RegisterlMemory, Register OF BC[mod reg rim] 5/7+n 9+n 5/7+n 9+n

s-
CI)

St
~
5"' ::::,

~

~
01

Table 7-17. Instruction Set (Continued)

Real-Mode Protected-Mode
Flags Clocks Clocks Notes

0 D I T S Z A P C
Reg! Cache Reg! Cache Real Protected

F F F F F F F F F Cache Miss Cache Miss Mode Mode
Instruction Opcode Hit Hit

BSR Scan Bit Reverse u u u u u m u u u 1 2
Register/Memory, Register OF BC[mod reg rim] 5/7+n 9+n 5/7+n 9+n

BSWAP Byte Swap OF C[1 reg] u u u u u u u u u 5 5

BT Test Bit u u u u u u u u m 1 2
Register/Memory, Immediate OF BA[mod 100 r/mlt 3/4 5 3/4 5
Register/Memory, Register OF A3[mod reg rim] 3/6 7 3/6 7

BTC Test Bit and Complement u u u u u u u u m 1 2
Register/Memory, Immediate OF BA[mod 111 r/m]t 4/5 6 4/5 6
Register/Memory, Register OF BB[mod reg rim] 5/8 9 5/8 9

BTR Test Bit and Reset u u u u u u u u m 1 2
Register/Memory, Immediate OF BA[mod 110 r/m]t 4/5 6 4/5 6
Register/Memory, Register OF B3[mod reg rim] 5/8 9 5/8 9

BTS Test Bit and Set u u u u u u u u m 1 2
Register/Memory OF BA[mod 101 rim] 4/5 6 4/5 6
R~ister ~hort ~rm) _L-0F AB[rl'l0d reg rim] 5/8 9 5/8 9

- - -

t = immediate data ::J: = 8-bit displacement § = 16-bit displacement ~ = 32-bit displacement m = Flag modified u = Flag unchanged
Notes: 1) Exception 13 fault (general protection) occurs in real mode if an operand reference is made that partially or fully extends beyond the maximum CS, OS, ES, FS, or GS segment

limit (FFFFh). Exception 12 fault (stack segment limit violation or not present) occurs in real mode if an operand reference is made that partially or fully extends beyond the maxi­
mum SS limit.

2) Exception 13 fault occurs if the memory operand in CS, OS, ES, FS, or GS cannot be used due to either a segment limit violation or an access rights violation. If a stack limit
is violated, an exception 12 occurs.

3) This is a protected mode instruction. Attempted execution in real mode will result in exception 6 (invalid opcode).
4) An exception may occur, depending on the value of the operand.
5) LOCK# is asserted during descriptor table accesses.
6) All segment descriptor accesses in the GOT or LOT made by this instruction automatically asserts LOCK# to maintain descriptor integrity in multiprocessor systems.
7) JMP, CALL, INT, RET, and IRET instructions referring to another code segment causes an exception 13, if an applicable privilege rule is violated.
8) The destination of a JMP, CALL, INT, RET, or IRET must be in the defined limit of a code segment or an exception 13 fault occurs.

s-
CI)

St
~
5"' ::::,

~

~ Table 7-17. Instruction Set (Continued)
cr>

Flags

0 D I T 5 Z A

Instruction Opcode F F F F F F F

CALL Subroutine Call u u u u u u u
Direct within Segment E811
Register/Memory Indirect within Segment FF [mod 010 rim]

Direct Intersegment 9A [unsigned full offset,
Call Gate to Same Privilege selector]
Call Gate to Different Privilege No Parameters
Call Gate to Different Privilege Parameters
16-Bit Task to 16-bit TSS
16-Bit Task to 32-bit TSS
16-Bit Task to V86 Task
32-Bit Task to 16-bit TSS
32-Bit Task to 32-bit TSS
32-Bit Task to V86 Task

Indirect Intersegment FF [mod 011 rim]
Call Gate to Same Privilege
Call Gate to Different Privilege No Parameters
Call Gate to Different Privilege Parameters
16-Bit Task to 16-bit TSS
16-Bit Task to 32-bit TSS
16-Bit Task to V86 Task
32-Bit Task to 16-bit TSS
32-Bit Task to 32-bit TSS
32-Bit Task to V86 Task

CBW Convert Byte to Word 98 u u u u u u u

CDa Convert Doubleword to Quadword 99 u u u u u u u

CLC Clear Carry Flag F8 u u u u u u u

CLD Clear Direction Flag FC u 0 u u u u u

CLI Clear Interrupt Flag FA u u 0 u u u u

CLTS Clear Task Switched Flag OF06 u u u u u u u

CMC Complement the Carry Flag F5 u u u u u u u

CMP Compare Integers m u u u m m m
Register to Register 3 [10dw] [11 reg rim]
Register to Memory 3 [101 w] [mod reg rim]
Memory to Register 3 [100w] [mod reg rim]
Immediate to Register/Memory 8 [OOsw] [mod 111 r/m]t
Immediate to Accumulator 3 [110w]t

- - -- '--- ~- - -- "-----

Real-Mode
Clocks

P C Reg! Cache
F F Cache Miss Hit

u u
7

8/9 10

12

14 17

u u 3

u u 1

u 0 1

u u 1

u u 5

u u 4

u m 1

m m
1
3 5
3 5

1/3 5
1

-- -

Protected-Mode
Clocks

Reg! Cache
Cache Miss Hit

7
8/9 10

30
41 49
83 97

81+4x 95+4x
262 263
293 317
179 206
238 258
296 340
182 229

14 34
43 51
85 99

86+4x 100+4x
267 268
298 322
181 211
243 263
301 345
184 230

3

2

1

1

5

4

1

1
3 5
3 5

1/3 5
1

Real
Mode

1

10

1

Notes

Protected
Mode

2,6,7,8

9

11

2

~
2
C)

g:
:J

~

s-
(I)

St
?5
8".
::J

fi? -..

-;--J
......
-.....J

Table 7-17. Instruction Set (Continued)

Real-Mode Protected-Mode
Flags Clocks Clocks Notes

0 D I T S Z A P C
Regl Regl

Cache Cache Cache Cache Real Protected
Instruction Opcode F F F F F F F F F Hit Miss Hit Miss Mode Mode

CMPS Compare String A [011w] m u u u m m m m m 8 9 8 9 1 2

CMPXCHG Compare and Exchange m u u u m m m m m
Register1, Register2 OF B[OOOw] [11 reg2 reg1] 5 5
Memory, Register OF B[OOOw] [mod reg rim] 7 8 7 8

CWD Convert Word to Doubleword 99 u u u u u u u u u 1 2

CWDE Convert Word to Doubleword Extended 98 u u u u u u u u u 3 3

DAA Decimal Adjust AL after Add 27 u u u u m m m m m 4 4

DAS Decimal Adjust AL after Subtract 2F u u u u m m m m m 4 4

DEC Decrement by 1 m u u u m m m m u 1 2
Register/Memory F [111w] [mod 001 rim] 1/3 5 1/3 5
Register (short form) 4 [1 reg] 1 1

DIV Unsigned Divide F [011w] [mod 110 rim] u u u u u u u u u 1,4 2,4
Accumulator by Register/Memory
Divisor: Byte 13/15 17 13/15 17

Word 21/22 24 21/22 24
Doubleword 38/39 40 38/39 40

ENTER Enter New Stack Frame C8 [8-bit level]§ u u u u u u u u u 1 2
Level = 0 7 7
Level = 1 10 10 10 10
Level (L) > 1 6+4*L 6+4*L 6+4*L 6+4*L

HLT Halt F4 u u u u u u u u u 3 3 11

t = immediate data :I: = 8-bit displacement § = 16-bit displacement ~ = 32-bit displacement m = Flag modified u = Flag unchanged
Notes: 1) Exception 13 fault (general protection) occurs in real mode if an operand reference is made that partially or fully extends beyond the maximum CS, DS, ES, FS, or GS segment

limit (FFFFh). Exception 12 fault (stack segment limit violation or not present) occurs in real mode if an operand reference is made that partially or fully extends beyond the maxi­
mum SS limit.

2) Exception 13 fault occurs if the memory operand in CS, DS, ES, FS, or GS cannot be used due to either a segment limit violation or an access rights violation. If a stack limit
is violated, an exception 12 occurs.

3) This is a protected mode instruction. Attempted execution in real mode will result in exception 6 (invalid opcode).
4) An exception may occur, depending on the value of the operand.
5) LOCK# is asserted during descriptor table accesses.
6) All segment descriptor accesses in the GDT or LDT made by this instruction automatically asserts LOCK# to maintain descriptor integrity in multiprocessor systems.
7) JMP, CALL, INT, RET, and IRET instructions referring to another code segment causes an exception 13, if an applicable privilege rule is violated.
8) The destination of a JMP, CALL, INT, RET, or IRET must be in the defined limit of a code segment or an exception 13 fault occurs.
9) An exception 13 fault occurs if CPL is greater than IOPL .
1 O)This instruction may be executed in real mode. In real mode, its purpose is primarily to initialize the CPU for protected mode.
11) An exception 13 fault occurs if CPL is greater than 0 (0 is the most privileged level).

s-
(I)

~

?5
8".
::J

~

~ Table 7-17. Instruction Set (Continued)
(Xl

Flags

0 D I T S Z A P

Instruction Opcode F F F F F F F F

IDIV Integer (Signed) Divide u u u u u u u u
Accumulator by Register/Memory F [011 w][mod 111 rim]
Divisor: Byte

Word
Doubleword

IMUL Integer (Signed) Multiply m u u u u u u u
Accumulator by Register/Memory F [011 w] [mod 101 rim]
Multiplier: Byte

Word
Doubleword

Register with Register/Memory OF AF[mod reg rim]
Multiplier: Byte

Word
Doubleword

Register/Memory with Immediate to Register2 6 [1 Os1] [mod reg r/m]t
Multiplier: Byte

Word
Doubleword

IN Input from 110 Port u u u u u u u u
Fixed Port E [01 Ow] [port number]
Variable Port E [110w]

INC Increment by 1 m u u u m m m m
Register/Memory F [111w] [mod 000 rim]
Register (short from) 4 [0 reg]

INS Input String from 110 Port 6 [110w] u u u u u u u u

INT Software Interrupt u m 0 u u u u u
INTi CD[i]
Protected Mode:

Interrupt or Trap to Same Privilege
Interrupt or Trap to Different Privilege
16-Bit Task to 16-bit TSS by Task Gate
16-Bit Task to 32-bit TSS by Task Gate
16-Bit Task to V86 Task by Task Gate
32-Bit Task to 16-bit TSS by Task Gate
32-Bit Task to 32-bit TSS by Task Gate
32-Bit Task to V86 Task by Task Gate
V86 to 16-bit TSS by Task Gate
V86 to 32-bit TSS by Task Gate
V86 to Privilege 0 by Trap Gate/lnt Gate

Real-Mode
Clocks

C Reg! Cache
F Cache Miss Hit

u

14/15 18
23/24 25
40/41 44

m

3/5 7
3/5 7
7/9 13

3/5 7
3/5 7
7/9 13

3/5 7
3/5 7
7/9 13

u
16 16
16 16

u
1/3 5
1

u 20 20

u
14 16

Protected-Mode
Clocks

Regl Cache Cache Miss Hit

14/15 18
23/24 25
40/41 44

3/5 7
3/5 7
7/9 13

3/5 7
3/5 7
7/9 13

3/5 7
3/5 7
7/9 13

16 17
16 17

1/3 5
1

14/20 6/21

57 58
91 92

265 266
296 320
177 205
241 261
299 343
180 232
241 261
299 343
106 114

Real
Mode

1,4

1

1

1

1,4

Notes

Protected
Mode

2,4

2

9

2

2,9

5,6,7,8

:J
(I)

~

~
g"
:J

~

s-
CI)

==t
~ g.
:::,

~

~
CD

Table 7-17. Instruction Set (Continued)

Real-Mode Protected-Mode
Flags Clocks Clocks Notes

0 D I T S Z A P C
Reg! Reg!

Cache Cache Cache Cache Real Protected
Instruction Opcode F F F F F F F F F Hit Miss Hit Miss Mode Mode

INT Software Interrupt (Continued) u m 0 u u u u u u 1,4 5,6,7,8
INT3 CC 14 16
Protected Mode:

Interrupt or Trap to Same Privilege 57 58
Interrupt or Trap to Different Privilege 91 92
16-Bit Task to 16-bit TSS by Task Gate 265 266
16-Bit Task to 32-bit TSS by Task Gate 296 320
16-Bit Task to V86 by Task Gate 177 205
32-Bit Task to 16-bit TSS by Task Gate 241 261
32-Bit Task to 32-bit TSS by Task Gate 299 343
32-Bit Task to V86 by Task Gate 180 232
V86 to 16-bit TSS by Task Gate 241 261
V86 to 32-bit TSS by Task Gate 299 343
V86 to Privilege 0 by Trap Gate/lnt Gate 106 114

INTO CE u u m 0 u u u u u
If OF == 0 1 1 1 1
If OF == 1 (INT4)
Protected Mode:

15 17

Interrupt or Trap to Same Privilege 57 58
Interrupt or Trap to Different Privilege 91 92
16-Bit Task to 16-bit TSS by Task Gate 265 266
16-Bit Task to 32-bit TSS by Task Gate 296 320
16-Bit Task to V86 by Task Gate 177 205
32-Bit Task to 16-bit TSS by Task Gate 241 261
32-Bit Task to 32-bit TSS by Task Gate 299 343
32-Bit Task to V86 by Task Gate 180 232
V86 to 16-bit TSS by Task Gate 241 261
V86 to 32-bit TSS by Task Gate 299 343
V86 to Privilege 0 by Trap Gate/lnt Gate 106 114

t = immediate data :j: = 8-bit displacement § = 16-bit displacement ~ = 32-bit displacement m = Flag modified u = Flag unchanged
Notes: 1) Exception 13 fault (general protection) occurs in real mode if an operand reference is made that partially or fully extends beyond the maximum CS, OS, ES, FS, or GS segment

limit (FFFFh). Exception 12 fault (stack segment limit violation or not present) occurs in real mode if an operand reference is made that partially or fully extends beyond the maxi­
mum SS limit.

2) Exception 13 fault occurs if the memory operand in CS, OS, ES, FS, or GS cannot be used due to either a segment limit violation or an access rights violation. If a stack limit
is violated, an exception 12 occurs.

3) This is a protected mode instruction. Attempted execution in real mode will result in exception 6 (invalid opcode).
4) An exception may occur, depending on the value of the operand.
5) LOCK# is asserted during descriptor table accesses.
6) All segment descriptor accesses in the GOT or LOT made by this instruction automatically asserts LOCK# to maintain descriptor integrity in multiprocessor systems.
7) JMP, CALL, INT, RET, and IRET instructions referring to another code segment causes an exception 13, if an applicable privilege rule is violated.
8) The destination of a JMP, CALL, INT, RET, or IRET must be in the defined limit of a code segment or an exception 13 fault occurs.
9) An exception 13 fault occurs if CPL is greater than IOPL.

s-
CI)

==t
~ g.
:::,

~

--..J
N Table 7-17. Instruction Set (Continued)
o

Flags

0 0 I T S Z

Instruction Opcode
F F F F F F

INVD Invalidate Cache OF08 u u u u u u

INVLPG Invalidate TLB Entry OF 01 [mod 111 rim] u u u u u u

IRET Interrupt Return CF m m m m m m
Real Mode
Protected Mode
Within Task to Same Privilege
Within Task to Different Privilege

16-Bit Task to 16-bit TSS
16-Bit Task to 32-bit TSS
16-Bit Task to V86 Task
32-Bit Task to 16-bit TSS
32-Bit Task to 32-bit TSS
32-Bit Task to V86 Task

JB/JNAElJC Jump on Below/Not u u u u u u
Above or EquaVCarry
8-Bit displacement 72:1=
Full displacement OF 8211

JBElJNA Jump on Below or Equal/Not Above u u u u u u
8-Bit displacement 76:1=
Full displacement OF 8611

JCXZ Jump on CX Zero E3:1= u u u u u u

JElJZ Jump on Equal/Zero u u u u u u
8-Bit displacement 74:1=
Full displacement OF 8411

JECXZ Jump on ECX Zero E3:1= u u u u u u

JUJNGE Jump on Less/Not Greater or Equal u u u u u u
8-Bit displacement 7C:I=
Full displacement OF 8ClI

Real-Mode
Clocks

A P C
Regl Cache

F F F Cache Miss Hit

u u u 7

u u u 5

m m m
14 14

u u u

411
512

u u u
411
512

u u u 713

u u u
411
512

u u u 713

u u u
411
512

Protected-Mode
Clocks

Reg! Cache Cache Miss Hit

7

5

16 17
35 37
74 78

259 260
290 314
173 203
235 255
295 339
176 226

411
613

411
613

713

411
613

713

411
613

Notes

Real Protected
Mode Mode

2,5,6,7,8

8

8

8

8

8

8

~
~

~
5""
~

CJ)

~

s-
CI)

2
C)

5"'
::J

~

-....J

~

Table 7-17. Instruction Set (Continued)

Real-Mode Protected-Mode
Flags Clocks Clocks Notes

0 0 I T S Z A P C Reg! Cache Reg! Cache Real Protected
F F F F F F F F F Cache Miss Cache Miss Mode Mode Instruction Opcode Hit Hit

JLElJNG Jump on Less or Equal/Not Greater u u u u u u u u u 8
8-Bit displacement 7E:j: 411 411
Full displacement OF 8ElI 512 613

JMP Unconditional Jump u u u u u u u u u 1 2,6,7,8
Short EB:j: 4 4
Direct within Segment E911 5 6
RegisterlMemory Indirect within Segment FF [mod 100 rim] 7/8 10 8/9 10
Direct Intersegment EA [full offset, selector] 9 27
Call Gate Same Privilege Level 45 45
16-Bit Task to 16-bit TSS 265 266
16-Bit Task to 32-bit TSS 296 320
16-Bit Task to V86 Task 182 209
32-Bit Task to 16-bit TSS 241 261
32-Bit Task to 32-bit TSS 299 343
32-Bit Task to V86 Task 185 232

Indirect Intersegment FF [mod 101 rim] 13 14 39 39
Call Gate Same Privilege Level 47 47
16-Bit Task to 16-bit TSS 270 271
16-Bit Task to 32-bit TSS 301 325
16-Bit Task to V86 Task 184 214
32-Bit Task to 16-bit TSS 246 268
32-Bit Task to 32-bit TSS 304 348
32-Bit Task to V86 Task 187 237

JNB!JAElJNC Jump on Not Below/ u u u u u u u u u 8
AbbveorEquaVNotCaffY
8-Bit displacement 73:j: 411 411
Full displacement OF 8311 512 613

t = immediate data :j: = 8-bit displacement § = 16-bit displacement 11 = 32-bit displacement m = Flag modified u = Flag unchanged
Notes: 1) Exception 13 fault (general protection) occurs in real mode if an operand reference is made that partially or fully extends beyond the maximum CS, DS, ES, FS, or GS segment

limit (FFFFh). Exception 12 fault (stack segment limit violation or not present) occurs in real mode if an operand reference is made that partially or fully extends beyond the maxi­
mum SS limit.

2) Exception 13 fault occurs if the memory operand in CS, DS, ES, FS, or GS cannot be used due to either a segment limit violation or an access rights violation. If a stack limit
is violated, an exception 12 occurs.

3) This is a protected mode instruction. Attempted execution in real mode will result in exception 6 (invalid opcode).
4) An exception may occur, depending on the value of the operand.
5) LOCK# is asserted during descriptor table accesses.
6) All segment descriptor accesses in the GDT or LDT made by this instruction automatically asserts LOCK# to maintain descriptor integrity in multiprocessor systems.
7) JMP, CALL, INT, RET, and IRET instructions referring to another code segment causes an exception 13, if an applicable privilege rule is violated.
8) The destination of a JMP, CALL, INT, RET, or IRET must be in the defined limit of a code segment or an exception 13 fault occurs.

s-
CI)

~
~
5"'
::J

~

--...J
N Table 7-17. Instruction Set (Continued)
I\:)

Flags

0 0 I T S Z

Instruction Opcode
F F F F F F

JNBElJA Jump on Not Below or Equal/Above u u u u u u
8-Bit displacement 77:\:
Full displacement OF 8711

JNElJNZ Jump on Not Equal/Not Zero u u u u u u
8-Bit Displacement 75:\:
Full Displacement OF 8511

JNUJGE Jump on Not Less/Greater or Equal u u u u u u
8-Bit displacement 7D:\:
Full displacement OF 8011

JNLElJG Jump on Not Less or Equal/Greater u u u u u u
8-Bit displacement 7F:\:
Full displacement OF 8FlI

JNO Jump on Not Overflow u u u u u u
8-Bit displacement 71:\:
Full displacement OF 8111

JNP/JPO Jump on Not Parity/Parity Odd u u u u u u
8-Bit displacement 7B:\:
Full displacement OF 8BlI

JNS Jump on Not Sign u u u u u u
8-Bit displacement 79:\:
Full displacement OF 8911

JO Jump on Overflow u u u u u u
8-Bit displacement 70:\:
Full displacement OF 8011

JP/JPE Jump on Parity/Parity Even u u u u u u
8-Bit displacement 7A:\:
Full displacement OF 8AlI

JS Jump on Sign u u u u u u
8-Bit displacement 78:\:
Full displacement OF 8811

LAHF Load AH with Flags 9F u u u u u u

Real-Mode
Clocks

A P C Regl Cache
F F F Cache Miss Hit

u u u
411
512

u u u
411
512

u u u
411
512

u u u
411
512

u u u
411
512

u u u
411
512

u u u
411
512

u u u
411
512

u u u
411
512

u u u
411
512

u u u 2

Protected-Mode
Clocks

Reg! Cache
Cache Miss Hit

411
613

411
613

411
613

411
613

411
613

411
613

411
613

411
613

411
613

411
613

2
-

Real
Mode

--

Notes

Protected
Mode

8

8

8

8

8

8

8

8

8

8

--

~
==t
~ a-
:::s

~

s-
CI)

~

~ g:
::,

~

-....J
r\)
w

Table 7-17. Instruction Set (Continued)

Real-Mode Protected-Mode
Flags Clocks Clocks Notes

0 D I T S Z A P C Reg! Cache Reg! Cache Real Protected
F F F F F F F F F Cache Miss Cache Miss Mode Mode

Instruction Opcode Hit Hit

LAR Load Access Rights u u u u u m u u u 3 2,5,6,12
From RegisterlMemory OF 02[mod reg rim] 11/12 14

LDS Load Pointer to OS C5 [mod reg rim] u u u u u u u u u 6 7 19 22 1 2,6,13

LEA Load Effective Address 80 [mod reg rim] u u u u u u u u u
No Index Register 2 2
With Index Register 3 3

LEAVE Leave Current Stack Frame C9 u u u u u u u u u 5 6 5 6 1 2

LES Load Pointer to ES C4 [mod reg rim] u u u u u u u u u 7 8 20 21 1 2,6,13

LFS Load Pointer to FS OF B4[mod reg rim] u u u u u u u u u 7 8 20 21 1 2,6,13

LGDT Load GOT Register OF 01 [mod 010 rim] u u u u u u u u u 9 9 9 9 1,10 2,11

LGS Load Pointer to GS OF B5[mod reg rim] u u u u u u u u u 7 8 7 8 1 2,6,13

LIDT Load !DT Register OF 01 [mod 011 rim] u u u u u u u u u 11 11 11 11 1,10 2,11

LLDT Load LOT Register u u u u u u u u u 3 2,5,6,11
From RegisterlMemory OF OO[mod 010 rim] 16/17 18

LMSW Load Machine Status Word u u u u u u u u u 1,10 2,11
From RegisterlMemory OF 01 [mod 110 rim] 5 8 5 8

LODS Load String A [110w] u u u u u u u u u 6 6 6 6 1 2

LOOP Offset Loop/No Loop E2:t u u u u u u u u u ~.~ _ ~------L- __ 8
---- -_. --- L- - _~ _L.....- L....--.l- ~ - - -

t = immediate data + = 8-bit displacement § = 16-bit displacement 11 = 32-bit displacement m = Flag modified u = Flag unchanged
Notes: 1) Exception 13 fault (general protection) occurs in real mode if an operand reference is made that partially or fully extends beyond the maximum CS, OS, ES, FS, or GS segment

limit (FFFFh). Exception 12 fault (stack segment limit violation or not present) occurs in real mode if an operand reference is made that partially or fully extends beyond the maxi­
mum SS limit.

2) Exception 13 fault occurs if the memory operand in CS, OS, ES, FS, or GS cannot be used due to either a segment limit violation or an access rights violation. If a stack limit
is violated, an exception 12 occurs.

3) This is a protected mode instruction. Attempted execution in real mode will result in exception 6 (invalid opcode).
4) An exception may occur, depending on the value of the operand.
5) LOCK# is asserted during descriptor table accesses.
6) All segment descriptor accesses in the GOT or LOT made by this instruction automatically asserts LOCK# to maintain descriptor integrity in multiprocessor systems.
7) JMP, CALL, INT, RET, and IRET instructions referring to another code segment causes an exception 13, if an applicable privilege rule is violated.
8) The destination of a JMP, CALL, INT, RET, or IRET must be in the defined limit of a code segment or an exception 13 fault occurs.
9) An exception 13 fault occurs if CPL is greater than IOPL.
10)This instruction may be executed in real mode. In real mode, its purpose is primarily to initialize the CPU for protected mode.
11) An exception 13 fault occurs if CPL is greater than 0 (0 is the most privileged level).
12)Any violation of privilege rules as apply to the selector operand does not cause a Protection exception, rather, the zero flag is cleared.
13) For segment load operations, the CPL, RPL, and OPL must agree with the privolege rules to avoid an exception 13 fault. The segment's descriptor must indicate present or

exception 11 occurs (OS, OS, ES, FS, GS not present). If the SS register is loaded and a stack segment not present is detected, an exception 12 occurs.

s-
CI)

~

~ g.
::,

~

-....J
N Table 7-17. Instruction Set (Continued)
~

Flags

0 D I T S Z A P

Instruction Opcode
F F F F F F F F

LOOPNZlLOOPNE Offset EO:f: u u u u u u u u

LOOPZlLOOPE Offset E1:f: u u u u u u u u

LSL Load Segment Limit u u u u u m u u
From Register/Memory OF 03[mod reg rim]

LSS Load Pointer to SS OF B2[mod reg rim] u u u u u u u u

LTR Load Task Register OF OO[mod reg rim] u u u u u u u u
From Register/Memory

MOV Move Data u u u u u u u u
Register to Register/Memory 8 [11 Ow] [mod reg rim]
Register/Memory to Register 8 [1 01w] [mod reg rim]
Immediate to Register/Memory C [011 w] [mod 000 r/m]t .
Immediate to Register (short form) B [w reg]t
Memory to Accumulator (short form) A [OOOw]~
Accumulator to Memory (short form) A [001w]~
Register/Memory to Segment Register 8E [mod sreg3 rim]
Segment Register to Register/Memory 8C [mod reg rim]

MOV Move to/from Control/DebuglTest Registers u u u u u u u u
Register to CRO/CR2/CR3 OF 22[11 eee reg]
CRO/CR2/CR3 to Register OF 20[11 eee reg]
Register to DRO-DR3 OF 23[11 eee reg]
DRO-DR3 to Register OF 21 [11 eee reg]
Register to DR6-DR7 OF 23[11 eee reg]
DR6-DR7 to Register OF 21 [11 eee reg]
Register to TR3-5 OF 26[11 eee reg]
TR3-5 to Register OF 24[11 eee reg]
Register to TR6-TR7 OF 26[11 eee reg]
TR6-TR7 to Register OF 24[11 eee reg]

MOVS Move String A [01 Ow] u u u u u u u u

MOVSX Move with Sign Extension u u u u u u u u
Register from Register/Memory OF B[111w] [mod reg rim]

MOVZX Move with Zero Extension u u u u u u u u
Register from Register/Memory OF 8[011 w] [mod reg rim]

Real-Mode
Clocks

C Reg! Cache
F Cache Miss

Hit

u 814

u 814

u

u 7 8

u

u
1/2 2
1/2 4
1/2 2
1
2 4
2 2

2/3 5
1/3 3

u
14/3/3
2/3/3

10
9

10
9
10
11
8
9

u 5 5

u
2/3 5

u
2/3 5

Protected-Mode
Clocks

Reg! Cache
Cache Miss

Hit

914

914

14/15 17

19 20

16/17 18

1/2 2
1/2 4
1/2 2
1
2 4
2 2

15/16 18
1/3 3

14/3/3
2/3/3

10
9

10
9
10
11
8
9

5 5

2/3 5

2/3 5

Notes

Real Protected
Mode Mode

8

8

3 2,5,6,12

3 2,6,13

3 2,5,6,11

1 2,6,13

11

1 2

1 2

1 2

c

s-
CI)

::t
~
5"
::J

~

s-
(I)

~

~
2"'
:J

~

'-J
N
01

Table 7-17. Instruction Set (Continued)

Real-Mode Protected-Mode
Flags Clocks Clocks Notes

0 D I T S Z A P C
Regl Cache Reg! Cache Real Protected

F F F F F F F F F Cache Miss Cache Miss Mode Mode
Instruction Opcode Hit Hit

MUL Unsigned Multiply F [011w] [mod 100 rim] m u u u u u u u m 1 2
Accumulator with RegisterlMemory
Multiplier: Byte 3/5 7 3/5 7

Word 3/5 7 3/5 7
Ooubleword 10/9 14 10/9 14

NEG Negate Integer F [011w][mod 011 rim] m u u u m m m m m 1/3 5 1/3 5 1 2

NOP No Operation 90 u u u u u u u u u 1 1

NOT Boolean Complement F [011 w] [mod 010 rim] u u u u u u u u u 1/3 5 1/3 5 1 2

OR Boolean OR 0 u u u m m m m 0 1 2
Register to Register 0[10dw][11 reg rim] 1 1
Register to Memory o [1 OOw] [mod reg rim] 3 5 3 5
Memory to Register o [101 w] [mod reg rim] 3 5 3 5
Immediate to RegisterlMemory 8 [OOOw] [mod 001 r/m]t 1/3 5 1/3 5
Immediate to Accumulator o [110w]t 1 1

OUT Output to Port u u u u u u u u u 9
Fixed Port E [011 w] [port number] 18 18 14\34 14\35
Variable Port E [111w] 18 18 14\34 14\35

OUTS Output String _~J111w] u u u u u u u u u 20 20 14\34 14\34 1 2,9
- -

t = immediate data * = 8-bit displacement § = 16-bit displacement ~ = 32-bit displacement m = Flag modified u = Flag unchanged
Notes: 1) Exception 13 fault (general protection) occurs in real mode if an operand reference is made that partially or fully extends beyond the maximum CS, OS, ES, FS, or GS segment

limit (FFFFh). Exception 12 fault (stack segment limit violation or not present) occurs in real mode if an operand reference is made that partially or fully extends beyond the maxi­
mum SS limit.

2) Exception 13 fault occurs if the memory operand in CS, OS, ES, FS, or GS cannot be used due to either a segment limit violation or an access rights violation. If a stack limit
is violated, an exception 12 occurs.

3) This is a protected mode instruction. Attempted execution in real mode will result in exception 6 (invalid opcode).
4) An exception may occur, depending on the value of the operand.
5) LOCK# is asserted during descriptor table accesses.
6) All segment descriptor accesses in the GOT or LOT made by this instruction automatically asserts LOCK# to maintain descriptor integrity in multiprocessor systems.
7) JMP, CALL, INT, RET, and IRET instructions referring to another code segment causes an exception 13, if an applicable privilege rule is violated.
8) The destination of a JMP, CALL, INT, RET, or IRET must be in the defined limit of a code segment or an exception 13 fault occurs.
9) An exception 13 fault occurs if CPL is greater than IOPL.
10) This instruction may be executed in real mode. In real mode, its purpose is primarily to initialize the CPU for protected mode.
11)An exception 13 fault occurs if CPL is greater than 0 (0 is the most privileged level).
12)Any violation of privilege rules as apply to the selector operand does not cause a Protection exception, rather, the zero flag is cleared.
13) For segment load operations, the CPL, RPL, and OPL must agree with the privolege rules to avoid an exception 13 fault. The segment's descriptor must indicate present or

exception 11 occurs (OS, OS, ES, FS, GS not present). If the SS register is loaded and a stack segment not present is detected, an exception 12 occurs.

s-
(I)

~

?5
2"'
:J

~

"'..J

'"
Table 7-17. Instruction Set (Continued)

0'>

Flags

0 0 I T S Z A

Instruction Opcode
F F F F F F F

POP Pop Value off Stack u u u u u u u
Register/Memory 8F [mod 000 rim]
Register (short form) 5 [1 reg]
Segment Register (ES, CS, SS, DS) [000 sreg2 110]
Segment Register (ES, CS, SS, DS, FS, GS) OF [10 sreg3 001]

POPA Pop All General Registers 61 u u u u u u u

POPF Pop Stack into Flags 9D m m m m m m m

PREFIX BYTES ,. u u u u u u u
Assert Hardware LOCK Prefix FO
Address Size Prefix 67
Operand Size Prefix 66
Segment Override Prefix:

CS 2E
DS 3E
ES 26
FS 64
GS 65
SS 36

PUSH Push Value onto Stack u u u u u u u
Register/Memory FF [mod 110 rim]
Register (short form) 5 [0 reg]
Segment Register (ES, CS, SS, DS) [000 sreg2 11 0]
Segment Register (ES, CS, SS, DS, FS, GS) OF [10 sreg3 000]
Immediate 6 [10s0]t

PUSHA Push All General Registers 60 u u u u u u u

PUSHF Push Flags Register 9C u u u u u u u

RCL Rotate Through Carry Left m u u u u u u
Register/Memory by 1 D [OOOw] [mod 010 rim]
Register/Memory by CL D [001 w] [mod 010 rim]
Register/Memory by Immediate C [OOOw] [mod 010 r/m]t

RCR Rotate Through Carry Right m u u u u u u
Register/Memory by 1 D [OOOw] [mod 011 rim]
Register/Memory by CL D [001w] [mod 011 rim]
Register/Memory by Immediate C [OOOw] [mod 011 r/m]t

-'-----

Real-Mode
Clocks

P C
Reg! Cache

F F Cache Miss
Hit

u u
3/5 4/5
3 4
8 9
8 9

u u 18 18

m m 4 5

u u

u u
2/4 4
2 2
2 2
2 2
2 2

u u 17 17

u u 2 2

u m
9/9 10
9/9 10
9/9 10

u m
9/9 10
9/9 10
9/9 10

- - - --

Protected-Mode
Clocks

Regl Cache
Cache Miss

Hit

3/5 4/5
3 4
8 9
8 9

18 18

4 5

2/4 4
2 2
2 2
2 2
2 2

17 17

2 2

9/9 10
9/9 10
9/9 10

9/9 10
9/9 10
9/9 10

- -

Real
Mode

1

1

1

1

1

1

1

1

- -

Notes

Protected
Mode

2,6,13

2

2,14

9

2

2

2

2

2

- -

s­
CI)
::;-
~
5-
::::J

~

s-
CI)

t:t
~
8"'
::J

~

-....J
N
-....J

Table 7-17. Instruction Set (Continued)

Real-Mode Protected
Flags Clocks Mode Clocks Notes

0 0 I T S Z A P C Reg! Cache Reg! Cache Real Protected
F F F F F F F F F Cache Miss Cache Miss Mode Mode Instruction Opcode Hit Hit

REP INS Input String F26[110w] u u u u u u u u u 20+9n 20+9n 5+9n\ 5+9n\ 1 2,9
18+9n 19+9n

REP LOOS Load String F2 A[110w] u u u u u u u u u 4+5n 4+5n 4+5n 4+5n 1 2

REP MOVS Move String F2 A[010w] u u u u u u u u u 5+4n 5+4n 5+4n 5+4n 1 2

REP OUTS Output String F26[111w] u u u u u u u u u 20+4n 20+4n 5+4n\ 5+4n\ 1 2,9
18+4n 19+4n

REP STOS Store String F2 A[101w] u u u u u u u u u 3+4n 3+4n 3+4n 3+4n 1 2

REPE CMPS Compare String
(Find nonmatch)

F3 A[011w] m u u u m m m m m 5+8n 5+8n 5+8n 5+8n 1 2

REPE SCAS Scan String
(Find non-AUAXlEAX)

F3 A[111w] m u u u m m m m m 4+5n 4+6n 4+5n 4+6n 1 2

REPNE CMPS Compare String
(Find match)

F2 A[011w] m u u u m m m m m 5+8n 5+8n 5+8n 5+8n 1 2

REPNE SCAS Scan String F2 A[111w] m u u u m m m m m 4+5n 4+6n 4+5n 4+6n 1 2
(Find AUAXlEAX)

- - - - -- -- ---- ------ -- -- - - -- - - ____ __ _1 __ - ---- - --- --- ---- ---- - L- _ - - --- - -- -

t = immediate data + = 8-bit displacement § = 16-bit displacement ~ = 32-bit displacement m = Flag modified u = Flag unchanged
Notes: 1) Exception 13 fault (general protection) occurs in real mode if an operand reference is made that partially or fully extends beyond the maximum CS, OS, ES, FS, or GS segment

limit (FFFFh). Exception 12 fault (stack segment limit violation or not present) occurs in real mode if an operand reference is made that partially orfully extends beyond the maxi­
mum SS limit.

2) Exception 13 fault occurs if the memory operand in CS, OS, ES, FS, or GS cannot be used due to either a segment limit violation or an access rights violation. If a stack limit
is violated, an exception 12 occurs.

3) This is a protected mode instruction. Attempted execution in real mode will result in exception 6 (invalid opcode).
4) An exception may occur, depending on the value of the operand.
5) LOCK# is asserted during descriptor table accesses.
6) All segment descriptor accesses in the GOT or LDT made by this instruction automatically asserts LOCK# to maintain descriptor integrity in multiprocessor systems.
7) JMP, CALL, INT, RET, and IRET instructions referring to another code segment causes an exception 13, if an applicable privilege rule is violated.
8) The destination of a JMP, CALL, INT, RET, or IRET must be in the defined limit of a code segment or an exception 13 fault occurs.
9) An exception 13 fault occurs if CPL is greater than IOPL.
10) This instruction may be executed in real mode. In real mode, its purpose is primarily to initialize the CPU for protected mode.
11) An exception 13 fault occurs if CPL is greater than 0 (0 is the most privileged level).
12)Any violation of privilege rules as apply to the selector operand does not cause a Protection exception, rather, the zero flag is cleared.
13)For segment load operations, the CPL, RPL, and OPL must agree with the privolege rules to avoid an exception 13 fault. The segment's descriptor must indicate present or

exception 11 occurs (OS, OS, ES, FS, GS not present). If the SS register is loaded and a stack segment not present is detected, an exception 12 occurs.
14)The IF bit of the flag register is not updated if CPL is greater than IOPL. The IOPL and VM fields of the flag register are updated only if CPL = O.

s-
CI)

t:t
~
8"'
::J

~

-...J
N Table 7-17. Instruction Set (Continued)
ex:>

Flags

0 D I T S Z A

Instruction Opcode F F F F F F F

RET Return from Subroutine u u u u u u u
Within Segment C3
Within Segment Add Immediate to SP C2§
Intersegment CB
Intersegment Add Immediate to SP CA§
Protected Mode: Different Privilege Level

I nterseg ment
Intersegment Add Immediate to SP

ROL Rotate Left m u u u u u u
Register/Memory by 1 o [OOOw] [mod 000 rim]
Register/Memory by CL o [001 w] [mod 000 rim]
Register/Memory by Immediate C [OOOw] [mod 000 r/m]t

ROR Rotate Right m u u u u u u
Register/Memory by 1 o [OOOw] [mod 001 rim]
Register/Memory by CL o [001 w] [mod 001 rim]
Register/Memory by Immediate C [OOOw] [mod 001 r/m]t

RSDC Restore Segment Register and OF 79 [mod sreg3 rim] u u u u u u u
Descriptor

RSLDT Restore LDTR and Descriptor OF 78 [mod 000 rim] u u u u u u u

RSM Resume from SMM Mode oFAA u u u u u u u

RSTS Restore TSR and Descriptor OF 70 [mod 000 rim] u u u u u u u

SAHF Store AH in Flags 9E u u u u m m u

SAL Shift Left Arithmetic m u u u m m u
Register/Memory by 1 o [OOOw] [mod 100 rim]
Register/Memory by CL o [001w] [mod 100 rim]
Register/Memory by Immediate C [OOOw] [mod 100 r/m]t

SAR Shift Right Arithmetic m u u u m m m
Register/Memory by 1 o [OOOw] [mod 111 rim]
Register/Memory by CL o [001 w] [mod 111 rim]
Register/Memory by Immediate C [OOOw] [mod 111 r/m]t

Real-Mode
Clocks

P C
Regl Cache

F F Cache Miss Hit

u u
10
10
13 13
13 13

u m
2/4 6
3/5 7
2/4 6

u m
2/4 6
3/5 7
2/4 6

u u 14

u u 14

u u 76

u u 14

m m 2

m m
2/4 6
3/5 7
2/4 6

m m
2/4 6
3/5 7
2/4 5

Protected-Mode
Clocks

Reg! Cache Cache Miss Hit

10
10
26 26
26 27

69 72
69 72

\

2/4 6
3/5 7
2/4 6

2/4 6
3/5 7
2/4 6

14

14

76

14

2

2/4 6
3/5 7
2/4 6

2/4 6
3/5 7
2/4 8

Real
Mode

1

1

1

15

15

15

15

Notes

Protected
Mode

2,5,6,7,8

2

2

15

15

15

15

s-
CI)

~

?5
g"
::J

~

s-
CI)

~
~ g.
:J

~

""-I
N
<D

Table 7-17.° Instruction Set (Continued)

Real-Mode Protected-Mode
Flags Clocks Clocks Notes

0 D I T S Z A P C
Reg! Cache Reg! Cache Real Protected

F F F F F F F F F
Cache Miss Cache Miss Mode Mode

Instruction Opcode Hit Hit

SBB Integer Subtract with Borrow m u u u m m m m m 1 2
Register to Register 1 [10dw] [11 reg rim] 1 1
Register to Memory 1 [100w] [mod reg rim] 3 5 3 5
Memory to Register 1 [101w] [mod reg rim] 3 5 3 5
Immediate to RegisterlMemory 8 [OOsw] [mod 011 r/mlt 1/3 5 1/3 5
Immediate to Accumulator (short form) 1 [110w]t 1 1

SCAS Scan String A [111w] m u u u m m m m m 6 6 6 6 1 2

SETB/SETNAEISETC Set Byte on Below/ u u u u u u u u u 2
Not Above or Equal/Carry
To RegisterlMemory OF 92[mod 000 rim] 2/2 2 2/2 2

SETBEISETNA Set Byte on Below or Equal/ u u u 1J u u u u u 2
Not Above
To RegisterlMemory OF 96 [mod 000 rim] 2/2 2 2/2 2

SETEISETZ Set Byte on Equal/Zero Register/ u u u u u u u u u 2
Memory OF 94 [mod 000 rim] 2/2 2 2/2 2

SETUSETNGE Set Byte on Less/ u u u u u u u u u 2
Not Greater or Equal
To RegisterlMemory OF 9C[mod 000 rim] 2/2 2 2/2 2

SETLEISETNG Set Byte on Less or Equal/ u u u u u u u u u 2
Not Greater
To RegisterlMemory OF 9E[mod 000 rim] 2/2 2 2/2 2

-- --- -'----

t = immediate data + = 8-bit displacement § = 16-bit displacement 11 = 32-bit displacement m = Flag modified u = Flag unchanged
Notes: 1) Exception 13 fault (general protection) occurs in real mode if an operand reference is made that partially or fully extends beyond the maximum CS, OS, ES, FS, or GS segment

limit (FFFFh). Exception 12 fault (stack segment limit violation or not present) occurs in real mode if an operand reference is made that partially or fully extends beyond the maxi­
mum SS limit.

2) Exception 13 fault occurs if the memory operand in CS, OS, ES, FS, or GS cannot be used due to either a segment limit violation or an access rights violation. If a stack limit
is violated, an exception 12 occurs.

3) This is a protected mode instruction. Attempted execution in real mode wi" result in exception 6 (invalid opcode).
4) An exception may occur, depending on the value of the operand.
5) LOCK# is asserted during descriptor table accesses.
6) A" segment descriptor accesses in the GOT or LOT made by this instruction automatically asserts LOCK# to maintain descriptor integrity in multiprocessor systems.
7) JMP, CALL, INT, RET, and IRET instructions referring to another code segment causes an exception 13, if an applicable privilege rule is violated.
8) The destination of a JMP, CALL, INT, RET, or IRET must be in the defined limit of a code segment or an exception 13 fault occurs.
15)A" memory accesses using this instruction are noncacheable as this instruction uses SMM address space.

s-
CI)

~

~ g.
:J

~

" w Table 7-17. Instruction Set (Continued)
o

Flags

0 D I T S Z A

Instruction Opcode F F F F F F F

SETNB/SETAEISETNC Set Byte on Not Below/ u u u u u u u
Above or Equal/Not Carry
To Register/Memory OF 93[mod 000 rim]

SETNBEISETA Set Byte on Not Below or u u u u u u u
Equal/ Above
To Register Memory OF 97[mod 000 rim]

SETNEISETNZ Set Byte on Not Equal/ u u u u u u u
Not Zero
To Register/Memory OF 95[mod 000 rim]

SETNUSETGE Set Byte on Not Less/ u u u u u u u
Greater or Equal
To Register/Memory OF 9D [mod 000 rim]

SETNLElSETG Set Byte on Not Less or u u u u u u u
Equal/Greater
To Register/Memory OF 9F[mod 000 rim]

SETNO Set Byte on Not Overflow u u u u u u u
To Register/Memory OF 91 [mod 000 rim]

SETNP/SETPO Set Byte on Not Parity/ u u u u u u u
Parity Odd
To Register/Memory OF 98[mod 000 rim]

SETNS Set Byte on Not Sign u u u u u u u
To Register/Memory OF 99[mod 000 rim]

SETO Set Byte on Overflow u u u u u u u
To Register/Memory OF 90[mod 000 rim]

SETP/SETPE Set Byte on Parity/Parity Even u u u u u u u
To Register/Memory OF 9A[mod 000 rim]

SETS Set Byte on Sign u u u u u u u
To Register/Memory OF 98[mod 000 rim]

SGDT Store GOT Register u u u u u u u
To Register/Memory OF 01 [mod 00 rim]

SHL Shift Left Logical m u u u m m u
Register/Memory by 1 D [OOOw] [mod 100 rim]
Register/Memory by CL D [001w][mod 100 rim]
Begister/memory~lmmed~~ __ C [OOOw] [mod 100 r/m]t

Real-Mode
Clocks

P C Reg! Cache
F F Cache Miss Hit

u u

2/2 2

u u

2/2 2

u u

2/2 2

u u

2/2 2

u u

2/2 2

u u
2/2 2

u u

2/2 2

u u
2/2 2

u u
2/2 2

u u
2/2 2

u u
2/2 2

u u
6 6

m m
1/3 5
2/4 6
1/3 5

Protected-Mode
Clocks

Reg! Cache Cache Miss Hit

2/2 2

2/2 2

2/2 2

2/2 2

2/2 2

2/2 2

2/2 2

2/2 2

2/2 2

2/2 2

2/2 2

6 6

1/3 5
2/4 6

~-~._5_

Notes

Real Protected
Mode Mode

2

2

2

2

2

2

2

2

2

2

2

1,10 2

1 2

----L-_______

s-
(J)

::t
?5
g"
::J

~

s-
CI)

~
~ g.
:::J

~

-...J

~

Table 7-17. Instruction Set (Continued)

Real-Mode Protected-Mode
Flags Clocks Clocks Notes

0 0 I T S Z A P C
Reg! Cache

Reg! Cache Real Protected
F F F F F F F F F Cache

Miss
Cache Miss Mode Mode

Instruction Opcode Hit Hit

SHLO Shift Left Double u u u u m m u m m
Register/memory by Immediate OF A4[mod reg r/m]t 1/3 5 1/3 5
Register/Memory by CL OF A5[mod reg rim] 3/5 7 3/5 7

SHR Shift Right Logical m u u u m m u m m 1 2
Register/Memory by 1 o [OOOw] [mod 101 rim] 1/3 5 1/3 5
Register/Memory by CL o [001w] [mod 101 rim] 2/4 6 2/4 6
Register/Memory by Immediate C [OOOw] [mod 101 r/m]t 1/3 4 1/3 4

SHRO Shift Right Double u u u u m m u m m
Register/Memory by Immediate OF AC[mod reg r/m]t 1/3 5 1/3 5
Register/Memory by CL OF AO[mod reg rim] 3/5 7 3/5 7

SlOT Store lOT Register u u u u u u u u u 1,10 2
To Register/Memory OF 01 [mod 001 rim] 8 8 8 8

SLOT Store LOT Register u u u u u u u u u 3 2
To Register/Memory OF OO[mod 000 rim] 2/3 3

SMSW Store Machine Status Word OF 01 [mod 100 rim] u u u u u u u u u 2/4 4 2/4 4 1,10 2,11

STC Set Carry Flag F9 u u u u u u u u 1 1 1

STO Set Direction Flag FO u 1 u u u u u u u 2 2

STI Set Interrupt Flag FB u u 1 u u u u u u 4 4 9

t = immediate data :t: = 8-bit displacement § = 16-bit displacement 11 = 32-bit displacement m = Flag modified u = Flag unchanged
Notes: 1) Exception 13 fault (general protection) occurs in real mode if an operand reference is made that partially or fully extends beyond the maximum CS, OS, ES, FS, or GS segment

limit (FFFFh). Exception 12 fault (stack segment limit violation or not present) occurs in real mode if an operand reference is made that partially or fully extends beyond the maxi­
mum SS limit.

2) Exception 13 fault occurs if the memory operand in CS, OS, ES, FS, or GS cannot be used due to either a segment limit violation or an access rights violation. If a stack limit
is violated, an exception 12 occurs.

3) This is a protected mode instruction. Attempted execution in real mode will result in exception 6 (invalid opcode).
4) An exception may occur, depending on the value of the operand .
5) LOCK# is asserted during descriptor table accesses.
6) All segment descriptor accesses in the GOT or LOT made by this instruction automatically asserts LOCK# to maintain descriptor integrity in multiprocessor systems.
7) JMP, CALL, INT, RET, and IRET instructions referring to another code segment causes an exception 13, if an applicable privilege rule is violated.
8) The destination of a JMP, CALL, INT, RET, or IRET must be in the defined limit of a code segment or an exception 13 fault occurs.
9) An exception 13 fault occurs if CPL is greater than IOPL.
1 O)This instruction may be executed in real mode. In real mode, its purpose is primarily to initialize the CPU for protected mode.
11) An exception 13 fault occurs if CPL is greater than 0 (0 is the most privileged level).

s-
CI)

~
~ g.
:::J

~

""" w Table 7-17. Instruction Set (Continued)
I\)

Flags

0 0 I T S Z A

Instruction Opcode F F F F F F F

STOS Store String A [101w] u u u u u u u

STR Store Task Register u u u u u u u
To RegisterlMemory OF OO[mod 001 rim]

SUB Integer Subtract m u u u m m m
Register to Register 2 [10dw] [11 reg rim]
Register to memory 2 [100w] [mod reg rim]
Memory to Register 2 [101 w] [mod reg rim]
Immediate to RegisterlMemory 8 [OOsw] [mod 101 r/m]t
Immediate to Accumulator (short form) 2 [110w]t

SVDC Save Segment Register and Descriptor OF 78 [mod sreg3 rim] u u u u u u u

SVLDT Save LDTR and Descriptor OF 7 A [mod 000 rim] u u u u u u u

SVTS Save TSR and Descriptor OF 7C [mod 000 rim] u u u u u u u

TEST Test Bits 0 u u u m m u
RegisterlMemory and Register 8 [01 Ow] [mod reg rim]
Immediate Data and RegisterlMemory F [011w] [mod 000 r/m]t
Immediate Data and Accumulator A [100w]t

VERR Verify Read Access u u u u u m u
To RegisterlMemory OF OO[mod 100 rim]

VERW Verify Write Access u u u u u m u
To Register/Memory OF OO[mod 1.01 rim]

WAIT Wait Until FPU Not Busy 98 u u u u u u u

WBINVD Write-Back and Invalidate Cache OF09 u u u u u u u

XADD Exchange and Add m u u u m m m
Register1, Register2 OFC[OOOw] [11 reg2 reg1]
Memory, Register OFC[OOOw] [mod reg rim]

XCHG Exchange u u u u u u u
RegisterlMemory with Register 8 [011w] [mod reg rim]
Register with Accumulator 9 [0 reg]

Real-Mode
Clocks

P C Reg! Cache
F F Cache Miss Hit

u u 3 3

u u

m m
1
3 5
3 5

1/3 5
1

u u 22

u u 22

u u 22

m 0
1/3 5
1/3 5
1

u u

u u

u u 5 5

u u 8

m m
3
6 6

u u
3/5 5
3

- -

Protected-Mode
Clocks

Reg! Cache Cache Miss Hit

3 3

1/2 2

1
3 5
3 5

1/3 5
1

22

22

22

1/3 5
1/3 5
1

9/10 12

9/10 12

5 5

8

3
6 6

3/5 5
3
- ~ ----

Real
Mode

1

3

1

15

15

15

1

3

3

1,16

--

Notes

Protected
Mode

2

2

2

15

15

15

2

2,5,6,12

2,5,6,12

2,16

-~ ---

s-
en
=t
?5
~
::J

~

s-
CI)

~
§
g.
:::J

~

"" w
c..v

Table 7-17. Instruction Set (Continued)

Real-Mode Protected-Mode
Flags Clocks Clocks Notes

0 D I T S Z A P C Regl Cache Regl Cache Real Protected
F F F F F F F F F Cache Miss Cache Miss Mode Mode Instruction Opcode Hit Hit

XLAT Translate Byte 07 u u u u u u u u u 3 5 3 5 2

XOR Boolean Exclusive OR 0 u u u m m u m 0 1 2
Register to Register 3 [OOdw] [11 reg rim] 1 1
Register to Memory 3 [OOOw] [mod reg rim] 3 5 3 5
Memory to Register 3 [001 w] [mod reg rim] 3 5 3 5
Immediate to Register/Memory 8 [OOsw] [mod 110 r/m]t 1/3 5 1/3 5
Immediate to Accumulator (short form) 3 [010w]t 1 1

t = immediate data + = 8-bit displacement § = 16-bit displacement 11 = 32-bit displacement m = Flag modified u = Flag unchanged
Notes: 1) Exception 13 fault (general protection) occurs in real mode if an operand reference is made that partially or fully extends beyond the maximum CS, OS, ES, FS, or GS segment

limit (FFFFh). Exception 12 fault (stack segment limit violation or not present) occurs in real mode if an operand reference is made that partially or fully extends beyond the maxi­
mum SS limit.

2) Exception 13 fault occurs if the memory operand in CS, OS, ES, FS, or GS cannot be used due to either a segment limit violation or an access rights violation. If a stack limit
is violated, an exception 12 occurs.

3) This is a protected mode instruction. Attempted execution in real mode will result in exception 6 (invalid opcode).
4) An exception may occur, depending on the value of the operand.
5) LOCK# is asserted during descriptor table accesses.
6) All segment descriptor accesses in the GOT or LOT made by this instruction automatically asserts LOCK# to maintain descriptor integrity in mUltiprocessor systems.
7) JMP, CALL, INT, RET, and IRET instructions referring to another code segment causes an exception 13, if an applicable privilege rule is violated.
8) The destination of a JMP, CALL, INT, RET, or IRET must be in the defined limit of a code segment or an exception 13 fault occurs.
9) An exception 13 fault occurs if CPL is greater than IOPL.
1 O)This instruction may be executed in real mode. In real mode, its purpose is primarily to initialize the CPU for protected mode.
11) An exception 13 fault occurs if CPL is greater than 0 (0 is the most privileged level).
12)Any violation of privilege rules as apply to the selector operand does not cause a Protection exception, rather, the zero flag is cleared.
13) For segment load operations, the CPL, RPL, and OPL must agree with the privolege rules to avoid an exception 13 fault. The segment's descriptor must indicate present or

exception 11 occurs (OS, OS, ES, FS, GS not present). If the SS register is loaded and a stack segment not present is detected, an exception 12 occurs.
14)The IF bit of the flag register is not updated if CPL is greater than IOPL. The IOPL and VM fields of the flag register are updated only if CPL = O.
15)AII memory accesses using this instruction are noncacheable as this instruction uses SMM address space.
16) LOCK# is automatically asserted, regardless of the presence or absence of the LOCK prefix.

~
~
§
g.
:::J

~

7-34

Appendix A

SMM Programmer's Guide

This programmers guide provides detailed information including examples
pertinent to programming the TI486SXL(C) system management mode
(SMM). Included are SMI examples, testing/debugging SMM code, power
management features, loading SMM programs, detection of CPU type,
presence of SMM-capable devices, creating macros, and altering SMM code
limits.

Topic Page

A.1· SMM;Overview;.d ~; ~ .. ~ ~~: ~ A.;2
,'" '" , " ' ' ", , ' ~, '0 , 0 '" ,

TI~86$~t!e,):M~c~~pro&.e~$o~' poW~rM~n,a'$m'tli F1e.~1~rE,!~ •• ~. ~'. ~· .•• :~~a
.~~M E~itur:i <;otri~adsciii "':'! ~ •• ~. ~~'.~~~~;" • . .•.••. ~ ••••.••••••• A.:4

o " ,",,' '~c ' 0' '~ , 0

SMM:Hatdware;Consideratloos : : ~ :.~ .,; ...•.•... A-5

A~5' $MM:Sri~at~C~R~~~e;~ti~6; .~. ~ ••••.. : •••.•....•.
A~6

, , , "" ~, ' -- ~ : ' ' ~ , , ,

A,7SMMjn$tr;"ctionSun\maryaoc;tI\ll~c::ro~ .• ~. ,.~ .•.•••• ; •. ~ ..••.•• ~ •.•• " ..•.. ~ .~A .. t2.
A.8~M1Handler .E~altlple.~ ,~:;~:~) •.. c' .'. ". ~: •••• ',; •••. ~ •••••••••• A-17

A-1

SMM Overview

A.1 SMM Overview

A.1.1 Introduction

This programmer's guide has been written to aid programmers in the creation
of software using the TI486SXL(C) family of microprocessors system man­
agement mode (SMM). SMM is currently implemented in all versions of the
TI486SXL(C) microprocessors.

For an introduction to SMM and additional information, refer to Section A.3,
SMM Features Comparison (page A-4), which compares the differences be­
tween the TI486SXLC and the TI486SXL and other industry offerings that im­
plement SMM, and Subsection A.14.3, Clearing the VM Flag Bit (page A-42),
which contains important information concerning SMM programming.

A.1.2 SMM Implementation

A-2

SMM operation in the TI486SXL(C) microprocessors is similar to related op­
erations performed by the Advanced Micro Devices and Intel Corporation mi­
croprocessors. Each of these three microprocessors switches into real mode
upon entry into the SMM interrupt handler. Each manufacturer's CPU has
unique SMM code locations. The TI CPU has a programmable location and
size for the SMM memory region. Each of the manufacturer's processors
saves the programmer-visible register contents upon entry and also saves the
nonprogrammer-visible register contents. The TI CPU automatically saves the
minimal register information, reducing the entry and exit clock count to 140.
This compares with Intel's clock overhead for entry and exit of 804 clocks and
AMD's minimum of 694 clocks. (See Section A.3, SMM Feature Comparison
(page A-4), for a comparison of SMM overhead.)

The SMM implementation provides unique instructions that save additional
segment registers as required by the programmer, in addition to the x86 MOV
instruction that saves the general-purpose registers.

Although all three manufacturers' CPUs provide liD trapping, the
TI486SXL(C) microprocessors SMM simplifies identification of liD type and
instruction restarting. The TI CPU SMM process is unique in its ability to permit
software relocation and sizing of the SMM address region. This flexibility facili­
tates run-time changes to SMM support. This software flexibility allows an op­
erating system or debugger to change, modify, or disable the SMM code.

Tl486SXL(C) Microprocessor Power Management Features

A.2 TI486SXL(C) Microprocessor Power Management Features

The TI486SXL(C) microprocessor family provides several methods and levels
of power management. The fully static design, suspend mode, system man­
agement mode (SMM), and 3.3-V operation can be used to achieve optimum
CPU and system power management. Table A-1 summarizes the various
power management options:

Table A-t. Power Management Options

Option Power Savings

Reduced Clock Frequency ICC = (12 x fCLK2 (MHz)) + 150 mA @ 5 V

Lower Supply Voltage (Vce) ICC = (130 x Vce) - 256 mA @ 25 MHz

Suspend Mode 2% of typical Icc

Remove Clock 25% of typical Icc

Suspend Mode and Remove Clock 400 !-LA

Remove Power 0 !-LA

A.2.1 Reducing the Clock Frequency

The TI486SXL(C) microprocessor family is a fully static design; the input clock
frequency can be reduced or stopped without a loss of internal CPU data or
state. The system designer can make decisions to reduce the clock by using
the SMM capabilities to support Advanced Power Management (APM) soft­
ware API in concert with chipset capabilities. When the clock is removed, then
restarted, CPU execution begins with the instruction where the clock was re­
moved. It should be noted that the clock-doubled versions of TI486SXL(C)
family must be brought into the nonclock-doubled mode before scaling or stop­
ping the input CLK2.

A.2.2 Suspend Mode

The TI486SXL(C) microprocessor family supports suspend mode operation
that can be entered either through software or hardware initiation.

Software initiates suspend mode through execution of a halt (HLT) instruction.
After HLT is executed, the CPU enters suspend mode and asserts suspend
acknowledge (SUSPA#), if enabled.

Hardware initiates suspend mode by using the SUSP# and SUSPA# pins of
the microprocessor. When SUSP# is asserted the CPU completes any pend­
ing instructions and bus cycles and then enters suspend mode. Once in sus­
pend mode, the SUSPA# pin is asserted by the CPU.

SMM Programmer's Guide A-3

SMM Feature Comparison

A.3 SMM Feature Comparison

The SMM features of the TI486SXLC and TI486SXL microprocessors are
compared with other versions of microprocessors in Table A-2.

Table A-2. SMM Features

Feature TI486SXLC TI486SXL 386SL AMD

SMM Entry Point Base of SMM space Base of SMM space 38000h Reset vector
(0 to 32M bytes less (0 to 4G bItes less
4K bytes) 4K bytes)

CPU State Save Top of SMM space Top of SMM space 3FFA8h-3FFFFh 60000h-600CAh
Area and 601 00h-60126h

SMM Space Programmable Programmable 38000/30000h Entire address
(4K to 16M) (4K to 4G) (32K/64K) space

Data Auto-Saved 8 32-bit registers 8 32-bit registers 44 32-bit registers 53 32-bit registers
1 16-bit register 1 16-bit register 9 16-bit registers 8 16-bit registers
1 4-bit register 1 4-bit register

SMM Memory None None 8-bit on 8-MHz Nonpipelined
Restrictions XD Bus No dynamic bus siz-

ing

Normal Mode Yes Yes Yes No
SMM Memory
Access

Hardware Pins 2 2 NA- Must use 4
82360

Incremental CPU Yes Yes No No
State Save
Instructions

I/O Trapping Yes Yes Yes Yes

SMI# Input Yes Yes Yes No
Masking

t Address region 4 register is 32 bits wide to support 4G-byte physical address space.

A-4

SMM Hardware Considerations

A.4 SMM Hardware Considerations

A.4.1 SMM Pins

The following sections provide an overview of TI486SXL(C) SMM coding and
information helpful in developing SMM code.

The SMI# and SMADS# pins are used to implement SMM. The bidirectional
SMI# pin is used by the chipset to signal the CPU that an SMI has occurred.
While the CPU is in the process of servicing an SMM interrupt, the same pin
is used to send a signal to the chipset to indicate that the SMM processing is
occurring. The SMADS# address strobe is generated instead of the ADS# ad­
dress strobe while executing or accessing data in SMM address space.

A.4.2 SMI# Pin Timing

In order to enter the system management mode, the SMI# pin must be as­
serted for at least four CLK2 periods. See Figure A-1 . Once the CPU recog­
nizes the active SMI input, the CPU drives the SMI input low for the duration
of the SMI routine. The SMI routine is terminated with an SMI-specific resume
(RSM) instruction. When the RSM instruction is executed, the CPU drives the
SMI# pin high for two CLK2 periods. The SMI# pin bidirectional design:

o Prohibits more than one SMJ interrupt from becoming active.

o Provides feedback to the chip-set/core logic that an SMI is in process.

o Provides compatibility with other SMM hardware interfaces.

Figure A-t. SMI# Timing

CLK2

~i
I

V I
SMI# I I

(~'" i) I I I
I I I I I
I I I I I
1 2 3 4 5

Indicates that TI486SXLC drives the SMI# pin.

A.4.3 Address Strobes

The TI486SXL(C) microprocessor has two address strobes, ADS# and
SMADS#. ADS# is the address strobe used during normal operations. The
SMADS# address strobe replaces ADS# during SMM operations when data
is written, read, or fetched in the SMM defined region. Using a separate ad­
dress strobe increases chipset compatibility and control.

During an SMM interrupt routine, control can be transferred to main memory
via a JMP, CALL, Jcc (conditional jump, cc = condition code) instruction or

SMM Programmer's Guide A-5

SMM Hardware Considerations

execution of a software interrupt (INT). Execution in main memory causes
ADS# to be generated for code and data outside of the defined SMM address
region. (It is assumed, but not required, that the chipset ultimately translates
SMADS# and a particular address to some other address.) To access code in
main memory that overlaps the SMM address space, the MMAC bit (CCR1,
bit 3) must be set. This allows ADS# strobes to be generated for MOV instruc­
tions that overlap main memory while in SMM mode. It is not possible to
execute code in main memory that overlaps SMM space while in the SMM
mode.

SMADS# can also be generated for memory reads, writes, and code fetches
within the defined SMM region when the SMAC bit, configuration control 1 reg­
ister (CCR1) bit 2, is setwhile in normal mode. (See subsection 2.5.4, Configu­
ration Registers on page 2-26, for further information on CCR1). The genera­
tion of SMADS# permits a program in normal space to jump into SMM code
space. Care should be taken to be in real mode before the jump occurs into
SMM space. A routine should be followed to initialize used registers to their
real-mode state. The RSM instruction should not be used after jumping into
SMM space unless return information is first written into the SMM context area
before the RSM instruction is executed.

A.4.4 Chipset READY#

A-6

The TI486SXL(C) microprocessors have one READY# input. chipsets that im­
plement the dual READY lines can OR the two ready lines together for the
single READY#. The AMD implementation of SMM provides for two READY
lines from the chipset, one for SMM space (SREADY#) and one for the normal
READY#.

SMM Software Considerations

A.S SMM Software Considerations

At the start of the SMM routine, before control is transferred to code executing
at SMM base, some of the CPU state is saved at the end of SMM memory. This
is one area where the CPU SMM state is unique. The CPU saves the minimum
CPU state information necessary for an interrupt handler to execute and return
to the interrupted context. The information is saved at the top of the defined
SMM region (starting atSMM base + size-30h). Of the typically used program
registers, only the CS, EFLAGS, CRO, and DR7 are saved upon entry. This
requires that data accesses use a CS segment override to save other registers
and access data. To use any other register, the SMM programmer must first
save the contents using the SVDC instruction for segment registers or MOV
operations for general purpose registers (See Section A.7, SMM Instruction
Summary and Macros, page A-12). It is possible to save all the CPU registers
as needed.

Unique to the TI486SXL(C) microprocessors is the saving of the previous IP
before the SMI and the next IP to be executed after exiting the SMI handler.
Upon execution of an RSM instruction, control is returned to the NEXT IP. The
value of the NEXT IP may need to be modified for restarting OUTSx/lNSx
instructions; this modification is a simple move (MOV) of the PREVIOUS IP
value to the NEXT IP location. Execution is then returned to the 1/0 instruction,
rather than the instruction after the next 1/0 instruction. (The restarting of I/O
instructions may also require modifications to the ESI, ECX, and EDI depend­
ing on the instruction. See Section A.8, SMI Handler Example (page A-17), for
typical code used.)

Figure A-2 and Table A-3 describe the SMM memory space header. The P
and I bits indicate whether a INSX/OUTSx and REP prefix were being
executed. INIOUT instructions are restarted by changing NEXT IP and leaving
the SMI handler.

Note:

The only area in the SMM header that the programmer should consider alter­
ing is the NEXT IP. Altering any other header values can have unpredictable
results.

The EFLAGS, CRO, and DR7 registers are set to the reset values upon entry
to the SMI handler. This has implications for setting break points using the de­
bug registers. Break points cannot be set prior to the SMI using debug regis­
ters. The INT 3 debug code trap technique can be used, however, it must be
used prior to the occurrence of the SMI in SMM space. Once the SMI has oc­
curred and the debugger has control in SMM space, the debug registers can
be used for the remaining SMI execution.

SMM Programmer's Guide A-7

SMM Software Considerations

Figure A-2. SMM Memory Space Header

Top of SMM --.
Address Space

31

31

o
DR?

-4h
EFLAGS

-8h
CRO

-Ch
Current IP

Next IP
-10h

16 15 0 -14h
Reserved I CS Selector

CS Descriptor (Bits 63-32)

31 CS Descriptor (Bits 31-0)

Reserved

Reserved

Reserved

ESI or EDI

Table A-3. SMM Memory Space Header

Name

DR?

EFLAGS

CRO

Current IP

Next IP

CS Selector

CS Descriptor

P

ESI or EDI

Description

The contents of the debug register?

The contents of the extended flag-word register

The contents of the control register 0

The address of the instruction executed prior to servicing the SMI interrupt

The address of the next instruction that will be executed after exiting the SMM mode

Code segment register selector for the current code segment

Code register descriptor for the current code segment

REP INSX/OUTSx Indicator
P = 1 if current instruction has a REP prefix
P = 0 if current instruction does not have REP prefix

IN, INSx, OUT, or OUTSx Indicator
I = 1 if current instruction performed is an I/O WRITE
I = 0 if current instruction performed is an I/O READ

Restored ESI or EDI value. Used when it is necessary to repeat an REP OUTSx or
REP INSx instruction when one of the I/O cycles caused an SMI# trap

Note: INSx = INS, INSB, INSW, or INSD instruction.

Note: OUTSx = OUTS, OUTSB, OUTSW, or OUTSD instruction.

A-8

2 1 0

Iplll

-18h

-1Ch

-20h

-24h

-28h

-2Ch

-30h

Size

4 Bytes

4 Bytes

4 Bytes

4 Bytes

4 Bytes

2 Bytes

8 Bytes

1 Bit

1 Bit

4 Bytes

SMM Software Considerations

A.S.1 Exiting the SMI Handler

When the RSM instruction is executed at the end of the SMI handler, the IP
is loaded from the top of the 8MM at the address (SMMbase +SMMsize -14h)
called SM,-NEXTIP. This permits the instruction to be restarted. The values
of ECX, E81, and EDI, prior to the execution of the instruction that was inter­
rupted by SMI, can be restored from information in the header that pertains to
the INx and OUTx instructions. The only registers that are restored from the
SMM header are C8, NEXT _IP, EFLAG8, CRO, and DR?

A.S.2 Accessing Main Memory At the Same Address as SMM Code

To access main memory overlapping the SMM space (Le., generate ADS#
from memory MOV instructions rather than 8MADS#) set the MMAC (main
memory access) bit in CCR1. The following code enables MMAC:

Example A-1. Accessing Main Memory Overlapping SMM Space

mov aI,
out 22h,
in aI,
mov ah,
mov aI,
out 22h,
mov aI,
or aI,
out 23h,

Oclh
al

23h
al
Oclh
al

ah
OSh
al

;select CCRl

;get CCRl current value
;save it

;set MMAC

;NoW all non-cs-prefixed data memory access will use ADS#;
;Code fetches will continue from SMM memory using SMADS#

;Disable MMAC
mov
out
mov
out

aI, Oclh
22h, al
aI, ah
23h, al

;select CCRl

;get old value of CCRl
;and restore it

A.S.3 Miscellaneous Execution Details

The following list provides additional details pertaining to the execution of
instructions associated with SMM/SMI functions.

o Execution of SMM code begins at the start of SMM space. This is the value
entered onto the base portion of AAR4. The CS base will be set to the
ARR4 8MM base, and EIP will be equal to O. CS limit will be the size of
the SMM segment set in ARR4.

o The A20# input to the CPU is ignored for all SMM space accesses. These
are all accesses which use SMAD8#.

o All SMM instructions can be executed outside the SMM defined space,
provided that SMAC bit is set in CCR1 or execution of an SMI handler is
in progress. (An 8MI handler is "in progress" during the time the CPU is
driving the 8MI pin low.)

SMM Programmer's Guide A-9

SMM Software Considerations

A-10

o Setting the MMAC bit permits the reading and writing of main memory
addresses that overlap SMM memory while an SMI is in progress.

o It is not possible to execute code in main memory that overlaps SMM
memory addresses while an SMI is in progress.

o NMI is the only enabled interrupt at the entry to the SMI handler. It is ad­
vised that system designers provide latches to disable NMI while the SMI
is in progress.

o The SM I handler can execute calls, jumps, and other changes of flow and
will generate software interrupts and faults using the current definition of
the lOT. (Note that on entry to the SMI handler, the lOT is not set to the
reset real-mode value of 0:0.)

o The SMI handler can go from real mode to protected mode and vice-versa.
Almost anything that can be done normally can also be done during the
SMI service routine.

o SMM memory is not cached.

o If the location of SMM space is beyond 1 M byte, the value in CS truncates
the segment above 16 bits. This would prohibit doing calls or INTS from
real mode without restoring the 32-bit features of the 486 because of the
incorrect return address on the stack.

o An undefined opcode exception is typically generated when conditions are
not correct to permit the execution of SMM instructions.

o To execute outside the SMM region (BIOS, debugger, etc.) the CS limit
must be changed after entry to the SMI handler. The limit of the CS seg­
ment register is set to the size of the SMM region in ARR4. This means
that EIP cannot become larger than the SMM region size. Since jumps in
real mode do not change the CS limit, this has implications for software
interrupts and jumps out of SMM space. (See Section A.13, Altering SMM
Code Limits on page A-34 for details and options.)

o Segment registers other than the CS have the limits set in the nonpro­
grammer-visible portion that were present before the SMI. To avoid a
protection error due to limit or other violation, the RSOC SMM instruction
should be used to change the limit ofthe registerin use. (See Section A.12,
Format of Data Used by SVDCIRSDC Instructions on page A-32.)

Enabling SMM

A.6 Enabling SMM

The enabling and setup of SMM in the CPU is done by setting all four of the
SMM registers/bits to the values shown in Table A-4 by using the code sup­
plied in Example A-2.

See subsection 2.5.4, Configuration Registers (page 2-26), for further in­
formation on CCR1 and ARR4.

Table A-4. Setting SMM Register Bits

Register/Bit

SMI

SM4

Locationt

CCR1 bit 1

CCR1 bit 7

ARR4 bits 12-4

ARR4 bits 3-0

Example A-2. SMM Setup

Setup example

iSMM Location OC8000H
iSMM Size = 8RB

mov aI, Oc1h
out 22h, al
in ah, 23h
or ah, 082h
mov aI, Oc1h
out 22h, al
out 23h, ah
mov aI, Oceh
out 22h, al
mov aI, Och
out 23h, al
mov aI, Ocfh
out 22h, al
mov aI, 082h
out 23h, al

Value Description

Enable SMI pin

Start SMM region

~ 4KB and::;; 16MB

Make ARR4 as SMM space

SMM base address

SMM size

index to CCRI
select CCRI register
read current CCR1 value
enable SM! and SM4 region
index to CCRI
select CCRI register
write new value to CCR1
index ARR4 SMM base address bits <23-16>
select
set ARR4 SMM base address upper bits
write value
index ARR4 SMM base address bits <15-12>
and 4 bits for SMM size
set SMM lower address bits and SMM size
write value

SMM Programmer's Guide A-11

SMM Instruction Summary and Macros

A.7 SMM Instruction Summary and Macros

A-12

The TI486SXL(C) microprocessor responds to seven instructions when it is in
SM mode that are not standard instructions. The seven instructions include:

o Two that save and restore a segment register and its descriptor
o Two that save and restore the task register
o Two that save and restore the LDT register
o One that exits SM mode

The instructions that save and restore registers are needed because the CPU
saves a minimum amount of information in the SM header (for speed). If one
or more of the segment registers in the SM interrupt handler needs to be modi­
fied, the previous values need to be preserved as they are not automatically
saved in the header. The instructions that save and restore segment registers
are provided for this purpose. Similarly, the instructions that save and restore
the Task register and LDT register allow creation of an SM interrupt handler
that enters protected mode and acts as a task dispatcher.

The seven SM instructions summarized in Table A-5 are valid only when CPL
is 0 and either:

o The SMAC, SMI, and SM4 bits are set and a valid SMM region is defined
(the SMM size defined to be greater than 0).

o The SMI# pin is driven low by the CPU. (The CPU drives SMI# low after
it recognizes the SMI interrupt and continues to drive it low until RSM is
executed. See Figure A-1 page A-5.)

SMM Instruction Summary and Macros

Table A-S. SMM Instruction Set with Clock Counts

Instruction Mnemonic Opcode Clocks Description

rsdc rsCseg OF 79

rsldt rstJdt OF 78

rsts rsCtr OF7D

svdc OF7a

svldt OF7A

svts OF7C

rsm exiCsm OFAA

14

14

14

22

22

22

5a

Restores a segment register from
an a~-bit memory location. t

Restores the local-descriptor­
table register from an aD-bit
memory location. t

Restores the task register from an
aD-bit memory location.t

Saves a segment register at an
aD-bit memory location.:j:

Saves the local-descriptor-table
register at an aD-bit memory loca­
tion.:j:

Saves the task register at an
aD-bit memory location.:j:

Restores the state of the CPU
from the data saved in the header
at the top of SM memory (the
header is created by the proces­
sor when it recognizes an SMI).
This instruction takes the proces­
sor out of 8M mode and returns it
to the task that was executing
when the 8MI occurred.

t The restore includes the descriptor information that is not visible to applications.
:j: The save includes the descriptor information that is not visible to applications.

The values in the second column in Table A-5, titled Mnemonic, are arbitrary
since there is no current assembler support for the SM instructions. That
means that the code will probably be generated manually. In generating the
code other arbitrary names may be preferred. The names shown in the first
column of Table A-5 are the instruction names that have been added to the
TI486SXL(C) instruction set. The mnemonics are a bit more descriptive and
are used in the example macros, Example A-3. These examples for generat­
ing SM instruction code have been rewritten from earlier versions.

The third column in Table A-5 provides the basic opcode for the SM instruc­
tions. In addition to these basic codes, the first six SM instructions listed can
be prefixed with a segment override and/or an address size override, and they
require a mod rim byte and a memory offset.

The include file shown in Example A-3 contains some macros that will be use­
ful within an SM interrupt handler. These macros implement versions of the
seven special 8M instructions shown in Table A-5. These macros can be used
as is, or modified to suit the particular application.

SMM Programmer's Guide A-13

SMM Instruction Summary and Macros

Example A-3. Macros That Implement the Special SM Instructions

COMMENT A

File: SM.MAC

Copyright (c) 1994 Texas Instruments, Incorporated

This include file defines a set of macros for generating System Management (SM)
mode instruction opcodes, since no assembler directly supports these SM
instructions.

There are six SM instructions that are used to save and restore registers that
are not automatically saved when SM mode is entered, and one instruction for
exiting from SM mode. These instructions support many addressing modes, but
the macros in this file only implement one mode--a 16-bit memory reference
(within the code segment as a CS: override is also used). These macros could
be made much more complex to allow other addressing modes, but the additional
complexity wouldn't provide much useful benefit.

Each of the macros that implements a register save or restore takes as a
parameter an offset in the code segment where the register should be saved to
or restored from. The two macros that save and restore segment registers also
take the name of a segment register as a parameter.

Here is a small portion of code that shows how the macros in this file are used:

«««< BEGIN EXAMPLE CODE »»»>

• CODE

smi_entrYJ>oint:

A-14

sav_seg old_ds,ds
sav_seg old_es,es
sav_seg old_fs,fs
sav_seg old_gs,gs
sav_seg old_ss,ss
sav_Idt old_Idt
sav_tr old_tr
mov
mov

dword ptr cs:old_eax,eax
cs:old_ebx,ebx

rst_seg ds, old_ds
rst_seg es,old_es
rst_seg fs,old_fs
rst_seg gs,old_gs

Save segment registers

Save LDTR and TR

Save other registers

Restore segment registers

SMM Instruction Summary and Macros

rst_seg ss, old_ss
rst - ldt old_ ldt Restore LDTR and TR
rst - tr old_tr
mov eax,dword ptr cs:old_eax Restore other registers
mov ebx,dword ptr cs:old_ebx
exit - sm Exit SM interrupt handler

old_ds dt ? 10 bytes in code segment
old_es dt ?

old fs dt ?

old_gs dt ?

old ss dt ?

old tr dt ?

old ldt dt ?

old eax dd ?

old ebx dd ?

«««< END EXAMPLE CODE »»»>

NOTE: The location at addr must be 10 bytes in size and it must reside
within the code segment. It should be defined as:

iaddr dt ?

sav_seg MACRO addr, reg Save one of the segment registers
SMMac sav_seg, addr, reg, 78h
ENDM

rst_seg MACRO reg, addr Restore one of the segment registers
SMMac rst_seg, addr, reg, 79h
ENDM

sav_ldt MACRO addr Save the LDT register
SMMac sav_ldt, addr, ldt, 7Ah
ENDM

rst_ldt MACRO addr Restore the LDT register
SMMac rst_ldt, addr, ldt, 7Bh
ENDM

sav_ts MACRO addr Save the Task register
SMMac sav_ts, addr, ts, 7Ch
ENDM

rst_ts MACRO addr Restore the Task register
SMMac rst_ts, addr, ts, 7Dh

SMM Programmer's Guide A-15

SMM Instruction Summary and Macros

ENOM

exit_smMACRO Exit from SM mode
OB OOFh, OAAh

ENOM

SMMac MACRO mname, addr, reg, op

EN OM

A-16

; CS: override and SM instruction opcode
db 2Eh
db OFh, op

; mod rim byte
ifidni <reg>, <cs>

db OOEh
elseifidni <reg>, <ds>

db 01Eh
elseifidni <reg>, <fs>

db 026h
elseifidni <reg>, <gs>

db 02Eh
elseifidni <reg>, <ss>

db 016h
elseifidni <reg>, <es>

db 006h
elseifidni <reg>, <ts>

db 006h
elseifidni <reg>, <ldt>

db 006h
else

ECHO ERROR in macro <mname>:

endif

ECHO Register parameter unknown: <reg>
ECHO Register parameter must be either CS, OS, ES, FS, GS, SS, TS,
ECHO or LOT
• ERR

; 16-bit displacement
dw offset addr

SMI Handler Example

A.S SMI Handler Example

This section contains fragments of typical coding found in 8MI handlers.

Example A-4. Typical Coding Found In 8MI Handlers

5MBASE= OC8000H
SMSIZE= 2
SMEND = SMSIZE SHL (SMSIZE-l)

; base address of SMM space
; SMM space size is 8k bytes
;works for most cases

INCLUDE SM.MAC
.MODEL SMALL
.386P
. CODE

COMMENT "-

;see Section Example A-3, page A-14

Execution begins here in real mode, with CS defined at the 5MBASE and EIP=O

public smi_start
smi_start:

jmp $skipdata ;skip data area, makes it easy for
; assembler

EAXsave
DSsave
DStemp
$skipdata:

COMMENT "-

mov
sav_seg
rst_seg

dd
dt
db

?

?
Offh, Offh, 0,0,0,92h,8fh,0,0,0 ;4gig present segment

dword ptr cS:[EAXsave],eax; save EAX
[DSsave], ds save DS
ds,[DStemp] ; setDS

We need to extend the limits of DS so that we don't get a fault when we use it to ac­
cess low memory. It may be not present with a limit of 0, and these values won't be
changed when we set it using a real mode load.

;Determine Why Are We In The SMI Handler

COMMENT "-

chipset/Core logic unique instructions will follow. The chipset will be used to deter­
mine what caused the SMM interrupt to occur. The BIOS could also "jump" to this point
in the SMM region.

Decision Tree:

a) If timer, go to timer_expired

b) If port i/o occurred to a trapped location, go to port_io_caused

c) If the cpu was turned off, go to cpu_turned_off

; timer_expired;

SMM Programmer's Guide A-17

8MI Handler Example

COMMENT A

A chipset timer has expired. Unique code would appear to determine which timer. De­
pending on the purpose of the timer the handler could;

1) Reduce the clock frequency
2) Execute a halt instruction and enter suspend mode
3) Turn current off to the CPU
4) Turn off a peripheral device
5) Reset the timer and increment a counter

reduce clock:

COMMENT A

To go to a lower CPU current requirement the CPU clock can be reduced. The CPU clock
can be reduced from its current setting to a lower value. That value could be zero.
Since the CPU is a static device and will maintain the state of all its registers in
the absence of a clock input there is no state saving requirement. It is assumed that
by writing to the chipset it will reduce or zero the clock. If the clock is stopped
then the next instruction to be executed will be one in this SMI handler immediately
following the point where the chipset turned the clock off.

jmp end_timer:

execute halt:

COMMENT A

To go to a lower CPU current consumption the SMI handler will now execute a HLT
instruction. The HLT instruction will put the CPU into a low power sleep mode until a
non-SMI interrupt occurs. Interrupt(s) will need to be enabled to permit the interrupt
to wake-up the CPU. A common choice would be the keyboard interrupt. A flag would need
to be set in main memory to indicate that the SMI handler should be jumped into or SMI
created, to permit it to restore the state/context of the CPU, prior to the halt for
servicing the interrupt. The interrupt in low memory must point to the BIOS handler
for the return to be made to the SMI handler. An interrupt handler in SMM space could
also service the interrupt rather than a BIOS routine.

A-18

;[Alternatively the chipset could pull the SUSP# CPU pin low to enter
;[suspend mode. The chipset would have to pull SUSP# high to exit]
;[suspend mode.]

:To be sure that BIOS will get control on intr
;check for keyboard interrupt vector pointing to BIOS
;if not BIOS, save existing and set to BIOS vector or jump to can_not_halt
;Set a flag in main memory indicating SMI HALT executed
;If an SMM space interrupt handler is used then IDTR and/or the vector
;would need to be updated to the SMM space routine.
mov ax, 0 point to bottom segment
mov ds, ax ; ds segment is now in main memory
mov [485], 1 ; set BIOS flag in main memory

;<set cpu state for bios int>
hlt ; last instruction executed here
;<the chipset could remove the clock to go to suspend mode now>
nop

;CPU state will not be correct at interrupt

SMI Handler Example

set bit in main memory to indicate to the BIOS that SMI handler
turned power off to CPU and CPU state should be restored by
the SMI handler

mov ax, 0
mov ds, ax
mov [485], 1

point to bottom segment
ds segment is now in main memory
set BIOS flag in memory

(save entire CPU state. See Restore CPU state label)
(chipset specific instructions to be executed to remove power to

cpu)
jmp end_timer

turn_off-peripheral:

chipset specific instructions to turn off peripheral and enable
chipset 1/0 trapping of the devices io range or enable timer
to allow polling of peripheral requirements.

jmp end_timer

reset_timer:

chipset specific instructions to be executed to reset a timer and
possibly increment a counter to maintain number to time out occurred
for a particular device.

jmp end timer

jmp done

port io caused:

COMMENT "-

The SMM support for 1/0 being interrupted provides information that permits the re­
starting of the 1/0 instruction without investigating the actual code where the
instruction is located.

Many things can be done at this point beyond turning on a powered down peripheral. The
CPU clock could now be speeded up in anticipation of heavy CPU processing require­
ments, timers could be reset, etc.

;** Restart the interrupted instruction

mov
mov
mov

eax,dword ptr [SMEND+SMI_PREVIOUSIP]
dword ptr [SMEND+SMI_NEXTIP],eax
al,byte ptr cs:[SMEND+SMI_BITS]

;test for REP instruction
bt al,2

adc
test

jnz

ecx,O
al,1 shl 1

;rep instruction?
; (result to Carry)
;if so, increment ecx
;test bit 1 to see
;if an OUTS or INS

SMM Programmer's Guide A-19

8MI Handler Example

COMMENT
** A port read (INx) instruction caused the chipset to generate an SMI instruc­

tion. Restore EDI saved by SMI microcode.

mov
jmp

out_instr:

COMMENT

edi, dword ptr cs:[SMEND+SMI_EDIESI]
common!

** A port write (OUTx) instruction caused the chipset to generate an SMI
instruction. Restore ESI saved by SMI microcode.

mov
common!:

jmp

COMMENT

esi, dword ptr cs:[SMEND+SMI_EDIESI]

done

This handler turned off the current to the cpu. Before it did, the handler set a bit
in main memory or battery-backed-up CMOS indicating that this event happened. At re­
set, BIOS will determine that this was the case and "jump" into the SMI handler. SMI
handler will then restore the entire state/context of the CPU prior to current being
removed. The bit in main memory would also be cleared indicating that the SMI handler
had removed current.

mov ax, 0
mov ds, ax
mov [485] ,
mov ax, cs
mov ds, ax

A-20

0

point to bottom segment
ds segment is now in main memory
clear BIOS flag in main memory
restore ds to SMM area

{Restore Complete CPU State}

eax
ebx
ecx
edx
edi
esi
ebp
esp
cs
ds
ss
es
fs
gs
ldtr
gdtr
idtr
tr
eflags
crO
cr2
cr3
drO
drl
dr2
dr3
dr6
dr7
ccrO
ccrl
ccr2

iuse
iuse
;use
iuse
;use
;use

SMI Handler Example

rst _seg
rst_seg
rst _seg
rst _seg
rst _seg
rst _seg

Save the configuration registers with index C3h through FFh
for future product compatibility

arrl

arr2

arr3

arr4

jmp done

done:

mov eax,cs:[EAXsave]

rst_seg ds,[DSsave]

exit_sm return

SMM Programmer's Guide A-21

Loading SMM Memory With an SMM Program from Main Memory

A.9 Loading SMM Memory With an SMM Program From Main Memory

To load SMM memory with an SMI interrupt handler it is important that the SMI
interrupt does not occur before the handler is ready to accept it. This can be
done by not having SMAC = 0 and SMI = 1 (in the CCR1 register) before the
SMI handler is installed. It is necessary to set SM4 = 1 (in the CCR1 register)
and ARR4 with appropriate values before using the SMM memory. To load
SMM memory with a program it is first necessary to enable SMM with the ex­
ception of the SMI# pin by setting SMAC. (See Section A.6, Enabling SMM,
page A-11.) The SMM region is then mapped over main memory at the same
location. This is done by the generation of SMADS# for memory access for the
SMI. A REP MOV instruction can then be used to transfer the program to the
location. Then, turn off SMAC to activate potential SMls.

Example A-S. 8MI Handler Routine

• MODEL MEDIUM

• STACK

MACROS

iodlay _ macro Short delay for 1/0 operations
jcxz $+2
jcxz $+2

enclm

segcs_ macro CS: override prefix
db 02Eh

enclm

include SM.MAC See Example A-3 page A-14

• CODE

===

S M I HAN D L ERR 0 UTI N E
===

When an SM interrupt occurs, the code segment base is set to the SM area
start as defined in ARR4, and the IP is set to O. This means the first SM
handler instruction must be at offset O--that is why this loader program
begins with the SM handler code. The offsets referenced in the SMI portion
of this program will be correct in SM mode as well.

A-22

Loading SMM Memory With an SMM Program from Main Memory

smi_code_start:

;

Save DS, ES, TS, LDT, AX, and ex (only AX and ex are used by the handler--the
other registers are only saved to show how the macros are used).

sav _seg old_ds, ds
sav_seg old_es, es
sav_tr old_tr
sav_Idt old_Idt
mov dword ptr cs:old_eax, eax
mov dword ptr cs:old_ecx, ecx

The main handler code goes here •.• The code below simply writes a down
count to port 80--your code will be much more complex and useful.

Write port 80 values
mov aI, OFFh

decloop:
out 80h, al
mov cx, 8FFFh
loop $ Delay
dec al
jnz dec loop

Restore registers saved at start of handler, then exit from SM mode.

rst_seg ds, old ds
rst _ seg es, old es
rst tr old tr - -
rst ldt old ldt - -
mov eax, dword ptr cs:old eax
mov ecx, dword ptr cs:old ecx

exit sm Exit SM mode--resume the interrupted
program

smi code end: - -

The locations below are for saving registers that are used in the SM! routine
but are not automatically saved when an SM interrupt occurs. Some of the
registers saved below are not actually used by the code in this example, but
they are saved/restored just to demonstrate how the 8M macros shown earlier
are used.

SMM Programmer's Guide A-23

Loading SMM Memory With an SMM Program from Main Memory

old_ds dt ?

old_es dt ?

old_tr dt ?

old_Idt dt ?

old_eax dd ?
old_ecx dd ?

==~====================================

PRO C E D U RES USE D B Y THE LOA D E R
===

===

Read a value from a register in AL via I/O ports 22 and 23. Return the value
in AL.
===

near

out 22h, al
iodlay_
in aI, 23h
ret

===

Write the value in AH to a register in AL via I/O ports 22 and 23.
============================.===

w22 -23 proc near

out 22h, al
iodlay_
mov aI, ah
out 23h, al
ret

w22 - 23 endp

LOADER E N TRY POI N T
===

entry~oint:

Set ARR4 registers for 64K SMM area at OOOAOOOO: ARR4 OOOA05

mov ax, OOCDh
call w22_23
mov ax, OACEh
call w22_23

A-24

mov
call

ax, 05CFh
w22_23

Loading SMM Memory With an SMM Program from Main Memory

Set ARR4 control bit in CCRI to make ARR4 == SMM memory. Set SMI enable bit
and SMAC bit to allow non-CS-based data writes to go to the SM area.

mov al, OClh
call r22_23
or al, 86h SM4=1; SMAC 1; SMI 1
mov ah, al
mov al, OClh
call w22 23 -

Copy SMI code to AOOO:OOOO

xor ax, ax
mov si, ax SMI code starts at offset o of this CS
mov di, ax and offset 0 of SM memory too.
mov ax, OAOOOh SM memory segment
mov es, ax
mov ex, offset smi _code_end; Number of bytes of SM handler

code
segcs_
rep movsb Copy from EXE memory space to SM mem

The SM handler is now in place. Disable access to SM memory leaving the SMI
bit set, so that SM interrupts can now occur.

mov al, OClh
call r22 23 -
and al, OFBh SMAC 0
mov ah, al
mov al, OClh
call w22 23 -

Exit to DOS

mov ax, 04cOOh
int 21h

END entry-point

SMM Programmer's Guide A-25

Detection of a TI Microprocessor

A.10 Detection of a TI Microprocessor

It is possible, with a small amount of code, to detect if the CPU is a TI micropro­
cessor and if the CPU is the TI486SXL(C) family or a TI486xLC/E family. The
following assembler code accomplishes this task.

Example A-6. Detection of a TI Microprocessor

~Purpose: To detect if the CPU is Texas Instruments microprocessor, and then
determine if it is a TI486SXLC Family.

~To detect if Texas Instruments:
The undefined flags of the TI microprocessor remain unchanged
following a divide. An Intel part will modify some of the
undefined flags. Check by saving the flags, do a divide, and~

then compare the new flags with the old flags.
~To detect if TI486SXLC Family:

• MODEL SMALL
.486P

The cache test registers in the TI486SXLC Family differ from the
TI486xLCE due to the difference in cache size. Bit 9 in TR4 is
used to determine if the processor is of the TI486SXLC Family by
seeing if it can be toggled.
The code that follows is a procedure that returns the CPU detected
in AX .

~Values that code will return in AX:
CPU_Not TI EQU 0

CPU_TI486xLCE EQU
CPU_TI486SXLC EQU

TR5_Write EQU
TR5_Read EQU
CR EQU
LF EQU

. CODE
DetectCPU PROC
StartDetect:

~NOTE:

1

2

1
2

OAh
ODh

This procedure returns a value in AX.
Value in BX is destroyed and not saved.
Value in top-half of EAX is destroyed.

CLI

AreWeTI486:
~Assume that CPU is at least a 386 CPU.
MOV AX, 0 ~ set flags to known value
CMP AX, AX

PUSHF ~save old flags
POP AX
MOV flags_before, AX

MOV AX, dividend setup for DIV instruction
MOV DX, 0

MOV BX, divisor
DIV BX

A-26

Detection of a TI Microprocessor

PUSHF isave new flags
POP AX
MOV flags_after, AX

MOV AX, flags_mask
AND AX, flags_before
MOV BX, flags_mask
AND BX, flags_after

CMP
JNZ

WeAreTI486:

AX, BX
NotTI

iisolate bits we are interested in and compare

iflags same before and after?
inO - don't have TI CPU

iNow check to see if CPU is TI486xLCE or TI486SXLC
MOV
MOV
MOV

MOV
MOV
MOV
MOV
AND
CMP
JNE

FoundTI486xLCE:
iCPU is
MOV
JMP

FoundTI486SXLC:
iCPU is
MOV
JMP

NotTI:
iCPU is
MOV
JMP

Done:

EAX, 0200h iattempt to set bit 9 of TR4
TR4, EAX
EAX, TR5_Write imust do write,

TR5, EAX
EAX. TR5 Read
TR5, EAX
EAX, TR4
EAX, 0200h
EAX, 0200h
FoundTI486SXLC

a TI486xLCE
AX, CPU_TI486xLCE
Done

TI486SXLC
AX, CPU_TI486SXLC
Done

not a TI486
AX, CPU_NotTI
Done

ithen read operation on test registers

iread TR4 back
iisolate bit 9
idid it stay set?
ino - found TI486SXLC

ileave return value in AX
RET

DetectCPU ENDP

• DATA
flags_before DW ?
flags_after DW ?
flag_mask DW 08D5h
dividend DW OFFFFh
divisor DW 4h
result DW 0

END

SMM Programmer's Guide A-27

Detection of SMM Capable Version

A.11 Detection of SMM Capable Version

At power-up/reset the EDX register contains part type and stepping informa­
tion as shown in Table A-6.

Table A-6. EDX Register Data At Power-Up/Reset

EDX

0410h

0411h

Stepping

A

B

SMM Available

No

Yes

The following technique can be used to identify the stepping of a TI486SXL(C)
microprocessor after the reset information in EDX is lost. The method uses two
functions: the mixed C and assembler function isbO and assembly language
illegal opcode handler interrupt handler ilLop. The function isbO returns a 1
to indicate when a B step part is present, 0 otherwise. The function isbO installs
an illegal opcode handler, ilLop. Then isbO sets up conditions to execute an
SMM segment save instruction, SVDC. If an A step part is present the illegal
opcode handler is invoked. The ilLop process then modifies the return ad­
dress on the stack to return to the instruction after the SVDC instruction. The
storage location used by the SVDC instruction is then checked to see if it
changed. If it has changed, the part being tested is a B step part. This detection
technique must be run at protection ring O.

Example A-7. Detection of SMM Capable Version

11** ***********************
11********************************* isb.c ***********************************
11** ***********************
#define TRUE 1
#defube FALSE 0

int old_off;
int old_seg;
extern ill_op();
11** ***********************
II
II
II

Function: isb ()
Returns:1 if TI486SXL(C) B step

o if TI486SXL(C) A step
11** ***********************

isb ()

A-28

{

int i, b_step;
char mem[10];

for (i=O; i<10; mem[i++]=O;

asm {

.386
extrn _ill_op:near

Detection of SMM Capable Version

;***
;****** get present illegal opcode handler
.*** ,

push es
push bx
mov ax, 3506h
int 21h
mov old_seg, es
mov old_off, bx
pop bx
pop es

;***
;****** install new illegal opcode handler
;***

push dx
push bx
push ds
mov ax, 2506h
mov dx, OFFSET _ill_op
mov bx, cs
mov ds, bx
int 21h
pop ds
pop bx
pop dx

;***
;****** Set SM4 and SMAC and SMI bit to allow SMM instructions
;***

mov al, Oclh
out 22h, al
in al, 23h
mov byte ptr [save_ccrl, al
or al, 86h
mov ah, al
mov al, Oclh
out 22h, al
mov al, ah
out 23h, al

;***
;****** Setup nonzero SMM region
;***

mov al, Ocfh
out 22h, al
in al, 23h
mov byte ptr [save_cf), al
mov .al, Ocfh
out 22h, al
mov al, 1
out 23h, al

SMM Programmer's Guide A-29

Detection of SMM Capable Version

A-30

.*** ,
;****** Set SMM region to the top of memory to
;****** avoid overlapping with this program
.*** ,

mov aI, Ocdh
out 22h, al
in aI, 23h
mov byte ptr
mov aI, Oceh
out 22h, al
in aI, 23h
mov byte ptr
mov aI, Ocdh
out 22h, al
mov aI, Offh
out 23h, al
mov aI, Oceh
out 22h, al
mov aI, Oh
out 23h, al
mov aI, Ocfh
out 22h, al
in aI, 23h
and aI, Ofh
out 23h, al

;****** flush pre fetch after changing configuration
jmp $+2

.*** ,
;****** Execute SMM instruction sav_seg
.*** ,

;sav_seg word ptr mem, ds
Word ptr mem == ss:[bx]

lea bx, mem
db 36h Ofh 78h Ifh

.*** ,
;****** restore configuration registers
.*** ,

mov aI, Ocdh
out 22h, al
mov aI, byte ptr save_cd
out 23h, al
mov aI, Oceh
out 22h, al
mov aI, byte ptr save_ce
out 23h, al
mov aI, Ocfh
out 22h, al
mov al byte ptr save_cf
out 23h, al
mov aI, Oclh
out 22h, al
mov al byte ptr save_ccrl
out 23h, al

Detection of SMM Capable Version

.*** ,
;****** restore old illegal opcode handler
.*** ,

push dx
push bx
push ds
mov ax, 2506h
mov dx, OFFSET
mov bx, OFFSET
mov ds, bx
int 21h
pop ds
pop bx
pop dx

) II isb asm region

for (i=O, b_step=FALSE; i<10; ++i)
if (mem[i] 1= 0)

{

b_step
break;
}

return (b_step);
} II isb ()

TRUE;

old_off
old_seg

;********************** bad_op.asm ***********************
public _ill_op

assumecs:_TEXT

_TEXT segment byte public 'CODE'
_ill_op proc near

_ill_op endp
TEXT ends

end

pop ax
add ax, 5
push ax
iret

SMM Programmer's Guide A-31

Format of Data Used by SVDCIRSDC Instructions

A.12 Format of Data Used by SVDC/RSDC Instructions

The SVDC/RSDC instructions should be used to change limits and read/write
access privilege levels of the application and system segment descriptor reg­
isters, see Table 2-7 (page 2-22), before they are used by SMM code. The
instructions use a 10 byte area composed of two major portions of the system
address register set, see Figure 2-7 (page 2-17), value/contents, and the non­
programmer-visible internal descriptor that has the format shown in
Example A-B. Example A-9 (page A-33) loads a real-mode system segment
(SS) descriptor and nonprogrammer-visible region values.

System segment-descriptor registers are described in Subsection 2.5.2.2,
Descriptors, page 2-21.

Example A-B. Internal Descriptor Format

'Segment Register Descriptor <8 by tes>, Segment Register Selector <2 bytes>,

;1) Segment Register Selector: This is the segment if the segment register
;was loaded in real mode or the selector if the segment register was
;loaded in protected mode. In real mode, this is also equal to the segment
;base divided by 10h and clipped to 16 bits.

dw ,Selector or Segment

;2) Segment Register Descriptor, which is the actual descriptor if the
;segment was loaded in protected mode, or a pseudo-descriptor if the segment
;register was loaded in real mode.

A-32

dw
dw
db
db
db
db

Limit [15:0] ,
Base [15:0] ,
Base [23: 16] ,

, P , DPL , 1 , DscTy[2:0] , A ,
'G , D , r , AVL , Limit [19:16]
, Base [31:24] I

DscTy is descriptor ;type (DT)

Format of Data Used by SVDCIRSDC Instructions

Example A-9. Load 88 Descriptor Values (Real Mode)

iLoad SS descriptor (nonprogrammer-visible region) values appropriate to iREAL mode.

INCLUDE SM.MAC

old_val
real mode:

sav_seg
rst_seg
mov
mov

dt ?

dw Offffh
dw 0

db 0

db lOOlOOllB
db 0

db 0

dw 0

[old_val], ss
ss,[real_mode]
ax, cs
ds, ax

see Example A-3 page A-14

location to store old ss value
limit
base
base

i 93h, data segment
G=O, D=O, upper limit=O
high portion of base
selector/segment

SMM Programmer's Guide A-33

Altering SMM Code Limits

A.13 Altering SMM Code Limits

A-34

When the CPU acknowledges an external SM interrupt and switches into sys­
tem management mode, the CPU is put into real mode. In section 2.8.5, SMI
Service Routine Execution on page 2-54, it is stated that the code segment
register is loaded with the base and limits defined by the ARR4 register. If the
defined SMM address space is a 16K region, the CS segment limit will be 16K.
This is in contradiction to the normal segment limit of 64K for real mode.

This does not normally cause the programmer any problems, since the CS
register can access any address in the SMM address space. The only time this
can become a problem is if the SMM code jumps to code outside the SMM ad­
dress space. An example of this might be jumping to a BIOS routine to save
a block of memory to the disk drive. The BIOS routine might expect the CS
code segment limit to be 64K, and might require it to be, depending on the off­
set of the routine, or any routine it calls. The BIOS procedure might be at offset
38416 of the BIOS segment for example. If, as stated above, our SMM limit
is 16K, then the CPU would generate a segment overrun fault when it at­
tempted to jump to offset 38416 of the BIOS segment.

There are several solutions to this problem. One solution is to never execute
code outside of the SMM space. Another solution is to have an SMM space
of 64K, or larger, so that the CS code segment limit is 64K or more. The third
solution is to change the CS limits while in the SMM code.

When in real mode, the hidden portion of the segment registers are not acces­
sible to the programmer, unlike in protected mode. With the new SMM instruc­
tion RSOC, a complete 80-bit segment register and descriptor cache entry can
be read from memory into a segment register, thus changing the segment lim­
its and attributes, even when in real mode. This could be done to make the OS
segment have a 4G limit, enabling real mode SMM code to access all of
memory with a 32-bit offset, without ever leaving real mode. However, the
RSOC instruction will not work with the CS register! The only way to change
the limits of the CS segment is to switch to protected mode, do a far jump to
a segment descriptor that has the desired segment limit and attributes, and
switch back to real mode.

To do this, several things must happen. A GOT with at least one valid entry
must be set up (this entry is a descriptor for the code segment that the interseg­
ment jump is made to). Save the old GDTR register contents (using SGOT),
and the register should be loaded to point to the new table (using LGOT). Save
the old CRO value, and switch into protected mode with paging off. Do an inter­
segment jump to the code segment in the GOT, thus changing the CS segment
limit. Next, restore the CRO value, which switches back to real mode. Restore
the saved GOTR value.

Testing/Debugging SMM Code

A.14 Testing/Debugging SMM Code

There are several ways to debug SMM code:

o Emulation Technology TI486SXLC microprocessor pod with an HP
16500/550 Logic Analyzer

• Supports selective trace capture

• SMM instruction disassembly

o Periscope - software only

• Full screen debugging

• TSR

• Single stepping and break points

o DOS debug - software only

• Single stepping and break points

o Other selected logic analyzers

A.14.1 Software Only Debugging

It is possible to write an SMI handler and debug it as a TSR. Use a debugger
that can set break points at any address in memory. Use the following code
sequence as a model of how to build the SMI handler as a TSR. This code se­
quence also contains a section that loads the CS nonprogrammer-visible sec­
tion to change the limit. This is required so that a protection error does not oc­
cur when code is executed outside of the SMM region. It is assumed that ADS#
and SMADS# from the CPU are ORed together by the chipset or external logic.
Also, the chipset should support programmable SMM locations.

This code marks the SMI handler address in the user interrupt INT 66 location
(0:198h). This is done so that the programmer can determine the location of
the SMM region and set break points.

The debugger is able to set a code break point outside of the SM I handler using
INT 3 only. This is because the debug control register DR? is set to the reset
value upon entry to the SMI handler. This causes break conditions in DRO-3
to be disabled. Debug registers can be used if set after entry to the SMI handler
and DRO-3 are saved.

Using a TSR to debug SMI has some limitations:

o Other code could overwrite the region.

o Jumps or call~ must be to known offsets.

SMM Programmer's Guide A-35

Testing/Debugging SMM Code

A.14.2 Software Debugging Example

The following is an example that can be used forthe first step in debugging 8MI
code:

Example A-1 o. Debugging 8MI Code

.MODEL SMALL

. STACK

.386P
INCLUDE SM.MAC

RD_WR EQU
EX_RD EQU

COMMENT "-

12h
1Ah

;read/write
;execute/readable

This is an example of SMI code which can exist below the 1 MByte boundary. It must be
before the 1 MByte boundary because it uses the value in the cs register in order to
form fixups based on its location as well as for the jump to return to real mode •

. CODE

srni_handler:
jmp
db

stacksmilabel

$over
100 dup (?)

;our smi handler gdt

gdt dq o

ADDR 0
LIMT 100000h
g_big = $ gdt

dw (LIMT-l and Offffh)
dw (ADDR and Offffh)
db «ADDR SHR 16) and Offh)
db RD_WR OR (0 SHL 5) OR (1 SHL 7)

;pass data area for assembler

;null

db «(LIMT-1) SHR 16) AND Of h) OR (0 SHL 6) OR (1 SHL 7)
db «ADDR SHR 24) and Offh)

g_code = $-gdt
ADDR 0
LIMT = 100000h

dw (LIMT-l and Offffh)
dw (ADDR and Offffh)
db «ADDR SHR 16) and Offh)
db EX _ RD OR (0 SHL 5) OR (1 SHL 7)
db «(LIMT-1) SHR 16) AND Of h) OR (0 SHL 6) OR (1 SHL 7)
db «ADDR SHR 24) and Offh)

A-36

Testing/Debugging SMM Code

GDTSIZE = ($-gdt)

csareadb 10 dup (?)

dsareadb 10 dup (?)

ssareadb 10 dup (?)

esareadb 10 dup (?)

fsareadb 10 dup (?)
gsareadb 10 dup (?)
tsareadb 10 dup (?)

gdtsave df?
gdtnewdw GDTSIZE - 1

dd ? ; address

eaxsave dd ?

ebxsave dd ?
ecxsave dd ?
edxsave dd ?
espsave dd ?

$over:
COMMENT A

The debugger may want to use ss,ds,es,fs,gs. The limits may be shortened if the pro­
gram had been running in protected mode. We therefore extend the limits of these reg­
isters before we enable the debugger.

sav_seg [ssarea],ss
sav_seg [dsarea] ,ds
sav_seg [esarea] ,es
sav_seg [fsarea],fs
sav_seg [gsarea],gs
mov cs: [eaxsave] , eax
mov cs: [ebxsave] , ebx
mov cs:[espsave],esp

COMMENT A

Clear VM flag in Eflags (See Section A.14.3).

mov esp, offset smistack
mov ax, cs
mov ss, ax
mov eax, 0
push eax
mov eax, cs
push eax, offset @F
push eax
iretd

@@:
sgdt fword ptr cs: [gdtsave]

;save the stack pointer

SMM Programmer's Guide A-37

Testing/Debugging SMM Code

COMMENT A

fixup code for smi base

eax,cs
ipatch gdt

mov
shl
mov

eax,4
ebx,offset gdt

add ebx,eax
mov dword ptr [gdtnew+2],ebx

ipatch far jump into protected mode
mov ebx,offset $nextO
add ebx,eax
mov dword ptr cs:[patchl],ebx

ipatch far jump back to real mode
mov word ptr cs:[patch2],cs

start here

COMMENT A

extend the limits for the code segment

db 66h
19dt fword ptr [gdtnew]
mov eax,crO
or al,l
mov crO,eax
db 66h
db Oeah

patchl dd ?

dw g_code

$nextO: mov bx,g_big
mov ss,bx
mov ds,bx
mov es,bx
mov fs,bx
mov gs,bx
xor al,l
mov crO,eax
db Oeah
dw offset $nextl

patch2 dw ?

$nextl:

A-38

isegment of us here

ioffset to here

idefine gdt base

iextend the limits of the data segments

;back to real mode

ifar jump to set cs and writable bit

Testing/Debugging SMM Code

COMMENT A

define a valid stack

mov ax,cs
mov ss,ax
mov esp,offset stacksmi

COMMENT A

****** Insert user specific smi code here & set breakpoints. ******

db
19dt

66h
fword ptr cs:[gdtsave]

rst_seg ss, [ssarea]
rst_seg ds, [dsarea]
rst_seg es, [esarea]
rst_seg fs, [sarea]
rst_seg gs, [gsarea]
mov eax,dword ptr cs:[eaxsave]
mov ebx,dword ptr cs:[ebxsave]
mov esp,dword ptr cs:[espsave]
exit sm

smi handlere:
SMI SIZE = offset smi_handlere - offset smi_handler
Install PROC

i***** Enable SMM Region ******
Don't enable SMI yet because we're not ready for it.

mov aI, Oclh iselect CCRl

iread CCRl
out
in
or
mov
mov
out
mov
out

22h,al
aI, 23h
aI, 80h
ah, al
aI, Oclh
22h, al
aI, ah
23h, al

ienable SMADS# and SMM region (not SMI)

mov eax,offset endresident
mov
shl
add
add
and
mov
push

ebx,cs
ebx,4
eax,ebx
eax,Offfh
eax,NOT Offfh
edx,eax
edx

iselect CCRl

iwrite new CCRl value

ieax start of smi space

SMM Programmer's Guide A-39

Testing/Debugging SMM Code

.** ,
; * Load 8M! address and size into ARR4

.****** cd ce cf ,
;******
; ****** Config Reg 31-28 27-24, 23-20 19-16, 15-12 <size>

; ****** Address 31-28 27-24, 23-20 19-16, 15-12 11-8, 7-4 3-0

mov aI, Ocdh ;region 4 1st word

out 22h, al
mov eax, edx ;get smi handler address
shr eax, 24 ;move address <31~24> to al

out 23h, al ; [7-0]=>smbase[31-24]

mov aI, Oceh ;region 4 2nd word
out 22h, al
mov eax, edx ;get smi handler address
shr eax, 16 ;move address <23-16> to al

out 23h, al ; [7-0]=>smbase[23-16]

mov aI, Ocfh ;region 4 3rd word
out 22h, al
mov eax, edx ;get smi handler address
shr eax, 8 ;move address <15-12> to al
and aI, OfOh ;clear bottom nibble
or aI, 1 ;select 4KB 8M! size
out 23h, al ; and [3-0]=>smsize

.** ,

A-40

pop
mov
add
mov
shl
sub
she
push
shr
mov
mov
mov
mov
int
pop

edx
eax,edx
edx,1000h
ebx,es
ebx,4
edx,ebx
edx,4
dx
eax,4
es,ax
ds,ax
dx,O
ax, 2566h
21h
dx

;start of smi area

;reserve 4k for smi handler
;current psp

;bytes to reserve
;paragraphs to reserve in dx

;paragraph of smi handler
;save for later

;always starts at 0
;int 66h vector at O:198h

;tsr address

;move the code to the smi area
mov
out
in
mov
mov

aI, Oclh
22h, al
aI, 23h
ah, al
aI, Oclh

out 22h, al
mov
or
out

RELOCATE = 0
IF RELOCATE

aI, ah
aI, 04h
23h,al

sub esi,esi
sub edi,edi
mov cx,cs
mov ds,cx
mov ecx, (SMI_SIZE+3)/4

;select CCRI

;read CCRI
;save old value
;select CCRI

;get old value
;enable SMAC

Testing/Debugging SMM Code

;be clean on ah for later

rep movs dword ptr es:[edi],dword ptr ds:[esi]
ELSE
;put the far jump at the start of the smi_area to above code

mov byte ptr es:[O],Oeah
mov word ptr ex:[l],offset smi handler
mov word ptr ex:[3],cs

ENDIF
;restore smi state and enable SMI

mov aI, Oclh
out 22h, al
mov
or
out

COMMENT "

aI, ah
aI, 02h
23h,al

SMIs may happen at any time now.

idx = offset in this segment to tsr
mov ax, 3100h
int 21h

Install ENDP
;----end of resident code----
endresident label byte

db 2000h dup (?)

END Install

;select CCRI

;get old value
;set SMI bit to enable SMI
;be clean on ah for later

;Request function 31h, error code=O
; Terminate-and-Stay-Resident

.** ,

SMM Programmer's Guide A-41

Testing/Debugging SMM Code

A.14.3 Clearing the VM Flag Bit

rst_seg ss,
mov esp,
mov ax,
mov ss,
mov eax,
push eax
mov eax,
push eax
mov eax,
push eax
iretd

@@:

A-42

The following condition is known to exist:

If the CPU is in V86 mode and is interrupted by an 8MI, the VM bit in the
EFLAG8 register is not cleared as it should be during real-mode operation. Not
clearing this bit can cause protection errors of valid instructions that are being
executed in the 8MI handler. This can be resolved by adding the following code
after saving all used registers:

[gdt+g_big] change ss limit to 4 Gbytes
create new stack pointer offset

cs
ax

0

cs

offset

smistack

@F

new stack segment

flags after iretd

segment after iretd

offset after iretd

Note:

See the debugging example in Section A.14, Testing/Debugging SMM Code,
for usage of above code.

Appendix B

BIOS Modifications Guide

To reap full benefit from the TI486SXL(C) family of microprocessors, the sys­
tem BIOS should be modified to support the internal registers that control the
on-chip cache, clock doubling, and other features. This appendix serves as a
guide to some of the changes that need to be considered, and includes sample
assembler code for controlling the cache.

There are three considerations that are discussed in relation to the internal
cache registers and clock double enable:

o Power-up and hard reset

o Protected-mode to real-mode switching

o Soft reset- (CONTROL) (ALT) (DELETE)

In each case, the state of the CPU cache registers and the clock-double enable
bit must be known to determine when and how to change their values.

Topic Page
-' 'c ~ y ~ ,~ ~

B~ 1I?iffere.rice$·Bet\Ne~ntbe TI486SlC/aLC:BIO$and:
theJI~:86$~L(ClBI.(jS ". .

pr~~.PAQ.toRea'-MQ.d~C$WitCh~~r·· •..•::
S~ft~Re~et: .',: ¢(.\Nl~Qli~AtT .. I))EE,ETE " •. ~' .•••• ,~; ~.:. ~. ~ •• ,~ ..• ~ .. '. _ .•• ,~ .•• ~ ~,;B':4
:rtlr~ing (jhandQ~'t~efrit~rrial C~~h~; ~j',~ ... ~ '.- ~ ••• ·u~;. ~ .. ;;; ;:. ~"J:l~4:'

8-1

Differences Between the TI486xLCIE BIOS and the TI486SXL(C) BIOS

B.1 Differences Between the TI486SLC/DLC BIOS and the TI486SXL(C) BIOS

8-2

The TI486SLC/DLC BIOS requires some modifications to fully support the
new features of the TI486SXL(C) family of microprocessors.

If the BIOS currently tests the internal cache before enabling it, the test routine
will require modification. Due to the larger size of the TI486SXL(C) cache, the
cache test registers have changed from those in the TI486SLC/DLC. (See
Table 2-17 on page 2-36.) It is not necessary to test the TI486SXL(C) cache
prior to enabling it during the boot process.

In addition to changing the cache test registers, the cache organization selec­
tion bit has been redefined. In the TI486SLC/DLC, configuration control regis­
ter 0 (CCRO) bit 6 is used to select between a direct-mapped and a two-way,
set-associative, internal cache organization. For the TI486SXL(C) family, the
cache is always two-way set associative and CCRO bit 6 is defined to enable
clock-doubled mode. BIOS prepared to support the TI486SLC/DLC can allow
the user to select the cache organization, but BIOS prepared for the
TI486SXL(C) should comprehend that the cache-organization selection is not
available.

If the BIOS supports software clock switching, a modification to support clock­
doubled feature may be desirable. Switching to high-speed mode should en­
able bit 6 of CCRO and thus put the CPU in clock-doubled mode. Switching
down the CPU speed should disable bit 6 of CCRO and put the CPU in
nonclock-doubled mode. If the BIOS is APM (advanced power management)
compliant, the use of 1 x and 2x modes should be implemented as well.

,

Note:

When the TI486SXL(C) is in clock-doubled mode, the CLK2 input must not
be scaled or stopped. First, the processor must be placed in nonclock­
doubled mode; then, the CPU clock speed can be changed.

When the TI486SXL(C) family microprocessors are reset, the cache and the
clock-doubled features are disabled by default.

Power-Up and Hard Reset / Protected-Mode to Rea/-Mode Switching

B.2 Power-Up and Hard Reset

During power-up and hard reset, the system is booted into the operating sys­
tem. Due to the reset line to the CPU going active, the internal cache and the
clock-doubled feature are disabled, making the CPU act similar to a 386. If the
cache and the clock-doubled feature are enabled prior to the reset, they must
be turned on at some point before the as is booted. A convenient time may
be during final chipset initialization, understanding that the cache should re­
main off during memory sizing. Many BlOSs provide the user an option to dis­
able the system cache using the setup screen. Because most user cache-con­
trol options are stored in nonvolatile RAM, the flag responses and potentially
other flags should be checked before turning the cache on.

B.3 Protected-Mode to Real-Mode Switching

Protected-mode to real-mode switching can be implemented to handle cases
where the as has been booted, applications are running, and the CPU needs
to be reset from protected to real mode. The object is to switch CPU modes
and jump back into the as or application at some saved return address. When
the CPU is reset, the internal cache and the clock-doubled feature are dis­
abled. Before returning control to the application, the cache and clock doubling
should be turned back on, but only if they were enabled before the reset oc­
curred. This is accomplished by checking the cache-enable flag in the nonvol­
atile RAM to see if the user enabled caching from the setup screen. However,
if the BIOS allows the user to turn off the cache by a hot-key combination (per­
haps as part of speed switching), other checks may need to be performed to
see if the cache should be turned back on.

BIOS Modification Guide 8-3

Soft Reset-CONTROL-ALT-DELETE / Turning the Internal Cache On and Off

8.4 Soft Reset- (CONTROL J (ALT J (DELETE J

The objective of a soft reset is to reset the system and reboot the as, similar
to power-up and hard reset, but a hard reset of the CPU is not generated. Thus,
the CPU's internal cache and clock doubling are not disabled. Since the cache
is not disabled, this can negatively impact memory-sizing code, such as gener­
ating memory-size mismatch errors. In this situation, disable the internal
cache and enable it prior to booting if it was enabled by the user in setup.

8.5 Turning the Internal Cache On and Off

8-4

When the TI486SXL(C) family of microprocessors internal cache is turned on
or off, the following guidelines should be observed in the order presented:

1) Turn off interrupts-CLI

2) Turn off cache using Control Register 0 (CRO) bit 30 and flush using
WBINVD

3) Manipulate cache registers

4) Turn on cache and flush using WBINVD

5) Turn on interrupts-STI

This sequence ensures that the process is not interrupted until complete and
that no cache coherency issues arise when the cache is turned back on. When
manipulating the cache registers it is a good idea to explicitly set each register
instead of relying on default values.

Turning the Internal Cache On and Off

Example 8-1. Turning Internal Cache Off

Some example assembler code for turning the cache off follows:

CacheOut MACRO index, value
MOV AL, index
OUT 22h, AL
MOV AL, value
OUT 23h, AL

CacheOut ENDM

CLI
MOV EAX, CRO
OR EAX, 40000000h set bit 30, turn off cache
MOV CRO, EAX
WBINVD for external cache coherency

CacheOut OCOh, OOh
CacheOut OClh, OOh

CacheOut OC4h, OOh
CacheOut OC5h, OOh
CacheOut OC6h, OFh

CacheOut OC7h, OOh
CacheOut OC8h, OOh
CacheOut OC9h, OOh

CacheOut OCAh, OOh
CacheOut OCBh, OOh
CacheOut OCCh, OOh

CacheOut OCDh, OOh
CacheOut OCEh, OOh
CacheOut OCFh, OOh

WBINVD
STI
MOV EX, 4COOh
INT 21h return to DOS

BIOS Modification Guide 8-5

Turning the Internal Cache On and Off

Example 8-2. Turning Internal Cache On

CLI
MOV
OR
MOV
WBINVD

CacheOut
CacheOut

CacheOut
CacheOut
CacheOut

CacheOut
CacheOut
CacheOut

CacheOut
CacheOut
CacheOut

CacheOut
CacheOut
CacheOut

MOV
AND
MOV
WBINVD
STI
MOV
INT

8-6

EAX,
EAX,
CRO,

OCOh,
OClh,

OC4h,
OC5h,
OC6h,

OC7h,
OC8h,
OC9h,

OCAh,
OCBh,
OCCh,

OCDh,
OCEh,
OCFh,

EAX,
EAX,
CRO,

Turn on the microprocessor internal cache by modifying some of the register
values as shown. The CacheOut macro definition remains the same:

CRO
40000000h set bit 30, turn on cache
EAX

for external cache coherency

23h set bits NCI, NCO, BARB
OOh

OOh
OOh
OOh

OOh
OOh
OOh

OOh
OOh
OOh

OOh
OOh
OOh

CRO
NOT 40000000h
EAX clear CD bit

EX,4COOOh
2lh return to DOS

Appendix C
I

Desi n Considerations and Cache Flush

This appendix provides design considerations, address bit A20 masking, and
general cache invalidation procedures.

Topic Page

C.1 Besign .Consideratlons'.;.: ~ '. ~',' .. ~ ~ .. ~; .. " • ~~ ~~:.: ~ •. 'ii .~.C~2:
. Co2

C.3 . General Ciijlle Invallijation '. ~ •... ~ ~ ... ~ ~ •. ~'.o' :,~ •• ~ •• ' •• " ,0'0 •• :~ •• G'*4 .

C-1

Design Considerations

C.1 Design Considerations

C-2

The following conventions should be employed in connecting the
TI486SXL(C) terminals to the PWB:

D Connect (short) all VCC terminals to the positive supply voltage.

D Connect (short) all VSS (GND) terminals to the system ground.

D For the TI486SXL in the 144-pin package connect (short) both W/R# ter­
minals (terminals 36 and 37) together and connect to W/R# signal source.

D Leave electrically open (unconnected) all NC terminals.

Note:

Connecting orterminating (high or low) any NC terminal(s) can cause unpre­
dictable results or nonperformance of the microprocessor.

The final responsibility for verifying designs incorporating TI486SXL(C) micro­
processors rests with the customer originating the motherboard design.

Address Bit A20 Masking

C.2 Address Bit A20 Masking

The A20M, address bit 20 mask, is an anomaly in PC designs resulting from
the fact that truncated addresses can be generated by an 8086/8088 outside
the physical address range of Oh-FFFFFh. For example, an 8086/8088 sys­
tem that contains FFFFh in a segment register and OFFFh in an offset register
results in an address of 1 OOFFEh that requires 21 bits to address. Since the
8086/8088 has only 20 address bits (AO-A19), the most significant bit of the
resultant address would need to appear on an A20 bit if the 8086/8088 had
one.

Since the 8086/8088 address bus is not wide enough, only the first 20 bits of
the address are seen by the system. Using the address 1 OOFFEh, generated
in the previous example, the 8086/8088 system read/write address is per­
formed at location FFEh and not at 1 OOFFEh. The 80286 and later micropro­
cessors implement at least 24 address bits and perform the read/write to ad­
dress location 1 OOFFEh. Thus, software applications can produce different re­
sults when run on an 8086/8088 system versus an 80286 or later microproces­
sor system.

Systems that use 80286 or later microprocessors compensated for this anom­
aly by adding circuits to generate an A20 mask (referred to as the A20 mask
or the A20 gate, or similar). The A20 mask consists of software-controlled logic
that forces a zero on the A20 address line regardless of the actual value of A20.
The software-controlled A20 mask can also instruct the mask to permit the true
value to be passed to the system when required.

It is important to note that the A20 mask logic is external to the processor in
both 80286 and 80386 designs. The processor generates the actual address
but the system logic can be set to ignore or not ignore the A20 pin. Normally,
the A20 pin is ignored when these processors are executing in real mode and
emulating an 8086/8088.

This is an important consideration when replacing an 80386SXlOX device with
a Tl486-type device. The TI486SXL(C) microprocessors implement an inter­
nal cache and, if the system is in a state that ignores the A20 address input,
the processor must know so that it can also ignore the A20 address input.

If the A20M bit of configuration control register 0 (CCRO) is set, the
TI486SXL(C) microprocessor knows that the A20M input provides the true val­
ue required. However, if the TI486SXL(C) is inserted into a socket designed
for the 80386SXlOX, the TI486SXL(C) A20M pin is placed at a pin location that
is n"ot used by the 80386SXlOX. The system hardware needs to be modified
to provide the A20M connection.

The NCO bit of CCRO is a software-only solution to the A20 mask function.
When set, the TI486SXL(C) microprocessor does not cache the first 64K bytes
of memory above each 1 M byte boundary. This solution means that, even if
the value of the A20 address is not known, the processor does not cache data
to the affected addresses.

Design Considerations and Cache Flush C-3

General Cache Invalidation

C.3 General Cache Invalidation

When the FLUSH bit in configuration control register 0 (CCRO) is set, the
FLUSH# input, when asserted low, invalidates the contents of the
TI486SXL(C) internal cache. This can be used to assure that data stored in the
TI486SXL(C) internal cache does not differ from data stored in system
memory. Additionally, the cache can be invalidated by execution of the
486-compatible invalidate instructions (INVD,WBINVD) or in response to a
hold acknowledge state if the BARB bit in CCRO is set. The method chosen
for invalidating the TI486SXL(C) internal cache can be different, depending on
whether or not the system has a serial secondary cache. Invalidation methods
are described for systems with and without a serial secondary cache.

C.3.1 Systems With No Secondary Cache or With a Parallel Secondary Cache

C.3.1.1 Method 1

C.3.1.2 Method 2

When the only cache memory in the system is the TI486SXL(C) internal cache,
or when the secondary cache has a parallel (or look-aside) architecture, there
are two general methods of invalidating the cache and maintaining cache co­
herency.

Invalidate the TI486SXL(C) cache every time the CPU enters a hold state. By
setting the BARB bit in CCRO, automatic cache flush occurs when the
TI486SXL(C) is placed in a hold state. If the chipset does not support hidden
refresh, very frequent cache invalidation may occur since the CPU is placed
in hold during DRAM refresh cycles that occur approximately every 15 /-1s. If
the chipset supports hidden refresh, this may be an acceptable solution since
the cache is only invalidated during DMA or bus master reads from or writes
to memory.

Invalidate the TI486SXL(C) internal cache when a DMA or bus master writes
to system memory. The external hardware must drive the TI486SXL(C)
FLUSH# or MEMW#t input when DMA or bus masters are detected writing to
system memory. This can be done using one of the circuits shown in
Figure C-1 or Figure C-2.

Figure C-1 shows the circuitry needed to generate an active-low FLUSH# to
the CPU each time a hold state is entered (defined by HLDA = 1) and memory
write occurs (defined by MEMW# = 0).

Figure C-1. Cache Invalidation for the TI486SXLC and the 132-pin TI486SXL

C-4

MEMW#
(from ISA bus)

HLDA
(from CPU)

----------------~

TI486SXLC and
132-Pin TI486SXL

FLUSH#

t MEMW# input is implemented on the 144-pin and 16B-pin TI4B6SXL only.

General Cache Invalidation

The 144-pin QFP and 168-pin PGA versions of the TI486SXL have the
external hardware shown in Figure C-1 incorporated on chip. There­
fore, to maintain cache coherency in these two devices, connect the
MEMW# signal from the ISA bus to the MEMW# input as shown in
Figure C-2.

Figure C-2. Cache Invalidation for the 144- and the 168-Pin TI486SXL
144- and 168-Pin TI486SXL

MEMW#
(ISA)

----I MEMW#
(Internal pullup)

C.3.2 Systems With a Serial Secondary Cache

In a system with a serial (or look-through) secondary cache, flushing the cache
cannot be accomplished by setting the BARB bit in CCRO. Bus arbitration oc­
curs between the serial cache controller and the system allowing the CPU to
continue executing out of cache.

The secondary cache controller arbitrates the bus among itself and DMA con­
trollers or bus masters and asserts HLDA to the chipset when the bus has been
granted. Each time a DMA or bus master write is detected, the FLUSH# pin
on the TI486SXL(C) must be asserted. The circuit shown in Figure C-3 can
be used. Note that the HLDA signal is generated by the secondary cache con­
troller rather than the CPU. This is the preferred solution since, in many cases
with secondary serial caches, the CPU is not put in hold so it can continue
execution from cache while DMA or bus-master activity is occurring on the sys­
tem bus.

Figure C-3. FLUSH# Logic With a Serial Secondary Cache

TI486SXL 144- and 168-pin only ~ • _____________________ ..

~,Pin66 ,
'(no connection) MEMW#, 1.-------------- ______ "

MEMW# ----(
(From ISA))-----1 FLUSH#

HLDA --------'
(From Cache Controller)

Design Considerations and Cache Flush C-5

C-6

Appendix D

OEM Modifications for 168·Pin CPGA

This appendix describes the potential modifications an OEM needs to imple-\
ment on an existing 486SX/DX motherboard to take advantage of the
TI486SXL 168-pin CPGA. This package offers OEMs added flexibility in imple­
menting solutions that support various 486 CPUs with the same motherboard.

The pinout of the TI486SXL 168-pin CPGA is nearly identical to the Intel™ or
AMDTM 486SX CPGA pinout. The NC pins on the TI486SXL package that
match signal pins on the 486SX have no internal connection and can be left
connected to the 486SX signal pins when the board is configured as a
TI486SXL board. This greatly simplifies the interface for the OEM. The classes
of board designs covered are listed in the topic index below.

The board design requires the use of system logic that supports the Intel/Ad­
vanced Micro Devices 486 interface and the TI486SXL interface. Since board
modifications for TI486SXL support are system-logic dependent, the imple­
mentation details are left to the board designer.The design examples show
both required and optional jumper connections that can be made if the func­
tions associated with them are needed. None of the optional signals require
termination if not used.

Subsection D.5, Power Planes for 3.3-Vand 3.3-V/5-V Systems Using
TI486SXL or 486DX4 on page D-9, shows a system implementation for

. a 3.3-V system that supports a 5-V ISA and a 3.3-V VL bus and another imple­

. mentation for a mixed 3.3-V/5-V system that supports a 5-V ISA and a 5-V VL
bus. In both implementations the microprocessor runs at 3.3 V.

The final responsibility for verifying designs incorporating any version of a
TI486SXL microprocessor rests with the customer originating the mother­
board design.

Topic Page
. .

:D~1 1391l"<I~StJPPQ,!in9·,.14$6$X~aridlntel .. ~ ... ~ ~: ~ ~.~• ~.D-2.
D:2Bo~tds;Sijpilol1ingi:148E).SX['anda48~DX ..•. •. ~ ••.•• ~ •. ~.~·Q~5

, ,~~ ~ , , ' ", Co " , , ,,', ,'" '

B~ards SlJ~p0l1ingTI~~6$XL;ilnda'48~DX4:~ ~ .~.~~ ••.• • i ••• • D~6
Boards S~pPQrting:theVLBus ..• n._ ••.• ~' ••••• ~ ; ••• ~.g~7

~ower;pla~e~ 'fpr3:3-Vand 3~3-VI5 .. V~ystel1lslJSing ..
• ll486SXl.or. 4860X4' " ~a 0-9.

0.0 Chip~efSupport .i.' ~. .. • ..i ~ D;,,11

0-1

Boards Supporting TI486SXL and Intel

0.1 Boards Supporting TI486SXL and Intel

Pin names and assigned locations are provided in Chapter 6, Mechanical
Specifications.

o Function: Connect BUSY# to S4 (Required)

BUSY# is required for coprocessor and self test. If neither is used, BUSY# can
be left open as it has an internal pullup resistor.

168 CPGA Socket Side
486SX Pin No./Name

System Logic Side

Oe------- BUSY#
S4/NC -------.,0

o Function: Hardware Cache Flush Support

Jumper

Open: 486SX
Closed: TI486SXL

• CASE 1: Systems with no level-2 or parallel cache (optional)

Hardware flush support for the TI486SXL is optional as this function may be
implemented in software by setting bit 5 in TI486SXL Configuration Control
register 0 (CCRO). However, the software implementation may negatively im­
pact the performance of certain designs. To achieve maximum system perfor­
mance, a hardware implementation is recommended as illustrated in
Figure 0-1. Also, see Appendix C, Design Considerations and Cache Flush,
for more information.

168 CPGA Socket Side
486SX Pin No./Name

System Logic Side

1 Of------­

B16/NC ----~O 2
(B16/TOO for 3 Of-------

Intel S Series)

S Series TOO

ISAMEMW#

Jumper

1-2: 486SX .
2-3: TI486SXL

Figure 0-1.FLUSH# for 144-Pin and 168-Pin TI486SXL

Or

0-2

MEMW#
(ISA)

---I MEMW#
(Internal pullup)

Note: The external flush logic is incorporated on
the 144-pin and 168-pin TI486SXL chip.

Boards Supporting TI486SXL and Intel

• CASE 2: Systems with a level-2 serial cache that do not hold the
CPU during all DMAlMaster cycles (required)

168 CPGA Socket Side
486SX Pin No./Name

System Logic Side

1 Of------­

C1S/FLUSH# -----10 2
3 Of-------

Figure 0-2. FLUSH# Logic With Level-2 Serial Cache

r--------,
I Flush Logic I
I I

SX FLUSH#

TI486 FLUSH#

MEMW# I I
(From ISA) I }--+I--I FLUSH#

I I HLDA ________ ...1

(From Cache Controller)

Jumper

1-2: 486SX
2-3: TI486SXL

OEM Modifications for 168-Pin CPGA 0-3

Boards Supporting Tl486SXL and Intel

D-4

o Function: Pipeline Support (Required)

• CASE 1: Chipset does not support pipelining.

168 CPGA Socket Side
486SX Pin No./Name

System Logic Side

Vee

~10~
A13/NC-------10

Jumper

Open: 486SX
Closed: TI486SXL

• CASE 2: Chipset supports pipelining and drives NA#.

o NA# (Chipset) Open: 486SX
A13/NC 0 Closed: TI486SXL

• CASE 3: Chipset supports pipelining but does not drive NA#.

A 13/NC ----~~------,11 00 Q

o Function: FPU Support (Optional)

168 CPGA Socket Side System Logic Side
486SX Pin No./Name

0 ERROR#
A12/NC 0

0 PEREQ
R17/NC 0

o Function: Power Management Support (Optional)

168 CPGA Socket Side System Logic Side
486SX Pin No./Name

0 SMI#
810/NC 0

0 SMADS#
813/NC 0

0 SUSP#
C13/NC 0

0 SUSPA#
812/NC 0

Open: 486SX
Closed: TI486SXL

Jumper

Open: 486SX
Closed: TI486SXL

Open: 486SX
Closed: TI486SXL

Jumper

Open: 486SX
Closed: TI486SXL

Open: 486SX
Closed: TI486SXL

Open: 486SX
Closed: TI486SXL

Open: 486SX
Closed: TI486SXL

Boards Supporting Tl486SXL and Intel

0.2 Boards Supporting TI486SXL and a 4860X

Pin names and assigned locations are provided in Chapter 6, Mechanical
Specifications.

o Function: 486DX Support (Required)

Note:

For the 4860X to be supported in the same design, the following jumper is
required in addition to those shown in Section 0.1, Boards Supporting
TI486SXL, Intel, and AMD 486SX, and any other differences in Intel/AMO
supported pinouts.

168 CPGA Socket Side
486DX Pin No./Name

System Logic Side

1 0----­
A15/IGNNE#--------10 2

30f------

NMI

IGNNE#

Jumper

1-2: 486SXlTI486SXL
2-3: 486DX

o Function: 486DX2, P24T Upgrade Socket Support (Optional)

168 CPGA Socket Side
486DX Pin No./Name

System Logic Side

0...------ FLT#

Jumper

C11/NC-----40
Open: 486SX
Closed: TI486SXL

(C11/UP#
for 486DX2)

(D12/NC
for P24T)

OEM Modifications for 168-Pin CPGA 0-5

Boards Supporting T1486SXL and a 486DX4

0.3 Boards Supporting TI486SXL and a 4860X4

0-6

Pin names and assigned locations are provided in Chapter 6, Mechanical Spec­
ifications.

o Function: 486DX4 PEREQ and CLKMUL (Required)

Note:

For the TI486SXL and the 4860X4 to be supported in the same design, the
following jumpers are required in addition to any other differences in Intel/
AMO supported pinouts. See subsections 0.4, Boards Supporting the VL
Bus on page 0-7, and 0.5, Power Planes for 3.3-Vand 3.3-V/5-V Systems
Using TI486SXL or 486DX4 on page 0-9.

168 CPGA Socket Side
486DX4 Pin No./Name

System Logic Side

1 0----­
R17/CLKMUL--------<0 2

3 0>------

o Function: Voltage Detect (Required)

PEREQ

CLKMUL

168 CPGA Socket Side
486DX4 Pin No./Name

System Logic Side

1 0----­
S4/VOLOET-------I0 2

30-----

o Function: Burst Mode (Required)

BUSY#

VOLOET

168 CPGA Socket Side System Logic Side
486DX4 Pin No./Name

10 kQ
1 0------JVV'v-- V SS
20 BLAST#

R16/BLAST# 0 3 (VL slot)

Jumper

1-2: TI486SXL
2-3: 4860X4

Jumper

1-2: TI486SXL
2-3: 4860X4

Jumper

1-2: TI486SXL
2-3: 4860X4

Boards Supporting the VL Bus

0.4 Boards Supporting the VL Bus

In order to support the VESA VL bus™ 2.0p Proposal, the following design
guidelines should be considered.

0.4.1 Cache Snooping

In a VL-bus design, it is the function of the local bus controller to resolve
arbitration between the CPU and the VL-bus master. For this architecture, the
CPU can be forced to relenquish the host bus by asserting HOLD. There are
two options for maintaining cache coherence:

D Use the BARB bit in Configuration Control register 0 (CCRO) to flush the
internal cache.

D Use the inverted HLOA output of the CPU to perform a hardware FLUSH#
to the CPU. See Figure 0-3. The FLUSH# pin must be enabled by using
bit 4 of CCRO.

Figure D-3. Hardware Flush

HLOA4-------e----1

CPU

FLUSH#

Note: Pin names and assigned locations are provided in Chapter 6, Mechanical Specifications.

These methods can be used only if the system logic supports the CPU HOLD
arbitration scheme.

0.4.2 VL-Bus Clock

The VL-bus clock signal is a 1 X clock that is in phase with the 486-type CPU
and is driven by either the system logic or the local-bus controller. The VESA
speciification allows for a frequency range of up to 66 MHz and dynamic clock
scaling. The specification limits the low-to-high level skew from the CPU clock
to LCLK as shown in Table 0-1 .

Table D-1. VL -Bus Skew

LCLK Max Frequency Unit Max Skew Unit

33 3

40 MHz 2.5 ns

50 2

Systems that currently support a 1 X and a 2X clock source should supply the
2X clock source to the CLK2 input of the TI486SXL and the 1 X clock source
to the VL-bus LCLK signal.

Systems that currently support only a 2X clock source can consider the addi­
tion of a PLL or clock divider to generate the 1 X VL-bus clock.

OEM Modifications for 168-Pin CPGA 0-7

Boards Supporting the VL Bus

0.4.3 VL-Bus Slot 10 Settings

The VL-bus slot 10 settings are shown in Table 0-2.

Table 0-2. VL-Bus Slot 10 Settings

Slot 10 Setting Comments

100 TI486SXL Mode

101 0 TI486SXL Mode

102 o or 1 0: Minimum one wait state for writes
1 : Zero wait states for writes

103 o or 1 0: >33 MHz CPU clock speed
1: < 33 MHz CPU clock speed

104 0 Burst transfer not supported

0-8

Power Planes for 3-V and 3-V/5- V Systems Using T1486SXL or 486DX

0.5 Power Planes for 3.3-V and 3.3-V/S-V Systems Using TI486SXL or
486DX4

0.5.1 Power Planes for 3.3-V Systems

Figure 0-4 shows the implementation of a 3.3-V system that supports use of
either the TI486SXL or a 4860X4 microprocessor. This implementation yields
a 5-V ISA bus and a 3.3-V VL bus with the microprocessor running at 3.3 V.

Figure D-4. 3.3-V VL-Bus Implementation

5-V Power Supply Regulator
Vee = 3.3 V

3.3-V VL Bus

r--- ---,
I I
I I

Chipset 3.3-V I I
(3.3-V/5-V SRAMs I VGAlLCD I

mixed) DRAMs I I
I VL Slots I
I (optional) I L _______ .J

5-V ISA Bus

r- -.
I I
I I
I I
I I
I I
I ISA Slots I L ___________________ .J

OEM Modifications for 168-Pin CPGA D-9

Power Planes for 3-V and 3-V/5-V Systems Using Tl486SXL or 486DX

0.5.2 Power Planes for Mixed 3.3-V/5-V Systems

Figure D-5 shows the implementation of a 3.3-V /5-V system that supports use
of either the TI486SXL or the 486DX4 microprocessor. This implementation
yields a 5-V ISA and and a 5-V VL bus with the mocroprocessor running at
3.3 V.

Figure O-S. Mixed 3.3-V/S-V VL-Bus Implementation

5-V Power Supply

0-10

Regulator

5-V
Chipset

VCC5 = 5 V

Vcc = 3.3 V

5-V
SRAMs
DRAMs

r- --- -,
I I
I I
I Slot 1 Slot 2 I
I I
I I
I VL Slots I
I (optional) I L _______ .J

--,
~~~~~~,......-l~~~"""""~ I 

I 
I 
I 

---- ---- ---- "---- '-----' 1....-......... I 
I ISA Slots I L ___________________ .J 

5-V VL Bus 

5-V ISA Bus 



Chipset Support 

0.6 Chipset Support 

The following list of chipset vendors providing single-chipset solutions that 
support both the Intel/AMD and the TI486SXL interface was compiled from in­
formation received from the specified chipset vendors. This is a partial list and 
is not meant to be all inclusive. 

o ACC Microelectronics 
o Acer Laboratories 
o EFAR 
o ETEQ Microsystems 
o Headland Technology 
o OPTI 
o PicoPower Technology 
o SARC/PC Chip 
o Silicon Integrated Systems (SIS) 
o Symphony Laboratories 
o Tidalwave 
o UMC 
o UniChip 
o Western Digital 

OEM Modifications for 168-Pin CPGA D-11 



D-12 



Appendix E 

Thermal Management in 
Microprocessor-Based Systems 

The purpose of this paper is to familiarize the reader with basic thermal con­
cepts and the relationship between thermal measurements and the system. 
In addition, problems associated with comparing thermal specifications from 
different manufacturers are discussed. Finally, corrective activity within 
JEDEC is explained in detail. This application report is intended for the casual 
scientific reader and the only prerequisite is general engineering knowledge 
of semiconductor devices. 

Topic Page 

E.1 Introduction. '>,' ii •• » .......... 0> ..•..• > •.. ~' .•••.•.. ~ •..... ~'; .. > •.... E·2 

E.2 Modes of Heat Transfer ; •...••.•..•.•••.•.•••.... > ••••••...•.... E .. 4 

E;3 Thermal SpecificationsC)flnfe,gtated Circuits .••... ~ ..•••••..••.• E-9 

E.4 TIThermal Specification Methodology ••.••.••.• ~ .••••••• ' .••..• E-11 

E.5 Guidelines •..• > .•••••..••.•••••..•••...• 0 ...................... E-14 

E~7 Current Trends and Th~ory of Correction •• ~ .•..•.•••....•.•.•.. E-15 

E.7 Conclusions> •..••........••.•.... ~ ••..•...•••....••.••.....••• E-15 

E-1 



Introduction 

E.1 Introduction 

Thermal management is considered to be an important factor in both the con­
ception and usage of semiconductor integrated circuits (ICs). Thermal 
management is defined as the modes and techniques required to transfer a 
powered IC's resultant operating heat to a system thermal heat sink. The ther­
mal management of an IC is normally discussed in terms of that IC's operating 
junction temperature (i.e., p-n junction of a diode). There are two main goals 
for thermal management. 

o The first is to ensure that the operating junction temperature of the IC does 
not exceed the range of functional and maximum temperature limits of that 
IC. The functional temperature range of an IC is bounded by the tempera­
tures that allow the IC to meet specified performance requirements. If the 
operating junction temperature of an IC is not within the functional temper­
ature range, diminishing system performance and operational errors may 
result. The absolute maximum temperature is defined as the temperature 
at above which physical damage begins to occur to the IC. 

o The second objective of thermal management is to ensure that the operat­
ing temperature of an IC enables the product reliability objectives for a giv­
en application to be met. Device failure rates are proportional to IC operat­
ing temperatures as shown in Figure E-1. 

Figure E-1. Effect of Component Operating Temperature on Component Failure Rate t 

E-2 

eV 1= elec~ron v61ts 
103 

~I~ 102 c<!~ 
c<! 

I 
CD 10 
1\1 
a: 
~ 
.2 
'@ 

10- 1 LL 
"0 
CD 

.!:::! 10 -2 
ctS 
E 
0 10 -3 
Z 

10- 4 

.I 

~~ 1.1 eV "-

~ V 
./ 

~ 
~ i" 0.8 eV 

~ 
~ 

~ V 

/ 1/ 
/ 

o 50 100 150 200 

TJ-Junction Temperature-OC 

t Richard C. Chu and Robert E. Simons, "Recent Developments For Electronic Packaging", Elec­
tronic Packaging Forum, Van Nostrand Reinhold, New York, 1991, pp. 183-189. 



Introduction 

E.1.1 Thermal Impedance 

E.1.2 Power 

Thermal impedance is an entity's resistance to heat dissipation through con­
duction, convection (natural and forced), and radiation. Thermal impedances 
are often analogous with electrical resistance, R, as described by Ohm's law 
(equation E-1): 

R=Y. 
I E-1 

where V represents voltage and I represents current. Similarly, thermal imped­
ances (equation E-2), often denoted by R with a subscript of the Greek letter 
theta (8), can be described by the following relationship: 

E-2 

where ~ T represents the temperature difference between two reference 
points and Q is the heat-flow rate measured in watts. Heat-flow rate, Q, is often 
written as P or Pd' 

Power is defined as the rate of energy flow. This energy can be thought of as 
electrical energy or the resultant heat that is generated. Both electrical and 
heat energy are measured in watts. The power consumption of an integrated 
circuit is defined by equation E-3: 

P = V' I E-3 

where V represents voltage and I represents current. 

E.1.3 Junction Temperature 

Indirectly, it is possible to find the junction temperature (T J) of a transistor or 
diode on a die using a temperature-sensitive electrical parameter (TSP) (see 
Figure E-2). Such a method is nondestructive and assumes that there is a uni­
form distribution of both current and temperature across the junction of the 
transistor or diode being used to conduct the test. Often the substrate diode 
(a diode used to reduce the amount of system noise) is used to conduct such 
a test. The diode's forward voltage drop is monitored while active and dissipat­
ing power as shown in Figure E-3. By controlling the temperature of a refer­
ence point and the voltage across the diode, it is possible to find the junction 
temperature. This method of obtaining the junction temperature is precise and 
accepted throughout the semiconductor industry.+ 

+ Sherwin Rubin and Frank F. Oettinger, "Thermal Resistance Measurements on Power 
Transistors", Semiconductor Measurement Technology: Thermal Resistance Measurements on 
Power Transistors, US Government Printing Office, Washington, 1979, pp. 1-4. 

Thermal Management in Microprocessor-Based Systems E-3 



Introduction / Modes of Heat Transfer 

Figure E-2. Die Using a Temperature-Sensitive Electrical Parameter 

Figure E-3. Diode Voltage Versus Temperature for a Typical Bipolar Device 

IF ~ 1 mAl 

> 500 E 
I 

Q) 
C> 
19 400 g 
Q) 

"'0 
0 300 0 
Q) 

"§ 
u; 200 ..0 
:::J 

~ 

" '" ~ " ~~ 
" CJ) 

I 

"> 100 

o 
o 20 40 60 80 1 00 120 

T J -Junction Temperature-°C 

E.2 Modes of Heat Transfer 

E-4 

There are three ways that heat is transferred between points of differing 
thermal potential: 

o conduction 
o convection 
o radiation 

Conduction, the simplest heat-transfer mechanism, is the transfer of kinetic 
energy from a more excited atom or electron to a nearby atom or electron that 
is less excited via vibrations and collisions. The ability to conduct heat is de­
pendent on the material. Materials that are dilute by nature (e.g., gases) are 
poor heat conductors because of their low density. On the other hand, metals 
are good thermal conductors as a result of their inherently high number of free 
electrons to encourage collisions. This ability to conduct heat is quantified by 
a proportionality constant (k) often referred to as thermal conductivity. 
Table E-1 lists some common packaging materials and their associated ther­
mal conductivities. 



Table E-1. Thermal Conductivity of Packaging Materials§, 11 

Metals (at 25°C) 

Copper 

Aluminum 

Lead 

Alloy-42 (common lead-frame material) 

Air 

Nonmetals 

Glass 

Epoxy glass 

Modes of Heat Transfer 

Thermal Conductivity, (W/m) (0 C) 

397 

238 

34.7 

10.7 

Thermal Conductivity, (W/m) (0 C) 

0.0234 

Thermal Conductivity, (W/m) (0 C) 

~0.8 

~O.89 

A second mode of heat transfer is convection, which is heat transfer by the 
movement of a heated substance. In the case of natural convection, such 
movement is caused by the induced differences in density that result from the 
expansion and compression of a gas or liquid subjected to temperature 
changes. Another type of convection, forced convection, forces movement of 
a cooling medium across a heat source. Often, forced convection is created 
by the use of a cooling fan within a system. 

A final mode of heat transfer is radiation. Radiated heat transfers occur due 
to thermal emission primarily in the infrared spectrum. Radiation is subject to 
common-wave phenomena such as reflection. The ability of the surface of a 
material to radiate heat is referred to as that surface's emissivity. Possible val­
ues for emissivity are from zero to unity, where unity signifies the maximum 
thermal radiation at a given temperature.§ 

E.2.1 Integrated Circuit Thermal Resistance 

The thermal resistance of an integrated circuit within a system can be broken 
into two major components: 

o Internal resistance of the IC, Rei 
o External resistance of the Ie, Rex 

Conventionally, resistances are discussed in more distinct terms. ReJC is de­
fined as the thermal impedance from the silicon die within an integrated circuit 
to the package surface, or case of that IC. This thermal path includes the ther­
mal impedances of each of the materials used in packaging the IC, such as 
solder, die adhesive, base materials, leads, the case itself, etc. Rei and ReJC 
are interchangeable terms because ReJC quantifies only those thermal im­
pedances internal to the package ending at the package leads or package 
body surface. Re i and ReJC are functions of the IC package only and are not 
significantly affected by the particular system in which an IC is used. The semi­
conductor manufacturer controls the values of Re i and ReJc, 

11 Charles A. Harper and Frank E. Altoz, Electronic Packaging and Interconnection Handbook, 
Mc Graw-HiII, Inc, New York, pp. 2.61-2.62. 

§ Raymond A. Serway, Physics for Scientists and Engineers, Saunders College Publishing, 
Philadelphia, p. 545. 

Thermal Management in Microprocessor-Based Systems E-5 



Modes of Heat Transfer 

The thermal impedances that exist between the package case and the system 
ambient thermal sink are collectively defined as RaCA, (thermal impedance 
from case to ambient air). For a given package size and format, all such ther­
mal impedances are primarily dependent on the particular system in which an 
IC is used (PWB thermal conductivity, presence of forced convection, etc.). 
These impedances are controlled by the user of the IC. Often RaJC and RaCA 
are referred to together as RaJA. 

RaJA can be qualitatively described as the thermal impedances between, and 
including, a heat-sourcing silicon die and the system ambient thermal heat 
sink.lf# 

To demonstrate the relative size of RaJC and RaCA, Table E-2 displays vari­
ous values for each of their respective percentages of the corresponding value 
of RaJA at 0 cubic feet per minute (cfm) airflow. All entries listed come from var­
ious data sheets of several manufacturers of 486-class microprocessors. No­
tice that RaJC accounts for a maximum of 15 percent of RaJA. For all QFP 
packages listed, the average share of RaJC is 9.6 percent. For the PGA pack­
age, 15 percent of RaJA is RaJc. As previously mentioned, the semiconductor 
manufacturer controls the value of RaJC through various process parameters. 
Therefore, at maximum, RaJC accounts for approximately 1/8th of the RaJA 
value for packages listed. Stated differently, RaCA (or the system), accounts 
for approximately 7/8ths of the total thermal resistance within a system. 

Table E-2. Thermal Performance of Various 486-Class Microprocessors 

Package Material 

Metal 
QFP 

Plastic 

PGA Ceramic 

E-6 

RSJC, ReCA, 
Number of Pins eCIW) Percent of ReJA eCIW) Percent of ReJA 

100 2 8.7 21 91.3 

100 4 11.1 32 88.9 

132 3 15.0 17 85.0 

The system in which an integrated circuit is used is quite significant in the RaJA 
value for that IC. As stated, at least 7/8ths of the thermal impedance from the 
silicon die to ambient air is due to the system. Significant effort is concentrated 
on thermally optimizing the system in order to improve the thermal perfor­
mance of the ICs within. 

It is important to understand that such effort is exerted by the IC user. There 
are several user-controlled system factors that contribute to the thermal resis­
tance of an IC: 

o PWB thermal conductivity 
o Proximity/density of the ICs on a PWB 
o Airflow 

~ Charles A. Harper and Frank E. Altoz, Electronic Packaging and Interconnection Handbook, 
Mc Graw-Hill, Inc, New York, pp. 2.61-2.62. 

# Jack Belani and B.J. Shanber, "Impact of Packaging Materials on Semiconductor Thermal 
Management", Third Conference of Electronic Packaging: Materials and Processes & Corrosion 
in Microelectronics, Minneapolis, Minnesota, April 28-30, 1987, pp. 113-115, 118. 



Modes of Heat Transfer 

E.2.2 PWB Conductivity 

The thermal conductivity of a PWB is determined by the individual thermal con­
ductivities of materials that comprise the PWB. PWBs are non homogenous 
and normally consist of a base-laminate material, such as epoxy glass, and 
various amounts of other materials, such as traces or planes made of copper. 
The thermal conductivity of the laminate varies little between commonly used 
PWB laminates (thermal conductivity of epoxy glass is about 0.89). Since the 
thermal conductivities of commonly used routing metals are much higher than 
that of the PWB laminate (see Table E-1 [page E-5], aluminum: 238, copper: 
397), the thermal conductivity of a PWB is proportional to the amount of metal 
in the PWB. 

Table E-3 shows the thermal conductivities of several PWBs made from FR-4, 
a type of epoxy glass. The boards vary by the number of signal layers and the 
number of ground layers, or essentially, the copper volume. As copper volume 
increases from 0 to 6.9 percent, thermal conductivity (W/m) (OC) increases by 
a factor of 90 or almost two orders of magnitude. This is a result of the higher 
thermal conductivity of copper compared to epoxy glass. The thermal conduc­
tivity of the PWB is proportional to the signal and ground metal content of a 
PWB. The area and thickness of metal on lower levels of a PWB, under the 
footprint of an IC, affects the thermal performance of that particular IC.II 

Table E-3. Thermal Conductivity of PWBs With Various Amounts of Copper 

Board Type and 
Layers 

FR-4 

FR-42 layer 

FR-44 layer 

FR-44 layer 
t Trace thickness is 2 flm. 

Signal-Layer Ground-Layer Copper Thermal Conductivity, 
Trace Widtht Trace Widtht Volume, (%) (W/m)(OC) 

a 0.3 

35 11m 1.0 3.7 

35 11m 35 11m 3.5 13.6 

35 11m 70 11m 6.9 26.9 

Table E-4 compares two types of PWBs with identical 1 ~O-pin QFP devices 
mounted on each board, and each board uses identical minimum-metal, sig­
nal-routing traces to complete the signal-interconnection layer. The single­
sided PWB contains no metal on the opposite side of the board. The two-layer 
PWB has a solid-copper ground plane on the opposite side. All measurements 
are taken with no airflow present. The value of R8JA for the IC is improved by 
9 percent by the addition of a copper ground plane (a resulting increase of 55 
percent in copper content). When metal is present on lower levels of a PWB 
within the projected footprint of an IC, the thermal performance of that IC is im­
proved due to a lower value of R8JA-

II Ake Malhammer, Ph.D, "Heat Dissipation Limits for Components Cooled by the PCB Surface", 
International Electronics Packaging Conference, San Diego, California, September 15-1B, 
1991, pp. 307-30B. 

Thermal Management in Microprocessor-Based Systems E-7 



Modes of Heat Transfer 

Table E-4. ReJA Versus Board Type 

Board Type 

Single sided 

Two sided 

36.0 

32.8 

Figure E-4. Metal Within Projected Footprint of Integrated Circuit 

PWB I If metal is in this area, the thermal \ 
I performance of the Ie improves. \ 

~ Projected Footprint ~ 
E.2.3 Proximity of Integrated Circuit on Board 

E.2.4 Airflow 

E-8 

The location of an integrated circuit on a PWB can make a significant differ­
ence in the junction temperature of that device. In an ideal design, those ICs 
with the lowest heat dissipation are located in the center of a PWB, and those 
ICs with the highest heat dissipation are at the edges of the PWB. A concept 
known as the territory surface method associates an area of PWB required to 
sink the heat flow from a given IC. Often, in the case of surface-mount packag­
ing, an IC's territory is violated by either other IC's territories or the edge of the 
PWB. In either case, thermal performance is hindered in all involved ICs. It is 
important to understand that not only the proximity of an IC on a PWB but also 
its relative location on the board has significant effects on thermal perfor­
mance.lI* 

In a typical system, heat dissipated by natural convection is a significant por­
tion of overall heat dissipation. When forced convection is present within a sys­
tem, the amount of heat dissipation increases in proportion to the rate of flow 
of the convection. Higher rates of forced convection result in lower values of 

RaJA· 

In Table E-5, values of RaJA are listed for a 1 ~O-pin QFP mounted on a single­
sided board in varying amounts of forced convection. As airflow (forced con­
vection) increases from a rate of 0 cfm to 600 cfm, RaJA is decreased by a fac­
tor of 2.4. It can be stated that the RaJA value of an IC in a system is inversely 
proportional to the presence/amount of forced convection (airflow). 

II Ake Malhammer, Ph.D, "Heat Dissipation Limits for Components Cooled by the PCB Surface", 
International Electronics Packaging Conference, San Diego, California, September 15-1B, 
1991, pp. 307-30B. 

*M.M. Hussein, D.J. Nelson, and A. Elshahiu-Riad, "Thermal Interconnection of Semiconductor 
Devices on Copper-Clad Ceramic Substrates", 7th IEEE SEMI-THERM Symposium, August 
1991, pp.121-122. 



Modes of Heat Transfer / Thermal Specifications of Integrated Circuits 

Table E-S. ReJA Versus Airflow 

Airflow (cfmt) 

o 
100 

200 

400 

600 
t cfm = cubic feet per minute 

E.3 Thermal Specifications of Integrated Circuits 

ReJA 

36 

32 

26 

19 

15 

Manufacturers normally publish detailed specifications of ICs that contain a 
thermal portion, or a thermal specification. Manufacturer's thermal specifica­
tions differ in many ways, but most thermal specifications publish the range of 
allowable package case temperatures in order to ensure that a device is func­
tional (those case temperatures at which the range of functional junction tem­
peratures are not exceeded). In addition, many manufacturers include some 
of the following variables: 

o RaJC 
o RaJA at various airflows 
o Maximum ambient air temperature, T A, at various airflows. 

As previously stated, many thermal variables are system dependent. In order 
to compare ICs on the basis of their published thermal specifications, it is nec­
essary to have knowledge of the system in which such specifications were 
measured. Recall that 7/8ths of the thermal resistance of an IC, RaJA, is due 
to elements other than that IC. In addition, measurement techniques can affect 
thermal resistance values. In general, there are three factors that contribute 
to the inability to compare different manufacturers' thermal specifications: 

o System dependence of RaJA and RaCA 
o Technique/location for measurement of T A 
o Definition of Q or P.D 

E.3.1 System Dependence of RaJA and RacA 

There is presently no industry accepted standard system used for measuring 
thermal resistances. Consequently, systems used to measure thermal specifi­
cations vary widely between manufacturers with respect to thermal perfor­
mance. For similar ICs built by different manufacturers, thermal specifications 
are often misleading due to the use of differing thermal systems. 

o [7]James A. Andrews, "Package Thermal Resistance Model Dependency on Equipment 
Design", IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Volume 
II, Number 4, December 1988, pp. 536-537. 

Thermal Management in Microprocessor-Based Systems E-9 



Thermal Specifications of Integrated Circuits 

As stated previously, there are several approaches to publishing thermal spec­
ifications: worst case, best case, and somewhere between these two points. 
As a result, you need to be cautious when making decisions based on system­
dependent thermal resistances such as RSJA and RSCA' If information con­
cerning the system is omitted from a thermal specification, values for RSJA and 
RSCA should be disregarded for the purpose of comparison. 

E.3.2 Measurement of T A 

Recall equation E-2 for thermal impedance, repeated here as equation E-4: 

R = L\T 
S 0 E-4 

where L\ T is the difference in temperature between a transistor junction and 
some reference point. The choice of reference point and its temperature with 
respect to the junction is of great importance to the precision of thermal imped­
ance. Holding the junction temperature constant as the reference point's tem­
perature is increased makes the calculated thermal impedance smaller. Most 
manufacturers choose the local ambient-air temperature within the system en­
closure as the reference point. However, because the local air temperature is 
likely to be subject to natural convection and a resulting nonuniformity of tem­
perature, the reference point must be well defined to avoid inaccuracy. When 
comparing thermal specifications, the reference point used to calculate ther­
mal impedance has significant effect on the value of thermal impedance. If no 
information is included concerning the reference point, absolute comparisons 
of thermal specifications must be made cautiously. 

E.3.3 Definition of Q 

E-10 

The rate at which energy is converted from electrical energy into heat energy 
is known as power (P). P is defined by equation E-5: 

P = VCC x ICC E-5 

For the purpose of thermal-impedance calculations, some manufacturers use 
a relationship that describes the typical power dissipation, equation E-6: 

P = V CC(t) x ICC(t) E-6 

Other manufacturers use the maximum amount of power dissipated, equation 
E-7: 

P = V CC(m) x ICC(m) E-7 

where (t) denotes a typical value and (m) is a maximum value. Neither method 
is incorrect, but typical power dissipation is significantly lower than maximum 
power dissipation in most circumstances. As a result, thermal impedances cal­
culated using typical power dissipation are lower than those thermal imped­
ances calculated using maximum power dissipation. This is because of imped­
ance's inverse relationship with power dissipation or 0, as shown in equation 
E-8: 

R = L\T 
S 0 E-8 



Thermal Specifications of Integrated Circuits / TI Thermal Specification Methodology 

When examining thermal specifications, it is important to know the manufac­
turer's definition of power dissipation. Often, the equation for power dissipation 
is included in either the section pertaining to electrical characteristics or the 
thermal specification's definition of variables. If not, use caution when compar­
ing such specifications. 

E.4 TI Thermal Specification Methodology 

Some manufacturers publish thermal specifications according to typical sys­
tem conditions in which the IC will be used. Other manufacturers publish ther­
mal specifications for absolute worst-case conditions. Other manufacturers' 
thermal specifications are applicable for conditions somewhere between 
these two points. In order to ensure the reliability of Texas Instruments micro­
processor devices, the thermal specifications are published in accordance 
with a realistic worst-case scenario. This means that the data is measured in 
a conservative manner, but not so conservative as to hinder its usefulness 
when designing microprocessor-based systems incorporating TI devices. The 
following paragraphs provide a detailed explanation of how TI obtains thermal 
data and the reasons for using such methods. 

A thermal test die is mounted in the package to be tested and the package is 
mounted on a test board consisting of 0.062 inch thick FR-4 material with one­
ounce copper etch. The 100-pin QFP (package of the TI486SXLC micropro­
cessor) is soldered to a single-sided test board using matching footprints and 
minimal circuit-trace density required to interconnect the device electrically to 
the board. The 132-pin ceramic PGA (package of the TI486SXL microproces­
sor) is inserted in a socket that is soldered to the same test board. As dis­
cussed previously, PWB thermal conductivity has a significant effect on the 
RSJA value of a device and is proportional to the amount of metal in the PWB 
within the projected footprint of the device. It is important to recognize that the 
test PWB described above has a minimum amount of routing metal and is 
single layer. PWB conductivity is minimized, and the experimentally deter­
mined value for RSJA is maximized. 

To measure still-air RSJA, the package to be tested and board on which it is 
mounted are placed horizontally in a container that has a volume of one cubic 
foot of air. Power is supplied to a transistor on the die, and after a thirty-minute 
stabilization period, the temperature of the air (T1) and the base-emitter volt­
age (VBE 1) of the transistor are recorded. Power is supplied to an array of tran­
sistors on the die to cause an increase in junction temperature and the base­
emitter voltage (VBE2) of the powered transistor is recorded. The package 
and board are placed in an oven and the temperature is raised to 90° C, T2 and 
another measurement of base-emitter voltage (VBE3) is recorded. Still-air 
RSJA can be calculated by substituting the measured variables (T1 , T2, VBE 1, 
and VBE3) into equations E-9 and E-10: 

I 
- (VBE1-VBE3) E-9 

s ope - (T2-T1) 

R - (VBE1 - VBE2) E-10 
SJA - slope 

Thermal Management in Microprocessor-Based Systems E-11 



TI Thermal Specification Methodology 

For the purpose of measuring RSJC, the package and board are placed in a 
bath of moving fluorinert FC-77. After a thirty-minute stabilization period, the 
temperature of the fluorinert is recorded (T1) and the voltage across a pow­
ered transistor on the test die is measured from base to emitter (VBE1). Power 
is then applied to an array of resistors on the test die to produce a subsequent 
increase in junction temperature. The voltage across the same transistor from 
base to emitter (VBE2) is recorded. The package and board are placed in an 
oven at 90° C (T2) and the voltage across the powered transistor is measured 
from base to emitter, VBE3. Note that at this point, the resistors are no longer 
powered. Once VBE1, VBE2, VBE3, T1, and T2 are known, these values are 
substituted into equations E-11 and E-12 to find a value for RSJC. RSJC is in­
dependent of the system so system information has been omitted from this ex­
planation. However, the test die that is used within the package must be con­
sistent in size and power dissipation with the actual application die. An exam­
ple of plotting thermal data is shown in Figure E-S. 

I - (VBE1-VBE3) E-11 
s ope - (T2-T1) 

R _ (VBE1 - VBE2) 
SJC - slope 

E-12 

Figure E-S. Plotting Die Thermal Data 

E-12 

VBE1 

VBE2 

VBE3 

~ 

o 25 
T1 

~ 
90 
T2 

TJ-Junction Temperature of Test Die-oC 

Ambient 

Power 

Oven 

To measure RSJA versus airflow, the test package and mounting board are 
placed vertically in a calibrated wind tunnel as shown in Figure E-6. A temper­
ature probe and anemometer-type airflow probe are located towards the front 
end of the tunnel. A fan is mounted at the rear of the tunnel. Its airflow is di­
rected away from the wind tunnel to induct air from the front of the tunnel to 
the rear. At various controlled rates of airflow, the voltage is measured across 
a powered transistor on the test die (VBE1). The temperature in the tube is re­
corded as T1. An array of resistors on the test die is powered to cause an in­
crease of temperature across the die. The voltage is again measured across 



TI Thermal Specification Methodology 

the same transistor (VBE2). The device is removed from the wind tunnel, 
placed in an oven at 90° C (T2), and only the transistor is powered. The voltage 
from base to emitter on the transistor is measured (VBE3). As in the procedure 
for RSJC, the experimental values are substituted into equations E-9 and 
E-10 (page E-11 ) to find the value for the slope and RSJA for a specific airflow. 

Figure E-6. Wind Tunnel Schematic Diagram 

> 

Device Test Board 

Temperature and 
Anemometer-Type 
Airflow Probe 

AirflOW> 

Wind Tunnel Cross-Section is 6 in by 6 in. 

Fan 

~ 5 in ---I~ ..... I.I--- 24 in -~:I 
~--------------------------78in--------------------------~ 

(Dimensions are approximate.) 

The procedures described above are relatively consistent across the industry 
with the exception of the test-board specifications and the measurement loca­
tion of T1. In the test-board specification the thermal conductivity is of great 
importance to the experimentally determined value of RSJA. As shown in 
Table E-3 (page E-7), a 4-layer FR-4 PWB is approximately 89 times as ther­
mally conductive as a single layer PWB with no copper. It is not uncommon to 
find 8 or more layers in a microprocessor PWB. TI uses a single-sided test 
board with only one ounce of copper etch as opposed to a typical application 
multilayer PWB with a much higher content of copper etch and consequently, 
better thermal conductivity. 

The RSJA values reported by TI should be viewed as worst-case versus typical 
for an application. The ambient temperature location is measured and is not 
affected by an increase in operational case temperature as would occur in a 
typical closed-system-case application. Such a measurement of ambient tem­
perature allows for a greater difference or delta between the junction tempera­
ture and the measurement reference point and, as a result, a higher value of 
RSJA. When comparing RSJA values from Texas Instruments with other 
manufacturers, it is important to understand the test conditions of each before 
drawing conclusions regarding which unit offers the best thermal perfor­
mance. 

Thermal Management in Microprocessor-Based Systems E-13 



Guidelines / Current Trends and Theory of Correction 

E.S Guidelines 

Because of the possibility of disparity in generating thermal specifications, it 
is often difficult to compare similar parts produced by different manufacturers. 
To ensure the validity of a comparison between the thermal specifications of 
several devices, these guidelines should be followed: 

o Ensure that the system is the same for all devices to be included in the 
comparison. If the system is not the same, only consider values for ReJc, 
ReCA and ReJA values should be disregarded because oftheir system de­
pendence.# 

o Disregard from the comparison those devices whose thermal impedances 
were obtained using different reference points. Remember that ~T de­
creases as the reference temperature increases (holding the junction tem­
perature constant), and that thermal impedance is proportional to ~ T. An 
increase in ~ T (or a decrease in the measured reference temperature) 
causes a resulting increase in the calculated thermal impedance. 

o Include only those devices with like definitions for power dissipation. High­
er values for P result in lower values of calculated thermal impedance. 
Typical power dissipation (the product of typical V CC and typical ICC) is sig­
nificantly lower than maximum power dissipation (the product of maxi­
mum VCC and maximum ICC)' 

E.6 Current Trends and Theory of Correction 

E-14 

The dilemma concerning thermal specifications and the incompatibilities be­
tween manufacturers has not gone unnoticed. The JEDEC JC-15 committee 
has developed objectives for standardizing electrical and thermal modeling 
and measurements for IC packages and interconnects. A task force, desig­
nated JC-15.1 , was originated to accomplish two of the above goals by the fol­
lowing actions: 

o Propose a standard board for device thermal-resistance measurements 

o Provide a standard measurement to which actual thermal-modeling mea­
surements can be compared 

Companies often use varying systems and measuring techniques for the pur­
pose of obtaining thermal-resistance measurements of ICs. To cope with 
these variances, JEDEC JC-15.1 is proposing a board layout to standardize 
thermal-resistance measurements. The proposed board (3" by 4.5") ~contains 
only the device to be characterized with a minimum amount of metal. If widely 
accepted within the semiconductor industry, such a board definition could pro­
vide improved validity when comparing integrated-circuit thermal specifica­
tions. 

# Jack Belani and B.J. Shanber, "Impact of Packaging Materials on Semiconductor Thermal 
Management", Third Conference of Electronic Packaging: Materials and Processes & Corrosion 
in Microelectronics, Minneapolis, Minnesota, April 28-30, 1987, pp. 113-115, 118. 



E.7 Conclusions 

Conclusions 

In summary, the thermal impedance of an integrated circuit within a system is 
divided into two components: Rei and Rex or ReJC and ReCA' ReJC or Rei ac­
count for only about 1 18th of the total thermal resistance of an IC within a sys­
tem. ReCA or Rex is responsible for 7/8ths of the total thermal resistance. The 
total thermal resistance of an IC within a system, often referred to as ReJA, is 
significantly dependent on the system's thermal performance. The system 
thermal performance can be attributed to several factors: 

o PWB thermal conductivity 

o Proximity of ICs on the PWB and total component density of the PWB 

o Presence andlor amount of forced convection 

Thermal specifications of ICs include one or more of the following variables 
versus airflow: ReJC, ReJA, and T A(m)' ReJA is dependent on the system. To 
make a valid comparison of multiple manufacturers' thermal specifications for 
similar parts, thermal specifications must meet the following guidelines: 

o Identical systems (Le., PWB thermal conductivity, airflow) 

o Similar reference points for thermal-impedance calculation 

o Like definitions of P 

Because of the current problems surrounding thermal specification compari­
sons, JEDEC has provided a task force, JC-1S.1 , to develop and maintain a 
standard-PWB definition for the purpose of measuring thermal resistances to 
be included in thermal specifications. Until such a method is adopted industry 
wide, the discussed guildelines should be followed to assure valid thermal­
specification comparisons. 

Thermal Management in Microprocessor-Based Systems E-15 



E-16 



Appendix F 

Ordering Information 

F.1 Part Number Components 

Components of the TI486SXL( C) family of microprocessor part numbers are 
diagrammed in the following example. 

EXAMPLE: ---.. ~.TX486SXLC B - V 

Device Name: 
SXLCB = 16-bit I/O 
SXLB = 32-bit I/O 
SXLC2 and SXL2 are clock doubled 

I 

Device Revision level: _______ -..1 

Supply Voltage: 

0=5 V 
V = 3.3 V 
G = 3.3 V with 5-V-tolerant inputs 

Speed: 
25 = 25 MHz 
33 = 33 MHz 
40 = 40 MHz 
50 = 50 MHz 

Package Type: 

HBN = 144-Pin Ceramic Quad Flat Package 

25 

GA = Ceramic Pin Grid Array (S-GA = 132 pins for the TI486SXL family) 
PJF = Thermally Enhanced 100-Pin Plastic Quad Flat Package 
PCE = Themally Enhanced 144-Pin Plastic Quad Flat Package 

GA 

F-1 



Part Numbers for Microprocessors Offered 

F.2 Part Numbers for Microprocessors Offered 

Table F-1 lists the complete part number for each version of the TI486SXL mi­
croprocessors offered, and Table F-2 lists the part number for each version 
of the TI486SLC/DLC microprocessors .offered. The tables provide a short de­
scription consisting of the supply voltage, performance capabilities, and the 
mechanical package for each device part number. 

Table F-1. TI486SXLC and TI486SXL Part Numbers 

Speed (MHz) 

Device Part Number Supply Voltage (V) Core Bus Package 
TX486SXLCB-V25-PJF 3.3 25 25 1 ~O-pin TEP plastic 
TX486SXLCB-040-P J F 5 40 40,20t QFP 

TX486SXLC2B-050-P J F 5 50 25 

TX486SXLB-040S-GA 5 40 40,20t 132-pin PGA 
TX486SXL2B-050S-GA 5 50 25 

TX486SXLB-040-PCE 5 40 40,20t 144-pin TEP plastic 
QFP 

TX486SXL-G40-HBN 3.3-V, 5-V tolerant 40 40,20t 144-pin ceramic 
TX486SXL2-G50-HBN 3.3-V, 5-V tolerant 50 25 QFP 

TX486SXLB-040-H BN 5 40 40,20t 

TX486SXL2B-050-H BN 5 50 25 

TX486SXL -G40-GA 3.3-V, 5-V tolerant 40 40,20t 168-pin PGA 
TX486SXL2-G50-GA 3.3-V, 5-V tolerant 50 25 

TX486SXLB-V40-GA 3.3 40 40,20t 

TX486SXL2B-V50-GA 3.3 50 25 

TX486SXLB-040-GA 5 40 40,20t 

TX486SXL2B-050-GA 5 50 25 

t These microprocessors can be operated as nonclock-doubled 40 MHz or clock-doubled 20/40 MHz. 

F-2 



Part Numbers for Microprocessors Offered 

Table F-2. TI486SLCIE and TI486DLCIE Part Numbers 

Supply Voltage 
Device Part Number (V) Speed (MHz) Package 

TI486SLC/E-033C-P J F 5 33 1 ~O-pin TEP plastic 

TI486SLC/E-V25C-PJF 3.3 25 QFP 

TI486SLC/E-040C-PJ F 5 40 

TI486DLC/E-033C-GA 5 33 132-pin ceramic PGA 

TI486DLC/E-040C-GA 5 40 

TI486DLC/E-033C-PCE 5 33 144-pin TEP plastic 

TI486DLC/E-040C-PCE 5 40 QFP 

Ordering Information F-3 



F-4 



Appendix G 

Glossary 

2-way set associative: In a 2-way set associative cache, an index identifies 
two lines of data (i.e., only two members of a set may exist in cache at 
a given time). This design provides significant performance improve­
ment in comparison to direct mapped caches as measured by the hit ra­
tio. (See set associativity.) 

A20M: When bit 2 of CCRO is true, the A20M# pin is enabled. 

Note: 

The A20M# pin is an anomoly occurring in PC designs as a result of the fact 
that truncated addresses can be generated by an 8086/8088 outside the 
physical address range. 

A: Accessed/nonAccessed bit. Segment descriptor bit 8. 

AC: The Alignment-Check enable flag verifies that computer-word bits are 
aligned with respect to significance. 

address: Each byte of memory is assigned a specific address space. The 
amount of addressable memory space depends on the width of the CPU 
address bus. The TI486SXLC has a 24-bit address bus, and the 
TI486SXL has a 32-bit address bus. 

AF: The Auxiliary carry Flag is set when an operation results in a carry out 
of ( addition) or borrow into ( subtraction) bit position 3. Otherwise it is 
cleared. 

AM: Alignment-check Mask bit. CRO bit 18. 

ARR1 through ARR4: Address Region registers 1 through 4 define the 
location and size of the memory regions associated with the internal 
cache. These registers are unique to the TI486SXL(C) microprocessors. 

asserted: When a signal is asserted, it is logically true. 

G-1 



Glossary 

G-2 

AVL: AVaiLable bit. Segment Selector register bit 20. 

bandwidth: Bandwidth is how much information can be transferred during 
a period of time. As an example, video, which requires a maximum band­
width of 80 megabytes per second (MBps), takes advantage of the 132 
MBps transfer rate provided by the VESA-VL or PCI bus. 

BARB: When bit 5 of CCRO is set (high), the BARB bit enables flushing of 
the internal cache when a hold state is entered. 

base: The base is the beginning of some segments (extra data, code, or 
data segments) or the beginning address provided in some registers 
(CC3, GOTR, IDTR, or SO). 

BIOS: The Basic Input Output System is a set of routines that contain de­
tailed instructions for activating computer and peripheral devices. The 
BIOS is normally implemented in nonvolatile memory. 

bit: A bit is the fundamental unit of computer memory. A bit can be a 1 or a 
o. A byte is made up of eight bits. 

breakpoint: A breakpoint can be embedded within a program to temporarily 
stop execution so that machine status may be determined. 

byte: A byte is made up of eight bits and basically represents one character 
of information. 

C/O: Expand segment upper limit or lower limit bit. Segment descriptor bit 
10. 

cache: A cache is a small, high-speed memory used to provide a temporary 
storage location for data most likely to be requested by the CPU. This al­
lows for quick access of data and improved CPU performance (Le., zero 
wait states). 

cacheable: A memory location is cacheable if the system allows data at this 
location to reside in the cache. 

cache addressing: Cache addressing is performed by dividing the physical 
address into an index field, a tag field, and a byte select field. A valid field 
indicates whether the cached data at that physical address is currently 
valid. 

cache (data) coherency: Data coherence is necessary when a system has 
multiple memories. If several memories contain the same data word, mo­
difying that data word in one memory causes the data to be incoherent 
with the data stored in the other memories. Therefore, the other memo­
ries that have a copy of that same data word must either update or invali­
date their copy. If this is not done, data remains inconsistent or inco­
herent. 



Glossary 

cache flush: Cache flush is a method used to maintain cache consistency 
in which all locations with dirty bits are written to main memory. Then, the 
cache contents are cleared (flushed). 

cache hit: A cache hit is said to occur when data being requested by the 
CPU resides in cache. 

cache miss: A cache miss is said to occur when data being requested by 
the CPU does not reside in cache. 

cache tag address: The cache tag address contains the high-order bits of 
the physical address of the associated data stored in the cache. 

CCRO, CCR1: Configuration Control register 0 enables certain functions 
associated with cache control, suspend mode, and the clock-doubled 
mode. Configuration Control register 1 is used to set up internal cache 
operation and system-management mode. These registers are unique 
to the TI486SXL(C) microprocessors. 

CD: Cache Disable bit. CRO bit 30. 

CF: The Carry Flag is set when an operation results in a carry out of ( addi­
tion) or borrow into ( subtraction) the most significant bit. Otherwise it is 
cleared. 

CKO: Enable Clock Doubled. CCRO bit 6. 

clock doubled: When the microprocessor is in clock-doubled mode, the in­
ternal core is operating at the CLK2 frequency while the external bus in­
terface remains at half the CLK2 frequency. 

clock scaling: The TI486SXL(C) microprocessor family supports dynamic 
clock scaling that enables the CLK2 input to be scaled up or down. 

clock speed: Clock speed is the speed at which the CPU operates, typically 
measured in megahertz (MHz). 

CISC: A Complex Instruction Set Computers is a type of computer architec­
ture that requires multiple clock cycles per instruction but offers many 
specialized instructions for programmers. 

conventional memory: The DOS memory which occupies the addresses 
between 0 and 640 KB and is available to the user or software programs. 

coprocessor: A coprocessor is an external processor that can be operated 
in parallel with the CPU to relieve the CPU loading. The TI486SXL(C) mi­
croprocessors are designed to interface to a coprocessor. 

CPGA: A Ceramic Pin Grid Array package consists of ceramic substrates to 
hermetically enclose the IC and an interconnection scheme that pres­
ents male leads extending from the bottom of the package. 

CPL: The Current Privilege Level is the privilege level of the current opera­
tion. 

CPU: The Central Processing Unit is the execution unit of the microproces­
sor. It consists of control, shift, adder, multiplier, and limit units and a reg­
ister file. 

Glossary G-3 



Glossary 

G-4 

CRO, CR2, CR3: Control register 0 contains system control flags and indi­
cates the general state of the CPU. The lower 16 bits are referred to as 
the machine status word. When paging is enabled and a page fault is 
generated, Control register 2 retains the 32-bit linear address of the ad­
dress that caused a fault. Control register 3 contains the 20-bit base ad­
dress of the page directory. 

CS: In real and virtual-8086 operating modes, the Code Segment register 
holds a 16-bit segment base. In protected mode, the Code Segment reg­
ister holds a segment selector. 

D: Defaultlength bit for operands and addresses. Segment descriptor bit 22. 

deasserted: When a signal is deasserted, it is logically false (not true). 

descriptor: A segment descriptor is a data structure that defines a seg-
ment's base, limit and attributes. 

DF: The Direction Flag, when cleared, causes string instructions to auto­
increment (default) the appropriate Index registers ( ESI and/or EDI). 
Setting OF causes auto-decrement of the Index registers. 

direct mapped cache: A direct mapped cache is the simplest form of set 
associative cache architecture, one-way set associative. In a direct 
mapped cache, an index identifies only one line of data (i.e., only one 
member of a set may exist in cache at a given time). Therefore, only one 
address comparison is required to determine if the requested word is in 
the cache. 

direct memory access (DMA): Direct memory access allows data to be 
transferred between a device and memory without the constant control 
of the CPU. DMA permits two operations to be executed simultaneously. 
As an example, the CPU can access the cache while DMA allows a pe­
ripheral to access the main memory. 

disk drive controller: When the microprocessor requests information or a 
software application, a copy of it is transferred from storage (disk drive, 
floppy drive, or CD-ROM) into RAM by the disk drive controller. 

displacement: Displacement is a value, of up to 32 bits in length, that is sup­
plied as part of the instruction. The displacement is used as the address 
in direct address mode and is added to based, index, scaled index, 
based index with displacement, and based scaled index with displace­
ment address modes. 

DNA: Device Not Available fault. 

DOS memory: DOS memory is limited to 1 MB of memory unless using ap­
plications that take advantage of extended or expanded memory. 

DP: Displacement 



Glossary 

DPL: Descriptor Privilege Level field. Gate or segment descriptor bits 
14-13. 

DRAM: Dynamic Random Access Memory are volatile memory chips that 
use capacitors to store information as an electrical charge. They offer 
high density at a low cost, but they must be refreshed frequently which 
makes them relatively slow. 

drive controller board: See disk drive controller. 

DRO through DR7: Debug registers Othrough 7 contain memory addresses 
and breakpoints used to support debugging of the microprocessor. 

DS: In real and virtual-BOB6 operating modes, the Data Segment register 
holds a 16-bit segment base. In protected mode, the Data Segment reg­
ister holds a segment selector. 

DT: Descriptor Type bit. Segment Selector register bit 12. 

DTE: The Directory Table Entry is selected from the directory table by the ten 
most-significant bits of the linear address and contains the starting ad­
dress of the second-level page table. 

DTI: The Directory Table Index acts as a 32-bit master index to up to 1 K indi­
vidual second-level page tables. 

E: Application descriptor bit. Segment descriptor bit 11. 

EAX, ESX, ECX, EDX, ESI, EDI, ESP, ESP: The ExtendedGeneral Purpose 
register set. 

EFLAGS: The Extended Flag Word register contains status information and 
controls certain operations on the microprocessor. The lower 16 bits of 
this register are referred to as the Flag register. 

EGA: Enhanced Graphics Adapter is a video standard for IBM-compatible 
PCs named after a particular video adapter that was the standard for the 
IBM PC-AT. 

EIP: The (extended) Instruction Pointer register contains the offset into the 
current code segment of the next instruction to be executed. 

EPROM: Electrically Programmable Read-Only Memory is a permanent 
memory used for items such as the BIOS instructions which occupy the 
reserved address space in DOS systems. EPROM access times tend to 
be long, but, being non-volatile, they are used primarily for initialization. 
If higher performance is required, the EPROM contents can be copied 
to DRAM memory. This technique is called shadowing. 

EM: EMulate processor extension. CRO bit 2. 

EPL: The Effective Privilege Level protects memory from being accessed by 
privilege levels that are lower than the descriptor privilege level. 

Glossary G-5 



Glossary 

G-6 

ES: The Extra Segment register is the destination of STOS, MOVS, REP 
STOS, and REP MOVS instructions. Special segment override prefix ES 
allows the use of this additional Segment register. 

expanded memory: Borrows addresses from reserved DOS memory to 
point to additional memory as a means of getting around the 1 MB DOS 
memory limit. 

extended memory: Used by software applications, such as Windows or 
OS/2, to get around the 1 MB DOS memory limit. 

far jump: A far jump is ajump whose destination is in another code segment. 

fast IDE: Fast IDE provides data transfer of 16-bit wide data at speeds of up 
to 13 MBps. 

flash memory: Flash memory cards are designed for program storage, can 
be used in floppy and solid-state applications, and are ideal for applica­
tions that require frequent updates. 

float: A condition during which all 3-state bidirectional and output terminals 
are placed in a high-impedance state to electrically isolate the micropro­
cessor from the system. 

flush: Flushing the cache invalidates the entire contents of the cache 
memory. 

footprint compatible: A device packaged to be compatible for installation 
in existing boards/systems. 

FPU: A Floating Point Unit is used to accelerate the computation of floating­
point arithmetic. If a PC does not have an FPU, the CPU emulates float­
ing-point instructions which takes more time to execute. 

FS: Additional Data Segment register. Special segment override prefix of FS 
allows the use of this additional Segment register. 

fully associative: Fully associative is the most flexible type of cache place­
ment policy. There is no single relationship between all of the addresses. 
The cache has to store the entire address of each block of words and 
compare its address with each of those in the cache until itfinds a match. 

G: Limit Granularity bit. Segment descriptor bit 23. 

GO: When set, the Global Disable bit denies access to the Debug register. 

GOT: The Global Descriptor Table is part of the selector mechanism and 
contains segment descriptors that are used when the TI bit in the Seg­
ment Selector register is set to zero. 



III 

D 

Glossary 

GOTR: The Global Descriptor Table register holds a 32-bit base address and 
16-bit limit for the global-descriptor table. 

graphic accelerators: Graphic accelerators have special circuitry which 
speeds up image processing. The CPU sends commands to the acceler­
ator which executes them rather than having the CPU manipulating and 
sending data to the adapters. Objects are drawn on the screen rather 
than being transferred pixel by pixel. This reduces the amount of data 
that is transferred across the processor bus. 

graphic adapter: A graphic adapter translates the instructions from the 
CPU into information that the PC monitor can understand. Graphic 
adapters before and including VGA rely on the CPU to perform opera­
tions that manipulate the display image. Advanced adapters, that handle 
more data, have circuitry to speed up image processing directly on the 
graphic adapter card. 

graphic coprocessor: A graphic coprocessor is fully programmable mak­
ing it more flexible than a graphic adapter. 

graphics mode: Graphics mode is a video mode that divides images into 
thousands of dots, or pixels, to create text and detailed images. 

GUI: Graphical Users Interface is a feature of some software applications 
that permits the user to interact with the computer by using icons and 
small graphics rather than by using text and commands. 

green PC: A green PC is an environmentally correct PC that reduces power 
consumption (currently by as much as 800/0 when compared to current 
models). This guideline resulted from the Environmental Protection 
Agency's Star program. 

GS: Additional Data Segment register. Special segment override prefix of 
GS allows the use of this additional Segment register. 

hard drive controller: See disk drive controller. 

hot insertion (or hot swapping): Plugging or unplugging PC cards without 
disrupting the host system's operation. Typical associated with PCMCIA. 

IDE: Integrated Device Electronics 

lOT: The Interrupt Descriptor Table is an array of up to 256 8-byte interrupt 
descriptors, each of which points to an interrupt service routine. 

IOTR: The Interrupt Descriptor Table register holds a 32-bit base address 
and 16-bit limit for the interrupt-descriptor table. 

IF: When the Interrupt Flag is set, maskable interrupts ( INTR input pin) are 
acknowledged and serviced by the CPU. 

Glossary G-7 



Glossary 

G-8 

index: An index is a reference or initial value. 

instruction: An instruction is a machine-language command to the CPU. 
The TI486SXL(C) instructions are described in detail in Chapter 7, 
Instruction Set. 

instruction set: The instruction set consists of machine-language instruc­
tions that the architecture of the TI486SXL(C) CPU can execute. 

integrated device electronics: The IDE interface is based on the ISA bus, 
using the set of registers and commands originally used by the IBM AT. 
This interface is the current favorite among most disk drive makers for 
hard disks because they are inexpensive and have a low command over­
head. Drives using IDE interfaces integrate the controller and drive in 
one, making them more efficient than older drives. Therefore IDE drives 
and controllers do not need to translate commands from your PC. IDE 
provides data transfer of 8-bit wide data at speeds of up to 5 MBps. Fast 
IDE provides data transfer of 16-bitwide data at speeds of upto 13 MBps. 

INTR: An Interrupt is a signal generated by external hardware that changes 
the normal sequential flow of a program by transferring program control 
to a selected service routine. 

10PL: The Input/Output Privilege Level indicates the maximum current privi­
lege level (CPL) permitted to execute liD instructions and indicates the 
maximum CPL allowing alteration of the IF bit. 

1/0: Input/Output 

1/0 bus (peripheral or system bus): The liD bus is used to communicate 
with the various liD or peripheral devices being used. Using this bus 
avoids loading down the time-critical local or processor bus with the I/O 
or peripheral devices. 

1/0 Controller: Most liD devices have a controller that acts as its supervisor 
and interfaces with the CPU. The controller can be either built into the 
system board or on a separate adapter that is plugged into the system 
bus. Some controllers have their own special-purpose processors and 
some even have their own memory. 

1/0 device interface: The liD device or peripheral interface is an essential 
part of any PC as it supports the communication between the CPU and 
the device or peripheral. 

1/0 mapped: The simplest architecture uses I/O mapped devices. liD de­
vices are mapped into the programmed liD address space. Address de­
coding is easier since fewer address lines must be decoded. 

KEN: When bit 3 of CCRO is true, the KEN# pin is enabled. 



II 

iii 

Glossary 

LOT: The Local Descriptor Table is part of the selector mechanism and con­
tains segment descriptors that are used when the TI bit in the Segment 
Selector register is set to one. 

LOTR: The Local Descriptor Table register holds a 16-bit selector for the lo­
cal-descriptor table. 

limit: A limit defines the maximum range. 

line: A line is the fixed unit of information transfer between cache and main 
memory. 

line size: Line size refers to the amount of information in a line and is defined 
as a number of bytes. Line size is one of the parameters that most strong­
ly affects cache performance as it represents the amount of data the 
cache must retrieve during each cache line replacement (every cache 
miss). 

linear address: In real mode, the offset address is added to the product of 
the segment register multiplied by sixteen to produce the linear address. 
This linear address is the physical address. 

In protected mode, the offset address is added to the base address to 
produce the linear address. If paging is disabled, the linear address is the 
physical address. If paging is enabled, the linear address is translated 
by the paging mechanism into the physical address. 

local bus: The local bus connects peripherals directly to the CPU and is de­
signed to transmit 32-bit data at the speed of a PC's processor. Two local 
bus standards are VESA-VL and PCI. 

locality: Locality refers to the fact that programs usually address memory 
in the neighborhood of recently accessed locations. 

LRU: The Least-Recently Used bit indicates which of the cache two-way 
sets was more recently accessed. 

math coprocessor: See FPU. 

MBps: Mega Bytes Per Second 

Mbps: Mega Bits Per Second 

memory mapped: I/O devices can be mapped into physical memory ad­
dresses. Even though more addresses must be decoded with this inter­
face, memory-mapped devices can be accessed using CPU instructions 
allowing for more efficient code. Memory mapping also offers more flexi­
bility in protection than I/O mapping through memory management since 
a device can be inaccessible/fully accessible or visible but protected. 
Very few peripherals use memory-mapped ports except for video cards. 

Glossary G-9 



Glossary 

m 

G-10 

MMAC: Main Memory Access. A memory access stores or retrieves data to 
or from main memory. 

modem: A modem translates (MODulates) computer signals into tones and 
translates (DEModulates) tones back into computer signals. 

monochrome: A video mode that uses only one color in varying intensities. 

MP: Monitor Processor extension bit. CRO bit 1 . 

multithreading: Multithreading is a software technique that allows an ap­
plication to split tasks into subtasks, or threads, for improved speed and 
efficiency. This feature is supported by Windows NT as a way of speed­
ing up Windows and reducing the chances of a system crash. 

NCO: Non-Cacheable O. NCO is bit 0 in the Configuration Control register o. 
When set, this bit sets the first 64K bytes at each 1 M-byte boundary as 
noncacheable. 

NC1: Non-Cacheable 1. NC1 is bit 1 in the Configuration Control register o. 
When set, this bit sets sets 640K-byte to 1 M-byte memory region as non­
cacheable. 

NC (Terminal designator): Make No external Connection. 

negated: Logically false, not true. 

NMI: The NonMaskable Interrupt is a rising-edge-sensitive input that, when 
asserted, causes the processor to suspend execution of the current 
instruction stream and begin execution of an NMI interrupt service rou­
tine. 

noncacheable memory: In noncacheable memory systems, all shared 
memory locations are considered noncacheable. Access too the shared 
memory is never copied to the cache, and the cache never receives stale 
data. 

nonprogrammer visible: Nonprogrammer visible pertains to the contents 
(data, address components, and current states) of registers and stored 
data that cannot be accessed, trapped, or retrieved. 

nonvolatile memory: A nonvolatile memory, like ROM and EPROM, is a 
memory in which the data content is maintained whether the power sup­
ply is connected or not. 

NT: The Nested Taskflag, while executing in protected mode, indicates that 
the execution of the current task is nested within another task. 

OA: Offset Address. The offset address is the result of an offset calculation. 
Base address, index address, scale factor, and displacement are the 
components used, in various combinations, to calculate the offset ad­
dress. 



Glossary 

OF: The Overflow Flag is set if the operation resulted in a carry or borrow into 
the sign bit of the result but did not result in a carry or borrow out of the 
high-order bit. It is also set if the operation resulted in a carry or borrow 
out of the high-order bit but did not result in a carry or borrow into the sign 
bit of the result. 

opcode: The physical implementation of an instruction in machine-readable 
code. 

os: An Operating System is a master control program that supervises the 
functions and components of a computer system. 

P: A Prefix bit in a prefix byte. 
or 
Present bit. Gate or segment descriptor bit 15. 

paging: Paging is a memory management technique that provides direct ac­
cess to small portions of stored data within a large segment of virtual 
memory space. Paging is very useful in minimizing the amount of physi­
cal space required to service active routines. 

parallel port: A parallel port is used mostly by the computer to send out data 
to be printed. A parallel port moves data in bytes (8-bits wide) or words 
(16-bits or 32-bits wide) depending on the application. 

parity bit: The eighth bit or extra bit that is used to help detect errors. 

PCO: The Page-level Cache Disable bit is located in Test register 7. This bit 
corresponds to the PCD bit of a page-table entry. 

PCI: The Peripheral Component Interconnect standard is a board-level 
local-bus implementation for high-end PC applications. PCI is a fully in­
dependent bus that requires a PCI bridge to establish communication 
with the CPU bus. PCI is fully independent from the CPU and the CPU 
timing and PCI can be used with non-X86 systems. PCI multiplexes ad­
dresses and data to reduce the number of required pins. Each card is 
uniquely identified by a special code allowing for autoconfiguration. 

PCMCIA: The Personal Computer Memory Card International Association 
peripheral bus standard provides a way for the portable computer user 
to expand the memory, storage, communication, and other capabilities 
that are common to the desktop PC user. There are several types of 
PCMCIA cards: DRAM, flash memory, hard-disk drives, LANs, and mo­
dems. The cards can be plugged into the expansion slot without opening 
the computer. 

POBR: The Page-Directory Base register is located in Control register 3. 
The register contains the 20-bit base address of the page directory. 

PE: Protected mode Enable bit. CRO bit O. 

peripheral bus: See I/O bus. 

Glossary G-11 



Glossary 

G-12 

peripherals: Peripherals are the external devices such as printers, fax 
machines, modems, and etc. 

peripheral interface: The I/O device or peripheral interface is an essential 
part of any PC since it supports the communication between the CPU 
and the peripherals. 

PF: The Parity Flag is set when the low-order 8 bits of the operation result 
contain an even number of ones. Otherwise it is cleared. 

PFO: The Page-Frame Offset is part of the paging mechanism. The physical 
page frame data is selected by the first 12 bits of the linear address. 

PG: PaGing enable bit. CRG bit 31. 

PGA: A Pin Grid Array package consists of substrates to hermetically en­
close the IC and an interconnection scheme that presents male leads ex­
tending from the bottom of the package. 

physical address: When paging is disabled the 32-bit linear address is the 
physical address. When paging is enabled it translates the linear ad­
dress into a physical address. The physical address appears on the pins 
of the CPU. 

pipelined addressing: Pipelined addressing allows bus cycles to be over­
lapped, increasing the amount of time available for the memory or I/O de­
vice to respond. The NA# input to the CPU controls address pipelining. 

pipelining: A series of suboperation stages, like fetching, decoding, execu­
tion, and address translation. Pipelining results in a continuous execu­
tion rate of one instruction per clock cycle. 

pixel: The smallest information building block of an on-screen image. On a 
color monitor, each pixel is made up of one or more triads. Resolution is 
usually expressed in the number of pixels making up the width and height 
of a complete on-screen image. 

PL: The Privilege Level implements a protection scheme. The values for 
privilege levels are 0 to 3. Level 0 is the most privileged and 3 the least 
privileged. 

PLL: Phase-Locked Loop. In the TI486SXL(C) microprocessor, a PLL is 
used to implement clock synchronization. 

posted write: In a write-through cache, read cycles are accelerated but 
write cycles are not. Through the use of a write buffer, write cycles can 
also be accelerated. The process of buffering or storing address and 
data in a write buffer is referred to as a posted write or buffered write. 

power management: A feature of some CPUs that shuts down parts of the 
computer not being used to save power. 



m 

Glossary 

PQFP: The Plastic Quad Flat Package consists of a metal substrate, IC, and 
interconnection scheme that presents leads extending from the four 
sides of the plastic encapsulated package. The leads are formed, using 
a double break, to create a planar foot on each lead that supports the 
package body above the seating plane. The thermally enhanced pack­
age includes a metal plate or slug near the mounting surface that en­
hances heat dissipation. 

prefix: Prefix bytes can be placed in front of an instruction to override seg­
ment defaults, change operand and/or address-size attributes, assert 
LOCK#, and repeat string instructions. 

privilege level: In the protected mode, privilege levels control the use of 
privileged instructions, I/O instructions, and access to segments and 
segment descriptors. 

programmer visible: Programmer visible pertains to the contents (data, 
address components, and current states) of registers and stored data 
that can be accessed, trapped, or retrieved. 

protected mode: The microprocessor is in protected mode when the PE bit 
of Control register 0 is set. In protected mode, the enhanced memory 
management capabilities, which include segmentation and paging, are 
available. Code has one of four privilege levels, with some processor 
instructions restricted to the most-privileged code. 

PTE: The Page Table Entry, selected from the page table by bits 21-12 of 
the linear address, contains the base address of the desired page frame. 

PTI: The Page Table Index acts as a 32-bit master index to up to 1 K individu­
al page frames. 

PWT: The Page-level cache Write Through bit in Test register 7 enables or 
disables this cache function. This register bit corresponds to the PWT bit 
of a page-table entry. 

QFP: A Quad Flat Package consists of a substrate, IC, and interconnection 
scheme encapsulated in plastic or enclosed with metal that presents 
leads extending from the four sides of the package. The leads are 
formed, using a double break, to create a planar foot on each lead that 
supports the package body above the seating plane. There is a metal 
and a plastic version of this package type. 

R: Opcode or register bit. 

RIW: Read/Write. 
or 
Readable/Writable or nonreadable/nonwritable bit. Segment descriptor 
bit 9. 

Glossary G-13 



Glossary 

G-14 

real memory: The memory that actually exists in the PC, or memory that is 
not borrowed from an external source. 

real mode: The TI486SXL(C) powers up or resets to real mode. In real 
mode, conditions are established that make the microprocessor back­
ward compatible with 8086/8088 microprocessors. No hardware protec­
tion is provided for segment access or use and there is no privileged 
code. 

RF: The Resume Flag is used in conjunction with Debug register break­
points. It is checked at instruction boundaries before breakpoint excep­
tion processing. If set, any debug fault is ignored on the next instruction. 

RISC: A Reduced Instruction Set Computerarchitecture is a type of comput­
er that executes instructions in one clock cycle by limiting the number of 
instructions that are available. 

ROM: A Read Only Memory is a permanent, unchangeable memory used 
in the PC to accomplish system startup. It stores the BIOS programs 
needed to perform diagnostics and instruct the computer in various op­
erations. When using DOS, the contents of the ROM are placed in re­
served memory. 

RPL: The Requested Privilege Level field. Segment Selector register bits 
1-0. 

scale factor: The Scale Factor is a factor (1, 2, 4, or 8) by which the index 
address is multiplied when the offset mechanism calculates the offset ad­
dress. 

SCSI: The Small Computer System Interface offers hard disk data transfer 
rates of up to 10 MBps. 

segmentation: Segmentation is a memory management technique that 
permits application-specific segmentation to improve the efficiency of 
memory space utilization. 

serial port: A serial port is a communication path based on a standard con­
vention of transmitting two-way asynchronous serial data. A serial port 
moves data one bit at a time and can be half duplex (one direction at a 
time) or full duplex (both directions simultaneously). 

serialization: Serialization takes byte-wide data as input and provides serial 
bits in a stream as output. 

set associativity: Set associative is a type of cache placement policy that 
has more than one set of direct mapped caches operating in parallel. For 
each cache index there are several block locations allowed. The block 
can be placed in and retrieved from any set. This type of cache performs 
more efficiently than a direct mapped cache, but it needs a wider tag field 
and additional logic to determine which set should receive the data. 



o 

Glossary 

SF: Scale Factor 

or 

The Sign Flag is set equal to the high-order bit of the operation result ( 0 
indicates positive, 1 indicates negative). 

shadowing: Shadowing is a technique used to improve system perfor­
mance by copying the contents of ROMs or EPROMs into DRAM to 
achieve faster access. 

s-i-b byte: This byte includes the Ss, Index, and Base fields 

SIMM: A Single In-Line Memory Module is a packaging technique for 
memory modules. 

SM4: System Management access region 4, sometimes called Address Re­
gion register 4. SMM memory space is defined by assigning address re­
gion 4 to SMM memory space. 

SMAC: In normal mode, SMADS# address strobes are generated instead 
of ADS# for System-management Memory Accesses. 

SMI: A System Management Interrupt causes the microprocessor to enter 
the system management mode that allows various subsystems of the 
computer to be powered down under certain conditions. The system­
management interrupt has a higher priority than any other interrupt, in­
cluding NMI. 

SMM: The System Management Mode is a power management feature that 
allows various subsystems of the computer to be powered down when 
not in use to conserve power. 

snooping: Snooping is a method used to maintain cache consistency. The 
cache controller monitors the bus lines to detect any shared locations 
that are written by another processor. When a common cache location 
is found, it is invalidated and cache consistency is maintained. 

SS: The Stack Segment register contains segment selectors that index into 
tables located in memory. These tables hold the base address for each 
segment as well as other information related to memory addressing. 

SRAM: A Static Random Access Memory is a high performance storage me­
dium that does not require refresh. 

SUS: The SUSpend bit in Configuration Control register 0 enables or dis­
ables the SUSP# and SUSPA# pins that control entry into the suspend 
mode. 

system bus: See liD bus. 

T: Opcode bit. 

Glossary G-15 



Glossary 

G-16 

T1: The first clock of a non-pipelined bus cycle. 

T1 P: The first clock of a pipelined bus cycle. 

T2: Subsequent clocks of a nonpipelined bus cycle. NA# has not been 
sampled asserted. 

T21: Subsequent clocks of a pipelined bus cycle. NA# has been sampled as­
serted. 

T2P: Subsequent clocks of a pipelined bus cycle. NA# has been sampled as­
serted. 

tag: A tag is a directory that records what data is currently being stored in 
a cache. 

TEP: The Thermally Enhanced Plastic package includes a metal plate or 
slug near the mounting surface that enhances heat dissipation. 

text mode: A video mode that divides the screen into character positions. 

TF: Once the Trap enable Flag is set, a single-step interrupt occurs after the 
next instruction completes execution. TF is cleared by the single-step in­
terrupt. 

Th: A hold acknowledge state. 

TI: Table Indicator bit. Segment Selector register bit 2. 

Ti: A bus Idle state. 

TLB: The Translation Look-Aside Buffer is an on-chip, four-way, set­
associative, 32-entry page-table cache. This buffer contains the most re­
cently accessed pages which reduces the average time required to make 
virtual memory references. 

TR: The Task register holds a 16-bit selector for the current task-state seg­
ment (TSS) table. The TR is loaded and stored using the LTR and STR 
instructions, respectively. 

TR3 through TR7: Test registers 3 through 7. 



System Buses 

ISA 1 to 4 MBps 

EISA 33 MBps 

MCA 32 MBps 

1m 

I!I 

Glossary 

transfer rate: Transfer rate is the rate at which data is moved from one com­
ponent to another and is usually measured in megabits per second 
(Mbps) or megabytes per second (MBps). Some examples follow. 

Local Buses Hard Disk Drives Networks 

32-Bit VESA-VL 132 MBps IDE 4 MBps Ethernet 10 Mbps 

PCI 132 MBps SCSI 5 MBps Token Ring 4 or 16 Mbps 

TS: Task Switched bit. CRO bit 3. 

TSR: The Task State registers are the TSRs that are saved and restored us­
ing the SVTS and RSTC instructions, respectively. 

TSS: During task switching, the processor saves the current CPU state in the 
Task State Segment table before starting a new task. 

type: Segment Type field. Gate or segment descriptor bits 11-8. 

U/S: The UserlSupervisorattribute is used in conjunction with the write/read 
attribute to implement protection atthe page level. When set (user), the 
page. is accessible at all privilege levels. When clear (supervisor), the 
page is accessible only when CPL :::; 2. 

VS6: Virtual8086 

VESA: The Video Equipment Standards Association VL-bus is a straight­
forward expansion of the 486 host bus, meaning that it uses the 486 data, 
address, and control signals directly. A few more lines are added to allow 
bus mastering and other functions. 

VGA: Video Graphics Array is the most popular color graphics system for 
IBM-compatible computers today. 

virtual-SOS6 mode: When the Virtual-8086 Mode flag is set in protected 
mode, the microprocessor switches to virtual-8086 operation, handling 
segment loads as the 8086 does. 

virtual memory: Virtual memory is similar to expanded memory in that it 
temporarily borrows space from an external memory source, such as 
hard disk, to simulate a large amount of memory. Up to 64 terabytes of 
virtual memory can be addressed in 386- and 486-based systems. 

VM: The Virtual-8086 Mode flag. 

volatile memory: A memory in which the data content is lost when the pow­
er supply is disconnected. 

Glossary G-17 



Glossary 

G-18 

VRAM: Video Random Access Memories have been used by designers of 
high-resolution graphics and imaging systems to enhance system per­
formance and display more colors at higher resolutions. 

wait state: The number of clock cycles the CPU has to wait for other opera­
tions to complete before continuing with its operations. 

way: Way is used to define the organization of a cache. A cache with a way 1 
and a way 2 is a 2-way cache. 

WP1, WP2, WP3: The Write Protected access regions 1 through 3 bits, lo­
cated in the Configuration Control register 1, define write protection and 
cacheability for 3 regions of memory space. The starting address and 
block size for each region is mapped in the Address Region registers 1 
through 3. 

WP: Write Protect bit. CRO bit 16. 

write-back: Write-back is an approach used to update the main memory. 
The CPU writes data into the cache and sets a dirty bit indicating that a 
word has been written into the cache but not into the main memory. The 
cache data is written back into the main memory at a later time and the 
dirty bit is cleared. Write-back accesses memory less than a write­
through cache, but its cache control logic is more complex. 

write protected: Write protected is an attribute applied to segments to en­
sure that the requestor privilege level is sufficient to perform a write to 
that segment. 

write-through cache: Write-through is an approach to update the main 
memory. The data is written to the main memory while it is is written to 
cache, or immediately afterwards. The main memory always contains 
valid data, and blocks in cache can be overwritten without data loss, and 
the hardware implementation remains relatively simple. 

ZF: The Zero Flag is set if the operation result is zero. Otherwise it is cleared. 



3.3-V operation 1-19 
3.3-V 15-V operation 1-19 

abort exceptions 2-45 
absolute maximum ratings 5-4 
ac characteristics. See timing 
accessing 

address space 2-9 
application register set 2-10 
configuration registers 2-9,2-26 
coprocessor liD 

Tl486SXL 4-4 
Tl486SXLC 3-4 

coprocessor liD ports 2-8 
data/liD during SMI service routine 2-54 
debug registers 2-31 
directory-table entry 2-42 
during protection 2-57 
gate descriptors 2-59 
global-descriptor-table register 2-19 
liD address space 2-9 
I/O privilege required 2-58 
local-descriptor-table register 2-19 
main memory 2-26 
main memory overlapping SMM 2-28 A-5 
memory address space 2-37 
numeric coprocessor liD. See accessing copro-

cessor liD 
page-table entry 2-42 
privilege requirements 2-57 
SMM 

defined space 2-28 
memory 2-28 
memory space 2-54 

stack-pointer register 2-11 
task register 2-23 

Index 

accumulator 
initial value 2-3 to 2-4 

additional-data-segment-selector registers 2-12 

address 
I/O space 2-9 
memory space 2-37 
offset mechanism 2-37 
real mode memory 2-37 
setting size 7-4 

address bit-20 masking 2-54 C-3 
TI486SXL 4-45 
TI486SXLC 3-38 

address bus description 
TI486SXL 4-4 
TI486SXLC 3-4 

address spaces 
coprocessor communication space 2-8 
liD address space 2-8 
memory address space 2-8, 2-37 
physical memory space 2-8, 2-39 
ranges 2-8, 2-26 

address-region registers 2-30 
initial value 2-3 to 2-4 

addressing 
data registers 2-11 
index and pointer registers 2-11 
main memory 

at the same address as SMM code A-9 
modes 2-38 
modes (memory) 2-38 
paging mechanism 2-40 
pOinter and index registers 2-11 
real mode 2-38 
segment and selector 2-39 
using nonpipelined bus cycles 

Tl486SXL 4-23 
Tl486SXLC 3-20 

Index-1 



Index 

addressing (continued) 
using pipelined bus cycles 

Tl486SXL 4-27 
Tl486SXLC 3-24 

while in virtual 8086 mode 2-60 

airflow measurement setup 
for thermal characteristics 6-20 

alignment-check enable 2-19 
flag 2-15 

altering SMM code limits 
in system-management mode A-34 

application register set 2-10 
flag word 2-14 
general-purpose registers 2-11 

data 2-11 
pointer and index registers 2-11 
segment registers and selectors 2-12 

instruction pointer 2-14 
overview 2-10 
pointer and index 2-11 
segment registers 2-12 
selector (segment) 2-12 

auxiliary-carry flag 2-15 

base register 2-11 

base register 
initial value 2-3 to 2-4 

base-pointer register 2-11 
initial value 2-3 to 2-4 

based addressing modes 2-38 

810S modifications 8-1 
differences of TI486xLC/E and TI486SXUC 8-2 
power-on and hard reset 8-3 
protected-mode to real-mode switching 8-3 
soft reset 8-4 
turning on and off the internal cache 8-4 

bit A20M masking C-3 

bit definitions 
configuration control registers 0 and 1 2-27 
control register 0 (eRO) 2-19 
debug registers DR6 and DR7 2-32 
directory and page table 2-42 
error codes 2-48 
flag register 2-14 
gate descriptors 2-23 
page table and directory 2-42 
segment descriptors 2-22 
test registers 

_ TR3 to TR5 2-36 
TR6 and TR7 2-34 

block diagra.m 
TI486SXL 1-10 
TI486SXLC 1-6 

Index-2 

block sizes 
address-region registers 2-30 

breakpoint address 
setting 2-31 

bus 
address 

Tl486SXL 4-4 
Tl486SXLC 3-4 

data 
Tl486SXL 4-6 
TI486SXLC 3-6 

nonpipelined states 
Tl486SXL 4-26 
Tl486SXLC 3-23 

operation 
Tl486SXL 4-22 
Tl486SXLC 3-19 

pipelined states 
TI486SXL 4-31 
Tl486SXLC 3-28 

state transitions 
Tl486SXL 4-33 
Tl486SXLC 3-30 

states 
Tl486SXL 4-23, 4-27 
Tl486SXLC 3-20, 3-24 

bus cycle 
definition 

Tl486SXL 4-16 
Tl486SXLC 3-13 

halt and shutdown 
Tl486SXL 4-39 
Tl486SXLC 3-33 

initiating and maintaining nonpipelined 
Tl486SXL 4-26 
Tl486SXLC 3-23 

initiating and maintaining pipelined 
Tl486SXL 4-31 
Tl486SXLC 3-28 

interrupt acknowledge 
Tl486SXL 4-37 
Tl486SXLC 3-31 

locked 
Tl486SXL 4-37 
Tl486SXLC 3-31 

nonpipelined addressing 
Tl486SXL 4-23 
Tl486SXLC 3-20 

pipelined addressing 
Tl486SXL 4-27 
Tl486SXLC 3-24 

types 
Tl486SXL 4-16, 4-22 
Tl486SXLC 3-13,3-19 

using bus-size input 
Tl486SXL 4-34 



bus operation and functional timing 
TI486SXL 4-22 
TI486SXLC 3-19 

byte enable outputs 
description 

Tl486SXL 4-5, 4-14 
Tl486SXLC 3-5 

generating A 1-AO 
Tl486SXL 4-14 

line definitions 
TI486SXL 4-13 

write duplication 
Tl486SXL 4-14 

cache 
example code 

for turning off 8-5 
for turning on 8-6 

fills 
Tl486SXL 4-42 
TI486SXLC 3-36 

flush enabling 2-27 
flushing C-4 

TI486SXL 4-44 
Tl486SXLC 3-37 

initialization 2-2 
invalidation C-4 
on chip 1-17 
test registers 2-35 

cacheability 
disabling 2-28 
enabling 2-28 

calculation 
effective address 2-37 
offset address 2-37 
protected-mode address 2-39 
real-mode address 2-38 

call gates 2-59 

carry flag 2-15 

clearing the VM bit A-42 

clock 
scaling sequence 

TI486SXL 4-17 
Tl486SXLC 3-14 

stopping the input 
Tl486SXL 4-53 
TI486SXLC 3-47 

synchronization 
Tl486SXL 4-20 
Tl486SXLC 3-17 

clock-count summary 
abbreviations 7 -13 
assumptions 7-13 

clock-doubled mode 1-18 
disabling 2-27 
enabling 2-27 
entering 

Tl486SXL 4-17 
Tl486SXLC 3-14 

using software control 
Tl486SXL 4-16 
Tl486SXLC 3-13 

code fetch 
first after reset 

Tl486SXL 4-21 
Tl486SXLC 3-18 

code-segment register 2-12 
initial value 2-3 to 2-4 

comparison 
of SMM features A-4 

configuration registers 2-26 
liD address 

locations 2-9 
space access 2-8 

configuration-control registers 2-26 
bit definitions 2-27 to 2-30 

configuration-control registers 
initial values 2-3 to 2-4 

control registers 2-18 
bit definitions 2-18 
machine status word (MSW) 2-18 
page-directory base register 2-18 
page-fault linear address 2-18 

coprocessor 
busy 

Tl486SXL 4-5 
Tl486SXLC 3-5 

communication space 2-8 
error 

Tl486SXL 4-6 
TI486SXLC 3-6 

liD access address lines 
Tl486SXL 4-4 
Tl486SXLC 3-4 

interface 
Tl486SXL 4-49 
TI486SXLC 3-42 

count register 2-11 

count register 
initial value 2-3 to 2-4 

CPU states related to system-management 
mode 2-55 

cross reference 
terminal assignments 

Index 

to 486SX, DX, DX4 (168-pin PGA) 6-12 

Index-3 



Index 

m 
d field 

for instructions 7-6 
data bus 

description 
T1486SXL 4-6 
T1486SXLC 3-6 

data registers 2-11 
initial values 2-3 to 2-4 

data-segment register 2-12 
initial value 2-3 to 2-4 

dc electrical characteristics 5-7, 5-12 
3.3-volt devices 5-9 

T1486SXLC- V25 5-9 
T1486SXL2-V50 5-11 
T1486SXL -V 40 5-10 

3.3-voltl5-volt-tolerant devices 5-7 
T1486SXL -G40 5-7 
T1486SXL2-G50 5-8 

5-volt devices 
T1486SXL2-050 5-15 
T1486SXL -040 5-14 
T1486SXLC2-050 5-13 
T1486SXLC-040 5-12 

debug breakpoint conditions 
setting 2-32 

debug registers 2-31 
initial value 2-3 to 2-4 

debugging 
SMI code using software A-36 
testing SMM code A-35 

decoupling 5-2 
default 

operand size 
real versus protected modes 2-5 

default segment override 7-4 
defining 

address region size 
T1486SXL 2-30 
T1486SXLC 2-29 

nancacheable block size 
T1486SXL 2-30 
T1486SXLC 2-29 

SMM memory region size 
T1486SXL 2-30 
T1486SXLC 2-29 

definitions 
bus cycle 

T1486SXL 4-16 
T1486SXLC 3-13 

configuration-control register 0 bits 2-27 
configuration-control register 1 bits 2-28 
control register 0 bits 2-19 
CRO-register bits 2-19 
debug register DR6 and DR7 bits 2-32 

Index-4 

definitions (continued) 
directory and page table register bits 2-42 
error code bits 2-48 
flags 2-15 
gate-descriptor register bits 2-23 
page table and directory register bits 2-42 
segment-descriptor register bits 2-22 
test register bits for TR3-TR5 2-36 
test register bits for TR6 and TR7 2-34 

description 
address bus 

T1486SXL 4-4 
T1486SXLC 3-4 

bus cycle 
T1486SXL 4-22 
T1486SXLC 3-19 

byte enable outputs 
T1486SXL 4-5, 4-14 
T1486SXLC 3-5 

data bus 
T1486SXL 4-6 
T1486SXLC 3-6 

descriptor type 
setting 2-22 

descriptor-table registers and descriptors 2-19 
global descriptor table register 2-20 
global-descriptor table 2-40 
interrupt description table register 2-20 
local-descriptor table 2-40 

design considerations C-2 
destination-index register 2-11 

initial value 2-3 to 2-4 
detection 

of a TI microprocessor A-26 
of SMM capable version A-28 

differences between 
TI486SXL(C) family and TI486SLC/DLC 

family 1-16 
TI486SXLC series and TI486SXL series 1-15 

direct addressing mode 2-38 
direction flag 2-15 
directory and page table entry 

bit definitions 2-42 
directory table 2-41 
disabling 

(ignore) A20M pin 2-27, C-3 
(ignore) SMI input 2-28 
(masking) alignment check 2-19 
cache 2-19 
cacheability 2-28 
clock doubled 2-27, 8-2 

using software 
TI486SXL 4-16 
TI486SXLC 3-13 

FLUSH# pin 2-27 
interrupts INTR 2-43 
KEN# pin 2-27 



main memory access MMAC A-9 

disabling (continued) 
maskable interrupts INTR 2-15 
paging 2-2 
protected mode (8086-class CPU) 2-19 
SMM pins 2-28 
suspend pins 2-27 
write protection 2-28 

displacement addressing modes 2-38 

OX support 0-5 

OX4 support 0-6 

EAX register 
value after self test 

Tl486SXL 4-21 
Tl486SXLC 3-18 

eee field 
for instructions 7 -11 

effective address 
calculation 2-37 
setting length 2-22 

EFLAGS register 2-14, 2-15 

electrical connections 
decoupling 5-2 
ground 5-2 
NC designated terminals 5-3 
power 5-2 
pullup/pulldown resistors 5-2 
unused inputs 5-3 

enabling 
A20M pin 2-27, C-3 
alignment check 2-19 
cache 2-19 
cache flush 2-27 
cacheability 2-28 
clock doubled 2-27, 8-2 

using software 
TI486SXL 4-16 
TI486SXLC 3-13 

FLUSH# pin 2-27 
interrupts INTR 2-43 
KEN# pin 2-27 
locked hardware signal 7-4 
main memory access MMAC A-9 
maskable interrupts 2-15 
paging 2-19 
protected mode 2-19 
segment default override 7-4 
SMI# pin 

Tl486SXL 2-30 
Tl486SXLC 2-29 

enabling (continued) 
SMM A-11 

memory space 2-28 
pins 2-28 

suspend pins 2-27 
system-management mode A-11 
write protection 2-28 

entering 
clock-doubled mode 

Tl486SXL 4-17 
Tl486SXLC 3-14 

float mode 
Tl486SXL 4-55 
Tl486SXLC 3-48 

hold-acknowledge state 
Tl486SXL 4-46 
Tl486SXLC 3-39 

virtual-8086 mode 2-61 

error 
coprocessor 

Tl486SXL 4-6 
Tl486SXLC 3-6 

error codes 2-48 
bit definitions 2-48 
format 2-48 

example 
altering SMM code limits A-34 
clearing VM bit 

after saving registers A-42 
code 

for turning cache off 8-5 
for turning cache on 8-6 

debugging SMI code A-36 
detection 

of a TI microprocessor A-26 
of SMM capable version A-28 

enabling SMM A-11 
enabling/disabling clock doubling 

Tl486SXL 4-16 
Tl486SXLC 3-13 

format of data used by SVOC/RSOC A-32 
loading SMM memory with SMI interrupt 

handler A-22 
SMI handler A-17 

exceptions 2-44 
abort 2-45 
fault 2-44 
invalid opcode 2-7 
priorities 2-47 
processing 2-43 
real mode 2-47 
trap 2-44 

exceptions and interrupts 2-43 

exceptions in real mode 2-47 

execution pipeline 1-17 

Index 

Index-5 



Index 

exiting 
clock-doubled mode 

T1486SXL 4-17 
T1486SXLC 3-14 

float mode 
T1486SXL 4-55 
T1486SXLC 3-48 

hold acknowledge state 
T1486SXL 4-46 
T1486SXLC 3-39 

SMI handler A-9 
virtual-8086 mode 2-61 

extra-segment-selector register 2-12 

extra-segment registers 
initial values 2-3 to 2-4 

fault exceptions 2-44 

field 
address displacement format 7-2 
base 7-9 
d 7-6 
eee 7-11 
flags 7-12 
immediate data format 7-2 
index 7-10 
mod 7-9 
mod rim 7-7 
mod rim format 7-2 
opcode 7-5 
opcode format 7-2 
prefix bytes 7 -4 
prefix format 7-2 
reg 7-6 
s-i-b format 7-2 
sreg2 7-10 
sreg3 7-11 
ss 7-10 
w 7-5 

fills, cache 
TI486SXL 4-42 
TI486SXLC 3-36 

first code fetch, after reset 
TI486SXL 4-21 
TI486SXLC 3-18 

flags 
abbreviations used in instruction set list 7 -12 
actions based on instruction 7 -12 
alignment check 2-15 
auxiliary carry 2-15,7-12 
carry 2-15, 7-12 
definitions 2-15 
direction 2-15,7-12 

Index-6 

flags (continued) 
1/0 privilege level 2-15 
interrupt enable 2-15, 7-12 
nested task 2-15 
overflow 2-15, 7-12 
parity 2-15,7-12 
resume 2-15 
sign 2-15,7-12 
trap enable 2-15, 7-12 
virtual 8086 mode 2-15 
zero 2-15,7-12 
flag-word register 2-14 
bit definitions 2-15 
initial value 2-3 to 2-4 

float 
TI486SXL 4-55 
TI486SXLC 3-48 

float delay 
TI486SXL 5-34 
TI486SXLC 5-31 

flow diagram 
system management and suspend 2-56 
system-management mode execution 2-51 

FLUSH# pin 
disabling 2-27 
enabling 2-27 

flushing 
cache 

T1486SXL 4-44 
T1486SXLC 3-37 

cache (internal) 2-27, C-4 
instruction-decode queue 2-59 
internal pipeline 2-2 
translation look-aside buffer 2-42 

format 
error codes 2-48 
for instructions 7-2 

format of data used by SVDC/RSDC instructions, in 
system-management mode A-32 

functional block diagram 
TI486SXL 1-1 0 
TI486SXLC 1-6 

functional timing 
entering and exiting float 

T1486SXL 4-55 
T1486SXLC 3-48 

fastest 
nonpipelined read cycles 

TI486SXL 4-23 
TI486SXLC 3-20 

pipelined read cycles 
TI486SXL 4-28 
TI486SXLC 3-25 

fastest transition to pipelined address following 
idle bus state 
T1486SXL 4-31 
T1486SXLC 3-28 



functional timing (continued) 
HALT-initiated suspend mode 

T14868XL 4-53 
T14868XLC 3-46 

liD trap 
T1486SXL 4-51 
T1486SXLC 3-44 

interrupt-acknowledge cycles 
T14868XL 4-38 
T14868XLC 3-32 

masking A20 using A20M during burst of bus 
cycles 
T14868XL 4-45 
T14868XLC 3-38 

nonpipeliined, cache fills using KEN#, 
TI486SXLC 3-36 

nonpipelined 
bus cycles using 8816# 

TI486SXL 4-35 
cache fills using KEN# 

TI486SXL 4-42 
cache fills using KEN# and 8816# 

TI486SXL 4-43 
halt cycle 

TI486SXL 4-40 
TI486SXLC 3-34 

read and write cycles 
TI486SXL 4-24 
TI486SXLC 3-21 

wait states 
TI486SXL 4-25 
TI486SXLC 3-22 

pipelined 
cache fills using KEN# 

TI486SXL 4-44 
TI486SXLC 3-37 

shutdown cycle 
TI486SXL 4-41 
TI486SXLC 3-35 

wait states 
TI486SXL 4-29 
TI486SXLC 3-26 

requesting hold 
from active nonpipelined bus 

TI486SXL 4-48 
TI486SXLC 3-41 

from active pipelined bus 
TI486SXL 4-49 
TI486SXLC 3-42 

from bus-idle state 
TI486SXL 4-47 
TI486SXLC 3-40 

SMI#pin 
T14868XL 4-50 
T14868XLC 3-43 

functional timing (continued) 
stopping CLK2 during suspend mode 

T14868XL 4-54 
T14868XLC 3-47 

SUSP#-initiated suspend mode 
T1486SXL 4-52 
T1486SXLC 3-45 

Index 

transitioning to pipelined address during burst of 
bus cycles 
T1486SXL 4-32 
T1486SXLC 3-29 

functional timing and bus operation 
TI486SXL 4-22 
TI486SXLC 3-19 

m 
gate descriptors 2-22 

bit definitions 2-23 
gates 2-59 

call 2-59 
interrupt 2-59 
task 2-59 
trap 2-59 

general cache invalidation C-4 
general-purpose registers 2-11 

data 2-11 
index and pointer 2-11 
pointer and index 2-11 

base pointer 2-11 
destination index 2-11 
source index 2-11 
stack pointer 2-11 

generating A 1-AO 
as a function of byte enables 

T1486SXL 4-14 

global-descriptor table 2-40 
register 2-20 

granularity 
setting limit 2-22 

ground electrical connections 5-2 

m 
halt bus cycles 

TI486SXL 4-39 
TI486SXLC 3-33 

halt and shutdown 2-57 
HALT-initiated suspend mode 

TI486SXL 4-53 
TI486SXLC 3-46 

Index-7 



Index 

hardware considerations 
address bit A20M C-3 
address strobes A-5 
cache invalidation C-4 
chipset REAOY#, A-5 
connecting terminals C-2 
modifications for 168-pin CPGA 0-1 
SMI# pin timing A-5 
SMM pins A-5 

header 
SMM memory space 2-50 

HLOA valid delay timing 
TI486SXL 5-34 
TI486SXLC 5-31 

hold acknowledge signal states 
TI486SXL 4-15 
TI486SXLC 3-12 

hold acknowledge state 
entering 

Tl486SXL 4-46 
Tl486SXLC 3-39 

exiting 
Tl486SXL 4-46 
Tl486SXLC 3-39 

requesting from idle bus 
Tl486SXL 4-46 
Tl486SXLC 3-39 

requesting from nonpipelined bus 
Tl486SXL 4-46 
Tl486SXLC 3-39 

requesting from pipelined bus 
Tl486SXL 4-46 
Tl486SXLC 3-39 

D 
I/O 

address space 2-8, 2-9 
configuration register access 2-8 

floating 
Tl486SXL 4-55 
Tl486SXLC 3-48 

privilege level flag 2-15 
privilege levels 2-58 
trapping 

Tl486SXL 4-51 
Tl486SXLC 3-44 

implementation 
system-management mode A-5 

index addressing modes 2-38 

index field 
for instructions 7 -10 

indirect addressing mode 2-38 

Index-8 

initial value 
accumulator 2-3 to 2-4 
address-region registers 2-3 to 2-4 
base register 2-3 to 2-4 
base-pointer register 2-3 to 2-4 
code-segment register 2-3 to 2-4 
configuration-control registers 2-3 to 2-4 
count register 2-3 to 2-4 
data register 2-3 to 2-4 
data-segment register 2-3 to 2-4 
debug register 2-3 to 2-4 
destination-index register 2-3 to 2-4 
extra-segment registers 2-3 to 2-4 
flag-word register 2-3 to 2-4 
instruction-pointer register 2-3 to 2-4 
interrupt-descriptor-table register 2-3 to 2-4 
machine-status-word register 2-3 to 2-4 
source-index register 2-3 to 2-4 
stack-pointer register 2-3 to 2-4 
stack-segment register 2-3 to 2-4 

initialization 2-2 
protected mode 2-59 

initiating 
protected mode 2-59 
self test 

TI486SXL 4-20 
Tl486SXLC 3-17 

suspend mode 
Tl486SXL 4-52 
Tl486SXLC 3-45 

initiating and maintaining nonpipelined bus cycles 
TI486SXL 4-26 
TI486SXLC 3-23 

initiating and maintaining pipelined bus cycles 
TI486SXL 4-31 
TI486SXLC 3-28 

initiating suspend mode 
TI486SXL 4-53 
TI486SXLC 3-46 

input clock, stopping 
TI486SXL 4-53 
TI486SXLC 3-47 

input/output signals 
TI486SXL 4-2 
TI486SXLC 3-2 

instruction 
locked hardware signal 7-4 
override segment default 7-4 
repeat following string 7-4 

instruction decode queue 2-59 

instruction format 7-2 



instruction set 
clock counts 7-13 
clock-count summary 7 -13 
encoding 7 -13 
flags 7-12 
flags affected 7 -13 
instruction fields 

d field 7-6 
eee field 7-11 
index field 7-10 
mod and base fields 7-9 
mod and rim field 7-7 
opcode field 7-5 
prefixes 7-4 
reg field 7-6 
sreg2 field 7-10 
sreg3 field 7-11 
ss field 7-10 
w field 7-5 

listing of all 7 -14 to 7-33 
lock prefix 2-7 
names of instructions 7 -13 
overview 2-6 
system-management mode 2-52, A-13 
types of operations 2-6 

instruction summary 
system-management mode A-12 

instruction types 2-7, 7-2 

instruction-pointer register 2-14 
initial value 2-3 to 2-4 

internal clock synchronization 
TI486SXL 4-20 
TI486SXLC 3-17 

interrupt acknowledge bus cycles 
TI486SXL 4-37 
TI486SXLC 3-31 

interrupt gates 2-59 

interrupt handling 
virtual-8086 mode 2-60 

interrupt vectors 2-45 
assignments 2-46 
interrupt-descriptor table 2-45 

interrupt-enable flag 2-15 

interrupt-descriptor-table register 
initial value 2-3 to 2-4 

interrupts 
descriptor table register 2-20 
gate descriptors 2-23 
maskable 2-43 
non maskable 2-43 
system management 

Tl486SXL 4-50 
Tl486SXLC 3-43 

interrupts and exceptions 2-43 
priorities 2-46 

intersegment transfers 2-59 

invalid-opcode exception 2-7 

invalidation 
cache C-4 

KEN# pin 
disabling 2-27 
enabling 2-27 

I!I 
leaving virtual-8086 mode 2-61 

list, instruction set 7-14 to 7-33 

loading SMM memory from main memory 
system-management mode A-22 

local-descriptor table 2-40 
register 2-20 

lock hardware signal 
setting 7-4 

lock prefix 2-7, 7-4 

locked bus cycles 
TI486SXL 4-37 
TI486SXLC 3-31 

logic symbol 
TI486SXL 1-11 to 1-12 
TI486SXLC 1-7 

machine-status-word register 
control register 0 2-18 
initial value 2-3 to 2-4 

maskable interrupts 2-43 
enabling 2-15 

masking 
See also disabling 
alignment check 2-19 
bit A20M address C-3 
interrupts INTR 2-43 

measurement points for ac characteris­
tics 5-16 to 5-19, 5-29 to 5-34 

memory address space 2-8 
offset mechanism 2-37 
real-mode memory addressing 2-38 
system-management mode 2-54 

memory addressing 2-8, 2-37 
during virtual-8086 mode 2-60 

memory space header 
SMM 2-50 
system-management mode 2-52 

mixed 3.3-V/5-Voperation 1-19 

Index 

Index-9 



Index 

mixed systems 
3-V systems 0-9 
3-V 15-V systems 0-10 
using TI486SXL 0-9 

mod and base fields 
for instructions 7-9 

mod and rim field 
for instructions 7-7 

mode 
3.3-Voperation 1-19 
clock doubled 1-18 
entering clock doubled 

Tl486SXL 4-17 
Tl486SXLC 3-14 

halt 2-57 
I/O float 

Tl486SXL 4-55 
Tl486SXLC 3-48 

memory addressing 2-38 
mixed 3.3-V/5-V operation 1-19 
power management 1-18 

Tl486SXL 4-18 
TI486SXLC 3-15 

protected 2-12 
protection 2-57 
real 2-12 
real versus protected 2-5 
segment registers 2-12 
shutdown 2-57 
static operations 1-18 
stopping the input clock 

Tl486SXL 4-53 
TI486SXLC 3-47 

suspend 1-18 
Tl486SXL 4-52, 4-53 

See a/so suspend request 
Tl486SXLC 3-45, 3-46 

See a/so suspend request 
system management 1-18, 2-49 

Tl486SXL 4-50 
TI486SXLC 3-43 

virtual 8086 2-60 

m 
NC designated terminals 5-3 

nested-task flag 2-15 

non maskable interrupts 2-43 

noncacheable boundaries, setting 2-27 

nonpipelined 
addressing bus cycles 

Tl486SXL 4-23 
Tl486SXLC 3-20 

bus cycles using bus size input 
Tl486SXL 4-34 

Index-10 

nonpipelined (continued) 
bus states 

Tl486SXL 4-23 
Tl486SXLC 3-20 

halt cycle 
Tl486SXL 4-39 
Tl486SXLC 3-33 

read and write cycles 
Tl486SXL 4-24 
Tl486SXLC 3-21 

wait states 
Tl486SXL 4-25 
Tl486SXLC 3-22 

numeric coprocessor. See coprocessor 

OEM modifications for 168-pin CPGA 0-1 
chipset support 0-11 

offset 
address calculation 2-37 
mechanism 2-37 

on-chip cache 1-17 
opcode field 

for instructions 7-5 
operands 

default size 
real versus protected modes 2-5 

length and location 2-6 
overview 2-6 
setting length 2-22 
setting size 7-4 
types 2-6 

operations 
system-management mode 2-50 

ordering information 
part number components F-1 

overflow flag 2-15 
override 

segment default 7-4 
overview 

system-management mode 1-18, A-2 
TI486SXL series 1-9 
TI486SXLC series 1-5 

package dimensions 
TI486SXL 132-pin PGA 6-14 
TI486SXL 168-pin PGA 6-17 
TI486SXL ceramic QFP 6-16 
TI486SXL plastic QFP 6-15 
TI486SXLC plastic QFP 6-13 

page frame 2-41 
page table 2-41 



page-directory base register 
control register 3 2-1 8 

page-fault linear address 
control register 2 2-18 

paging initialization 2-2 

paging mechanism 
directory table 2-41 
page frame 2-41 
page table 2-41 

parameter definitions 
for thermal characteristics 6-20 

parity flag 2-15 

part numbers offered 
TI486DLC F-3 
TI486SLC F-3 
TI486SXL F-2 
TI486SXLC F-2 

physical memory space 2-8 
real mode versus protected mode 2-5 

pin assignments 
TI486SXL 

132-pin PGA 6-6 
144-pin QFP 6-8 
168-pin PGA 6-11 
cross reference to 486SX, OX,OX4 6-12 

TI486SXLC 6-3 

pin functions 
TI486SXL 4-4 to 4-11 
TI486SXLC 3-4 to 3-11 

pipeline 
for execution 1-17 
initialization 2-2 

pipelined 
addressing bus cycles 

Tl486SXL 4-27 
Tl486SXLC 3-24 

bus cycles using bus size input 
Tl486SXL 4-35 

bus states 
Tl486SXL 4-27 
Tl486SXLC 3-24 

read and write cycles 
Tl486SXL 4-28 
Tl486SXLC 3-25 

shutdown 
Tl486SXL 4-41 
Tl486SXLC 3-35 

wait states 
Tl486SXL 4-29 
Tl486SXLC 3-26 

pointer and index registers 2-11 

power electrical connections 5-2 

power management 1-18 
features 

system-management mode A-3 
TI486SXL 4-18, 4-52 
TI486SXLC 3-15, 3-45 

power-on and hard reset 
810S modifications 8-3 

prefix lock 2-7 
prefixes 

for instruction set 7-4 
priorities 

interrupts and exceptions 2-46 
privilege levels 2-57 

1/0 2-58 
real versus protected mode 2-5 
transfer 2-58 

intersegment 2-59 
task switches 2-59 

privilege-level flag 2-14 
1/0 2-15 

processor initialization 2-2 

protected mode 2-57 
address calculation 2-39 
initialization and transition 2-59 
to real-mode switching 

810S modifications 8-3 
protected mode versus real mode 2-5 

protection 
during virtual-8086 mode 2-60 
gates 2-59 
initialization 2-59 

pullup/pulldown resistors 5-2 

Ii] 
ranges 

address space 2-8 
read and write cycles 

nonpipelined 
Tl486SXL 4-24 
Tl486SXLC 3-21 

pipelined 
Tl486SXL 4-28 
Tl486SXLC 3-25 

real mode 
address calculation 2-38 
exceptions 2-47 
memory addressing 2-38 

real mode versus protected mode 2-5 
recommended operating conditions 5-5 

3.3-volt devices 5-6 

Index 

3.3-voltl5-volt-tolerant TI486SXL-G devices 5-5 
5-volt devices 5-6 

reducing the clock frequency 
system-management mode A-3 

Index-11 



Index 

reg field 
for instructions 7-6 

registers 
accumulator 2-11 

initial value 2-3 to 2-4 
additional data segment 2-12 
address region 2-29 to 2-30 

initial value 2-3 to 2-4 
base 2-11 

initial value 2-3 to 2-4 
base pointer 2-11 

initial value 2-3 to 2-4 
code segment 2-12 

initial value 2-3 to 2-4 
configuration control 2-26 

initial value 2-3 to 2-4 
count 2-11 

initial value 2-3 to 2-4 
data 2-11 

initial value 2-3 to 2-4 
data segment 2-12 

initial value 2-3 to 2-4 
debug 2-31 

initial value 2-3 to 2-4 
destination index 2-11 

initial value 2-3 to 2-4 
EFLAGS 2-14 
extra segment 2-12 

initial value 2-3 to 2-4 
flag word 2-14 

initial value 2-3 to 2-4 
general purpose 2-11 

data registers 2-11 
pointer and index 2-11 

instruction pointer 2-14 
initial value 2-3 to 2-4 

interrupt-descriptor table 2-20 
initial value 2-3 to 2-4 

machine-status word 2-14 
initial value 2-3 to 2-4 

segment selector 2-13 
additional data 2-12 
code 2-12 
data 2-12 
extra segment 2-12 
selection rules 2-13 
stack 2-12 

source index 2-11 
initial value 2-3 to 2-4 

stack pointer 2-11 
initial value 2-3 to 2-4 

stack segment 2-12 
initial value 2-3 to 2-4 

Index-12 

register sets 
application registers 2-7 
overview 2-7 
system registers 2-16 

repeat string instruction 7-4 
reset 

processor initialization 2-2 
signal states 

TI486SXL 4-15 
TI486SXLC 3-12 

soft 8-4 
timing 

T1486SXL 4-20 
T1486SXLC 3-17 

RESET setup and hold timing 5-29 
restore 

LDTR and descriptor 
system-management mode A-13 

register and descriptor 
system-management mode A-13 

TSR and descriptor 
system-management mode A-13 

resume 
flag 2-15 
from suspend 

T1486SXL 4-18 
T1486SXLC 3-15 

normal mode 
from system-management mode A-13 

revision ID 2-3 to 2-4 

save 
LDTR and descriptor 

system-management mode A-13 
register and descriptor 

system-management mode A-13 
TSR and descriptor 

system-management mode A-13 
scaled addressing modes 2-38 
scaling clock 3-14, 4-17 
segment 

descriptor register 
bit definitions 2-22 

descriptors 
system and application 2-21 

register selection rules 2-13 
setting limit 2-22 
size 2-5 

segment default, override 7-4 
segment registers, types 2-12 
selector mechanism 2-39 



self test 
clock-cycle count 2-2 
EAX register after completion 

Tl486SXL 4-21 
Tl486SXLC 3-18 

initiating 
Tl486SXL 4-20 
Tl486SXLC 3-17 

sequence, clock scaling 
TI486SXL 4-17 
TI486SXLC 3-14 

setting 
address region size 

Tl486SXL 2-30 
Tl486SXLC 2-29 

address size 7-4 
breakpoint address 2-31 
debug breakpoint conditions 2-32 
descriptor type 2-22 
granularity 2-22 
length of effective addresses 2-22 

setting (continued) 
length of operands 2-22 
lock hardware signal 7-4 
noncacheable boundaries 2-27 
operand size 7-4 
segment limit 2-22 

setup and hold timing 
TI486SXL 5-32 
TI486SXLC 5-29 

shutdown, bus cycles 
TI486SXL 4-39 
TI486SXLC 3-33 

shutdown and halt 2-57 

sign flag 2-15 

signal states 
during reset and hold acknowledge 

TI486SXL 4-15 
Tl486SXLC 3-12 

during suspend mode 
Tl486SXL 4-19 
Tl486SXLC 3-16 

signal summary 
TI486SXL 4-3 
TI486SXLC 3-3 

size 
operanq default 

real versus protected modes 2-5 
segment 2-5 
setting address 7-4 
setting operand 7-4 

SMI service routine execution 2-54 

SMI handler 
example 

system-management mode A-17 
exiting A-9 

SMM 
feature comparison A-4 
pins 

disabling 2-28 
enabling 2-28 

soft reset 
810S modifications 8-4 

software 
debugging 8MI code A-36 

software considerations 
addressing SMM code A-9 
exiting the 8MI handler A-9 
memory space header (SMM) A-7 

software control for clock doubling 
TI486SXL 4-16 
TI486SXLC 3-13 

software only debugging of SMM code A-35 

source-index register 2-11 
initial value 2-3 to 2-4 

sreg2 field 
for instructions 7 -10 

sreg3 field 
for instructions 7 -11 

ss field 
for instructions 7 -10 

stack-pointer register 2-11 
initial value 2-3 to 2-4 

stack-segment-selector register 2-12 

stack-segment register 
initial value 2-3 to 2-4 

states 
bus 

Tl486SXL 4-23, 4-27 
Tl486SXLC 3-20, 3-24 

bus transitions 
Tl486SXL 4-33 
Tl486SXLC 3-30 

hold acknowledge 
Tl486SXL 4-46 
Tl486SXLC 3-39 

static operation 1-18 

stopping the input clock 
TI486SXL 4-53 
TI486SXLC 3-47 

SUSP-initiated suspend mode 
TI486SXL 4-52 
TI486SXLC 3-45 

suspend acknowledge 
TI486SXL 4-18 
TI4868XLC 3-15 

suspend mode 1-18 
during system-management mode 2-55 
HALT initiated 

Tl486SXL 4-53 
Tl486SXLC 3-46 

Index 

Index-13 



Index 

suspend mode (continued) 
initiating 

TJ486SXL 4-52, 4-53 
TJ486SXLC 3-45, 3-46 

signal states during 
TJ486SXL 4-19 
TJ486SXLC 3-16 

stopping the input clock 
TJ486SXL 4-53 
TJ486SXLC 3-47 

SUSP initiated 
TJ486SXL 4-52 
TJ486SXLC 3-45 

system-management mode A-3 
TJ486SXL 

See suspend request 
TJ486SXLC 

See suspend request 

suspend pins 
disabling 2-27 
enabling 2-27 

suspend request 
TI486SXL 4-18 
TI486SXLC 3-15 

SX support 0-2 

symbol 
TI486SXL 1-11 to 1-12 
TI486SXLC 1-7 

system management interrupt 
TI486SXL 4-50 
TI486SXLC 3-43 

system register set 2-16 
address-region registers 2-30 

block sizes 2-30 
cache-test registers 2-35 
configuration registers 2-26 

configuration-control register a 
bit definitions 2-27 

configuration-control register 1 
bit definitions 2-28 

control registers 
bit definitions 2-19 
CRO, CR2, CR3 2-18 

debug registers (OR7-0) 2-31 
descriptor-table registers, descriptors 2-19 
overview 2-16 
system-address registers 2-19 
task register 2-23 
test registers 2-33 

system-address registers 2-19 

system-management mode 
altering SMM code limits A-34 
CPU states 2-55 
detection 

of a TI microprocessor A-26 
of SMM capable version A-28 

enabling A-11 

Index-14 

system-management mode (continued) 
feature comparison A-4 
flow diagram 2-51 
format of data used by SVOC/RSOC instruc­

tions A-32 
implementation A-5 

software considerations. See 
instructions 2-52 
instruction summary A-12 

restore 
LDTR and descriptor A-13 
register and descriptor A-13 
TSR and descriptor A-13 

resume normal mode A-13 
save 

LDTR and descriptor A-13 
register and descriptor A-13 
TSR and descriptor A-13 

introduction 2-49 
loading SMM memory from main memory A-22 
memory space 2-54 
memory space header 2-51 , A-8 
operations 2-50 
overview 1-18, A-2 
power management features A-3 

reducing the clock frequency A-3 
suspend mode A-3 

programming guide 
altering SMM code limits A-34 
clearing the VM bit A-42 
detection 

of SMM capable version A-28 
of TI microprocessor A-26 

enabling SMM A-11 
format of data used by SVDC/RSDC instruc­

tions A-32 
hardware considerations A-5 

address strobes A-5 
chipset READY#, A-6 
SMI# pin timing A-5 
SMM pins A-5 

implementation A-2 
instruction summary A-12 
introduction A-2 
loading SMM memory from main 

memory A-22 
overview A-2 
reducing the clock frequency A-3 
SMI handler example A-17 
software considerations 

addressing SMM code A-9 
execution details A-9 
exiting the SMI handler A-9 
memory space header A-7 to A-8 

suspend mode A-3 
testing/debugging SMM code A-35 

SMI handler example A-17 
SMI service routing execution 2-54 



system-management mode (continued) 
suspend mode 2-55 
suspended-mode flow diagram 2-56 
testing/debugging SMM code A-35 
TI486SXL 4-50 
TI486SXLC 3-43 

D 
task gates 2-59 

descriptors 2-22 

task register 2-23 

task switches 2-59 

terminal assignments 
TI486SXL 

132-pin PGA 6-6 
144-pin QFP 6-8 
168-pin PGA 6-11 
168-pin cross reference to 486SX, OX, 

OX4 6-12 
TI486SXLC 6-3 

terminal functions 
TI486SXL 4-4 to 4-11 
TI486SXLC 3-4 to 3-11 

test registers 2-33 

testing/debugging SMM code 
system-management mode A-35 

thermal characteristics 6-18 
parameter definitions 6-20 

thermal management 
conclusions E-15 
airflow measurement setup 6-20 
current trends and theory of correction E-14 
guidelines E-14 
introduction 

junction temperature E-3 
power E-3 
thermal impedance E-3 

methodology for TI specifications E-11 
modes of heat transfer E-4 

airflow E-8 
integrated circuit thermal resistance E-5 
proximity of integrated circuit on board E-8 
PWB conductivity E-7 

thermal specifications of integrated circuit E-9 
definition of Q E-10 

timing 

measurement of ambient temperature E-10 
system dependence of junction-to and case-to 

ambient temperature E-9 

See also functional timing 
ac characteristics 5-19 

3.3-voltl5-volt-tolerant devices 5-20 
TI486SXL -G40 5-20 
T1486SXL2-G50 5-21 

timing (continued) 
ac characteristics (continued) 

3.3-volt devices 5-22 
T1486SXL2-V50 5-24 
T1486SXL-V40 5-23 
TI486SXLC-V25 5-22 

5-volt devices 5-25 
T1486SXL2-050 5-28 
T1486SXL-040 5-27 
T1486SXLC2-050 5-26 
T1486SXLC-040 5-25 

CLK2 measurement points 5-19 
clock synchronization 

Tl486SXL 4-20 
Tl486SXLC 3-17 

float delay 
Tl486SXL 5-34 
Tl486SXLC 5-31 

functional 
Tl486SXL 4-22 
Tl486SXLC 3-19 

HLDA valid delay timing 
Tl486SXL 5-34 
Tl486SXLC 5-31 

input signal setup and hold 
Tl486SXL 5-32 
Tl486SXLC 5-29 

Index 

measurement points 5-16 to 5-19, 5-29 to 5-34 
Tl486SXL 5-18 
Tl486SXLC 5-17 

output signal valid delay 
Tl486SXL 5-33 
Tl486SXLC 5-30 

reset 
Tl486SXL 4-20 
Tl486SXLC 3-17 

RESET setup and hold timing 5-29 
write cycle hold timing 

Tl486SXL 5-34 
Tl486SXLC 5-31 

write cycle valid delay timing 
Tl486SXL 5-33 
Tl486SXLC 5-30 

TLB-test registers 2-33 

transfer privilege levels 2-58 

transitions, bus states 
TI486SXL 4-33 
TI486SXLC 3-30 

translation look-aside buffer 2-42 

trap exceptions 2-44 

trap gates 2-59 

trap-enable flag 2-15 

trapping I/O 
TI486SXL 4-51 
TI486SXLC 3-44 

turning the internal cache on and off B-4 

Index-15 



Index 

type of bus cycle 
TI486SXL 4-16, 4-22 
TI486SXLC 3-13, 3-19 

m 
unused inputs 5-3 

valid delay timing 
TI486SXL 5-33 
TI486SXLC 5-30 

vector assignments for interrupts 2-46 

vectors 
interrupt-descriptor table 2-45 
interrupts 2-45 

virtual-8086 mode 2-60 
entering and leaving 2-61 
flag 2-15 
interrupt handling 2-60 
memory addressing 2-60 
protection 2-60 

VL bus 
cache snooping 0-7 
clock and clock skew 0-7 
10 settings 0-8 
support 0-7 

Index-16 

wfield 
for instructions 7-5 

wait states 
nonpipelined 

Tl486SXL 4-25 
Tl486SXLC 3-22 

pipelined 
Tl486SXL 4-29 
Tl486SXLC 3-26 

write and read cycles 
nonpipelined 

Tl486SXL 4-24 
Tl486SXLC 3-21 

pipelined 
Tl486SXL 4-28 
Tl486SXLC 3-25 

write cycle 
hold timing 

Tl486SXL 5-34 
Tl486SXLC 5-31 

valid delay timing 
TI486SXL 5-33 
Tl486SXLC 5-30 

write duplication 
as a function of byte enables TI486SXL 4-14 

write protection 
disabling 2-28 
enabling 2-28 

zero flag 2-15 





TI Worldwide 
Sales Offices 
ALABAMA: Huntsville: 4970 Corporate Drive, 
NW Suite 125H, Huntsville, AL 35805-6230, 
(205) 430-0114. 

ARIZONA: Phoenix: 2525 E. Camelback, 
Suite 500, Phoenix, AZ 85016, (602) 224-7800. 
CALIFORNIA: Irvine: 1920 Main Street, 
Suite 900, Irvine, CA 92714, (714) 660-1200; 
San Diego: 5625 Ruffin Road, Suite 100, 
San Diego, CA 92123, (619) 278-9600; 
San Jose: 2825 North First Street, Suite 200, 
San Jose, CA 95134, (408) 894-9000; 
Woodland Hills: 21550 Oxnard Street, Suite 700, 
Woodland Hills, CA 91367, (818) 704-8100. 
COLORADO: Aurora: 1400 S. Potomac Street, 
Suite 101, Aurora, CO 80012, (303) 368-8000. 
CONNECTICUT: Wallingford: 1062 Barnes 
Industrial Park Road, Suite 303, Wallingford, 
CT 06492, (203) 265-3807. 
FLORIDA: Orlando: 370 S. North Lake Boulevard, 
Suite 1008, Altamonte Springs, FL 32701 , 
(407) 260-2116; 
Fort Lauderdale: Hillsboro Center, Suite 110, 
600 W. Hillsboro Boulevard, Deerfield Beach, FL 
33441, (305) 425-7820; Tampa: 4803 George 
Road, Suite 390, Tampa, FL 33634-6234, 
(813) 882-0017. 
GEORGIA: Atlanta: 5515 Spalding Drive, 
Norcross, GA 30092-2560, (404) 662-7967. 
ILLINOIS: Arlington Heights: 515 West 
Algonquin, Arlington Heights, IL 60005, 
(708) 640-2925. 
INDIANA: Indianapolis: 550 Congressional Drive, 
Suite 100, Carmel, IN 46032, (317) 573-6400; 
Fort Wayne: 103 Airport North Office Park, 
Fort Wayne, IN 46825, (219) 489-3860. 
KANSAS: Kansas City: 7300 College Boulevard, 
Lighton Plaza, Suite 150, Overland Park, KS 
66210, (913) 451-4511. 
MARYLAND: Columbia: 8815 Centre Park Drive, 
Suite 100, Columbia, MD 21045, (410) 964-2003. 
MASSACHUSETTS: Boston: Bay Colony 
Corporate Center, 950 Winter Street, Suite 2800, 
Waltham, MA 02154, (617) 895-9100. 
MICHIGAN: Detroit: 33737 W. 12 Mile Road, 
Farmington Hills, M148331, (313) 553-1500. 
MINNESOTA: Minneapolis: 11000 W. 78th Street, 
Suite 100, Eden Prairie, MN 55344, 
(612) 828-9300. 
NEW JERSEY: Edison: 399 Thornall Street, 
Edison, NJ 08837-2236, (908) 906-0033. 
NEW MEXICO: Albuquerque: 3916 Juan Tabo 
Place NE, Suite 22, Albuquerque, NM 87111, 
(505) 345-2555. 
NEW YORK: East Syracuse: 5015 Campuswood 
Drive, East Syracuse, NY 13057, (315) 463-9291 ; 
Poughkeepsie: 300 Westage Business Center, 
Suite 250, Fishkill, NY 12524, (914) 897-2900; 
Long Island: 48 South Service Road, Suite 100, 
Melville, NY 11747, (516) 454-6601 ; 
Rochester: 2851 Clover Street, Pittsford, NY 
14534, (716) 385-6700. 
NORTH CAROLINA: Charlotte: 8 Woodlawn 
Green, Suite 100, Charlotte, NC 28217, 
(704) 522-5487; Raleigh: Highwoods Tower 1, 
3200 Beach Leaf Court, Suite 206, 
Raleigh, NC 27604, (919) 876-2725. 
OHIO: Cleveland: 23775 Commerce Park Road, 
Beachwood, OH 44122-5875, (216) 765-7528; 
Dayton: 4035 Colonel Glenn Highway, Suite 310, 
Beavercreek, OH 45431-1601, (513) 427-6200. 

©1994 Texas Instruments Incorporated 

OREGON: Portland: 6700 S.w. 105th Street, 
Suite 110, Beaverton, OR 97005, (503) 643-6758. 
PENNSYLVANIA: Philadelphia: 600 W. 
Germantown Pike, Suite 200, Plymouth Meeting, 
PA 19462, (215) 825-9500. 
PUERTO RICO: Hato Rey: 615 Mercantil Plaza 
Building, Suite 505, Hato Rey, PR 00919, 
(80!;}) 753-8700. 
TEXAS: Austin: 12501 Research Boulevard, 
Austin, TX 78759, (512) 250-6769; 
Dallas: 7839 Churchill Way, Dallas, TX 75251, 
(214) 917-1264; Houston: 9301 Southwest 
Freeway, Commerce Park, Suite 360, 
Houston, TX 77074, (713) 778-6592; 
Midland: FM 1788 & 1-20, Midland, TX 
79711-0448, (915) 561-7137. 
UTAH: Salt Lake City: 2180 South 1300 East, 
Suite 335, Salt Lake City, UT 54106, 
(801) 466-8973. 
WISCONSIN: Milwaukee: 20825 Swenson Drive, 
Suite 900, Waukesha WI 53186, (414) 798-1001. 
CANADA: Ottawa: 303 Moodie Drive, Suite 1200, 
Mallorn Centre, Nepean, Ontario, Canada 
KZH 9R4, (613) 726-3201; Toronto: 280 Centre 
Street East, Richmond Hill, Ontario, Canada 
L4C 1 B1, (416) 884-9181; Montreal: 9460 Trans 
Canada Highway, St. Laurent, Quebec, Canada 
H4S 1 R7, (514) 335-8392. 
MEXICO: Texas Instruments de Mexico S.A. de 
C.V., Xola 613, Modulo 1-2, Colina del Valle, 
03100 Mexico, D.F., 5-639-9740. 

AUSTRALIA (& NEW ZEALAND): Texas 
Instruments Australia Ltd., 6-10 Talavera Road, 
North Ryde (Sydney), New South Wales, 
Australia 2113,2-878-9000; 14th Floor, 380 Street, 
Kilda Road, Melbourne, Victoria, Australia 3000, 
3-696-1211. 
BELGIUM: Texas Instruments Belgium S.A.lN.V., 
Avenue Jules Bordetlaan 11, 1140 Brussels, 
Belgium, (02) 242 30 80. 
BRAZIL: Texas Instrumentos Electronicos do 
Brasil Ltda., Av. Eng. Luiz Carlos Berrini, 1461,11 
andar, 04571-903, Sao Paulo, SP, Brazil, 
11-535-5133. 
DENMARK: Texas Instruments AlS, Borupvang 
2D, 2750 Ballerup, Denmark, (44) 68 74 00. 
FINLAND: Texas Instruments OY, Tekniikantie 12, 
02150 Espoo, Finland, (0) 43 54 20 33. 
FRANCE: Texas Instruments France, 8-10 
Avenue Morane-Saulnier, B.P. 67, 78141 Velizy­
Villacoublay Cedex, France, (1) 30 701001. 
GERMANY: Texas Instruments Deutschland 
GmbH., Haggertystra~e 1, 85356 Freising, 
Germany, (08161) 80-0; Kirchhorster Stra~e 2, 
30659 Hannover, Germany, (0511) 904960; 
Maybachstra~e II, 73760 Ostfildern, Germany, 
(0711) 34 03 o. 
HONG KONG: Texas Instruments Hong Kong Ltd., 
8th Floor, World Shipping Centre, 7 Canton Road, 
Kowloon, Hong Kong, 737-0338. 
HUNGARY: Texas Instruments Representation, 
Budaorsi u.50, 3rd floor, 1112 Budapest, 
Hungary, (1) 269 8310. 
INDIA: Texas Instruments India Private Ltd., 
AL-Aabeeb, 150/1 Infantry Road, Bangalore 
560001, India, (91-80) 226-9007. 
IRELAND: Texas Instruments Ireland Ltd., 
7/8 Harcourt Street, Dublin 2, Ireland, 
(01) 475 52 33. 
ITALY: Texas Instruments Italia S.p.A., Centro 
Direzionale Colleoni, Palazzo Perseo-Via 
Paracelso 12,20041 Agrate Brianza (Mi), Italy, 
(039) 63221; Via Castello della Magliana, 38, 
00148 Roma, Italy (06) 657 26 51. 

~TEXAS 
INSTRUMENTS 

JAPAN: Texas Instruments Japan Ltd., Aoyama 
Fuji Building 3-6-12 Kita-Aoyama Minato-ku, Tokyo, 
Japan 107,03-498-12111; MS Shibaura 
Building 9F, 4-13-23 Shibaura, Minato-ku, Tokyo, 
Japan 108,03-769-8700; Nissho-Iwai Building 5F, 
2-5-8 Imabashi, Chuou-ku, Osaka, Japan 541, 
06-204-1881; Dai-ni Toyota Building Nishi-kan 7F, 
4-10-27 Meieki, Nakamura-ku, Nagoya, Japan 450, 
052-583-8691; Kanazawa Oyama-cho Daiichi 
Seimei Building 6F, 3-10 Oyama-cho, 
Kanazawa-shi, Ishikawa, Japan 920, 
0762-23-5471; Matsumoto Showa Building 6F, 
1-2-11 Fukashi, Matsumoto-shi, Nagano, Japan 
390, 0263-33-1060; Daiichi Olympic Tachikawa 
Building 6F, 1-25-12, Akebono-cho, Tachikawa-shi, 
Tokyo, Japan 190,0425-27-6760; Yokohama 
Business Park East Tower 1 OF, 134 Goudo-cho, 
Hodogaya-ku, Yokohama-shi, Kanagawa, Japan 
240,045-338-1220; Nihon Seimei Kyoto Yasaka 
Building 5F, 843-2, Higashi Shiokohji-cho, 
Higashi-iru, Nishinotoh-in, Shiokohji-dori, 
Shimogyo-ku, Kyoto, Japan 600, 075-341-7713; 
Sumitomo Seimei Kumagaya Building 8F, 2-44 
Yayoi, Kumagaya-shi, Saitama, Japan 360, 
0485-22-2440; 4262, Aza Takao, Oaza Kawasaki, 
Hiji-Machi, Hayami-Gun, Oita, Japan 879-15, 
0977-73-1557. 
KOREA: Texas Instruments Korea Ltd., 28th Floor, 
Trade Tower, 159-1, Samsung-Dong, Kangnam-ku 
Seoul, Korea, 2-551-2800. 
MALAYSIA: Texas Instruments, Malaysia, SDN. 
BHD., Lot 36.1 #Box 93, Menara Maybank, 
100 Jalan Tun Perak, 50050 Kuala Lumpur, 
Malaysia, 50-3-230-6001. 
NORWAY: Texas Instruments Norge AlS, P.B. 106, 
Brin Sveien 3, 0513 Oslo 5, Norway, 
(02) 264 75 70. 
PEOPLE'S REPUBLIC OF CHINA: Texas 
Instruments China Inc., Beijing Representative 
Office, 7-05 CITIC Building, 19 Jianguomenwai 
Dajie, Beijing, China, 500-2255, Ext. 3750. 
PHILIPPINES: Texas Instruments Asia Ltd., 
Philippines Branch, 14th Floor, Ba-Lepanto Building, 
8747 Paseo de Roxas, 1226 Makati, Metro Manila, 
Philippines, 2-817-6031. 
PORTUGAL: Texas Instruments Equipamento 
Electronico (Portugal) LDA., Eng. Frederico Ulricho, 
2650 Moreira Da Maia, 4470 Maia, Portugal 
(2) 948 10 03. 
SINGAPORE (& INDONESIA, THAILAND): Texas 
Instruments Singapore (PTE) Ltd., 
990 Bendemeer Road, Singapore 1233, 
(65) 390-7100. 
SPAIN: Texas Instruments Espana S.A., 
clGobelas 43,28023, Madrid, Spain, (1) 372 80 51; 
Parc Technologic Del Valles, 08290 Cerdanyola, 
Barcelona, Spain, (3) 31 791 80. 
SWEDEN: Texas Instruments International Trade 
Corporation (Sverigefilialen), Box 30, 164 93, 
Isafjordsgatan 7, Kista, Sweden, (08) 752 58 00. 
SWITZERLAND: Texas Instruments Switzerland 
AG, Riedstrasse 6, CH-8953 Dietikon, Switzerland, 
(01)7442811. 
TAIWAN: Texas Instruments Taiwan Limited, 
Taipei Branch, 23th Floor, Sec. 2, Tun Hua S. 
Road, Taipei 106, Taiwan, Republic of China, 
(2) 378-6800. 
UNITED KINGDOM: Texas Instruments Ltd., 
Manton Lane, Bedford, England, MK41 7PA, 
(0234) 270111. 

A0294 

Printed in U.S.A. 



• TEXAS 
INSTRUMENTS 

lUlU l ;"' i IT' 

TI486SXLC and TI486SXL 
Microprocessors Reference Guide 

, .. I.U. ; .... \ 
; iii I .. Ii 

it ... n 
Addendum 

It L. Ll 
r i "j i ;' . . 

;::z :os 
~hY~~~~~_~y.y .... ", __ .. ...,~. 

This addendum to the TI486SXLC and TI486SXL Microprocessors Reference 
Guide (SRZU006D) provides updated information for the electrical, mechani­
cal, and thermal specifications and ordering information of subject micropro­
cessors. Power supply requirements of the 486-compatible microprocessors 
offered are shown in Table A-1. 

Table A-1. Application Classifications 

Dash 
Family Number Supply Voltages Application 

Vee = 5 V 5-V systems TI486SXL(C)2 -oxxt 
TI486SXL( C)2 -GXX Vee = 3.3, 5-volt-tolerant inputs for 

VeC(5) = 3.3 V to 5 V mixed 3-V/5-V systems 

TI486SXL(C)2 -VXX Vce= 3.3 V 3-V systems 

Note: 2 indicates clock-doubled versions. Single-clock versions are also offered (Le., SXL-040). 
XX = Frequency of operation (25, 40, or 50 MHz) 

A complete listing of the microprocessors offered is shown in Table F-1 on ad­
dendum page 24. 

A chapter-by-chapter synopsis of the changes follows. 

Chapter 5 Electrical Specifications 

Locations of the updated data in Chapter 5 are referenced by paragraph num­
ber and subject. 

5.3 Recommended Operating Conditions 

The TI486SXL( C) 5-V microprocessors are intended for use in environments 
where the maximum case temperature is below 100°C for the 100-pin and 
144-pin quad flat packages (QFPs), 85°C for the 132-pin and 168-pin ceramic 
pin grid arrays (CPGAs), and 75°C for the 144-and 168-pin TI486SXL2-G66. 
Achieving this case temperature may require a heat sink fin and/or appropriate 
airflow. For updated data see Section 6.3, Thermal Characteristics, starting on 
page 20 of this addendum. 

Tables 5-4 through 5-6, showing the recommended operating conditions, 
supersede the corresponding tables in the TI486SXLC and Tl486SXL Micro­
processors Reference Guide. Changes are indicated by revision bars on the 
left. 

SRZU017 (For use with SRZU006D) 

Addendum-1 



Addendum 
:: :=. ,c .• ;:m,mu I .... ;:: ::.:.:::U.a.: .•... unm, .... : ... 5 .. Q U .::.:.::m'-'=.~:Q!:.:.:::: ... : UU·:.:.:RR.~:. 

5.4.1 3.3-Volt Microprocessors With S-Volt-Tolerant Inputs 

DC electrical characteristics for three new 5-V-tolerant input, 3.3-V micropro­
:Cessors, the TI496SXL2-G66, . TI486SXLC-G40, and TI486SXLC2-G50, 
have been added with new Tables 5-8A, 5-88, and 5-8C. Revision bars are 
omitted as all the material is new. 

5.5 AC Characteristics 

The TI486SXL(C) ac specifications have been updated and are included in 
Tables 5-17 through 5-25. These tables supersede the corresponding tables 
in the TI486SXLC and TI486SXL Microprocessor Reference Guide. Revision 
bars are omitted as most of the setup, hold, and delay times have changed. 

AC specifications for the added 5-V-tolerant input, 3.3-V devices, 
TI496SXL2-G66, TI486SXLC-G40, and TI486SXLC2-G50, have been add­
ed with new Tables 5-18A, 5-188, and 5-18C. 

Chapter 6 Mechanical Specifications 

Locations of the updated data in Chapter 6 are referenced by paragraph num­
ber and subject. 

6.3 Thermal Characteristics 

The TI486SXL(C) family thermal characteristics are included in Tables 6-10 
through 6-14. These tables contain the same data as the corresponding 
tables in the TI486SXLC and Tl486SXL Microprocessors Reference Guide. 
They are presented here for your convenience. 

A new Table 6-10A has been a~ded to provide thermal data for the 100-pin 
ceramic quad flat package (CQFP). Revision bars are omitted as all the mate­
rial is new. 

Appendix F Ordering Information 

Locations of the updated data in Appendix Fare refe'renced by paragraph 
number and subject. 

F.2 Part Numbers for Microprocessors Offered 

Addendum-2 

Table F-1 has been updated to show the availability of the TI486SXLC in the 
small-form-factor, 100-pin CQFP. The new offering includes a 40-MHz or 
40/20-MHz version and a 50-MHz clock-doubled version. Also added is the 
availability of the TI486SXL2-G66. A complete listing of the microprocessors 
offered is shown in Table F-1 on addendum page 24. The added microproces­
sors are indicated by a revision bar· on the left side of the table. 



Recommended Operating Conditions 
_______ ........ _ ......... __ ........ _____ :::::~_::::_:::: ___ :~: ""::::_::':_:.'_:~ W ... ,.;.:.»»»"H ... ..: .. N»" ...... H ... hW,.;.Y ... hY ...... ...:«««-»»~:-:«««*' ...... ..: .. h»»~h:*»»:O;'»» 

5.3 Recommended Operating Conditions 

Recommended operating conditions provide specific values for power supply 
and input voltages, required input threshold ranges, output drive currents 
available for system interfacing, and operating levels for clamp currents and 
case temperature. 

5.3.1 3.3-Volt Microprocessors With 5-Volt-Tolerant Inputs 

Table 5-4 presents the recommended ope'rating conditions for the 
I TI486SXL-G 3.3-V microprocessors with 5-V-tolerant inputs. 

During power up and power down conditions, the 3.3-V Vee terminals and the 
5-V VeC(5) terminal should be ramped simultaneously because the 3.3-V Vee 
voltage should not exceed the 5-V VeC(5) voltage by more than 1 V or the de­
vice may not initialize correctly. Conversely, the 5-V V Ce(5) can exceed the 
3.3-V Vce by up to 2.25 V. 

Table 5-4. TI486SXL-G Recommended Operating Conditions 

Min Max Unit 

VCC Supply voltage With respect to V SS See Note 1 3 3.6 V 

VCC 
Supply voltage 

With respect to VSS, See Note 1 3.2 3.6 V TI486SXL2-G66 (only) 

VCC(5) Supply voltage With respect to V SS, See Note 2 3 5.25 V 

VIH High-level input voltage 2 VCC(5)+0.3 V 

VIL Low-level input voltage -0.3 0.6 V 

VIL(C) CLK2low-level input voltage -0.3 0.5 V 

VIH(C) CLK2 high-level input voltage VCC-0.3 VCC(5)+0.3 V 

IOH High -level output current VOH = VOHmin -2 mA 

IOL Low-level output current VOL=VOLmax 5 mA 

flock 
Phase -locked loop frequency 

With respect to CLK2 frequency 32 50 MHz lock range 

TI486SXLC in 1 OO-pin QFP a 85 

(T1486SXL in 168-pin PGA a 85 

TC Case temperature 
Power 

°C applied, TI486SXL in 144-pin QFP a 85 

TI486SXL2-G66 in 144-pin a 75 QFP or 168-pin PGA 

Notes: 1) V CC should be no more than 1 V greater than V CC(5) during power up or the device may not initialize correctly. 

2) VCC(5) should be connected to the3.3-V supply in a3.3-V-only system. In mixed systems (3.3/5 V) VCC(5) should 
be connected to the 5-V supply. 

Replaces original page 5-5 

Addendum-3 



Recommended Operating Conditions 
QC : 

5.3.2 3.3-Volt Microprocessors 

Table 5-5 presents the recommended operating conditions for the 
TI486SXLC-V and TI486SXL-V 3.3-V microprocessors. 

Table 5-5. TI486SXLC-Vand TI486SXL-V Recommended Operating Conditions 

Min Max Unit 

VCC Supply voltage With respect to V SS 3 3.6 V 

VIH High-level input voltage 2 VCC+0.3 V 

VIL Low-level input voltage -0.3 0.6 V 

VIL(C) CLK2 low-level input voltage -0.3 0.5 V 

VIH_(C) CLK2 high -level input voltage VCC-0.3 VCC+0.3 V 

IOH High-level output current VOH= VOHmin -2 rnA 

IOL Low-level output current VOL=VOLmax 5 rnA 

flock 
Phase -locked loop frequency 

With respect to CLK 2 frequency 32 50 MHz lock range 

TI486SXLC in 100-pin 
0 85 

Power 
QFP 

TC Case temperature applied 1T1486SXL in 168-pin PGA 0 85 °c 

TI486SXL in 144-pin QFP 0 85 

5.3.3 5-Volt Microprocessors 

Table 5-6 presents the recommended operating conditions for the 
TI486SXLC and TI486SXL 5-V microprocessors. 

Table 5-6. TI486SXLC and TI486SXL Recommended Operating Conditions 

Min Max Unit 

VCC Supply voltage With respect to V SS 4.75 5.25 V 

VIH High-level input voltage 2 VCC+0.3 V 

VIL Low-level input voltage -0.3 0.8 V 

VIL(C) CLK2 low-level input voltage -0.3 0.8 V 

VIH_(C) CLK2 high -level input voltage 3.7 VCC+0.3 V 

IOH High-level output current VOH=VOHmin -1 rnA 

IOL Low-level output current VOL= VOLmax 5 rnA 

flock 
Phase -locked loop frequency With respect to CLK2 frequency 32 50 MHz lock range 

TI486SXLC in 100-pin 
0 100 QFP 

TC Case temperature Power TI486SXL in 132- and 
0 85 °C applied 168-pin PGA 

TI486SXL in 144-pin a 100 QFP 

Replaces original page 5-6 

Addendum-4 



DC Electrical Specifications 
__ ""::;:-:-»»'''''~.:.::;_H _~:; :..,.'..,. ..... a_a .."..,..."..,. ................................ __ """""'_: :_' __ -' ___ t_~:»Wh»»'~'««<oWUd,.:.:.:.x.:..:. ... ~ 

5.4.1 3.3-Volt Microprocessors With 5-Volt-Tolerant Inputs 

o Table 5-8A covers the 3.3-V, 66-MHz TI486SXL2-G66. 
o Table 5-88 on page 5-88 covers the 3.3-V, 40-MHz or 40/20-MHz 

TI486SXLC-G40. 
o Table 5-8C on page 5-8C covers the 3.3-V, 50-MHz TI486SXL2C-G50. 

Table 5-8A. TI486SXL2-G66 Electrical Characteristics at Recommended Operating 
Conditions (Typical Values are at Vee = 3.3 \/, Vee(s) = 5 \I, and 1A = 25°C) 

T1486SXL2-G66 

Parameter Test Conditions Min Typ Max Unit 

VOL Low-level output voltage 10L =3 mA 0.4 V 

IOH =-1 mA 2.4 
VOH High-level output voltage V 

IOH =-0.2 mA VCC-O.4 

II Input current (leakage) VIN = 0, VIN ~ VCC, See Note 1 ±15 ~ 

IIH 
High-level input current at 

VIN =2.4, See Note 2 ~:.:~}~~~~t:~~;:~" 200 ~ PEREQ 
.. : ..... > 

IlL Low-level input current VIL = 0.45 V, See Note 3 '::::: 
.::,' -400 ~ .••. 

ICC Supply current (Active mode) 33 MHz (CLK2 = 66 MHz) :::;::;:::;~t: 420 575 mA 
'.' 

ICC(SM) 
Supply current (Suspend 33 MHz 23 mA mode) (CLK2 = 66 MHz), See Note 4 

ICC(SS) Standby supply current 
o MHz, Suspended/CLK2 stopped, 0.1 1 mA See Note 4 

Ci I nput capacitance fc = 1 MHz, See Note 5 10 pF 

Co Output or I/O capacitance fc = 1 MHz, See Note 5 12 pF 

Cc Input capacitance on CLK2 fc = 1 MHz, See Note 5 20 pF 

Notes: 1) Applicable for all input terminals except those with an internal pullup resistor. See Table 5-1. 

2) PEREQ has an internal pulldown resistor. 

3) Applicable for all inputs that have an internal pullup resistor. See Table 5-1. 

4) All inputs at 0 or VCC. All inputs held static (except CLK2 as indicated). All outputs unloaded (static lOUT = 0 mA). 

5) Not 1 00% tested 

New page 5-8A 
ADVANCE INFORMATION concerns new products In the sampling or 
preproduction phase of development Characteristic data and other 
specHlcetions are subject to change without notice. 

Addendum-5 



DC Electrical Specifications 
__ .:_. :._a::VAf"'~h»:-»»»'»:_.::.:.:_.:':.::_.' __ : : .... :, .W'~:--~« ____ '_.na_naWh.»! : ... :.:.m 

Table 5-88. TI486SXLC-G40 Electrical Characteristics at Recommended Operating 
Conditions (Typical Values are at Vee = 3.3 \I, and 1A = 25°C) 

TI486SXLC-G40 

Parameter Test Conditions Min Typ Max 

VOL Low-level output voltage IOL= 3 mA 0.4 

IOH=-1 mA 2.4 
VOH High-level output voltage 

IOH =-0.2 rnA VCC-O.4 

II Input current (leakage) VIN = 0, VIN ~ VCC, See Note 1 ±15 

IIH 
High-level input current at 

VIN = 2.4, See Note 2 N- 200 PEREQ 

IlL Low-level input current VIL = 0.45 V, See Note 3 ~';;~~~:~;7:jfY -400 

ICC Supply current (Active mode) 20 MHz (CLK2 = 40 MHz) <::;lt~!~ ::",' 300 400 

ICC(SM) 
Supply current 20 MHz 

15 (Suspend mode) (CLK2 = 40 MHz), See Note 4 

ICC(SS) Standby supply current 
o MHz, Suspended/CLK2 stopped, 

0.1 1 See Note 4 

Ci Input capacitance fc = 1 MHz, See Note 5 10 

Co Output or 1/0 capacitance fc = 1 MHz, See Note 5 12 

Cc Input capacitance on CLK2 fc = 1 MHz, See Note 5 20 

Notes: 1) Applicable for all input terminals except those with an internal pull up resistor. See Table 5-1 . 

2) PEREQ has an internal pulldown resistor. 

3) Applicable for all inputs that have an internal pullup resistor. See Table 5-1. 

Unit 

V 

V 

J.IA 

J.IA 

J.IA 
rnA 

rnA 

rnA 

pF 

pF 

pF 

4) All inputs at 0 orVCC. All inputs held static (except CLK2 as indicated). All outputs unloaded (static lOUT = 0 rnA). 

5) Not 1 00% tested 

ADVANCE INFORMATION concerns new products In 1I1e sampling or 
preproduction phase of development. Characteristic data and other 
specifications are subject to change without notice. 

Addendum-6 

New page 5-88 



DC Electrical Specifications ....... ____ ................ __ ........ __ ................ ___ ................ ___ ............... _=a_~~ .... m:""':_;m_~:_u""' ..... , ........ , ..... VAV~ :: :~ :C:ClQ:VU. ... .-»»w.(o'.w.-w,. 

Table 5-8C. T14868XLC2-G50 Electrical Characteristics at Recommended Operating 
Conditions (Typical Values are at Vee = 3.3 V, and 1A = 25°C) 

T1486SXLC2-G50 

Parameter Test Conditions Min Typ Max Unit 

VOL Low-level output voltage IOL=3mA 0.4 V 

IOH =-1 rnA 2.4 
VOH High-level output voltage V 

IOH =-0.2 rnA VCC-O.4 

II Input current (leakage) VIN = 0, VIN ~ VCC, See Note 1 ±15 J!A 

IIH 
High-level input current at 

VIN = 2.4, See Note 2 
'., <!;;"~,, r)~t:· 

200 J!A PEREQ 
";, 

IlL Low-level input current VIL = 0.45 V, See Note 3 ·:r -400 J!A !=;:::';' 

ICC Supply current (Active mode) 25 MHz (CLK2 = 50 MHz) .~~~}.t ." 300 400 rnA 

ICC(SM) 
Supply current (Suspend 25 MHz 15 rnA mode) (CLK2 = 50 MHz), See Note 4 

ICC(SS) Standby supply current o MHz, SuspendedlCLK2 stopped, 0.1 1 rnA See Note 4 

Ci Input capacitance fc = 1 MHz, See Note 5 10 pF 

Co Output or 1/0 capacitance fc = 1 MHz, See Note 5 12 pF 

Cc Input capacitance on CLK2 fc = 1 MHz, See Note 5 20 pF 

Notes: 1) Applicable for all input terminals except those with an internal pullup resistor. See Table 5-1. 

2) PEREQ has an internal pulldown resistor. 

3) Applicable for all inputs that have an internal pullup resistor. See Table 5-1. 

4) All inputs at 0 or VCC. All inputs held static (except CLK2 as indicated). All outputs unloaded (static lOUT = 0 rnA). 

5) Not 100% tested 

New page 5-8C 
ADVANCE' INFORMATION concerns new produCIB In the sampling or 
preproduction phase of development Characteristic data and other 
specifications are subject to change without notice. 

Addendum-7 



AC Characteristics 

5.5.3. 1 A C Data for 3.3-Volt Microprocessors With 5-Volt-Tolerant Outputs 

Table 5-17 covers the 3.3-V, 40-MHz or 40/20-MHz TI486SXL-G40. 

Table 5-17. AC Characteristics for TI486SXL-G40, VCC = 3 V to 3.6 \/, 
VCC(S) = 4.75 V to 5.25 V or 3 V to 3.6 \/, TC = 0 to 85°C 

Test TI486SXL-G40 

Symbol Parameter Conditions Figures Min Max 

CLK2 clock-doubled frequency range 32 40 

t1 CLK2 period (clock-doubled period) Note 1 5-4 12.5 (25) 
t2a CLK2 high time (clock-doubled high time) Note 2 5-4 5 (8) 
t2b CLK2 high time (clock-doubled high time) Note 2 5-4 3.25 (5) 
t3a CLK2 low time (clock-doubled low time) Note 2 5-4 5 (8) 
t3b CLK210w time (clock-doubled low time) Note 2 5-4 3.25 (6) 
t4 CLK2 fall time (clock-doubled fall time) Note 2 5-4 4 (8) 
t5 CLK2 rise time (clock-doubled rise time) Note 2 5-4 4 (8) 

t6 A31 - A2 valid delay CL=50pF 5-12,5-15 1 15.5 
t6a SMI# valid delay CL = 50 pF 5-12,5-15 1.5 12.5 
t7 A31 - A2 float delay Note 3 5-15 3 17 

t8 BE3# - BEO#, LOCK# valid delay CL = 50 pF 5-12,5-15 1 12.5 
t9 BE3# - BEO#, LOCK# float delay Note 3 5-15 3 17 

t10 AOS#, O/C#, M/IO#, W/R# valid delay CL = 50 pF 5-12,5-15 1.5 12.5 
t10a SMAOS# valid delay CL = 50 pF 5-12,5-15 1.5 12.5 

t11 AOS#, O/C#, M/IO#, W/R# float delay Note 3 5-15 3 17 
t11a SMAOS# float delay Note 3 5-15 3 ... A t> .""t~:::" 17 

t12 031-00 write data, SUSPA# valid delay CL= 50 pF 5-12,5-13 I-~::::it" 20 
t12a 031-00 write data hold time Note 5 5-14 
t13 031 - 00 write data, SUSPA# float delay Note 3 5-15 14.5 

t14 HLOA valid delay CL = 50 pF 5-15 ':' .5 17 

t15 A20M#, FLUSH#, KEN#, NA#, SUSP# setup time 5-11 4 
t16 A20M#, FLUSH#, KEN#, NA#, SUSP# hold time 5-11 3 

t17 BS16 setup time 5-11 8 
t18 BS16 hold time 5-11 5 

t19 REAOY# setup time 5-11 7 
t20 REAOY# hold time 5-11 3 

t21 031-00 read data setup time 5-11 5 
t22 031 - 00 read data hold time 5-11 3 

t23 HOLO setup time 5-11 7 
t24 HOLO hold time 5-11 2 

t25 RESET setup time Note 5 5-5 5 
t26 RESET hold time 5-5 2 

t27 NMI, INTR setup time Note 4 5-11 5 
t27a SMI# setup time Note 4 5-11 5 
t28 NMI, INTR hold time Note 4 5-11 5 
t28a SMI# hold time Note 4 5-11 5 

t29 PEREQ, ERROR#, BUSY# setup time Note 4 5-11 5 
t30 PEREQ, ERROR#, BUSY# hold time Note 4 5-11 3 

t31 Clock-doubled PLL lock time Note 6 20 

t32 MEMW# setup time 
Notes 5, 7 5-11 5 

t33 MEMW# hold time 5 

Notes: 1) Input clock can be stopped; therefore, minimum CLK2 frequency is 0 MHz. 
2) These parameters are not tested. Theyare determined by design characterization. 

Unit 

MHz 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

Ils 

ns 

3) Float condition occurs when maximum output current becomes less than II in magnitude. Float is not 100% tested. 
4) These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing pur-

poses, to assure recognition within a specific CLK2 period. 
5) Not 100% tested 
6) Oelay time from setting CKO in CCRO to entering clock-doubled mode 
7) MEMW# is available on the 144-pin QFP and i68-pin PGA only. 

ADVANCE INFORMATION concerns new products In the sampling or 
Replaces original page 5-20 preproduction phase of development Characteristic data and other 

specifications are subject to change without notice. 

Addendum-8 



AC Characteristics 
"..m,..,m:,..,~w,..,m:_a!:_. ::_, ____ , ..... Q: ..... m.: .... : ...... : : ........ "'" "" .. _:~~_:H~: ______ ..... _.L_!.l .... :.:.:.:."": ... _: ...... , ..... " l"", __ w:~" """""; =w.<: ::_.:::_.:C:.:"". ;.::"""':,:.::_:.::_:::.: .... aa_.m=_u.=u~_.:m_:m ... ;: ___ """ 

Table 5-18 covers the 3.3-V, 50-MHz TI486SXL2-G50. 

Table 5-18. AC Characteristics for TI486SXL2-G50, Vee = 3 V to 3.6 \I, 
Vee(5) = 4.75 V to 5.25 V or 3 V to 3.6 \I, Tc = 0 to 85°C 

Test 
T1486SXL2·G50 

Symbol Parameter Conditions Figures Min Max 

CLK2 clock-doubled frequency range 32 50 

t1 CLK2 period Note 1 5-4 20 
t2a CLK2 high time Note 2 5-4 7 
t2b CLK2 high time Note 2 5-4 4 
t3a CLK2 low time Note 2 5-4 7 
t3b CLK2 low time Note 2 5-4 5 
t4 CLK2 fall time Note 2 5-4 7 
t5 CLK2 rise time Note 2 5-4 7 

t6 A31 - A2 valid delay CL=50pF 5-12,5-15 1 17 
t6a SMI# valid delay CL = 50 pF 5-12,5-15 1.5 30 
t7 A31 - A2 float delay Note 3 5-15 3 30 

t8 BE3# - BEO#, LOCK# valid delay CL = 50 pF 5-12,5-15 1 17 
t9 BE3# - BEO#, LOCK# float delay Note 3 5-15 3 30 

t10 AOS#, O/C#, MIIO#, W/R# valid delay CL = 50 pF 5-12,5-15 1.5 17 
t10a SMAOS# valid delay CL= 50 pF 5-12,5-15 1.5 17 

t11 AOS#, O/C#, M/IO#, W/R# float delay Note 3 5-15 

3~ t11a SMAOS# float delay Note 3 5-15 3 .~;~ 
t12 031-00 write data, SUSPA# valid delay CL=50pF 5-12,5-13 1.5 .. ,., ,¥§ 
t12a 031 - 00 write data hold time Note 5 5-14 1." ,. 
t13 031-00 write data, SUSPA# float delay Note 3 5-15 3 ........ ':';''" 22 

.: .... ~: .. 
..•. 

t14 HLOA valid delay CL=50pF 5-15 1.5 22 

t15 A20M#, FLUSH#, KEN#, NA#, SUSP# setup time 5-11 5 
t16 A20M#, FLUSH#, KEN#, NA#, SUSP# hold time 5-11 3 

t17 BS 16 setup time 5-11 8 
t18 BS16 hold time 5-11 5 

t19 REAOY# setup time 5-11 9 
t20 REAOY# hold time 5-11 4 

t21 031 - 00 read data setup time 5-11 7 
t22 031 - 00 read data hold time 5-11 5 

t23 HaLO setup time 5-11 9 
t24 HaLO hold time 5-11 3.5 

t25 RESET setup time Note 5 5-5 8 
t26 RESET hold time 5-5 3 

t27 NMI, INTR setup time Note 4 5-11 6 
t27a SMI# setup time Note 4 5-11 6 
t28 NMI, INTR hold time Note 4 5-11 6 
t28a SMI# hold time Note 4 5-11 6 

t29 PEREQ, ERROR#, BUSY# setup time Note 4 5-11 6 
t30 PEREQ, ERROR#, BUSY# hold time Note 4 5-11 5 

t31 Clock-doubled PLL lock time Note 6 20 

t32 MEMW# setup time 
Notes 5, 7 5-11 

5 
t33 MEMW# hold time 5 

Notes: 1) Input clock can be stopped; therefore, minimum CLK2 frequency is 0 MHz. 
2) These parameters are not tested. They are determined by design characterization. 

Unit 

MHz 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

,""S 

ns 

3) Float condition occurs when maximum output current becomes less than II in magnitude. Float is not 100% tested. 
4) These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing pur-

poses, to assure recognition within a specific CLK2 period. 
5) Not 100% tested 
6) Oelay time from setting CKO in CCRO to entering clock-doubled mode 
7) MEMW# is available on the 144-pin QFP and 168-pin PGA only. 

ADVANCE INFORMATION concems new products In the sampling or 
preproduction phase of development Characteristic data and other 
speclnCltlons er. subject to change without notice. 

Replaces original page 5-21 

Addendum-9 



AC Characteristics 

Table 5-18A covers the 3.3-V, 66-MHz TI486SXL2C-G66. 

Table 5-18A. AC Characteristics for TI486SXL2-G66, Vec = 3.2 V to 3.6 \I, 
VCC(5) = 4.75 V to 5.25 V or 3.2 V to 3.6 \I, TC = 0 to 75°C 

Test 
T1486SXL2·G66 

Symbol Parameter Conditions Figures Min Max 

CLK2 clock-doubled frequency range 32 66 

t1 CLK2 period Note 1 5-4 15 
t2a CLK2 high time Note 2 5-4 7 
t2b CLK2 high time Note 2 5-4 4 
t3a CLK2 low time Note 2 5-4 7 
t3b CLK2 low time Note 2 5-4 5 
t4 CLK2 fall time Note 2 5-4 7 
t5 CLK2 rise time Note 2 5-4 7 

t6 A31 - A2 valid delay CL=50pF 5-12,5-15 1 15 
t6a SMI# valid delay CL=50pF 5-12,5-15 1.5 15 
t7 A31-A2 float delay Note 3 5-15 3 20 

t8 BE3# - BEO#, LOCK# valid delay CL = 50 pF 5-12,5-15 1 15 
t9 BE3# - BEO#, LOCK# float delay Note 3 5-15 3 20 

t10 ADS#, D/C#, MIIO#, W/R# valid delay CL=50pF 5-12,5-15 1.5 15 
t10a SMADS# valid delay CL = 50 pF 5-12,5-15 1.5 15 

t11 ADS#, D/C#, Mil 0#, W/R# float delay Note 3 5-15 3 ·~~:~~fo t11a SMADS# float delay Note 3 5-15 3 ,:~{ 

k·· 
.... I.):'='<, 

t12 D31-DO write data, SUSPA# valid delay CL= 50 pF 5-12,5-13 24 
t12a D31 - DO write data hold time Note 5 5-14 l~ 
t13 D31-DO write data, SUSPA# float delay Note 3 5-15 ;;i~ 20 

t14 HLDA valid delay CL = 50 pF 5-15 1.5 20 

t15 A20M#, FLUSH#, KEN#, NA#, SUSP# setup time 5-11 5 
t16 A20M#, FLUSH#, KEN#, NA#, SUSP# hold time 5-11 3 

t17 BS16 setup time 5-11 8 
t18 BS 16 hold time 5-11 5 

t19 READY# setup time 5-11 9 
t20 READY# hold time 5-11 4 

t21 D31-DO read data setup time 5-11 7 
t22 D31 - DO read data hold time 5-11 5 

t23 HOLD setup time 5-11 9 
t24 HOLD hold time 5-11 3.5 

t25 RESET setup time Note 5 5-5 8 
t26 RESET hold time 5-5 3 

t27 NMI, INTR setup time Note 4 5-11 6 
t27a SMI# setup time Note 4 5-11 6 
t28 NMI, INTR hold time Note 4 5-11 6 
t28a SMI# hold time Note 4 5-11 6 

t29 PEREQ, ERROR#, BUSY# setup time Note 4 5-11 6 
t30 PEREQ, ERROR#, BUSY# hold time Note 4 5-11 5 

t31 Clock-doubled PLL lock time Note 6 20 

t32 MEMW# setup time 
Notes 5, 7 5-11 

5 
t33 MEMW# hold time 5 

Notes: 1) Input clock can be stopped; therefore, minimum CLK2 frequency is 0 MHz. 
2) These parameters are not tested. They are determined by design characterization. 

Unit 

MHz 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

J.lS 

ns 

3) Float condition occurs when maximum output current becomes less than II in magnitude. Float is not 100% tested. 
4) These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing pur-

poses, to assure recognition within a specific CLK2 period. 
5) Not 1 00% tested 
6) Delay time from setting CKD in CCRO to entering clock-doubled mode 
7) MEMW# is available on the 144-pin QFP and 168-pin PGA only. 

ADVANCE INFORMATION concerns new products In the sampling or 
New page 5-21 A preproduction phase of development Characteristic data and either 

specifications are subject to change without notlca. 

Addendum-10 



AC Characteristics 

Table 5-188 covers the 3.3-V, 40-MHz or 40/20-MHz TI486SXLC-G40. 

Table 5-188. AC Characteristics for TI486SXLC-G40, Vce = 3 V to 3.6 \I, Te = 0 to 85°C 

Test TI486SXLC· G40 

Symbol Parameter Conditions Figures Min Max Unit 

CLK2 clock-doubled frequency range 32 40 MHz 

t1 CLK2 period (clock-doubled period) Note 1 5.:4 12.5 (25) 
t2a CLK2 high time (clock-doubled high time) Note 2 5-4 5 (8) 
t2b CLK2 high time (clock-doubled high time) Note 2 5-4 3.25 (5) 
t3a CLK2 low time (clock-doubled low time) Note 2 5-4 5 (8) ns 
t3b CLK2 low time (clock-doubled low time) Note 2 5-4 3.25 (6) 
t4 CLK2 fall time (clock-doubled fall time) Note 2 5-4 4 (8) 
t5 CLK2 rise time (clock-doubled rise time) Note 2 5-4 4 (8) 

t6 A23-A 1 valid delay CL = 50 pF 5-12,5-15 1 15.5 
t6a SMI# valid delay CL = 50 pF 5-12,5-15 1.5 12.5 ns 
t7 A23-A 1 float delay Note 3 5-15 3 17 

t8 BHE#, BLE#, LOCK# valid delay CL = 50 pF 5-12,5-15 1 12.5 
t9 BHE#, BLE#, LOCK# float delay Note 3 5-15 3 17 ns 

t10 AOS#, O/C#, MIIO#, W/R# valid delay CL = 50 pF 5-12,5-15 1.5 12.5 
t10a SMAOS# valid delay CL = 50 pF 5-12,5-15 1.5 12.5 ns 

t11 AOS#, O/C#, MIIO#, W/R# float delay Note 3 5-15 3 17 
t11a SMAOS# float delay Note 3 5-;15 3 .,.;~ ;,~><,;.;;~+" 17 

ns 

t12 015-00 write data, SUSPA# valid delay CL = 50 pF 5-12,5-13 1. .:::~~~~.; ;~;:~:~t'" 20 
t12a 015-00 write data hold time Note 5 5-14 

t~~;' 
<. ,~ .. :$:; ns 

t13 015-00 write data, SUSPA# float delay Note 3,6 5-15 14.5 

t14 HLOA valid delay CL = 50 pF 5-15 <:~~f::5 17 ns 

t15 NA#, SUSP#, FLUSH#, KEN#, A20M# setup time 5-11 4 
t16 NA#, SUSP#, FLUSH#, KEN#, A20M# hold time 5-11 3 ns 

t19 REAOY# setup time 5-11 7 
t20 REAOY# hold time 5-11 3 ns 

t21 015 - DO read data setup time 5-11 5 
t22 015-00 read data hold time 5-11 3 ns 

t23 HOLD setup time 5-11 7 
t24 HOLD hold time 5-11 2 ns 

t25 RESET setup time Note 5 5-5 5 
t26 RESET hold time 5-5 2 ns 

t27 NMI, INTR setup time Note 4 5-11 5 
t27a SMI# setup time Note 4 5-11 5 ns t28 NMI, INTR hold time Note 4 5-11 5 
t28a SMI# hold time Note 4 5-11 5 

t29 PEREQ, ERROR#, BUSY# setup time Note 4 5-11 5 
t30 PEREQ, ERROR#, BUSY# hold time Note 4 5-11 3 ns 

t31 Clock-doubled PLL lock time Note 7 20 J.1S 

Notes: 1) Input clock can be stopped; therefore, minimum CLK2 frequency is 0 MHz. 
2) These parameters are not tested. They are determined by design characterization. 
3) Float condition occurs when maximum output current becomes less than II in magnitude. Float is not 100% tested. 
4) These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing pur-

poses, to assure recognition within a specific CLK2 period. 
5) Not 100% tested 
6) SUSPA# floats only in response to activation of FLT#. SUSPA# does not float during a hold-acknowledge state. 
7) Delay time from setting CKO in CCRO to entering clock-doubled mode 

ADVANCE INFORMATION concerns new products In the sampling or 
preproduction phase of development Characteristic data and other 
speclftcatlons are subject to change without notice. 

New page 5-21 B 

Addendum-11 



AC Characteristics 

Table 5-18C covers the 3.3-V, 50-MHz TI486SXL2C-G50. 

Table 5-18C. AC Characteristics for TI486SXLC2-G50, Vee = 3 V to 3.6 V, 
Te = Oto 85°C 

Test 
T1486SXLC2-G50 

Symbol Parameter Conditions Figures Min Max 

CLK2 clock-doubled frequency range 32 50 

t1 CLK2 period Note 1 5-4 20 
t2a CLK2 high time Note 2 5-4 7 
t2b CLK2 high time Note 2 5-4 4 
t3a CLK2 low time Note 2 5-4 7 
t3b CLK2 low time Note 2 5-4 5 
t4 CLK2 fall time Note 2 5-4 7 
t5 CLK2 rise time Note 2 5-4 7 

t6 A23-A1 valid delay CL =50 pF 5-12,5-15 1 17 
t6a SMI# valid delay CL = 50 pF 5-12,5-15 1.5 30 
t7 A23-A1 float delay Note 3 5-15 3 30 

t8 BHE#, BLE#, LOCK# valid delay CL=50pF 5-12,5-15 1 17 
t9 BHE#, BLE#, LOCK# float delay Note 3 5-15 3 30 

t10 ADS#, D/C#, M/IO#, W/R# valid delay CL = 50 pF 5-12,5-15 1.5 17 
t10a SMADS# valid delay CL =50 pF 5-12,5-15 1.5 17 

t11 ADS#, D/C#, M/IO#, W/R# float delay Note 3 5-15 3 
.;. ~;~:~~;;:~JjS t11 a SMADS# float delay Note 3 5-15 3 

t12 D15-DO write data, SUSPA#valid delay CL =50 pF 5-12,5-13 

~~ ~~:lP· 23 
t12a D15- DO write data hold time Note 5 5-14 
t13 D15- DO write data, SUSPA# float delay Note 3,6 5-15 22 

t14 HLDA valid delay CL = 50 pF 5-15 y·S 22 

t15 NA#, SUSP#, FLUSH#, KEN#, A20M# setup time 5-11 5 
t16 NA#, SUSP#, FLUSH#, KEN#, A20M# hold time 5-11 3 

t19 READY# setup time 5-11 9 
t20 READY# hold time 5-11 4 

t21 D15- DO read data setup time 5-11 7 
t22 D15-DO read data hold time 5-11 5 

t23 HOLD setup time 5-11 9 
t24 HOLD hold time 5-11 3.5 

t25 RESET setup time Note 5 5-5 8 
t26 RESET hold time 5-5 3 

t27 NMI, INTR setup time Note 4 5-11 6 
t27a SMI# setup time Note 4 5-11 6 
t28 NMI, INTR hold time Note 4 5-11 6 
t28a SMI# hold time Note 4 5-11 6 

t29 PEREa, ERROR#, BUSY# setup time Note 4 5-11 6 
t30 PEREQ, ERROR#, BUSY# hold time Note 4 5-11 5 

t31 Clock-doubled PLL lock time Note 7 20 

Notes: 1) Input clock can be stopped; therefore, minimum CLK2 frequency is 0 MHz. 
2) These parameters are not tested. They are determined by design characterization. 

Unit 

MHz 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

!ls 

3) Float condition occurs when maximum output current becomes less than II in magnitude. Float is not 100% tested. 
4) These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing pur-

poses, to assure recognition within a specific CLK2 period. 
5) Not 1 00% tested 
6) SUSPA# floats only in response to activation of FLT#. SUSPA# does not float during a hold-acknowledge state. 
7) Delay time from setting CKD in CCRO to entering clock-doubled mode 

ADVANCE INFORMATION concerns new products In the sampling or 
preproduction phase of development Characteristic data and other 
specifications are subject to change without notice. 

Addendum-12 

New page 5-21 C 



AC Characteristics 

5.5.3.2 AC Data for 3.3-Volt Microprocessors 

Table 5-19 covers the 3.3-V, 25-MHz TI486SXLC-V25. 

Table 5-19. AC Characteristics for T14868XLC- V25, Vee = 3 V to 3.6 \I, Te = 0 to 85°C 

Test 
TI486SXLC· V25 

Symbol Parameter Conditions Figures Min Max Unit 

t1 CLK2 period Note 1 5-4 20 
t2a CLK2 high time Note 2 5-4 7 
t2b CLK2 high time Note 2 5-4 4 
t3a CLK2 low time Note 2 5-4 7 11S 

t3b CLK2 low time Note 2 5-4 5 
t4 CLK2 fall time Note 2 5-4 7 
t5 CLK2 rise time Note 2 5-4 7 

t6 A23-A1 valid delay CL = 50 pF 5-7,5-10 1 21 
t6a SMI# valid delay CL = 50 pF 5-7,5-10 1.5 30 ns 
t7 A23-A 1 float delay Note 3 5-10 4 30 

t8 BHE#, BLE#, LOCK# valid delay CL = 50 pF 5-7,5-10 1 18 
t9 BHE#, BLE#, LOCK# float delay Note 3 5-10 4 30 ns 

t10 AOS#, O/C#, MIIO#, W/R# valid delay CL = 50 pF 5-7,5-10 1.5 19 
ns t10a SMAOS# valid delay CL = 50 pF 5-7,5-10 1.5 ,,': i;~::> f";f,),g 

t11 AOS#, O/C#, M/IO#, W/R# float delay Note 3 5-10 
": .. ::::~~;~;~} :;;:S:~"" ~g ns t11 a SMAOS# float delay Note 3 5-10 

t12 015-00 write data, SUSPA# valid delay CL = 50 pF 5-7,5-8 ,~~~~~"~ 27 
t12a 015-00 write data hold time Note 5 5-9 ns 
t13 015-00 write data, SUSPA# float delay Notes 3,6 5-10 4 22 

t14 HLOA valid delay CL = 50 pF 5-10 2 22 ns 

t15 NA#, SUSP#, FLUSH#, KEN#, A20M# setup 5-6 5 
time ns 

t16 NA#, SUSP#, FLUSH#, KEN#, A20M# hold 5-6 3.5 
time 

t19 REAOY# setup time 5-6 9 
t20 REAOY# hold time 5-6 4 ns 

t21 015-00 read data setup time 5-6 7 
t22 015-00 read data hold time 5-6 5 ns 

t23 HOLD setup time 5-6 9 
ns t24 HOLD hold time 5-6 3.5 

t25 RESET setup time Note 5 5-5 8 
t26 RESET hold time 5-5 3 ns 

t27 NMI,INTR setup time Note 4 5-6 6 
t27a SMI# setup time Note 4 5-6 6 ns 
t28 NMI,INTR hold time Note 4 5-6 6 
t28a SMI# hold time Note 4 5-6 6 

t29 PEREQ, ERROR#, BUSY# setup time Note 4 5-6 6 
t30 PEREa, ERROR#, BUSY# hold time Note 4 5-6 5 ns 

Notes: 1) Input clock can be stopped; therefore, minimum CLK2 frequency is 0 MHz. 
2) These parameters are not tested. They are determined by design characterization. 
3) Float condition occurs when maximum output current becomes less than II in magnitude. Float is not 1 00% tested. 
4) These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing pur­

poses, to assure recognition within a specific CLK2 period. 
5) Not 1 00% tested 
6) SUSPA# floats only in response to activation of FLT#. SUSPA# does not float during a hold-acknowledge state. 

Replaces original page 5-22 
ADVANCE INFORMATION concerns new products In the sampling or 
preproduction phase of development. Characteristic data and other 
speclflcadons are subject to change without notice. 

Addendum-13 



AC Characteristics 

Table 5-20 covers the 3.3-V, 40-MHz or 40/20-MHz TI486SXL-V40. 
'. 

Table 5-20. AC Characteristics for T1486SXL-V40, Vee = 3 V to 3. 6 V, Te = 0 to 85°C 

Test T1486SXL-V40 

Symbol Parameter Conditions Figures Min Max Unit 

CLK2 clock-cloubled 
32 40 MHz frequency range 

t1 CLK2 period (clock-doubled period) Note 1 5-4 12.5 (25) 
t2a CLK2 high time (clock-doubled high time) Note 2 5-4 5 (8) 
t2b CLK2 high time (clock-doubled high time) Note 2 5-4 3.25 (5) 
t3a CLK2 low time (clock-doubled low time) Note 2 5-4 5 (8) ns 
t3b CLK2 low time (clock-doubled low time) . Note 2 5-4 3.25 (6) 
t4 CLK2 fall time (clock-doubled fall time) Note 2 5-4 4 (8) 
t5 CLK2 rise time (clock-doubled rise time) Note 2 5-4 4 (8) 

t6 A31 - A2 valid delay CL= 50 pF 5-12,5-15 1 15.5 
t6a SMI# valid delay CL= 50 pF 5-12,5-15 1.5 12.5 ns 
t7 A31-A2 float delay Note 3 5-15 3 17 

t8 BE3# - BEO#, LOCK# valid delay CL=50pF 5-12,5-15 1 12.5 
t9 BE3# - BEO#, LOCK# float delay Note 3 5-15 3 17 ns 

t10 ADS#, O/C#, M/IO#, W/R# valid delay CL=50pF 5-12,5-15 1.5 12.5 
t10a SMAOS# valid delay CL= 50 pF 5-12,5-15 1.5 12.5 ns 

t11 ADS#, O/C#, M/IO#, W/R# float delay Note 3 5-15 
3 r~~&>~7 ns t11a SMAOS# float delay Note 3 5-15 3 t' . '> 17 

t12 031-00 write data, SUSPA# valid delay CL=50pF 5-12,5-13 ),. '1 20 t12a 031 - DO write data hold time Note 5 5-14 ns 
t13 031-00 write data, SUSPA# float delay Note 3 5-15 ".~ 14.5 

t14 HLOA valid delay CL = 50 pF 5-15 '<:~r5 17 ns 

t15 A20M#, FLUSH#, KEN#, NA#, SUSP# setup time 5-11 4 
t16 A20M#, FLUSH#, KEN#, NA#, SUSP# hold time 5-11 3 ns 

t17 BS 16 setup time 5-11 8 
t18 BS 16 hold time 5-11 2 ns 

t19 REAOY# setup time 5-11 7 
t20 REAOY# hold time 5-11 3 ns 

t21 031-00 read data setup time 5-11 5 
t22 031-00 read data hold time 5-11 3 ns 

t23 HOLD setup time 5-11 7 
t24 HOLD hold time 5-11 2 ns 

t25 RESET setup time Note 5 5-5 5 
ns t26 RESET hold time 5-5 2 

t27 NMI, INTR setup time Note 4 5-11 5 
t27a SMI# setup time Note 4 5-11 5 ns t28 NMI, INTR hold time Note 4 5-11 5 
t28a SMI# hold time Note 4 5-11 5 

t29 PEREQ, ERROR#, BUSY# setup time Note 4 5-11 5 
ns t30 PEREQ, ERROR#, BUSY# hold time Note 4 5-11 3 

t31 Clock-doubled PLL lock time Note 6 20 !JS 
t32 MEMW# setup time 

Notes 5, 7 5-11 
5 

t33 MEMW# hold time 5 ns 

Notes: 1) Input clock can be stopped; therefore, minimum CLK2 frequency is 0 MHz. 
2) These parameters are not tested. They are determined by design characterization. 
3) Float condition occurs when maximum output current becomes less than II in magnitude. Float is not 1 00% tested. 
4) These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing pur-

poses, to assure recognition within a specific CLK2 period. 
5) Not 100% tested 
6) Delay time from setting CKO in CCRD to entering clock-doubled mode 
7) MEMW# is available on the 144-pin QFP and 168-pin PGA only. 

ADVANCE INFORMATION concerns new products In the sampling or 
preproduction phase of development. Characteristic data and other 
speclftcatlons are subject to change without notice. 

Addendum-14 

Replaces original page 5-23 



AC Characteristics 

Table 5-21 covers the 3.3-V, 50-MHz TI486SXL2-V50. 

Table 5-21. AC Characteristics for TI486SXL2-V50, Vee = 3 V to 3.6 V, 
Te = 0 to 85°C 

Test 
T1486SXL2-V50 

Symbol Parameter Conditions Figures Min Max Unit 

CLK2 clock-doubled frequency range 32 50 MHz 

t1 CLK2 period Note 1 5-4 20 
t2a CLK2 high time Note 2 5-4 7 
t2b CLK2 high time Note 2 5-4 4 
t3a CLK2 low time Note 2· 5-4 7 ns 
t3b CLK2 low time Note 2 5-4 5 
t4 CLK2 fall time Note 2 5-4 7 
t5 CLK2 rise time Note 2 5-4 7 

t6 A31-A2 valid delay CL = 50 pF 5-12,5-15 1 17 
t6a SMI# valid delay CL= 50 pF 5-12,5-15 1.5 30 ns 
t7 A31-A2 float delay Note 3 5-15 3 30 

t8 BE3# - BEO#, LOCK# valid delay CL = 50 pF 5-12,5-15 1 17 
t9 BE3# - BEO#, LOCK# float delay Note 3 5-15 3 30 ns 

t10 ADS#, D/C#, MIIO#, W/R# valid delay CL = 50 pF 5-12,5-15 1.5 17 
t10a SMADS# valid delay CL= 50 pF 5-12,5-15 1.5 17 ns 

t11 ADS#, D/C#, MIIO#, W/R# float delay Note 3 5-15 3 
x.~ ::)~~{~g ns 

t11a SMADS# float delay Note 3 5-15 3 

t12 031-00 write data, SUSPA# valid delay CL = 50 pF 5-12,5-13 1;J:~~;~ 
~~?,:~:>' 23 

t12a 031-00 write data hold time Note 5 5-14 ~ ......... ~. v ns ~l <~»:-::~. 
t13 031-00 write data, SUSP,A# float delay Note 3 5-15 .::~;,~:w' 22 

t14 HLDA valid delay CL=50pF 5-15 'Y.5 22 ns 

t15 A20M#, FLUSH#, KEN#, NA#, SUSP# setup time 5-11 5 ns 
t16 A20M#, FLUSH#, KEN#, NA#, SUSP# hold time 5-11 3 

t17 BS 16 setup time 5-11 8 ns 
t18 BS 16 hold time 5-11 5 

t19 REAOY# setup time 5-11 9 ns 
t20 READY# hold time 5-11 4 

t21 031-DO read data setup time" 5-11 7 
t22 031 - DO read data hold time 5-11 5 ns 

t23 HOLD setup time 5-11 9 
t24 HOLD hold time 5-11 3.5 ns 

t25 RESET setup time Note 5 5-5 8 
t26 RESET hold time 5-5 3 ns 

t27 NMI, INTR setup time Note 4 5-11 6 
t27a SMI# setup time Note 4 5-11 6 ns 
t28 NMI, INTR hold time Note 4 5-11 6 
t28a SMI# hold time Note 4 5-11 6 

t29 PEREQ, ERROR#, BUSY# setup time Note 4 5-11 6 
ns t30 PEREQ, ERROR#, BUSY# hold time Note 4 5-11 5 

t31 Clock-doubled PLL lock time Note 6 20 ""S 
t32 MEMW# setup time 

Notes 5, 7 5-11 
5 

t33 MEMW# hold time 5 ns 

. . 
Notes: 1) Input clock can be stopped; therefore, minimum CLK2 frequency IS 0 MHz . 

2) These parameters are not tested. They are determined by design characterization. 
3) Float condition occurs when maximum output current becomes less than II in magnitude. Float is not 100% tested. 
4) These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing pur-

poses, to assure recognition within a specific CLK2 period. 
5) Not 100% tested 
6) Delay time from setting CKD in CCRO to entering clock-doubled mode 
7) MEMW# is available on the 144-pin QFP and 168-pin PGA only. 

Replaces original page 5-24 
ADVANCE INFORMATION concerns new products In the sampling or 
preproduction phase of development Characteristic data and other 
speclflcallons are subject to change without notice. 

Addendum-15 



AC Characteristics 

5.5.3.3 A C Data for 5· Volt Microprocessors 

Table 5-22 covers the 5-V, 40-MHz or 40/20-MHz TI486SXLC-040. 

Table 5-22. AC Characteristics for TI486SXLC-040, Vee = 4.75 V to 5.25 \I, 
Te = 0 to 100°C 

Test TI486SXLC-040 

Symbol Parameter Conditions Figures Min Max 

CLK2 clock-doubled frequency range 32 40 

t1 CLK2 period (clock-doubled period) Note 1 5-4 12.5 (25) 
t2a CLK2 high time (clock-doubled high time) Note 2 5-4 5 (8) 
t2b CLK2 high time (clock-doubled high time) Note 2 5-4 3.25 (5) 
t3a CLK2 low time (clock-doubled low time) Note 2 5-4 5 (8) 
t3b CLK2 low time (clock-doubled low time) Note 2 5-4 3.25 (6) 
t4 CLK2 fall time (clock-doubled fall time) Note 2 5-4 4 (8) 
t5 CLK2 rise time (clock-doubled rise time) Note 2 5-4 4 (8) 

t6 A23-A1 valid delay CL = 50 pF 5-7,5-10 1.5 15 
t6a SMI# valid delay CL=50pF 5-7,5-10 1.5 12.5 
t7 A23-A1 float delay Note 3 5-10 3 17 

t8 BHE#, BLE#, LOCK# valid delay CL=50pF 5-7,5-10 1.5 12.5 
t9 BHE#, BLE#, LOCK# float delay Note 3 5-10 3 17 

t10 AOS#, O/C#, M/IO#, W/R# valid delay CL = 50 pF 5-7,5-10 1.5 12.5 
t10a SMAOS# valid delay CL=50pF 5-7,5-10 1.5 12.5 

t11 AOS#, O/C#, M/IO#, W/R# float delay Note 3 5-10 3 17 
t11 a SMAOS# float delay Note 3 5-10 3 17 

t12 015- DO write data, SUSPA# valid delay CL = 50 pF 5-7,5-8 2 20 
t12a 015-00 write data hold time Note 5 5-9 2 
t13 015- DO write data, SUSPA# float delay Notes 3,6 5-10 3 14.5 

t14 HLOA valid delay CL = 50 pF 5-10 2 17 

t15 NA#, SUSP#, FLUSH#, KEN#, A20M# setup time 5-6 4 
t16 NA#, SUSP#, FLUSH#, KEN#, A20M# hold time 5-6 3 

t19 REAOY# setup time 5-6 7 
t20 REAOY# hold time 5-6 3 

t21 015- DO read data setup time 5-6 5 
t22 015- DO read data hold time 5-6 3 

t23 HOLD setup time 5-6 7 
t24 HOLD hold time 5-6 2 

t25 RESET setup time Note 5 5-5 5 
t26 RESET hold time 5-5 2 

t27 NMI, INTR setup time Note 4 5-6 5 
t27a SMI# setup time Note 4 5-6 5 
t28 NMI, INTR hold time Note 4 5-6 5 
t28a SMI# hold time Note 4 5-6 5 

t29 PEREQ, ERROR#, BUSY# setup time Note 4 5-6 5 
t30 PEREQ, ERROR#, BUSY# hold time Note 4 5-6 3 

t31 Clock-doubled PLL lock time Note 7 20 

Notes: 1) Input clock can be stopped; therefore, minimum CLK2 frequency is 0 MHz. 
2) These parameters are not tested. They are determined by design characterization. 

Unit 

MHz 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

!1S 

3) Float condition occurs when maximum output current becomes less than II in magnitude. Float is not 100% tested. 
4) These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing pur-

poses, to assure recognition within a specific CLK2 period. 
5) Not 1 00% tested 
6) SUSPA# floats only in response to activation of FLT#. SUSPA# does not float during a hold-acknowledge state. 
7) Delay time from setting CKO in CCRO to entering clock-doubled mode 

Replaces original page 5-25 

Addendum-16 



AC Characteristics 

Table 5-23 covers the 5-V, 50-MHz TI486SXLC2-050. 

Table 5-23. AC Characteristics for TI486SXLC2-050, Vee = 4.75 V to 5.25 \/, 
Te = 0 to 100°C 

Test T1486SXLC2-050 

Symbol Parameter Conditions Figures Min Max Unit 

CLK2 clock-cfoubled frequency range 32 50 MHz 

t1 CLK2 period Note 1 5-4 20 
t2a CLK2 high time Note 2 5-4 7 
t2b CLK2 high time Note 2 5-4 4 
t3a CLK2 low time Note 2 5-4 7 ns 
t3b CLK2 low time Note 2 5-4 5 
t4 CLK2 fall time Note 2 5-4 7 
t5 CLK2 rise time Note 2 5-4 7 

t6 A23-A1 valid delay CL=50pF 5-7,5-10 1.5 17 
t6a SMI# valid delay CL = 50 pF 5-7,5-10 1.5 30 ns 
t7 A23-A 1 float delay Note 3 5-10 3 30 

t8 BHE#, BLE#, LOCK# valid delay CL = 50 pF 5-7,5-10 1.5 17 
t9 BHE#, BLE#, LOCK# float delay Note 3 5-10 3 30 ns 

t10 AOS#, O/C#, M/IO#, W/R# valid delay CL=50pF 5-7,5-10 1.5 17 
t10a SMAOS# valid delay CL = 50 pF 5-7,5-10 1.5 17 ns 

t11 AOS#, O/C#, MIIO#, W/R# float delay Note 3 5-10 3 30 
t11a SMAOS# float delay Note 3 5-10 3 30 ns 

t12 015-00 write data, SUSPA# valid delay CL = 50 pF 5-7,5-8 2 23 
t12a 015-00 write data hold time Note 5 5-9 2 ns 
t13 015-00 write data, SUSPA# float delay Notes 3,6 5-10 3 22 

t14 HLOA valid delay CL = 50 pF 5-10 2 22 ns 

t15 NA#, SUSP#, FLUSH#, KEN#, A20M# setup time 5-6 5 
t16 NA#, SUSP#, FLUSH#, KEN#, A20M# hold time 5-6 3 ns 

t19 REAOY# setup time 5-6 9 
t20 REAOY# hold time 5-6 4 ns 

t21 015-00 read data setup time 5-6 7 
t22 015-00 read data hold time 5-6 5 ns 

t23 HaLO setup time 5-6 9 
t24 HaLO hold time 5-6 3.5 ns 

t25 RESET setup time Note 5 5-5 8 
t26 RESET hold time 5-5 3 ns 

t27 NMI, INTR setup time Note 4 5-6 6 
t27a SMI# setup time Note 4 5-6 6 
t28 NMI, INTR hold time Note 4 5-6 6 ns 

t28a SMI# hold time Note 4 5-6 6 

t29 PEREQ, ERROR#, BUSY# setup time Note 4 5-6 6 
t30 PEREQ, ERROR#, BUSY# hold time Note 4 5-6 5 ns 

t31 Clock-doubled PLL lock time Note 7 20 ~s 

Notes: 1) Input clock can be stopped; therefore, minimum CLK2 frequency is 0 MHz. 
2) These parameters are not tested. They are determined by design characterization. 
3) Float condition occurs when maximum output current becomes less than II in magnitude. Float is not 100% tested. 
4) These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing pur-

poses, to assure recognition within a specific CLK2 period. 
5) Not 1 00% tested 
6) SUSPA# floats only in response to activation of FLT#. SUSPA# does not float during a hold-acknowledge state. 
7) Oelay time from setting CKO in CCRO to entering clock-doubled mode 

Replaces original page 5-26 

Addendum-17 



AC Characteristics 

Table 5-24 covers the 5-V, 40-MHz or 40/20-MHz TI486SXL-040. 

Table 5-24. AC Characteristics for T1486SXL-040, Vee = 4.75 V to 5.25 \I, 
(for Te see Table 5-6) 

Test TI486SXL-040 

Symbol Parameter Conditions Figures Min Max 

CLK2 clock-doubled frequency range 32 40 

t1 CLK2 period (clock-doubled period) Note 1 5-4 12.5 (25) 
t2a CLK2 high time (clock-doubled high time) Note 2 5-4 5 (8) 
t2b CLK2 high time (clock-doubled high time) Note 2 5-4 3.25 (5) 
t3a CLK2 low time (clock-doubled low time) Note 2 5-4 5 (8) 
t3b CLK2 low time (clock-doubled low time) Note 2 5-4 3.25 (6) 
t4 CLK2 fall time (clock-doubled fall time) Note 2 5-4 4 (8) 
t5 CLK2 rise time (clock-doubled rise time) Note 2 5-4 4 (8) 

t6 A31-A2 valid delay CL =50 pF 5-12,5-15 1.5 15 
t6a SMI# valid delay CL= 50 pF 5-12,5-15 1.5 12.5 
t7 A31-A2 float delay Note 3 5-15 3 17 

t8 BE3# - BEO#, LOCK# valid delay CL = 50 pF 5-12,5-15 1.5 12.5 
t9 BE3# - BEO#, LOCK# float delay Note 3 5-15 3 17 

t10 AOS#, 0/C#, M/IO#, W/R# valid delay CL = 50 pF 5-12,5-15 1.5 12.5 
t10a SMAOS# valid delay CL= 50 pF 5-12,5-15 1.5 12.5 

t11 AOS#, 0/C#, M/IO#, W/R# float delay Note 3 5-15 3 17 
t11a SMAOS# float delay Note 3 5-15 3 17 

t12 031-00 write data, SUSPA# valid delay CL= 50 pF 5-12,5-13 2 20 
t12a 031 - 00 write data hold time Note 5 5-14 2 
t13 031-00 write data, SUSPA# float delay Note 3 5-15 3 14.5 

t14 HLOA valid delay CL= 50 pF 5-15 2 17 

t15 A20M#, FLUSH#, KEN#, NA#, SUSP# setup time 5-11 4 
t16 A20M#, FLUSH#, KEN#, NA#, SUSP# hold time 5-11 3 

t17 BS16 setup time 5-11 8 
t18 BS16 hold time 5-11 5 

t19 REAOY# setup time 5-11 7 
t20 REAOY# hold time 5-11 3 

t21 031 - 00 read data setup time 5-11 5 
t22 031-00 read data hold time 5-11 3 

t23 HaLO setup time 5-11 7 
t24 HaLO hold time 5-11 2 

t25 RESET setup time Note 5 5-5 5 
t26 RESET hold time 5-5 2 

t27 NMI, INTR setup time Note 4 5-11 5 
t27a SMI# setup time Note 4 5-11 5 
t28 NMI, INTR hold time Note 4 5-11 5 
t28a SMI# hold time Note 4 5-11 5 

t29 PEREQ, ERROR#, BUSY# setup time Note 4 5-11 5 
t30 PEREQ, ERROR#, BUSY# hold time Note 4 5-11 3 

t31 Clock-doubled PLL lock time Note 6 20 

t32 MEMW# setup time 
Notes 5,7 5-11 5 

t33 MEMW# hold time 5 

Notes: 1) Input clock can be stopped; therefore, minimum CLK2 frequency is 0 MHz. 
2) These parameters are not tested. They are determined by design characterization. 

Unit 

MHz 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

ns 

!AS 

ns 

3) Float condition occurs when maximum output current becomes less than II in magnitude. Float is not 1 00% tested. 
4) These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing pur-

poses, to assure recognition within a specific CLK2 period. 
5) Not 1 00% tested 
6) Oelay time from setting CKO in CCRO to entering clock-doubled mode 
7) MEMW# is available on the 144-pin QFP and 168-pin PGA only. 

Replaces original page 5-27 

Addendum-18 



AC Characteristics 

Table 5-25 covers the 5-V 50-MHz T1486SXL2-050 

Table 5-25. AC Characteristics for T1486SXL2-050, Vee = 4.75 V to 5.25 \I, 
(for Te see Table 5-6) 

Test T1486SXL2-050 

Symbol Parameter Conditions Figures Min Max Unit 

CLK2 clock-doubled frequency range 32 50 MHz 

t1 CLK2 period Note 1 5-4 20 
t2a CLK2 high time Note 2 5-4 7 
t2b CLK2 high time Note 2 5-4 4 
t3a CLK2 low time Note 2 5-4 7 ns 
t3b CLK2 low time Note 2 5-4 5 
t4 CLK2 fall time Note 2 5-4 7 
t5 CLK2 rise time Note 2 5-4 7 

t6 A31 - A2 valid delay CL = 50 pF 5-12,5-15 1.5 17 
t6a SMI# valid delay CL = 50 pF 5-12,5-15 1.5 30 ns 
t7 A31-A2 float delay Note 3 5-15 3 30 

t8 BE3# - BEO#, LOCK# valid delay CL = 50 pF 5-12,5-15 1.5 17 
t9 BE3# - BEO#, LOCK# float delay Note 3 5-15 3 30 ns 

t10 ADS#, D/C#, M/IO#, W/R# valid delay CL= 50 pF 5-12,5-15 1.5 17 
t10a SMADS# valid delay CL = 50 pF 5-12,5-15 1.5 17 ns 

t11 ADS#, D/C#, M/IO#, W/R# float delay Note 3 5-15 3 30 
t11 a SMADS# float delay Note 3 5-15 3 30 ns 

t12 D31 - DO write data, SUSPA# valid delay CL = 50 pF 5-12,5-13 2 23 
t12a D31 - DO write data hold time Note 5 5-14 2 ns 
t13 D31- DO write data, SUSPA# float delay Note 3 5-15 3 22 

t14 HLDA valid delay CL=50pF 5-15 2 22 ns 

t15 A20M#, FLUSH#, KEN#, NA#, SUSP# setup time 5-11 5 
t16 A20M#, FLUSH#, KEN#, NA#, SUSP# hold time 5-11 3 ns 

t17 BS 16 setup time 5-11 8 
t18 BS 16 hold time 5-11 5 ns 

t19 READY# setup time 5-11 9 
t20 READY# hold time 5-11 4 ns 

t21 D31 - DO read data setup time 5-11 7 
t22 D31-DO read data hold time 5-11 5 ns 

t23 HOLD setup time 5-11 9 
t24 HOLD hold time 5-11 3.5 ns 

t25 RESET setup time Note 5 5-5 8 
t26 RESET hold time 5-5 3 ns 

t27 NMI, INTR setup time Note 4 5-11 6 
t27a SMI# setup time Note 4 5-11 6 ns t28 NMI, INTR hold time Note 4 5-11 6 
t28a SMI# hold time Note 4 5-11 6 

t29 PEREQ, ERROR#, BUSY# setup time Note 4 5-11 6 
t30 PEREQ, ERROR#, BUSY# hold time Note 4 5-11 5 ns 

t31 Clock-doubled PLL lock time Note 6 20 ""s 

t32 MEMW# setup time 
Notes 5, 7 5-11 5 

t33 MEMW# hold time 5 ns 

Notes: 1) Input clock can be stopped; therefore, minimum CLK2 frequency is 0 MHz. 
2) These parameters are not tested. They are determined by design characterization. 
3) Float condition occurs when maximum output current becomes less than II in magnitude. Float is not 100% tested. 
4) These inputs are allowed to be asynchronous to CLK2. The setup and hold specifications are given for testing pur-

poses, to assure recognition within a specific CLK2 period. 
5) Not 1 00% tested 
6) Delay time from setting CKD in CCRO to entering clock-doubled mode 
7) MEMW# is available on the 144-pin QFP and 168-pin PGA only. 

Replaces original page 5-28 

Addendum-19 



Thermal Characteristics 

6.3 Thermal Characteristics 

The junction-to-ambient (typical) values vary for individual applications de­
pending on factors relating to how the device is mounted and the surrounding 
environment such as: 

o Circuit trace density of the printed circuit board (PCB) and/or the presence 
or absence of ground or power planes internal to the PCB that affect the 
ability of the board to conduct heat away from the device 

o Whether the device is soldered to the PCB or is inserted into a socket 

o Orientation of the PCB that the device is mounted on and the proximity of 
adjacent PCBs or system enclosure features that impede natural convec­
tion air circulation around the device 

o Ambient air temperature in close proximity to the device and the proximity 
of other high-power devices in the system 

o Presence of airflow over the device and the attachment of an external heat 
sink as indicated by the data in Tables 6-10 and 6-12. 

For the 100-pin and 144-pin QFPs, the values shown for thermal resistance 
in Tables 6-10 and 6-12 with a heatsink are examples of the estimated im­
provement in thermal performance. 

Note: 

The final responsibility for verifying designs incorporating any version of a TI 
microprocessor rests with the customer originating the design. Recom­
mended case temperature extremes are specified in Tables 5-4, 5-5, and 
5-6. 

Table 6-10. TI486SXLC 1 ~O-Pin PQFP Thermal Resistance and Airflow 

Thermal Resistance (OC/W) 

TI486SXLC 100-Pin PQFP 

Without Heatsink With Heatsinkt 

Airflow (FtlMin) RaJC RaJA R!;)JA 

o 2 36 32 

600 2 15 12 

t Round, omnidirectional heatsink. Dimensions are approximately 1.125 in diameter by 0.42 in 
high. 

Replaces original page 6-18 
ADVANCE INFORMATION concerns new products In the sampling or 
preproduction phase of development. Characteristic dati and other 
specifications are subJect to change without notice. 

Addendum-20 



Thermal Characteristics 
________ ·~_~:m_:;.. _ .. _u:._.a:.~_J:.::'_.l:Q:g",_.::.o_lQ:Q.~_ ....... ,_;; .:_;m_.:::':':_:W:: __ !.l_:nQ~ .... m.""K:.:."":.:.;"" .. "".:m .... c._. U .... :;-:Q _''''''~:1:.: .... a:.:»»:a.:»».:.;:.l''''.:.l:»»!a:_.:m»»:;c~c_:Q:n_a:.:._l.:.:.:.ern:.:.:.:.ern~.:.:ern.:.:.:."":.:.::ernl.:.,...:.m;"".m:ern::.Kern:.>':."::» .... ,ern. _ ..... 

Table 6-10A. TI486SXLC 1 ~O-Pin CQFP Thermal Resistance and Airflow 

Thermal Resistance caCIW) 

TI486SXLC 100-Pin CQFPt 

Airflow (FtlMin) RaJC RaJA 

o Jt;~~;:<:.J.~~~:· .~>.~~::;;1~:J~!$ 
------------------+-------~~~------r-----~ 

100 

200 

t Thermal resistance values shown are based on measurements made on similar ceramic PGA 
packages. 

Table 6-11. TI486SXL 132-Pin CPGA Thermal Resistance and Airflow 

Thermal Resistance (OC/W) 

TI486SXL 132-Pin CPGAt: 

Airflow (FtlMin) RaJC RaJA 

o 3 20 

1 00 ,,::~~~~{30-~ 
------------------+-------

200 

400 

600 3 9 

:t: Thermal resistance values shown are based on measurements made on similar ceramic PGA 
packages. 

Table 6-12. TI486SXL 144-Pin PQFP Thermal Resistance and Airflow 

Thermal Resistance caC/W) 

TI486SXL 144-Pin PQFP§ 

Without Heatsink With Heatsink§ 

Airflow (FtlMin) RaJC RaJA RaJA 

o 2 25 18 

100 2. f ~ii~~;~i;~i>'21 
-----------... ----~------~ 

200 2 19 

400 14 

600 2 12 6 

§ Thermal resistance values shown are based on measurements made on similar 28-mm QFP 
packages. 

~ Pin-Fin heatsink. Dimensions are approximately 1.2 in long, by 1.3 in wide, by 0.49 in high. 

ADVANCE INFORMATION concerns new products In the sampling or 
preproduction phase of development Characteristic data and other 
specifications are subject to change wlihout noUce. 

Replaces original page 6-19 

Addendum-21 



Thermal Characteristics 

Table 6-13. TI486SXL 144-Pin CQFP Thermal Resistance and Airflow 

Thermal Resistance COC/W) 

TI486SXL 144-Pin CQFPt 

Airflow (FtlMin) 

o 
100 

200 

t Thermal resistance values shown are based on measurements made on similar ceramic QFP 
packages. 

Table 6-14. TI486SXL 168-Pin CPGA Thermal Resistance and Airflow 

Thermal Resistance COC/W) 

168-Pin CPGA Package:t: 

Airflow (FtlMin) RaJC RaJA 

o 3 18 

100 

200 

400 3 

600 3 8 

:t: Thermal resistance values shown are based on measurements made on similar ceramic PGA 
packages. 

6.3.1 Airflow Measurement Setup 

The wind tunnel used for airflow measurements is represented schematically 
in Figure 6-12. 

Figure 6-12. Wind Tunnel Schematic Diagram 
Device test board 

> 

Temperature and 
anemometer-type 
airflow probe 

AirflOW> Fan 

Wind tunnel cross-section is 6 in by 6 in. 

(Dimensions are approximate.) 
~5 in ~14 24 in 

~--------------------------78 in---------------------------. 

Typically, the devices undergoing thermal test are mounted on a test board 
consisting of 0.062 in thick FR4 printed circuit board material with one-ounce 

Replaces original page 6-20 
ADVANCE INFORMATION concerns new products In the sampling or 
preproduction phase of development. Charectarlstlc data and other 
specifications are aublect to change without notice. 

Addendum-22 



Thermal Characteristics 

copper etch. Surface-mount devices are soldered to the test board using 
matching footprints with minimal circuit trace density required to electrically in­
terconnect the device to the board. PGA devices are typically inserted in a 
socket that is soldered to the test board. 

6.3.2 Thermal Parameter Definitions 

The maximum die temperature (T Jmax) and the maximum ambient tempera­
ture (T Amax) can be calculated using the following equations: 

T Jmax = T C + (Pmax x RaJC) 
TAmax = TJ - (Pmax x RaJA)) 

where: 

T Jmax = Maximum average junction temperature (OC) 
T C = Case temperature at top center of package (OC) 
Pmax = Maximum device power dissipation (W) 
RaJC = Junction-to-case thermal resistance (OC/W) 
T Amax = Maximum ambient temperature (OC) 
T J = Average junction temperature (OC) 
RajA = Junction-to-ambient thermal resistance (OC/W) 

Values for RaJC and RaJA are given in Tables 6-10 through 6-14 for various 
airflows. 

Replaces original page 6-21 

Addendum-23 



Part Numbers for Microprocessors Offered 
t.~ ~; .. :Q:Q:Q:QQ • U .. ; .. :. H ;:U:Q. l' :Q U ~ Jm .11 

F.2 Part Numbers for Microprocessors Offered 

Table F-1 lists the complete part number for each version of the TI486SXL mi­
croprocessors offered, and Table F-2 lists the part number for each version 
of the TI486SLC/DLC microprocessors offered. The tables provide a short de­
scription consisting of the supply voltage, performance capabilities, and the 
mechanical package for each device part number. 

Table F-1. TI486SXLC and TI486SXL Part Numbers 

Speed (MHz) 

Device Part Number Supply Voltage (V) Core Bus Package 

TX486SXLCB-V25-PJF 3.3 25 25 1 OO-pin TE p:j: plas-
TX486SXLCB-040-PJF 5 40 40,20t tic QFP 

TX486SXLC2B-050-PJF 5 50 25 

(TX486SXLC-G40-WN 3.3 (5-V tolerant) 40 40,20t 100-pin ceramic 
(TX486SXL2C-G50-WN 3.3 (5-V tolerant) 50 25 QFP 

TX486SXLB-040S-GA 5 40 40,20t 132-pin PGA 
TX486SXL2B-050S-GA 5 50 25 

TX486SXLB-040-PCE 5 40 40,20t 144-pin TEP plastic 
QFP 

TX486SXL-G40-HBN 3.3 (5-V tolerant) 40 40,20t 144-pin ceramic 
TX486SXl2-G50-HBN 3.3 (5-V tolerant) 50 25 QFP 

TX486SXl2-G50-HBN 3.3 (5-V tolerant) 66 33 

TX486SXLB-040-HBN 5 40 40,20t 

TX486SXl2B-050-HBN 5 50 25 

TX486SXL-G40-GA 3.3 (5-V tolerant) 40 40,20t 168-pin PGA 
TX486SXl2-G50-GA 3.3 (5-V tolerant) 50 25 

(TX486SXl2-G66-GA 3.3 (5-V tolerant) 66 33 

TX486SXLB-V40-GA 3.3 40 40,20t 

TX486SXl2B-V50-GA 3.3 50 25 

TX486SXLB-040-GA 5 40 40,20t 

TX486SXl2B-050-GA 5 50 25 
t These microprocessors can be operated as nonclock-doubled 40 MHz or clock-doubled 20/40 MHz. 
:j: Thermally enhanced package 

Replaces original page F-2 

Addendum-24 



NOTES 



NOTES 



IMPORTANT NOTICE 

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor 
product or service without notice, and advises its customers to obtain the latest version of relevant information 
to verify, before placing orders, that the information being relied on is current. 

TI warrants performance of its semiconductor products and related software to the specifications applicable at 
the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are 
utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each 
device is not necessarily performed, except those mandated by government requirements. 

Certain applications using semiconductor products may involve potential risks of death, personal injury, or 
severe property or environmental damage ("Critical Applications"). 

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED 
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER 
CRITICAL APPLICATIONS. 

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI 
products in such applications requires the written approval of an appropriate TI officer. Questions concerning 
potential risk applications should be directed to TI through a local SC sales office. 

In order to minimize risks associated with the customer's applications, adequate design and operating 
safeguards should be provided by the customer to minimize inherent or procedural hazards. 

TI assumes no liability for applications assistance, customer product design, software performance, or 
infringement of patents or services described herein. Nor does TI warrant or represent that any license, either 
express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property 
right of TI covering or relating to any combination, machine, or process in which such semiconductor products 
or services might be or are used. 

Copyright © 1994, Texas Instruments Incorporated 



TI Worldwide Sales and Representative Offices 

AUSTRALIA I NEW ZEALAND: Texas Instruments Australia Ltd.: $ydney 
[61] 2-910-3100, Fax 2-805-1186; Melbourne 3-696-1211, Fax 3-696-4446. 
BELGIUM: Texas Instruments Belgium S.A./N.V.: Brussels [32] (02) 242 75 80, 
Fax (02) 726 72 76. 
BRAZIL: Texas Instrumentos Electronicos do Brasil Ltda.: Sao Paulo 
[55] 11-535-5133. 
CANADA: Texas Instruments canada Ltd.: Montreal (514) 335-8392; 
Ottawa (613) 726-3201; Toronto (416) 884-9181. 
DENMARK: Texas Instruments A/S: Ballerup [45] (44) 68 74 00. 
FINLAND: Texas InstrumentslOY: Espoo [358] (0) 4354 20 33, Fax 
(0) 46 73 23. 
FRANCE: Texas Instruments France: Velizy·Villacoublay Cedex 
[33](1) 30 701001, Fax (1) 30701054. 
GERMANY: Texas Instruments Deutschland GmbH.: Freislng 
[49](08161)80-0, Fax (08161)804516; Hannover (0511)904960, Fax 
(0511) 64 90 331; Ostfildern (0711) 34 03 0, Fax (0711) 34 032 57. 
HONG KONG: Texas Instruments Hong Kong Ltd.: Kowloon [852]956-7288, 
Fax 956-2200. 
HUNGARY: Texas Instruments Representation: Budapest [36] (1) 269 8310, 
Fax (1) 2671357. 
INDIA: Texas Instruments India Private Ltd.: Bangalore [91]80226-9007. 
IRELAND: Texas Instruments Ireland Ltd.: Dublin [353] (01) 475 52 33, 
Fax (01) 47814 63. 
ITALY: Texas Instruments Italla S.p.A.: Agrate Brianza [39] (039) 6842.1, 
Fax (039) 6842.912; Rome (06) 6572651. 
JAPAN: Texas Instruments Japan Ltd;: Tokyo [81] 03-769-8700,· Fax 
03-3457-6777; Osaka 06-204-1881, Fax 06-204-1895; Nagoya 
052-583-8691, Fax 052-583-8696; Ishikawa 0762-23-5471, Fax 
0762-23-1583; Nagano 0263-33-1060, Fax 0263-35-1025; Kanagawa 
045-338-1220, Fax 045-338-1255; Kyoto 075-341-7713, Fax 075-341-7724; 
Saltama 0485-22-2440, Fax 0425-23-5787; Olta 0977-73-1557, Fax 
0977-73-1583. 
KOREA: Texas Instruments Korea Ltd.: Seoul [82] 2-551-2800, Fax 
2-551-2828. 
MALAYSIA: Texas Instruments Malaysia: Kuala Lumpur [60] 3-230-6001, 
Fax 3-230-6605. 
MEXICO: Texas Instruments de Mexico S.A. de C.V.: Colina del Valle 
[52] 5-639-9740. 
NORWAY: Texas Instruments Norge A/S: Oslo [47] (02) 264 75 70. 
PEOPLE'S REPUBLIC OF CHINA: Texas Instruments China Inc.: Beijing 
[86] 1-500-2255, Ext. 3750, Fax 1-500-2705. 
PHILIPPINES: Texas Instruments Asia Ltd.: Metro Manila [63]2-817-6031, 
Fax 2-817-6096. 
PORTUGAL: Texas Instruments Equipamento Electronico (Portugal) LOA.: 
Mala [351](2) 94810 03, Fax (2) 9481929. 
SINGAPORE I INDONESIA I THAILAND: Texas Instruments Singapore 
(PTE) Ltd.: Singapore [65]390-7100, Fax 390-7062. 
SPAIN: Texas Instruments Espana S.A.: Madrid [34] (1) 372 80 51, Fax 
(1) 372 82 66; Barcelona (3) 31791 80. 
SWEDEN: Texas Instruments International Trade Corporation 
(Sverigeflllalen): Klsta [46] (08) 7525800, Fax (08) 7519715. 
SWITZERLAND: Texas Instruments Switzerland AG: Dietlkon 
[41] 886-2-3771450. 
TAIWAN: Texas Instruments Taiwan Limited: Taipei [886] (2) 378-6800, 
Fax 2-377-2718. 
UNITED KINGDOM: Texas Instruments Ltd.: Bedford [44] (0234) 270 111, 
Fax (0234) 223459. 

UNITED STATES: Texas Instruments Incorporated: ALABAMA: Huntsville 
(205) 430-0114; ARIZONA: Phoenix (602) 244-7800; CALIFORNIA: Irvine 
(714) 660-1200; San Diego (619) 278-9600; San Jose (408) 894-9000; 
Woodland Hills (818) 704-8100; COLORADO: Aurora (303) 368-8000; 
CONNECTICUT: Wallingford (203) 265-3807; FLORIDA: Orlando 
(407) 260-2116; Fort Lauderdale (305) 425-7820; Tampa (813) 882-0017; 
GEORGIA: Atlanta (404) 662-7967; ILLINOIS: Arlington Heights 
(708) 640-2925; INDIANA: Indianapolis (317) 573-6400; KANSAS: Kansas 
City (913) 451-4511; MARYLAND: Columbia (410) 312-7900; 
MASSACHUSETTS: Boston (617) 895-9100; MICHIGAN: Detroit 
(303) 553-1500; MINNESOTA: Minneapolis (612) 828-9300; NEW JERSEY: 
Edison (908) 906-0033; NEW MEXICO: Albuquerque (505) 345-2555; NEW 
YORK: Poughkeepsie (914) 897-2900; Long Island (516) 454-6601; 
Rochester (716) 385-6770; NORTH CAROLINA: Charlotte (704) 522-5487; 
Raleigh (919) 876-2725; OHIO: Cleveland (216) 765-7258; Dayton 
(513) 427-6200; OREGON: Portland (503) 643-6758; PENNSYLVANIA: 
Philadelphia (215) 825-9500; PUERTO RICO: Hato Rey (809) 753-8700; 
TEXAS: Austin (512) 250-6769; Dallas (214) 917-1264; Houston 
(713) 778-6592; WISCONSIN: Milwaukee (414) 798-100t 

North American Authorized Distributors 
COMMERCIAL MILITARY 
Almac 1 Arrow Alliance Electronics Inc' 
Anthem Electronics Future Electronics (Canada) 
Arrow 1 Schweber Hamilton Hallmark 
Future Electronics (Canada) Zeus - An Arrow Company 
Hamilton Hallmark CATALOG 
Marshall Industries Allied Electronics 
Wyle Arrow Advantage 
OBSOLETE PRODUCTS Newark Electronics 
Rochester Electronics 508/462-9332 
For Distributors outside North America, contact your local Sales OffIce. 

A11M 

Important Notice: Texas Instruments (TI) reserves the right to make changes to or to 
discontinue any product or service identified in this publication without notice. TI 
advises its customers to obtain the latest version of the relevant information to verify, 
before placing orders, that the information being relied upon is current. 

Please be advised that TI warrants its semiconductor products and related software to 
the specifications applicable at the time of sale in accordance with Tl's standard 
warranty. TI assumes no liability for applications aSSistance, software performance, or 
third-party product information, or for infringement of patents or services described in this 
publication. TI assumes no responsibility for customers' applications or product designs. 

~TEXAS 
INSTRUMENTS 

© 1994 Texas Instruments Incorporated 

Printed in the U.S.A. 



Printed in U.S.A. 
1094-IP 

"TEXAS 
INSTRUMENTS 

SRZU006D 


