o
L) ...A
o4
L)
o
)
L)
ot
)
o0
L)
Oxice
8°¢
2 30
(X
@
PO IO
Tuonoooo.

Written by
Agora Resources, Inc.
Lexington, MA

©1984, 1985 AT&T
All Rights Reserved
Printed in USA

NOTICE

The information in this document is subject to change without
notice. AT&T assumes no responsibility for any errors that may
appear in this document.

MS-DOS is a trademark of Microsoft Corp.

System
Programmers
Guide

Contents

-

System Programming Concepts

Purpose of this Manual 1-2
Notation 1-3
Programming Steps 1-4
MS-LINK

Overview 2-2
MS-LINK File Usage 2-3
Segments, Groups, and Classes 2-7
Invoking MS-LINK 29
Sample MS-LINK Session 2-2
MS-LINK Error Messages 2-24
DEBUG

Overview 3-2
How to Invoke DEBUG 3-3
Debugging Commands 3-6
Command Parameters 3-7
DEBUG Error Messages 3-4
8086 Addressing Scheme

Overview 4-2
The 20-Bit Address 4-3
Aligned and Non-Aligned Words 4-5
Registers and Flags 4-6
Code, Data, and Stack Segments 4-1

Addressing Modes 4-12

System
Programmers
Guide

Memory Maps Control Blocks

Diskette Allocation

Overview 5-2
The Address Space 5-3
Low Memory Map 5-4
ROM BIOS Data Area 55
File Control Blocks 5-6
ASCIIZ Strings 5-1
Handles 5-12
Diskette Layout 5-13
Diskette Directory 5-14
File Allocation Table 5-18
Diskette Formats 5-22

Program File Structure

and Loading
Overview 6-2
Pros and Cons for Selecting a

Program Format 6-3
EXE2BIN 6-5
File Header Format 6-10
Relocation Process for .EXE Files 6-13
Program Segment Prefix 6-15
Program Loading Process 6-18
System Calls
Quick Reference: Functions and Interrupts 7-2
Overview 7-5
Programming Considerations 7-6
Interrupts 77
Functions 7-8

System Calls Description 71

System
Programmers
Guide

ROM BIOS Service Routines

Overview 8-2
Conventions 8-3
Interrupt Vector List 8-4
Video Control 85
Diskette Services 8-17
Communications Services 8-19
Keyboard Handling 8-22
Printer Routines 8-29
Miscellaneous ROM-BIOS Services 8-30
Bypassing the BIOS 8-32
CONFIG.SYS 8-33
ROM BIOS Listing 8-37
ROM BIOS Change List 8-177

Notes on Enhancements in ROM BIOS 1.21 8-189
ROM Revision 1.1 to ROM Revision 1.21
Source File Differences 8-193

MS-DOS Device Drivers

Overview 9-2
MS-DOS Device Drivers 9-8
Asynchronous Communications Element 9-2

DMA Controller 9-36
Floppy Diskette Interface and Controller 9-45
Hard Disk Controller 9-66
Keyboard Interface 9-94
Parallel Printer Interface 9-100
Programmable Interrupt Controller 9-105
Programmable Interval Timer 9-116
Real Time Clock and Calendar 9-123
Serial Communications Controller 9-128
Speaker 9-147

Video Controller 9-150

System
Programmers
Guide

Supplement: The Display Enhancement Board

System
1 Programming
Concepts

e Purpose of this Manual

e Notation

¢ Programming Steps

System
Programming
Concepts

Purpose of this Manual

This guide provides you with in-depth informa-
tion on the AT&T Personal Computer program
development tools. The guide focuses on what
you need to know to make use of the existing
AT&T Personal Computer 6300 hardware and
hardware interfaces.

The final chapter on programming devices
assumes that you have a working knowledge of
the principles of designing device drivers and
need the technical details on how to program the
AT&T Personal Computer.

1-2

System
Programming
Concepts

Notation

The following syntax is used throughout this
manual in descriptions of command and state-
ment syntax:

[1 Square brackets indicate that the enclosed
entry is optional.

{} Braces indicate a choice between two or
more entries. At least one of the entries
enclosed in braces must be chosen.

Ellipses indicate that an entry may be
repeated as many times as needed.

This guide contains examples of prompts and
messages displayed on the screen. These system-
displayed items are indented from the main
body of the text so that you can easily distin-
guish them. For example, MS-LINK prompts:

OBJECT MODULES[.OBJ]

Descriptions or examples that show a required
response are indented and presented in boldface
type:

LINK OBJ1+OBJ2+OBJ3,MAP

1-3

System

Programming
Concepts
Programming Steps
This section shows where to go for information
on the task you are performing.
Running If you are running a program via the BASIC
High-Level interpreter, the section on “System Calls” is
Language applicable, since you can call these functions via
a BASIC program.
If you are running a compiled program, read the
section on MS-LINK as well as the section on
System Calls.
Writing The first eight chapters are aimed at pro-
Assembler grammers writing assembler programs. If you)

Programs have not used the 8088 or 8086 assembly lan-
guage, the section “8086 Addressing Scheme”
gives you a good start. The sections on the linker
and debugger are fundamental to writing and
debugging assembler programs. Also read the
sections on “System Calls” and “ROM BIOS
Service Calls.”

Writing If you are writing a supplementary utility pro-

Utilities gram, read the sections on assembly programs,
the sections on “Memory Maps, Control Blocks,
and Diskette Allocation,” and “Program File
Structure and Loading.”

Programming Every section applies to writing device drivers,
Devices especially the chapter on “MS-DOS Device
Directly Drivers.”

1-4

MS-LINK

e Overview

MS-LINK File Usage

® Segments, Groups, and Classes
e Invoking MS-LINK

e Sample MS-LINK Session
MS-LINK Error Messages

®

21

MS-LINK

Overview

MS-LINK is an executable program on your
DOS Supplemental Programs diskette. MS-
LINK combines object modules that are the
output of the MACRO-86 assembler or a
compatible compiler. It produces a relocatable
run file Jload module) and a list file of external
references and error messages.

To run MS-LINK, you provide object, run, list,
and library file parameters. You may optionally
enter switches that modify the operation of
MS-LINK.

“Invoking the Linker” describes the three ways
to run MS-LINK: interactive entry, command
line entry, and automatic response file entry.
Interactive entry is used most frequently, so its
section contains information common to all
three methods.

If you are linking a high-level language
program, the compiler determines the
arrangement of your object modules in memory.
If you are using assembler, however, you have
more control over your program’s organization.
The section “Segments, Groups, and Classes”
shows you how to specify the order of your
object modules at run time.

2-2

MS-LINK

MS-LINK File Usage

The link process involves the use of several files.

MS-LINK:
® Works with one or more input files
® Produces two output files
e Creates a temporary disk file if necessary

® Searches up to eight library files

2-3

MS-LINK

Syntax

path

filename

ext

The format for MS-LINK file specifications is
the same as that of any disk file:

[d:][path]filename[.ext]

the drive designation. Permissible drive designa-
tions for MS-LINK are A: through O..

a path of directory names.

any legal filename of one to eight characters.

a one- to three-character extension to the
filename.

If no filename extensions are given in the input
(object) file specifications, MS-LINK recognizes
the following extensions by default:

.OBJ Object
.LIB Library

MS-LINK appends the following default exten-
sions to the output (Run and List) files:

.EXE Run (may not be overridden)
.MAP List (may be overridden)

2-4

MS-LINK

VM.TMP File MS-LINK uses available memory for the link
session. If an output file exceeds available
memory, MS-LINK creates a temporary file,
names it VM.TMP, and puts it on the disk in the
default drive. If MS-LINK creates VM.TMP, it
will display the message:

VM.TMP has been created.
Do not change diskette in drive, <d:>

Once this message is displayed, do not remove
the diskette from the default drive until the link
session ends. If the diskette is removed, the
operation of MS-LINK is unpredictable and MS-
LINK usually displays the error message:

Unexpected end of file on VM.TMP

MS-LINK writes the contents of VM.TMP to the
file named following the Run File: prompt.
VM.TMP is a working file only and is deleted at
the end of the linking session.

Do not use VM.TMP as a filename for any file.
If MS-LINK requires the VM.TMP file, MS-
LINK deletes the VM.TMP already on disk and
creates a new VM.TMP. Thus, the contents of
the previous VM.TMP file are lost.

2-5

MS-LINK

Changing
diskettes

. I

You may want to change diskettes during the
link operation. If MS-LINK cannot find an
object file on the specified diskette, it prompts
you to change diskettes rather than aborting the
session. If you enter the /PAUSE switch, MS-
LINK pauses and prompts you to change
diskettes before it creates the run file. You may
change diskettes when prompted except in the
following cases:

the diskette you want to change has a VM.TMP

file on it.

you have requested a list file on the diskette you
want to change.

2-6

MS-LINK

Segments, Groups, and Classes

Segment

Class

Below terms are explained to help you under-
stand how MS-LINK works. Generally, if you
are linking object modules from a high-level
language compiler, you do not need to know
these terms. If you are linking assembly lan-
guage modules, read this section carefully.

The segment is one of the most basic units of
program memory organization. A segment is a
contiguous area of memory up to 64K bytes long,
and may be located anywhere in RAM. The con-
tents of a segment are addressed by a seg-
ment:offset address pair, where “segment” is the
segment’s base or lowest address (see “The 20-
Bit Address” in chapter 4).

Each segment has a class name in addition to
its segment name. All segments with the same
class name are loaded into memory contiguously
by the linker from the first segment of that class
to the last.

A class is a collection of related segments. By
naming the segments of your assembly lan-
guage program to classes, you control the order
in which they are loaded into memory (for high
level languages, the compiler does this for you).

MS-LINK loads segments into memory on a
class-by-class basis. Starting with the first class
encountered in the first object file, all of the
segments of each class are loaded. Within each
class, the linker loads the segments in the order
in which it finds them in the object files. There-
fore, you can control the order in which classes
are loaded by the order in which segments from
different classes appear in the object files.

2-7

MS-LINK

Group

To ensure that classes are loaded in the order
you desire, you can create a dummy module to
feed to the linker as the first object file. This
module declares empty-segment classes in the
order you want the classes loaded. For example,
one such file might look like this:

SEGMENT ‘CODE’

ENDS

SEGMENT ‘CONST’

ENDS

SEGMENT ‘DATA’

ENDS

SEGMENT STACK ‘STACK’
ENDS

goQaww e >

If this method is used, be sure to declare all the
classes used in your program in the dummy
module; otherwise, you lose absolute control over
the ordering of classes. Also, this method should
only be used when linking assembly language
programs. Do not create a dummy module if link-
ing object files for a compiler, or unpredictable
results may occur. Classes may be any length.

Just as classes allow you to combine segments
in a way that is logical, groups combine seg-
ments in 64K byte chunks to make them easily
addressable. The segments in a group need not
be contiguous, but when loaded they must fit
within 64K bytes. This way each segment in the
group can be fully addressed by an offset to one
segment address, which is the start address of
the lowest segment in the group. Segments are
named to groups by the assembler or compiler
or, as is possible in assembly language pro-
grams, by the programmer. Note that a segment
can be large enough to be an entire group by
itself.

2-8

~

MS-LINK

Invoking MS-LINK

Ways
to Invoke
MS-LINK

Interactive
Entry

MS-LINK is invoked in one of three ways. The
first method, interactive entry, requires you to
respond to individual prompts.

For the second method, command line entry,
type all commands on the same line used to start
MS-LINK.

To use the third method, automatic response file
entry, create a response file that contains all the
necessary commands and tell MS-LINK where
that file is when you run MS-LINK.

Interactive Entry LINK
Command Line Entry LINK filenames[/switches]

Automatic Response

File Entry LINK @filespec
To invoke MS-LINK interactively, type:
LINK

MS-LINK loads into memory, then displays four
prompts, one at a time. At the end of each line,
after typing your response to the prompt, you
may type one or more switches preceded by a
forward slash.

The command prompts are summarized below.
Defaults appear in square brackets ([]) after the
prompt. Object Modules is the only prompt that
requires a response.

29

MS-LINK

MS-LINK
Prompts

Prompt Responses

Object Modules[.OBJ]: [d:][pathlfilename[.ext]
[+[[d:)[pathlfilename[.ext]]...]

Run File[filename.EXT]: [d:][path][filename[.ext]]
List File[NUL.MAP]I: [d:)[path][filename[.ext]]

Libraries[.LIB]: [d:][path][filename[.ext]]
[+[d:][[path}filename[.ext]]...]

Notes:

If you enter a filename without specifying the
drive, the default drive is assumed. If you enter a
filename without specifying the path, the default
path is assumed.The libraries prompt is an
exception — if the linker looks for the libraries
on the default drive and doesn’t find them, it
looks on the drive specified by the compiler.

To select default responses to all remaining
prompts, use a single semicolon (;) followed
immediately by <return> at any time after the
second prompt (Run File:).

Once you enter the semicolon, you can no longer
respond to any of the prompts for that link ses-
sion. Use the <RETURN>> key to skip prompts.

Use <CONTROL-C> to abort the link session at
any time.

2-10

~

MS-LINK

Object
Modules
to be
Included

Load
Module

Listing

Object Modules [.OBJ]:

List .OBJ files to be linked. They must be separ-
ated by blank spaces or plus signs (+). If the plus
sign is the last character typed, this prompt will
reappear so that you can enter more object
modules.

MS-LINK assumes that object modules have the
extension .OBJ unless you explicitly specify
some other extension. Object filenames may not
begin with the @ symbol (@ is used for specify-
ing an automatic response file).

The order in which you key in the the object files
is significant. See section on segments, groups,
and classes for more information.

Run File [Obj-file.EXE]:

Give filename for executable object code. The
default is: <first-object-filename>.EXE. (You
cannot change the output extension.)You can
specify just the drive designation or just a path
for this prompt.

List File NUL.MAP]:

Give filename for listing (also known as a linker
map). The listing is not created if you select the
default. You can request a listing by entering a
drive designator, path, or filename[.ext]. If you
do not specify an extension, the default MAP is
used.

2-11

MS-LINK

Libraries
to be
Searched

You can have the listing printed by specifying a
print device instead of a filename or have the
listing displayed on the screen by specifying
CON. If you display the linker map, you can
also print it by pressing Ctrl-PrtSc.

Libraries [.LIB]:

List filenames to be searched separated by blank
spaces or plus signs (+). If a plus sign is the last
character typed, the prompt will reappear.

MS-LINK searches library files in the order
listed to resolve external references. When it
finds the module that defines the external sym-
bol, MS-LINK processes that module as another
object module.

There is no default library search for MACRO
assembler object modules. For compiled
modules, if you select the default for this prompt,
MS-LINK looks for the compiler package’s
library on the default drive. If not found there,
MS-LINK looks on the drive specified by the
compiler.

If MS-LINK cannot find a library file, it
displays:

Cannot find library <library-name>
Type new drive letter:

Press the letter for the drive designation (for
example, B).

If two libraries have the same filename, only the
first in the list is searched.

2-12

MS-LINK

MS-LINK
Switches

The seven MS-LINK switches control various
MS-LINK functions. Type switches at the end of
a prompt response regardless of which method
you use to start MS-LINK. Switches may be
grouped at the end of any response, or may be
scattered at the end of several. Even if you type
more than one switch at the end of one response,
each switch must be preceded by a forward slash

().

All switches may be abbreviated. The only re-
striction is that an abbreviation must be sequen-
tial from the first letter through the last typed;
no gaps or transpositions are allowed. For
example:

Legal Illegal
/D /DSL
/DS /DAL
/DSA /DLC

/DSALLOCA /DSALLOCT

2-13

MS-LINK

.

/DSALLOCATE

/7HIGH

/DSALLOCATE tells MS-LINK to load all data
at the high end of the Data Segment. Otherwise,
MS-LINK loads all data at the low end of the
Data Segment. At runtime, the DS pointer is set
to the lowest possible address to allow the entire
DS segment to be used. Use of /DSALLOCATE
in combination with the default load low (that
is, :ne /HIGH switch is not used) permits the
user application to dynamically allocate any
available memory below the area specifically
allocated within DGroup yet to remain address-
able by the same DS pointer. This dynamic allo-
cation is needed for Pascal and FORTRAN
programs.

Your application ::-ogram may dynamically
allocate up to 64 iytes (or the actual amount of
memory available; less the amount allocated
within DGroup.

/HIGH causes MS-LINK to place the Run file as
high as possible in memory. Otherwise, MS-
LINK places the Run file as low as possible.

Note:
Do not use /HIGH with Pascal or FORTRAN

programs.

2-14

MS-LINK

7

/LINENUMBERS
/LINENUMBERS tells MS-LINK to include in
the List file the line numbers and addresses of
the source statements in the input modules.

Otherwise, line numbers are not included in the
List file.

Not all compilers produce object modules that
contain line number information. In these cases,
of course, MS-LINK cannot include line
numbers.

/MAP /MAP directs MS-LINK to list all public (global)
symbols defined in the input modules. If /MAP
-~ is not given, MS-LINK will list only errors
‘ ‘ (including undefined globals).

The symbols are listed alphabetically. For
each symbol, MS-LINK lists its value and its
segment:offset location in the Run file. The
symbols are listed at the end of the List file.

/PAUSE /PAUSE causes MS-LINK to pause in the link
session when the switch is encountered. Nor-
mally, MS-LINK performs the linking session
from beginning to end without stopping. This
switch enables you to swap the diskettes before
MS-LINK outputs the Run (EXE) file.

2-15

MS-LINK

/STACK:
<number>

Wh_en MS-LINK encounters /PAUSE, it dis-
plays the message:

About to generate .EXE file
Change disks <hit any key>

MS-LINK resumes processing when you press
any key.

Note

Do not remove the disk which will receive the
List file, or the disk used for the VM.TMP file, if
one has been created.

Stack number represents any positive numeric
value (in hexadecimal radix) up to 65536 bytes.
If a value from 1 to 511 is typed, MS-LINK will
use 512. If /STACK is not used for a link ses-
sion, MS-LINK calculates the necessary stack
size automatically.

All compilers and assemblers should provide
information in the object modules that allow the
linker to compute the required stack size.

At least one object (input) module must contain
a stack allocation statement. If not, MS-LINK
will display the following error message:

WARNING: NO STACK STATEMENT

2-16

MS-LINK

/NO /NO is short for NODEFAULTLIBRARY-
SEARCH. This switch applies only to higher
level language modules. This switch tells MS-
LINK not to search the default libraries in the
object modules. For example, if you are linking
object modules in Pascal, specifying /NO tells
MS-LINK not to automatically search the
library named PASCAL.LIB to resolve external
references.

2-17

MS-LINK

N

Command Line Entry
Purpose You may invoke MS-LINK by typing all com-

mands on one line. The entries following LINK

are responses to the command prompts. The

entry fields for the different prompts must be

separated by commas. Use the following syntax:
Syntax LINK <obj-list>,<runfile> <listfile>,

<lib-list>[/switch...]

obj-list a list of object modules, separated by plus signs

or spaces. 7~
runfile name of the file to receive the executable output.
listfile name of the file to receive the listing.
lib-list list of library modules to be searched, separated

by spaces or plus signs.

/switch refers to optional switches which may be placed
following any of the response entries (just before
any of the commas or after the <lib-list>, as
shown).

To select the default for a field, simply type a
second comma with no spaces between the two
commas.

2-18

MS-LINK

Automatic
Response
File

Entry

Example:

LINK FUN+TEXT+TABLE+CARE,
FUNLIST, COBLIB.LIB

This command causes MS-LINK to load. Then
the object modules FUN.OBJ, TEXT.OBJ,
TABLE.OBJ and CARE.OBJ are loaded. MS-
LINK links the object modules and writes the
output to FUN.EXE (by default), creates a List
file named FUNLIST.MAP, and searches the
library file COBLIB.LIB.

It is often convenient to save responses to the
linker for re-use at a later time. This is especially
useful when a long list of object modules needs
to be specified. The use of an automatic response
file allows you to do this.

Before using this option, you must create the
response file. Each line of text corresponds to
one MS-LINK prompt. The responses must be
typed in the same order as they are when
entered interactively. To continue a line, type a
plus sign (+) at the end of the line.

You can enter the name of more than one auto-
matic response file on the command line and
combine response file names with additional
parameters. The combined series of resulting
rarameters must be a valid sequence of MS-
LINK prompts.

Use switches and special characters (+ and ;) in
the response file the same way they are used
when entered interactively.

2-19

MS-LINK

To invoke the linker using a response file, type
LINK @ <filespec>

Filespec is the name of a response file.

When the session begins, MS-LINK displays
each prompt with the corresponding response
from the response file. If the response file does
not contain answers for all the prompts, MS-
LINK displays the prompt which does not have
a response and waits for a response. When you
type a legal response, MS-LINK continues the
link session.

Example:

FUN TEXT TABLE CARE
/PAUSE /MAP
FUNLIST

COBLIB.LIB

This response file tells MS-LINK to load the four
object modules named FUN.OBJ, TEXT.OBJ,
TABLE.OBJ, and CARE.OBJ. MS-LINK pauses
before producing a public symbol map to permit
you to swap disks. When you press any key, the
output files will be named FUN.EXE and
FUNLIST.MAP. MS-LINK will search the
library file COBLIB.LIB.

2-20

/‘\

MS-LINK

Sample MS-LINK Session

This sample shows you the type of information
displayed during an MS-LINK session.

In response to the MS-DOS prompt, type:
LINK

The system displays the following messages and
prompts:

Microsoft Object Linker V2.01 (Large)
(C) Copyright 1982,1983 by Microsoft Inc.

Object Modules [.OBJ]: IO SYSINIT
Run File [I0.EXE]:

List File [NUL.MAP]: PRN /MAP /LINE
Libraries [.LIB]: ;

Notes:

By specifying /MAP, you get both an alphabetic
listing and a chronological listing of public
symbols.

By responding PRN to the List File: prompt, you
can redirect your output to the printer.

By specifying the /LINE switch, MS-LINK
gives you a listing of all line numbers for all
modules. (Note that /LINE can generate a large
volume of output.)

221

MS-LINK

Once MS-LINK locates all libraries, the linker
map displays a list of segments in the order of
their appearance within the load module. The

list might look like this:

Start Stop Length Name
OOOOOH OO9ECH O09EDH CODE
O0O9FOH 01166H 0777H SYSINITSEG

The information in the Start and Stop columns
shows the 20-bit hex address of each segment
relative to location zero. Location zero is the
beginning of the load module.

The addresses displayed are not the absolute
addresses where these segments are loaded. See
the following section on the MS-LINK DEBUG
program for information on how to determine
the absolute address of a segment.

2922

MS-LINK

Because the /MAP switch was used, MS-LINK
displays the public symbols by name and value.
For example:

ADDRESS PUBLICS BY NAME
009F:0012 BUFFERS

O09F:0005 CURRENT DOS LOCATION
O09F:0011 DEFAULT DRIVE
OO9F:000B DEVICE LIST

O09F:0013 FILES

O009F:0009 FINAL DOS LOCATION
OO9F:000F MEMORY SIZE

009F:0000 SYSINIT

ADDRESS PUBLICS BY VALUE
009F:0000 SYSINIT

009F:0005 CURRENT DOS LOCATION
O09F:0009 FINAL DOS LOCATION
O09F:000B DEVICE LIST

OO09F:000F MEMORY SIZE

009F:0011 DEFAULT DRIVE
O009F:0012 BUFFERS

009F:0013 FILES

The final line in the listing file describes the

program’s entry point:

Program entry point at 0009F:0000

2-23

MS-LINK

MS-LINK Error Messages

All errors, except for the two warning messages,
cause the link session to abort. After the cause
has been found and corrected, MS-LINK must be
rerun. The following error messages are
displayed by MS-LINK:

Attempt to access data outside of segment bounds,
possibly bad object module

There is probably a bad object file.

Bad numeric parameter

Numeric value is not in digits.

Cannot open temporary file

MS-LINK is unable to create the file VM.TMP
because the disk directory is full. Insert a new
disk. Do not remove the disk that will receive the
List. MAP file.

Error: dup record too complex
DUP record in assembly language module is too

complex. Simplify DUP record in assembly lan-
guage program.

224

MS-LINK

Error: fixup offset exceeds field width
An assembly language instruction references an
address with a short or near instruction instead

of a long or far instruction. Edit assembly
language source and reassemble.

Input file read error

There is probably a bad object file.

Invalid object module
An object module(s) is incorrectly formed or
incomplete (as when assembly is stopped in the
middle).

Symbol defined more than once

MS-LINK found two or more modules that
define a single symbol name.

Program size or number of segments exceeds capacity of
linker '
The total size may not exceed 384K bytes and
the number of segments may not exceed 255.
Requested stack size exceeds 64K

Specify a size less than or equal to 64K bytes
with the /STACK switch.

2-25

MS-LINK

Segment size exceeds 64K

64K bytes is the addressing system limit.

Symbol table capacity exceeded
Very many and/or very long names were typed
exceeding the limit of approximately 50K bytes.
Too many external symbols in one module

The limit is 256 external symbols per module.

Too many groups

The limit is ten groups.

Too many libraries specified

The limit is 8 libraries.

Too many public symbols

The limit is 1024 public symbols.

Too many segments or classes

The limit is 256 (segments and classes together
must total 256 or less).

2-26

MS-LINK

Unresolved externals: <list>
The external symbols listed have no defining
module among the modules or library files
specified.

VM read error
This is a disk error; it is not caused by
MS-LINK.

Warning: no stack segment
None of the object modules specified contains a
statement allocating stack space.

Warning: segment of absolute or unknown type
There is a bad object module or an attempt has
been made to link modules that MS-LINK
cannot handle (e.g., an absolute object module).

Write error in TMP file
No more disk space remains to expand the
VM.TMP file.

Write error on run file

Usually, this means there is not enough disk
space for the Run file.

2-27

DEBUG

3

e Overview
e How to Invoke DEBUG
e Debugging Commands

e Command Parameters

A Assemble
C Compare
D Display
E Enter

F Fill

G Go

H Hexarithmetic
I Input

L Load

M Move

N Name

O Output

Q Quit

R Register
S Search
T Trace

U Unassemble
W Write

e DEBUG Error Messages

31

DEBUG

Overview

The DEBUG utility is an executable object program
that resides on your MS-DOS diskette. DEBUG per-
forms the following functions:

e Allows you to single step through a program, instruc-
tion by instruction, for testing purposes.

e Changes register and file contents during the
DEBUG session so that you can test a code change
without reassembling your program.

e Makes permanent changes to diskette files so you can
use DEBUG to recover files that may otherwise be
lost.

e Supports a disassemble command so you can Vo
translate machine code instructions into their assem- ‘
bly language equivalents for testing purposes.

9,

32

DEBUG

How to Invoke DEBUG

filespec

arglist

The DEBUG program is invoked as follows:
DEBUG [filespec [,arglist]]

the name of the program file to be debugged.

An optional list of file name parameters and
switches. These will be passed to the program
specified by the filespec parameter. When the
program is loaded into memory, it is loaded as if
it had been invoked with the command

filespec arglist

That is, filespec indicates the file to be debugged,
and arglist is the rest of the command line that

is used when the file is invoked and loaded in
memory via COMMAND.COM.

If you enter DEBUG without parameters, since
no file name has been specified, current memory,
disk blocks, or disk files can be manipulated.

33

DEBUG

Comments

Examples

On entering the DEBUG environment DEBUG
responds with the hyphen (-) prompt and under-
line (_) cursor. You now may enter any DEBUG
command.

If you include the filespec in the command line,
the specified file is loaded into memory starting
at location 100 (hexadecimal). However, if you
specify a file with a .EXE extension, the pro-
gram is relocated to the address specified in the
header of the file. See the chapter on “Program
Structure and Loading” for information on the
format of the file header.

If the file has the HEX extension, the file is
loaded beginning at the address specified in the
HEX file. HEX files are in INTEL hex format

and are converted to memory image format by
DEBUG.

All DEBUG commands may be aborted at any
time by pressing <CTRL-C>. Pressing
<CTRL-S> suspends the display, so that you
can read it before the output scrolls away. After
suspending the display, press any key (except
<CTRL-S> or <CTRL-C>) to continue scrolling.

DEBUG <CR>.

The DEBUG session begins, but without loading
a file.

DEBUG b:myprog <CR>.

The DEBUG environment is entered and the file
named “myprog” is loaded into memory from
drive B.

3-4

DEBUG

When you invoke DEBUG, it sets up a program
segment prefix at offset 0 in the program work
area. You can overwrite this area if you enter
DEBUG without parameters. Moreover, if you
are debugging a file with a COM or EXE exten-
sion, do not tamper with the program header
below location 5CH, or DEBUG will terminate.

Do not restart a program after a “Program ter-
minated normally” message is displayed. You
must reload the program with the N and L
commands for it to run properly.

3-5

DEBUG

Debugging Commands

This section describes the DEBUG commands in
alphabetical order for ease of reference.

e Commands can be entered in either upper or
lower case.

e Command keywords and command parameters
can be separated from each other by spaces or
commas for readability but need not be, except
where two hexadecimal numbers are entered as
parameters, in which case they must be sepa-
rated by a comma or space. For brevity, the syn-
tax of this chapter will always indicate a comma
where separation is obligatory, but note that a
space can alternatively be used.

¢ Commands only become effective after entering
<CR>.

e If you make a syntax error when entering a
command, the message “Error” will be dis-
played. You must re-enter the command using
the correct syntax.

36

DEBUG

Command Parameters

address

byte

drive

The following DEBUG command parameters
require definition.

a hex value in one of the following formats:

a segment register designation and a hex offset
separated from each other by a colon. For
example:

DS:0300

a hexadecimal segment and offset separated
from each other by a colon. For example:

9D0:0100

a hexadecimal offset value. The DEBUG
command will use a default segment value from
either the DS or CS registers, depending on the
command. For example:

200

a one or two character hexadecimal value.

0, 1, or 2 depending on whether you wish to
select drive A, drive B or drive C, respectively.

3-7

DEBUG

range

value

a range of addresses. The range can be specified
as

address L value

where address specifies the start of the range and
value specifies the length of the range. For
example:

DS:300L30

indicates a range of 48 locations starting at
address 300 in the segment indicated by the DS
register.

The specified range cannot be greater than 10000
(hexadecimal). To specify this value enter 0000 (or
0) as the value parameter.

A range can also be specified as:
address,address

where the two addresses indicate the limits of the
range. A space may be used instead of a comma.

a 1 to 4 character hexadecimal value.

~

~

DEBUG

A (ASSEMBLE)

Syntax

Comments ®

Assembles 8086 mnemonics directly into
memory.

A [address]

Address is the start address into which the sub-
sequently entered line of mnemonics is to be
assembled. If this parameter is omitted, offset
100 from the segment in the CS register is
assumed, if you did not enter an Assemble
command previously. If you did enter Assemble
previously, the code assembles into the address
following the last instruction loaded by the pre-
vious Assemble command.

After you enter the Assemble command,
DEBUG displays the specified address followed
by the cursor. You may then enter a line of 8086
assembler mnemonics. On terminating the line
with <CR>, the line will be assembled into
memory starting at the specified location. The
address of the byte subsequent to the assembled
code will be displayed on the next line along
with the cursor to enable you to enter the next
line of code. If, instead of a line of 8086 mnemon-
ics, you simply enter <CR>, the Assemble com-
mand terminates and the DEBUG prompt
reappears.

All numeric values are hexadecimal and must be
entered as 1 to 4 characters without a trailing H.
Prefix mnemonics must be specified in front of
the opcode to which they refer. You may also
enter them on a separate line.

The segment override mnemonics are CS:, DS:,
ES: and SS:. The mnemonic for the far return is
RETF. String manipulation mnemonics must
explicitly state the string size. For example, use
MOVSB to move byte strings.

39

DEBUG

The Assemble command will automatically
assemble short, near, or far jumps and calls,
depending on byte displacement with respect to
the destination address. These may be overrid-
den with the NEAR or FAR prefix. For example:

0100:0500 JMP 502 ;a two-byte
;short jump

0100:0502 JMP NEAR 505 ;a three-byte
;near jump

0100:505 JMP FAR 50A ;a five-byte far
;jump

The NEAR prefix may be abbreviated to NE,
but the FAR prefix cannot be abbreviated.

DEBUG cannot tell whether some operands
refer to a word memory location or to a byte
memory location. In this case the data type must
be explicitly stated with the prefix “WORD
PTR” or “BYTE PTR”. Acceptable abbrevia-
tions are “WO” and “BY”. For example:

NEG BYTEPTR[128]
DEC WO|[SI]

DEBUG cannot distinguish whether an operand
refers to a memory location or to an immediate
operand. Enclose operands that refer to memory
locations in square brackets. For example:

MOV AX,21 ;Load AX with 21H
MOV AX|[21] ;Load AX with the contents of
;location 21H

3-10

DEBUG

Two pseudo-instructions are available with the
Asseimble command. The DB opcode will assem-
ble byte values directly into memory. The DW
opcode assembles word values into memory. For
example:

DB 1,2,3,4,“THIS IS AN EXAMPLE”
DB ‘THIS IS A QUOTE:"’

DB "THIS IS A QUOTE'"

DW 1000,2000,3000,"BACH"

The Assemble command suppofts all forms of
register indirect addressing. For example:

ADD BX,34[BP+2]. [SI-1]
POP [BP+DI]
PUSH [SI]

All opcode synonyms are supported. For
example:

LOOPZ 100
LOOPE 100
JA 200
JNBE 200

311

DEBUG

Example

1

Enter A200 <CR>.

DEBUG displays 09AC:0200_.

Enter MOV AX[21]<CR>.

The 8086 mnemoriics are assembled starting at

location 200. The byte location subsequent to the
assembled code is then displayed:

09AC:0203_
Enter <CR>.

The Assemble command terminates and the
DEBUG prompt reappears.

3-12

DEBUG

C (COMPARE)

Syntax

range

address

Comments e

Compares the contents of two areas of memory.

C range,address

the range of addresses defining the first area to
be compared. If no segment is specified, then the
segment specified in the DS register is assumed.

the start of the area to be compared with the
area specified by the range parameter.

The Compare command compares the area of
memory specified by the range parameter with
an area of the same size starting at the location
specified by the address parameter.

If the contents of the two areas are identical,
nothing is displayed. If there are differences,
then the differences are displayed in the form

<address1> <contents1> <contents2> <address2>

<address1> indicates the address in the first
area and <contentsl> its contents. <address2>
indicates the corresponding address in the
second area and <contents2> its contents.

3-13

DEBUG

Example 1 Enter C100,1FF,300<CR> or
C100L100, 300 <CR>.

2 The area of memory from 100 to 1FF is com-
pared with the area of memory from 300 to 3F'F.

3-14

DEBUG

D (DISPLAY)

Syntax

range

address

Comments ®

Displays an area of memory.

D [range] or
D [address]

the range of addresses whose contents are to be
displayed. If you enter only offsets, then the
segment specified in the DS register is assumed.

the address from which the display is to start.
The contents of this address and the subsequent
127 locations are displayed. If only an offset is
entered, then the segment specified in the DS
register is assumed.

If D is specified without parameters, then the
128 bytes following the last address to be dis-
played are displayed. If no location has yet been
accessed, the display will start from location
DS:100.

If D and the range parameter are specified, the
contents of that range of addresses are dis-
played. If this takes more than 24 screen lines,
the display is scrolled until the contents of the
final address in the range are displayed on line
24,

The display is displayed in two portions:

A hexadecimal display, where each byte is
represented by its hexadecimal value, and an
ASCII display, where the equivalent ASCII
character for the byte is displayed. If there is no
corresponding printable ASCII character, a
period (.) is displayed.

3-15

DEBUG

Example

1

Each line of the display begins with an address
followed by the hexadecimal contents of the 16
bytes starting from the addressed location. The
eighth and ninth bytes are separated by a
hyphen (-). The right-hand columns display the
equivalent ASCII values. Each line of the dis-
play, except possibly the first, begins on a 16
byte boundary.

Enter D 100,110 <CR>.
Lines 100H to 110H (inclusive) are displayed.

Enter D <CR>.

The 128 bytes starting from location 111H are
displayed.

Enter D200 <CR>.

The 128 bytes starting from location 200H are
displayed.

3-16

DEBUG

E (ENTER)

L

Syntax

address

bytevalue

Comments ®

Replaces the contents of memory locations at
the byte address(es) specified.

E address[,bytevalue[,bytevalue..]]

the address of the location whose value is to be
replaced; or the address of the first of a succes-
sion of locations whose contents are to be
replaced. If only an offset is specified, then the
segment indicated by the DS register is
assumed.

the value that is to replace the contents of the
specified address. The first bytevalue parameter
will replace the contents of the location specified
by the address parameter. A second bytevalue
will replace the contents of the location follow-
ing that specified by the address parameter, and
SO on.

If the command is entered without the byte
value list, then DEBUG displays the specified
address and its contents. The Enter command
then waits for you to perform one of the
following:

Replace the displayed bytevalue by entering
another value. Enter the new value after the cur-
rent value. If you enter an illegal value, or if you
type more than two diy; ‘s, the illegal or extra
character is not echoed.

Advance to the next byte by pressing
<SPACE>. To change the value of this byte
simply enter the value as described above. If you

3-17

DEBUG

Example

1

advance beyond an eight-byte boundary,
DEBUG starts a new display line with the
address displayed at the start of the line. To
advance to the next byte without changing the
current byte, press <SPACE> again.

To return to the previous byte enter hyphen (-).
DEBUG then starts a new display line with the
address of the byte you have returned to and its
contents. You can then change the contents of
this location as described above. To move back
one byte further without changing this value,
enter hyphen again, and another new display
line will be generated.

Terminate the Enter command by pressing
<CR>. This key may be pressed in any byte
position.

If you specify byte values in the command line,
then the first of these byte values will replace
the contents of the location specified by the
address parameter. Subsequent entries in the list
of byte values will replace subsequent bytes in
memory.

Enter E100 <CR>.

DEBUG displays something like 058D:0100
CD._

Enter 26.

the value of location 100 is changed to 26 and
DEBUG displays:

058D:0100 CD.26_

3-18

DEBUG

10

11
12

13
14

Enter <SPACE>.

The next byte (location 101) is displayed
058D:0100 CD.26 20._

Enter <SPACE>.

The next byte (location 102) is displayed
058D:100 CD.26 20. 00._

Enter <->.

The previous byte (location 101) is displayed on
the next line

058D:0100 CD.26 20. 00.
058D:0101 20._

Enter 30 <CR>.

The contents of location 101 are changed to 30
and the Enter command is terminated.

058D:0100 CD.26. 20. 00.
058D:0101 20.30

Enter E 200,26,04,19,23 <CR>.

The contents of byte locations 200, 201, 202
and 203 are changed to 26, 0A, 19 and 23,
respectively.

3-19

DEBUG

F (FILL)

Syntax

range

bytevalue

Comments e

Example 1
2

Fills an area of memory with specified byte
values.

F range,bytevalue[,bytevalue...]

the range of addresses whose contents are to be
overwritten with the specified bytevalues. If only
the offset is specified, then the segment indi-
cated by the DS register is assumed.

a two digit hexadecimal value that is to over-
write the contents of the specified address(es).

If the specified range contains more bytes than
the list of byte values, then the list of byte values
is repeated until the specified range is filled.

If the list of byte values is longer than the speci-
fied range, the extra byte values are ignored.

Enter FO4BA:100L100,42,45,48,37,20 <CR>.

DEBUG fills memory locations 04BA:100 to
04BA:1FF with the byte values specified. The
five values are repeated until all 256 locations
are filled.

3-20

DEBUG

G (GO)

Syntax

=address

address

Comments

Executes the program currently in memory,
optionally halting at specified breakpoint(s) and
displaying information about the system and
program environment.

G [=address][,address...]

the address in memory at which program execu-
tion is to start. “=" must be entered to distin-
guish a start address from a breakpoint address.

the breakpoint address. You can specify up to
ten breakpoints, in any order.

If you enter G without parameters, the program
currently in memory is executed starting from
the address specified by the CS and IP registers.

If you specify the =address parameter, the con-
tents of the CS and IP registers are changed to
those specified by the =address parameter and
the program in memory is executed, starting
from the address you specified.

If you specify one or more breakpoint addresses,
program execution stops at the first such
address encountered and displays the contents
of the registers, the state of the flags and the
next instruction to be executed (see the Register
command for a description of the display).

If only an offset is entered for an address, the
GO command assumes the segment in the CS
register.

321

DEBUG

If you enter more than ten breakpoints, DEBUG
will display

BP Error

Before executing the program, the GO command
replaces the contents of the breakpoint locations
with an interrupt instruction (hexadecimal CC).
Therefore, each breakpoint address that you
specify must point to the first byte of an 8086
instruction, or unpredictable results occur.

When program execution halts at a breakpoint
DEBUG restores the original values of all the
specified breakpoint locations. However, if the
program terminates normally (that is, not at a
specified breakpoint), the original values are not
restored.

Note: Once a program has reached completion
(DEBUG has displayed “Program terminated
normally”’) you must reload the program before
you can re-execute it.

The stack segment must have six bytes avail-
able at the stack pointer for this command,
otherwise unpredictable results occur. This is
because the GO command jumps into the user
program with the IRET instruction. The flag,
CS, and IP registers have to be pushed onto the
stack in preparation for the IRET, taking up six
bytes.

3-22

~

Example

1

DEBUG

Enter G=200,1AF,141 <CR>.

The program currently in memory is executed
starting from location 200. Assuming location
141 is encountered before 1AF, then the program
halts at location 141 and the register and flag
values are displayed along with the next
instruction to be executed. If neither breakpoint
location is encountered, then the program ter-
minates normally.

Enter G <CR>.
If, in step two, the program had halted at

location 141, then program execution continues
from that address.

3-23

DEBUG

H (HEXARITHMETIC)

Syntax

value_a

value_b

Comments

Example

1

Calculates and displays the sum and the differ-
ence of two hexadecimal values.

H value_a,value_b

The first of two hexadecimal values.

The hexadecimal value that is to be added to or
subtracted from value_a.

The hexadecimal values may be up to four digits
long.

The Hex command displays two four-digit
values:

— the first is the result of adding value_b to
value_a

— the second is the result of subtracting value_b
from value_a
Enter H19F,10A <CR>.

DEBUG displays
02A9 0095

Enter HFFFF,2 <CR>.

DEBUG displays
0001 FFFD

324

DEBUG

I ANPUT)

Syntax

value

Comments

Example

1
2

Inputs and displays (in hexadecimal) one byte
from the specified port.

Ivalue

the address of the port that the byte is to be
input from.

The port address can be up to 16 bits.

Enter I2F8.

the byte at the addressed port is input and
displayed.

325

DEBUG

L (LOAD)

Syntax

address

drive

block

count

Comments o

Loads a file or absolute disk blocks into memory.

L [address[,drive,block,count]]

the address in memory at which the file or range
of blocks is to be loaded. If only an offset is
entered, then the segment indicated by the CS
register is assumed.

the drive from which disk blocks are to be
loaded. For drive A you must enter 0, for drive B
you must enter 1, etc. :

the first of a range of blocks to be loaded from
the disk specified by the drive parameter.

the number of blocks to be loaded.

If all parameters are specified, then DEBUG
loads blocks of information from disk into
memory.

If you enter L. without parameters, or with just
the address parameter, the file whose file control
block is correctly formatted at location CS:5C is
loaded into memory. The file control block at
CS:5C is set either to the filespec specified when
the DEBUG command was invoked, or to the
filespec specified by the most recent “Name”
command.

The default location for programs to load is at
CS:100. If you specify L and the address
parameter, the file is loaded at the specified

3-26

DEBUG

Examples

address unless it is a .EXE or .HEX file. In any
case DEBUG sets the BX:CX registers to the
number of bytes loaded.

If the file has an EXE extension, then it is relo-
cated to the load address specified in the header
of the .EXE file. That is, the address parameter
to the Load command is ignored. The header
itself is stripped off the .EXE file before the file
is loaded into memory. Thus the size of the .EXE
file on disk will differ from its size in memory.

If the file is a .HEX file, entering the Load com-
mand with no parameters causes the file to be
loaded starting at the address specified within
the .HEX file. If the address parameter,
however, is specified, then loading starts at the
address which is the sum of the address
specified and the address in the .HEX file.

The following examples assume the system to be
initially in MS-DOS.

Enter debug <CR>
Nb:file.com <CR>
L <CR>.

Debug is entered and the subsequent Name
command sets the file control block at CS:5C to
identify file “file.com” on the diskette inserted in
drive B. The Load command then loads this file
into memory starting at CS:100 (the default
address).

Enter debug b:file.com <CR>
L300 <CR>.

file.com is loaded into memory at location
CS:100 by the DEBUG command. It is then
relocated to CS:300 by the Load command.

3-27

DEBUG

Syntax

range

address

Comments

Example

1

M (MOVE)

Moves the contents of a specified range of
memory addresses to the locations starting at a
specified address.

M range,address

The area of memory whose contents are to be
moved. If you only enter an offset, the segment
indicated in the DS register is assumed.

The start of the destination area. If you only
enter an offset, then the segment indicated by
the DS register is assumed.

If the source and destination areas overlap, the
move is performed without loss of data.

The contents of the source area are not changed
by the move, unless the destination area over-
laps it.

If you specify an address as the end of the
range, you must only enter the offset. The seg-
ment specified, or defaulted to, in the start
address of the range is assumed.

Enter MCS:100,110,CS:500 <CR> or
MCS:100L11,CS:500 <CR>.

The 17 bytes starting at location CS:100 are
copied to the 17 bytes starting at location
CS:500.

328

DEBUG

N (NAME)

Syntax

filespec

Comments

Provides file names for the Load and Write
commands or file name parameters for the pro-
gram to be debugged.

N filespec|.filespec...]

the file specifier of a file to be loaded into
memory, written to diskette, or used as a file
name parameter to the file currently in memory.

The Name command can be used to provide:

the name of the disk file to be loaded into

‘memory by a subsequent Load command

the name to be assigned to the file currently in
memory when the file is subsequently written to
disk

file name parameters to the file in memory to be
debugged.

The first case enables you to specify the file you
wish to debug after entering the DEBUG envi-
ronment. That is, you can enter DEBUG without
specifying parameters, then use the Name com-
mand to name the disk file you wish to debug,
then load the file into memory using the Load
command. This has the same effect as entering
the file name as the first parameter to the
DEBUG command upon invocation. In either
case the file control block for the file to be
debugged is set up at location CS:5C and the file

" is loaded.

3-29

DEBUG

Examples 1

In the second case, the file is already in memory
and the Name command sets up the file control
block for the specified file name at location
CS:5C. When a Write command is subsequently
entered the file in memory is written to disk with
the file name whose file control block is set up at
location CS:5C.

In the third case, the Name command provides
file name parameters for the program currently
in memory. Whatever file control block was set
at CS:5C is replaced by that of the first such
parameter. If a second file parameter is speci-
fied, its file control block is set up at location
CS:6C. Only two file control blocks are set up,
although additional file name parameters may
be included if required. All the specified —
including any delimiters and switches that may
have been typed — are placed in a save area at
CS:81, with CS:80 containing a character count.
Parameters specified in this way are analogous
to file names specified in the argument list to the
DEBUG command.

Enter DEBUG <CR>
Nb:file.com <CR>
L <CR>.

The system enters the DEBUG environment and
FILE.COM resident on drive B has its file con-
trol block set up at location CS:5C. The Load
command subsequently loads this file into
memory.

This sequence has the same effect as entering

*DEBUG b:file.com”

3-30

~

)

DEBUG

Enter Nb:newfile.com <CR>
W <CR>

The file control block is set up at location CS:5C
for the file specifier “b:newfile.com”. The subse-
quent Write command writes the file currently in
memory to drive B and names the file
“newfile.com”.

Enter DEBUG b:file 1.com <CR>
Ntile2.dat file3.dat <CR>
G <CR>

The DEBUG command loads the file named
“filel. com” from drive B to be debugged. The
Name command sets up two file control blocks
at locations CS:5C and CS:6C for the file specifi-
ers b:file2.dat and b:file3.dat, respectively. These
files then become parameters to filel.COM when
the subsequent GO command executes filel-
.COM. Therefore, the file is executed as if the fol-
lowing command line had been typed:

biilel file2.dat file3.dat

3-31

DEBUG

O (OUTPUT)
Sends a specified byte to an output port.
Syntax O value,byte
value the address of the output port. It must be speci-

fied in hexadecimal and can be up to 16 bits.

byte a two-digit hexadecimal value to be sent to the
specified port.

Example 1 o1g 27<cr>

9 M

the byte value 27H is output to the port 1IEH.

3-32

DEBUG

Q (QUIT)

Syntax

Comments

Terminates the DEBUG program.

Q

The Quit command terminates the debugger
without saving the file you are working on. Con-
trol is returned to MS-DOS command mode.

3-33

DEBUG

R (REGISTER)

Syntax

register-
name

Comments

Displays the contents of the registers and flag
settings, or displays the contents of a specified
register with the option to change that value, or
displays the flag settings with the option of
reversing any number of those settings.

R [register-name pipe: F]

any valid register name whose contents are to be
examined and optionally changed. This may be
one of:

AX DX SI ES IP
BX SP DI SS PC
CX BP DS CS

Note: IP and PC both refer to the Instruction
Pointer.

the flag settings are to be displayed and option-
ally changed.

If you enter R without parameters, then the con-
tents of all registers are displayed along with the
flag settings and the next instruction to be exe-
cuted. For Example:

AX=058D BX=0000 CS=0000 DX=0000
SP=FFFO BP=0000 SI=0000 DI=0000 DS=058D
ES=058D CS=058D IP=013B

NV UP EI PL NZ NA PO NC

058D:013B 83D8 MOV DS,AX

If you enter R with a register name, then
DEBUG displays the contents of that register.
The command then waits for you to do one of
the following:

3-34

DEBUG

— press <CR> to terminate the Register
command without changing the value of the
displayed register.

— change the value of the register by entering
the four-digit hexadecimal value, then
terminate the Register command by entering
<CR>.

The valid flag values are shown in the following
table:

Flag Name Set Clear
Overflow OV (yes) NV (no)
Direction DN (decrement) UP (increment)
Interrupt El (enabled) DI (disabled)
Sign NG (negative) PL (plus)

Zero ZR (yes) NZ (no)
Auxiliary AC (yes) NA (no)
Carry

Parity PE (even) PO (odd)
Carry CY (yes) NC (no)

If you enter RF, then the current flag settings
are displayed. You can then either

— press <CR> to terminate the Register
command without changing the flag values,
or

— change the setting of one or more flags by
entering the alternate value of the
appropriate flags. The new values may be
entered in any order, with or without
delimiters.

3-35

DEBUG

Example 1

10

11
12

Enter R <CR>.

DEBUG displays the contents of all registers,
flag settings and the next instruction to be exe-
cuted.

Enter RIP <CR>.

DEBUG displays the contents of the Instruction
Pointer. For example:

IP 0139

Enter 0138 <CR>.

the contents of the Instruction Pointer are
changed to 0138.

Enter RF <CR>.

DEBUG displays the flag settings. For example:
NV UP EI PL NZ NA PO NC-

Enter PE ZR DI NG <CR>.

The Parity flag is set to even (PE), the Zero flag

is set (ZR), the Interrupt flag is cleared (DI), and

the Sign flag is set (NG).

Enter RF <CR>.

DEBUG displays the new state of the flags
NV UP DI NG ZR NA PE NC-

3-36

DEBUG

S (SEARCH)

e

Syntax

range

list

Comments

Example

1

2

Searches a specified range for a list of bytes.

S range,list

the range of addresses within which the search
is to be made. If you only enter the offset, the
segment indicated by the DS register is
assumed.

the list of one or more bytes to be searched for.
Bytes in the list must be separated by a space or
a comma.

For each occurrence of the list of bytes within
the specified range, DEBUG returns the address
of the first byte. If no address is returned, no
match was found.

Enter S100L100,20 <CR> or
S100,1FF,20 <CR>.

DEBUG displays the address of every occur-
rence of byte value 20 in the address range 100
to 1FF, inclusive, for example:

058D: 010C
058D: 0110
058D: 0115
058D: 0118
058D: 0120
058D: 0128
058D: 01CE

3-37

DEBUG

Syntax

= address

value

Comments

Example

1

T (TRACE)

Executes one or more instructions and displays
the register contents, flag settings and the next
instruction to be executed.

T [=address][,value]

DEBUG is to commence execution at this
address.

the number of instructions to be executed.

If the =address parameter is not specified, execu- A
tion begins at CS:IP.

If the value parameter is not specified, only one
instruction is executed.

The display generated is of the same format as
that of the Register command (without
parameters).

Enter T = 200,5 <CR>.

Five instructions, starting with the one at loca-

tion CS:200, are executed, and the register and

flag values following each instruction are

displayed along with the next instruction to be 7~
executed. ‘

Enter T <CR>.
The instruction pointed to by CS:IP is executed

and the register and flag contents are displayed
along with the next instruction to be executed.

3-38

DEBUG

U (UNASSEMBLE)

S

Syntax

range

address

Comments e

Disassembles strings of bytes in memory and
displays them as assembler-like statements
along with their corresponding addresses.

U [range]
or
U [address]

the range of addresses whose byte values are to
be disassembled. If you do not specify the seg-
ment, then the segment indicated by the CS reg-
ister is assumed.

the start of a 32 byte area of memory to be dis-
assembled. If you only enter an offset, then the
segment indicated by the CS register is
assumed.

If neither the range nor address parameter is
specified, then 32 bytes are disassembled start-
ing at location CS:IP. If the Unassemble
command is given more than once, each
subsequent invocation starts at the address
following the last disassembled location.

The number of bytes disassembled may be
slightly more than the number you specified.
This is because instructions are not always the
same length and the final address in a range
will not always contain the last byte of an
instruction.

The first address of a range, or the address
parameter, must always refer to the first byte of
an 8086 instruction, otherwise results are
unpredictable.

3-39

DEBUG

Example 1 Enter U0O58D:204L8 <CR>.

2 Eight bytes starting at location 058D:204 are
disassembled and the result displayed:

058D:0204 8D16DFOD LEA DX, [ODDF]
058D:0208 42 INC DX
058D:0209 03DO ADD DXAX
058D:020B 8916E50B MOV [OBE5],DX

3-40

DEBUG

W (WRITE)

Syntax

address

drive

block

count

Comments e

Writes the file being debugged to disk.
W [address[,drive,block,count]

the start address of the code in memory that is
to be written to disk. If you enter only an offset,
then the segment indicated in the CS register is
assumed.

the drive containing the specified blocks to
which code in memory is to be written. For drive
A you must enter 0, for drive B you must enter 1,
etc.

the block number on disk that is the first of a
contiguous range of blocks to be overwritten
with code from memory.

the number of disk blocks to be overwritten with
code from memory.

If you enter the WRITE command without

parameters, then the file is written to disk start-
ing from memory address CS:100. If you specify
the address parameter, then the file in memory,

starting from the specified address, is written to
disk.

In either case, before executing the WRITE
command, BX:CX must be set to the number of
bytes to be written if the count parameter is not
included. This value was set up correctly when
the file was loaded (either by the Load command
or the DEBUG command itself). However, if,
since loading the file, you have executed a GO or

3-41

DEBUG

[]
[J
[
Examples 1

TRACE command, then the value of BX:CX will
have been changed. Be sure this value is set up
correctly. :

When the WRITE command writes a file to disk,
it obtains the drive specifier and file name via
the file control block set up at CS:5C. If no drive
specifier is set up, then the default is assumed.
This file control block is set up either by the
DEBUG command (for the file you specify as a
parameter to DEBUG) or by a subsequent
NAME command. If it does not indicate the file
specifier you require, you must set up this file
control block using the NAME command. Refer
to “Memory Maps, Control Blocks, and Diskette
Allocation” for further details.

When the file is written to disk it overwrites the
version currently on disk unless the specified file
name does not exist, in which case a new file is
created.

If all parameters are specified, then the code in
memory is written to the drive specified by the
parameter. The data to be written starts at the
memory location specified by the address
parameter, and is written to the blocks on the
disk specified by the block and count parame-
ters. Be extremely careful to correctly specify the
blocks, since information stored there previously
will be destroyed by this operation.

Enter W <CR>.

The file in memory, starting from location
CS:100, is written to disk with the file specifier
defined by the file control block set up at
location CS:5C. The number of bytes written is
given by BX:CX.

3-42

' DEBUG

2 Enter W200 <CR>.

The file in memory, starting from location
CS:200, is written to disk with the file specifier
defined by the file control block set up at loca-
tion CS:5C. The number of bytes written is given
by BX:CX.

3 Enter W200,1,1F,20 <CR>.

Blocks 1F through 3F on drive B are overwritten
with the data starting at memory location
CS:200.

3-43

DEBUG

BF

BP

BR

DF

DEBUG ERROR MESSAGES

Bad Flag

You attempted to alter a flag, but entered some
characters that are not acceptable pairs of flag
values. See R (Register) command for the list of
acceptable flag entries.

Too many Breakpoints

You specified more than ten breakpoints as
parameters to the GO command. Reenter the
command with ten or fewer breakpoints.

Bad Register
You entered the R command with an invalid reg-
ister name.

Double Flag
You entered two values for one flag.

3-44

~

4

Overview
The 20-Bit Address

8086

Addressing

Scheme

Aligned and Non-Aligned Words

Registers and Flags

Code, Data, and Stack Segments

Addressing Modes

41

8086
Addressing
Scheme

Overview

The 8086 microprocessor has an extremely flexible
addressing scheme. The 8086 uses a 16-bit word, but
can address a megabyte of memory. The 8086 sup-
ports seven different addressing modes.

To take advantage of the flexibility of the 8086, so
that you can write assembly language code and navi-
gate through programs while debugging, study the
addressing scheme by carefully reading this chapter.

4-2

8086
Addressing
Scheme

The 20-Bit Address
L.

The AT&T Personal Computer 6300 utilizes the
full address space that is available due to the
design of the 8086 microprocessor. The
addresses are 20 bits long, so the address space
is two to the twentieth power, 1024K, or one
megabyte.

The 8086 has a 16-bit word. To convert 16-bit
words to a 20-bit address, the 8086 uses “seg-
mented addressing.” A 20-bit address is created
by using values from two separate registers.
Two 16-bit numbers are used.

The binary representation of the first number is
considered to have four binary zeroes tacked on
to its end. This effectively multiplies the number
by 16. This value is known as the segment por-
tion of the address. The segment portion can
point to any 16-byte segment of memory in the
megabyte address space. However, with four
zeroes as its least significant bits, it cannot
“zero in” on individual bytes. The segment reg-
ister’s function is just to point to a 16-byte bound-
ary (also known as a paragraph boundary).

Once a segment is located, the other register
comes into play. This “offset register” points to
the relative part of the address. The 16 bits that
comprise the offset register point to an individ-
ual byte which is relative to the start of the
segment.

4-3

8086
Addressing
Scheme

Syntax

Example

The 8086 locates a particular address by:

Shifting the segment register to the left by four
bits

Adding the contents of the offset register
The 20-bit address is conventionally expressed
in special notation:

<segment register>:<offset register>

O09F:0012

Segment address O09FO0
+ Relative address 0012

= Actual Address 00A02

4-4

8086
Addressing
Scheme

Aligned and
Non-Aligned Words

The instructions for the 8086 are made up of
from one to six bytes. Instructions can start at
either an even or odd address. The 8086 is capa-
ble of accessing two bytes of data in memory in
a single memory cycle. When the CPU accesses
a word (16 bits) located at an even address, it is
accessing an “aligned” word. The word is
aligned because both bytes are located at the
same word address and can be accessed in a
single memory cycle.

When the CPU accesses a word starting at an
odd address, it is accessing a “non-aligned”
word. Since the two bytes comprising the word
do not occupy the same word address, two
memory cycles are required to read the entire
word.

The importance of aligned or non-aligned words
is determined by the importance of execution
speed in your application. It is good program-
ming practice to store data starting at an even
address. If your program accesses or manipu-
lates many word quantities, this will help speed
program execution. If you are writing a device
driver and instruction cycle times affect the
execution of your program, the impact of aligned
and non-aligned words should be taken into
consideration.

4-5

8086
Addressing
Scheme

Registers and Flags

General
Registers

There are two main groups of general registers
used by the 8086: the data group and the pointer
and index group. Each register is 16 bits wide.

The data registers are AX, BX, CX, and DX.
Each can be used as a single 16-bit register or as
two 8-bit registers. When they are used as two
8-bit registers, they are divided into an upper(H)
and lower(L) half and called AH, AL, BH, BL,
CH, CL, DH, and DL.

The pointer and index registers are 16-bit regis-
ters. They are named according to their func-
tions: SP (stack pointer), BP (base pointer), SI
(source index), and DI (destination index).

4-6

8086
Addressing
Scheme

Segment
Registers

Instruction
Pointer

Flags

There are four segment registers in the 8086.
Each register is 16 bits and their names reflect
their use:

CS — Code Segment
Always defines the current code segment.

DS — Data Segment
Usually defines the current data segment.

SS — Stack Segment
Always defines the current stack segment.

ES — Extra Segment
Can define an auxiliary data segment.

These registers are used in combination with
other registers to form the 20-bit address. Each
segment begins on a paragraph (16 byte) bound-
ary. There are four “current” segments at any
one time. The contents of each segment register
is called the “segment base value”. The sections
on “Code, Data, and Stack Segments” and
“Addressing Modes” give details on how these
registers are utilized.

The instruction pointer (IP) is used in conjunc-
tion with the Code Segment register to point to
the address of the next executable instruction.
The IP is also a 16-bit register.

The 8086 has nine 1-bit status or condition flags
that are used to indicate the condition of the
result of an arithmetic or logical operation that
has just occurred. Some of the assembly lan-
guage instructions use these flags to condition-
ally change the execution path of a program.

4-7

8086
Addressing
Scheme

Flag
Definitions

AF

CF

OF

SF

PF

ZF

Auxiliary Carry Flag
This flag is set (i.e., equal to 1) under two
conditions:

During addition there is a carry of the low
nybble to the high nybble. (nybble = 4 bits)

During subtraction there is a borrow from
the low nybble to the high.

Carry Flag

This flag is set when there has been a carry
or a borrow to the high-order bit of the (8- or
16-bit) result of an operation.

Overflow Flag

When this flag is set, an arithmetic over-
flow has occurred and a significant digit
has been lost.

Sign Flag

This flag is set when the high-order bit of
the result of an operation is a logical 1.
Since negative binary numbers are
represented using two’s complement
notation, SF reflects the sign of the result: 0
indicates a positive number and 1 indicates
a negative number.

Parity Flag

If this flag is set, the result of the operation
has an even riumber of ones in it. Use this
flag to check for data transmission errors.

Zero Flag
This flag is set when the result of an opera-
tion is zero.

4-8

~

8086
Addressing
Scheme

Flag
Definitions
(Cont’d)

TF

IF

DF

Trap Flag

When set, the trap flag puts the system into
single-step mode for the purposes of debug-
ging. An internal interrupt is generated
after each instruction so that you can
inspect your program one instruction at a
time.

Interrupt-enable Flag
If this flag is set, external (inaskable) inter-
rupts are recognized by the 8086.

Direction Flag

This flag is set and cleared by the STD (Set
Direction Flag) and CLD (Clear Direction
Flag) instructions. If it has the value 1, SI
and DI are decremented during string move
operations. If it has the value of 0, SI and
DI are incremented during string move
operations. This flag is used for the follow-
ing instructions: MOVS, MOVSB,
MOVSW, CMPS, CMPSB, and CMPSW.

The flag register looks like this:

Bit 1514 13121110 9 8 7 6 5 4 3 2 1 0

— |OF|DF|IF |TF|SF |ZF| — |AF|— |PF |— |CF

FLAGSh

FLAGS1

49

8086
Addressing
Scheme

CPU
Registers

AX

BX

CX

DX

AH AL
BH BL
CH CL
DH DL

SP

BP

SI

DI

IP

FLGSh | FLGS1

Cs

DS

ES

SS

accumulator
base
count

data

stack pointer
base pointer
source index

destination index

instruction pointer

flags

code segment
data seg
extra seg

stack seg

4-10

8086
Addressing
Scheme

Code, Data, and
Stack Segments

Code
Segment

Data
Segment

Extra
Segment

Stack
Segment

When you invoke a program, MS-DOS loads all
of its segments into memory on paragraph
boundaries. The segment registers are set to
point to these locations. The data, code, and
stack segments aren’t necessarily far apart in
memory; they may, in fact, overlap. Each seg-
ment may be up to 64 KB in length.

Programs are limited to 64K of code, unless they
change the value in the CS register. If a pro-
gram changes the CS register, it may address up
to 1024K of code.

The CS register is modified by the FAR CALL
and FAR RETurn instructions. Use these
instructions to execute code that is located out-
side the bounds of the current segment.

Most programs use a maximum of 64 KB of
memory for data. This includes Pascal and
compiled BASIC. Assembly language programs,
however, can use additional memory for data by
employing the Extra Segment.

The extra segment may be used in any manner
you wish lsut is often used for transferring large
blocks of data quickly in memory or as a storage
area for a second stack.

Stacks are used for temporarily storing register
contents and other important values under these
conditions:

Interrupts
Inter-segment calls
One program calls another

4-11

8086
Addressing
Scheme

Addressing Modes

General
Comments

Immediate
Addressing

Register
Addressing

The flexible architecture of the 8086 supports
many different memory-addressing modes.
These can be broken down into six main types of
addressing: immediate, register, direct, register
indirect, and two kinds of calculated addressing.
The following section discusses these modes and
concerns the nature of the operand.

In the immediate addressing mode, the operand
appears in the instruction. For example,

MOV AX,333

moves the constant value 333 into the AX
register.

The register addressing mode uses the contents
of one of the registers as the operand for the
instruction. The instruction can specify that
either 8 bits or 16 bits are to be manipulated. For
example:

MOV AX,BX ;moves 16 bits from BX to AX
MOV AL,BL ;moves 8 bits from BL to AL

4-12

~

8086
Addressing
Scheme

Direct
Addressing

Register
Indirect
Addressing

The direct addressing mode specifies a location
in memory whose contents are used as the ope-
rand for the instruction. Example:

MOV CX,COUNT

This instruction uses the value found in the
memory location designated by the symbol
COUNT. Unless otherwise specified, COUNT is
expected to be somewhere in the Data Segment.
To specify that the operand is located in a seg-
ment other than the data segment, use the
“segment override prefix:”

MOV CX,ES:COUNT

This syntax specifies that COUNT is located in
the Extra Segment.

With the register indirect addressing mode, the
16-bit offset address is contained in a base or
index register. That is, the offset address resides
in the BX, BP, SI, or DI register. Example:

MOV AX,[SI]

The 16-bit offset contained in the SI register is
combined with the data segment register to
compute the 20-bit address of the operand to
move into register AX. Which segment register
is used to compute the address depends on which
instruction you are using (i.e., data segment or
segment override for MOV, code segment for
JMP or CALL, etc.).

4-13

8086
Addressing
Scheme

Calculated
Addressing
Modes

The calculated addressing modes are like a com-
bination of register indirect mode and direct
addressing mode. There are two calculated
addressing modes: single index and double
index. In single index addressing, a 16-bit offset
from the BX, BP, SI or DI register is added to an
offset location in memory specified in the in-
struction. The combined value of these two items
provides the offset into memory from which the
operand is fetched. If the BP register is used the
offset is from within the stack segment; other-
wise the offset is from within the data segment.
As always, use of a segment override prefix can
change this. Examples:

MOV AX, COUNT[DI]
MOV AX, RECORDI[BP]

In double index calculated addressing mode,
values from two 16-bit registers are added to an
optionally specified location in memory to pro-
duce the final offset. Either the BX or BP regis-
ter is used for one of the register values, and the
SI or DI register is used for the other one. If only
two registers are given with no memory location,
the memory location defaults to 0000 (start of
segment). Once again, the default calculation is
from the stack segment if the BP register is
used; if BX is used the default is from the data
segment. Examples:

MOV AX, COUNT[BX+SI]
MOV AX, RECORDI[BP] [DI]
MOV AX, [BX][DI]

4-14

Control Blocks

Memory Maps
5 Diskette Allocation

e Overview

o The Address Space

¢ Low Memory Map

¢ ROM BIOS Data Area
¢ File Control Blocks

e ASCIIZ Strings

e Handles

e Diskette Layout

e Diskette Directory

¢ File Allocation Table

¢ Diskette Formats

51

Memory Maps
Control Blocks
Diskette Allocation

Overview

The purpose of this chapter is to enable you to .
locate items in memory or on diskette for the
purposes of programming and debugging.

The first portion of the chapter contains detailed
memory maps of the RAM and ROM memory
areas. The sections on control blocks deal with
program file formats and I/0 data structures.
The last part of this chapter describes how data
is organized on the diskette.

)

5-2

Memory Maps

Control Blocks
Diskette Allocation
The Address Space
L.]
Hex Decimal Contents
00000 0K Interrupt vectors (see detail in low memory
map)
04000 16K DOS software
08000 32K Language, applications programs and
data

Note: There is at least 98,000 hex or 608K
of address space reserved for user pro-
grams and data. To take advantage of the
full amount, you must have purchased and
installed the physical memory.

A0000 640K Reserved for extended graphics

B0000 704K Monochrome display buffer — Not used
B8000 736K Color/graphics display buffer(s) v
C8000 800K Fixed disk adapter’s ROM (Optional)
F0000 960K Reserved for ROM expansion

FCO000 1008K ROM BIOS

5-3

Memory Maps
Control Blocks
Diskette Allocation

Low Memory Map

Hexadecimal addresses are in segment:offset format.

Hex Decimal Contents
0:0000 0 Interrupt vectors 0 - 7
8259 interrupt controller vectors (8-F)
0:0040 64
0:0080 198 BIOS interrupt vectors 10-1F
0:0100 256 MS-DOS interrupt vectors 20-3F
Assignable interrupt vectors (40-FF)
Note: These vectors may be assigned to
non-Intel hardware and software
0:0400 1024 products.
ROM BIOS data area (also called BIOS
communications area) See map on next
0:0500 1280 _bage.
DOS data area (also called DOS com-
0:0600 1536 munications area)

54

Memory Maps
Control Blocks
Diskette Allocation

ROM BIOS Data Area

Hex addresses are in segment:offset format.

Hex Decimal Contents
0:0400 1024 Hardware environment parameters
(printer and RS232C device addresses,
0:0417 1047 memory size, etc.)
0:043E 1086 Keyboard buffer and status bytes
0:0449 1097 Floppy and hard disk status bytes
Video display area (current mode, color
pallette, cursor position, active page
0:0467 1127 numbers, etc.)
Data area for option ROM and 8253
N o 1137 timer chip
Fixed disk, I/0 timeouts, and more key-
0:0488 1160 board status information
00500 1280 RESERVED

Inter-applications communications area

5-5

Memory Maps

Control Blocks
Diskette Allocation
File Control Blocks
FCB The standard File Control Block (FCB) contains
Format 37 bytes of file control information. The extend-

ed File Control Block is used to create or search
for files in the disk directory that have special
attributes. If the extended FCB is used, it adds a
7-byte prefix to the standard FCB.

Any of the DOS functions which employ FCBs
may use either an FCB or an extended FCB.
(See chapter 7 for a description of each DOS
function call.)

If you are using an extended FCB, set the appro-
priate register to the first byte of the prefix, not
to the first byte of the standard FCB, before exe-
cuting the function call.

56

Memory Maps

Control Blocks
Diskette Allocation
-7
(1)
attri-
FFH Zeros bute
0
(2
Drive Filename (first 7 bytes) or Reserved
Device Name
8
File- Filename Current Record
name . v
(1 byte) extension block size
10
*) *) *) *)
File size File size Date of Time of
18 (low part) (high part) last write last write
*)
Reserved for system use
20
Current| Random record] Random record
record | no.(low part) | no. (high part)
(1) FCB extension
(2) Standard FCB

(*) Areas with an asterisk are filled by DOS and must not be modified.
Other areas must be filled by the using program.

5-7

Memory Maps
Control Blocks
Diskette Allocation

Offsets are in decimal.

Byte

Function

0

1-8

9-0B

OC-OD

OE-OF

10-13

Drive number

Before open: 0 — default drive
1 —drive A
2 — drive B etc.

After opca: 1 —drive A
2 —drive B etc.

A 0is replaced by the actual drive
number when the file is opened.

Filename, left-justified, padded with
trailing blanks. If a reserved device
name is placed here (e.g., LPT1,) do not
include the optional colon.

Filename extension, left-justified, with
trailing blanks (may be all blanks).

Current block number relative to the
beginning of the file (starting at zero).
A block is defined as a group of 128
records. This field is set to 0 when the
file is opened. This field and the Cur-
rent Record field (offset 20H) make up
the record pointer that is used for
sequentia' reads and writes.

Logical record size in bytes. Automati-
cally set to 80H during open. If this is
not correct, set it to the correct value.

File size in bytes. The first word of the
field is the low-order part of the size.

5-8

Memory Maps
Control Blocks
Diskette Allocation

Byte

Function

14-15

16-17

18-1F

20

21-24

Date the file was created or last up-
dated. The bits correspond to the date
as follows:

< 15 >< 14
1514131211109 8 76543
d

Yy Y Yy yyymmmmd

yy =0-119 (1980 to 2099)
mm=1-12
dd=1-31

Q-OV

21
dd

Time the file was created or last up-
dated. The bits correspond to the time
as follows:

< 17 > <K 16 >
1514131211109 8 76543210
h hhhbhmmmmmmsssss

hh=0-23

mm=0-59

ss =0 - 30 (number of 2-second
increments)

Reserved for use by DOS.

Current relative record number (0-127)
within the current block. Set this field
before doing sequential read/write
operations; it is not initialized by the
Open File function call.

Relative record number; relative to the
beginning of the file, starting with zero.

59

Memory Maps
Control Blocks
Diskette Allocation

Extended
Control
Block

Byte

Function

This field is not initialized by the Open
File function call and must be set before
doing a random read or write. If the
record size is less than 64 bytes, both
words of the field are used; otherwise,
only the first three bytes are used.

Note: If you use the FCB at offset 5CH
of the Program Segment Prefix, the last
byte of the Relative Record field is the
first byte of the unformatted parameter
area that starts at offset 80H. This is
the default Disk Transfer Address.

Byte

Function

FCB-7

Contains hex FF to indicate this
is extended FCB.

FCB-6to Reserved

FCB-2

FCB-1

Attribute byte. 02 = Hidden file
04 = System file

5-10

Memory Maps
Control Blocks
Diskette Allocation

ASCIIZ Strings
“

MS-DOS version 2.11 provides a set of new func-
tion calls for file I/0 that are easier to use than
the “traditional” calls that were used in past
versions. These new calls do not utilize file con-
trol blocks. To open a diskette file, you simply
provide information to identify the file in the
form of an ASCIIZ string. DOS returns a
numeric value, a “handle”, that you use to refer
to the file once you have opened it.

The older function calls that require the use of
file control blocks and do not utilize ASCIIZ
strings and handles are supported in MS-DOS
2.11 to provide upward compatibility. Use the
newer function calls whenever possible. See
Chapter 7 for details of function calls.

ASCIIZ An ASCIIZ string, also known as a pathname
String string, has the following format: an optional
Format drive specifier, followed by a directory path, and

where applicable, a filename. The last byte must
be binary zeroes. For example:

ANLEVELA\LEVELB\FILEA
(followed by a byte of zeroes)

Either back slash (\) or forward slash (/) are
valid path-separator characters.

511

Memory Maps

Control Blocks
Diskette Allocation
Handles

Several of the new function calls that support
files or devices use an identifier known as a
“handle” (also known as a “token”). When you
create or open a file or device with these function
calls, a 16-bit value is returned in register AX.
Use this handle to refer to the file after it has
been opened.

The following handles are pre-defined by DOS
for your use. You need not open them before
using them:

0000 Standard input device

0001 Standard output device

0002 Standard error output device

0003 Standard auxiliary device N
0004 Standard printer device

Note:
See your MS-DOS User’s Guide for information
on redirecting I1/0 for the first two handles.

512

Memory Maps
Control Blocks
Diskette Allocation

Diskette Layout

Clusters

The DOS area of the diskette is formatted as
follows:

Reserved Area — variable size

First copy of file allocation table — variable size

Second copy of file allocation table — variable
size

Root directory — variable size

File data area

Space for a file in the data area is not preallo-
cated. The space is allocated one “cluster” at a
time. A cluster consists of one or more consecu-
tive sectors; all of the clusters for a file are
“chained” together in the File Allocation Table
(FAT). On diskettes formatted by MS-DOS 2.11,
there are two copies of the FAT kept, for consis-
tency. Should the disk develop a bad sector in
the middle of the first FAT, the second is used
as a backup.

513

Memory Maps
Control Blocks
Diskette Allocation

Diskette Directory

The FORMAT command builds the root direc-
tory for all disks. Its location on disk and the
maximum number of entries are dependent on
the media.

Since directories other than the root directory
are regarded as files by MS-DOS, there is no
limit to the number of files they may contain.

All directory entries are 32 bytes in length, and
are in the following format (byte offsets are in
hexadecimal):

Directory 0-7 Filename. Eight characters, left aligned

Format and padded, if necessary, with blanks. If
this is not currently a file directory entry,
the first byte of this field indicates the
status as follows:

00H The directory entry has never been
used. This is used to mark the end of
the allocated directory and limit the
length of directory searches, for per-
formance reasons.

2EH The entry is for a directory (2EH is
the ASCII code for the dot ‘.’ char-
acter used to represent a directory). If
the second byte is also 2EH (i.e., the
entry is ‘..”), then the cluster field con-
tains the cluster number of this direc-
tory’s parent directory (0000H if the
parent directory is the root directory).
Otherwise, bytes 01H through 0AH
are all spaces (i.e., the entry is ‘") and
the cluster field contains the cluster
number of this directory.

E5H The file was used, but it has been
erased.

Any other character is the first character of

a filename.

5-14

~

Memory Maps
Control Blocks
Diskette Allocation

Directory
Format
(cont’d)

8-0A Filename extension.

0B

File attribute. The attribute byte is
mapped as follows (values are in hex):

01

02
04

08

10

20

File is marked read-only. An
attempt to open the file for writing
using the Open a File system call
(Function Request 3DH) results in
an error code being returned. This
value can be used along with other
values below. Attempts to delete the
file with the Delete File system call
(13H) or Delete a Directory Entry
(41H) will also fail.

Hidden file. The file is excluded
from normal directory searches.
System file. The file is excluded
from normal directory searches.
The entry contains the volume label
in the first 11 bytes. The entry con-
tains no other usable information
(except date and time of creation),
and may exist only in the root
directory.

The entry defines a sub-directory,
and is excluded from normal direc-
tory searches.

Archive bit. The bit is set to “on”
whenever the file has been written
to and closed. It is used by
BACKUP and RESTORE com-
mands for determining whether or
not a file has changed since its last
backup. The BACKUP command
clears this attribute on all files
backed up.

5-15

Memory Maps

Control Blocks
Diskette Allocation
Directory The system files (I0.SYS and
Format MSDOS.SYS) are marked as read-only,
(cont’d) hidden, and system files. Files can be
marked hidden when they are created.
Also, the read-only, hidden, system, and
archive attributes may be changed
through the Change Attributes system
call (Function Request 43H).
0C-15 Reserved.
16-17 Time the file was created or last updated.

The hour, minutes, and seconds are
mapped into two bytes as follows:

Offset 17TH

|HIH|H|H| H|M|M| M|
7 6 5 4 3 2 1 0
Offset 16H

IM|M|M|S|S|[S|S]|S]
7 6 5 4 3 2 1 0
H is the number of hours (0-23)

M is the number of minutes (0-59)
S is the number of two-second

increments

The time is stored with the least signifi-
cant bit first.

5-16

N

Memory Maps
Control Blocks
Diskette Allocation

Directory
Format
(cont’d)

18-19

1A-1B

Note:

Date the file was created or last updated.
The year, month, and day are mapped
into two bytes as follows:

Offset 19H
Y[Y|Y|Y|Y|Y|Y|M
7 6 5 4 3 2 1 0
Offset 18H

|IM|M|M|D|D|D|DJ|D
7 6 5 4 3 2 1 0

Y is the number of years since 1980,
0-119 (1980-2099)

M is the month number 1-12

D is the day of the month 1-31

The date is stored with its least signifi-
cant byte first.

The cluster number of the first cluster in
the file. The first cluster for data space
on all disks is cluster 002.

The cluster number is stored with the
least significant byte first.

Refer to “How to Use the File Allocation Table”
for details on converting cluster numbers to logi-
cal sector numbers.

1C-1F

File size in bytes. The first word of this
four-byte field is the low-order part of the
size.

5-17

Memory Maps
Control Blocks
Diskette Allocations

File Allocation Table (FAT)

FAT
Entries

The following information is included primarily
for system programmers who are writing install-
able device drivers. This section explains how
MS-DOS uses the File Allocation Table to con-
vert the clusters of a file to logical sector num-
bers. The driver program is then responsible for
locating the logical sector on disk. If you are
writing a system utility, use the MS-DOS file
management function calls for accessing files;
programs that access the FAT directly are not
guaranteed to be upwardly-compatible with
future releases of MS-DOS.

The File Allocation Table is an array of 12-bit
entries (1.5 bytes) for each cluster on the disk.

The first two FAT entries map a portion of the
directory; these FAT entries indicate the size
and format of the disk.

The second and third bytes currently always
contain FFH.

The third FAT entry, which starts at byte offset
4, begins the mapping of the data area (cluster
002). Files in the data area are not always writ-
ten sequentially on the disk. The data area is
allocated one cluster at a time, skipping over
clusters already allocated.The first free cluster
found will be the next cluster allocated, regard-
less of its physical location on the disk. This
permits the most efficient utilization of disk
space because clusters made available by eras-
ing files can be allocated for new files.

5-18

Memory Maps
Control Blocks
Diskette Allocation

Each FAT entry contains three hexadecimal
characters:

000 If the cluster is unused and avail-
able.
FF7 The cluster has a bad sector in it.

MS-DOS will not allocate such a
cluster. CHKDSK counts the number
of bad clusters for its report. These
bad clusters are not part of any allo-
cation chain.

FF8-FFF Indicates the last cluster of a file.

XXX The cluster number of the next clus-
ter in the file. The cluster number of
the first cluster in the file is kept in
the file’s directory entry.

The File Allocation Table always begins on the
first sector after the reserved sectors. If the FAT
is larger than one sector, the sectors are contigu-
ous. Two copies of the FAT are usually written
for data integrity. The FAT is read into one of
the MS-DOS buffers as needed (open, read, write,
etc.). For performance reasons, this buffer is
given a high priority so that it stays in memory
as long as possible.

5-19

Memory Maps
Control Blocks
Diskette Allocation

How to Use
the File
Allocation
Table

Use the directory entry to find the starting clus-
ter of the file. Next, to locate each subsequent
cluster of the file:

Multiply the cluster number just used by 1.5
(each FAT entry is 1.5 bytes long).

The whole part of the product is an offset into
the FAT, pointing to the entry that maps the
cluster just used. That entry contains the cluster
number of the next cluster of the file.

Use a MOV instruction to move the word at the
calculated FAT offset into a register.

If the last cluster used was an even number,
keep the low-order 12 bits of the register by
ANDing it with FFF; otherwise, keep the high-
order 12 bits by shifting the register right 4 bits
with a SHR instruction.

If the resultant 12 bits are FFS8H-FFFH, the file
contains no more clusters. Otherwise, the 12 bits

contain the cluster number of the next cluster in
the file.

520

-

~

Memory Maps
Control Blocks
Diskette Allocations

To convert the cluster to a logical sector number
(relative sector, such as that used by Interrupts
25H and 26H and by DEBUG):

Subtract 2 from the cluster number.

Multiply the result by the number of sectors per
cluster.

Add to this result the logical sector number of
the beginning of the data area.

5-21

Memory Maps
Control Blocks
Diskette Allocations

Diskette Formats

On an MS-DOS disk, the clusters are arranged
on diskette to minimize head movement for
multi-sided media. All of the space on a track (or
‘cylinder) is allocated before moving on to the
next track. This is accomplished by using the
sequential sectors on the lowest-numbered head,
then all the sectors on the next head, and so on
until all sectors on all heads of the track are
used. The next sector to be used will be sector 1
on head 0 of the next track.

The first byte of the FAT, called the Media De-
scriptor Byte, can sometimes be used to deter-
mine the format of the disk. The following for-
mats have been defined for the AT&T Personal
Computer 6300, based on values of the first byte
of the FAT.

5-22

Memory Maps

Control Blocks
Diskette Allocation
MS-DOS No. sides 1 1 2 2
Standard
Disketto Tracks/side 40 40 40 40
Formats Bytes/sector 512 512 512 512
Sectors/track 8 9 8 9
Sectors/cluster 1 1 2 2
Reserved
sectors 1 1 1 1
No. FATSs 2 2 2 2
Root directory
entries 64 64 112 112
No. sectors 320 360 640 720
Media
Descriptor
Byte FE FC FF FD
Sectors for
1 FAT 1 2 1 2

5-23

Program
6 Structure
and Loading

® Overview

¢ Pros and Cons for Selecting a
Program File Format

o EXE2BIN
® File Header Format

® Relocation Process for .EXE
Files

® Program Segment Prefix

® Program Loading Process

6-1

Program Structure
and Loading

Overview

This chapter describes the MS-DOS program file
formats and procedures for loading them into
memory. MS-DOS supports two main program
file formats: .EXE and .COM.

The .EXE format is the more flexible program
type. An .EXE file is limited in size only by the
amount of user memory installed in your
system.

Programs linked by MS-LINK are output in
.EXE format. .EXE files can be executed either
by COMMAND.COM or by an EXEC system
call (Function Request 4BH) in your program.

A .COM program file cannot exceed 64K bytes
in length. However, because it does not have the
same lengthy header that an .EXE file does, a
.COM file takes up less diskette storage space
and loads into memory more quickly than an
.EXE file.

After assembling and linking your program, it
must be converted to .COM format. The easiest
way to do this is with the EXE2BIN utility pro-
vided on your MS-DOS Supplemental Programs
diskette.

6-2

Program Structure
and Loading

Pros and Cons for Selecting
a Program File Format

This section is concerned with the pros and cons
of selecting between a .EXE program format and
the .COM program type.

PROS for .EXE
® (Can be larger than 64 K

® (Can cross segment boundaries

¢ (Can run .EXE immediately after linking, i.e.,
you need not take the extra step of running
EXE2BIN

® (Can declare a stack segment in the assembly
program

CONS for .EXE
e Disk file has large “header” containing reloca-
tion information. .EXE therefore takes more
space on disk and takes longer to load into
memory at execution time.

6-3

Program Structure
and Loading

PRO for .COM
e .COM files are smaller and faster loading
because .COM does not have a file header
containing relocation information.

CONS for .COM

e .COM files can be no larger than one 64K
segment.

e .COM is segment-relocatable; the segment can
be relocated at run time. However, all of the
addresses in the program must be relative to the
same segment address.

6-4

Program Structure
and Loading

EXE2BIN

EXE2BIN

EXEZ2BIN is an executable program available
on your MS-DOS system diskette. It converts
programs that are in .EXE format (as they are
after having been linked) into the .COM format.

EXE2BIN can generate two types of .COM files:
relocatable and non-relocatable.

65

Program Structure

and Loading
Syntax EXE2BIN <input filename> <output file
name>
Both file names are in the form:
[d:][path][filename[.ext]]
Example EXE2BIN B:PROG.EXE B:PROG.COM
Discussion In specifying the input file, everything except

the file name is optional. If you do not specify a

drive, the default is used. If you do not specify a

path, the default path is used. If you do not spec-

ify an extension, the default is .EXE. The input Y
file is converted to .COM file format (memory

image of the program) and placed in the output

file.

You are not required to enter any part of the
output file specification. If you do not specify a
drive, the drive of the input file will be used. If
you do not specify an output path or filename,
the input path or filename will be used. If you do
not specify a filename extension in the output
filename, the new file will be given an extension
of .BIN.

The input file must be in valid .EXE format pro-

duced by the linker. The resident, or actual code

and data part of the file must be less than 64K. ~
There must be no STACK segment.

6-6

Program Structure
and Loading

Two kinds of conversions are possible, depend-
ing on the initial CS:IP (Code Segment: Instruc-
tion Pointer) specified in the .EXE file:

If CS:IP is specified as 0000:100H, it is assumed
that the file is to be run as a .COM file with the
location pointer set at 100H by the assembler
statement ORG; the first 100H bytes of the file
are deleted. No segment address fixups (that is,
instructions that contain a reference to an abso-
lute segment address) are allowed, as .COM files
must be segment relocatable. Once the conver-
sion is complete, rename the resulting file with a
.COM extension. The command processor can
load and execute the program in the same way
as the .COM programs supplied on your MS-
DOS diskettes.

If CS:IP is not specified in the .EXE file, a pure
binary conversion is assumed. If segment fixups
are necessary (i.e., the program contains instruc-
tions requiring a segment address), you are
prompted for the fixup value. This value is the
absolute segment at which the program is to be
loaded. The resulting program is usable only
when loaded at the absolute memory address
specified by your application. The command
processor is not capable of properly loading the
program. This is the case when writing a .BIN
program to use in an application such as a
device driver that is always loaded at the same
absolute address.

6-7

Program Structure
and Loading

EXE2BIN
Messages

Amount read less than size in header
The program portion of the file was smaller than
indicated in the file’s header. You should reas-
semble and relink your program.

File cannot be converted
CS:IP does not meet either of the criteria speci-
fied above, or it meets the .COM file criterion but
has segment fixups. This message is also dis-
played if the file is not a valid executable file.

File creation error
EXE2BIN cannot create the output file. Run
CHKDSK to determine if the directory is full or
if some other condition caused the error.

File not found
The file is not on the diskette specified.

Fixups needed - base segment (hex):
The source (EXE) file contained information
indicating that a load segment is required for
the file. Specify the absolute segment address at
which the finished module is to be located.

6-8

Program Structure
and Loading

Insufficient disk space

There is not enough disk space to create a new
file.

Insufficient memory
There is not enough memory to run EXE2BIN.

WARNING - Read error in EXE file
Amount read less than size in header. This is a
warning message only. However, it is usually a
good idea to reassemble and relink your source
program when this message appears.

6-9

Program Structure
and Loading

File Header Format

The .EXE files produced by MS-LINK consist of
two parts:

® Control and relocation information
® The load module

The control and relocation information is at the
beginning of the file in an area called the
header. The load module immediately follows
the header.

Note:
.COM files do not have file headers.

6-10

Program Structure
and Loading

The header is formatted as follows (offsets are in
hexadecimal):

Offset Contents

00-01 Must contain 4DH, 5AH.

02-03 Number of bytes contained in last
page; used for reading overlays.

04-05 Size of the file in 512-byte pages,
including the header.

06-07 Number of relocation entries in
table.

08-09 Size of the header in 16-byte para-
graphs. This is used to locate the

beginning of the load module in
the file.

0A-0B Minimum number of 16-byte para-
graphs required above the end of
the loaded program (minalloc).

0C-0D Maximum number of 16-byte para-
graphs required above the end of
the loaded program (maxalloc). If
both minalloc and maxalloc are 0,
then the program will be loaded as
high as possible.

6-11

Program Structure
and Loading

OE-OF

10-11

12-13

14-15

16-17

18-19

1A-1B

Initial value to be loaded into stack
segment before starting program
execution. This must be adjusted
by relocation.

Value to be loaded into the SP reg-
ister before starting program exe-
cution.

Negative sum of all the words in
the file.

Initial value to be loaded into the
IP register before starting program
execution.

Initial value to be loaded into the
CS register before starting pro-
gram execution. This must be
adjusted by relocation.

Relative byte offset from beginning
of run file to relocation table.

The number of the overlays gener-
ated by MS-LINK.

This is followed by the relocation table. The
table consists of a variable number of relocation
items. Each relocation item contains two fields:
a two-byte offset value, followed by a two-byte
segment value. These two fields contain the
offset into the load module of a word which
requires modification before the module is given

control.

6-12

Program Structure
and Loading

Relocation Process for .EXE Files

The following steps describe the relocation
process:

The formatted part of the header is read into
memory. Its size is 1BH.

A portion of memory is allocated depending on
the size of the load module and the allocation
numbers (0A-0B and 0C-0D). MS-DOS attempts
to allocate FFFFH paragraphs. This will always
fail, returning the size of the largest free block. If
this block is smaller than minalloc and loadsize,
then there will be a no memory error. If this
block is larger than maxalloc and loadsize, MS-
DOS will allocate (maxalloc + loadsize). Other-
wise, MS-DOS will allocate the largest free block
of memory.

A Program Segment Prefix is built in the lowest
part of the allocated memory.

The load module size is calculated by subtract-
ing the header size from the file size. Offsets 04-
05 and 08-09 can be used for this calculation.
The actual size is downward-adjusted based on
the contents of offsets 02-03. Based on the set-
ting of the high/low loader switch, an appropri-
ate segment is determined at which to load the
load module. This segment is called the start
segment.

6-13

Program Structure
and Loading

The load module is read into memory beginning
with the start segment.

The relocation table items are read into a work
area.

Each relocation table item segment value is
added to the start segment value. This calcu-
lated segment, plus the relocation item offset
value, points to a word in the load module to
which is added the start segment value. The
result is placed back into the word in the load
module.

Once all relocation items have been processed,
the SS and SP registers are set from the values
in the header. Then, the start segment value is
added to SS. The ES and DS registers are set to
the segment address of the Program Segment
Prefix. The start segment value is added to the
header CS register value. The result, along with
the header IP value, is the initial CS:IP to
transfer to before starting execution of the
program.

6-14

Program Structure
and Loading

Program Segment Prefix

Unless you specify otherwise when linking your
program, DOS loads your program in the lowest
memory address available, immediately follow-
ing the DOS code. This occurs whether the pro-
gram loads as a result of your entering its name
at the DOS prompt or through your use of the
EXEC (4BH) function call. The area into which
your program is loaded is called the Program
Segment.

DOS requires control information for each run-
ning program: it builds a Program Segment
Prefix and places it at offset 0 within the pro-
gram segment. The Program Segment Prefix is
hex 100 bytes long, so your program is loaded at
relative address 100H.

6-15

Program Structure

and Loading
PSP Format
HEX 0
End of Length of program
INT 20H alloc. Reserved |segment, in
block bytes
8
Terminate address CTRL-C exit
(IP,CS) address(IP)
10
CTRL-C exit| Hard error exit address
address(CS) (IP,CS)
Used by DOS
2CH
5CH
50

80

100

Function dispatch call

Formatted Parameter Area 1 formatted as standard

unopened FCB

6CH L]

Formatted Parameter Area 2 formatted as standard

unopened FCB

(overlaid if FCB at 5CH is opened)

Unformatted Parameter Area
(default Disk Transfer Area)

6-16

Program Structure
and Loading

HEX
OFFSET CONTENTS
0 Return address used by interrupt hex 20
2 Segment address of allocatable memory following this
program (If this program calls a memory management
function to get more memory, this is its starting
address.)
4 Reserved
6 Number of bytes in this program segment (2 byte value)
8 Not used
A Terminate address : IP
C Terminate address : CS
E Ctrl break exit : IP
10 Ctrl break exit : CS
12 Critical error exit : IP
14 Critical error exit : CS
2C Segment address of the USED
environment by DOS
50 Code to call function dispatcher for
DOS (INT 21H) interrupts
5C Formatted parameter area 1:
formatted as standard, unopened FCB
6C Formatted parameter area 2:
formatted as standard, unopened FCB
80 Count of argument characters that These comprise
follow the command name. the default DTA:
Disk Transfer
81 The argument characters Area(80H - FFH)
themselves.

6-17

Program Structure
and Loading

Program Loading Process

PSP When a program receives control, the following
Conditions conditions are in effect:

upon

Program e The segment address of the passed environment
Initiation is contained at offset 2CH in the Program Seg-

ment Prefix. The environment is a series of
ASCII strings (totaling less than 32K) in the
form:

NAME = parameter

Each string is terminated by a byte of zeros, and
the set of strings is terminated by another byte
of zeros. The environment built by the command
processor contains at least a COMSPEC= string
(the parameters on COMSPEC define the path
used by MS-DOS to locate COMMAND.COM on
disk). The last PATH and PROMPT commands
issued will also be in the environment, along
with any environment strings defined with the
MS-DOS SET command.

The environment that is passed is a copy of the
invoking process environment. If your applica-
tion uses a “keep process” concept, be aware
that the copy of the environment passed to you
is static. That is, it will not change even if sub-
sequent SET, PATH, or PROMPT commands
are issued.

6-18

Program Structure
and Loading

Offset 50H in the Program Segment Prefix con-
tains code to call the MS-DOS function dis-
patcher. After correctly loading the registers, a
program can issue a far call to offset 50H to
invoke an MS-DOS function, rather than issuing
an Interrupt 21H. Since this is a call and not an
interrupt, MS-DOS may place any code appro-
priate to making a system call at this position.
This makes the process of calling the system
portable.

The Disk Transfer Address (DTA) is set to 80H
(default DTA in the Program Segment Prefix).

File control blocks at 5CH and 6CH are format-
ted from the first two parameters typed when
the command was entered. If either parameter
contains a pathname, then the corresponding
FCB contains only the valid drive number. The
filename field will not be valid.

An unformatted parameter area at 81H contains
all the characters typed after the command
(including leading and imbedded delimiters),
with the byte at 80H set to the number of char-
acters. If the < or > parameters were typed on
the command line, they (and the filenames asso-
ciated with them) do not appear in this area or
in the character count; redirection of standard
input and output is transparent to applications.

Offset 6 (one word) contains the number of bytes
available in the segment.

6-19

Program Structure

and Loading
@
)
Initial ®
Conditions
for .EXE

Programs e

Register AX indicates whether or not the drive
specifiers (entered with the first two parameters)
are valid, as follows:

AL=FF if the first parameter contained an invalid
drive specifier (otherwise AL=00)

AH=FT if the second parameter contained an
invalid drive specifier (otherwise AH=00)

Offset 2 (one word) contains the segment
address of the first byte of unavailable memory.
Programs must not modify addresses beyond
this point unless they were obtained by allocat-
ing memory via the Allocate Memory system
call (Function Request 48H).

DS and ES registers are set to point to the Pro-
gram Segment Prefix.

CS, IP, SS, and SP registers are set to the values
passed by MS-LINK.

6-20

Program Structure

and Loading
L]
Initial ® All four segment registers contain the segment
Conditions address of the initial allocation block that starts
for .COM with the Program Segment Prefix control block.
Programs
® The Instruction Pointer (IP) is set to 100H.
¢ The Stack Pointer register is set to the end of the
program’s segment. The segment size at offset 6
is reduced by 100H to allow for a stack of that
size.
[]

A word of zeros is placed on top of the stack.
This allows your program to exit to COM-
MAND.COM by doing a RET instruction last.
Make sure, however, to maintain your stack and
code segments.

6-21

Program Structure
and Loading

Other Uses of In MS-DOS versions prior to 2.0, the PSP con-
the Program tained the mechanism for program termination.
Segment One of these four techniques had to be used to
Prefix terminate your programs:

1 A long jump to offset 0 in the Program Segment
Prefix.

2 By issuing an INT 20H with CS:0 pointing at
the PSP.

3 By issuing an INT 21H with register AH = 0 and
CS:0 pointing at the PSP.

4 By along call to location 50H in the Program
Segment Prefix with AH = 0 and CS:0 pointing
at the PSP.

It is the responsibility of all programs to ensure
that the CS register contains the segment
address of the Program Segment Prefix when
terminating via any of these methods.

However, with the 2.0 Terminate a Process sys-
tem call (Function Request 4CH), the CS register
need not point to the Program Segment Prefix.
For this reason, Function Request 4CH is the
preferred method. It may be invoked by loading
the AH register with 4CH and issuing an INT
21H (or a long call to offset 50H in the Program
Segment Prefix).

6-22

7 System Calls

® Quick Reference: Functions and
Interrupts

e Overview
¢ Programming Considerations
¢ Interrupts

¢ Functions

System Call Descriptions

71

System Calls

Number

OOH
OlH

02H
O3H
04H

Functions

Function Name

Terminate Program
Read Keyboard and
Echo

Display Character
Auxiliary Input
Auxiliary Output
Print Character
Direct Console 1/0
Direct Console Input
Read Keyboard
Display String
Buffered Keyboard
Input

Check Keyboard Status
Flush Buffer, Read
Keyboard

Disk Reset

Select Disk

Open File

Close File

Search for First Entry
Search for Next Entry
Delete File
Sequential Read
Sequential Write
Create File

Rename File
Current Disk

Set Disk Transfer
Address

Random Read
Random Write

File Size

Set Relative Record
Set Vector

Random Block Read
Random Block Write
Parse File Name

Get Date

Set Date

Get Time

Set Time

Set/Reset Verity Flag
Get Disk Transfer
Address

Number

4AH
4BH

4CH
4DH

4EH
4FH

54H

56H
57H

Function Name

Get DOS Version
Number

Keep Process

<CTRL C> Check

Get Interrupt Vector
Get Disk Free Space
Return Country-
Dependent Info.

Create Sub-Directory
Remove a Directory
Change the Current
Directory

Create a File

Open a File Handle
Close a File Handle
Read From File/Device
Write to a File/Device
Delete a Directory Entry
Move a File Pointer
Change Attributes

1/0 Control for Devices
Duplicate a File Handle
Force a Duplicate of a
Handle

Return Name of Current
Directory

Allocate Memory

Free Allocated Memory
Modify Allocated
Memory Blocks

Load and Execute a
Program (EXEC)
Terminate a Process
Retrieve the Return
Code of a Child

Find Match File

Step Through a Di- A
rectory Matching Files =
Return Current Setting

of Verify

Move a Directory Entry

Get/Set Date/Time of

File

System Calls

Function Name

Allocate Memory
Auxiliary Input
Auxiliary Output
Buffered Keyboard
Input

Change Attributes
Change the Current
Directory

Check Keyboard Status
Close a File Handle
Close File

CTRL C Check

Create a File

Create File

Create Sub-Directory
Current Disk

Delete a Directory Entry
Delete File

Direct Console Input
Direct Console 1/0
Disk Reset

Display Character
Display String
Duplicate a File Handle
File Size

Find Match File

Flush Buffer, Read
Keyboard

Force a Duplicate of a
Handle

Free Allocated Memory
Get Date

Get Disk Free Space
Get Disk Transfer
Address

Get DOS Version
Number

Get Interrupt Vector
Get Time

Get/Set Date/Time of
File

I/0 Control for Devices
Keep Process

Load and Execute a
Program (EXEC)

Number

48H
O3H
04H

OAH
43H

36H
2FH
30H
35H
2CH
57H
44H
31H

4BH

Function Name

Modity Allocated
Memory Blocks

Move a Directory Entry
Move a File Pointer
Open a File Handle
Open File

Parse File Name

Print Character
Random Block Read
Random Block Write
Random Read
Random Write

Read From File/Device
Read Keyboard

Read Keyboard and
Echo

Remove a Directory
Rename File

Retrieve the Return
Code of a Child
Return Current Setting
of Verify

Return Country-
Dependent Info.
Return Name of Current
Directory

Search for First Entry
Search for Next Entry
Select Disk
Sequential Read
Sequential Write

Set Date

Set Disk Transfer
Address

Set Relative Record
Set Time

Set Vector

Set/Reset Verity Flag
Step Through a Di-
rectory Matching
Terminate a Process
Terminate Program
Write to a File/Device

Number

1AH

2EH

4FH
4CH
OOH
40H

7-3

System Calls

Interrupts

Interrupts Interrupt Interrupt
(in Numerical (Hex) (Decimal) Description
Order) .
20H 32 Program Terminate
21H 33 Function Request
22H 34 Terminate Address
23H 35 <CTRL C> Exit Address
24H 36 Fatal Error Abort
Address
25H 37 Absolute Disk Read
26H 38 Absolute Disk Write
27H 39 Terminate But Stay
Resident
28-40H 40-64 RESERVED — DO NOT
USE
Interrupts Interrupt Interrupt
in Alphabetical Description in Hex in Dec
Order .
Absolute Disk Read 25H 37
Absolute Disk Write 26H 38
<CTRL C> Exit Address 23H 35
Fatal Error Abort
Address 24H 36
Function Request 21H 33
Program Terminate 20H 32
RESERVED — DO NOT
USE 28-40H 40-64
Terminate Address 22H 34
Terminate But Stay
Resident 27TH 39

7-4

System Calls

Overview

System Calls are procedures used to interface
with 170 or to manage memory. They can be
accessed from utility programs written in
assembly language, and from some high level
languages. Their use frees the programmer from
having to perform primitive functions, and
makes it easier to write machine-independent
programs.

MS-DOS provides two types of system calls:
interrupts and function requests. This chapter
describes the environments from which these
routines can be called, how to call them, and the
processing performed by each.

7-5

System Calls

Programming Considerations

Calling from
Assembly
Language

Calling from
GW BASIC

m

System calls can be invoked from Assembly
Language, from GW BASIC, or from high-level
languages like PASCAL and FORTRAN. This
section describes the techniques for invoking
calls and for returning control to MS-DOS.

The system calls can be invoked from Assembly
Language simply by moving any required data
into registers and issuing an interrupt. Some of
the calls destroy registers, so you may have to
save registers before using a system call.

The BLOAD and BSAVE commands are used
for loading and saving machine language pro-
grams. These are then called, using the CALL
statement.

~

The USR function calls an indicated machine
language subroutine. The starting address of the
subroutine must first be specified in a DEF USR
statement.

7-6

System Calls

Interrupts
L.

MS-DOS reserves interrupts 20H through 3SFH
for its own use. The table of interrupt routine
addresses (vectors) is maintained in locations
80H-FCH. User programs should only issue
Interrupts 20H, 21H, 25H, 26H, and 27H. (Func-
tions Requests 4CH and 31H are the preferred
method for Interrupts 20H and 27H for versions
of MS-DOS that are 2.0 and higher.

Interrupts 22H, 23H, and 24H are not interrupts
that can be issued by user programs; they are
simply locations where a segment and offset
address are stored. For a discussion, see the sec-
tion on Address Interrupts in this chapter.

7-7

System Calls

Functions

Requirements Most of the MS-DOS function calls require input
to be passed to them in registers. After setting
the proper register values, the function may be
invoked in one of the following ways:

® Place the function number in AH and execute a
long call to offset 50H in your Program Segment
Prefix. Note that programs using this method
will not operate correctly on versions of MS-DOS
that are lower than 2.0.

® Place the function number in AH and issue
Interrupt 21H. All of the examples in this chap-
ter use this method.

& An additional method exists for programs that
were written with different calling conventions.
This method should be avoided for all new pro-
grams. The function number is placed in the CL
register and other registers are set according to
the function specification. Then, an intraseg-
ment call is made to location 5 in the current
code segment. That location contains a long call
to the MS-DOS function dispatcher. Register AX
is always destroyed if this method is used; other-
wise, it is the same as normal function calls.
Note that this method is valid only for Function
Requests 00H through 024H.

7-8

System Calls

= Registers

Note

This chapter provides the following type of
information for each DOS interrupt and func-
tion call:

a description of the register contents required
before the system call

a description of the register contents after the
system call

a description of the processing performed

an example of its use.

When MS-DOS takes control after a function
call, it switches to an internal stack. Registers
not used to return information (except AX) are
preserved. The calling program’s stack must be
large enough to accommodate the interrupt sys-
tem — at least 128 bytes in addition to other
needs.

The macro definitions and extended example for
MS-DOS system calls 00H through 2EH can be
found at the end of this chapter.

7-9

System Calls

System Call Descriptions

Interrupts

Programming
Examples

Note

The following are not true interrupts but rather
storage locations for a segment and offset
address:

Terminate Address (Interrupt 22H)
CTRL C Exit Address (Interrupt 23H)
Fatal Error Abort Address (Interrupt 24H)

The interrupts are issued by MS-DOS under the
specified circumstance. You can change any of
these addresses with Function Request 25H (Set
Vector) if you prefer to write your own interrupt
handlers.

A macro is defined for most system calls, then
used in some examples. In addition, a few other
macros are defined for use in the examples. The
use of macros allows the examples to be more
complete programs, rather than isolated uses of
the system calls. All macro definitions are listed
at the end of the chapter.

The examples are not intended to represent good
programming practice. In particular, error check-
ing and good human interface design have been
sacrificed to conserve space. You may, however,
find the macros a convenient way to include sys-
tem calls in your assembly language programs.

A detailed description of each system call follows.
They are listed in numeric order; the interrupts
are described first, then the function requests.

Unless otherwise stated, all numbers in the sys-
tem call descriptions, both text and code, are in
hex.

7-10

20H
Program Terminate

s

Call

Return

Remarks

CS
Segment address of Program Segment
Prefix

None

All open file handles are closed and the disk
cache is cleaned. The current process is termi-
nated and control returns to the parent process.
This interrupt is almost always used in old
.COM files for termination.

The CS register must contain the segment
address of the Program Segment Prefix before
you call this interrupt.

The following exit addresses are restored from
the Program Segment Prefix:

Exit Address Offset
Program Terminate OAH
<CTRL C> OEH
Critical Error 12H

All file buffers are flushed to disk.

7-11

20H

Program Terminate

Note

Macro

Example

Close all files that have changed in length
before issuing this interrupt. If a changed file is
not closed, its length is not recorded correctly in
the directory. See Functions 10H and 3EH for a
description of the Close File system calls.

Interrupt 20H is provided for compatibility with
versions of MS-DOS prior to 2.0. New programs
should use Function Request 4CH, Terminate a
Process.

terminate macro
int 20H
endm

;:CS must be equal to PSP values given at program
;start
;(ES and DS values)
INT 20H
;There is no return from this interrupt

7-12

21H
Function Request

Call

Return

Remarks

Note

Example

AH
Function number

Other registers as specified in
individual function

As specified in individual function

The AH register must contain the number of the
system function. See the following section on
Function Requests, in this chapter, for a descrip-
tion of the MS-DOS system functions.

No macro is defined for this interrupt, because
all function request descriptions in this chapter
that define a macro include Interrupt 21H.

To call the Get Time function:

mov ah,2CH ;Get Time is Function 2CH
int 21H ;THIS INTERRUPT

7-13

22H
Terminate Address

When a program terminates, control transfers to
the address at offset 0AH of the Program Seg-
ment Prefix. This address is copied into the Pro-
gram Segment Prefix, from the Interrupt 22H
vector, when the segment is created. Interrupt
22H, then, is just a storage location for an
address rather than a true interrupt.

7-14

23H
<CTRL C> Exit Address

If the user types CTRL C during keyboard input
or display output, control transfers to the INT
23H vector in the interrupt table. This address is
copied into the Program Segment Prefix, from
the Interrupt 23H vector, when the segment is
created.

If the CTRL C routine preserves all registers, it
can end with an IRET instruction (return from
interrupt) to continue program execution. When
the interrupt occurs, all registers are set to the
value they had when the original call to MS-
DOS was made. There are no restrictions on
what a CTRL C handler can do — including
MS-DOS function calls — so long as the regis-
ters are unchanged if IRET is used.

If Function 09H or 0AH (Display String or Buf-
fered Keyboard Input) is interrupted by CTRL
C, the three-byte sequence 03H-0ODH-0AH (ETX-
CR-LF) is sent to the display and the function
resumes at the beginning of the next line.

If the program creates a new segment and loads
a second program that changes the CTRL C
address, termination of the second program re-

- stores the CTRL C address to its value before
execution of the second program.

Like INT 22H, this is really not a true interrupt,
but a storage location.

7-15

24H

Fatal Error Abort Address

Call

Return

Note

Error Codes

If a fatal disk error occurs during execution of
one of the disk 1/0 function calls, control
transfers to the INT 24H vector in the vector
table. This address is copied into the Program
Segment Prefix, from the Interrupt 24H vector,
when the segment is created.

BP:SI contains the address of a Device Header
Control Block from which additional informa-
tion can be retrieved.

Interrupt 24H is not issued if the failure occurs
during execution of Interrupt 25H (Absolute
Disk Read) or Interrupt 26H (Absolute Disk
Write). These errors are usually handled by the
MS-DOS error routine in COMMAND.COM that
retries the disk operation, then gives the user the
choice of aborting, retrying the operation, or
ignoring the error. The following topics give you
the information you need about interpreting the
error codes, managing the registers and stack,
and controlling the system’s response to the
error in order to write your own error-handling
routines.

When an error-handling program gains control
from Interrupt 24H, the AX and DI registers can
contain codes that describe the error. If Bit 7 of
AH is 1, the error is either a bad image of the
File Allocation Table or an error which has oc-
curred on a character device. The device header
passed in BP:SI can be examined to determine
which case exists. If the attribute byte high
order bit indicates a block device, then the error
was a bad FAT. Otherwise, the error is on a
character device.

7-16

24H
Fatal Error Abort Address

The following are error codes for Interrupt 24H:

Error Code
0

QWP OO0 0T h N

Description

Attempt to write on write-
protected disk

Unknown unit

Drive not ready
Unknown command
Data error

Bad request structure length
Seek error

Unknown media type
Sector not found

Printer out of paper

Write fault

Read fault

General failure

The user stack will be in effect (the first item
described below is at the top of the stack), and
will contain the following from top to bottom:

Ip

Cs
FLAGS
AX

BX

CX

DX

SI

DI

BP

DS

ES

1P

Cs
FLAGS

MS-DOS registers from
issuing INT 24H

User registers at time of original
INT 21H request

From the original INT 21H
from the user to MS-DOS

The registers are set such that if an IRET is exe-
cuted, MS-DOS will respond according to (AL)

as follows:

7-17

24H

Fatal Error Abort Address

Note

(AL) = 0 ignore the error
= 1 retry the operation
= 2 terminate the program via INT 23H

Before giving this routine control for disk errors,
MS-DOS performs five retries.

For disk errors, this exit is taken only for errors
occurring during an Interrupt 21H. It is not used
for errors during Interrupts 25H or 26H.

This routine is entered in a disabled state.

The SS,SP,DS,ES,BX,CX, and DX registers must
be preserved.

The interrupt handler should refrain from using
MS-DOS function calls. If necessary, it may use
calls 01H through OCH. Use of any other call
will destroy the MS-DOS stack and will leave
MS-DOS in an unpredictable state.

The interrupt handler must not change the con-
tents of the device header.

If the interrupt handler will handle errors rather
than returning to MS-DOS, it should restore the
application program’s registers from the stack,
remove all but the last three words on the stack,
then issue an IRET. This will return to the pro-
gram immediately after the INT 21H that expe-
rienced the error. Note that if this is done, MS-
DOS will be in an unstable state until a function
call higher than 0CH is issued.

7-18

25H
Absolute Disk Read

Call

Return

Remarks

AL
Drive number (0 = A, 1 = B, etc.)
DS:BX
Disk Transfer Address
CX
Number of sectors
DX
Beginning relative sector

Flags
CF =0 if successful
=1 if not successful
AL
Error code if CF =1

This interrupt transfers control to the MS-DOS
BIOS. The number of sectors specified in CX is
read from the disk to the Disk Transfer Address.
Its requirements and processing are identical to
Interrupt 26H, except data is read rather than
written. '

7-19

25H

Absolute Disk Read

Note

Macro

All registers except the segment registers are
destroyed by this call. Be sure to save any regis-
ters your program uses before issuing the
interrupt.

The system pushes the flags at the time of the
call; they are still there upon return. (This is
necessary because data is passed back in the
flags). Be sure to pop the stack upon return to
restore your stack pointer at the point of
invocation.

If the disk operation was successful, the Carry
Flag (CF) s 0. If the disk operation was not suc-
cessful, CF is 1 and AL contains the MS-DOS
error code (see Interrupt 24H earlier in this sec-
tion for the codes and their meaning).

abs_disk_read macro disk,buffer,num_sectors, start
mov al,disk
mov bx,offset butfer
mov cx,num_sectors
mov dx,start
int 25H
endm

7-20

25H

Absolute Disk Read
Example The following program copies the contents of a
single-sided disk in drive A: to the disk in drive
B:. It uses a buffer of 32K bytes:
prompt db "“Sourcein A, target in B“,13,10
db “Any key to start. $”’
start dw O
buffer db 64 dup (512 dup (?)) ;64 sectors
int_28H: display prompt ;see Function O09H
read_kbd ;see Function 08H
mov cx,5 ;copy B groups of
;64 sectors
copy: push cx ;save the loop
;counter
P\ abs_disk_read 0,buffer, 64,start ;THIS
;INTERRUPT
abs_disk_write 1,buffer, 64,start ;see INT
;26H
add start,64 ;do the next 64
;sectors
pop cx ;restore the loop
;counter
loop copy
~

7-21

26H

Absolute Disk Write

Call

Return

Remarks

AL
Drive number (0 = A, 1 = B, etc.)
DS:BX
Disk Transfer Address
CX
Number of sectors
DX
Beginning relative sector

FLAGS
CF = 0 if successful
=1 if not successful
AL '
Error code if CF =1

This interrupt transfers control to the MS-DOS
BIOS. The number of sectors specified in CX is
written from the Disk Transfer Address to the
disk. Its requirements and processing are identi-
cal to Interrupt 25H, except data is written to the
disk rather than read from it.

7-22

26H
Absolute Disk Write

Note

Macro

All registers except the segment registers are
destroyed by this call. Be sure to save any regis-
ters your program uses before issuing the
interrupt.

The system pushes the flags at the time of the
call; they are still there upon return. (This is
necessary because data is passed back in the
flags). Be sure to pop the stack upon return to
restore your stack pointer at the point of
invocation.

If the disk operation was successful, the Carry
Flag (CF) is 0. If the disk operation was not suc-
cessful, CF is 1 and AL contains the MS-DOS
error code (see Interrupt 24H earlier in this sec-
tion for the codes and their meaning).

abs_disk_write macro disk,buffer,num_sectors, start
mov aldisk
mov bx,offset buffer
mov cx,num_sectors
mov dx,start
int 26H
endm

7-23

26H

Absolute Disk Write

Example

The following program copies the contents of a
single-sided disk in drive A: to the disk in drive
B:, verifying each write. It uses a buffer of 32K

bytes:
off

on
prompt
start

buffer

int_26H:

equ O
equl

db "Sourcein A, targetin B, 13,10

db “Any key to start. $"

dw O

db 64 dup (512 dup (?)) ; 64 sectors

display prompt
read_kbd

. verify on

copy:

mov cx,5

push cx

abs_disk_read O,buffer,
abs_disk_write 1,buffer,
add start,64

pop cx

loop copy
verify off

;see Function OSH
;see Function 08H
;see Function 2EH
;copy 5 groups of
;64 sectors

;save the loop
;counter

64,start ;see INT
;25H

64,start ;THIS

; INTERRUPT

;do the next 64
;sectors

;restore the loop
;counter

;see Function 2EH

7-24

27H
Terminate But Stay Resident

Call

Return

Remarks

Macro

CCS:DX
First byte following
last byte of code

None

The Terminate But Stay Resident call is used to
make a piece of code remain resident in the sys-
tem after its termination. Typically, this call is
used in .COM files to allow some device-specific
interrupt handler to remain resident to process
asynchronous interrupts.

DX must contain the number of bytes in the CS
segment to be reserved. When Interrupt 27H is
executed, the program terminates but is treated
as an extension of MS-DOS; it remains resident
and is not overlaid by other programs when it
terminates.

If an executable file whose extension is .COM or
.EXE ends with this interrupt, it becomes a resi-
dent operating system command.

This interrupt is provided for compatibility with
versions of MS-DOS prior to 2.0. New programs
should use Function 31H, Keep Process.

stay_resident macro last_instruc
mov dx,offset last_instruc

inc dx
int 27H
endm

7-25

27H
Terminate But Stay Resident

Example ;CS must be equal to PSP values given at program
;start
;(ES and DS values)
;the variable Last Address must be equal
;to the offset of the last byte in the
;program.
mov DX, LastAddress
inc dx
int 27H
;There is no return from this interrupt

7-26

O00H
Terminate Program

Call

Return

Remarks

Warning

AH = 00H

CS
Segment address of
Program Segment Prefix

None

Function 00H is called by Interrupt 20H; it per-
forms the same processing.

The CS register must contain the segment
address of the Program Segment Prefix before
you call this interrupt.

The following exit addresses are restored from
the specified offsets in the Program Segment
Prefix:

Program terminate OAH
<CTRL C> OEH
Critical error 12H

All file buffers are flushed to disk.

Close all files that have changed in length be-
fore calling this function. If a changed file is not
closed, its length is not recorded correctly in the
directory. See Function 10H for a description of
the Close File system call.

7-27

00H

Terminate Program

Macro

Example

terminate_program macro
xor ah,ah
int 21H
endm

;CS must be equal to PSP values given at program start

;(ES and DS values)
mov ah,0
int 21H

;There are no returns from this interrupt

7-28

01H
Read Keyboard and Echo

L

Call

Return

Remarks

Macro

Example

AH =01H
AL
Character typed

Function 01H waits for a character to be typed
at the keyboard, then echoes the character to the
display and returns it in AL. If the character is
CTRL C, Interrupt 23H is executed.

read_kdb_and_echo macro

mov ah,01H
int 21H
endm

The following program both displays and prints
characters as they are typed. If CR is pressed,
the program sends Line Feed-Carriage Return to
both the display and the printer:

func_0O1H: read_kbd_and_ echo ;THIS FUNCTION
print_char al ;see Function O5H
cmp al,0ODH ;isita CR?
jne func_01H ;no, print it
print_char 10 ;see Function O5H
display_char 10 ;see Function 02H
jmp func_O1H ;get another character

7-29

02H
Display Character

Call AH = 02H
DL
Character to be displayed

Return None
Remarks If CTRL C is typed, Interrupt 23H is issued.
Macro display_char macro character
mov dl,character
mov ah,02H
int 21H
endm
Example The following program converts lowercase char-

acters to uppercase before displaying them:

func_02H: read_kbd :see FUNCTION 08H
cmp al,"a”
il uppercase ;don't convert
cmp al,‘z"”
ig uppercase ;don't convert
sub al,20H ;convert to ASCII code

;for uppercase
uppercase: display_char al ;THIS FUNCTION
jmp func_O2H ;get another character

7-30

03H
Auxiliary Input

Call

Return

Remarks

Macro

Example

AH= 3H

AL
Character from auxiliary device

Function 03H waits for a character from the
auxiliary input device, then returns the
character in AL.

This system call does not return a status or error
code.

If a CTRL C has been typed at console input,
Interrupt 23H is issued.

aux_input macro
mov ah,0O3H
int 21H

endm

The following program prints characters as they
are received from the auxiliary device. It stops
printing when an end-of-file character (ASCII
26, or CTRL Z) is received:

func_O3H: aux_input ;THIS FUNCTION
cmp al,1AH ;end of file?
je continue ;ves, all done
print_char al ;see Function O5H
jmp func_O3H ;get another character

continue:

7-31

04H

Auxiliary Output

Call

Return

Remarks

Macro

Example

string

func_O4H:

send_it:

continue:

AH = 04H
DL
Character for auxiliary device

None

This system call does not return a status or error
code.

If a CTRL C has been typed at console input,
Interrupt 23H is issued.

aux_output macro character
mov dl,character
mov ah,04H
int 21H
endm

The following program gets a series of strings of
up to 80 bytes from the keyboard, sending each
to the auxiliary device. It stops when a null

string (CR only) is typed:

db 82 dup(?) ;see Function OAH
get_string 80,string ;see Function OAH
cmp string[1],0 ;null string?

je continue ;yes, all done

xor ch,ch ;zero high byte
mov cl, byte ptr string[1] ;get string length
mov bx,0 ;setindex to O
aux_output string[bx+2] ;THIS FUNCTION
inc bx ;bump index

loop send_it ;send another character
jmp func_04H ;get another string

7-32

05H
Print Character

Call AH = 05H
DL
Character for printer

Return None

Remarks If CTRL C has been typed at console input,
Interrupt 23H is issued.

Macro print_char macro character
mov dl,character
mov ah,05H
int 21H
endm

7-33

05H
Print Character

Example The following program prints a walking test pat-
tern on the printer. It stops if CTRL C is pressed.
line_num db 0
func_O5H: mov b1, 33 ;first printable ASCII
;character (!)
add blline_num ;to offset next character
mov cx,80 ;loop counter for line
print_it: print_char bl ;THIS FUNCTION
inc bl ;move to next ASCII character
cmp bl, 126 ;last printable ASCII
;character (~)
jle no_reset ;not there yet
mov bl,33 ;start over with (1)
—
no_reset: loop print_it ;print another character
print_char 13 ,carriage return
print_char 10 ;line feed
inc line_num ;to offset 1st char. of line
cmp line_num, 93 ;end of cycle?
ile func_OSH ;nope, not yet
mov line_num, O ;reset char offset
jmp func_0O5H ;continue

7-34

06H
Direct Console I/0

Call

Return

Remarks

Macro

AH = 06H
DL
See Text

AL
If DL = FFH before call
If Zero flag not set:
Character from keyboard
If Zero flag set:
No character input

Processing depends on the value in DL when the
function is called:

DL is FFH.
If a character has been typed at the keyboard,
it is returned in AL and the Zero flag is 0; if
a character has not been typed, the Zero flag
is 1.

DL is not FFH.
The character in DL is displayed.

This function does not check for CTRL C.

dir_console_io macro switch
mov dl switch
mov ah,O6H
int 21H

endm

7-35

06H
Direct Console I/0

Example The following program acts as a stopwatch.
When a character is typed, it sets the system
clock to zero and begins to continuously display
the time. When a second character is typed the
system stops updating the time display.

time db"00:00:00.00",13,"'$"
ten db 10

func_O6H: air_console_io OFFH ;THIS FUNCTION

jz func_O6H ;wait for keystroke
set_time 0,0,0,0 ;see Function 2DH
read_clock: get_time ;see Function 2CH
convert ch,ten,time ;see end of chapter
convert cl;ten,time[3] ;see end of chapter
convert dh,ten,time[6] ;see end of chapter
convert d],ten, time[9] ;see end of chapter
display time ;see Function 09H
dir_console_io OFFH ;THIS FUNCTION
jz read_clock ;no char, keep updating

continue:

7-36

07H
Direct Console Input

Call

Return

Remarks

Macro

Example

password
prompt

func_O7H:

get_pass:

continue:

AH =07H
AL
Character from keyboard

This function does not echo the character or
check for CTRL C. (For a keyboard input func-
tion that echoes or checks for CTRL C, see
Functions 01H or 08H.)

dir_console_input macro
mov ah,07H
int 21H

endm

The following program fragment prompts for a
password (8 characters maximum) and places
the characters into a string without echoing
them:

db 8 dup(?)

db “Password: $’ ;see Function O9H for
;explanation of $

display prompt ;see Function O9H

mov cx,8 ;maximum length of password

xor bx,bx ;80 BL can be used as index

dir_console_input ;THIS FUNCTION

cmp al,ODH ;was it a CR?

je continue ;ves, all done

mov password[bx]al ;no, put character in string

inc bx ;bump index

loop get_pass ;get another character

;BX has length of password

7-37

08H

Read Keyboard
Call AH =08H
Return AL
Character from keyboard
Remarks If CTRL C is pressed, Interrupt 23H is executed.

Macro

Example

password
prompt

func_O8H:

get_pass:

continue:

This function does not echo the character. (For a
keyboard input function that echoes the charac-
ter or does not check for CTRL C, see Functions
01H or 07H.)

read_kbd macro
mov ah,08H
int 21H

endm

The following program fragment prompts for a
password (8 characters maximum) and places
the characters into a string without echoing
them:

db 8 dup(?)

db “"Password: $" ;see Function O9H
;for explanation of $

display prompt ;see Function 09H

mov cx,8 ;maximum length of password

xor bx,bx ;BL can be an index

read_kbd; ;THIS FUNCTION

cmp al,ODH ;was it a CR?

je continue ;ves, all done

mov password[bx]al ;no, putchar. in string

inc bx ;bump index

loop get_pass ;get another character

;BX has length of password

7-38

. 09H
Display String

Call

Return

Remarks

Macro

Example

AH

=09H

DS:DX
String to be displayed

None

DX must contain the offset (from the segment
address in DS) of a string that ends with “$”.
The string is displayed (the $ is not displayed).

display macro string

mov dx,offset string
mov ah,09H

int 21H

endm

The following program displays the hexadec-
imal code of the key that is typed:

table
sixteen
result

func_O9H:

db "0123456789ABCDEF"

db 16

db “-O0H",13,10,"%" ;see text for
;explanation of $

read_kbd_and_echo ;see Function O1H

convert al,sixteen,result[1] ;see end of chapter

display result ;THIS FUNCTION

jmp func_O9H ;do it again

7-39

O0AH

Buffered Keyboard Input

Call

Return

Remarks

AH =0AH
DS:DX
Input buffer

None

DX must contain the offset (from the segment
address in DS) of an input buffer of the
following form:

Byte Contents

1 Maximum number of characters in
buffer, including the CR (you must set
this value).

2 Actual number of characters typed, not
counting the CR (the function sets this
value).

3-n Buffer; must be at least as long as the

number in byte 1.

This function waits for characters to be typed.
Characters are read from the keyboard and
placed in the buffer beginning at the third byte
until CR is pressed. If the buffer fills to one less
than the maximum, additional characters typed
are ignored and ASCII 7 (BEL) is sent to the
display until CR is pressed. The string can be
edited as it is being entered. If CTRL C is typed,
Interrupt 23H is issued.

The second byte of the buffer is set to the
number of characters entered (not counting the
CR).

7-40

O0AH

Buffered Keyboard Input

Macro

Example

get_string macro limit,string

mov
mov
mov
int
endm

dx,ofiset string
string,limit
ah,OAH

21H

The following program gets a 16-byte (maxi-

mum) string from the keyboard and fills a 24-
line by 80-character screen with it:

buffer
max_length
chars_entered
string
strings_per_line

crlf

func_OAH:

display_screen:

display_line:

label
db
db
db
dw

db

byte

?

?

17 dup (?)
0

13/ 10, \\$II

get_string 17, buffer

Xor

mov
mov
mov
cbw
div

xor
mov
mov
push cx
mov
display
loop
display
pop
loop

bx,bx

bl,chars_entered
buffer[bx+2]"$"
al,50H

chars_entered

ah,ah
strings_per_line,ax
cx,24

cx,strings_per_line
string

display_line

crlf

cx

display_screen

;maximum length
;number of chars.
;16 chars + CR
;how many strings
;fit on line

;THIS FUNCTION
;80 byte can be
;used as index
;get string length
;see Function 09H
;columns per line

;times string fits
;on line

;clear remainder
;save col. counter
,TOW counter
;save it

;get col. counter
;see Function 09H

;see Function 09H
;get line counter
;display 1 more line

7-41

0BH

Check Keyboard Status
Call AH = 0BH
Return AL

FFH = characters in type-ahead buffer
0 = no characters in type-ahead buffer

Remarks Checks whether there are characters in the type-
ahead buffer. If so, AL returns FFH; if not, AL
returns 0. If CTRL C is in the buffer, Interrupt
23H is executed.
Macro check_kbd_status macro
mov ah,OBH o—
int 21H '
endm
Example The following program fragment continuously
displays the time until any key is pressed.
time db "“00:00:00.00”,13,10,"$"
ten db 10
func_OBH: get_time ;see Function 2CH
convert ch,ten,time ;see end of chapter
convert cl,ten,time[3] ;see end of chapter
convert dh,ten,time[6] ;see end of chapter
convert dl,ten,time[9] ;see end of chapter
display time ;see Function O9H
check_kbd_status ;THIS FUNCTION N
cmp al,OFFH ;has a key been typed
je all_done ;yes, go home
jmp func_OBH ;no, keep displaying
;time
all_done:

7-42

O0CH
Flush Buffer, Read Keyboard

L e

Call

Return

Remarks

Macro

AH =0CH

AL _
1,6,7, 8, or 0AH = The corresponding
function is called. Any other value
= return from function.

AL
0 = Type-ahead buffer was flushed; no
other processing performed.

The keyboard type-ahead buffer is emptied.
Further processing depends on the value in AL
when the function is called:

1,6,7,8, or A:
The corresponding MS-DOS function is
executed.

Any other value:
No further processing; AL returns 0.

flush_and_read_kbd macro switch
mov al,switch
mov ah,OCH
int 21H
endm

7-43

OCH

Flush Buffer, Read Keyboard

Example

func_OCH:

The following program both displays and prints
characters as they are typed. If CR is pressed,
the program sends Carriage Return-Line Feed to
both the display and the printer.

flush_and_read_kbd 1

print_char
cmp

jne
print_char
display_char
print_char
display_char
jmp

al

al, ODH
func_OCH
10

10

13

13
func_OCH

;THIS FUNCTION
;see Function O5H

;is ita CR?

;no, print it

;see Function O5H
;see Function O2H
;see Function O5H
;see Function 02H
;get another character

7-44

ODH
Disk Reset

Call

Return

Remarks

Macro

Example

AH = 0DH

None

Function ODH is used to ensure that the internal
buffer cache matches the disks in the drives. If
buffers have been modified, but not yet written
to disk, this function writes them out and marks
all buffers in the internal cache as free.

Function ODH flushes (frees) all file buffers. It
does not update directory entries; you must close
files that have changed to update their directory
entries (see Function 10H, Close File). This func-
tion need not be called before a disk change if all
files that changed were closed. It is generally
used to force a known state of the system;
CTRL C interrupt handlers should call this
function.

disk_reset macro disk
mov ah,0DH
int 21H
endm

mov ah,ODH
int 21H
;There are no errors returned by this call.

7-45

OEH

Select Disk
Call AH = 0EH
DL

Return

Remarks

Macro

Example

Drive number
(0=A:;1=Betc)

AL
Number of logical drives

The drive specified in DL (0 = A:, 1 = B;, etc.) is
selected as the default disk. The number of
drives is returned in AL.

select_disk macro disk
mov dl,disk[-65] ;ASCII offset
mov ah,OEH

int 21H
endm

The following program fragment selects the
drive not currently selected in a 2-drive system:

func_OEH: current_disk ;see Function 19H
cmp al,O0H ;drive A: selected?
je select_b ;yes, select B

select_disk "A"” ;THIS FUNCTION
jmp continue
select_b: select_disk "B ;THIS FUNCTION

continue:

7-46

OFH
Open File

Call

Return

Remarks

AH = 0FH
DS:DX
Unopened FCB

AL
0 = Directory entry found
FFH = No directory entry found

DX must contain the offset (from the segment
address in DS) of an unopened File Control
Block (FCB). The disk directory is searched for
the named file.

If a directory entry for the file is found, AL
returns 0 and the FCB is filled as follows:

If the drive code was 0 (default disk), it is
changed to the actual disk used (1 = A:, 2=B;,
etc.). This lets you change the default disk with-
out interfering with subsequent operations on
this file.

The Current Block field (offset 0CH) is set to
zZero.

The Record Size (offset OEH) is set to the system
default of 128.

The File Size (offset 10H), Date of Last Write
(offset 14H), and Time of Last Write (offset 16H)
are set from the directory entry.

Before performing a sequential disk operation
on the file, you must set the Current Record field
(offset 20H). Before performing a random disk
operation on the file, you must set the Relative
Record field (offset 21H). If the default record
size (128 bytes) is not correct, set it to the correct
length.

7-47

OFH

Open File
If a directory entry for the file is not found, AL
returns FFH.
Macro open macro fcb
mov dx,offset fcb
mov ah,OFH
int 21H
endm
Example The following program prints the file named
TEXTFILE. ASC that is on the disk in drive B:.
If a partial record is in the buffer at end-of-file,
the routine that prints the partial record prints
characters until it encounters an end-of-file mark
(ASCII 26, or CTRL Z):
fcb db 2,"TEXTFILEASC"
db 25 dup (?)
buffer db 128 dup (?)
func_OFH: set_dta buffer ;see Function 1AH
. open fcb ;THIS FUNCTION
read_line: read_seq fcb ;see Function 14H
cmp al,01H ;end of file?
je all_done ;ves, go home
cmp al,00H ;more to come?
jg check_more ;no, check for partial
;record
mov c¢x,128 ;yes, print the buftfer
xor sisi ;setindex to O
print_it: print_char hufier[si] ;see Function O5H
inc si ;bump index
loop print_it ;print next character
jmp read_line ;read another record
check_more: cmp al,03H ;part. record to print?
jne all_done ;no

7-48

OFH
Open File

find_eof:

all_done:

mov
xXor
cmp
je

print_char buffer[si]

nc

loop
close

cx,128
si,si
buffer[si), 26

all_done
si

find_eof
fcb

,yes, print it
;setindex to O
;end-of-file mark?
;yes

;see Function O5H
;bump index to next
;character

;see Function 10H

7-49

10H

Close File
Call AH =10H
DS:DX

Opened FCB
Return AL

0 = Directory entry found

FFH = No directory entry found
Remarks DX must contain the offset (to the segment

Macro

address in DS) of an opened FCB. The disk
directory is searched for the file named in the
FCB. This function must be called after a file is
changed to update the directory entry.

If a directory entry for the file is found, the entry
is compared with the corresponding entries in
the FCB. The directory entry is updated, if
necessary, to match the FCB, and AL returns 0.

If a directory entry for the file is not found, AL
returns FFH.

close macro fcb
mov dx,offset icb
mov ah,10H
int 21H
endm

7-50

~

10H

Close File

Example

The following program checks the first byte of
the file named MOD1.BAS in drive B: to see if it
is FFH, and prints a message if it is:

message
icb
buffer

func_10H:

all_done

db "Not saved in ASCII format”,13,10,"'$"

db 2,"MOD1 BAS”
db 25 dup (?)
db 128 dup (?)

set_dta buftfer ;see Function 1AH
open ficb ;see Function OFH
read_seq fcb ;see Function 14H
cmp buffer,OFFH ;is first byte FFH?
jne all_done ;no

display message ;see Function O9H
close fcb ;THIS FUNCTION

7-51

11H

Search for First Entry
Call AH=11H
DS:DX
Unopened FCB
Return AL

Remarks

Note

0 = Directory entry found
FFH = No directory entry found

DX must contain the offset (from the segment
address in DS) of an unopened FCB. The disk
directory is searched for the first matching
name. The name can have the ? wild card char-
acter to match any character. To search for hid-
den or system files, DX must point to the first
byte of the extended FCB prefix.

If a directory entry for the filename in the FCB
is found, AL returns 0 and an unopened FCB of
the same type (normal or extended) is created at
the Disk Transfer Address.

If a directory entry for the filename in the FCB
is not found, AL returns FFH.

If an extended FCB is used, the following search
pattern is used:

If the FCB attribute is zero, only normal file
entries are found. Entries for volume label, sub-
directories, hidden, and system files will not be
returned.

7-52

11H
Search for First Entry

Macro

Example

If the attribute field is set for hidden or system
files, or directory entries, it is to be considered as
an inclusive search. All normal file entries plus
all entries matching the specified attributes are
returned. To look at all directory entries except
the volume label, the attribute byte may be set to
hidden + system + directory (all 3 bits on).

If the attribute field is set for the volume label, it
is considered an exclusive search, and only the
volume label entry is returned.

search_first macro icb
mov dx,offset fcb
mov ah,11H
int 21H

endm

The following program verifies the existence of a
file named REPORT. ASM on the disk in drive
B:

yes db “FILE EXISTS.$"
no db “FILE DOES NOT EXIST.$"
fcb db 2,"REPORT ASM"
db 25 dup (?)
buffer db 128 dup (?)
crlf db 13,10"“$"

func_11H: ;set_dta buffer ;see Function 1AH
search_first fcb ;THIS FUNCTION
cmp al,OFFH ;directory entry found?

je not_there ;no
display yes ;see Function 09H
jmp continue
not_there: display no ;see Function O9H
continue: display crlf ;see Function O9H

763

12H

Search for Next Entry
Call AH =12H
DS:DX
Unopened FCB
Return AL

Remarks

Macro

0 = Directory entry found
FFH = No directory entry found

DX must contain the offset (from the segment
address in DS) of an FCB previously specified in
a call to Function 11H (Search for First Entry).
Function 12H is used after Function 11H to find
additional directory entries that match a file-
name that contains wild card characters. The
disk directory is searched for the next matching
name.

If a directory entry for the filename in the FCB
is found, AL returns 0 and an unopened FCB of

the same type (normal or extended) is created at
the Disk Transfer Address.

If a directory entry for the filename in the FCB
is not found, AL returns FFH.

search_next macro fcb
mov dx,offset fcb
mov ah,12H
int 21H
endm

7-54

12H

Search for Next Entry

7~

Example

message
files
ten

fcb

buffer

func_12H:

search_dir:

done:
all_done:

I

The following program displays the number of
files on the disk in drive B:

db “No files”,10,13,"$"
db O
db 10
db
db
db

25dup (?)
128 dup (?)

set_dta buffer
search_first fcb
cmp al,OFFH
je all_done
inc files

search_next fcb
cmp al,OFFH
je done

inc files

jmp search_dir
convert files,ten, message
display message

;see Function 1AH
;see Function 11H
;directory entry found?
;no, no files on disk
;yes, increment file
;counter

;THIS FUNCTION
;directory entry found?
;no

;yes, increment file
;counter

;check again

;see end of chapter
;see Function 09H

7-55

13H

Delete File
Call AH =13H
DS:DX
Unopened FCB
Return AL

Remarks

Macro

0 = Directory entry found
FFH = No directory entry found

DX must contain the offset (from the segment
address in DS) of an unopened FCB. The direc-
tory is searched for a matching filename. The
filename in the FCB can contain the ? wild card
character to match any character.

If a matching directory entry is found, it is
deleted from the directory. If the ? wild card
character is used in the filename, all matching
directory entries are deleted. AL returns 0.

If no matching directory entry is found, AL
returns FFH.

delete macro fcb
mov dx,offset fcb
mov ah,13H
int 21H
endm

7-56

13H

Delete File
m _]
Example The following deletes each file on the disk in
drive B: that was last written before June 30,
1984:
year dw 1984
month db 6
day db 30
files db O
ten db 10
message db "“NO FILES DELETED.”,13,10,"%"
;see Function 0O9H for
;explanation of $
fcb db 2,"?????7?7777"
db 25 dup(?)
buffer db 128 dup (?)
func_13H: set_dta buffer ;see Function 1AH
search_first fcb ;see Function 11H
cmp al,OFFH ;directory entry found?
je all_done ;no, no files on disk
compare: convert_date buffer ;see end of chapter
cmp CcX,year ;next several lines
jg next ;check date in directory
cmp dlmonth ;entry against date
jg next ;above & check next file
cmp dh,day ;if date in directory
jge next ;entry isn't earlier.
delete buifer ;THIS FUNCTION
inc files ;bump deleted-files
;counter
next: search_next fcb ;see Function 12H
o~ cmp al,00H ;directory entry found?
je compare ;yves, check date
cmp files,O ;any files deleted?
je all_done ;no, display NO FILES

767

13H

Delete File
. I]
;message.
convert files,ten,message ;see end of chapter
all_done: display message ;see Function O9H

7-58

14H

Sequential Read
Call AH = 14H
DS:DX
Opened FCB
Return AL
0 = Read completed successfully
1=EOF

2 = DTA too small
3 = EOF, partial record

Remarks DX must contain the offset (from the segment
address in DS) of an opened FCB. The record
pointed to by the current block (offset 0CH) and
Current Record (offset 20H) fields is loaded at
the Disk Transfer Address, then the Current
Record and, if necessary, the Current Block
fields are incremented.

The record size is set to the value at offset OEH
in the FCB.

AL returns a code that describes the processing:

Code Meaning
0 Read completed successfully.
1 End-of-file, no data in the record.

2 Not enough room at the Disk
Transfer Address to read one
record; read canceled.

3 End-of-file; a partial record was
read and padded to the record
length with zeros.

7-59

14H
Sequential Read

Macro

Example

fcb

buffer

func_14H:

read_line:

check_more:

find _eof:

read_seq macro fcb
mov dx,offset fcb
mov ah,14H
int 21H

endm

The following program displays the file named
TEXTFILE.ASC that is on the disk in drive B;;
its function is similar to the MS-DOS TYPE
command. If a partial record is in the buffer at
end of file, the routine that displays the partial
record displays characters until it encounters an
end-of-file mark (ASCII 26, or CTRL Z):

db 2,"TEXTFILEASC"
db 25 dup (?)
db 128 dup (?),"$"

set_dta buffer ;see Function 1AH

open fcb ;see Function OFH
read_seq fcb ;THIS FUNCTION

cmp al,01H ;end-of-file?

je all_done ;yes

cmp al,O0H ;more to come?

ig check_more ;no, check for partial record
display buffer ;see Function 09H

jmp read_line ;get another record

cmp al,03H ;partial record in buffer?
jne all_done ;no, go home

xXor si,si ;setindex to O

cmp buffer[si], 26 ;is character EOF?

je all_done ;yes, no more to display
display_char buffer[si] ;see Function 02H

inc si ;bump index to next

7-60

14H

Sequential Read
;character
jmp find_eof ;check next character
all_done: close fcb ;,see Function 10H

7-61

15H

Sequential Write

Call

Return

Remarks

AH = 15H
DS:DX
Opened FCB

AL
00H = Write completed successfully
01H = Disk full
02H = DTA too small

DX must contain the offset (from the segment
address in DS) of an opened FCB. The record
pointed to by Current Block (offset 0CH) and
Current Record (offset 20H) fields is written from
the Disk Transfer Address, then the fields are
incremented as necessary.

The record size is set to the value at offset OEH
in the FCB. If the Record Size is less than a sec-
tor, the data at the Disk Transfer Address is
written to a buffer; the buffer is written to disk
when it contains a full sector of data, or the file
is closed, or a Reset Disk system call (Function
0DH) is issued.

AL returns a code that describes the processing:

Code Meaning
0 transfer completed successfully
1 disk full; write canceled

2 write canceled; the area beginning at
the Disk Transfer Address is too small
to hold a record of data without over-
flowing or wrapping around a seg-
ment boundary.

7-62

Macro

Example

15H
Sequential Write

write_seq macro fcb
mov dx,offset fcb

mov ah,15H

int 21H
endm

The following program creates a file named
DIR.TMP on the disk in drive B: that contains
the disk number (0 = A:, 1 = B;, etc.) and file-
name from each directory entry on the disk:

record_size equ 14

fcbl

fcb2

buffer

func_15H:

write_it:

all_done:

;offset of Record Size
;field in FCB

;:lb 2,"DIR TMP"

db 25dup (?)
db 2,"??7?7777777"

db 25dup (?)
db 128 dup (?)

set_dta

buffer ;see Function 1AH
search_first fcb2 ;see Function 11H
cmp al,0FFH ;directory entry found?
je all_done ;no, no files on disk
create fcbl ;see Function 16H
mov fcbl[record _size], 12

;set record size to 12

write_seq fcbl ;THIS FUNCTION
search_next {cb2 ;see Function 12H
cmp al,OFFH ;directory entry found?
je all_done ;no, go home
jmp write_it ;yes, write the record
close fcbl ;see Function 10H

7-63

16H

Create File
Call AH = 16H
DS:DX

Unopened FCB
Return AL

00H = Empty directory entry found

FFH = No empty entry directory available
Remarks DX must contain the offset (from the segment

address in DS) of an unopened FCB. The direc-
tory is searched for an empty entry or an exist-
ing entry for the specified filename.

If an empty directory entry is found, it is initial-
ized to a zero-length file, the Open File system
call (Function OFH) is called, and AL returns 0.
You can create a hidden file by using an extend-
ed FCB with the attribute byte (offset FCB-1) set
to 2.

If an entry is found for the specified filename, all
data in the file is released, making a zero-length
file, and the Open File system call (Function
0FH) is issued for the filename (in other words,
if you try to create a file that already exists, the
existing file is erased, and a new, empty file is
created).

If an empty directory entry is not found and
there is no entry for the specified filename, AL
returns FFH.

7-64

16H
Create File

N
Macro create macro fcb
mov dx,offset icb
mov ah,16H
int 21H
endm
Example The following program creates a file named

DIR.TMP on the disk in drive B: that contains
the disk number (0 = A:, 1 = B:, etc.) and file-
name from each directory entry on the disk:

record_size equ 14

fcbl

fcb2

buffer

func_16H:

write_it:

all_done:

;offset of Record Size
;field of FCB

db 2,°DIR TMP"

db 25dup (?)
db 2,"????7?77?277"

db 25dup (?)
db 128 dup (?)

set_dta
search _first
cmp

je

create

mov

write_seq
search_next
cmp

je

jmp

close

buffer ;see Function 1AH
fcb2 ;see Function 11H
al,OFFH ;directory entry found?
all_done ;no, no files on disk
fcbl ;THIS FUNCTION
fcbl[record _size], 12

;set record size to 12
fcbl ;see Function 15H
fcb2 ;see Function 12H
al,OFFH ;directory entry found?
all_done ;no, go home
write_it ;yes, write the record
fcbl ;see Function 10H

7-65

17H

Rename File

Call

Return

Remarks

AH=17H
DS:DX
Modified FCB

AL
00H = Directory entry found
FFH = No directory entry found or
destination already exists

DX must contain the offset (from the segment
address in DS) of an FCB with the drive number
and filename filled in, followed by a second file-
name at offset 11H. The disk directory is search-
ed for an entry that matches the first filename,
which can contain the ? wild card character.

If a matching directory entry is found, the file-
name in the directory entry is changed to match
the second filename in the modified FCB (the
two filenames cannot be the same name). If the ?
wild card character is used in the second file-
name, the corresponding characters in the file-
name of the directory entry are not changed. AL
returns 0.

If a matching directory entry is not found or an
entry is found for the second filename, AL
returns FFH.

7-66

17H
Rename File

Macro rename macro special_fcb
mov dx,offset special_fcb
mov ah,17H
int 21H
endm

Example The following program prompts for the name of
a file and a new name, then renames the file:

fcb db 37 dup (?)
promptl db ‘“Filename: $"
prompt2 db "New name: $"’

reply db 17 dup(?)

crlf db 13,10,"'$%"

tunc_17H: display promptl ;see Function O9H
get_string 15,reply ;see Function OAH
display crlf ;see Function O9H

parse reply[2]fcb ;see Function 29H
display prompt2 ;see Function O9H
get_string 15,reply ;see Function OAH
display crlf ;see Function O9H
parse reply[2],{cb[16]

;see Function 29H
rename fcb ;THIS FUNCTION

7-67

19H

Current Disk
Call AH =19H
Return AL
Currently selected drive

Macro

Example

(0=A:1=B:etc.)

current_disk macro
mov ah,19H
int 21H
endm

The following program displays the currently
selected (default) drive:

message db "“Currentdiskis $’ ;see Function 09H

;for explanation of $

crlf db 13,10,"%"

tunc_19H: display message ;see Function 09H
current_disk ;THIS FUNCTION
add al, 41H ;ASCII offset
display_char al ;see function 02H
display crlf ;see function 09H

7-68

} 1AH
Set Disk Transfer Address

Call

Return

Remarks

Note:

Macro

AH =1AH
DS:DX
Disk Transfer Address

None

DX must contain the offset (from the segment
address in DS) of the Disk Transfer Address.
Disk transfers cannot wrap around from the end
of the segment to the beginning, nor can they
overflow into another segment.

If you do not set the Disk Transfer Address,
MS-DOS defaults to offset 80H in the Program
Segment Prefix.

The size of the buffer that the DTA points to
must be greater than or equal to the record size
at open file time.

set_dta macro buffer
mov dx,offset buffer
mov ah,1AH
int 21H
endm

7-69

1AH

Set Disk Transfer Address

Example

The following program prompts for a letter, con-
verts the letter to its alphabetic sequence (A =1,
B =2, etc.), then reads and displays the corre-
sponding record from a file named ALPHABET.-
DAT on the disk in drive B:. The file contains 26
records; each record is 28 bytes long:

record _size equ 14 ;offset of Record Size
;field of FCB

relative_record equ 33 ;offset of Relative Record
;field of FCB

fcb

buffer
prompt
crlf

func_l1AH:

get_char:

all_done:

db 2,“ALPHABETDAT"’
db 25 dup (?)

db 34 dup(?),"$"’

db ‘“Enter letter: $"’

db 13,10"%"

set_dta buffer ;THIS FUNCTION
open fcb ;see Function OFH
mov fcb[record_size], 28 ;set record size
display prompt ;see Function 09H
read _kbd_and_echo ;see Function 01H
cmp al,ODH ;just a CR?

je all_done ;ves, go home

sub al,41H ;convert ASCII

;code to record #
mov fcb[relative_record)al
;set relative record

display crlf ;see Function 09H
read_ran fcb ;see Function 21H
display buffer ;see Function 09H
display crlf ;see Function O9H
jmp get_char ;get another character
close f{cb ;see Function 10H

7-70

21H
Random Read

Call

Return

Remarks

Macro

AH =21H
DS:DX
Opened FCB

AL
00H = Read completed successfully
01H = EOF
02H = DTA too small
03H = EOF, partial record

DX must contain the offset (from the segment
address in DS) of an opened FCB. The Current
Block (offset 0CH) and Current Record (offset
20H) fields are set to agree with the Relative
Record field (offset 21H), then the record
addressed by these fields is loaded at the Disk
Transfer Address.

AL returns a code that describes the processing:
Code Meaning

0 read completed successfully
1 End-of-file; no data in the record

2 not enough room at the Disk Transfer
Address to read one record; read can-
celed

3 End-of-file; a partial record was read
and padded to the record length with
Zeros.

read_ran macro fcb
mov dx,offset fcb
mov ah,21H
int 21H
endm

7-71

e TT

ZiH
Random Read

Example

The following program prompts for a letter, con-
verts the letter to its alphabetic sequence (A =1,
B =2, etc.), then reads and displays the corre-
sponding record from a file named ALPHABET.-
DAT on the disk in drive B:. The file contains 26
records; each record is 28 bytes long:

record _size equ 14 ;offset of Record Size
;field of FCB

relative_record equ 33 ;offset of Relative Record
;field of FCB

fcb

buffer
prompt
crlf

func_21H:

get_char:

all_done:

db 2,"ALPHABETDAT"
db 25dup(?)

db 34 dup(?),"$"”

db ‘“Enter letter: $"’

db 13,10,"%"

set_dta buffer ;see Function 1AH
open fcb ;see Function OFH
mov fcb[record_size] 28 ;set record size
display prompt ;see Function OSH
read _kbd_and_echo ;see Function 01H
cmp al,ODH ;just a CR?

je all_done ;yes, go home

sub al,41H ;convert ASCII

;code to record #
mov fcb[relative_record] al
;set relative record

display crlf ;see Function 09H
read_ran fcb ;THIS FUNCTION
display buffer ;see Function O9H
display crlf ;see Function O9H
jmp get_char ;get another character
close f{cb ;see Function 10H

7-72

22H
Random Write

Call

Return

Remarks

Macro

AH = 22H
DS:DX
Opened FCB

AL
00H = Write completed successfully
01H = Disk full
02H = DTA too small

DX must contain the offset from the segment
address in DS of an opened FCB. The Current
Block (offset 0CH) and Current Record (offset
20H) fields are set to agree with the Relative
Record field (offset 21H), then the record
addressed by these fields is written from the
Disk Transfer Address. If the record size is
smaller than a sector (512 bytes), the records are
buffered until a sector is ready to write.

AL returns a code that describes the processing:
Code Meaning

0 Write completed successfully
1 disk is full

2 write canceled; the area beginning at
the Disk Transfer Area is too small to
hold a record of data without over-
flowing or wrapping around a seg-
ment boundary.

write_ran macro fcb
mov dx,offset icb
mov ah,22H
int 21H
endm

7-73

22H
Random Write

Example

The following program prompts for a letter, con-
verts the letter to its alphabetic sequence (A =1,
B =2, etc.), then reads and displays the corre-
sponding record from a file named ALPHABET.-
DAT on the disk in dr've B:. After displaying the
record, it prompts the iser to enter a changed
record. If the user types a new record, it is writ-
ten to the file; if the user just presses CR , the
record is not replaced. The file contains 26
records; each record is 28 bytes long:

record_size equ 14 ;offset of Record Size
;field of FCB

relative_record equ 33 ;offset of Relative Record
;Hield of FCB

fcb

buffer
promptl
prompt2
crlt
reply
blanks

func_22H:

get_char:

db 2,“ALPHABETDAT"

db 25dup (?)

db 28dup(?),13,10,"$"

db ‘“Enter letter: $"

db "“New record(CR for no change): $"
db 13,10,"$"

db 30dup (32)

db 28 dup (32)

set_dta buffer ;see Function 1AH
open fcb ;see Function OFH
mov fcb[record_size), 28 ;set record size
display promptl ;see Function O9H
read _kbd_and_echo ;see Function O1H
cmp al,ODH ;just a CR?

je all_done ;yes, go home

sub al,41H ;convert ASCII

;code to record #
mov fcb[relative_record]al
;set relative record

7-74

22H
Random Write

all_done:

display crlf
read_ran fcb
display buffer
display crlf

display prompt2
get_string 29, reply
display crlf

cmp reply[l],0

je get_char

xor bx, bx
mov bl,reply[l]

;see Function 09H
;THIS FUNCTION
;see Function O9H
;see Function 09H
;see Function 09H
;see Function O9H
;see Function 09H

;was anything typed

;besides cr?
;no

;get another character

;to load a byte

;use reply length as

;counter

move_string blanks, buffer, 28

;see chapter end

move_string reply[2], buffer, bx

write_ran fcb
jmp get_char
close fcb

;see chapter end
;THIS FUNCTION

;get another character

;see Function 10H

7-75

23H
File Size

5

Call AH = 23H
DS:DX
Unopened FCB
Return AL

00H = Directory entry found
FFH = No directory entry found

Remarks DX must contain the offset (from the segment
address in DS) of an unopened FCB. You must
set the Record Size field (offset OEH) to the
proper value before calling this function. The
disk directory is searched for the first matching
entry.

If a matching directory entry is found, the Rela-
tive Record field (offset 21H) is set to the number
of records in the file, calculated from the total
file size in the directory entry (offset 10H) and
the Record Size field of the FCB (offset OEH). AL
returns 00.

If no matching directory entry is found, AL
returns FFH.

Note If the value of the Record Size field of the FCB
(offset OEH) doesn’t match the actual number of
characters in a record, this function may not
return the correct file size. If the default record
size (128) is not correct, you must set the Record
Size field to the correct value before using this
function.

7-76

23H
File Size

Macro

Example

fcb
prompt
msgl
msg2
crlf

reply
sixteen

func_23H:

get_length:

convert_it:

tile_size macro fcb
mov dx,offset fcb
mov ah,23H
int 21H

endm

The following program prompts for the name of
a file, opens the file to set the Record Size field of
the FCB to 80H, issues a File Size system call,
and displays the file size and number of records
in hexadecimal:

db 37 dup(?)

db “File name: $"

db “Record length: ",13,10,"$"
db “Records: /,13,10,"'$"

db 13,10,"¢"

db 17 dup(?)

db 16

display prompt ;see Function O9H
get_string 17,reply ;see Function OAH
cmp reply[1],0 ;just a CR?

jne get_length ;no, keep going
jmp all_done ;yes, go home

display crlf
parse

open
file_size fcb
mov

mov
cmp
je

;see Function 09H
reply[2],fcb ;see Function 29H

fcb ;see Function OFH
;THIS FUNCTION

si, 33 ;offset to Relative
;Record field

di,9 ;reply in msg2

fcb[si],0 ;digit to convert?

show_it ,no, prepare message

777

23H

File Size
convert fcb[si) sixteen, msg2[di]
inc si ;bump n-o-r index
inc di ;bump message index
jmp convert_it ;check for a digit
show_it: convert fcb[14],sixteen,msg1[15]
display msgl ;see Function O9H
display msg2 ;see Function 09H
jmp func23H ;get a filename
all_done: close fcb ;see Function 10H

7-78

24H
Set Relative Record

Call

Return

Remarks

Macro

Example

AH =24H
DS:DX
Opened FCB

None

DX must contain the offset (from the segment
address in DS) of an opened FCB. The Relative
Record field (offset 21H) is set to the same file
address as the Current Block (offset 0CH) and
Current Record (offset 20H) fields.

set_relative_record macro fcb
mov dx,offset icb
mov ah,24H
int 21H
endm

The following program copies a file using the
Random Block Read and Random Block Write
system calls. It speeds the copy by setting the
record length equal to the file size and the record
count to 1, and using a buffer of 32K bytes. It
positions the file pointer by setting the Current
Record field (offset 20H) to 0 and using Set Rela-
tive Record to make the Relative Record field
(offset 21H) point to the same record as the com-
bination of the Current Block (offset 0CH) and
Current Record (offset 20H) fields:

7-79

24H
Set Relative Record

current_record equ 32

fsize equ 16
fcb db 37 dup(?)
filename db 17 dup(?)
promptl db ‘“File to copy: $"
prompt2 db “Name of copy: $"
crlf db 13,10,"%"
file_length dw ?
buffer db 32767 dup(?)
func_24H: set_dta buffer
display promptl
get_string 15,filename
display crlf
parse filename[2],icb
open fcb

mov fcb[current_record],0

set_relative_record fcb
mov ax,word ptr fcb[fsize]
mov file_length,ax

ran_block_read fcb,1,ax
display prompt2
get_string 15, filename
display crlf

parse filename[2],fcb
set_relative_record fcb

;offset of Current Record
;field of FCB

;offset of File Size

;tield of FCB

;see Function O9H for
;explanation of $

;see Function 1AH
;see Function O9H
;see Function OAH
;see Function O9H
;see Function 29H
;see Function OFH
;set Current Record
;feld

;THIS FUNCTION
;get file size

;save it for
;ran_block_write
;see Function 27H
;see Function 09H
;see Function OAH
;see Function 09H
;see Function 29H
;THIS FUNCTION

7-80

~

24H

Set Relative Record
|
mov ax,file_length ;get original file
;length
ran_block_write fcb,1,ax ;see Function 28H
close fcb ;see Function 10H

7-81

25H

Set Vector
Call AH = 25H
AL
Interrupt number
DS:DX
Interrupt-handling routine
Return None
Remarks Function 25H should be used to set a particular

Macro

Example

interrupt vector. The operating system can then
manage the interrupts on a per-process basis.
Note that programs should never set interrupt
vectors by writing them directly in the low
memory vector table.

DX must contain the offset (to the segment
address in DS) of an interrupt-handling routine.
AL must contain the number of the interrupt
handled by the routine. The address in the vec-
tor table for the specified interrupt is set to
DS:DX.

set_vector macro interrupt, seg_addr,off _addr
push ds
mov ax,seg_addr
mov ds,ax
mov dx,off_addr
mov alinterrupt

mov ah,25H
int 21H
pop ds
endm

lds dx,intvector

mov ah,25H

mov alintnumber

int 21H

;There are no errors returned

7-82

27H
Random Block Read

Call

Return

Remarks

AH =27H
DS:DX
Opened FCB
CX
Number of blocks to read

AL
00H = Read completed successfully
01H = EOF
02H = End of segment
03H = EOF, partial record
CX
Number of blocks read

DX must contain the offset (to the segment
address in DS) of an opened FCB. CX must con-
tain the number of records to read; if it contains
0, the function returns without reading any
records (no operation). The specified number of
records, calculated from the Record Size field
(offset OEH), is read starting at the record speci-
fied by the Relative Record field (offset 21H).
The records are placed at the Disk Transfer
Address.

AL returns a code that describes the processing:

Code Meaning
0 Read completed successfully
1 End-of-file; no data in the record

2 not enough room at the Disk Transfer
Address to read one record without
overflowing a segment boundary; read
cancelled

3 End-of-file; a partial record was read
and padded to the record length with
Zeros

7-83

27H
Random Block Read

Macro

Example

current_record equ 32

fsize

fcb
filename
promptl
prompt2
crlf

file_length
buffer

func_27H:

CX returns the number of records read; the Cur-
rent Block (offset 0CH), Current Record (offset
20H), and Relative Record (offset 21H) fields are
set to address the next record.

ran _block_read macro fcb,count,rec_size
mov dx,offset fcb
mov cx,count
mov word ptr fcb[14] rec_size

mov ah,27H
int 21H
endm

The following program copies a file using the
Random Block Read system call. It speeds the
copy by specifying a record count of 1 and a
record length equal to the file size, and using a
buffer of 32K bytes; the file is read as a single
record (compare to the sample program for
Function 28H that specifies a record length of 1
and a record count equal to the file size):

;offset of Current Record

;Held

equ 16 ;offset of File Size
;feld

db 37 dup (?)

db 17 dup(?)

db “File to copy: $"’ ;see Function O9H for

db “Name of copy: $’ ;explanation of $
db 13,10,"'%"

dw °?
db 32767 dup(?)

set_dta buffer ;see Function 1AH

7-84

27H
Random Block Read

display promptl
get_string 15 filename
display crlf

parse filename([2],{cb
open fcb

mov fcb[current_record],O

set_relative_record fcb
mov ax,word ptr fcb[isize]
mov file_length,ax

ran_block_read fcb,1,ax
display prompt2
get_string 15, filename
display crlf

parse filename[2],{fcb
create fcb

mov fcb[current_record],0

set_relative_record fcb
mov ax,file_length

ran_block_write fcb,1,ax
close fcb

;see Function O9H
;see Function OAH
;see Function O9H
;see Function 29H
;see Function OFH
;set Current Record
;Held)
;see Function 24H
;get file size

;save it for
;ran_block_write
;THIS FUNCTION
;see Function O9H
;see Function OAH
;see Function 09H
;see Function 29H
;see Function 16H
;set Current Record
;Held

;see Function 24H
;get original file
;size

;see Function 28H

7-85

28H

Random Block Write
Call AH = 28H
DS:DX
Opened FCB
CX

Return

Remarks

Number of blocks to write
(0 = set File Size field)

AL
00H = Write completed successfully
01H = Disk full
02H = End of segment
CX
Number of blocks written

DX must contain the offset (to the segment
address in DS) of an opened FCB; CX must con-
tain either the number of records to write or 0.
The specified number of records (calculated from
the Record Size field, offset OEH) is written from
the Disk Transfer Address. The records are writ-
ten to the file starting at the record specified in
the Relative Record field (offset 21H) of the FCB.
If CX is 0, no records are written, but the File
Size field of the directory entry (offset 10H) is set
to the number of records specified by the Rela-
tive Record field of the FCB (offset 21H); alloca-
tion units are allocated or released, as required.

AL returns a code that describes the processing:
Code Meaning

0 Write completed successfully
1 Disk full. No records written.

2 Not enough room at the Disk Transfer
Address to write one record without
overflowing a segment boundary;
write canceled.

7-86

28H
Random Block Write

CX returns the number of records written; the
current block (offset 0CH), Current Record
(offset 20H), and Relative Record (offset 21H)
fields are set to address the next record.

Macro ran_block_write macro fcb,count, rec_size
mov dx,offset fcb
mov cx,count
mov word ptr fcb[14],rec_size
mov ah,28H
int 21H
endm
Example The following program copies a file using the
Random Block Read and Random Block Write
system calls. It copies by specifying a record
count equal to the file size and a record length of
1, and using a buffer of 32K bytes; the file is
copied with one disk access each to read and
write (compare to the sample program of Func-
tion 27H, that specifies a record count of 1 and a
record length equal to file size):
current_record equ 32 ;offset of Current Record
;field
{size equ 16 ;offset of File Size
;Held
fcb db 37 dup (?)
filename db 17 dup(?)
promptl db ‘'File to copy: $" ;see Function O9H for
prompt2 db "“Name of copy: $’' ;explanation of $
crlf db 13,10,"%"
num._recs dw °?
buffer db 32767 dup(?)

7-87

28H

Random Block Write

func_28H: set_dta buffer ;see Function 1AH
display promptl ;see Function O9H
get_string 15,filename ;see Function OAH
display crlf ;see Function O9H
parse filename[2],fcb ;see Function 29H
open fcb ;see Function OFH
mov fcb[current_record]), 0 ;set Current Record

;field

set_relative_record fcb ;see Function 24H
mov ax,word ptr fcb[fsize] ;get file size
mov num_recs, ax ;save it for

;ran_block_write
ran_block_read fcb,num _recs, 1 ;see Function 27H
display prompt2 ;see Function 09H

get_string 15, filename ;see Function OAH

display crlf ;see Function O9H

parse filename[2] fcb ;see Function 29H

create fcb ;see Function 16H

mov fcb[current_record), 0 ;set Current Record
;Held

set_relative_record fcb ;see Function 24H
ran_block_write fcb,num _recs,1;THIS FUNCTION
close fcb ;see Function 10H

7-88

~

29H
Parse File Name

Call

Return

Remarks

AH = 29H
AL
Controls parsing (see text)
DS:SI
String to parse
ES:DI
Unopened FCB

AL
00H = No wild card characters
01H = Wild-card characters used
FFH = Drive letter invalid
DS:SI
First byte past string that was parsed
ES:DI
Unopened FCB

SI must contain the offset (to the segment ad-
dress in DS) of a string (command line) to parse;
DI must contain the offset (to the segment ad-
dress in ES) of an unopened FCB. The string is
parsed for a filename of the form d:filename.ext;
if one is found, a corresponding unopened FCB
is created at ES:DIL.

Bits 0-3 of AL control the parsing and process-
ing. Bits 4-7 are ignored:

7-89

29H
Parse File Name

Bit Value Meaning
0 0 All parsing stops if a file separator

is encountered.
1 Leading separators are ignored.

1 0 The drive number in the FCB is set
to 0 (default drive) if the string does
not contain a drive number.

1 The drive number in the FCB is not
changed if the string does not con-
tain a drive number.

2 0 The filename in the FCB is set to 8
blanks if the string does not contain
a filename.

1 The filename in the FCB is not
changed if the string does not con-
tain a filename.

3 0 The extension in the FCB is set to 3
blanks if the string does not contain
an extension.

1 The extension in the FCB is not
changed if the string does not con-
tain an extension.

If the filename or extension includes an asterisk
(*), all remaining characters in the name or
extension are set to question mark (?).

7-90

29H
Parse File Name

Filename separators:

1., =+/“[1\<>| space tab

Filename terminators include all the filename
separators plus any control character. A file-
name cannot contain a filename terminator; if
one is encountered, parsing stops.

If the string contains a valid filename:

AL returns 1 if the filename or extension con-
tains a wild card character (* or ?); AL returns 0
if neither the filename nor extension contains a
wild card character.

DS:SI point to the first character following the
string that was parsed.

ES:DI point to the first byte of the unopened
FCB.

If the drive letter is invalid, AL returns FFH. If
the string does not contain a valid filename,
ES:DI+1 points to a blank (ASCII 20H).

791

29H
Parse File Name

Macro

Example

fcb
prompt
reply
yes

no

crlt

func_29H:

not_there:
continue:

parse macro string, fcb

mov si, offset string

mov di, offset fcb

push es

push ds

pop es

mov al,OFH ;bitsO, 1, 2, 3on
mov ah,29H

int 21H

pop es

endm

The following program verifies the existence of
the file named in reply to the prompt:

db 37 dup (?)

db ‘“Filename: $"

db 17 dup (?)

db “FILE EXISTS"”, 13,10,"$"

db “FILE DOES NOT EXIST", 13,10,"'$"

db 13,14,"%"

display prompt ;see Function O09H
get_string 15,reply ;see Function OAH
display crlf ;see Function O9H
parse reply[2],icb ;THIS FUNCTION
search_first fcb ;see Function 11H
cmp al,OFFH ;dir. entry found?
je not_there ;no

display yes ;see Function 09H
jmp continue

display no

7-92

2AH
Get Date

I

Call

Return

Remarks

Macro

Example

AH =2AH
CX

Year (1980-2099)
DH

Month (1-12)
DL

Day (1-31)
AL

Day of week (0 = Sunday, 6 = Saturday)

This function returns the current date set in the
operating system as binary numbers in CX and
DX:

CX Year (1980-2099)

DH Month (1 = January, 2 = February, etc.)

DL Day (1-31)

AL Day of week (0 = Sunday, 1 = Monday,
etc.)

get_date macro
mov ah,2AH
int 21H
endm

The following program gets the date, increments
the day, increments the month or year, if neces-
sary, and sets the new date:

7-93

2AH

Get Date

month db 31,28,31,30,31,30,31,31,30,31,30,31

func_2AH: get_date ;see above
inc dl ;increment day
xor bx,bx ;s0 BL can be used as index
mov bl,dh ;move month to index register
dec bx ;month table starts with O
cmp dl,month[bx] ;past end of month?
jle month_ok ;no, set the new date
mov dl 1 ;yes, set day to 1
inc dh ;and increment month
cmp dh,12 ;past end of year?
jle month_ok ;no, set the new date
mov dh,1 ;yes, set the month to 1
inc cx ;increment year

month_ok: set_date cx,dh,dl ;THIS FUNCTION

794

2BH
Set Date

L

Call

Return

Remarks

Macro

AH =2BH
CX

Year (1980-2099)
DH

Month (1-12)
DL

Day (1-31)
AL

00H = Date was valid
FFH = Date was invalid

Registers CX and DX must contain a valid date
in binary:

CX Year (1980-2099)
DH Month (1 = January, 2 = February, etc.)
DL Day (1-31)

If the date is valid, the date is set and AL
returns 0. If the date is not valid, the function is
canceled and AL returns FFH.

set_date macro year,month,day
mov cx,year
mov dh,month
mov dlday
mov ah,2BH
int 21H
endm

7-95

2BH

Set Date
Example The following program gets the date, increments
the day, increments the month or year, if neces-
sary, and sets the new date:
month db 31,28,31,30,31,30,31,31,30,31,30,31
func_2BH: get_date ;see Function 2AH
inc dl ;increment day
xor bx, bx ;s0 BL can be used as index
mov bl,dh ;move month to index register
dec bx ;month table starts with O
cmp dl,month[bx] ;past end of month?
ile month _ok ;no, set the new date
mov dl 1l ;yes, setday to 1
inc dh ;and increment month
cmp dh,12 ;past end of year?
jle month_ok ;no, set the new date
mov dh,1 ;yes, set the month to 1
inc cx ;increment year
month _ok: set date cx,dh,dl ;THIS FUNCTION

7-96

2CH
Get Time

L

Call

Return

Remarks

Macro

Example

AH =2CH
CH

Hour (0-23)
CL

Minutes (0-59)
DH

Seconds (0-59)
DL

Hundredths (0-99)

This function returns the current time set in the
operating system as binary numbers in CX and
DX:

CH Hour (0-23)

CL Minutes (0-59)

DH Seconds (0-59)

DL Hundredths of a second (0-99)

get_time macro

mov ah,2CH
int 21H
endm

The following program continuously displays
the time until any key is pressed:

7-97

2CH

Get Time

time db “'00:00:00.00",13,"'$"

ten db 10

func_2CH: get_time ;THIS FUNCTION
convert ch,ten,time ;see end of chapter
convert cl,ten,time[3] ;see end of chapter
convert dh,ten,time[6] ;see end of chapter
convert d1,ten,time[9] ;see end of chapter
display time ;see Function 09H
check_kbd_status ;see Function OBH
cmp al,OFFH ;has a key been pressed?
je all_done ;yes, terminate
jmp func_2CH ;no, display time

all_done: .

7-98

2DH
Set Time

Call AH =2DH
CH
Hour (0-23)
CL
Minutes (0-59)
DH
Seconds (0-59)
DL
Hundredths (0-99)
Return AL

00H = Time was valid
FFH (255) = Time was invalid

- Remarks Registers CX and DX must contain a valid time
in binary:

CH Hour (0-23)

CL Minutes (0-59)

DH Seconds (0-59)

DL Hundredths of a second (0-99)

If the time is valid, the time is set and AL
returns 0. If the time is not valid, the function is
canceled and AL returns FFH (255).

Macro set_time macro hour,minutes,seconds,hundredths
mov chhour
mov clminutes
mov dh,seconds
mov dlhundredths

mov ah,2DH
int 21H
endm

7-99

2DH
Set Time

Example

time
ten

func_2DH:

read _clock:

continue:

The following program acts as a stopwatch.
When a character is typed, it sets the system
clock to zero and begins to continuously display
the time. When a second character is typed the
system stops updating the time display.

db "00:00:00.00",13,"$"

db 10

dir_console_io OFFH

jz func_2DH
set_time 0,0,0,0
get_time

convert ch,ten,time

convert cl,ten,time[3]
convert dh,ten,time[6]
convert d1,ten,time[9]
display time
dir_console_io OFFH

jz read _clock

;see Function O6H
;wait for keystroke
;THIS FUNCTION
;see Function 2CH
;see end of chapter
;see end of chapter
;see end of chapter
;see end of chapter
;see Function O9H
;THIS FUNCTION
;no char, keep updating

7-100

2EH
Set/Reset Verify Flag

e

Call

Return

Remarks

Macro

Example

AH =2EH

AL
00H = Do not verify
01H = Verify

None

AL must be either 1 (verify after each disk write)
or 0 (write without verifying). MS-DOS checks
this flag each time it writes to a disk.

The flag is normally off; you may wish to turn it
on when writing critical data to disk. Because
disk errors are rare and verification slows writ-
ing, you will probably want to leave it off at
other times.

verity macro switch
mov al,switch
mov ah,2EH
int 21H

endm

The following program copies the contents of a
single-sided disk in drive A: to the disk in drive
B:, verifying each write. It uses a buffer of 32K
bytes:

on equ 1

off equ 0

prompt db “Source in A, target in B”,13,10
db “Any key to start. $"

start dw 0

buffer db 64 dup (512 dup(?)) ;64 sectors

7-101

2EH

Set/Reset Verify Flag

func_2EH:

copy:

display prompt
read _kbd
verify on

mov cx,5

push cx
abs_disk_read O,buffer,64,start
abs_disk_write 1,buffer,64,start

add start,64
pop cx

loop copy
verify off

;see Function O9H
;see Function 08H
;THIS FUNCTION
;copy 64 sectors
;5 times

;save counter

;see Interrupt 25H
;see Interrupt 26H
;do next 64 sectors
;restore counter
;do it again

;THIS FUNCTION

7-102

2FH
Get Disk Transfer Address

Call AH =2FH

Return ES:BX
Points to Disk Transfer Address

Macro ;
get_dta macro

mov 2h,2th
int 21h
endm

7-103

30H

Get DOS Version Number

Call

Return

Remarks

Macro

AH = 30H

AL

Major version number
AH

Minor version number
BH

OEM number
BL:CX

User number (24 bits)

On return, AL.AH will be the two-part version
designation,; i.e., for MS-DOS 1.28, AL would be
1 and AH would be 28. For pre-1.28 DOS AL = 0.
Note that version 1.1 is the same as 1.10, not the
same as 1.01.

get_version_num macro
mov ah,30h
int 21h
endm

7-104

31H
Keep Process

Call

Return

Remarks

Macro

AH =31H
AL

Exit code
DX

Memory size, in paragraphs
None

This call terminates the current process and
attempts to set the initial allocation block to a
specific size in paragraphs. It will not free up
any other allocation blocks belonging to that
process. The exit code passed in AX is retriev-
able by the parent via Function 4DH.

This method is preferred over Interrupt 27H and
has the advantage of allowing more than 64K to
be kept.

l
keep_process macro exitcode,parasize
mov al,exitcode
mov dx,parasize
mov ah,31h
int 21h
endm

7-105

33H

<CTRL C> Check
Call AH = 33H
AL
Function

Return

Remarks

Note

Error
Returns

00H = Request current state
01H = Set state

DL (f setting state)
00H = Off
01H=0On

DL
00H = Off
01H=0On

MS-DOS ordinarily chec’:.: for a CTRL C on the
controlling device only wnen doing function call
operations 01H-OCH to that device. Function
33H allows the user to expand this checking to
include any system call. For example, with the
CTRL C trapping off, all disk I/0 will proceed
without interruption; with CTRL C trapping on,
the CTRL C interrupt is given at the system call
that initiates the disk operation.

Programs that wish to use calls 06H or 07H to
read CTRL C’s as data must ensure that the
CTRL C check is off.

AL =FF

The function passed in AL was not in the range
0:1.

7-106

~

33H
<CTRL C> Check

Macro ;
ctrl_c_check macro switch,val
mov dl,val
mov al,switch
mov ah,33h
int 21h
endm

7-107

35H

Get Interrupt Vector
Call AH = 35H
AL
Interrupt number
Return ES:BX

Remarks

Macro

Pointer to interrupt routine

This function returns the interrupt vector asso-
ciated with an interrupt. Note that programs
should never get an interrupt vector by reading
the low memory vector table directly.

get_vector macro interrupt

mov al,interrupt
mov ah,35h

int 21h

endm

7-108

36H
Get Disk Free Space

Call

Return

Remarks

Error
Returns

Macro

AH = 36H
DL
Drive (0 = Default, 1 = A, etc.)

AX
FFFF if drive number is invalid; otherwise
sectors per cluster
BX
Available clusters
CX
Bytes per sector
DX
Clusters per drive

This function returns free space on a disk along
with additional information about the disk.

AX = FFFF

The drive number given in DL was invalid.

get_disk_space macro drive
mov dl,drive
mov ah,36h
int 21h
endm

7-109

38H

Return Country-Dependent Information

Call

Return

Remarks

Note

AH = 38H
DS:DX

Pointer to 32-byte memory area
AL

Function code.

Carry set:
AX
2 = file not found
Carry not set:
DX:DS filled in with country data

The value passed in AL is either 0 (for current
country) or a country code. Country codes are
typically the international telephone prefix code
for the country.

If DX = -1, then the call sets the current country
(as returned by the AL = 0 call) to the country
code in AL. If the country code is not found, the
current country is not changed.

Applications must assume 32 bytes of informa-
tion. This means the buffer pointed to by DS:DX
must be able to accommodate 32 bytes.

This function is fully supported only in versions
of MS-DOS 2.01 and higher. It exists in MS-DOS
2.0, but is not fully implemented.

This function returns, in the block of memory
pointed to by DS:DX, information pertinent to
international applications. The contents of the
block are shown in the following table.

7-110

38H
Return Country-Dependent Information

WORD Date/time format

5 BYTE ASCIIZ string
currency symbol

2 BYTE ASCIIZ string
thousands separator

2 BYTE ASCIIZ string
decimal separator

2 BYTE ASCIIZ string
date separator

2 BYTE ASCIIZ string
time separator

1 BYTE Bit field

1 BYTE
Currency places

1 BYTE
time format

DWORD
Case Mapping call

2 BYTE ASCIIZ string
data list separator

7-111

38H
Return Country-Dependent Information

The format of most of the entries is ASCIIZ (a
NUL terminated ASCII string), but a fixed size
is allocated for each field for easy indexing into
the table.

The date/time format (see table) has the follow-
ing values:

0 — USA standard h:m:s m/d/y
1 — Europe standard h:m:s d/m/y
2 — Japan standard y/m/d h:m:s

The bit field contains 8 bit values. Any bit not
currently defined must be assumed to have a
random value.

Bit 0 = 0 If currency symbol precedes the
currency amount.

=1 If currency symbol comes after the
currency amount.

Bit 1 = 0 If the currency symbol is directly
adjacent to the currency amount.

=1 If there is a space between the
currency symbol and the amount.

7-112

38H
Return Country-Dependent Information

Error
Returns

The time format has the following values:

0 - 12 hour time
1 - 24 hour time

The currency places field indicates the number
of places which appear after the decimal point
on currency amounts.

The Case Mapping call is a FAR procedure
which will perform country specific lower-to-
uppercase mapping on character values from
80H to FFH. It is called with the character to be
mapped in AL. It returns the correct upper case
code for that character, if any, in AL. AL and
the FLLAGS are the only registers altered. It is
allowable to pass this routine codes below 80H;
however nothing is done to characters in this
range. In the case where there is no mapping,
AL is not altered.

AX
2 = file not found

The country passed in AL was not found (no
table for specified country).

7-113

38H
Return Country-Dependent Information

Macro ;
get_country_info macro buffer, country
mov dx,offset buffer
mov al,country ;country =0
mov ah,38h
int 21h
endm

7-114

39H
Create Sub-Directory

Call

Return

Remarks

Error
Returns

Macro

AH =39H
DS:DX
Pointer to path name

Carry set:
AX
3 = path not found
5 = access denied
Carry not set:
No error

Given a pointer to an ASCIIZ name, this func-
tion creates a new directory entry at the end.

AX
3 = path not found

The path specified was invalid or not
found.

5 = access denied

The directory could not be created (no
room in parent directory), the directory/
file already existed or a device name
was specified.

mkdir macro name
mov dx,offset name
mov ah,39h
int 21h
endm

7-115

3AH

Remove a Directory

Call

Return

Remarks

Error
Returns

Macro

AH =3AH
DS:DX
Pointer to path name

Carry set:
AX
3 = path not found
5 = access denied
16 = current directory
Carry not set:
No error

Function 3AH is given an ASCIIZ name of a
directory. That directory is removed from its
parent directory.

AX
3 = path not found

The path specified was invalid or not
found.

5 = access denied

The path specified was not empty, not a
directory, the root directory, or contained
invalid information.

16 = current directory

The path specified was the current direc-
tory on a drive.

rmdir macro name
mov dx,offset name
mov ah,3ah
int 21h
endm

7-116

3BH
Change the Current Directory

Call

Return

Remarks

Error
Returns

Macro

AH = 3BH
DS:DX
Pointer to path name

Carry set:
AX

3 = path not found
Carry not set:

No error

Function 3BH is given the ASCIIZ name of the
directory which is to become the current direc-
tory. If any member of the specified pathname
does not exist, then the current directory is
unchanged. Otherwise, the current directory is
set to the string.

AX
3 = path not found

The path specified in DS:DX either indi-
cated a file or the path was invalid.

chdir macro name
mov dx,offset name
mov ah,3bh
int 21h
endm

7-117

3CH

Create a File

Call

Return

Remarks

AH =3CH
DS:DX

Pointer to path name
CX

File attribute

Carry set:
AX
3 = path not found
4 = too many open files
5 = access denied
Carry not set:
AX is handle number

Function 3CH creates a new file or truncates an
old file to zero length in preparation for writing.
DS:DX must point to an ASCIIZ path to the file.
If the file did not exist, then the file is created in
the appropriate directory and the file is given
the attribute found in CX. The given attribute
byte is placed at offset 0OBH in the file’s directory
entry. See the section on “Diskette Directory” in
chapter 5 for details about the attribute byte.
The file handle returned has been opened for
read/write access.

7-118

3CH
Create a File

N
Error AX
Returns 3 = path not found

The path specified was invalid.
4 = too many open files

5 = access denied

The attributes specified in CX contained
one that could not be created (directory,
volume ID), a file already existed with a
more inclusive set of attributes, or ¢ direc-
tory existed with the same name.

The file was created with the specified attrib-
Ve utes, but there were no free handles available for

the process, or the internal system tables were
full.

Macro ;
create_file macro name,attrib
mov dx,offset name
mov cx,attrib
mov ah,3ch
int 21h
endm

7-119

3DH

Open a File Handle

5 —

Call

Return

Remarks

AH =3DH
AL
Access

0 = file opened for reading
1 = file opened for writing
2 = file opened for both
reading and writing
DS:DX
pointer to pathname

Carry set:
AX
2 = file not found
4 = too many open files
5 = access denied
12 = invalid access
Carry not set
AX is handle number

Function 3DH associates a 16-bit handle with a
file.

The following values are allowed:

ACCESS Function
0 opened for reading
1 opened for writing
2 opened for both reading

and writing.

DS:DX point to an ASCIIZ name of the file to be
opened.

The read/write pointer is set at the first byte of
the file and the record size of the file is 1 byte.
The returned file handle must be used for sub-
sequent I/0 to the file.

7-120

3DH
Open a File Handle

Error AX
Returns 2 = file not found

The path specified was invalid or not
found.

4 = too many open files

There were no free handles available in
the current process or the internal system
tables were full.

5 = access denied

The user attempted to open a directory or
volume-id, or open a read-only file for writ-
ing.

12 = invalid access

The access specified in AL was not in the
range 0:2.

Macro ;
open_handle macro name, access
mov dx,offset name
mov al,access
mov ah,3dh
int 21h
endm

7-121

3EH

Close a File Handle

Call

Return

Remarks

Error
Returns

Macro

AH = 3EH
BX
File handle

Carry set:
AX

6 =invalid handle
Carry not set:

No error

If BX is passed a file handle (like that returned
by Functions 3CH, 3DH, or 45H), Function 3EH
closes the associated file. Internal buffers are
flushed to disk.

AX
6 = invalid handle

The handle passed in BX was not currently
open.

close_handle macro handle
mov bx,handle
mov ah,3eh
int 21h
endm

7-122

Call

Return

Remarks

Error
Returns

3FH
Read From File/Device

AH =3FH
DS:DX

Pointer to buffer
CX

Bytes to read
BX

File handle

Carry set:
AX
5 = error set:
6 =invalid handle
Carry not set:
AX = number of bytes read

Function 3FH transfers a specified number of
bytes from a file into a buffer location. It is not
guaranteed that the number of bytes requested
will be read; for example, reading from the key-
board will read at most one line of text. If the
returned value is zero, then the program has
tried to read from the end of file.

All 170 is done using normalized pointers; no
segment wraparound will occur.

AX
5 = access denied

The handle passed in BX was opened in a
mode that did not allow reading.

6 = invalid handle

The handle passed in BX was not cur-
rently open.

7-123

3FH
Read From File/Device

Macro

read_from_handle macro buffer,bytes, handle
mov dx,offset buffer
mov cx,bytes
mov bx,handle

mov ah,3fh
int 21h
endm

7-124

40H
Write to a File or Device

L e

Call AH = 40H
DS:DX
Pointer to buffer
CX
Bytes to write
BX
File handle

Return Carry set:
AX
5 = access denied
6 = invalid handle
Carry not set:
AX = number of bytes written

Remarks Function 40H transfers a specified number of
bytes from a buffer into a file. It should be
regarded as an error if the number of bytes writ-
ten is not the same as the number requested.

The write system call with a count of zero (CX =
0) will set the file size to the current position.
Allocation units are allocated or released as
required.

All 170 is done using normalized pointers; no
segment wraparound will occur.

7-125

40H
Write to a File or Device

Error AX
Returns 5 = access denied

The handle was not opened in a mode that
allowed writing.

6 = invalid handle

The handle passed in BX was not cur-
rently open.

Macro ;
write_to_handle macro buffer,bytes, handle
mov dx,offset buffer
mov cx, bytes
mov bx handle

mov ah,40h
int 21h
endm

7-126

41H
Delete a Directory Entry

Call

Return

Remarks

Error
Returns

Macro

AH =41H
DS:DX
Pointer to path name

Carry set:
AX
2 = file not found
5 = access denied
Carry not set:
No error

Function 41H deletes the file named in the
ASCIIZ string pointed to by DS:DX.

AX
2 = file not found

The path specified was invalid or not
found.

5 = access denied

The path specified was a directory or read-
only.

erase macro name
mov dx,offset name
mov ah,41h
int 21h

endm

7127

42H
Move File Pointer

e

Call AH =42H
CX:DX
Distance to move, in bytes
AL
Method of moving:
(see text)
BX
File handle

Return Carry set:
AX
1 = invalid function
6 = invalid handle
Carry not set:
DX:AX = new pointer location

Remarks Function 42H moves the read/write pointer
according to one of the following methods:

Method Function

0 the pointer is moved to offset bytes
from the beginning of the file

1 the pointer is moved to the current
location plus offset

2 the pointer is moved to the end of file
plus offset

Offset should be regarded as a 32-bit integer
with CX occupying the most significant 16 bits.

7-128

42H
Move File Pointer

Error
Returns

Macro

AX

1 = invalid function

The function passed in AL was not in the
range 0:2.

6 = invalid handle

The handle passed in BX was not cur-
rently open.

’

move_pointer macro highword,lowword,switch,

mov
mov
mov
mov
mov
int
endm

handle
dx,lowword
cx, highword
al,switch
bx,handle
ah,42h
21h

7-129

43H

Change Attributes

Call

Return

Remarks

AH =43H
DS:DX
Pointer to path name
AL
Function
00 Return in CX
01 Set to CX
CX (f AL =01)
Attribute to be set

Carry set:
AX
1 = invalid function
3 = path not found
5 = access denied
Carry not set:
CX attributes (if AL = 00)

Given an ASCIIZ name pointed to by DS:DX,
Function 42H will set/get the attributes of the
file to those given in CX. See the section on
“Diskette Directory” in chapter 5 for a descrip-
tion of the attribute byte.

A function code is passed in AL:

AL Function
0 return the attributes of the file in CX

1 set the attributes of the file to those in CX

7-130

43H
Change Attributes

{) \
Error AX
Returns 1 = invalid function

The function passed in AL was not in the
range 0:1.

3 = path not found
The path specified was invalid.
5 = access denied

The attributes specified in CX contained
one that could not be changed (directory,
volume ID).

/™ Macro

change_attrib macro name,attrib,switch
mov dx,offset name
mov cx,attrib
mov al,switch
mov ah,43h
int 21h
endm

7-131

44H
1/0 Control for Devices

- Call AH = 44H
BX

Handle
BL

Drive (for function codes 4 and 5;
0 = default, 1 = A:, etc.)
DS:DX
Data or buffer
CX
Bytes to read or write
AL
Function code; see text

Return Carry set:
AX
1 = invalid function
5 = access denied
6 = invalid handle
13 = invalid data
Carry not set:
Function Code = 2,3,4,5
AX = Count transferred
Function Code = 6,7
AL
00 = Not ready
FF = Ready

Remarks Function 44H sets or gets device information
associated with an open handle, or sends/
receives a control string to a device handle or
device.

The inputs to AL are function numbers, for
which there are returns. The function number
values and functions are discussed below.

The following values are allowed in AL as func-
tion codes:

7-132

44H
1/0 Control for Devices

Calls 0,1:

Call Function
0] get device information (returned in DX)
1 set device information (as determined
by DX)

2 read CX number of bytes into DS:DX
from device control channel

3 write CX number of bytes from DS:DX
to device control channel

4 read CX number of bytes into DS:DX
from disk (drive number in BL)

5 write CX number of bytes from DS:DX
to disk (drive number in BL)

6 get input status

7 get output status

This function can be used to get information
about device channels. Calls can be made on
regular files, but only calls 0,6 and 7 are defined
in that case (AL = 0,6,7). All other calls return
an invalid function error.

The bits of DX are defined as follows for calls
AL =0 and AL = 1. Note that the upper byte
MUST be zero on a set call.

7-133

44H

1/0 Control for Devices

1514 13121110987 6543210
R C IERSIIII
e T SOAPSSSS
s R Reserved DFWECNCZC
L E CLUOI
A% LKLTN

ISDEV =1 if this channel is a device
= 0 if this channel is a disk file
(Bits 8-15 = 0 in this case)

IfISDEV =1

EOF =0if End Of File on input

RAW 1 if this device is in Raw mode

0 if this device is cooked

SPECL = 1 if this device is special

ISCLK =1 if this device is the clock device
ISNUL = 1 if this device is the null device
ISCOT = 1 if this device is the console output
ISCIN =1 if this device is the console input

I

CTRL = 0 if this device cannot do control strings
via calls AL =2and AL =3

CTRL = 1 if this device can process control
strings via calls AL =2 and AL = 3.

NOTE that this bit cannot be set.

IfISDEV =0
EOF =0 if channel has been written

Bits 0-5 are the block device number for the
channel (0=A:;,1=8B;..)

7-134

44H
I/0 Control for Devices

Calls 2..5:

Calls 6,7:

NOTE: Bits 15,8-13,4 are reserved and should
not be altered.

These four calls allow arbitrary control strings
to be sent or received from a device. The call
syntax is the same as the read and write system
calls, except for 4 and 5, which take a drive
number in BL instead of a handle in BX.

An invalid function error is returned if the
CTRL bit (see above) is 0.

An access denied error is returned by calls AL =
4,5 if the drive number is invalid.

These two calls allow the user to check if a file
handle is ready for input or output. Status of
handles open to a device is the intended use of
these calls, but status of a handle open to a disk
file is allowed, and is defined as follows:

For input:

Always ready (AL = FF) until EOF reached,
then always not ready (AL = 0) unless current

position changed via Function Request 42H
(LSEEK).

For output:
Always ready (even if disk full).

The status is defined at the time the system is
CALLED. On future versions, by the time con-
trol is returned to the user from the system, the
status returned may NOT correctly reflect the
true current state of the device or file.

7-135

44H

1/0 Control for Devices
Error AX
Returns 1 = invalid function

The function passed in AL was not in the
range 0:7.

5 = access denied (calls AL = 4,5)
6 = invalid handle

The handle passed in BX was not cur-
rently open.

13 = invalid data

Macro

io_ctrl_dev macro handle, buffer, bytes,switch

mov
mov
mov
mov
mov
int
endm

bx,handle ;or 8-bit drive number
dx,offset buffer

cx,bytes

al,switch

2h,44h

21h

7-136

45H
Duplicate a File Handle

Call

Return

Remarks

Error
Returns

Example

AH = 45H
BX
File handle

Carry set:
AX
4 = too many open files
6 =invalid handle
Carry not set:
AX = new file handle

Function 45H takes an already opened file han-
dle and returns a new handle that refers to the
same file at the same position.

AX
4 = too many open files

There were no free handles available in
the current process or the internal system
tables were full.

6 = invalid handle

The handle passed in BX was not cur-
rently open.

mov bx,fh
mov ah,45H
int 21H
;ax has the returned handle

7-137

46H
Force a Duplicate of a Handle

Call AH = 46H
BX
Existing file handle
CX
New file handle
Return Carry set:
AX

4 = too many open files

6 = invalid handle
Carry not set:

No error

Remarks Function 46H takes an already opened file han-
dle and returns a new handle that refers to the
same file at the same position. If there was
already a file open on handle CX, it is closed

first.
Error AX
Returns 4 = too many open files

The internal system tables were full.

6 = invalid handle

The handle passed in BX was not cur-

rently open.

Exsmple mov bx,th
mov cx,newth
mov ah,46H
int 21H

7-138

47H

Return Name of Current Directory

Call

Return

Remarks

Error
Returns

Macro

AH =47TH
DS:SI

Pointer to 64-byte memory area
DL

Drive number

Carry set:
AX

15 = invalid drive
Carry not set:

No error

Function 47H returns an ASCIIZ string giving
the name of the current directory for a particular
drive. The directory is root-relative and does not
contain the drive specifier or leading path
separator. The drive code passed in DL is 0 =
default, 1 = A:, 2 = B;, etc.

AX
15 = invalid drive

The drive specified in DL was invalid.

duplicate_handle macro handle
mov bx handle
mov ah,45h
int 21h
endm

7-139

48H
Allocate Memory

Call AH = 48H
BX
Size of memory to be allocated in paragraphs

Return Carry set:
AX
7 = arena trashed
8 = not enough memory
BX 4
Maximum size that could be allocated
Carry not set:
AX:0
Pointer to the allocated memory

Remarks Function 48H returns a pointer to a free block of
memory that has the requested size in
paragraphs.

Error AX

Returns 7 = arena trashed

The internal consistency of the memory
arena has been destroyed. This is due to a
user program changing merory that does
not belong to it, thus destroying the
memory manager allocation marks.

8 = not enough memory

The largest available free block is smaller
than that requested or there is no free
block.

7-140

48H
Allocate Memory

Macro ;
force_handle macro old,new
mov bx,old
mov cx,new
mov ah,46h
int 21h
endm

7-141

49H

Free Allocated Memory
Call AH = 49H
ES

Return

Remarks

Error
Returns

Macro

Segment address of memory

area to be freed

Carry set:

AX

7 = arena trashed

9 = invalid block
Carry not set:

No error

Function 49H returns a piece of previously allo-
cated memory to the system pool.

AX

7 = arena trashed

The internal consistency of the memory
arena has been destroyed. This is due to a
user program changing memory that does
not belong to it, thus destroying the
memory manager allocation marks.

9 = invalid block

The block passed in ES is not one allo-
cated via Function Request 48H.

’

cur_dir_name macro buffer,drive

mov
mov
mov
int
endm

si,offset buffer
dl,drive
ah,47h

21h

7-142

4AH
Modify Allocated Memory Blocks

Call AH = 4AH
ES
Segment address of memory area
BX

Requested memory area size

Return Carry set:
AX
7 = arena trashed
8 = not enough memory
9 =invalid block
BX
Maximum size possible
Carry not set:
No error

Remarks Function 4AH will attempt to grow/shrink an
allocated block of memory.

Error AX
Returns 7 = arena trashed

The internal consistency of the memory
arena has been destroyed. This is due to a
user program changing memory that does
not belong to it, thus destroying the
memory manager allocation marks.

8 = not enough memory

There was not enough free memory after
the specified block to satisfy ti:e grow
request.

9 = invalid block

The block passed in ES is not one allo-
cated via this function.

7-143

4AH
Modify Allocated Memory Blocks

Macro ;
alloc_mem macro size
mov bx,size
mov ah,48h
int 21h
endm

7-144

4BH

Load and Execute a Program (EXEC)

7
Call
Return
~
Remarks

AH =4BH
DS:DX
Pointer to pathname
ES:BX
Pointer to parameter block
AL
00 = Load and execute program
03 = Load program

Carry set:
AX
1 = invalid function
2 = file not found
8 = not enough memory
10 = bad environment
11 = bad format
Carry not set:
No error

This function allows a program to load another
program into memory and optionally begin exe-
cution of it. DS:DX points to the ASCIIZ name
of the file to be loaded. ES:BX points to a
parameter block for the load.

A function code is passed in AL:

AL Function

0 load and execute the program. A pro-
gram header is established for the pro-
gram and the terminate and CTRL C
addresses are set to the instruction after
the EXEC system call.

3 load (do not create) the program header,
and do not begin execution. This is use-
tul in loading program overlays.

7-145

4BH
Load and Execute a Program (EXEC)

For each value of AL, the block has the format
shown in the following table.

AL =0 - load/execute program

WORD segment address of
environment.

DWORD pointer to command
line at 80H of Program Segment Prefix

DWORD pointer to default
FCB to be passed at 5CH of PSP

DWORD pointer to default
FCB to be passed at 6CH of PSP

AL = 3 - load overlay

WORD segment address where
file will be loaded.

WORD relocation factor to
be applied to the image.

Note that all open files of a process are duplicat-
ed in the child process after an EXEC. This is
extremely powerful; the parent process has con-
trol over the meanings of stdin, stdout, stderr,
stdaux and stdprn. The parent could, for exam-
ple, write a series of records to a file, open the
file as standard input, open a listing file as stan-
dard output and then EXEC a sort program that
takes its input from stdin and writes to stdout.

7-146

4BH
Load and Execute a Program (EXEC)

Also inherited (or passed from the parent) is an
“environment.” This is a block of text strings
(less than 32K bytes total) that convey various
configurations parameters. The format of the
environment is as follows:

(paragraph boundary)

BYTE ASCIIZ string 1

BYTE ASCIIZ string 2

BYTE ASCIIZ string n

BYTE of zero

Typically the environment strings have the
form:

parameter = value

For example, COMMAND.COM might pass its
execution search path as:

PATH=A:\BIN;B:\BASIC\LIB

A zero value of the environment address causes
the child process to inherit the parent’s envi-
ronment unchanged.

7-147

4BH
Load and Execute a Program (EXEC)

Error AX
Returns 1 = invalid function

The function passed in AL was not 0 or 3.
2 = file not found

The path specified was invalid or not
found.

8 = not enough memory

There was not enough memory for the
process to be created.

10 = bad environment
The environment was larger than 32Kb.
11 = bad format

The file pointed to by DS:DX was in .EXE
format and contained information that
was internally inconsistent.

Macro ;
free_memory macro address
mov ax,address
mov es,ax
mov ah,49h
int 21h
endm

7-148

4CH
Terminate a Process

Call

Return

Remarks

Macro

AH =4CH
AL = Return code

None

Function 4CH terminates the current process
and transfers control to the invoking process. In
addition, a return code may be sent. All files
open at the time are closed.

This method is preferred over all others (Inter-
rupt 20H, JMP 0) and has the advantage that
CS:0 does not have to point to the Program
Header Prefix.

’
modify_memory macro address,size
mov ax,address
mov es,ax
mov bx,size
mov ah,4ah
int 21h
endm

7-149

4DH
Retrieve the Return Code of a Child

Call AH = 4DH
Return AX
Exit code
Remarks Function 4DH returns the Exit code specified by

a child process. It returns this Exit code only
once. The low byte of this code is that sent by
the Exit routine. The high byte is one of the
following:

0 - Terminate/abort
1-CTRLC

2 - Hard error

3 - Terminate and stay resident

Macro ;
exec macro path,param,switch
mov dx,offset path
mov bx,offset param
mov al,switch
mov ah,4bh
int 21h
endm

7-150

4EH
Find Match File

Call

Return

Remarks

AH = 4EH
DS:DX

Pointer to pathname
CX

Search attributes

Carry set:
AX
2 = file not found
18 = no more files
Carry not set:
No error

Function 4EH takes a pathname with wild card
characters in the last component (passed in an
ASCIIZ string pointed to by DS:DX) along with
a set of attributes (passed in CX) and attempts
to find all files that match the pathname and
have a subset of the required attributes. A
datablock at the current DTA is written that
contains information in the following form:

find_buf_reserved DB 21 DUP (?); Reserved*
find_buf_attr DB ? ;attribute found
find_buf_time DW ? ;time

find_buf_date DW ? ;date

find_buf_size_l DW ? ;low(size)
find_buf_size_h DW ? ;high(size)
find_buf_pname DB 13 DUP (?);packed name
find_buf ENDS

*Reserved for MS-DOS internal use on subsequent
find_nexts

To obtain the subsequent matches of the path-
name, see the description of Function 4FH.

7-151

4EH

Find Match File

Error AX

Returns 2 = file not found
The path specified in DS:DX was an
invalid path.

18 = no more files

There were no files matching this specifi-
cation.

Macro ;
terminate_process macro code
mov al,code
mov ah,4ch
int 21h

endm N

7-152

4FH

Step Through a Directory Matching

Files

Call

Return

Remarks

Error
Returns

Macro

AH = 4FH

Carry set:
AX

18 = no more files
Carry not set:

No error

The current DTA address must point at a block
returned by Function 4EH (see Function 4EH).

AX
18 = no more files

There are no more files matching this
pattern.

retrieve_code macro
mov ah,4dh
int 21h
endm

7-153

54H
Return Current Setting of Verify
After Write Flag

L |
Call AH =54H

Return AL
Current verify flag value

Remarks The current value of the verify flag is returned
in AL.

Macro ;
find _match macro name,attrib
mov dx,offset name
mov cx,attrib
mov ah,4eh
int 21h
endm

7-154

56H
Move a Directory Entry

Call

Return

Remarks

Error
Returns

AH = 56H

DS:DX
Pointer to pathname of
existing file

ES:DI
Pointer to new pathname

Carry set:
AX
2 = file not found
5 = access denied
17 = not same device
Carry not set:
No error

Function 56H attempts to rename a file into
another path. The paths must be on the same
device.

AX
2 = file not found

The file name specifed by DS:DX was not
found. '

5 = access denied

The path specified in DS:DX was a direc-
tory or the file specified by ES:DI already
exists or the destination directory entry
could not be created.

17 = not same device

The source and destination are on differ-
ent drives.

7-155

56H
Move a Directory Entry

Macro ;
step_match macro
mov ah,4fh
int 21h
endm

7-156

57H
Get/Set Date/Time of File

Call
Return
e
Remarks
~

AH =57TH

AL
00 = get date and time
01 = set date and time

BX
File handle
CX Gf AL =01)
Time to be set
DX (if AL =01)
Date to be set
Carry set:
AX

1 = invalid function
6 = invalid handle
Carry not set:
No error
CX/DX set if function 0

Function 57H returns or sets the last-write time
for a handle. These times are not recorded until
the file is closed.

A function code is passed in AL:
AL Function

0 return the time/date of the handle in
CX/DX

1 set the time/date of the handle to
CX/DX

The format for the date and time is the same as
the date and time fields for a directory entry,
except that the individual bytes in each word are
reversed. The high order portion of the time is in
CL, and the high order portion of the date is in
DL.

7-157

57H
Get/Set Date/Time of File

Error AX
Returns 1 = invalid function

The function passed in AL was not in the
range 0:1.

6 = invalid handle

The handle passed in BX was not cur-
rently open.

Macro ;
check_verify_flag macro
mov ah,54h
int 21h
endm

7-158

Macro

Note These macro definitions apply to system call
examples 00H through 57H.

’

BRI ey

'

; Interrupts

RE2 2 e e T 2T

'

’

;/ABS_DISK_READ

abs_disk_read macro disk, buffer, num_sectors, first_sector

mov
mov
mov
mov
int

popf

endm

’

al,disk

bx,offset buffer

cx,num_sectors

dx,first_sector

25H ;interrupt 25H

;ABS_DISK_WRITE

abs_disk_write macro disk, buffer, num_sectors, first_sector

mov
mov
mov
mov
int

popf

endm

’

al,disk

bx,offset buffer

cx,num_sectors

dx first_sector

26H ;interrupt 26H

stay_resident macro last_instruc ;STAY_RESIDENT

mov
inc
int

endm

dx,offset last_instruc
dx
27H ;interrupt 27H

B T T T T

’

; Functions

R L e

’

’

7-159

read_kbd_and_echo macro
mov ah,1
int 21H
endm

display_char macro character

mov dl,character
mov ah,2
int 21H
endm

aux_input macro
mov ah,3
int 21H
endm

aux_output macro
mov ah,4
int - 21H
endm

print_char macro character
mov dl,character
mov ah,5
int 21H
endm
dir_console_io macro switch
mov dl,switch
mov ah,6
int 21H
endm

dir_console_input macro
mov ah,7
int 21H
endm

read_kbd macro
mov ah,8
int 21H
endm

;READ_KBD_AND_ECHO

;function 1

;DISPLAY_CHAR

;function 2

;AUX_INPUT
;function 3

;AUX_OUTPUT
;function 4

;PRINT_CHAR

;function 5

;DIR_.CONSOLE_IO

;function 6

;DIR_CONSOLE_INPUT

;function 7

;READ_KBD
;function 8

7-160

display macro string
mov dx,offset string
mov ah,9
int 21H
endm

’

get_string macro limit,string

mov string,limit
mov dx,offset string

mov ah,0AH
int 21H
endm

check_kbd_status macro
mov ah,OBH
int 21H
endm

;DISPLAY

;function 9

;GET_STRING

;function OAH

;CHECK_KBD_STATUS
;function OBH

,ﬂush_and_read_kbd macro switch ;FLUSH_AND_READ_KBD

mov al,switch
mov ah,0CH
int 21H

endm

reset_disk macro
mov ah,ODH
int 21H

endm

select_disk macro disk
mov dl,disk[-65]
mov ah,OEH
int 21H
endm

open macro fcb
mov dx,offset fcb
mov ah,OFH
int 21H
endm

;function OCH

;,RESET DISK
;function ODH

;SELECT_DISK

;function OEH

;OPEN

;function OFH

7-161

close macro fcb
mov dx,offset fcb
mov ah,10H
int 21H

endm

search_first macro fcb
mov dx,offset fcb
mov ah,11H
int 21H
endm

search_next macro fcb
mov dx,offset fcb
mov ah,12H
int 21H
endm

delete macro fcb
mov dx,offset fcb

mov ah,13H
int 21H
endm

read_seq macro fcb
mov dx,offset fcb
mov ah,14H
int 21H
endm

write_seq macro fcb
mov dx,offset fcb
mov ah,15H
int 21H
endm

create macro fcb
mov dx,offset fcb
mov ah,16H
int 21H
endm

;CLOSE

;function 10H

;SEARCH_FIRST

;function 11H

;SEARCH_NEXT

;function 12H

;DELETE

;function 13H

;READ_SEQ

;function 14H

;WRITE_SEQ

;function 15H

;CREATE

;function 16H

7-162

1

rename macfo special_fcb
mov dx,offset special_fcb

mov ah,17H
int 21H
endm

current_disk macro
mov ah,19H
int 21H
endm

set_dta macro buffer

mov dx,offset buffer

mov ah,1AH
int 21H
endm

read_ran macro fcb
mov dx,offset fcb
mov ah,21H
int 21H
endm

write_ran macro fcb
mov dx,offset fcb
mov ah,22H
int 21H
endm

file_size macro fcb
mov dx,offset fcb
mov ah,23H
int 21H
endm

;RENAME

;function 17H

;CURRENT_DISK

;function 19H

;SET_DTA

;function 1AH

;READ_RAN

;function 21H

;WRITE_RAN

;function 22H

;FILE_SIZE

;function 23H

7-163

set_relative_record macro fcb
mov dx,offset fcb
mov ah,24H
int 21H
endm

'

;SET_RELATIVE_RECORD

;function 24H

set_vector macro interrupt,seg_addr,off_addr ;SET_VECTOR

push ds

mov ax,seg_addr
mov ds,ax

mov dx,off _addr
mov al,interrupt
mov ah,25H

int 21H

endm

;function 25H

ran_block_read macro fcb,count,rec_size;,RAN_BLOCK_READ

mov dx,offset fcb
mov cx,count

mov word ptr fcb[14], rec_size

mov ah,27H
int 21H

endm

;function 27H

Iran_block_write macro fcb,count,rec_size;RAN_BLOCK_WRITE

mov dx,offset icb
mov cx,count

mov word ptr fcb[14], rec_size

mov ah,28H
int 21H
endm

;function 28H

7-164

’

parse macro filename, fcb ;PARSE

mov si,offset filename
mov di,offset fcb
push es
push ds
pop es
mov al,OFH
mov ah,29H ;function 29H
int 21H
pop es
endm
get_date macro ;GET_DATE
mov ah,2AH ;function 2AH
int 21H
endm

set_date macro year,month,day ;SET_DATE

mov cx,year
mov dh,month
mov dl, day
mov ah,2BH ;function 2BH
int 21H
endm
get_time macro ;GET_TIME
mov ah,2CH ;function 2CH
int 21H
endm
; ;SET_TIME
set_time macro hour, minutes, seconds, hundredths
mov ch,hour
mov cl,minutes
mov dh,seconds
mov dl,hundredths
mov ah,2DH ;function 2DH
int 21H
endm

7-165

’
verify macro switch

mov al,switch
mov ah,2EH
int 21H
endm

get_dta macro
mov ah,2FH
int 21H
endm

get_version_num macro
mov ah,30H
int 21H
endm

keep_process macro exitcode,parasize

mov al,exitcode
mov dx,parasize
mov ah,31H

int 21H

endm

ctrl_c¢_check macro switch,val

mov dl,val
mov al,switch
mov ah,33H
int 21H
endm

’

get_vector macro interrupt

mov al,interrupt
mov ah,35H

int 21H

endm

get_disk_space macro drive

mov dl,drive
mov 2h,36H
int 21H
endm

;VERIFY

;function 2EH

;GET_DTA

;GET_VERSION_NUM

;KEEP_PROCESS

;CTRL_C_CHECK

;GET_VECTOR

;GET_DISK_SPACE

7-166

get_country_info macro buffer,country

mov dx,offset buftfer
mov al,country
mov ah,38H

int 21H

endm

’

mkdir macro name

mov dx,offset name
mov ah,39H

int 21H

endm

'

rmdir macro name

mov dx,offset name
mov ah,3AH

int 21H

endm

;
chdir macro name

mov dx,offset name
mov ah,3BH

int 21H

endm

17
create_{ile macro name,attrib

mov dx,offset name
mov cx,attrib

mov ah,3CH

int 21H

endm

1
open_handle macro name,access

mov dx,offset name
mov al,access

mov 2h,3DH

int 21H

endm

;GET_COUNTRY_INFO

;country =0

;MKDIR

;RMDIR

;CHDIR

;CREATE_FILE

;OPEN_HANDLE

7-167

Iclose_handle macro handle ;CLOSE_HANDLE

mov bx,handle
mov 2h,3EH
int 21H
endm

read_from _handle macro buffer,bytes, handle
;READ_FROM_HANDLE

mov dx,offset buffer
mov cx, bytes

mov bx,handle

mov ah,3FH

int 21H

endm

write_to_handle macro buffer,bytes, handle
;WRITE_TO_HANDLE

mov dx,offset buffer
mov cx, bytes
mov bx,handle
mov ah,40H
int 21H
endm

erase macro name ;,ERASE
mov dx,offset name
mov ah,41H
int 21H
endm

move_pointer macro highword,lowword,switch,handle

;MOVE _POINTER

mov dx,lowword
mov cx, highword
mov al,switch
mov bx, handle
mov ah,42H

int 21H

endm

7-168

change_attrib macro name,attrib,switch ;CHANGE_ATTRIB

mov
mov
mov
mov
int
endm

dx,offset name
cx,attrib
al,switch
2h,43H

21H

io_ctrl_dev macro handle,buffer, bytes,switch

mov
mov
mov
mov
mov
int
endm

’

bx,handle
dx,offset buffer
cx,bytes
al,switch
ah,44H

21H

duplicate_handle macro handle

mov
mov
int
endm

bx,handle
ah,45H
21H

1
force_handle macro old,new

mov
mov
mov
int
endm

1

cur_dir_name macro buffer,drive

mov
mov
mov
int
endm

bx,old
cx,new
ah,46H
21H

si,offset buffer
dl,drive
ah,47H

21H

;JO_CTRL_DEV
;or 8-bit drive number

;DUPLICATE_HANDLE

;FORCE_HANDLE

;CUR_DIR_NAME

7-169

1
alloc_mem macro size

mov bx,size
mov ah,48H
int 21H
endm

’

free_memory macro address

mov ax,address
mov es,ax

mov ah,49H

int 21H

endm

I
modify_memory macro address,size

mov ax,address
mov es,ax

mov bx,size
mov ah,4AH

int 21H

endm

’

exec macro path,param,switch

mov dx,offset path
mov bx,offset param
mov al,switch

mov ah,4BH

int 21H

endm

'

terminate_process macro code

mov al,code
mov ah,4CH
int 21H
endm

retrieve_code macro
mov ah,4DH
int 21H

endm

;ALLOC_MEM

;FREE_MEMORY

;MODIFY_MEMORY

;EXEC

;TY*RMINATE_PROCESS

;RETRIEVE_CODE

7-170

’

find_match macro name,attrib

mov dx,offset name
mov cx,attrib

mov ah,4EH

int 21H

endm

'

step_match macro

mov ah,4FH
int 21H
endm

check_verity_flag macro

mov ah,54H
int 21H
endm

’

rename macro old,new

mov dx,offset old
mov di,offset new
mov ah,56H

int 21H

endm

’

;FIND_MATCH

;STEP_MATCH

;CHECK_VERIFY_FLAG

;RENAME

date_time_of_file macro switch,handle,date,time

mov al,switch
mov bx, handle
mov cx,time
mov dx,date
mov ah,57H
int 21H
endm

;DATE_TIME_OF_FILE

7-171

LAk ke kAR k K

I
; General

JHkkk kAR R AR Rk ke kK
'

move_string macro source, destination, num_bytes

push
mov
mov
mov
mov
mov
rep movs
pop
endm
:

'

;:MOVE_STRING
es
ax,ds
es,ax
si,offset source
di,offset destination
cx,num_bytes
es:destination,source
es

convert macro value, base, destination ; CONVERT

local
jmp
table db
start: mov
xor
Xor
div
mov
mov
mov
mov
mov
mov
endm

table,start

start
'0123456789ABCDEF”
al,value

ah,ah

bx,bx

base

bl,al

al,cs: table[bx]
destination,al
bl,ah

al,cs: table[bx]
destination[1],al

7-172

1
convert_to_binary macro string, number, value

;CONVERT_TO_BINARY

local ten,start,calc, mult,no_mult
jmp start
ten db 10
start: mov value,0
xor CX,CX
mov cl,number
XOor si,si
calc: xor ax,ax
mov al,string[si]
sub al, 48
cmp cx,2
jl no_mult
push cx
dec cx
mult: mul cs:ten
loop mult
pop cx
no_mult: add value,ax
inc si
loop cale
endm

'

convert_date macro dir_entry

mov dx,word ptr dir_entry[25]
mov cl,5
shr dl,cl
mov dh,dir_entry[25]
and dh,1fh
xor cX,Cx
mov cl,dir_entry[26]
shr cl1
add cx,1980

endm

7-173

8

ROM BIOS
Service
Routines

Overview

Conventions

Interrupt Vector Listing
Video Control

Diskette Services
Communications Services
Keyboard Handling
Printer Routines

Miscellaneous ROM BIOS
Services

Bypassing the BIOS
CONFIG.SYS

ROM BIOS Listing
ROM BIOS Change List

Notes on Enhancements in ROM
BIOS 1.21

ROM Revision 1.1 to ROM
Revision 1.21
Source File Differences

81

ROM BIOS
Service
Routines

Overview

This chapter describes the ROM BIOS service
routines that are provided to perform the more
low-level functions that you may need in your
assembly language programs. Because these are
low-level routines, they provide more direct
access to the hardware than the DOS routines.
However, they do not provide some of the protec-
tion and conveniences that the DOS routines
give. Be sure to check the chapter on “System

Calls” to make your choice between similar DOS
and BIOS calls.

82

ROM BIOS
Service
Routines

Conventions
Ly

Access to the BIOS service routines is through
the 8086 software interrupts. The routines are
called with conventions that are very similar to
the conventions for calling DOS routines.

To issue a BIOS interrupt, use the Interrupt
statement to select the desired interrupt:

INT11H

Some interrupts, like Interrupt 11H (Equipment
List), perform only one function. Others, like
Interrupt 13H (Diskette Services), have several
sub-functions that you can call. To select a sub-
function, move the number of the sub-function
into the AH register.

This chapter describes the register usage for
each of the BIOS service routines. It is usually
wise to save all important registers before call-
ing a BIOS service routine.

8-3

ROM BIOS
Service
Routines

Interrupt Vector List

Interrupt
Number
(Hex) Name
5 Print Screen

10 Video
11 Equipment Check
12 Determine Memory Size
13 Diskette
14 Communications
16 Keyboard
17 Printer
19 Bootstrap

8-4

ROM BIOS
Service
Routines

Video Control

S

Introduction

Monochrome
Text Mode

The video controller on the standard AT&T Per-
sonal Computer 6300 supports both monochrome
and color monitors and produces text or graph-
ics for both color and monochrome. Interrupt
10H has the BIOS services to support all of these
modes. This section describes the details that
pertain to each major type of video access.

The monochrome text modes are mode 0 —
40x25 characters and mode 2 — 80x25 charac-
ters. The monochrome text mode uses 32K start-
ing at BSOOOH. For each screen position, there
are two bytes in memory. The first byte is the
ASCII code for the character to be displayed.
The second byte is the “attribute” that specifies
how the character is to be displayed. This
attribute byte controls brightness, underlining,
and blinking.

The low order nybble of the attribute byte gov-
erns the character being displayed according to
the following table:

Value _ Meaning
0 Character is black
1 Character is normal (white)
intensity, underlined
7 Character is normal (white)
intensity

F Character is high intensity white

Any other value for the low nybble selects a par-
ticular gray character intensity.

The high order nybble of the attribute byte gov-
erns the character background and blinking. A
displayed character will blink if the high order

bit of its attribute byte is set. The remaining

85

ROM BIOS
Service
Routines

—_

three bits select the gray scale of the background
— again, 000 is black and 111 is white. Note that
inverse video can be obtained by forcing a black
character on a white background, i.e. an attri-
bute byte of 70H.

The first two bytes in the display memory con-
trol the character in the top left corner of the
screen. The next two bytes control the character
in the top row, in the second column position,
and so on.

At the end of each line, the display memory re-
turns to the first column of the next line. There
are no gaps in the display storage, and no bound-
aries between one line and the next.

Eight pages of memory are used to build up to
eight separate screens. Only one page is active
at any time, but you can switch the active page
number and thereby display screens very
rapidly.

The display pages are numbered 0 - 7 for 40x25
mode and 0 - 3 for 80x25 mode. Page 0 starts at
memory location BS8O0OH. For 40 column mode,
the pages occur at 2K intervals; for 80 column,
at 4K intervals. A total of 32K of memory is
used.

86

m

~

ROM BIOS
Service
Routines

Color Text
Modes

The color text modes are mode 1 — 40x25 color
mode and mode 3 — 80x25 color.

Memory usage for the color text modes is similar
to the method used for monochrome text. Two
bytes of memory are used for each character
position: the first is the ASCII code for the char-
acter and the second is the attribute byte. The
attribute byte specifies blinking, brightness, and
color.

The attribute bytes in color text mode operate
much the same way as they do in monochrome
text modes with two major differences:

Instead of bits 0-3 and 4-7 selecting the gray
scale of the foreground and background, they
select foreground and background colors accord-

ing to the following chart:
Bit

dcba Color
0000 Black
0001 Blue
0010 Green
0011 Cyan
0100 Red
0101 Magenta
0110 Brown
0111 White
1000 Grey
1001 Lt blue
1010 Lt green
1011 Ltcyan
1100 Ltred
1101 Lt magenta
1110 Yellow
1111 Highintensity white

8-7

ROM BIOS
Service
Routines

Color
Graphics
Mode

Note that since background color is determined
by a three-bit value, only the first eight colors
apply to that field.

There is no underline attribute possible in color
mode. As can be seen by the chart above, attri-
bute settings that produce an underline in
monochrome mode produce a blue character in
color mode.

The display memory maps to the character posi-
tions exactly as it does in monochrome text
mode.

There is one color graphics mode: mode 4 —
medium resolution (320x200) color graphics. For
any color display, you can use up to four colors.
You select from one of two “palettes,” each of
which provides three colors. You select a “back-
ground” color to be used as the fourth color.

Palette O contains green, yellow, and red.
Palette 1 contains cyan (light blue), magenta,
and white.

320 pixels can be displayed on each of 200 lines.
Each line takes 80 bytes or 640 bits of display
memory. Each color pixel use two bits of
memory. Since two bits give you four possible
combinations, for each pixel you specify either
the background color or one of the three colors in
the current palette. The leftmost pixels are
represented by the high order bits in the byte.

8-8

ROM BIOS
Service
Routines

High
Resolution
Monochrome
Graphics

Display memory for color graphics mode starts
at location B8000OH and is divided into four 8K
blocks. Starting at B8000, the first 8000D bytes
contain the pixel data for the even scan lines on
page zero. That is, the first 80 bytes describe line
0, the next 80H describe line 2, and so on
through line 198. The odd lines are described in
the 8K block starting at BA000. The same pat-
tern is repeated for page one in the next 16K
block, with the even lines starting at BCO00 and
the odd lines starting at BE0OO.

Memory for high resolution 640x200 mono-
chrome graphics is handled similarly to 320x200
color graphics. The only difference is that
instead of memory containing two bits of color
information per pixel, each pixel can only be on
or off and is thus represented by one bit. In this
way eight pixels can be represented in a byte
instead of four, so that a scan line takes as
many bytes as in color graphics mode even
though it contains twice as many pixels. As in
color graphics mode, the leftmost pixels are
represented in the high order bits of each byte.
Line mapping is exactly as described above for
color graphics mode. In high resolution mono-
chrome graphics the background color is always
black and the foreground color is chosen by bits
0-3 of the color select register.

89

ROM BIOS
Service
Routines

Super High
Resolution
Monochrome
Graphics

Super high resolution 640x400 monochrome
graphics mode maps one bit per pixel with the
leftmost pixel represented at the high end of the
byte, just like high resolution 640x200 mode.
Also like high resolution mode, super high mode
maps onto a black background with a fore-
ground color chosen by the color select register.
The memory mapping, however, takes up all
32K of display memory for a single page.
Memory is broken up into four 8K segments,
with each segment containing the data for every
fourth scan line. Thus display memory looks like
this:

Memory
location Contains pixels for line numbers

B8000]0,4,8,..39
B9F3F | Not used.
BA00O0 |1,5,9,..397
BBF3F | Not used.
BC000 |2,6,10,..398
BDF3F | Not used.
BE000 |3,7,11,...399
BFF3F | Not used.

8-10

ROM BIOS
Service
Routines

Set Mode Input:
and Clear (AH)=0
Screen (AL) contains the CRT mode value
Text Modes:
(AL) = 0 40x25 monochrome
(AL) = 1 40x25 color
(AL) = 2 80x25 monochrome
(AL) = 3 80x25 color
Graphics modes:
(AL) = 4 320x200(medium resolution), color
(AL) = 5 320x200(medium resolution),
monochrome
(AL) = 6 640x200 black/white (high resolution)
(AL) = 40H graphics 640x400 monochrome
Vi super high resolution
(AL) = 48H graphics 640x400 monochrome
tiny text (80x50 text)
Set Cursor Input:
Type (AH)=1
Low order 5 bits of (CH) = start line for cursor.
Note
Do not set the high bits of CH: unpredictable
results will occur.
Low order 5 bits of (CL) = end line for cursor.
Set Cursor Input:
7™ Position (AH) =2
(DH,DL) = Row,Column (Position 0,0 is upper
left.)
(BH) = page number (must be 0 for super-res
graphics mode.)

811

ROM BIOS

Service
Routines
Read Input:
Cursor (AH)=3
Position (BH) = page number (must be 0 for super-res
graphics mode.)
Output:
(DH,DL) = row, column of current cursor
(CH,CL) = current cursor start and end lines
Read Input:
Light Pen (AH) =4
Position
Output:
(AH) = 0 light pen switch not triggered
(AH) = 1 valid light pen value obtained:

(DH,DL) = row, column of character

light pen position

(CH) = raster line (0-199)

(BX) = pixel column (0-319 for medium
resolution, 0-639 for high
resolution.)

Select Valid only for modes (0 - 6)
Active

Page Input:

Number (AH) =5

(AL) = 0-15 for modes 0, 1
= 0-7 for modes 2, 3
= 0-1 for modes 4, 6

8-12

ROM BIOS
Service
Routines

Scroll Active
Page up

Scroll Active
Page Down

Character
Handling

Input:
(AH)=6
(AL) = number of lines blanked at bottom of
window by scrolling up. AL = 0 means
blank entire window.
(CH,CL) = row, column of upper left corner of
scroll
(DH,DL) = row, column of lower right corner of
scroll
(BH) = attribute to be used on blank line(s).

Input:
(AH)="7
(AL) = number of lines blanked at top of
window by scrolling down. AL = 0 means
blank entire window.
(CH,CL) = row, column of upper left corner of
scroll
(DH,DL) = row, column of lower right corner of
scroll
(BH) = attribute to be used on blank line(s).

The next three video services perform character
input/output for the CRT. If your program dis-
plays characters to the screen while in graphics
modes, the characters are formed from a charac-
ter generator image that is maintained in the
ROM. However, only the first 128 characters are
encoded there. If you want to create your own
characters, either for the purposes of doing
character graphics or implementing a foreign
language alphabet, you must set up a table of
code points for 128 new characters and initialize
the pointer at interrupt 1F (address 0007CH) to
point to the 1K table. These codes can then be
accessed by referring to characters 128-255.

813

ROM BIOS

Service

Routines
When you write characters to the screen in text
mode, if you send more characters to be written
than will fit on one line, the extra characters
automatically wrap around to the beginning to
the next line. In graphics mode, the character
handling routines only produce correct results
for characters contained on the same row (con-
tinuation to succeeding lines does not work.)

Read Input:

Attributeor (AH)=38

Character at (BH) = current display page

Current

Cursor Output:

Position (AL) = character read
(AH) = attribute of character read

Write Input:

Attribute and (AH)=9

Character at (BH) = current display page

Current (CX) = count of characters to write

Cursor (AL) = character to write

Position (BL) = attribute of character (if text mode)

= color of character (if graphics mode)

Note
If bit 7 of BL = 1, the color value is exclusive
OR’d with the current contents of the dot.

Write Input:

Character (AH) = OAH

Only at (BH) = current display page

Current (CX) = count of characters to write

Cursor (AL) = character to write

Position

8-14

ROM BIOS
Service
Routines

Set Color
Pallette

Write Dot

Read Dot

Input:

(AH) = OBH

(BH) = color palette ID (0-127)

(BL) = color value to be used with that color ID

Color ID = 0 selects the background color (0-15)
Color ID = 1 selects the palette to be used:

0 = green/red/yellow

1 = cyan/magenta/white

Input:

(AH) = 0OCH

(DX) = row number

(CX) = column number

(AL) = color value. If bit 7 of AL = 1, the color
value is exclusive OR’d with the current
contents of the dot.

Input:

(AH) = ODH

(DX) = row number
(CX) = column number

Output:
(AL) = the dot read

8-15

ROM BIOS

Service
Routines
Write This routine is used by the “TYPE” command
Teletype and other DOS commands to display data on
the screen.
Input:
(AH) = OEH
(AL) = character to write
(BL) = foreground color in graphics mode
Note
Screen width is controlled by previous mode set.
Current Input:
Video State (AH) = OFH
Output:

(AL) = current mode
(AH) = number of character columns on screen
(BH) = current active display page

8-16

ROM BIOS
Service
Routines

Diskette Services

Introduction Interrupt 13H is the BIOS routine for diskette
services. There are six services provided by INT
13H.

Input (AH) = 0 Reset Diskette System
(AH) = 1 Read status of diskette system into AL
(AH) = 2 Read sectors into memory
(AH) = 3 Write sectors from memory to diskette
(AH) = 4 Verify the specified sectors
(AH) = 5 Format a track

Additional settings for read, write, verify, and

format:

(DL) = drive number (0 - 3 allowed, value
checked)

(DH) = head number (0 - 1 allowed, value not
checked)

(CH) = track number (0-39 allowed, value not
checked)

Additional settings for read, write, and verify:

(CL) = sector number (1-9, value not checked)
(AL) = number of sectors (max = 9, value not
checked)

ES:BX = address of buffer (not required for
verify) For the format operation, ES:BX
points to the collection of address fields
for the track. There must be one of these
fields for every sector on the track. Each
field has four bytes:

Offset 0 = track number
1 = head number
2 = sector number

3 = number of bytes/ sector
(00 =128, 01 = 256, 02 = 512, 03 = 1024)

817

ROM BIOS
Service
Routines

Output (AH) = Status of operation:

01 bad command

02 address mark not found

03 write was requested on write-protected
disk

04 requested sector not found

08 DMA overrun

09 DMA transfer crossed a 64K boundary

10 read data error detected by CRC

20 diskette controller chip failed

40 seek to desired track failed

80 device timeout

(CY) = 0 successful operation
(CY) = 1 unsuccessful operation (AH has details)

For read, write, and verify these registers are
preserved: DS, BX, DX, CH, and CL.

(AL) = number of sectors read; this value may
be incorrect if a timeout occurred.

NOTE

If an error is reported by the diskette, reset the
diskette, then retry the operation. On read opera-
tions, no motor start delay is taken, so your code
should retry three times to make sure that a read
error is not caused by motor start-up.

8-18

ROM BIOS
Service
Routines

Communications Services

Introduction This set of routines performs serial, RS232C
communications through the communications
port. You should use a polling technique in your
communications; this is not interrupt-driven
1/0. All functions are accessed through BIOS
interrupt 14H.

Initialize the Input:
Communica- (AH)=0
tions Port (DX) = selection of RS-232 channel (0 or 1)
(AL) = parameters for initialization in the
following form:

7 6 5 4 3 2 1 0
—Baud Rate— —Parity— Stopbit —Word length—
000 - 110 baud 00 - None 0-1 10 - 7 bits
001 - 150 01-0dd 1-2 11 - 8 bits
010- 300 11 - Even
011 - 600
100 - 1200
101 - 2400
110 - 4800
111 - 9600

Output:

Condition is set according to the same conven-
tions as in “Get Comm Port Status” (see below).

819

ROM BIOS

Service

Routines

Send Input:
Character (AH)=1

(DX) = RS232 channel to be used (0 or 1)

(AL) = the character to be sent.

Output:

(AL) is preserved. :

(AH) — if the operation was unsuccessful, bit 7
is set. The other bits in (AH) are set as
they are in “Get Comm Port Status” if
the operation was successful.

Receive Input:
Character (AH) =2

(DX) = RS232 channel to be used (0 or 1)

Output:

(AL) = the received character.

(AH) = status of operation, if (AH) = 0, the oper-
ation was successful. If the high order bit
of (AH) is set, a timeout error aborted the
operation and the rest of (AH) can be
ignored. Any other setting of (AH) indi-
cates errors in the receive character
operation.

8-20

™

ROM BIOS
Service
Routines

Get Comm
Port Status

Input:
(AH)=3
(DX) = RS232 channel to be used (0 or 1)

Output
(AX) = status:
(AH) = line control status
bit 7 = timeout
bit 6 = transmission shift reg. empty
bit 5 = transmission holding reg. empty
bit 4 = break detect
bit 3 = framing error
bit 2 = parity error
bit 1 = overrun error
bit 0 = data ready
(AL) = modem status
bit 7 = received line signal detect
bit 6 = ringing detect
bit 5 = data set ready
bit 4 = clear to send
bit 3 = delta receive line signal detect
bit 2 = trailing edge ring detected
bit 1 = delta data set ready
bit 0 = delta clear to send

8-21

ROM BIOS
Service
Routines

Keyboard Handling

Introduction Interrupt 16H provides the keyboard handling
functions through three sub-functions. Most
keys return two values: a scan code and a char-
acter code. The scan code is the same as the key
number (see diagram below), and the character
code is the ASCII superset interpretation of the
key (including coincident SHIFTs or CTRLs).
Check the section on “DOS Interrupts and Func-
tion Calls” to select either the BIOS keyboard
routines or the DOS routines.

NUM LOCK lOCK

= MEEEEEEEEEEEERE D

F3 F4 <) Home ¢ PGUP —

=t ﬂ;ﬂ@;@@!;@a;ﬂ--!@“-@ﬁ
@ -EE}IE@EIBIHI@ [an] [ec] o]
-IEI@@IE@@@@-DII@D«%

(=110 . 0D

8-22

ROM BIOS

Service
Routines
]
CHARACTER CODES
ASCII Value Control ASCII Value
Decimal Hex Character Character Decimal Hex Character
000 00 (null) NUL 032 20 (space)
001 01 © SOH 033 21 !
002 02 () STX 034 22 ”
003 03 v ETX 035 23 #
004 04 ¢ EOT 036 24 $
005 05 &» ENQ 037 25 %
006 06 * ACK 038 26 &
007 07 (beep) BEL 039 27 ’
008 08 a BS 040 28 (
009 09 (tab) HT 041 29)
010 0A (line feed) LF 042 2A *
011 0B (home) VT 043 2B +
012 0C (form feed) FF 044 2C ,
013 0D (carriage CR 045 2D -
return)
014 OE 53 SO 046 2E)
015 oF 2o SI 047 2F /
016 10 - DLE 048 30 0
017 11 - DC1 049 31 1
018 12 t DC2 050 32 2
019 13 " DC3 051 33 3
020 14 T DC4 052 34 4
021 15 § NAK 053 35 5
022 16 — SYN 054 36 6
023 17 % ETB 055 37 7
024 18 4 CAN 056 38 8
025 19 { EM 057 39 9
026 1A — SUB 058 3A :
027 1B D ESC 059 3B ;
028 1C (cursor FS 060 3C <
right)
029 1D (cursor left) GS 061 3D =
030 1E (cursor up) RS 062 3E >
031 1F (cursor Us 063 3F ?
down)

823

ROM BIOS

Service
Routines

CHARACTER CODES (Cont’d)

ASCII Value Control ASCII Value
Decimal Hex Character Character Decimal Hex Character
064 40 @ 096 60 ©
065 41 A 097 61 a
066 42 B 098 62 b
067 43 C 099 63 c
068 44 D 100 64 d
069 45 E 101 65 e
070 46 F 102 66 f
071 47 G 103 67 g
072 48 H 104 68 h
073 49 I 105 69 i
074 4A J 106 6A j
075 4B K 107 6B k
076 4C L 108 6C 1 7
077 4D M 109 6D m
078 4E N 110 6E n
079 4F (6] 111 6F o
080 50 P 112 70 p
081 51 Q 113 71 q
082 52 R 114 72 r
083 53 S 115 73 s
084 54 T 116 74 t
085 55 U 117 75 u
086 56 A% 118 76 v
087 57 w 119 77 w
088 58 X 120 78 X
089 59 Y 121 79 y
090 HA Z 122 TA Z
091 5B [123 B {
092 5C \ 124 7C i
093 5D] 125 7D }
094 5E A 126 78~)
095 5F — 127 7F 0

8-24

ROM BIOS
Service
Routines

CHARACTER CODES (Cont’d)

ASCII Value ASCII Value
Decimal Hex Character Decimal Hex Character
128 80 C 160 A0 a
129 81 i 161 Al 1
130 82 é 162 A2)
131 83 a 163 A3 4
132 84 a 164 A4 fi
133 85 a 165 A5 N
134 86 a 166 A6 a
135 87 ¢ 167 A7 0
136 88] 168 A8 ¢
137 89 e 169 A9 —
138 8A é 170 AA -
139 8B Y 171 AB Yo
140 8C 1 172 AC Y%
141 8D ‘1 173 AD i
142 8E A 174 AE

143 sF A 175 AF

144 90 E 176 BO

145 91 2 177 B1

146 92 A 178 B2

147 93) 179 B3

148 94 0 180 B4

149 95 o 181 B5

150 96 @ 182 B6

151 97 u 183 B7 -
152 98 iy 184 B8 =
153 99 (o) 185 B9 =
154 9A U 186 BA I
155 9B ¢ 187 BB =
156 9C £ 188 BC =2
157 9D ¥ 189 BD -
158 9E Pt 190 BE -
159 9F f 191 BF -

8-25

ROM BIOS
Service
Routines

CHARACTER CODES (Cont’d)

ASCII Value ASCII Value
Decimal Hex Character Decimal Hex Character
192 Co L 224 E0 «
193 C1 < 225 El B
194 Cc2 - 226 E2 r
195 C3 3 227 E3 T
196 C4 - 298 E4)3
197 c5 + 229 E5 o
198 C6 E 230 E6 u
199 C7 I 231 E7 T
200 cs u 232 E8 o)
201 C9 " 233 E9 s
202 CA 2 234 EA Q
203 CB 5 235 EB b}
204 CcC I 236 EC 0
205 CD = 237 ED &
206 CE 3 238 EE ¢
207 CF =+ 239 EF N
208 DO a 240 FO =
209 D1 = 241 F1 +
210 D2 - 242 F2 >
211 D3 w 243 F3 <
212 D4 = 244 F4 r
213 D5 = 245 F5 J
214 D6 L 246 Fé6 +
215 D7 + 247 F7 ~
216 D8 + 248 F8 °
217 D9 4 249 F9 .
218 DA r 250 FA .
219 DB | 251 FB v
220 DC == 252 FC n
221 DD | 253 FD 2
222 DE] 254 FE L]
223 DF - 255 FF (blank)

8-26

~

ROM BIOS
Service
Routines

Read Next
ASCII
Character

Check if
Keystroke
Available

Input:
(AH)=0

Output:
(AL) = character code
(AH) = scan code

Note

This routine will not return execution to the call-
ing program until it has a keystroke to report.

This routine is used to check to see if a keystroke
has been entered. Use this function if you want
to continue processing whether or not a key has
been pr