
,P,

\jS
ovi#

:.^,lwf
ODl(V\V

1 I V >- '

t ̂ ̂ , *'

rtC5.(j- - i-i.^

A word about M^Fo imt&rferenc^
from the FCC . . «

This equipment generates and uses radio frequency energy and if not
installed and used properly, i.e., in strict accordance with the manufac
turer's instructions, may cause interference to radio and television
reception. It has been type tested and found to comply with the limits
for a Class B computing device in accordance with the specifications
in Subpart J of Part 15 of FCC Rules, which are designed to provide
reasonable protection against such interference in a residential installa
tion. However there is no guarantee that interference will not occur
in a particular installation. If this equipment does cause interference
to radio or television reception, which can be determined by turning
the equipment off and on, the user is encouraged to try to correct
the interference by one or more of the following measures.

• Reorient the receiving antenna.

• Relocate the computer away from the receiver.

• Move the computer with respect to the receiver.

• Move the computer away from the receiver. Plug the computer
into a different outlet so that computer and receiver are on dif
ferent branch circuits.

If necessary the user should consult the dealer or an experienced
radio/television technician for additional suggestions. The user may
find the following booklet prepared by the Federal Communications
Commission helpful:

"How to Identify and Resolve Radio-TV Interference Problems"

This booklet is available from the U.S. Government Printing Office,
Washington, D.C. 20402. Stock No. 004-000-00345-4.

This equipment is supplied with a shielded cable. It must use a shielded
cable in order to meet FCC Class B emission limits.

Key Tronic

Tmbie &f Comtemts

C Introduction 4
Installation 5

Keyboard Features 7

Typewriter Area 8

Function Keys 9
(

j Cursor Control Keypad 10

Numeric Keypad 11

^ Key Operation Comparison Chart 12

J Technical Data 13

i

Theory of Operation 15
I

i Maintenance 19

I Technical Assistance 19

KB 5151jr

The Key Tronic* KB 5151jr* * keyboard is a direct plug compatible
replacement for the IBM' *' PCjr computer keyboard. There are no
software modifications or special interfaces needed. The KB 5151jr
performs all functions described in the IBM PCjr Guide to Operations
handbook while incorporating keyboard changes and other features
for greater flexibility and user convenience.

Key Tronic, world leader in keyboards, has listened to the market com
mentary on the IBM PCjr keyboard design and has chosen to include
features in the KB 515Ijr not found on the PCjr keyboard. These
features enhance ease of operation and in no way alter the normal
function or use of your personal computer.

So, whether you are just entering the computer world or using the
PCjr to supplement office projects, the full-travel full-size KB 515Ijr
with its professional features makes transition simple. Ergonomic com
fort, high reliability, industry standardization, reduced data entry er
rors — all these and more are hallmarks of Key Tronic quality. Now
you can enjoy all the benefits of professional comfort and convenience
designed and built for you by the industry professional.

'Key Tronic is a registered trademark of Key Tronic Corporation.
* 'KB 5151jr is a trademark of Key Tronic Corporation.
" 'IBM and PCjr are trademarks of International Business Machine Corporation.

Key Tronic

f :
To install the KB 5151jr keyboard, proceed as follows.

. Place the computer's power switch to the Off position, "O".

9

2. Plug in the KB 5151jr keyboard.

KB 5151jr

Installation Cont'd.

3. Place the PCjr computer's power switch to the On position, "I".
A beep will be heard after the computer has checked itself and finds
that everything is working correctly. Your KB 5151jr keyboard is
then ready for use.

If no beep is heard, refer to your IBM PCjr Guide to Operations
for assistance. Use Section 6 "Testing Your IBM PCjr" to help you
solve any difficulty that may arise. You are also welcome to con
tact our Product Support Specialists for assistance. See Technical
Assistance in the back of this manual.

NOTE: Some IBM test instructions may refer to using the Fn (Func
tion) key. Substitute the Ctrl (Control) key of the KB 5151jr for
the Fn key of the PCjr keyboard. For example, if you wish to discon
tinue running Test Tag J on the KB 5151jr, press and hold the
Ctrl key and then depress the Break key when instructed to "press
the Fn key and then the B (Break) key."

Key Tronic

Keyboard FeatMres

When compared to the IBM PCjr keyboard, major differences can be
seen in the general layout of the KB 5151jr^i^. Separate cursor and
numeric keypads and relocation of the program function keys (F1
through FIO) across the top are changes incorporated to enhance use
of your keyboard.

Another feature is the status LED (light emitting diode) indicators on
the Caps and Num Lock keys. A frequent cause of keyboard data
entry error is the accidental setting of these keys. To reduce the number
of such errors, the KB 5151jr incorporates the LEDs to indicate cur
rent mode. You can now tell at a glance in which mode the key is set.

The KB 5151jr, as opposed to the IBM PCjr keyboard, returns cer
tain keys to standard locations and places the character legend of each
key on its keytop for easier key identification. This style reduces con
fusion in locating and selecting desired keys and functions.

The keyboard is divided into four sections; the Function Keys, the
Typewriter Area, the Cursor Control Keypad, and the Numeric
Keypad. Each section will be discussed in detail.

Function Keys

EBEBZZBmoQDti a
All sm Z X C V 8 N M

17 IB 19 Ij"' HoflnU jPnUf
ira pi irirn
jDownj Itnfl n IpoDbI

Typewriter Area

Cursor Control 1
Keypad Numeric Keypad

KB 5151jr

Keyboard Features Cont'd.

Typewriter Area

--■I', 1® 1# $ « A & * |(||) |_ .
2 13 4 5 6 7 8 |fl l|o i- =

MJi
' m- T.ftW ! "TinR w

1

Efficiency and accuracy are enhanced by full-size sculptured keytops
with easily read legends and raised tactile indexes on the F and J
"home'' keys.

Many awkward keystroke combinations are eliminated by deletion of
the Fn key and addition of "one press" function keys. The Key Opera
tion Comparison chart on page 12 shows equivalent keystrokes for
the desired functions. For PCjr programs using the Fn key, the Ctrl
key performs the same function.

Caps *
Lock w

The Caps Lock key is relocated and an LED in
dicator is added to show its current mode. When the
LED is illuminated, the letters A through Z are
automatically displayed in uppercase.

NOTE: Some programs may alter memory locations set aside for Caps
Lock status. If this happens, the LED will not show the correct mode
of the Caps Lock key. As a result, when the Caps Lock LED is il
luminated and an alphabet key is depressed, the letter will be displayed
in lowercase instead of uppercase. This situation can be corrected by
pressing and holding the Reset key (this will not reset the computer)
and then depressing the Caps Lock key. For details, see Theory
of Operation, pages 15-18.

Key Tronic

A Grave key is added above the Return key. The
use of the Alt key (as on the PCjr keyboard) is no
longer needed when using this key. To obtain the
tilde symbol ("), hold down the Shift key and then
depress the Grave key.

A Return key replaces the former PCjr Enter key.
Normally the function of the Return key is to end
a line-of-text by moving the cursor from the last
character of a line to the first character position of
the next line following. The Return key also per
forms "enter" functions as prescribed by the applica
tion program.

A Backslash key is added next to the right Shift key.
The use of the Alt key, as on the PCjr keyboard, is
not needed. To obtain the upper character, hold down
the Shift key and then press the Backislash key.

Function Keys

All program function keys are located across the top of the keyboard
and new keys have been added. Keys F1 through FIO function the
same as described in your IBM PCjr Guide to Operations, however,
use of these keys does not require the need of a Fn (Function) key
as on the PCjr keyboard.

Pause is relocated to the program function key row.
Pressing Pause will stop your program, or suspend
operation of the system, so that you can read the
screen. Pressing any key other than Pause will resume
program operation.

The PrtSc (Print Screen) key is relocated from the
typewriter area to the program function key row on
the KB 5151jr keyboard. If you are linked to a
printer, Shift + PrtSc will cause a print out of the
information appearing on the screen.

The Reset key is an added feature. Ctrl + Reset
will cause a system reset. This key also enables mode
reset of the Caps Lock LED and Num Lock LEDs.
For resetting these keys, read the NOTE following
the description of these keys.

PrtSc

*

KB 5151jr

Keyboard Features Cont'd.

Function Keys Cont'd.

Curs^
Pad

Cursr Pad is an added key that controls the status
of the Cursor Control Keypad. The LED located on
its keytop indicates whether the keypad is enabled
or disabled. Note, however, that when the cursor

keypad is disabled and the numeric keypad is in its numeric mode,
the numeric keypad must be returned to its cursor mode (Num Lock
LED Off) before the Curair Pad key can be used to reactivate the
cursor keypad.

Cursor Control Keypad

Insert Delete

Home
Page
Up

F?nw
End ▼ I Page

I Down

The KB 5151jr incorporates a separate Cursor Control Keypad
dedicated to cursor and edit functions. On power-up, both Cursr Pad
and Num Lock LEDs are illuminated and their associated keypads
active. After power-up, pressing the Cursr Pad key turns Off its status
LED, deactivates the cursor control keypad, and transfers control of
cursor and edit functions to the numeric keypad. To reactivate the
cursor keypad, the numeric keypad must be in its cursor mode (Num
Lock LED Off) before depressing the Cursr Pad key.

NOTE: Some software applications may alter memory locations set
aside for cursor and numeric keypad operation. In such cases the cur
sor control keypad could generate numbers instead of cursor and edit
functions. To correct this situation, deactivate the cursor keypad by
pressing the Cursr Pad key. Next, press and hold the Reset key
and then depress the Num Lock key. This will reset the cursor keypad
to its proper mode. For more information, see Theory of Operation,
pages 15-18.

10 Key Tronic

Numeric Keypad

Num ^ Scroll
Lock • Lock

B'S'k

1 (8 1(9 pHome I I I Pfl Lip I

1 2End ^

An Enter key is added with the same function as
the Return key. It ends a line-of-text by moving the
cursor from the last character of one line to the first

character position of the next line following; or, it per
forms "enter" functions as prescribed by the applica
tion program,

The Num Lock key has a LED indicator to show
Num ^ 1 /-\
Lock • when the Numeric Keypad is in numeric mode. On

power-up the LED is illuminated and the numeric
keypad is locked in numeric mode. Only after
depressing the Cursr Pad key and therefore de

activating the cursor keypad can the Num Lock key be used for cur
sor and edit functions. When the Num Lock LED is Off, the primary
function of the numeric keypad is cursor and edit functions with the
Shift key required to obtain numbers.

NOTE: Some programs may alter memory locations set aside for Num
Lock status thereby affecting proper operation of the cursor and
numeric keypads. In such cases, when the Num Lock LED is il
luminated to indicate numeric mode, the numeric keypad could
generate cursor and edit commands instead of numbers. To correct
this situation perform the following;

Make sure the cursor control keypad is deactivated by using the Cursr
Pad key. Press and hold the Reset key (this will not reset the com
puter) and then depress the Num Lock key. For more information,
see Theory of Operation on pages 15-18.

KB 5151jr 11

Keyboard Features Cont'd.

Key Opermtiom Comparison Chart

KB 5151 Keyboard
PCjr Keyboard Equivalent

Press and hold Fn key then
press F1 key (Fn -l- Fl) Fl

Fn + F2 F2

Fn + F3 F3

Fn + F4 F4

Fn + F5 F5

Fn + F6 F6

Fn -f F7 F7

Fn + F8 F8

Fn + F9 F9

Fn + FIO FIG

Fn then Pg Up Page Up
Fn then Pg Dn Page Down
Fn then Home Home

Fn then End End

Fn then Pause Pause

Fn then Sc Lock Scroll Lock

Fn then Break Ctrl + Break (Scroll Lock)
Ctrl with Fn then End Ctrl + End

Fn then Echo Ctrl + PrtSc

Ctrl with Fn then Home Ctrl + Home

Ctrl with Fn then Pg Dn Ctrl + Page Down
Ctrl with Fn then Pg Up Ctrl + Page Up
Fn then Prt Sc Shift + PrtSc

Hold Alt, Press Fn then N Num Lock

Hold Shift, Press Fn then Fl thru FIO Shift + Fl thru FIG

Hold Ctrl, Press Fn then Fl thru FIG Ctrl + Fl thru FIG

Hold Alt, Press Fn then Fl thru FIG Alt + Fl thru FIG

12 Key Tronic

Tecknicai Dmtm

Keyboard Interface Information

The maximum power requirement of the KB 5151jr^i^^ is 85ma at
+ 5VDC. The keyboard has an attached cable and connector that con
nects to the receptacle at the rear of the PCjr computer (see Keyboard
Interface Connector below). This is a shielded cable containing a
-I-5VDC line, a ground, and a signal line. Data is serial TTL.

Capacitive key switches are used with a microprocessor performing
the functions of kcyswitch scanning, translating keypresses to IBM
down-up scan codes, and maintaining bidirectional serial communica
tions with the host computer.

Keyboard communication with the host computer is accomplished by
having the keyboard send IBM down-up scan codes to the host rather
than ASCII codes (see the Scan Code Chart on following page). For
example, key number 16 of the KB 5151jr Scan Code Chart pro
duces the hex code 01 on make and 81 on break. Break codes are

formed by adding hex 80 to the make codes.

DESCRIPTION VOLTAGE

Keying Slot
N/A

Keyboard Data
Cable Connect

Keyboard Power
Ground

0

0

TTL

0

+ 5VDC

0

CONNECTOR

[I] lH Q]

[i]0m

Connector

on the Keyboard
Cable.

KB 5151ir 13

V5

O
3

I

5 3F

(D

!
n

@ ®

L« ■ B7
1S»

rre-

1?^

8F

37 1

S.1W WasloSlMSffflSLaioSiasLsiToSiT, s 1
»sL s »sU|„ Ki BS H Afi]

9bS|9iS

1m Ba
s

XX >4

IB

bg ks
a
3,i 'Lm

wp]0
75«|78« 077 «178«

96^lff?

Dtnro Code

® Key ̂ 11 (Pause key) will generate the sequential
code string "1D,45,C5,9D" momentarily on depres
sion. There is no key code generated on release.

® If the Cursr Pad LED is On, the cursor control
keypad is activated and the keys generate the in
dicated hex codes.

If the Cursr pad LED is Off, the cursor control
keypad is inoperative and no key codes are
generated from the cursor control keypad.

@ Key ̂ 15 (Reset) is active only if key #58 (Ctrl key) is
held down. Key ̂ 15 will generate the sequential hex
code string "38,53" momentarily on depression.

A Key Nombtr

® If the Num Lock LED is On, the numeric keypad
is in the numeric mode. The hex codes generated
are as indicated on the scan code chart.

If the Num Lock LED is Off, the numeric keypad
is in the cursor mode. The hex codes generated are
as indicated in the scan code chart.

For keys 17 thru 26 (numeric keys of the typewriter
area): If the Num Lock LED is On and the Cursr
Pad LED is Off, on the first depression of a key in
this group, the code string "C5,45,C5" will precede
the scan code of the key pressed.

f

Tke&rp of Opermtmm

As referenced in the Cursor Control and Numeric Keypad Notes, there
are instances where LED status indications may become erroneous
when certain software applications are used. In order to clarify the
source of these problems, the following information is provided:

Key Status Conventions

Operation of the Cursor Control Keypad enhancement relies on the
IBM PCjr Shift-key convention of the Basic Input/Output System
(BIOS). This convention is defined in firmware and is a standard func
tion of the IBM PCjr. BIOS is designed to accept a "down/up" keycode
scheme, which simply means that every key generates one code when
pressed, and a second code when released.

Each key produces a unique pair of codes. These codes do not repre
sent characters, but rather the location of the key on the keyboard.
The character representation for that location is stored in the host
memory. The host tables carry both a primary and alternate character
assignment for all data keys and some of the function keys. An "un-
shifted" input elicits the primary, and a "shifted" input the alternate.

A "Shift" or "Control" input does not produce a new code, but adds
a Shift or Control key code to the key pressed to form a code string;
i.e., depressing Shift -f A sends the Shift key's down code plus the
A key's down-up code followed by the Shift key's up code when the
Shift key is released. The Shift down code causes a "toggle" in the
BIOS, actually a change in a specific BIOS memory location that
represents Num Lock and Shift status. It then interprets any successive
input as the character of the key, based on the modified status. The
Shift key up code toggles BIOS back to its original status.

On power-up, keyboard status defaults to the IBM convention; i.e.,
Num Lock, Shift, Caps Lock, Alt, Scroll Lock, and Control are all
OFF. Keypress "A" is displayed as "a", and Shift + A is displayed
as "A". The Cursor Control Keypad and the Numeric Keypad are ac
tive and ready to interpret key entry. The keyboard intelligence will
then issue any necessary modifiers to key code output to insure cor
rect host response.

KB 5151jr 15

Theory of Operation Confd.

Power Up Status

When the system is powered up, the keyboard is set to "base state."
This means that both numeric and cursor control keypads are active
and the keyboard intelligence considers BIOS status to be in "clear"
mode; i.e., ready to see unshifted keypad codes as cursors and shifted
keypad codes as numbers. Keyboard intelligence causes the system
to operate as described below.

Keyboard Status Control

For maximum efficiency, Key Tronic provides features such as Caps
Lock LED, Numeric Lock LED, and Cursor Pad. Since these are not
functions of the host, the keyboard firmware implements a "zone"
scheme to identify input source keys and to output recognizable data
that satisfies the BIOS convention. The zones are separated by func
tion: Typewriter Area, Numeric Keypad, Cursor Control Keypad, and
the numeric keys (0-9) of the typewriter area.

The Caps Lock key only affects the alphabetic characters on the
keyboard; Num Lock only affects the Numeric Keypad; and Cursr
Pad only affects the Cursor Control Keypad. During key status poll
ing, the keyboard will automatically identify a keypress zone and satisfy
one of the two following conditions of zone recognition:

1. On the first keypress in a zone, the proper down or up Shift
code and the down-up code for the key pressed is sent. (The
Shift code preceding the key pressed code signifies a zone
change.)

2. On subsequent keypresses in that zone, only the down-up key
codes will be sent. If the user changes zone, condition 1 applies.

Numeric Keypad

The Numeric Keypad (NK) output is seen as cursor/edit commands
in unshifted mode, and numerics in shifted mode. When in the base
state, the zone recognition scheme identifies an NK input and inserts
a Shift down code for the first keypress. This shift status remains in
effect until the user moves to another zone. That will cause a Shift
up code to be issued to regain the base state condition.

16 Key Tronic

Cursor Control Keypad

The Cursor Control Keypad (CCK) output Is sent only in an unshifted
mode and seen as cursor/edit commands when the keyboard is in
base state (Cursr Pad, and Num Lock LEDs are On). The keyboard
firmware then "sees" CCK zone keypresses. A secondary feature of
this status is that the Num Lock key is under control of the keyboard
firmware and cannot be disengaged while CCK is active.

Note that the CCK and NK use identical keycodes. In order to cor
rectly interpret the input location, the keyboard firmware uses the zone
recognition technique discussed earlier. Since BIOS is set to "clear,"
NK keycodes are prefixed with a Shift down code by the keyboard
firmware to indicate input of numeric values. CCK keypresses do not
require modification since BIOS is set to recognize them. Using the
Shift key will temporarily reset the BIOS and produce cursor/edit com
mands from the NK, but zone protocol does not permit Shift to affect
CCK output.

Convention Violation

Some software applications modify the host "system status" when in
itializing. The specific BIOS memory locations containing preset
keyboard status conditions may be cleared to default status. This con
dition does not affect the keyboard in the base state mode, but when
host operated software intentionally sets other than default or "clear"
status, the keyboard is not notified of such change.

Since the keyboard is not capable of responding to unknown changes,
the keyboard LEDs which are illuminated to indicate engaged func
tions will be "out of sync."

It is also possible for such changes to occur during runtime of the ap
plication, which is a violation of BIOS usage rules. The user must then
resort to the following recovery scheme:

If both Cursr Pad and Num Lock LEDs are On, disengage the Cursr
Pad LED. Next, press and hold the Reset key and then depress the
Num Lock key. Pressing the Reset key in this situation will not reset
the system.

KB 5151jr 17

Theory of Operation Cont*d.

Convention Vioiation Cont'd.

NOTE: If the LED status is adjusted to agree with the status set by
the software on initialization, there is no certainty as to the BIOS con
dition when exiting the application and the LED status will likely be
incorrect for normal operation. The recovery procedure previously
described must then be repeated to get back in sync.

Software packages which do not adhere to BIOS convention may not
produce cursor movement from the Cursor Control Keypad. In such
cases, the Numeric Keypad must be used for cursor control until a
correction is implemented by the vendor.

Additionally, there may be software which, while adhering to the con
vention, adds other cursor capability not compatible with the Cursor
Control Keypad due to unusual use of the BIOS. In such cases, both
the software vendor and Key Tronic should be notified so that a solu
tion can be implemented (See Technical Assistance.)

18 Key Tronic

Maimtenmmce

The KB 5151jr keyboard is designed and manufactured to operate
without preventive maintenance. The keyboard exterior may be
cleaned with a mild household type cleaner, and a soft damp lint-free
cloth or paper towel. Be careful not to wipe dirt into the keyboard.
Do not allow spray cleaner to run into the keyboard. Never use
petroleum base solvent which could damage the plastic or painted
surfaces.

Technical Assistance

If you should encounter problems with the use of this keyboard, first
review your system operator's guide. If the problem appears to
originate from the keyboard, you are welcome to contact our Pro
duct Support Specialist (PSS) to obtain assistance. To reach the PSS,
call toll-free, 1-800-262-6006, or, if in the state of Washington, (509)
928-8000. If calling from outside the continental U.S.A., call Spokane,
Washington, U.S.A., (509) 928-8000.

Packing Notice

Please retain original packaging for reuse should your unit ever need
to be returned for service. The bag and box are custom designed to
protect the keyboard from electrostatic and mechanical shock in
shipment.

KB 5151jr 19

fmmtc Cmp&mtmst Limited Wmramty

; lKey,-Ir§hi^r^^ warrants the products which it manufactures to be free
anrl iwnrWmanchin fnr a nprinri nf QO ininptut rlanc frnm

such purchaser

' {-jDuVrh^^^^^^ warranty period, Key Tronic will repair or replace, at
products or parts at no additional charge, provided that

>' the.'proddS?^^^^^^ shipping prepaid, to Key Tronic, an authorized dealer or
an authoiized'^'rvice Jocation. The purchaser Is responsible for insuring any returned
produch'and asl^umes the risk of loss during shipping. Ail replaced parts and pro-
duas b^Q^^^ of Key Tronic.

:- 'i Prpy^ date must be provided by the purchaser when requesting
«;'that waS^nfyi!^^^ The purchaser may request information on how
• to ̂'obtain by contacting an authorized dealer or writing to Key
\ Tronic,. Spokane, WA 99214, U.S.A., or calling
. l-^8OO-262--6O0^/p^^^^^ state of Washington, (509) 928-8000. If calling from
outside .the call Spokane, Washington, U.S.A., (509)

• 928-8000/;>i::'if

THIS LiMITCD^'W^R'^ DOES NOT EXTEND TO ANY PRODUCTS
WHICH HAVE-BEEM:DAMAGED AS A RESULT OF ACCIDENT, MISUSE.
ABUSE/OR v^S^MESULT OF service or modification by ANYONE
OTHER ;TNAf^'mESJ\T.RbNIC, AN AUTHORIZED DEALER OR AN
AUTHORIZED SPVICE LOCATION. THIS LIMITED WARRANTY DOES NOT

THAN THE{EQOlg{^lE^^^^ IT IS DESIGNED.
EXCEPT AS E^R^sMkT FORTH ABOVE, NO OTHER WARRANTIES
ARE EXPRESSED' QPWP-LIED, INCLUDING, BUT NOT LIMITED TO, ANY
IMPUED WARRANIESI^WERCHANTABILITY or FITNESS FOR A PAR
TICULAR. PURROSEfi-KE^^vTRONIC EXPRESSLY DISCTLAIMS ALL EX
PRESSED ORlMRllMiipiRANT^ NOT STATED HEREIN. IN EVENT THE
PRODUCTdS NbT?iSBE^|ibW>DEFECTS AS WARRANTED ABOVE, THE
PURCHASER'S^bOgREi^ED^HALL BE REPAIR OR REPLACEMENT AS
PROVIDED ABOVEfflpERyN0;blRCUMSTANCES WILL KEY TRONIC BE
LIABLE TO THE RURiGBj^SER .pR ANY USER FOR ANY DAMAGES, IN
CLUDING ANY INGIDENiliiPRCbP^ DAMAGES, EXPENSES,
LOST PROFITS, LOST^^NGS^^OR OTHER DAMAGES ARISING OUT OF
THE USE OF, OR lNABjUTY TO USE. THE PRODUCT.

SOME STATES DO NOT AtloW THE EXCLUSION OR LIMITATION OF IN
CIDENTAL OR CONSEQUENTIAL^ damages FOR CONSUMER PRODUCTS,
AND SOME STATES DO; NOT,ALLOW LIMITATIONS ON HOW LONG AN
IMPLIED WARRANTY LASTSi^'SO THE ABOVE LIMITATIONS OR EXCLU
SIONS MAY NOT APPLY TO YOU.

THIS LIMITED WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS, AND
YOU MAY ALSO HAVE OTHERIRIGHTS WHICH VARY FROM STATE TO
STATE.

a

key tronk •
The Responsive Input Company ™

P.O. Box 14687 • Spokane, Washington 99214
Outside Washington State 1-800-262-6006

Inside Washington State (509) 927-5515

Personal Computer K^/r
Hardware Reference
Librarv

BASIC
By Microsoft Corp.

1502284

Personal Computer PC/r
Hardware Reference
Library

BASIC
By Microsoft Corp.

(First edition - June 1983)

This product could include technical inaccuracies or typographical
errors. Changes are periodically made to the information herein;
these changes will be incorporated in new editions of the
publication.

The following paragraph applies only to the United States and
Puerto Rico: International Business Machines Corporation
provides this manual "as is," without warranty of any kind, either
expressed or implied, including, but not limited to, the particular
purpose. IBM may make improvements and/or changes in the
product(s) and/or the program(s) described in this manual at any
time.

Products are not stocked at the address below. Requests for
copies of this product and for technical information about the
system should be made to your authorized IBM Personal
Computer dealer.

A Reader's Comment Form is provided at the back of this
publication. If the form has been removed, address comments to:
IBM Corp., Personal Computer, P.O. Box 1328-C, Boca Raton,
Florida 33432. IBM may use or distribute any of the information
you supply in any way it believes appropriate without incurring
any obligations whatever.

© Copj?right International Business Machines Corporation 1983

Preface

^00^ This book is a reference for both Cartridge and
Cassette versions of BASIC for the PCjr.

Throughout this book, the term BASIC refers to both
versions of Cassette BASIC and Cartridge BASIC.

In order to use this manual, you should have some
knowledge of general programming concepts; we are
not trying to teach you how to program in this book.
The BASIC Tutorial book that was shipped with your
system is designed to give you this general BASIC
programming knowledge.

m

How to Use This Book

The book is divided into four chapters plus ten (10)
appendixes.

Chapter 1 is a brief overview of the two versions of
PCjr BASIC interpreter.

Chapter 2 tells you what you need to know to start
using BASIC on your PCjr. It tells you how to
operate your computer using BASIC.

Chapter 3 covers a variety of topics which you need
to know before you actually start programming
Much of the information pertains to data
representation when using BASIC. We discuss
filenames here, along with many of the special input
and output features available in IBM PCjr BASIC.

Chapter 4 is the reference section. It contains, in
alphabetical order, the syntax and meanings of
every command, statement, and function in BASIC.

The appendixes contain other useful information,
such as lists of error messages, ASCII codes, and
math functions; plus helpful information on machine.
language subroutines, diskette input and output, and
communications. You may find "Appendix D.
Converting Programs to IBM PCjr BASIC"
especially helpful, because it discusses the
differences between IBM PCjr BASIC and other
BASICS. You wUl also find detailed information on
more advanced subjects for the more experienced
programmer.

We suggest you read thoroughly Chapters 2 and 3 to
become familiar with BASIC. Then, while you are
actually programming, you can refer to Chapter 4 for
the information you need about the commands or
statements you are using. Syntax Diagrams

IV

Each of the commands, statements, and fxmctions
described in this book has its syntax described
according to the following conventions:

• Words in capital letters are keywords and must be
entered as shown. They may be entered in any

^0^ combination of uppercase and lowercase. BASIC
always converts words to uppercase (unless they are
part of a quoted string, remark, or DATA
statement).

• You must supply any items in lowercase italic
letters.

• Items in square brackets ([]) are optional.

• An ellipsis (...) indicates an item may be repeated as
many times as you wish.

• All punctuation except square brackets (such as
commas, parentheses, semicolons, hyphens, or equal
signs) must be included where shown.

Let's look at an example:

INPUT[;]["prompt";] variable^,variable]...

This says that for an INPUT statement to be valid, you
must first have the keyword INPUT, followed
optionally by a semicolon. Then, if you wish, you may
include a prompt within quotation marks. The prompt,
must be followed by a semicolon. An INPUT
statement must have at least one variable You may have
more than one variable if you separate them with
commas.

More detailed information on each of the parameters is
included with the text accompanying the diagram. The
information for this example is in Chapter 4, under
"INPUT Statement."

Related Publications

The following manuals contain related information that
you may find useful:

• The IBM PCjr Guide to Operations manual

• The IBM Personal Computer Disk Operating System
manual

• The IBM PCjr Technical Reference manual

• The PCjr BASIC Tutorial

• The IBM Personal Computer BASIC Compiler
manual

VI

Contents

Chapter 1. The Versions of BASIC 1-1
' The Versions of BASIC 1-3

Cassette BASIC 1-5

Cartridge BASIC 1-6

Chapter 2. How to Start and Use BASIC 2-1
Getting BASIC Started 2-3

To Start Cartridge BASIC When Not
Using DOS 2-4
To Start Cartridge BASIC While Using
DOS 2-5

Returning to DOS from Cartridge BASIC 2-5
The Keyboard 2-6

Tjrpewriter Keys 2-7
Special Keys 2-9
Control Mode 2-10

Alternate Mode 2-11

System Reset 2-13
Function Mode 2-14

The BASIC Program Editor 2-17
Special Program Editor Keys 2-17
How to Make Correctiotis on the

Cmrent Line 2-29

Entering or Changing a BASIC Program 2-33
Changing Lines Anywhere on the
Screen 2-35

Syntax Errors 2-38
Modes of Operation 2-39
Running a BASIC Program 2-40

Running a Program on Diskette 2-41
Running a Program on Cassette 2-48

Options on the BASIC Command 2-50
Redirection of Standard Input and Standard
Output 2-55

vii

Chapter 3. General Information about Programming
In BASIC 3-1

Line Format 3-3

Character Set 3-4

Reserved Words 3-6

Constants 3-9

Numeric Precision 3-12

Variables 3-14

How to Name a Variable 3-14

How to Declare Variable Types 3-15
Arrays 3-16

How BASIC Converts Numbers from One

Precision to Another 3-20

Techniques for Formatting your Output ... 3-23
Numeric Expressions and Operators 3-25

Arithmetic Operators 3-25
Relational Operators 3-27
Logical Operators 3-30
Numeric Functions 3-34

Order of Execution 3-35

String Expressions and Operators 3-37
Concatenation 3-37

String Functions 3-38
Input and Output 3-39

FUes 3-39

Using the Screen 3-48
Attribute and Bits Per Pixel 3-53

Assigning Colors to Attributes 3-55
Other I/O Features 3-56

Chapter 4. BASIC Commands, Statements,
Functions, and Variables 4-1

How to Use This Chapter 4-3
Commands 4-6

Statements 4-9

Non-I/O Statements 4-9
I/O Statements 4-14

Functions and Variables 4-19

vm

Numeric Functions (return a numeric
value) 4-19

String Functions (return a string value) 4-23
ABS Function 4-25

ASC Function 4-26

ATN Function 4-27

AUTO Command 4-28

BEEP Statement 4-30

BLOAD Command 4-32

BSAVE Command 4-36

CALL Statement 4-38

CDBL Function 4-40

CHAIN Statement 4-41

CHDIR Command 4-44

CHR$ Function 4-46
CINT Function 4-48

CIRCLE Statement 4-49

CLEAR Command 4-53

CLOSE Statement 4-59

CLS Statement 4-61

COLOR Statement 4-63

^ The COLOR Statement in Text Mode 4-65
The COLOR Statement in Graphics
Mode 4-68

COM(n) Statement 4-71
COMMON Statement 4-73

CONT Command 4-74

COS Function 4-76

CSNG Function 4-77

CSRLIN Variable 4-78

CVI, CVS, CVD Functions 4-79
DATA Statement 4-81

DATE$ Variable and Statement 4-83

DEF FN Statement 4-85

DEF SEG Statement 4-88

DEFtype Statements 4-90
DEF USR Statement 4-92

DELETE Command 4-94

DIM Statement 4-96

IX

DRAW Statement 4-98

EDIT Command 4-105

END Statement 4-106

EOF Function 4-107

ERASE Statement ' 4-108

ERR and ERL Variables 4-110

ERROR Statement 4-112

EXPFimction 4-114

FIELD Statement 4-115

FILES Command 4-118

FIX Function 4-121

FOR and NEXT Statements 4-122

ERE Function 4-127

GET Statement (Files) 4-129
GET Statement (Graphics) 4-131
GOSUB and RETURN Statements 4-134

GOTO Statement 4-136

HEX$ Function 4-138
IF Statement 4-139

INKEY$ Variable 4-143
INP Function 4-145

INPUT Statement 4-146 ^
INPUT # Statement 4-149

INPUTS Function 4-151

INSTR Function 4-153

INT Function 4-154

KEY Statement 4-155

KEY(n) Statement 4-161
KILL Command 4-163

LEFTS Function 4-165

LEN Function 4-166

LET Statement 4-167

LINE Statement 4-169

LINE INPUT Statement 4-173

LINE INPUT # Statement 4-174

LIST Command 4-176

LLIST Command 4-178

LOAD Command 4-179

LOC Function 4-182

LOCATE Statement 4-184

LOF Function 4-187

LOG Function 4-189

LPOS Function 4-191

LPRINT and LPRINT USING Statements 4-192

LSET and RSET Statements 4-194

MERGE Command 4-196

MID$ Function and Statement 4-198
MKDIR Command 4-201

MKI$, MKS$, MKD$ Functions 4-203
MOTOR Statement 4-205

NAME Command 4-206

NEW Command 4-208

NOISE Statement 4-209

OCT$ Function 4-211
ON COM(n) Statement 4-212
ON ERROR Statement 4-215

ON-GOSUB and ON-GOTO Statements 4-217
ON KEY(n) Statement 4-219
ON PEN Statement 4-223

ON PLAY(n) Statement 4-225
ON STRIG(n) Statement 4-228
ON TIMER Statement 4-231

OPEN Statement 4-233
OPEN "COM... Statement 4-240

OPTION BASE Statement 4-247

OUT Statement 4-248

PAINT Statement 4-250

PALETTE Statement 4-257

PALETTE USING Statement 4-259

PCOPY Statement 4-262

PEEK Function 4-263

PEN Statement and Fimction 4-264

PLAY Statement 4-267

PLAY(n) Function 4-273
PMAP Function 4-275

POINT Function 4-277

POKE Statement 4-280

POS Function 4-281

XI

PRINT Statement 4-282

PRINT USING Statement 4-286

PRINT # and PRINT # USING Statements 4-292

PSET and PRESET Statements 4-295

PUT Statement (Fdes) 4-297
PUT Statement (Graphics) 4-299
RANDOMIZE Statement 4-304

READ Statement 4-307

REM Statement 4-309

RENUM Command 4-310

RESET Command 4-312

RESTORE Statement 4-313

RESUME Statement 4-314

RETURN Statement 4-316

RIGHT$ Function 4-317
RMDIR Command 4-318

RND Function 4-321

RUN Command 4-323

SAVE Command 4-325

SCREEN Function 4-328

SCREEN Statement 4-330

SGN Fimction 4-336

SIN Function 4-337

SOUND Statement 4-338

SPACES Function 4-343

SPC Function 4-344

SQR Function 4-345

STICK Function 4-346

STOP Statement 4-348

STR$ Function 4-350

STRIG Statement and Function 4-351

STRIG(n) Statement 4-353
STRINGS Function 4-355
SWAP Statement 4-356

SYSTEM Command 4-357

TAB Function 4-358

TAN Function 4-359

TERM Statement 4-360

TIMES Variable and Statement 4-368

xu

TIMER Variable 4-370

TRON and TROFF Commands 4-371

USRFimction 4-373

VAL Function 4-374

VARPTR Fimction 4-375

VARPTR$ Function 4-378

VIEW Statement 4-380

WATT Statement 4-385

WHILE and WEND Statements 4-387

WIDTH Statement 4-389

WINDOW Statement 4-393

WRITE Statement 4-398

WRITE # Statement 4-399

Appendix A. Messages A-3
Quick Reference A-19

Appendix B. BASIC Diskette Input and Output ... B-1
Specifying Filenames B-2
Commands for Program Files B-2
Diskette Data Files - Sequential and Random
I/O B-4

Sequential Files B-4
Random Files B-8

Appendix C. Machine Language Subroutines C-1
Setting Memory Aside for Your Subroutines C-2
Getting the Subroutine Code into Memory .. C-3

Poking a Subroutine into Memory C-4
Loading the Subroutine from a File ... C-5

Calling the Subroutine from Your BASIC
Program C-9

Common Features of CALL and USR . C-9

CALL Statement C-11

USR Function Calls C-15

Appendix D. Conyerting Programs to PCjr BASIC D-1
FUe I/O D-1
FOR-NEXT Loops D-1

xui

Graphics D-2
IF-THEN D-2

Line Feeds D-3

Logical Operations D-3
MAT Functions D-4

Multiple Assignments D-4
Multiple Statements D-4
PEEKS and POKES D-5

Relational Expressions D-5
Remarks D-5

Rounding of Numbers D-5
Soimding the Bell D-6
String Handling D-6
Use of Blanks D-7

Other D-7

Appendix F. Conununications F-1

Opening a Communications File F-1
Commvmicationl/O F-1
Sample Program 1 F-4
Sample Program 2 F-6

Operation of Control Signals F-7
Control of Output Signals with OPEN . F-7
Use of Input Control Signals F-8
Testing for Modem Control Signals ... F-8
Direct Control of Output Control Signals F-9
Communication Errors F-10

Appendix G. ASCII Character Codes G-1

Extended Codes G-6

Appendix H. Hexadecimal Conversion Tables H-1

Binary to Hexadecimal Conversion Table ... H-2

Appendix I. Technical Information and Tips I-l
Memory Map 1-2
How Variables Are Stored 1-4

XIV

BASIC File Control Block 1-5

Keyboard Buffer 1-8
The Second Cartridge .1-8

Tips and Techniques 1-9

Appendhr J. Glossary J-1

Appendix K. Keyboard Diagram and Scan Codes • • K-1
Keyboard Scan Codes for 62-key Keyboard . K-2

Index Index-1

XV

Notes

XVI

Chapter 1. The Versions of BASIC

Contents

The Veraons of BASIC 1-3

Cassette BASIC 1-5

Cartridge BASIC 1-6

1-1

Notes

1-2

The Versions of BASIC

PCjr offers two different versions of the BASIC
interpreter:

• Cassette

• Cartridge

The two versions of BASIC are upward compatible;
that is, everything that Cassette BASIC does, Cartridge
BASIC does plus a little more. The differences
between the versions are discussed in more detail

below.

The BASIC commands, statements, and fimctions for
both versions of the BASIC interpreter are described in
detail in Chapter 4, "BASIC Commands, Statements,
Functions, and Variables." Included in each description
is a section called Versions:, where we tell you which
versions of BASIC support the command, statement, or
fimction.

For example, if you look imder "CHAIN Statement" in
Chapter 4, you will note that it says:

Versioiis: Cassette Cartridge Compiler

The asterisks show which versions of BASIC support
the statement. This example shows that you can use
the CHAIN statement for programs written in the
Cartridge version of BASIC.

In this example you will notice that the asterisks imder
the word "Compiler" are in parentheses. This means
that there are differences between the way the
statement works imder the BASIC interpreter and the

— way it works under the IBM Personal Computer BASIC
Compiler. The IBM Personal Computer BASIC
Compiler is an optional software package available

1-3

from IBM. If you have the IBM Personal Computer
BASIC Compiler, the IBM Personal Computer BASIC
Compiler manual explains these differences.

1-4

Cassette BASIC

The nucleus of BASIC is the Cassette version, which is
built into your PCjr in read-only memory. The amount
of storage you can use for such things as programs and
data depends on how much memory you have in your
PCjr. The number of "bytes free" is displayed after
you switch on the computer.

The only storage device you can use to save Cassette
BASIC information is a cassette tape recorder. You
cannot use diskettes with Cassette BASIC.

Some special features you wiU find in both versions of
BASIC are:

• An extended character set of 256 different

characters which can be displayed. In addition to
the usual letters, numbers, and special symbols, you
also have international characters like , , and .
You will also find symbols which are commonly
used in scientific and mathematical applications,
such as Greek letters. There are also a variety of
other symbols.

• Graphics capability. You can draw points, lines, and
even entire pictures. The screen is all points
addressable in either low, medium, or high
resolution. More information on this can be found

in the next chapter.

• Special input/output devices. The PCjr has a
speaker which you can use to make sound. Also,
BASIC supports a light pen and joystick which help
make your programs more interesting as well as
more fun.

1-5

Cartridge BASIC

Cartridge BASIC is housed on a separate cartridge that
can be inserted into either one of the slots located on

the front of the PCjr.

Cartridge BASIC, the most extensive form of BASIC
available on the PCjr, does everything that Cassette
BASIC does, and more. As with the other version, the
number of free bytes you have for programs and data is
displayed on the screen when you start BASIC.

Key features foimd in Cartridge BASIC and not found
in Cassette BASIC are the following:

• Input/output to diskette in addition to cassette
(only if DOS is present). See Appendix B, "BASIC
Diskette Input and Output," for special
considerations when using diskette files.

• An internal "clock," which keeps track of the date
and time, (only if DOS is present).

• Asynchronous communications (RS232) is
supported. Refer to Appendix E for details.

• Event trapping. A program can respond to the
occmrence of a specific event by "trapping"
(automatically branching) to a specific program line.
Events include: communications activity, a fimction
key being pressed, the button being pressed on a
joystick, play activity, and the light pen being
activated.

• Additional screen modes. Six screen modes with 2,
4, or 16 colors available, depending on the screen
mode.

• Advanced graphics. Additional statements are
CIRCLE, PUT, GET, PAINT, DRAW, VIEW,

1-6

WINDOW, PALETTE, and PALETTE USING.
These operations make it easier to create more
complex graphics.

• Advanced music support. The PLAY statement
allows easy usage of the built-in speaker to create
musical tones and can support multi-voice tones to
yom television or external speaker.

• Communications. The TERM statement is used to

communicate with other systems.

1-7

Notes

1-8

Chapter 2. How to Start and Use BASIC

Contents

Getting BASIC Started 2-3|
To Start Cartridge BASIC When Not Using
DOS 2-4

To Start Cartridge BASIC While Using DOS . 2-5
Returning to DOS from Cartridge BASIC 2-5

The Keyboard 2-6
Typewriter Keys 2-7

Lowercase Shift 2-7

Uppercase Shift 2-8
Special Keys 2-9

Enter Key 2-9
Backspace 2-10

Control Mode 2-10

Alternate Mode 2-11

System Reset 2-13
Function Mode 2-14

Break Fimction 2-15

Pause Function 2-15

Print Screen Function 2-16

Echo Print Function 2-16

The BASIC Program Editor 2-17
Special Program Editor Keys 2-17
How to Make Corrections on the Current Line 2-29

Entering or Changing a BASIC Program 2-33
Changing Lines Anjfwhere on the Screen ... 2-35
Syntax Errors 2-38

2-1

Modes of Operation 2-39
Direct Mode 2-39

Indirect Mode 2-40

Running a BASIC Prt^ram 2-40
Running a Program on Diskette 2-41

Running the SAMPLES Program 2-41
Running the COMM Program 2-43
Running a BASIC Program on Another
Diskette 2-47

Running a Program on Cassette 2-48

Options on tiie BASIC Conunand 2-50

Redirection of Standard Input and Standard Output 2-55

2-2

Getting BASIC Started

It's easy to start BASIC on the PCyr.

If your computer is off:

1. Remove all cartridges.

2. If your VCjr has a diskette drive, remove any
diskette.

3. Switch on the computer.

The IBM logo screen appears while the computer is
checking itself. Then the words "Version C" and the
release number are displayed along with the number of
free bytes you have available.

If your computer is on:

1. Remove all cartridges.

2. If your PCyr has a diskette drive, remove any
diskette.

3. Press and hold down the Ctrl and Alt keys, then
press the Del key.

The words "Version C" and the release number are

displayed along with the number of free bytes available.

2-3

To Start Cartridge BASIC When Not Using
DOS

If your computer is off:

1. If your PC/r has a diskette drive, remove any
diskette.

2. Insert the Cartridge BASIC cartridge into either
slot.

3. Switch on the computer.

The words "Version J" and the release number are

displayed along with the number of free bytes available.

If your computer is on:

1. If your VCjr has a diskette drive, remove any
diskette.

2. Insert the Cartridge BASIC cartridge into either
slot. This causes your system to do a reset.

The words "Version J" and the release number are

displayed along with the number of free bytes available.

2-4

To Start Cartridge BASIC While Using DOS

1. Insert the Cartridge BASIC cartridge into either
slot. This causes your system to do a reset.

2. Enter the command BASIC or BASICA when the

DOS prompt (>) appears.

The words "Version J" and the release number are

displayed along with the number of free bytes available.

You can include options with the BASIC command
when you start Cartridge BASIC. To learn about these
options, see "Options on the BASIC Command" in this
chapter.

Returning to DOS from Cartridge BASIC

1. When BASIC prompts you for a command, type:

SYSTEM

^ then press the Enter key.

2. When you see the DOS prompt (>), DOS is ready
for you to give it a command.

For more information, see "SYSTEM Command" in
Chapter 4.

2-5

Esc 1 !2@3 #4$5®/o6a7&8*9 (0)-— = + Backspace Fn

ooininiQiaiOiniPOOOOPia
[{] } Enter

m
Tab^ZC Q W E R T Y U I O P I \ J fj

BBOOlBlBlBlSiBlOOBB Ill

A S D F G H J
ilcfJi

Of P OBOOOlSOOOlBB
Shift Oz X C V B N_M j < i > / ? Shift O

D OOOOOOOOOO D O O
AltCaps Lock Ins Del

LCliill Ei3!l3

D OOO Ofoom

<D

cr
o

333

The keyboard is similar to a typewriter keyboard with
some special keys added. These special keys have
special functions. Two of these keys are the Alt and Fn
keys, which put the keyboard in Alternate mode or
Function mode.

All typewriter keys are typematic. This means that
each key repeats as long as you hold it down. The
typewriter keyboard and the special keys are explained
in more detail below.

Typewriter Keys

JOOOOiBOOOlBlBOl

BOOlBOlBlBlDOlBOlBOi

(B OBlSlBlSlBlBBBlD (B

ooo

Lowercase Shift

In Lowercase Shift, the typewriter area of the keyboard
looks and works much like a standard typewriter. The
numbers 0 through 9 are on the top row. The keyboard
also has some some special characters not found on a
standard typewriter, uke [,], <, and >. The letters,
numbers, and symbols that the keyboard displays in
Lowercase Shift are shown in white above each key.

2-7

Uppercase Shift

Shilt O Shift O"

OOOOOOOOBOBDOlBC

B BBBBBOBBBBIB&IJ B
b3 obbbbboobo e3 bo

O 0 =3 BOB O

To put the typewriter keyboard in Uppercase shift,
press and hold down one of the Shift keys while you
press one of the typewriter keys. In Uppercase shift,
the keyboard displays the letters, numbers, and symbols
that are shown in black above each key.

CapsLock

O

OBBBOOBOBOBBBB B

B OOBBBOOOBEIOBJ B

B OBOBOOOOOOB BO

B fi —jIbob B

Another way of getting uppercase letters is with the
Caps Lock key.

After you press this key, you will continue to get capital
letters until you press it again. You can get lowercase
letters when in Caps Lock state by pressing and holding
one of the Shift keys. When you release the Shift key,
you'll go back to Caps Lock state.

The Caps Lock key gives you only the uppercase
letters. To get the uppershift characters on the numeric
or sjnnbol keys, you must use the Shift keys.

To get out of Caps Lock state, press the Caps Lock key
again.

Special Keys

Besides the typewriter keyboard, your PCjr keyboard
has special keys. These keys are: Enter, Backspace,
Ctrl, Alt, Fn, Esc, Ins, Del, and the four cursor control
keys.

The Ctrl, Alt, and Fn keys put the keyboard into
Control, Alternate, and Function modes. These modes
are described later in this chapter. The Esc, Ins, Del,
and the four cursor control keys are used for editing
programs. These keys are described in "The BASIC
Program Editor" later in this chapter.

Enter Key

l^lOOOlDBlSOOlBlQ

IB BSOOOOlBlDlBlBi

IB (BOlSlBlBlBlBlBlDlB (B OO

O ti J OOB O

Enter

£

The key shaped like a backwards L is the Enter key.
You usually have to press this key to enter information
into the computer.

2-9

Backspace

BOOOOOOOOOOBOl
B OBOOOOOlBiBlBlSi

31
IC—o

B OOlBOBBOlBlSO BBS

B II 1 BBS B

The Backspace key behaves somewhat differently from
the Backspace key on a tjrpewriter. It not only
backspaces, it erases what you've tjrped as well. If you
use the Cursor Left key to backspace, you will not
erase what you've typed. Refer to "The BASIC
Program Editor" later in this chapter.

Control Mode

BOBBOOBBBBBBBlB B

iBBBBBBBBBBBBBlf
nf BBBBBBBBBBOi3IBB

B BBOBBBBBBB B BO

B " J OBB B

The Ctrl key puts the keyboard in Control mode. Use
the Ctrl key like the Shift keys. That is, press and hold
the Ctrl key, then press the desired key. Then you can
release both keys.

The Ctrl key is used to enter certain codes and
characters not otherwise available from the keyboard.

2-10

For example, Ctrl-G is the bell character. When this
character is printed, the speaker beeps. The command
"Ctrl-G" means that you press and hold the Ctrl key,
then press the G key.

You also use the Ctrl key together with other keys to
edit programs with the program editor.

Alternate Mode

OOOOQCKDlB O

lOOOOOlQlBQr

'oooofaoooiC-LJ o
OOBOBBO B BB

J BBB B

The Alt key puts the keyboard in Alternate mode. Use
the Alt key like the Shift keys. That is, press and hold
the Alt key, then press the desired key. Then you can
release both keys.

The Alt key lets you enter BASIC statement keywords
easily. You can enter an entire BASIC keyword with a
single keystroke. The BASIC keyword is typed when
the Alt key is held down while one of the alphabetic
keys A-Z is pressed.

2-11

Keywords associated with each letter are siumnarized
below.

A AUTO N NEXT

B BSAVE O OPEN

C COLOR P PRINT

D DELETE Q (no word)
E ELSE R RUN

F FOR S SCREEN

G GOTO T THEN

H HEX$ U USING

I INPUT V VAL

J (no word) w WIDTH

K KEY X XOR

L LOCATE Y (no word)
M MOTOR Z (no word)

The Alt key also lets you display the symbols bordered
in blue on your keyboard. To display these symbols,
press and hold the Alt key while pressing a key with a
blue border.

The Alt key is also used with the number keys to enter
characters not found on the keys. This is done by
holding down the Alt key and t3ming the three-digit
ASCn code for the character. (See Appendix G,
"ASCn Character Codes" for a complete list of ASCII
codes.)

2-12

System Reset

The Alt key has a special use when combined with the
Ctrl and Del keys.

ooOiSiBOQOOO

OOSpiBOOOlBO
la O^^OOOIBOOIB

;i o

If the computer power is on, pressing Alt-Ctrl-Del
causes a System Reset. This is similar to switching the
computer from off to on. You must press the Alt and
Ctrl keys (in either order) and hold them down, then
press the Del key. Then you can release all three keys.
Doing a System Reset with these keys is preferable to
flipping the power switch off and on again, because the
system restarts faster.

2-13

Function Mode

00000000000001

Booooooooooooir

G OGOOOOOOOOOOJ G
G 0000000000GOO

o n —I 000 O

The Fn key puts the keyboard in Function mode. To
use Function mode, press and release the Fn key, then
press a key that has a function assigned to it. The keys
bordered in green have already been assigned some
frequently used functions. You may change the
functions assigned to the numeric keys if you wish.

You do not need to hold down the Fn key while you
press another key.

You use the function keys:

• As "soft keys." That is, you can set each key to
automatically type any sequence of characters. To
change the function assigned to a numeric key or to
assign a fimctiomto a new key, refer to "KEY
Statement" in Chapter 4.

• As program interrupts in Cartridge BASIC, through
use of the ON KEY statement. See "ON KEY(n)
Statement" in Chapter 4.

You should be aware of some of the functions assigned
to the keys bordered in green. These are described
below and in "Special Program Editor Keys" in this
chapter.

2-14

Break Function

D

B
Fn

|0|

OOOOO'OOQOOBOOBlE^'

BooooBoooooogr
irm oooidiDBPiaiaiaiairB o
B OBO^^boOOO B BO

B 0 =B BOB B

Pressing the Fn key and then the Break key interrupts
program execution at the next BASIC instruction and
returns to BASIC command level. It is also used to exit

AUTO line numbering mode.

Pause Function

O
Fn

|B|

OOlDOOOOOOOBOOE»'

riOoOOOOBBBOBQr
OBOBOOOOOOObJ O

B3 BOOOBBBBBB B B B

O 0 i BOO B

Pressing the Fn key and then the Pause key puts the
computer in a pause state. This can be used to
temporarily halt printing or program Usting. The pause
continues until any key, other than the "shift" keys, the
Ins key, or Fn/Break, is pressed.

Print Screen Function

lb IB

BOOlBOOOOEi['

B OBOOOOlBlSOlBlSiELJ B
IB BBOOOOOOBlB BOO

O 0 BOB O

Pressing the Fn key and then the PrtSc key causes a
copy of what is displayed on the screen to be printed on
the printer. Characters which are not recognized by the
printer are printed as blanks.

Another way to get a printed copy of your screen is to
use the Echo Print function.

Echo Print Function

O
Fn

|0|

BOOOBOOOBOOBOB B'

B OBOOBOBOOOOOJ B

B OBOOOOOBOO B BB

O 0 IBI BOB O

Pressing the Fn key and then the Echo key serves as an
on-off switch allowing text sent to the screen to also be
sent to your system printer. Press the Fn key and then
press the Echo key to print the text that is on the
screen. Press both keys again to stop printing.
In BASIC, use the Fn/PrtSc keys to get a printed copy
of the screen.

The BASIC Program Editor

Any line of text typed while BASIC is at the command
level is processed by the BASIC program editor. The
program editor is a "screen line editor." That is, you
can change a line anywhere on the screen, but you can
only change one line at a time. The change will only
take effect if you press Enter on that line.

The program editor can save you time during program
development. To understand how it works, we suggest
you enter a sample program and practice using all of the|
edit keys. The best way for you to get a "feel" for the
editing process is to try editing a few lines while
studying the information that follows.

As you type things on your computer, you'll notice a
bliiddng underline or box appearing just to the right of
the last character you typed. This line or box is called
the cursor. It marks the position at which the next
character is to be typed, inserted, or deleted.

Special Program Editor Keys

You use the four cursor control keys, the Backspace
key, and the Ctrl key to move the cursor to a location
on the screen, insert characters, or delete characters.
The keys and their fimctions are shown on the next
pages.

1-n

Function

(Cursor Up)

Moves the cursor one position up.

0000000000000

B OOOOOOOOOOOOJ o

B OOOOOOOOOO EO OO

O 0 ^ ooo

Moves the cursor one position down.

Function

(Cursor Left)

e

(Cursor Right)

OOOOOOlBlBBOOBlDi

B OBOBOlBlBOOlBlBBj O
B OBOOOBOBBB BBO

O 0 BOB B

Moves the cursor one position left. If the

cursor advances beyond the left edge of the

screen, the cursor will move to the right side

of the screen on the preceding line.

B BOBOBBBBOOBBJ ©'

BBBOBOBBOOB B OC

O 0 J BBS B

Moves the cursor one position right. If the
cursor advances beyond the right edge of

the screen, the cursor will move to the left

side of the screen on the next line

down.

Function

Fn / Home

OOlSOOOOOOOlSBO®'©'

B OBBOOBOOBOOBI'B

B OOOOOOOIBOB B BO

O 11 J OOB O

Moves the cursor to the upper left-hand
corner of the screen.

Ctrl - Fn / Home

OOB O

Clears the screen and positions the cursor in

the upper left-hand corner of the screen.

Function

lOOOOOOOOOOlEI IB

31Id—rOBOOlSlBlDlSOlBlBlI

IQ OOiSiBiQCllBBOO iB Bl

B 0 =3 BBB B

Moves the cursor right to the next word. A
word is defined as a character or group of
characters which begins with a letter or
number. Words are separated by blanks or
special characters. So, the next word will be
the next letter or number to the right of the
cursor which follows a blank or special
character.

For example, suppose the following line is
on the screen:

LINE (LM0W2)-(MAX,48) ,3, BF

As you can see, the cursor is presently in the
middle of the word L0W2. If we press Next
Word (Ctrl-Cursor Right), the cursor will
move to the beginning of the next word,
which is MAX:

LINE (L1,L0W2)-(MAM8) ,3 , BF

If we press Next Word again, the cursor will
move to the next word, which is the number

48:

LINE (LM0W2)-(MAM8) ,3, BF

2-21

Function

uiri

O

DOOOOlSOOOOOBOB B

r^BOBBBOOOOBBBr

O'OBBBBOBOOOObJ S
B OBOOBBBBBB BOO

B 0 BBOB O

Moves the cursor left to the previous word.
The previous word will be the letter or
number to the left of the cursor preceded by
a blank or special character.

For example, suppose we have:

LINE (L1,L0W2)-(IV1AX,48) ,3 , BF_

If we press Previous Word (Ctrl-Cursor

Left), the cursor moves to the beginning of
the word BP:

LINE (L1,L0W2]-(IV1AX,48) ,3 , BP

When we press Previous Word again, the

cursor moves to the previous word, which is

the number 3:

LINE (LI ,L0W2)-(IVIAX,48) ,3 , BP

And if we press it twice more, the cursor
will back up first to the number 48, then to
the word MAX:

LINE (L1,LQW2)-(jy|AX,4B) ,3 , BP

Key(s)

Fn / End

Ctrl - Fn / End

Function

OOOOOlSlBOOlSspOlB O
iBOOlDlDlBlBlDlSOSi

IB iBOOlBlSiSlDlBlBO!

iB (BOlBlBlBlBlBlBOlB

IB "

Moves the cursor to the end of the logical
line. Characters typed from this position are
added to the end of the line.

OCBlDOlBlBiSlBOlBlBBiBB O

iBlBOlBlBlBlBOOlQ®!
^^OBlBOlBlSlBlBlBlJ
(B (BBlBlBiBlDlBlBOlB

O £ BOO

Erases to the end of logical line from the
current cursor position. All physical screen
lines are erased until the last Enter is found.

2-23

Function

lii»

o

OOOOOOOOOOQBBB B

BOBOOOOOOOOB|B[[r
EB OBBOOOOOOOiBibJ B
B OBOOOBBBOOB BB

O 0 B ̂3d b

Sets Insert mode. If Insert mode is off, then

pressing this key will turn it on. If Insert
mode is already on, then you will turn it off
when you press this key. When you're in

Insert mode, the cursor covers the lower

half of the character position.

When Insert mode is on, characters above

and following the cursor move to the right
as typed characters are inserted at the

current cursor position. After each
keystroke, the cursor moves one position to
the right. Line folding occurs. That is, as

characters advance off the right side of the

screen they return on the left of the

following line.

When Insert mode is off, any characters

typed replace existing characters on the line.

Besides pressing the Ins key again. Insert

mode will also be turned off when you press
any of the cursor movement keys or the
Enter key.

Function

uei

O

BOOOBOOOBOOBOlB:!®

IB OBBOOOOBOOOtr J'B
B OBOOOBBOOO B BB

O 0 —J BBD' B

Deletes the character at the current cursor

position. All characters to the right of the
deleted character move one position left to
fill in the empty space.

Line folding occurs. That is, if a logical line

extends beyond one physical line, characters
on subsequent lines move left one position

to fill in the previous space, and the character
in the first column of each subsequent line
moves up to the end of the preceding line.

Backspace

boobboobbbobbB''b

IB OOOBOOOBOBOBJ B

B OBOBOBOOOO BOO

O Q J OOB O

Deletes the last character typed. That is, it
deletes the character to the left of the

cursor. All characters to the right of the

deleted character move left one position to
fill in the space. Subsequent characters and

lines within the current logical line move up

as with the Del key.

Key(s) Function

Esc

(BOOOlBlBOlSlBlBOOQi

O OOOOlDlSlBOlDOlBla
B

B

B BBBBBBBBBB IB BB

B 0 —J BBB B

When pressed anywhere in the line, erases
the entire logical line from the screen. The
line is not passed to BASIC for processing.
If it is a program line, it is not erased from
the program in memory.

Fn / Break

POOOBOlf
OBlBOOSiBOiBCliSd

£S BBOOOBBBBB BBB

B f =] BBB B

Returns the computer to command level,
without saving any changes that were made
to the current line being edited. It does not
erase the line from the screen like Esc does.

7^

2-26

Function

iQlSlBlBBlSBBlQlBO

BBBBBBBBBBBB

B

B

B BBBBBBBBBB B BB

B ti j BBB B

Moves the cursor to the next tab stop. Tab
stops OQCur every eight character positions;
that is, at positions 1,9, 17, etc.

When Insert mode is off, pressing the Tab
key moves the cursor over characters until it
reaches the next tab stop.

For example, suppose you have the
following line:

10 REM This is a remark

If you press the Tab key, the cursor will
move to the ninth position as shown:

10 REM This is a remark

If you press the Tab key again, the cursor
moves to the 17th position on the line:

10 REM This is a remark

2-27

Key(s) Function

When Insert mode is on, pressing the Tab
key inserts blanks from the current cursor
position to the next tab stop.

Line folding occurs as explained under Ins.

For example, suppose we have this line:

10 REM This is a remark

If you press the Ins key and then the Tab
key, blanks are inserted up to position 17:

IGREMTh Xs a remark

2-28

How to Make Corrections on the Current line

Lines of text typed while BASIC is at the command
level are processed by the program editor. You can use
any of the keys described in the previous section under
"Special Program Editor Keys." BASIC is always at the
command level after the prompt Ok and until a RUN
command is given. I

A logical line is a string of text which BASIC treats as a
unit. You can extend a logical line over more than one
physical screen line by simply typing beyond the edge
of the screen. The cmrsor vill wrap to the next screen
line. You can also use a line feed (Ctrl-Enter). Typing
a line feed causes subsequent text to be printed on the |
next screen line without your having to enter all the
blanks to move the cursor there. The line is not

processed; this only happens when you press Enter.

Note that the line feed actually fills the remainder of
the physical screen line with blank characters. A line
feed character is not added to the text. These blanks

are included in the 255 characters allowed for a BASIC

line.

When the Enter key is finally pressed, the entire logical
line is passed to BASIC for processing.

Changiiig Characters

If you made a tjrping error, you can correct it by
moving the cursor to the position where the mistake
occurred, and typing the correct letters on top of the
wrong ones. Then, move the cursor back to the end of
the line using the Cursor Right or Fn/End keys, and
continue typing.

2-29

For example, suppose we want to load a program called
PROGRAM!, and we have typed the following:

LOAD "FROG_

You accidentally typed F instead of P. You can fix the
problem by pressing Previous Word (Ctrl-Cursor Left)
once, until the cursor is under the F:

LOAD "FROG

Then type P:

LOAD "PROG

Then press the Fn/End keys:

LOAD "PROG_

The error is fixed and you can continue typing:

LOAD "PROGRAM!"

Erasing Characters

If you notice you've tjrped an extra character in the Une
you're tj^ping, you can erase (delete) it by using the Del
key. Use the Cursor Left or other cursor control keys
to move the cursor to the character you want to erase.
Press the Del key to erase the character. Then use the
Cursor Right or Fn/End keys to move the cursor back
to the end of the line, and continue typing.

For example, suppose you typed the following:

DEELETE_

To erase the extra E, you press Cursor Left until the
cursor is under the extra E:

DEELETE

2-30

Then you press the Del key:

DELETE

Then press the Fn/End keys:

DELETE_

and continue typing:

DELETE 20_

If the incorrect character was the character you just
typed, use the Backspace key to delete it. Then you can|
simply continue typing the line as desired.

For example, suppose you have typed the following:

DELETT_

Simply press the Backspace key:

DELET_

Then you can continue typing:

DELETE 20

Adding Characters

If you see that you've omitted characters in the line
you're typing, move the cursor to the position you want
to put the new characters. Press the Ins key to get into
insert mode. Type the characters you want to add. The
characters you type will be inserted at the cursor and
the characters above and following it will be pushed to
the right. As before, when you're ready to continue
typing at the end of the line, use the Cursor Right or
Fn/End keys to move the cursor there and just
continue typing. Insert mode is turned off when you
use either of these keys.

2-31

For example, suppose you have typed the following:

LIS 10_

You forgot the T in LIST. Press Cursor Left imtil the
cursor is under the space:

LIS_1Q

Then you press the Ins key and type the letter T:

LIST_10

Erasing Part of a Line

To break a hne at the current cursor position, press the
Ctrl-Fn/End keys.

For example, suppose you have the following:

10 REM *** garbage garbage garbage

You have the cursor positioned under the g in the first
word garbage, so to erase the garbage press the
Ctrl-Fn/End keys.

10 REM ***

Cancelling a Line

To cancel a hne that is in the process of being typed,
press the Esc key anjrwhere in the line. You do not
have to press Enter. This erases the entire logical line.

2-32

For example, suppose you had this line:

THIS IS A LINE THAT HAS NO MEANING_

Even though the cursor is at the end of the line, the
entire line is erased when you press Esc:

Entering or Changing a BASIC Program

Any Une of text that you type that begins with a
number is considered to be a program line.

A BASIC program line always begins with a line
number, ends with an Enter, and may contain a
maximum of 255 characters, including the Enter. If a
line contains more than 255 characters, the extra
characters will be truncated when the Enter is pressed.
Even though the extra characters stiU appear on the
screen, they are not processed by BASIC.

BASIC keywords and variable names must be in
uppercase. However, you may enter them in any
combination of uppercase and lowercase. The program
editor converts everything to uppercase, except for
remarks, DATA statements, and strings enclosed in
quotation marks.

BASIC win sometimes change the way you enter
something in other ways. For example, suppose you
use the question mark (?) instead of the word PRINT
in a program line. When you later list the line, the ?
will be changed to PRINT with a space after it, since ?
is a shorthand way of entering PRINT. This expansion
may cause the end of a line to be broken if the line
length is close to 255 characters.

Warning: If your Une reaches maximum length, the
255th character must be Enter.

2-33

Adding a New Line to the Program

Enter a valid line number (range is 0 through 65529)
followed by at least one non-blank character, followed
by Enter. The line will be saved as part of the BASIC
program in storage.

For example, if you enter the following:

10 hello Don"

This saves the line as line number 10 in the program.
Note that hello Don is not a valid BASIC statement.

However, you will not get an error if you enter this line.
Program lines are not checked for proper syntax before
being added to the program. That only happens when
the program line is actually executed.

If a line already exists with the same line number, then
the old line is erased and replaced with the new one.

If you try to add a line to a program when there is no
more room in storage, you get an Out of memory error
and the line is not added.

Replacing or Chaining an Existing Program Line

An existing line is changed, as indicated above, when
the line number of the line you enter matches the line
number of a line already in the program. The old line is
replaced with the text of the new one.

For example, if you enter:

10 this is a new line 10

The previous line 10 (hello Dori) is replaced with this
new line 10.

2-34

Deleting Pr<^am Lines

To delete an existing program line, type the line number
alone followed by Enter. For example, if you type:

10

and press enter, the line 10 is deleted from the program.

Or you may use the DELETE command to delete a
group of program lines. Refer to "DELETE
Command" in Chapter 4 for details.

Note that if you try to delete a non-existent line, you
get an Unde^ed line number error.

Do not use the Esc key to delete program lines. Esc
causes the line to be erased from the screen only. If the
line exists in the BASIC program, it remains there.

Deleting an Entire Program

To delete the entire program that is currently in
memory, enter the NEW command (see "NEW
Command" in Chapter 4). NEW is usually used to
clear memory before entering a new program.

Changmg lines Anywhere on the Screen

To edit any line on the screen use the cursor control
keys (described under "Special Program Editor Keys")
to move the cursor on the screen to the place requiring
the change. Then you can use any or all of the
procedures described previously to change, delete, or
add characters to the line.

If you want to modify program lines that do not happen
to be displayed at the moment, you can use the LIST
command to display them. List the line or range of
lines to be edited (see "LIST Command" in Chapter 4).

2-35

Position the cursor at the line to be edited and change
the line using the procedures already described. Press
Enter to store the modified line in the program. You
can also use the EDIT command to display the line you
want. Refer to "EDIT Command" in Chapter 4.

For example, you can duplicate a line in the program
this way: move the cursor to the line to be duplicated.
Then, change the line number to the new line number
by just typing over the nmnbers. When you press
Enter, both the old line and the new line are in the
program.

Or, you can change the line number of a program line
by duplicating the line as described above, then deleting
the old line.

A program line is never actually changed within the
BASIC program until you press Enter. Therefore,
when several lines need changes, it may be easier to
move around the screen making corrections to several
lines at once. When you've made all the changes, move
the cursor to the beginning of each changed line and
press Enter. By so doing, you store each changed line
in the program.

You do not have to move the cursor to the end of the

logical line before pressing Enter. The program editor
knows where each logical line ends and it processes the
whole line even if the Enter is pressed at the beginning
of the line.

Note: Use of the AUTO command can be very
helpful when you are entering your program.
However, you must exit AUTO mode by pressing
the Fn/Break keys before changing any lines other
than the current one.

Remember, changes made using these procedures only
change the program in memory. To save the program

2-36

with the new changes permanently, you should use the
SAVE command (see "SAVE Command" in Chapter
4) before entering a NEW command or leaving BASIC.

2-37

Syntax Errors

When a syntax error is discovered while a program is
running, BASIC displays the line that caused the error
so you can correct it. For example:

Ok
10 A = 2$12
RUN

Syntax error in 10
Ok
10 A = 2$12

The program editor has displayed the line in error and
positioned the cursor under the digit 1. You can move
the cursor to the dollar sign ($) and change it to a plus
sign (+), then press Enter. The corrected line is now
stored in the program.

When you edit a line and store it back in the program
while the program is interrupted (as in this example)
the following happens:

• All variables and arrays are lost. That is, they are
reset to zero or null.

• Any files that were open are closed.

• You cannot use CONT to continue the program.

If you want to examine the contents of some variable
before making the change, press the Fn/Break keys to
return to command level. The variables are preserved
since no program line is changed. After you check
everything you need to, edit the line and rerun the
program.

2-38

Modes of Operation

Once BASIC is started, it displays the prompt Ok. Ok
means BASIC is ready for you to tell it what to do.
This state is known as command level. At this point,
you may talk to BASIC in either of two modes: the
direct mode or the indirect mode.

Direct Mode

Direct mode means you are telling BASIC to perform
your request immediately after the request is entered.
You teU BASIC to do this by not preceding the
statement or command with a line number. You can

display results of arithmetic and logical operations
immediately or store them for later use, but the
instructions themselves are not saved after they are
executed. This mode is useful for debugging as weU as
for quick arithmetic operations that do not require a
complete program. For example:

Ok
PRINT 20+2

22

Ok

2-39

Indirect Mode

You enter programs using indirect mode. To tell
BASIC that the hne you are entering is part of a
program, begin the hne with a line number. The hne is
then stored as part of the program in memory. The
program in storage begins when the RUN command is
entered. For example:

Ok
1 PRINT 20+2
RUN

22

Ok

Running a BASIC Program

Two steps are involved in running a BASIC program
stored on a diskette, cassette or cartridge.

The first step is getting a copy of the program
transferred into the computer's memory. This is called
loading the program and is done with the LOAD
command.

The second step is the actual performance of the
program's instructions. This is caUed running the
program and is done with the RUN command.

2-40

Running a Program on Diskette

If you have the DOS Supplemental Programs diskette
that comes with DOS, let's go through the sequence of
loading and running a program. You will use the
SAMPLES program on this diskette.

You must use the Cartridge BASIC cartridge if you
have a DOS system with a diskette drive.

Running the SAMPLES Program

1. Make sure DOS is ready and A> is displayed on the
screen.

2. Insert the DOS diskette if it is not already in the
diskette drive.

3. Insert the Cartridge BASIC cartridge in either slot.
This causes your system to reset.

4. When the DOS prompt appears (>), type:

basic

and press the Enter key.

You see the BASIC prompt, Ok.

5. Now remove the DOS diskette and insert the DOS
Supplemental Programs diskette.

6. Type:

load "samples

and press the Enter key.

2-41

7. When you see Ok, type:

run

and press the Enter key.

When the following screen is displayed press the
space bar.

IBM

Personal Computer

—\

SAMPLES

Version 2.00

(C) Copyright IBM Corp 1982, 1983

Press space bar to continue

8. Next you see the menu screen. You select the item
you want from a fixed number of choices, as you
would from a restaurant menu.

SAMPLE PROGRAMS

A - MUSIC {64k)
8 — ART (48k-Color/Graphics)
C - MORTGAGE (64k)
D - CIRCLE (BASICA-Color/Graphics)
E - DONKEY (BASICA-Color/Graphics)
F - PIECHART (BASICA-Color/Graphics)
G - BALL (BASICA-Color/Graphics)
H - COLORBAR (48k)
I - SPACE (BASICA-Color/Graphics)
ESC KEY - EXIT

ENTER LETTER OF PROGRAM

NOTE: All of the above programs
require 64k if using BASICA

2-42

With your PCjr, you have at least 64K of memory
and either a color television or a Color/Graphics
Monitor, so you can choose any of the menu items if
you are using Cartridge BASIC.

Let's try choice H—COLORBAR. Type:

h

You do not need to press the Enter key. Follow
the directions on the screen to see the computer
display the different colors.

9. Return to the menu and select any of the other
items you want.

10. When you have tried any or all of these programs,
press the Esc key. You see the BASIC prompt. Ok.
Type:

system

and press the Enter key.

This gets you back to DOS.

Running the COMM Program

A sample telecommunications program is also provided
on the DOS Supplemental Programs diskette. This
program lets you estabhsh an asynchronous
communications hnk between your PCjr and another
PCjr, an IBM Series/1 computer, or two
communications network services.

This means that your computer can "talk" to another
computer or be part of a network service. Using a
network service is like being on a telephone "party
hne."

2-43

The COMM program will work only if you have the
necessary equipment, and subscriptions. If you need
help using external devices, consult your dealer.

You could also use the COMM program as a model for
writing yom own teleconununications program.

Let's look at the COMM program menu. (You can do
this even if you don't plan to communicate with another
computer.) Follow these steps:

1. Make sure Cartridge BASIC is running and Ok is
displayed.

2. Insert the DOS Supplemental Programs diskette in
drive A if it is not already there.

3. Type:

load "comm

and press the Enter key.

4. Nowtjrpe:

run

and press the Enter key.

5. The sample communications program menu is
displayed.

2-44

COMMUNICATIONS MENU

Choose one of the following:

1 Description of program
2 Dow Jones/News Retrieval
3 IBM Personal Computer
4 Series/1
5 THE SOURCE

6 Other service

7 End program

Choice

6. You can use options 1 or 7 now, even if you are not
ready to establish conununications.

7. Each choice (except 7) will lead you to another
menu screen.

When you're through reading the information, press
the Fn/1 keys. The main menu is displayed again.

8. Type:

7

and press the Enter key.

You are back in Cartridge BASIC.

COMM Program Choices

Here's a short description of the COMM program
choices.

1. Description of program

This choice displays a screen that describes the
COMM program.

2-45

2. Dow Jones/News Retrieval

This choice lets you dial in to the Dow Jones/News
service.

You must have a Dow Jones/News service
subscription, as well as the communications
equipment, to run this choice.

3. PCjr

This choice lets yom PCjr communicate with
another PCjr.

Can also be used to let yom: PCjr communicate
with another PCjr.

4. Series/1

This choice lets your PCjr communicate with an
IBM Series/1 computer, running either Realtime
Progranuning System (RPS) V5.1 or Event Driven
Executive (EDX) V3.0.

5. THE SOURCE

This choice connects your computer to THE
SOURCE service.

To use this choice, you need to get a subscription to
THE SOURCE and pmchase the necessary
communication equipment.

6. Other service

This choice lets you describe the kind of
communications your PCjr will set up. You do this
if the choices that were made in the COMM

program are not correct for your case. Then you
can start the communications session using the ^
characteristics you've described.

2-46

1. End program

This option ends the COMM program and takes you
back into BASIC. You then see the BASIC prompt,
Ok.

Ruimii^ a BASIC Program on Another
Diskette

For this example, let's assume that the Cartridge
BASIC program you want to run is called BOWLING
and it is not on your DOS diskette.

1. Make sure DOS is ready and A> is displayed.

2. Insert the DOS diskette if it is not already in the
diskette drive.

3. Insert the Cartridge BASIC cartridge int either slot.
This causes your system to reset.

4. When the DOS prompt appears (>), type:

basi c

press the Enter key.

You will see the BASIC prompt. Ok.

5. Now remove the DOS diskette and insert the

diskette that contains the BOWLING file.

6. Type:

load "bowling

press the Enter key.

2-47

Note: If you do not supply an extension in the
command, BASIC will look for a file with the
extension .BAS. In this case, BASIC will look
for a file named BOWLING.BAS.

7. When you see the BASIC prompt again, tjrpe:

run

press the Enter key.

8. Now the BOWLING program will perform the
instructions in the program.

Rimning a Program on Cassette

Let's assmne that you have a program called BUDGET
on a cassette, and you have brought your machine up in
Cassette BASIC.

1. After you see the BASIC prompt Ok, insert the
cassette and type:

load "budget

press the Enter key.

Note: BASIC looks for a BASIC program file
on the cassette tape. It skips over any data files.

2. When you see the BASIC prompt again, tjrpe:

run

press the Enter key.

3. Now the BUDGET program will perform the
instructions in the program.

2-48

There's another way to run a program you have on
cassette.

1. Insert the cassette that has the program you want to
run.

2. Switch on the computer, if it is not already on, or
perform a system reset by pressing Alt-Ctrl-Del. i

3. Press the Ctrl-Esc keys. This will cause the first
program on the cassette to be loaded and run.

When you use the Ctrl-Esc keys, the program that is
loaded and run is the first one on the cassette. If you
are already using the cassette when you press the
Ctrl-Esc keys, the next program on the cassette is
loaded and run.

2-49

Options on the BASIC Command

You can include options on the BASIC command when
you start Cartridge BASIC. These options specify the
amount of storage BASIC uses to hold programs and
data, and for buffer areas. You can also ask BASIC to
immediately load and run a program.

Note; You must have DOS to use options on the
BASIC command.

These options are not required—^BASIC works just fine
without them. So if you're new to BASIC, you may
wish to skip over this section and go on to the next
section. Then you can refer to this section when you
become more familiar with BASIC and its capabilities.

The complete format of the BASIC command is:

BASIC[A] [filespec\ [<stdin\ [>] [>stdoui\ [/F://fe.s]
yS'.bsize^ [/C:combuffer] [/M:[max workspace^ [, max
blocksize^

filespec This is the file specification of a program
to be loaded and run immediately. It must
be a character string constant, but it
should not be enclosed in quotation marks.
filespec is expanded to allow the
specification of a path. It should conform
to the rules for specifying files described
under "Naming Files" in Chapter 3. A
default extension of .BAS is used if none is

supplied and the length of the filename is
eight characters or less. If you include
filespec, BASIC proceeds as if a RUN
filespec command were the first thing you
entered once BASIC was ready. Note that
when you specify filespec, the BASIC
heading with the copyright notices is not
displayed.

2-50

<stdin A BASIC program normally receives its
input from the keyboard (standard input
device). Using <stdin allows BASIC to
receive input from the file you specify.
When you use <stdin, you must position it
before any switches. Refer to
"Redirection of Standard Input and
Standard Output" in this chapter for more
information.

>stdout A BASIC program normally writes its
output to the screen (standard output
device). Using >stdout allows BASIC to
write output to the file or device you
specify. When you use >stdout, you must
position it before any switches. Refer to
"Redirection of Standard Input and
Standard Output," later in this chapter, for
more information.

Options beginning with a slash (/) are called switches.
A switch is a means used to specify parameters. The
following options on the BASIC command line are
switches.

/¥'.files This sets the maximum number of files
that may be open at any one time during
the running of a BASIC program. Each
file requires 188 bytes of memory for the
file control block, plus the buffer size
specified in the/S: switch. If the/F;
switch is omitted, the munber of files
defaults to three. The maximiun value for

BASIC is 15. The actual number of files

that may be open simultaneously depends
upon the value of the FILES= parameter
in the DOS configuration file,
CONFIG.SYS. The default, if not
specified in CONFIG.SYS, is FILES=8.
BASIC uses four files by default, leaving
four files for BASIC file I/O. Therefore,

2-51

/F:4 is the maximum value that you can
give when FILES=8 and you want to be
able to have all files open at the same time.

/S:bste This switch sets the buffer size for use
with random files. The record length
parameter on the OPEN statement may
not exceed this value. The default buffer

size is 128 bjdes. The maximum value you
may enter is 32767 bytes.

/ C'.combuffer
This sets the size of the buffer for

receiving data when using the
communications. The buffer for

transmitting data with communications is
always allocated 128 bytes. The maximum
value you may enter for the /C: switch is
32767 bytes. If the /C: switch is omitted,
256 bytes are allocated for the receive
buffer. If you have a high-speed line, we
suggest you use /C:1024. If you also have
the IBM internal modem option on your
system, both receive buffers are set to the
size specified by this switch. You may
disable RS232 support by using a value of
zero (/C:0), in which case no buffer space
will be reserved for communications.

/M:/nax workspace
TMs option sets the maximiun number of
bytes that may be used as BASIC
workspace. BASIC is able to use a
maximum of 64K bytes of memory, so the
highest value you may set is 64K (hex
FFFF). You can use this option to reserve
space for machine language subroutines or
for special data storage. You may wish to
refer to "Memory Map" in Appendix I for
more detailed information on how BASIC

2-52

uses memory. K the /M: switch is
omitted, all available memory to a
maximum of 64K bjrtes is used.

max blocksize

If you intend to load programs above the
BASIC workspace, then use the optional
parameter max blocksize with the /M: i
switch to reserve space for the workspace
and your programs. The parameter max
blocksize must be in paragraphs, which are
byte multiples of 16. When this parameter
is omitted, 4096 (&H1000) is assumed.
This allocates 65536 bytes for BASIC'S
DATA and STACK segment (because |
4096 X 16 = 65536). If you want to
allocate 65536 bytes for the BASIC
workspace and 512 bytes for machine
language subroutines, use /M:,4112. This
gives you 4096 paragraphs for BASIC and
16 paragraphs for your routines.
Designating /M:,2048 means that BASIC
will allocate and use 32768 bytes (2048 x
16 = 32768) maximum for the BASIC
workspace. Designating /M:32000,2048
means that BASIC will allocate 32768

bytes maximum (2048 x 16 = 32768), but
use only the lower 32000. This leaves 768
bytes free for program space.

Note: The options files, max workspace, max
blocksize, bsize, and combuffer are all numbers that
may be either decimal, octal (preceded by &0), or
hexadecimal (preceded by &H).

2-53

Examples of how to use the BASIC command:

BASIC PAYROLL.BAS

This starts Cartridge BASIC so that it uses
the defaults as described - all memory and
three files. The program PAYROLL.BAS is
loaded and run.

BASIC INVEN/F:6
Here we start Cartridge BASIC to use all
memory and six files, and load and run
INVEN.BAS. Remember, .BAS is the
default extension.

BASIC /M:32768
This command starts Cartridge BASIC so the
maximum workspace size is 32768 bytes.
That is, BASIC will use only 32K bytes of
memory. No more than three files will be
used at one time.

BASIC CHKWRR.TST/F:2/M:&H9000
This command sets the maximiun workspace
size to hex 9000. This means Cartridge '
BASIC can use up to 36K bsrtes of memory.
Also, file control blocks are set up for two
files, and the program CHKWRR.TST on the
diskette is loaded and run.

2-54

Redirection of Standard Input and
Standard Output

You can redirect your BASIC input and output.
Standard input, normally read from the keyboard, can
be redirected to any fUe you specify on the BASIC
command line. Standard output, normally written to
the screen, can be redirected to any file or device you
specify on the BASIC command Une.

Note that this requires the use of DOS 2.10.

BASIC filespec {<stdin\ [>] [^stdout]

Examples:

1. In the following example, data read by INPUT,
INPUTS, INKEY$, and LINE INPUT will continue
to come from the keyboard. Data written by
PRINT will go into the DATA.OUT file.

BASIC MYPROG >DATA.OUt

2. In this example, data read by INPUT, INPUTS,
INKEYS, and LINE INPUT will come from the
DATA.IN file. Data written by PRINT will
continue to go to the screen.

BASIC MYPROG <DATA.IN

3. In the next example, data read by INPUT, INPUTS,
INKEYS, and LINE INPUT will come from the
MYINPUT.DAT file and data written by PRINT
win go into the MYOUTPUT.DAT file.

BASIC MYPROG <MyiNPUT.DAT >MyOUTPUT.DAT

2-55

4. In the last example, data read by INPUT, INPUTS,
INKEY$, and LINE INPUT will come from the
\SALES\ JOHN\TRANS fUe. Data output
written by PRINT will be added to the
\ SALES \ SALES.DAT fUe.

BASIC MYPROG <\SALES\JOHN\TRANS. »\SALESXSALE^^A^

Notes:

1. When redirected, aU INPUT, INPUTS, INKEY$,
and LINE INPUT statements read from the

specified input file, instead of from the keyboard.

2. When redirected, all PRINT statements write to the
specified output file or device, instead of to the
screen.

3. Error messages still go to standard output (the
screen). All files are closed, the program ends, and
control returns to DOS.

4. INKEYS, INPUTS, and file input from "KYBD:"
still read from the keyboard.

5. File output to "SCRN:" still goes to the screen.

6. BASIC continues to trap keys when an ON BCEY(n)
statement is specified.

7. The En/Echo keys do not give a printed copy of the
screen when standard output is redirected.

8. The En/Break keys go to standard output, close all
files, and return control to DOS.

2-56

Chapter 3. General Information about
Programming in BASIC

Contents

Line Format 3-3

Character Set 3-4

Reserved Words 3-6

Constants 3-9

Numeric Precision 3-12

Variables 3-14

How to Name a Variable 3-14

How to Declare Variable Types 3-15
Arrays 3-16

How BASIC Converts Numbers from One

Precision to Another 3-20

Techniques for Formatting your Output 3-23

Numeric Expresdons and Operators 3-25
Arithmetic Operators 3-25
Relational Operators 3-27
Logical Operators 3-30
Numeric Functions 3-34

Order of Execution 3-35

String Expresdons and Operators 3-37
Concatenation 3-37

String Functions 3-38

3-1

Input and Output 3-39
FUes 3-39

Naming Files 3-40
Tree-Structured Directories 3-43

Using the Screen 3-48
Display 3-48
Text Mode 3-48

Graphics Modes 3-52

Attribute and Bits Per Pixel 3-53

Assigning Colors to Attributes 3-55
Other I/O Features 3-56

Clock 3-57

Sound and Music 3-57

Light Pen 3-57
Joysticks 3-58

3-2

Line Format

Program lines in a BASIC program have the following
format:

nnnnn BASIC statementC:BASIC statement...][' comment]

and they end with Enter. This format is explained in
more detail below.

Line Numbers

"nnmm" shows the line number, which can be from one
to five digits. Every BASIC program line begins with a
Une number. Line numbers are used to show the order

in which the program lines are stored in memory and
also as reference points for branching and editing. Line
numbers must be in the range 0 to 65529. A period (.)
may be used in LIST, AUTO, DELETE, and EDIT
commands to refer to the ciurent line.

BASIC Statements

A BASIC statement is either executable or

nonexecutable. Executable statements are program
instructions that tell BASIC what to do next while

running a program. For example, PRINT X is an
executable statement. Nonexecutable statements, such
as DATA or REM, do not cause any program action
when BASIC sees them. All the BASIC statements are

explained in detail in the next chapter.

You may, if you wish, have more than one BASIC
statement on a line, but each statement on a line must
be separated from the last one by a colon, and the total
number of characters must not exceed 255.

3-3

For example:

Ok
10 FOR 1=1 TO 5; PRINT I: NEXT
RUN

1

2

I r^,
5
Ok

Comments

Comments may be added to the end of a line using the'
(single end quote) to separate the comment from the
rest of the line.

Character Set

The BASIC character set consists of alphabetic
characters, niuneric characters and special characters.
These are the characters which BASIC recognizes.

The alphabetic characters in BASIC are the uppercase
and lowercase letters of the alphabet. The numeric
characters are the digits 0 through 9.

3-4

The following special characters have specific meanings
in BASIC:

Character

/
\
A

(
)
%

&

>
II

Name

blank

equal sign or assignment symbol
plus sign or concatenation sjunbol
minus sign
asterisk or multiplication symbol
slash or division symbol
backslash or integer division symbol
caret or exponentiation symbol
left parenthesis
right parenthesis
percent sign or integer type declaration
character

number (or pound) sign, or
double-precision type declaration
character

dollar sign or string t3q)e declaration
character

exclamation point or single-precision type
declaration character

ampersand
comma

period or decimal point
single quotation mark (apostrophe), or
remark delimiter

semicolon

colon or statement separator
question mark (PRINT abbreviation)
less than

greater than
double quotation mark or string delimiter
imderline

Many characters can be printed or displayed even
though they have no particular meaning to BASIC. See
Appendix G, "ASCII Character Codes," for a complete
list of these characters.

3-5

Reserved Words

Certain words have special meaning to BASIC. These
words are called reserved words. Reserved words

include all BASIC commands, statements, function
names, and operator names. Reserved words cannot be
used as variable names.

You should always separate reserved words from data
or other parts of a BASIC statement by using spaces or
other special characters as allowed by the syntax. That
is, the reserved words must be appropriately delimited
so that BASIC will recognize them.

The following section lists all of the reserved words in
BASIC.

ABS CVD

AND CVI

ASC CVS

ATN DATA

AUTO DATES
BEEP DEF

BLOAD DEFDBL

BSAVE DEFINT

CALL DEFSNG

CDBL DEFSTR

CHAIN DELETE

CHDIR DIM

CHR$ DRAW

CINT EDIT

CIRCLE ELSE

CLEAR END

CLOSE ENVIRON

CLS ENVIRONS
COLOR EOF

COM EQV
COMMON ERASE

CONT ERDEV

COS ERDEVS
CSNG

CSRLIN

3-6

ERL MERGE

ERR MIDS
ERROR MKDIR

EXP MKDS
FIELD MKIS
FILES MKSS
FIX MOD

FNxJooocxxx MOTOR

FOR NAME

FRE NEW

GET NEXT

GOSUB NOISE

GOTO NOT

HEX$ OCTS
IF OFF

IMP ON

INKEY$ OPEN

INP OPTION

INPUT OR

INPUT# OUT

INPUTS PAINT

INSTR PALETTE

INT PCOPY

INTERS PEEK

lOCTL PEN

lOCTLS PLAY

KEY PMAP

KILL POINT

LEFTS POKE

LEN POS

LET PRESET

LINE PRINT

LIST PRINT#

LLIST PSET

LOAD PUT

LOG RANDOMIZE

LOCATE READ

LOF REM

LOG RENUM

LPOS RESET

LPRINT RESTORE

LSET RESUME

3-7

RETURN TAN

RIGHTS TERM

RMDIR THEN

RND TIMES
RSET TIMER

RUN TO

SAVE TROFF

SCREEN TRON

SON USING

SHELL USR

SIN VAL

SOUND VARPTR

SPACES VARPTRS
SPC(VIEW

SQR WATT

STEP WEND

STICK WHILE

STOP WIDTH

STRS WINDOW

STRIG WRITE

STRINGS WRITE#

SWAP XOR

SYSTEM

TAB(

3-8

Constants

Constants are the actual values BASIC uses during
execution. There are two types of constants: string (or
character) constants, and numeric constants.

A string constant is a sequence of up to 255 characters
enclosed in double quotation marks. Examples of string
constants:

"HELLO"
"$25,000.00"
"Number of Employees"

There are a few cases where BASIC knows that a

particular thing must be a string constant, and the
quotation marks are not required. These cases are
noted where appropriate in this book. Also, if you start |
a string with a quotation mark, but forget to add the
end quotation mark, BASIC is smart enough to know
what the problem is and automatically assiunes that a
quotation mark is at the end of the line. However, this
produces correct results only when the string is the last
thing on the line.

Numeric constants are positive or negative numbers. A
plus sign (+) is optional on a positive number.
Numeric constants in BASIC cannot contain commas.

There areiive ways to indicate numeric constants:

Integer Whole numbers between -32768 and
+32767, inclusive. Integer constants
do not have decimal points.

Ffoced point Positive or negative real numbers, that
is, numbers that contain decimal
points.

3-9

Floating point Positive or negative numbers
represented in exponential form
(similar to scientific notation). A
floating point constant consists of an
optionally signed integer or fixed
point number (the mantissa) followed
by the letter E and an optionally
signed integer (the exponent).
Double-precision floating point
constants use the letter D instead of

E. For more information, see the next
section, "Numeric Precision." The E
(or D) means "times ten to the power
of." For example,

23E-2

Here, 23 is the mantissa, and -2 is
the exponent. This number could be
read as "23 times 10 to the negative
two power."You could write it as 0.23
in regular fixed-point notation.

More examples:

235.988E-7

is a single-precision number that is
equivalent to .0000235988.

2359D6

is a double-precision number that is
equivalent to 2359000000.

Remember, when you read floating
point notation: the E indicates
single-precision calculation and the D
indicates double-precision calculation.

You can represent any number from
2.9E-39 to 1.7E+38 (positive or
negative) as a floating point constant.

3-10

Hex Hexadecimal numbers with up to foiu
digits, with a prefix of &H.
Hexadecimal digits are the numbers 0
through 9, A, B, C, D, E, and F.
Examples:

&H76
&H32F

Octal Octal numbers with up to six digits,
with the prefix &0 or just &. Octal
digits are 0 through 7. Examples:

&0347
&1234

3-11

Numeric Precision

Numbers may be stored internally as either integer,
single-precision, or double-precision numbers.
Constants entered in integer, hex, or octal format are
stored in two bytes of memory and are interpreted as
integers or whole numbers. With double-precision
calculation, the numbers are stored with 17 digits of
precision and printed with up to 16 digits. With
single-precision calculation, seven digits are stored and
up to seven digits are printed, although only six digits
may be accurate. Seven digits are printed in single
precision because any intermediary processing uses all
seven digits. To ensure the accuracy of final results,
enter all seven digits before the final results when you
do interactive processing.

A single-precision constant is any numeric constant that
is written with:

• seven or fewer digits, or

• exponential form using E, or

• a trailing exclamation point (!)

A double-precision constant is any numeric constant
that is written with:

• eight or more digits, or

• exponential form using D, or

• a trailing number sign (#)

3-12

The following table summarizes the precision and range
of integers, single-precision numbers, and
double-precision numbers:

TYPE RANGE ACCURACY

Integer -32768 to 32767 Perfect

Single-precision
floating point

lOE-38 to 10+38 6 decimal digits

Double-precision
floating point

lOD-38 to

lOD+38

16 decimal

digits

Examples of single- and double-precision constants:

Single-Precision Double-Precision

46.8

-1.09E-06

3489.0

22.5!

345692811

-1.09432D-06

3489.0#

7654321.1234

3-13

Variables

Variables are names used to represent values that are
used in a BASIC program. As with constants, there are
two types of variables: numeric and string. A numeric
variable always has a value that is a number. A string
variable may only have a character string value.

The length of a string variable is not fixed, but may be
anywhere from 0 (zero) to 255 characters. The length
of the string value you assign to it will determine the
length of the variable.

You may set the value of a variable to a constant, or
you can set its value as the result of calculations or
various data input statements in the program. In either
case, the variable type (string or numeric) must match
the type of data that is being assigned to it.

If you use a numeric variable before you assign a value
to it, its value is assumed to be zero. String variables
are initially assumed to be null; that is, they have no
characters in them and have a length of zero.

How to Name a Variable

BASIC variable names may be any length. If the name
is longer than 40 characters, however, only the first 40
characters are significant.

The characters allowed in a variable name are letters

and numbers, and the decimal point. The first
character must be a letter. Special characters which
identify the type of variable are also allowed as the last
character of the name. For more information about

types, see the next section, "How to Declare Variable
Types."

A variable name may not be a reserved word, but may
contain imbedded reserved words. (Refer to "Reserved

3-14

Words," earlier in this chapter, for a complete list of
the reserved words.) Also, a variable name may not be
a reserved word with one of the type declaration
characters ($, %,!, #) at the end. For example,

10 EXP = 5

is invalid, because EXP is a reserved word. However,

10 EXPONENT = 5

is okay, because EXP is only a part of the variable
name.

A variable beginning with FN is assumed to be a call to
a user-defined function (see "DEF FN Statement" in
Chapter 4).

How to Declare Variable Types

A variable's name determines its t3^e (string or
numeric, and if numeric, what its precision is).

String Variables: String variable names are written
with a dollar sign ($) as the last character. For
example:

A$ = "SALES REPORT"

The dollar sign is a variable type declaration character.
It "declares" that the variable wiU represent a string.

Numeric Variables: Numeric variable names may
declare integer, single-, or double-precision values.
Although you may get less accuracy doing
computations with integer and single-precision
variables, there are reasons you might want to declare a
variable as a particular precision.

• Variables of higher precisions take up more room in
storage. This is important if space is a
consideration.

3-15

• It takes more time for the computer to do arithmetic
with the higher precision numbers. A program with
repeated calculations will run faster with integer
variables.

The tjrpe declaration characters for muneric variables
and the number of bytes required to store each type of
value are as follows:

% Integer variable (2 bytes)

! Single-precision variable (4 bytes)

Double-precision variable (8 bytes)

Note: If the variable type is not explicitly declared,
it defaults to single-precision.

Examples of BASIC variable names follow.

PI# declares a double-precision value
MINIMUM! declares a single-precision value
LIMIT% declares an integer value
N$ declares a string value
ABC represents a single-precision value

Variable types may also be declared in another way.
The BASIC statements DEFINT, DEFSNG, DEFDBL
and DEFSTR may be included in a program to declare
the types for certain variable names. These statements
are described in detail under "DEFtype Statements" in
Chapter 4. All the examples which follow in this book
assume that none of these types of declarations have
been made, unless the statements are explicitly shown
in the example.

Arrays

An array is a group or table of values that are referred
to with one name. Each individual value in the array is

3-16

called an element. Array elements are variables and can
be used in expressions and in any BASIC statement or
function which uses variables.

Declaring the name and type of an array and setting the
number of elements and their arrangement in the array
is known as defining, or dimensioning, the array.
Usually this is done using the DIM statement. For
example:

10 DIM B$(5)

This creates a one dimensional array named B$. AH of
its elements are variable length strings, and the
elements have an initial null value.

Array B$ could be thought of as a hst of character
strings, like this:

B$(0)

B$(l)

B$(2)

B$(3)

B$(4)

B$(5)

The first string in the list is named B$(0).

20 DIM A(2,3)

This creates a two-dimensional array named A. Since
the name does not have a type declaration character,
the array consists of single-precision values. All the
array elements are initially set to 0.

3-17

Array A could be thought of as a table of rows and
columns, like this:

A(0,0) A(0,1) A(0,2) A(0,3)

A(1,0) A(l,l) A(l,2) A(l,3)

A(2,0) A(2,l) A(2,2) A(2,3)

The element in the second row, first column, is called
A(1,0).

Each array element is named with the array name
subscripted with a number or numbers. An array
variable name has as many subscripts as there are
dimensions in the array.

The subscript indicates the position of the element in
the array. Zero is the lowest position unless you
explicitly change it (see "OPTION BASE Statement" in
Chapter 4). The maximum number of dimensions for
an array is 255. The maximum number of elements per
dimension is 32767.

If you use an array element before you define the array,
it is assumed to be dimensioned with a maximum

subscript of 10.

For example, if BASIC encovmters the statement:

50 SIS(3)=500

and the array SIS has not already been defined, the
array is set to a one-dimensional array with 11
elements, numbered SIS(O) through SIS(IO). You may
only use this method of implicit declaration for
one-dimensional arrays.

3-18

One final example:

Ok
10 DIM YEARS(3,4)
20 YEARS{2,3)=1982
30 FOR R0W=0 TO 3
40 FOR C0LUMN=0 TO 4
50 PRINT YEARS(ROW,COLUMN);
60 NEXT COLUMN
70 PRINT
80 NEXT ROW
RUN

0 0 0 0 0
0 0 0 0 0
0 0 0 1982 0
0 0 0 0 0

Ok

Note: A regular variable may have the same name
as an array variable because A$ is different than anyj
element in array A$ (n,...).

3-19

How BASIC Converts Numbers from

One Precision to Another

When necessary, BASIC converts a number from one
precision to another. The following rules and examples
should be kept in mind.

• If a numeric value of one precision is assigned to a
numeric variable of a different precision, the
number is stored as the precision declared in the
target variable name.

Example:

Ok
10 k% = 23.42
20 PRINT A%
RUN

23

Ok

• Rounding, as opposed to truncation, occurs when
assigning any higher precision value to a lower
precision variable (for example, changing from
double- to single-precision values).

Example:

Ok

10 C = 55.8834567#
20 PRINT C

RUN

55.88346
Ok

This affects not only assignment statements (e.g.,
I%=2.5 results in I%=3), but also affects function
and statement evaluations (e.g., TAB(4.5) goes to
the fifth position, A(1.5) is the same as A(2), and
X= 11.5 MOD 4 will result in a value of 0 for X).

• If you convert from a lower precision to a higher
precision number, the resulting higher precision

3-20

number cannot be any more accurate than the lower
precision number. For example, if you assign a
single-precision value (A) to a double-precision
variable (B#), only the first six digits of B# wUl be
accurate because only six digits of accuracy were
suppUed with A. The error can be bounded using
the following formula:

ABS(B#-A) < 6.3E-8 * A

That is, the absolute value of the difference
between the printed double-precision number and
the original single-precision value is less than 6.3E-8
times the original single-precision value.

Example:

Ok

10 A = 2.04
20 B# = A
30 PRINT A;B#
RUN

2.04 2.039999961853027

Ok

When an expression is evaluated, all the operands in
an arithmetic or relational operation are eonverted
to the same degree of precision, namely the most
precise operand. Also, the result of an arithmetic
operation is returned to this degree of precision.

Examples:

Ok

10 0# = 6#/7
20 PRINT D#
RUN

.8571428571428571
Ok

The arithmetic is performed in double precision
and the result is returned in D# as a

double-precision value.

3-21

Ok
10 D = 6#/7
20 PRINT D
RUN

.8571429
Ok

The arithmetic is performed in double precision
and the result is returned to D (single-precision
variable), rounded, and printed as a single-precision
value.

Logical operators (see "Logical Operators" in this
chapter) convert their operands to integers and
return an integer result. Operands must be in the
range -32768 to 32767 or an Overflow error occurs.

3-22

Techniques for Formatting your Output

BASIC has built-in statements and functions that you
can use in your programs to display numbers in the
desired format and with the desired accuracy.

• Use DEFDBL to define your constants and
variables as double-precision numbers. For
example:

Ok

10 WIDTH 80
20 DEFDBL A
30 A=70#
40 PRINT A/100#,
50 A=A+1

60 IF A<100# GOTO 40
RUN

7 .71 .72 .73 .74

75 .76 .77 .78 .79

8 .81 .82 .83 .84

85 .86 .87 .88 .89

9 .91 .92 .93 .94

95 .96 .97 .98 .99

Ok

When you want your program results displayed in
decimal notation, use the PRINT USING and
LPRINT USING statements. These statements let

you choose the format in which the results will be
printed or displayed. For example, to print up to
three digits to the left of the decimal point and only
one to the right, you might try the following:

3-23

Ok
10 WIDTH 80

20 N=100.4

30 PRINT USING "###.# ";N;
40 N=N-2.5

50 IF N>5 GOTO 30
RUN

100.4 97.9 95.4 92.9 90.4
87.9 85.4 82.9 80.4 77.9
75.4 72.9 70.4 67.9 65.4

62.9 60.4 57.9 55.4 52.9
50.4 47.9 45.4 42.9 40.4
37.9 35.4 32.9 30.4 27.9

25.4 22.9 20.4 17.9 15.4

12.9 10.4 7.9 5.4
Ok

Notes:

1. Avoid using both single- and double-precision
numbers in the same formula because it reduces

accuracy.

2. Use double-precision transcendentals for greater
accuracy.

3-24

Numeric Expressions and Operators

A numeric expression may be simply a numeric
constant or variable. It may also be used to combine
constants and variables using operators to produce a
single numeric value.

Numeric operators perform mathematical or logical
operations mostly on numeric values, and sometimes on
string values. We refer to them as "numeric" operators
because they produce a value that is a number. The
BASIC numeric operators may be divided into the
following categories:

• Arithmetic I
• Relational

• Logical
• Functions

Arithmetic Operators

The arithmetic operators perform the usual operations
of arithmetic, such as addition and subtraction. In
order of precedence, they are:

Operator Operation

A Exponentiation

Sample Expression

XaY

\

Negation

Multiplication, Floating
Point Division

Integer Division

-X

X*Y, X/Y

X\Y

MOD

+> -

Modulo Arithmetic

Addition, Subtraction

XMODY

X+Y, X-Y

3-25

(If you have a mathematical background, you will
notice that this is the standard order of precedence.)
Although most of these operations probably look
famihar to you, two of them may seem a bit
unfamUiar—integer division and modulo arithmetic.

Integer Division

Integer division is denoted by the backslash (\). The
operands are rounded to integers (in the range -32768
to 32767) before the division is performed; the quotient
is truncated to an integer.
For example:

Ok

10 A = 10\4

20 B = 25.68\6.99
30 PRINT A;B
RUN

2 3

Ok

Modulo Arithmetic

Modulo arithmetic is denoted by the operator MOD. It
gives the integer value that is the remainder of an
integer division.

For example:

Ok

10 A = 7 MOD 4

20 PRINT A

RUN

3

Ok

This result occurs because 7/4 is 1, with remainder 3.

3-26

Ok

PRINT 25.68 MOD 6.99
5

Ok

The result is 5 because 26/7 is 3, with the remainder 5.
(Remember, BASIC rounds when converting to
integers.)

Relational Operators

Relational operators compare two values. The values
may both be either numeric, or string. The result of the
comparison is either "true" (-1) or "false" (0). This
result is usually then used to make a decision regarding
program flow. (See "IF Statement" in Chapter 4.)

Operator Relation Tested Sample Expressions

= Equahty X=Y

<> or Inequality X<>Y; X><Y

><

< Less than X<Y

> Greater than X>Y

<= or Less than or equal to X<=Y, X=<Y
= <

>= or Greater than or equal to X>=Y, X=>Y

= >

(The equal sign is also used to assign a value to a
variable. See "LET Statement" in Chapter 4.)

3-27

Numeric Comparisons

When arithmetic and relational operators are combined
in one expression, the arithmetic is always performed
first. For example, the expression:

X+Y < (T-l)/Z

wiU be true (-1) if the value of X plus Y is less than the
value of T-1 divided by Z.

More examples:

Ok

10 X=100
20 IF X <> 200 THEN PRINT "NOT EQUAL"

ELSE PRINT "EQUAL"
RUN

NOT EQUAL
Ok

Here, the relation is true (100 is not equal to 200). The
true result causes the THEN part of the IF statement to
be executed.

Ok
PRINT 5<2; 5<10
0 -1

Ok

Here the first result is false (zero) because 5 is not less
than 2. The second result is -1 because the expression
5 <10 is true.

String Comparisons

String comparisons can be thought of as "alphabetical.'
That is, one string is "less than" another if the first
string comes before the other one alphabetically.
Lowercase letters are "greater than" their uppercase
counterparts. Numbers are "less than" letters.

3-28

The way two strings are actually compared is by taking
one character at a time from each string and comparing
the ASCn codes. (See Appendix G, "ASCII Chaacter
Codes" for a complete list of ASCII codes.) If all the
ASCn codes are the same, the strings are equal.
Otherwise, as soon as the ASCII codes differ, the string
with the lower code number is less than the string with
the higher code number. If, during string comparison,
the end of one string is reached, the shorter string is
said to be smaller. Leading and trailing blanks are
significant. For example, aU the following relational
expressions are true (that is, the result of the relational
operation is -1):

"AA" < "AB"
"FILENAME" = "FILENAME"
"X&" > "X#"
"WR " > "WR"
"kg" > "KG"
"SMYTH" < "SMYTHE"
8$ < "718" (where B$ = "12543")

AU string constants used in comparison expressions
must be enclosed in quotation marks.

3-29

Logical Operators

Logical operators perform logical, or Boolean,
operations on numeric values. Just as the relational
operators are usually used to make decisions regarding
program flow, logical operators are usually used to
connect two or more relations and return a true or false

value to be used in a decision (see "IF Statement" in
Chapter 4).

A logical operator takes a combination of true-false
values and returns a true or false result. An operand of
a logical operator is considered to be "true" if it is not
equal to zero (like the -1 returned by a relational
operator), or "false" if it is equal to zero. The result of
the logical operation is a number which is, again, "true"
if it is not equal to zero, or "false" if it is equal to zero.
The number is calculated by performing the operation
bit by bit. This is explained in detail shortly.

The logical operators are NOT (logical complement),
AND (conjunction), OR (disjunction), XOR (exclusive
or), IMP (implication), and EQV (equivalence). Each ^
operator returns results as indicated in the following
table. ("T" indicates a true, or non-zero value. "F"
indicates a false, or zero value.) The operators are
listed in order of precedence.

3-30

NOT

X NOTX

T F

F T

AND

X

T

T

F

F

Y

T

F

T

F

XAND Y

T

F

F

F

OR

X

T

T

F

F

F

T

F

T

F

XORY

T

T

T

F

XOR

X

T

T

F

F

F

T

F

T

F

XXOR Y

F

T

T

F

EQV
X

T

T

F

F

F

T

F

T

F

XEQVY
T

F

F

T

IMP

X

T

T

F

F

F

T

F

T

F

XIMPY

T

F

T

T

3-31

Some examples of ways to use logical operators in
decisions;

IF HE>60 AND SHE<20 THEN 1000

Here, the result is true if the value of the variable HE is
more than 60 and also the value of SHE is less than 20.

IF I>10 OR K<0 THEN 50

The result is true if I is greater than 10, or K is less than
0, or both.

50 IF NOT P THEN 100

Here, the program branches to line 100 if NOT P is
true. Note that NOT P does not mean that "it is not

the case that P is true" or "P is false"; it means "the
NOT of P is true," which is something different. That
is, NOT P does not produce the same result as NOT
(P<>0). Refer to the next section, "How Logical
Operators Work," for an explanation.

100 FLAG% = NOT FLAG%

This example switches a value back and forth from true
to false.

How Logical Operators Work

Operands are converted to integers in the range -32768
to +32161. (If the operands are not in this range, an
Overflow error results.) If the operand is negative, the
two's complement form is used. This turns each
operand into a sequence of 16 bits. The operation is
performed on these sequences. That is, each bit of the
result is determined by the corresponding bits in the
two operands, according to the tables for the operator
hsted previously. A 1 bit is considered "true," and a 0
bit is "false."

3-32

Thus, you can use logical operators to test for a
particular bit pattern. For instance, the AND operator
may be used to "mask" all but one of the bits of a
status byte at a machine 1/O port.

The following examples will help show how the logical
operators work.

A = 63 AND 16

Here, A is set to 16. Since 63 is binary 111111 and 16
is binary 10000, 63 AND 16 equals 010000 in binary,
which is equal to 16.

B = -1 AND 8

B is set to 8. Since -1 is binary 11111111 11111111
and 8 is binary 1000, -1 AND 8 equals binary
00000000 00001000, or 8.

C = 4 OR 2

Here, C equals 6. Since 4 is binary 100 and 2 is binary
010, 4 OR 2 is binary 110, which is equal to 6.

X = 2
TWOSCOMP = (NOT X) + 1

This example shows how to form the two's complement
of a number. X is 2, which is 10 binary. NOT X is
then binary 11111111 11111101, which is -3 in
decimal; -3 plus 1 is -2, the complement of 2. That is,
the two's complement of any integer is the bit
complement plus one.

Note that if both operands are equal to either 0 or -1, a
logical operator will return either 0 or -1.

3-33

Numeric Functions

A function is used like a variable in an expression to
call a predetermined operation that is to be performed
on one or more operands. BASIC has "built-in"
functions that reside in the system, such as SQR
(square root) or SIN (sine). All of BASIC'S buUt-in
functions are listed under "Functions and Variables" in
the beginning of Chapter 4. Detailed descriptions are
also included in the alphabetical section of Chapter 4.
You can also define your own functions using the DEF
FN statement. See "DEF FN Statement" in Chapter 4.

3-34

Order of Execution

The categories of numeric operations were discussed in
their order of precedence, and the precedence of each
operation within a category was indicated in the
discussion of the category. In summary;

1. Function calls are evaluated first

2. Arithmetic operations are performed next, in this
order:

a. A

b. unary-
c. *, /
d. \

e. MOD

f. +, -

3. Relational operations are done next

4. Logical operations are done last, in this order:

a. NOT

b. AND

c. OR

d. XOR

e. EQV
f. IMP

Operations at the same level in the list are performed in
left-to-right order. To change the order in which the
operations are performed, use parentheses. Operations
within parentheses are performed first. Inside
parentheses, the usual order of operations is
maintained.

3-35

Here are some sample algebraic expressions and their
BASIC counterparts.

Algebraic Expression

X+2Y

X —

XY

Z

X+Y

(X2)Y

X
yZ

BASIC Expression

X+Y*2

X-Y/Z

X*Y/Z

(X+Y)/Z

(Xa2)aY

Xa(YaZ)

X(-Y) X*(-Y)

Note: Two consecutive operators must be separated
by parentheses, as shown in the X*(-Y) example.

3-36

String Expressions and Operators

A string expression may be simply a string constant or
variable, or it may combine constants and variables by
using operators to produce a single string value.

String operators are used to arrange character strings in
different ways. The two categories of string operators
are:

• Concatenation

• Functions

Note that although you can use the relational operators
=, <>, <, >, < = , and >= to compare two strings,
these are not considered to be "string operators"
because they produce a numeric result, not a string
result. Read through "Relational Operators" earUer in
this chapter for an explanation of how you can compare
strings using relational operators.

Concatenation

Joining two strings together is called concatenation.
Strings are concatenated using the plus symbol (+).
For example:

Ok
10 COMPANY$ = "IBM"
20 TYPE$ = " PC jr"
30 FULLNAME$ = TYPE$ + " Computer"
40 PRINT COMPANY$+FULLNAME$
RUN

IBM PC jr Computer
Ok

3-37

String Functions

A string function is like a numeric function except that
it returns a string result. A string function can be used
in an expression to call a predetermined operation that
is to be performed on one or more operands. BASIC
has "built-in" functions that reside in the system, such
as MID$, which returns a string from the middle of
another string, or CHR$, which returns the character
with the specified ASCII code. All of BASIC'S built-in
functions are listed under "Functions and Variables" in
the begimung of Chapter 4. Detailed descriptions are
also included in the alphabetical section of Chapter 4.

You can also define your own functions using the DEF
FN statement. See "DEF FN Statement" in Chapter 4.

3-38

Input and Output

FUes

The remainder of this chapter contains information on
input and output (1/O) in BASIC. The following topics
are discussed:

• Files - using BASIC files, naming files, and using
devices

• Paths - using BASIC paths, naming paths, and using
devices

• Tree-structured directories - using tree-structured
directories

• The screen - displaying things on the screen, with
an emphasis on graphics

• Other features - using the clock, sound, light pen,
and joysticks

A file is a collection of information which is kept
somewhere other than in the random access memory of
the PCjr. For example, yom information may be
stored in a file on diskette or cassette. To use the

information, you must open the file to tell BASIC where
the information is. Then you may use the file for input
and/or output.

BASIC supports the concept of general device I/O
files. This means that any type of input/output may be
treated like I/O to a file, whether you are actually using
a cassette or diskette file, or are communicating with
another computer.

3-39

Ffle Number

BASIC performs 1/O operations using a file number.
The fUe number is a unique number that is associated
with the actual physical file when it is opened. It
identifies the path for the collection of data. A file
munber may be any number, variable, or expression
ranging from 1 to n, where n is the maximum number of
files allowed. The variable n is 4 in Cassette BASIC

and defaults to 3 in Cartridge BASIC with DOS
present. It may be changed up to a maximum of 15 by
using the /F: option on the BASIC command for
Cartridge BASIC (when DOS is present.)

Naming Files

The physical fUe is described by its//fe specification, or
filespec for short.

The fUe specification is a string expression of the form:

device:filename

The device name tells BASIC where to look for the fUe,
and the fUename teUs BASIC which fUe to look for on

that particular device. Sometimes you do not need both
device name and fUename, so specification of device
and fUename is optional. Note the colon (:) indicated
above. Whenever you specify a device, you must use
the colon even though a fUename is not necessarily
specified.

Note: FUe specification for communications deAuces
is slightly different. The fUename is replaced with a
Ust of options specifying such things as line speed.
Refer to "OPEN "COM... Statement" in Chapter 4
for detaUs.

Remember that if you use a string constant for the
filespec, you must enclose it in quotation marks. For
example.

3-40

LOAD "A:ROTHERM.ARK"

A path consists of a list of directory names separated by
backslashes (\). The path is a string expression of the
form:

device:path

The device name tells BASIC where to look for the file,
and the path tells BASIC which path to follow to get to
the directory that contains a particular file. Sometimes
you do not need both the device name and the path, so
specification of both the device and the path is optional.
Note the colon (:) indicated above. Whenever you
specify a device, you must use the colon even though
you may not specify a path. |

You can use paths for the following commands:

BLOAD KILL OPEN

BSAVE LOAD RMDIR

CHAIN MERGE RUN

^ CHDIR MKDIR SAVE
^ FILES NAME

Notes:

1. A path may not contain more than 63 characters.

2. If you place a device name ansnvhere other than
before the path, you will see a Bad filename error
message.

3. If you use a string constant for the path, you must
enclose it in quotation marks.

"A: \SALES\JOHN\REFORT" - is valid

\SALES\JOHN\A:.REPORT - wiU give an error

If a filename is included, it must also be separated from
the last directory name by a backslash. If a path begins

3-41

with a backslash, BASIC starts its search from the root
directory; otherwise, the search begins at the current
directory.

If the file is not in the current directory, you must
supply BASIC with the path of directory names leading
to the current directory. The path you specify can be
either the path of names starting with the root
directory, or the path from the current directory.

3-42

Tree-Structured Directories

Previous releases of BASIC used a simple directory
structure that was adequate for managing files on
diskettes.

Cartridge BASIC gives you the ability to better
organize and manage your diskettes by placing groups
of related files in their own directories.

For example, let's assume that XYZ company has two
departments, sales and accoimting. All of the
company's files are kept on the computer's diskette.
The organization of the file categories could be viewed
like this:

ROOT

/ \
/ \

SALES ACCOUNTING

/ I I \
^ / I I \

MIKE I SHANNON CHELLE
I I I
I RAM I

reports reports

With Cartridge BASIC, you can create a directory
structure that matches the organization above. For
more information, refer to the commands MKDIR,
RMDIR and CHDIR in Chapter 4.

Directory Types

As in previous releases of BASIC, a single directory is
created on each diskette when you format it. That

— directory is called the root directory. A root directory
on a diskette can hold either 64 or 112 files.

3-43

In addition to containing the names of files, the root
directory also contains the names of other directories
called sub-directories. Unlike the root directory, these
sub-directories are actually files and can contain any
number of additional fUes and sub-directories—^limited

only by the amount of available space on the diskette.

The sub-directory names are in the same format as
filenames. All characters that are vahd for filenames

are valid for a directory name. Each directory can also
contain file and directory names that also appear in
other directories.

For example, using our tree-structure above, the
directory called ACCOUNTING coxild possibly have a
sub-directory called PAM at the same time that SALES
has a sub-directory called PAM. Likewise, the
directory SALES could also have a sub-directory called
SHANNON.

Current Directory

Just as BASIC remembers a default drive, it can also
remember a default directory for each drive on your
system. This is called the current directory and is the
directory that BASIC will search if you enter a filename
without telling BASIC which directory the file is in.
You can change the current directory by issuing the
CHDIR command. (Refer to "CHDIR Command" in
Chapter 4.)

Device Name

The device name consists of up to four characters
followed by a colon (:). The following is a complete list
of device names, telling what device the name applies
to, what the device can be used for (input or output),
and which versions of BASIC support the device.

3-44

Device Name Chart

KYBD: Keyboard. Input only, all versions of BASIC.

SCRN: Screen. Output only, all versions of BASIC.

LPTl: Parallel printer. Output, all versions of BASIC.

COMMUNICATIONS DEVICES

COMl: IBM Internal Modem option or (RS232) Serial
Port when the Modem option is not installed.

COMl: RS232 Serial Port when the IBM Modem

option is installed. I

STORAGE DEVICES

CASl: Cassette tape player. Input and output, all
versions.

A: First diskette drive. Input and output, Catridge
BASIC.

Refer to Appendix I, "Technical Information and Tips"
for information on which adapters are referred to by
the printer and communications device names.

3-45

Filename

The filename must conform to the following rules:

For cassette files:

• The name may not be more than eight characters
long.

• The name may not contain colons, hex 00s or hex
FFs (decimal 255s).

For diskette files, the name should conform to DOS
conventions:

• The name may consist of two parts separated by a
period (.):

name.extension

The name may be from one to eight characters
long. The extension may be no more than three
characters long.

If extension is longer than three characters, the extra
characters are truncated. If name is longer than
eight characters and extension is not included, then
BASIC inserts a period after the eighth character
and uses the extra characters (up to three) for the
extension. If name is longer than eight characters
and an extension is included, then an error occurs.

• Only the following characters are allowed in name
and extension:

A through Z
0 through 9

() { }
@ # $ % A & !

3-46

Some examples of filenames for Cartridge BASIC are:

27HAL.DAD

VDL

PROGRAM LBAS

$$@(!).123

The following examples show how BASIC truncates
names and extensions when they are too long, as
explained above.

A23456789JKLMN becomes: A2345678.9JK

@HOME.TRUM10 becomes: @HOME.TRU

SHERRYLYNN.BAS causes an error

3-47

Using the Screen

BASIC can display text, special characters, points,
lines, or more complex shapes in color or in black and
white.

Display

The PCjr allows you to display text in 16 different
colors. (You can also display in just black and white by
setting parameters on the SCREEN or COLOR or
PALETTE statements.) Text refers to letters,
numbers, and all the special characters in the regular
character set. You have the capability to draw pictures
with the special line and block characters. You can also
create bUnking, reverse image, invisible, highlighted,
and underscored characters by setting parameters on
the COLOR statement. You also get complete graphics
capability to draw complex pictures. This graphics
capability makes the screen all points addressable in low,
medium and high resolution. This is more versatUe than
the ability to draw with the special line and block
characters which you have in text mode. From now on,
the term graphics will refer only to this special
capability. The use of the extended character set with
special line and block characters will not be considered
graphics.

3-48

Text Mode

The screen can be pictured like this:

Character

position 1, V
I 1

g I
I I
I

n

Border

screen

Characters are shown in 25 horizontal lines across the
screen. These lines are numbered 1 through 25, from
top to bottom. Each line has 40 character positions (or'
80, depending on how you set the width). These are
numbered 1 to 40 (or 80) from left to right. The
position numbers are used by the LOCATE statement,
and are the values returned by the POS(O) and
CSRLIN functions. For example, the character in the
upper left comer of the screen is on line 1, position 1.
WIDTH 80, requires that your system have 128K of
memory.

Characters are normally placed on the screen using the
PRINT statement. The characters are displayed at the
position of the cursor. Characters are displayed from
left to right on each line, from line 1 to line 24. When
the cursor would normally go to line 25 on the screen,
lines 1 through 24 are scrolled up one line, so that what

3-49

was line 1 disappears from the screen. Line 24 is then
blank, and the cursor remains on line 24 to continue
printing.

Line 25 is usually used for "soft key" display (see
"KEY Statement" in Chapter 4), but it is possible to
write over this area of the screen if you turn the "soft
key" display off. The 25th line is never scrolled by
BASIC.

Each character on the screen is composed of two parts:
foreground and background. The foreground is the
character itself. The background is the "box" around
the character. You can set the foreground and the
background color for each character using the COLOR
statement. In Cartridge BASIC you can change
foreground color by using the PALETTE or PALETTE
USING statement.

You can use a total of 16 different colors.

0 Black 8 Gray
1 Blue 9 Light Blue
2 Green 10 Light Green
3 Cyan 11 Light Cyan
4 Red 12 Light Red
5 Magenta 13 Light Magenta
6 Brown 14 Yellow

7 White 15 High-intensity White

The colors may vary depending on your particular
display device. Adjusting the color tuning of the
display may help get the colors to match this chart
better.

Most television sets or monitors have an area of

"overscan" which is outside the area used for

characters. This overscan area is known as the border.

You can also use the COLOR statement to set the color

of the border. ^

3-50

The statements you can use to display information in
text mode are:

CLEAR PCOPY

CLS PRINT

COLOR SCREEN
LOCATE WIDTH

PALETTE WRITE

PALETTE USING

The following functions and system variables may be
used in text mode:

CSRLIN SPC

POS TAB

Another special feature you get in text mode and
graphics mode is multiple display pages. The PC jr
video memory is, by default, 16K. Video memory is
divided into segments called pages. The size of a page
is determined by the current screen mode. Text mode
uses only 2K or 4K per page, depending on the width.
So in a 16K memory, there would be 8 pages in 40
width, and 4 pages in 80 width. Refer to "SCREEN
Statement" in Chapter 4 for details. To use WIDTH 80
you must have 128K system memory.

If you want to save some memory space because you
find you do not need all 16K of the video memory, or if
you find you need more space than 16K, the CLEAR
statement supplies features to help you. For instance,
since text mode only needs 2K or 4K depending on
your width, it is possible to recover 12K or 14K of
video memory with the CLEAR statement. If you
increase your video memory area, you can increase the
number of pages in the memory. This can be done
using the CLEAR statement. The CLEAR statement is
valid in all modes. For more information, refer to
"CLEAR Command" in chapter 4.

3-51

Graphics Modes

You can use BASIC statements to draw in three graphic
resolutions:

• low resolution: 160 by 200 points and 16 colors

• medium resolution: 320 by 200 points and 4 or 16
colors depending on the current SCREEN mode

• high resolution: 640 by 200 points and 2 or 4 colors
depending on current SCREEN mode

You can select which resolution you want to use with
the SCREEN statement.

The statements used for graphics in BASIC are:

CIRCLE PALETTE USING
CLEAR PCOPY

COLOR PRESET

DRAW PSET

GET PUT

LINE SCREEN

PAINT VIEW

PALETTE WINDOW

The graphics functions are:

PMAP

POINT

3-52

Attribute and Bits Per Pixel

For every point on the screen, there exists a numerical
value that describes the color of each point. This
numerical value is called an attribute. If you refer to
the COLOR statement where all available colors are

listed, you can see that the color blue is indexed by
attribute 1. Refer to "Assigning Colors to Attributes"
later in this section for more information.

The attribute is point information and varies depending
on the current screen mode. The variance is based on

the legal attribute range for each mode which is listed
below. The maximum attribute for each mode

determines how many bits are required to define the
attribute for a point. This is called the number of bits
per pixel. Consider the attribute range for screen 3
which is 0-15. In binary, four bits are required to
represent a decimal number as large as IS. For a screenj
mode with an attribute range of 0-3, only two bits are
needed to represent these values. Mathematically, the
number of bits per pixel is equal to the log base 2 of the I
total munber of colors available. This concept is
particularly important when using the paint tiling
feature. See the "PAINT Statement" in chapter 4 for
more information.

Low Resolution: There are 160 horizontal points and
200 vertical points in low resolution. These points are
numbered left to right top to bottom, starting with 0.
That makes the upper left comer point (0,0), and the
lower right comer point (159,199). (If you are familiar
with the usual mathematical method for niunbering
coordinates, this may seem upside-down to you). Low
resolution is set by a SCREEN 3 statement and is the
only low resolution mode. You may use 16 attributes
(0 to 15) in this mode. You can display text characters
in any combination of colors on the screen. When you

display text in low resolution, you get 20 characters on
a line, 25 lines.

3-53

In high resolution, SCREEN 2, there are only two
colors: black and white. Black is always the 0 (zero)
attribute, and white is always the 1 (one) attribute.

Medium Resolution: There are 320 horizontal points
and 200 vertical points in medium resolution. These
points are numbered from left to right and from top to
bottom, starting with zero. That makes the upper left
corner of the screen point (0,0), and the lower right
comer point (319,199). Medium resolution is set by a
SCREEN 1, SCREEN 4, or SCREEN 5 statement. Use
of mediiun resolution in SCREEN 5 requires 128K of
memory.

Mediiun resolution makes available the use of 4 or 16

attributes, depending on the current screen mode. It is
possible to choose 1 of 16 colors for each attribute with
the PALETTE or PALETTE USING statements. In

SCREEN 1, attribute 0 is always assumed to be the
background attribute. By default this is black but could
be changed with the PALETTE or PALETTE USING
Statements.

You may select one of two preset palettes for attributes
1, 2 and 3 in screen 1. These palettes are a set three
actual colors to be associated with the attributes'^, 2
and 3. If you change the palette with a COLOR
statement, all the colors on the screen change to match _ ̂
the new palette. The COLOR statement is valid in all
screen modes but works differently in SCREEN 1 than
in the other graphics modes. You can display text in
any combination of colors on the screen. When you
display text in medium resolution you get 40 characters
on a line, 25 lines.

High Resolution: In high resolution there are 640
horizontal points and 200 vertical points. As in
medium resolution, these points are numbered starting
with zero so that the lower right comer point is
(639,199). High resolution is set by the SCREEN 2 or
SCREEN 6 statement. Use of high resolution in
SCREEN 6 requires 128K of memory.

3-54

When you display text characters in high resolution,
you get 80 characters on a line, 25 lines. The
foreground attribute is 1 (one) and the background
attribute is 0 (zero); so characters will always be white
on black. Hi^ resolution, SCREEN 6, is different
from SCREEN 2 in that it allows the use of color. You

may use 4 attributes (0,1, 2, 3) in this mode. These
attributes may be reassigned any of the 16 colors

^ through the PALETTE or PALETTE USING
statements.

Assigning Colors to Attributes

Suppose you were creating a paint by number picture.
You would first draw a border around the area to be

colored. You would then place a number in that area to|
uniquely identify it. Once you had chosen the number,
it would never change. This number is the attribute
that uniquely identifies that area.

Selecting a color for the attribute is done with the
PALETTE and PALETTE USING statements. For

example, to describe a sky, we would paint an area with
attribute one. We then would make the sky blue by
assigning color 1 (blue) to attribute one. We could
make the sky red by assigning color 4 to attribute 1.
Note that any point on the screen that has attribute one
will now appear red. You may use any of the 16
available colors for any one attribute by using the
PALETTE statement.

Spedfyii^ Coordinates

The graphic statements require information about
where on the screen you want to draw. You give this
information in the form of coordinates. Coordinates

are generally in the form (.x,y), where x is the horizontal
position, and is the vertical position. This form is

3-55

known as absolute form, and refers to the actual
coordinates of the point on the screen, without regard
to the last point referenced.

There is another way to show coordinates, known as
relative form. Using this form you tell BASIC where
the point is relative to the last point referenced. This
form looks like:

STEP (xoffset,yoffset)

You indicate inside the parentheses the offset in the
horizontal and vertical directions from the last point
referenced.

Initially, (after a change of screen in graphics mode,
WIDTH, or CLS) the "last point referenced" is the
point in the middle of the screen; that is (80,100) for
low resolution, (160,100) for medium resolution and
(320,100) for high resolution. Later graphics
statements may change the last point referenced. When
we discuss each statement in Chapter 4, we will
indicate what each statement sets as the last point
referenced. f ^

This example shows the use of both forms of
coordinates:

100 SCREEN 1

110 PSET (200,100) 'absolute form
120 PSET STEP (10,-20) 'relative form

This sets two points on the screen. Their actual
coordinates are (200,100) and (210,80).

Other I/O Features

3-56

Oock

Cartridge BASIC provides the following statements and
system variables:

DATES Ten-character string which is the system
date, in the form mm-dd-yyyy. DOS required.

ON TIMER Traps time intervals.

TIMES Eight-character string which indicates the
time as hh:mm:ss. DOS required.

TIMER Indicates the number of seconds elapsed
since midnight or System Reset. DOS
required.

Sound and Music

You can use the following statements to create soimd
on the IBM PCjr system:

BEEP Beeps the speaker.

SOUND Makes a single sound of given frequency
and diuration.

NOISE Generates noise through external speaker.

ON PLAY Traps play activity.

PLAY Plays music as indicated by a character
string.

light

BASIC has the following statements and functions to
allow input from a light pen.

3-57

PEN Function which tells whether or not the pen
was triggered and gives its coordinates.

PEN Statement which enables/disables light pen
function.

ON PEN Statement to trap light pen activity.

Joysticks

Joysticks can be useful in an interactive environment.
BASIC supports two 2-dimensional (x and y
coordinate) joysticks, or four one-dimensional paddles,
each of which has a button. (Four buttons are
supported only in Cartridge BASIC.) The following
statements and functions are used for joysticks:

STICK Function which gives the coordinates of the
joystick.

STRIG Function which gives the status of the
joystick button (up or down).

STRIG Statement which enables/disables STRIG
fimction.

ON STRIG Statement used to trap the button being
pressed.

STRIG(n) Statement which enables/disables the
joystick button interrupt.

3-58

Chapter 4. BASIC Commands,
Statements, Functions, and Variables

Contents

How to Use This Chapter 4-3

Commands 4-6

Statements 4-9

Non-I/O Statements 4-9
I/O Statements 4-14

Functions and Variahles 4-19

Numeric Functions (return a numeric value) . 4-19
String Functions (return a string value) 4-23
ABS Function 4-25

4-1

ASC Function 4-26
ATN Function 4-27
AUTO Command 4-28
BEEP Statement 4-30
BLOAD Command 4-32
BSAVE Command 4-36
CALL Statement 4-38
CDBL Function 4-40
CHAIN Statement 4-41
CHDIR Command 4-44
CHR$ Function 4-46
CINT Function 4-48
CIRCLE Statement 4-49
CLEAR Command 4-53
CLOSE Statement 4-59
CLS Statement 4-61
COLOR Statement 4-63

The COLOR Statement in Text Mode 4-65
The COLOR Statement in Graphics
Mode 4-68

COM(n) Statement 4-71
COMMON Statement 4-73
CONT Command 4-74
COS Function 4-76
CSNG Function 4-77
CSRLIN Variable 4-78
CVI, CVS, CVD Functions 4-79
DATA Statement 4-81
DATE$ Variable and Statement 4-83
DEF FN Statement 4-85
DEF SEG Statement 4-88
DEFtjrpe Statements 4-90
DEF USR Statement 4-92
DELETE Command 4-94
DIM Statement 4-96

DRAW Statement 4-98
EDIT Command 4-105

END Statement 4-106
EOF Function 4-107

ERASE Statement 4-108
ERR and ERL Variables 4-110
ERROR Statement 4-112

4-2

EXP Function 4-114

FIELD Statement 4-115

FILES Command 4-118

FIX Function 4-121

FOR and NEXT Statements 4-122

ERE Function 4-127

GET Statement (Files) 4-129
GET Statement (Graphics) 4-131
GOSUB and RETURN Statements 4-134

GOTO Statement 4-136

HEX$ Fimction 4-138
IF Statement 4-139

INKEY$ Variable 4-143
INP Function 4-145

INPUT Statement 4-146

INPUT # Statement 4-149

INPUTS Function 4-151
INSTR Function 4-153

INT Function 4-154

KEY Statement 4-155

KEY(n) Statement 4-161
KILL Command 4-163

LEFTS Function 4-165
LEN Function 4-166

LET Statement 4-167

LINE Statement 4-169
LINE INPUT Statement 4-173

LINE INPUT # Statement 4-174

LIST Command 4-176

LLIST Command 4-178

LOAD Command 4-179

LOC Function 4-182

LOCATE Statement 4-184

LOF Function 4-187

LOG Function 4-189

LPOS Function 4-191

LPRINT and LPRINT USING Statements 4-192

LSET and RSET Statements 4-194

MERGE Command 4-196

MIDS Function and Statement 4-198
MKDIR Command 4-201

MKIS, MKSS, MKDS Functions 4-203

4-2.1

MOTOR Statement 4-205

NAME Command 4-206

NEW Command 4-208

NOISE Statement 4-209

OCT$ Function 4-211
ON COM(n) Statement 4-212
ON ERROR Statement 4-215

ON-GOSUB and ON-GOTO Statements 4-217

ON KEY(n) Statement 4-219
ON PEN Statement 4-223

ON PLAY(n) Statement 4-225
ON STRIG(n) Statement 4-228
ON TIMER Statement 4-231

OPEN Statement 4-233
OPEN "COM... Statement 4-240

OPTION BASE Statement 4-247
OUT Statement 4-248

PAINT Statement 4-250

PALETTE Statement 4-257

PALETTE USING Statement 4-259

PCOPY Statement 4-262

PEEK Function 4-263

PEN Statement and Function 4-264

PLAY Statement 4-267

PLAY(n) Function 4-273
PMAP Function 4-275

POINT Function 4-277

POKE Statement 4-280

POS Function 4-281

PRINT Statement 4-282

PRINT USING Statement 4-286

PRINT # and PRINT # USING Statements 4-292
PSET and PRESET Statements 4-295

PUT Statement (Files) 4-297
PUT Statement (Graphics) 4-299
RANDOMIZE Statement 4-304

READ Statement 4-307

REM Statement 4-309

RENUM Command 4-310

RESET Command 4-312

RESTORE Statement 4-313

RESUME Statement 4-314

4-2.2

RETURN Statement 4-316

RIGHTS Function 4-317
RMDIR Command 4-318

RND Function 4-321

RUN Command 4-323

SAVE Command 4-325

SCREEN Function 4-328

SCREEN Statement 4-330

SON Function 4-336

SIN Function 4-337

SOUND Statement 4-338

SPACES Function 4-343
SPC Function 4-344

SQR Function 4-345
STICK Function 4-346

STOP Statement 4-348

STRS Function 4-350
STRIG Statement and Fimction 4-351

STRIG(n) Statement 4-353
STRINGS Function 4-355
SWAP Statement 4-356

SYSTEM Command 4-357

TAB Function 4-358

TAN Function 4-359

TERM Statement 4-360

TIMES Variable and Statement 4-368
TIMER Variable 4-370

TRON and TROFF Commands 4-371

USR Function 4-373

VALFimction 4-374

VARPTR Function 4-375

VARPTRS Function 4-378
VIEW Statement 4-380

WATT Statement 4-385

WHILE and WEND Statements 4-387

WIDTH Statement 4-389

WINDOW Statement 4-393

WRITE Statement 4-398

WRITE # Statement 4-399

4-2.3

4-2.4

How to Use This Chapter

This chapter has descriptions of all the BASIC
commands, statements, functions, and variables.
BASIC'S built-in functions and variables may be used in
any program without further definition.

The first pages contain a list of all the commands,
statements, functions, and variables. These lists may be
usefiil as a quick reference. The rest of the chapter
describes each command, statement, function, and
variable in more detail.

The distinction between a command and a statement is

largely a matter of tradition. Commands, because they
generally operate on programs, are usually entered in
direct mode. Statements generally direct program flow
from within a program, and so are usually entered in
indirect mode as part of a program line. Actually, most
BASIC commands and statements can be entered in

either direct or indirect mode.

The description of each command, statement, function,
or variable in this chapter is formatted as follows:

Purpose: Tells what the command, statement, function, or
variable does.

Versioiis: Indicates which versions of BASIC allow the

command, statement, function, or variable. For
example, if you look under "CHAIN Statement" in
this chapter, you will note that after Versions: it
says:

Cassette Cartridge Compiler

The asterisks indicate which versions of BASIC

support the function. This example shows that you
can use the CHAIN statement for programs written
in the Cartridge version of BASIC.

\,
4-3

Fomiat:

In this example you wiU notice that the asterisks
under the word "Compiler" are in parentheses. This
means that there are differences between the way the
statement works under the BASIC interpreter and
the way it works under the IBM Personal Computer
BASIC Compiler. The IBM Personal Computer
BASIC Compiler is an optional software package
available from IBM. If you have the BASIC
Compiler, the IBM Personal Computer BASIC
Compiler manual explains these differences.

Shows the correct format for the command,
statement, fimction, or variable. A complete
explanation of the syntax format is presented in the
Preface. Keep these rules in mind:

Example:

4-4

Words in capital letters are keywords and must be
entered as shown. They may be entered in any
combination of uppercase and lowercase letters.
BASIC always converts words to uppercase
(unless they are part of a quoted string, remark,
or DATA statement).

You are to supply any items in lowercase italic
letters.

Items in square brackets [] are optional.

An ellipsis (...) indicates that an item may be
repeated as many times as you wish.

All punctuation except square brackets (such as
commas, parentheses, semicolons, h3rphens, or
equal signs) must be included where shown.

Remarks: Describes in detail how the command, statement,
function, or variable is used.

Shows direct mode statements, sample programs, or
program segments that demonstrate the use of the
command, statement, fxmction, or variable.

/

In the formats given in this chapter, some of the
parameters have been abbreviated as follows:

x,y, z represent any numeric expressions

represent integer expressions

x$, y$ represent string expressions

V, v$ represent numeric and string variables.
respectively

If a single- or double-precision value is supplied where
an integer is required, BASIC roimds the fractional
portion and uses the resulting integer.

Functions and Variables: In the format description,
most of the functions and variables are shown on the

right side of an assignment statement. This is to remind
you that they are not used like statements and
commands. It is not meant to suggest that you are
limited to using them in assigiunent statements. You
can use them anywhere you would use a regular
variable, except on the left side of an assignment
statement. Any exceptions are noted in the particular
section describing the function or variable. A few of
the functions are limited to being used in PRINT
statements; these are shown as part of a PRINT
statement.

4-5

Commands

The following is a list of all the commands used in
BASIC. The syntax of each command is shown, but
not always in its entirety. You can find detailed
information about each command in the alphabetical
part of this chapter. You may also want to check the
next section in this chapter, "Statements," for a list of
the BASIC statements.

Command Action

AUTO number,increment
Generates line numbers

automatically.

BLOAD filespec,offset
Loads binary data (such as a
machine language program) into
memory.

BSAVE filespec,offset,length
Saves binary data.

CHDIR path Changes the current directory.

CLEAR m,s,v Clears program variables, and
optionally sets memory area.

CONT Continues program execution.

DELETE linel-linel

Deletes specified program lines.

EDITline

FILES filespec

Displays a program line for changing.

Lists files in the diskette directory
that match a file specification.

KILL fdespec Erases a diskette file.

4-6

LIST luiel-lme2,filei^ec
Lists program lines on the screen or
to the specified file.

LLISTIInel-lme2

Lists program lines on the printer.

LOAD filespec Loads a program file. Can include
the R option to run it.

MERGE fOespec Merges a saved program with the
program in memory.

MKDIR path Creates a directory on the specified
diskette.

NAME filespec AS filename
Renames a diskette file.

NEW Erases the current program and
variables.

RENUM newnum,oldnum,increment
Renmnbers program lines.

RESET

RMDIR path

RUN filesqpec

RUN line

SAVE filespec

Reinitializes diskette information.

Similar to CLOSE.

Removes a specified sub-directory
from an existing directory.

Executes a program. The R option
may be used to keep files open.

Runs the program in memory
starting at the specified line.

Saves the program in memory under
the given filename. A or P option
saves in ASCII or protected format.

4-7

SYSTEM Ends BASIC. Closes aU files and

returns to DOS.

TRON, TROFF Turns trace on or off.

4-8

Statements

This section lists all the BASIC statements

alphabetically in two categories: I/O (Input/Output)
Statements and Non-I/ O Statements. The list tells
what each statement does and shows the syntax. For
the more complex statements the sjmtax shown may not
be complete. You can find detailed information about
each statement in the alphabetical portion of this
chapter, later on.

You may also want to look at the previous section,
"Commands," for a list of the BASIC commands.

Non-I/O Statements

Statement Action

CALL numvarCvarlable Ust)
Calls a machine language program.

^ CHAIN fileqiec Calls a program and passes
variables to it. Other options allow
you to use overlays, begin running
at a line other than the first line,
pass all variables, or delete an
overlay.

COM(n) ON/OFF/STOP
Enables and disables trapping of
communications activity.

COMMON list of variables

Passes variables to a chained

program.

_ DATES = x$ Sets the date.

4-9

DEF FNname(arg list)=defiiution
Defines a nmneric or string
function.

DEFtype ranges of letters
Defines default variable tjrpes,
where type is INT, SNG, DEL, or
STR.

DEF SEG=address Defines current segment of
memory.

DEF USRn=offset Defines starting address for
machine language subroutine n.

DIM list of subscripted variables
Declares maximum subscript values
for arrays and allocates space for
them.

END Stops the program, closes aU files,
and returns to command level.

ERASE arraynames
Eliminates arrays from a program.

ERROR n Simulates error number n.

FOR variable=x TO y STEP z
Repeats program lines a number of
times. The NEXT statement closes

the loop.

GOSUB line Calls a subroutine by branching to
the specified line. The RETURN
statement returns from the

subroutine.

GOTO line Branches to the specified line.

4-10

IF expression THEN clause ELSE clause
Performs the statement(s) in the
THEN clause if expression is true
(nonzero). Otherwise, performs
the ELSE clause or goes to the next
line.

KEY ON/OFF/LIST
Displays soft keys, turns display
off, or lists key values.

KEY n, x$ Sets soft key n to the value of the
string x$.

KEY(n) ON/OFF/STOP
Enables/disables trapping of
function keys or cursor control
keys.

LET variable=expression
Assigns the value of the expression
to the variable.

MID$(v$,n,m)=y$ Replaces part of the variable v$ I
with the string y$, starting at
position n and replacing m
characters.

MOTOR state Turns cassette motor on if state is

nonzero, off if state is zero.

NEXT variable Closes a FOR...NEXT loop (see
FOR).

ON COM(n) GOSUB line
Enables trap routine for
communications activity.

ON ERROR GOTO line

Enables error trap routine
beginning at line specified.

4-11

ON n GOSUB line list

Branches to subroutine specified by
n.

ON n GOTO line list

Branches to statement specified by
n.

ON KEY(n) GOSUB line
Enables trap routine for the
specified fimction key or cursor
control key.

ON PEN GOSUB line

Enables trap routine for light pen.

ON PLAY(n) GOSUB line
Enables trap routine for play
activity.

ON STRIG(n) GOSUB line
Enables trap routine for joystick
button.

ON TIMER(n) GOSUB line
Enables trap routine for time
intervals.

OPTION BASE n Specifies the minimum value for
array subscripts.

PEN ON/OFF/STOP Enables/disables the light pen
function.

POKE n^ Puts byte m into memory at the
location specified by n.

RANDOMIZE n Reseeds the random number
generator.

REM remark Includes remark in program.

4-12

RESTORE line Resets DATA pointer so DATA
statements may be reread.

RESUME line/NEXT/O
Returns from error trap routine.

RETURN line

STOP

Returns from subroutine.

Stops program execution, prints a
break message, and returns to
command level.

STRIG ON/OFF Enables/disables joystick button
function.

STRIG(n) ON/OFF/STOP
Enables/disables joystick button
trapping.

SWAP Tariablel,variable2
Exchanges values of two variables.

TERM

TIMES = x$

If you are using Cartridge BASIC
and have the proper communication!
device (IBM Internal Modem or
external modem), then you can
enter into a Terminal Emulation

program via the TERM statement.
For more information refer to the

TERM statement in this Chapter.

Sets the time.

V = TIMER

WATT port,n,m

WEND

Returns the number of seconds

since midnight or last System Reset.

Suspends program execution until
the specified port develops the
specified bit pattern.

Closes a WHILE...WEND loop
(see WHILE).

4-13

WHILE expression
Begins a loop which executes when
the expression is true.

I/O Statements

Statement

BEEP

CIRCLE (x,y),r

CLOSE #f

CLS

Action

Beeps the speaker. Options
enable/disable sound to the
internal/external speaker when used
in conjunction with SOUND
ON/SOUND OFF.

Draws a circle with center (x,y) and
radius r. Other options allow you to
specify a part of the circle to be
drawn, or to change the aspect ratio
to draw an ellipse.

Closes a file.

Clears the screen.

COLOR foreground,background,border
In text mode, sets colors for
foreground, background, and the
border screen.

COLOR foreground,background
In graphics modes 3-6 sets color for
foreground,background.

COLOR background,palette
In graphics mode, (SCREEN 1) sets
background color and palette of
foreground colors.

DATA list of constants

Creates a data table to be used by
READ statements.

4-14

DRAW string Draws a figure as specified by string.

FIELD #f,width AS stringvar...
Defines fields in a random file

buffer,

GET #f,number Reads a record from a random file.

GET (xl,yl)-(x2,y2),arrayname
Reads graphic information from
screen.

INPUT ''prompt";TariabIe list
Reads data from the keyboard.

INPUT #f,variable list
Reads data from file f.

LINE (xl,yl)-(x2,y2)
Draws a line on the screen. Other

parameters allow you to draw a box,
fill in the box and do line-styling.

LINE INPUT ''prompt";stringvar
Reads an entire line from the

keyboard, ignoring commas or other
delimiters.

LINE INPUT #f,stringvar
Reads an entire line from a file.

LOCATE row,col Positions the cursor. Other
parameters allow you to define the
size of the cursor and whether it is

visible or not.

LPRINT list of expressions
Prints data on the printer.

LPRINT USING v$dist of expressions
Prints data on the printer using the
format specified by v$.

4-15

PLAY string Plays music as specified by string.

LSET stringvar=x$
Left-justifies a string in a field.

NOISE source,volume,duration
Generates noise through external
speaker.

OPEN fdespec FOR mode AS #f
Opens the file for the mode
specified. You can also specify a
path to be followed. Another option
sets the record length for random
files.

OPEN mode,#f,filespec,recl
Alternative form of preceding
OPEN.

OPEN "COMn:options" AS #f
Opens file for communications.

OUT n,m Outputs the byte m to the machine
port n.

PAINT (x,y),pamt,boundary,bacl^ound
Fills in an area on the screen defined

by boundary with the paint color.

PALETTE attribute,color
Allows control of hardware palette.

PALETTE USING arrayname (starting index)
Allows setting of all palette entries
with one statement.

PCOPY source,destination
Allows copying of one page to
another page.

4-16

PRINT list of expressions
Displays data on the screen.

PRINT USING v$dist of expres^ons
Displays data using the format
specified by v$.

PRINT #f , list of exps
Writes the list of expressions to file
f.

PRINT #f, USING v$dist of exps
Writes data to file f using the format
specified by v$.

PRESET (x,y) Draws a point on the screen in
background color. See PSET.

PSET (x,y),attribute
Draws a point on the screen, in the
foreground color if attribute is not
specified.

PUT #f,number Writes data from a random file
buffer to the file.

PUT (x,y),array,action
Writes graphic information to the
screen.

READ variable list '
Retrieves information from the data

table created by DATA statements.

RSET stringvar=x$
Right-justifies a string in a field. See
LSET.

4-17

SCREEN mode,burst,apage,vpage,erase
Sets screen mode, color on or off,
display page, active page, and
amount of video memory to be
erased.

SOUND freq,duration,volume,voice
Generates sound through the
speaker.

VIEW (xl,yl)-(x2,x2),attrlbute,boundary
Defines a viewport within the actual
limits of the screen.

WDOTH size Sets screen width. Other options
allow you to specify the width of a
printer or a communications file.

WINDOW (xl,yl)-(x2,y2)
Defines transformation between

upper-left coordinates and
lower-right coordinates.

WRITE list of expressions
Outputs data on the screen.

WRITE #f, list of expressions
Outputs data to a file.

4-18

Functions and Variables

The bxiilt-in functions and variables available in BASIC
are listed below, grouped into two general categories:
numeric functions, or those which return a numeric
result; and string functions, or those which return a
string result.

Each category is further subdivided according to the
usage of the functions. The numeric functions are
divided into general arithmetic (or algebraic) functions;
string-related fimctions, which operate on strings; and
input/output and miscellaneous functions. The string
functions are separated into general string functions,
and input/output and miscellaneous string functions.

Numeric Functions (return a numeric value)

ARITHMETIC

Result

Returns the absolute value of x.

Function

ABS(x)

ATN(x) Returns the arctangent (in radians)
of X.

CDBL(x) Converts x to a double-precision
number.

CINT(x) Converts x to an integer by
rounding.

COS(x) Returns the cosine of angle x, where
X is in radians.

CSNG(x) Converts x to a single-precision
number.

EXP(x) Raises e to the x power.

4-19

FIX(x)

INT(x)

LOG(x)

RND(x)

SGN(x)

SIN(x)

SQR(x)

TAN(x)

Truncates x to an integer.

Returns the largest integer less than
or equal to x.

Returns the natural logorithm of x.

Returns a random number.

Returns the sign of x.

Returns the sine of angle x, where x
is in radians.

Returns the square root of x.

Returns the tangent of angle x,
where x is in radians.

STRING-RELATED

Function Result

ASC(x$) Returns the ASCII code for the first

character in x$.

CVI(x$), CVS(x$), CVD(x$)
Converts x$ to a number of the
indicated precision.

INSTR(n,x$,y$) Returns the position of first
occurrence of y$ in x$ starting at
position n.

LEN(x$)

VAL(x$)

Returns the length of x$.

Returns the numeric value of x$.

4-20

I/O and MISCELLANEOUS

Function

CSRLIN

EOF(f)

ERL

ERR

FRE(x$)

INP(n)

LOC(f)

LOF(f)

LPOS(n)

Result

Returns the vertical line position of
the cursor.

Indicates an end of file condition on

fUef.

Returns the line number where the

last error occurred (see ERR).

Retiums the error code number of

the last error.

Returns the amount of free space in
memory not currently in use by
BASIC.

Reads a byte from port n.

Returns the "location" of file f:

• next record number of random

file

• number of sectors read or written

for sequential file
• number of characters in

communications input buffer

Returns the length of file f:

• number of bytes in sequential or
random file

• number of bytes free in
communications input buffer

Returns the carriage position of the
printer.

4-21

PEEK(ii) Reads the byte in memory location
n.

PEN(n) Reads the light pen.

PLAY(n) Returns the number of notes in the
music background buffer.

PMAP Maps actual and relative coordinates.

POINT(x,y) Returns the color of point (x,y)
(graphics mode).

POINT(n) Returns the value of the current x or
y coordinate.

POS(n) Returns the cursor coliunn position.

SCREEN(row,col,z)
Returns the character or color at

position (row,col).

STICK(n) Returns the coordinates of a joy
stick.

STRIG(n) Returns the state of a joy stick
button.

USRn(x) Calls a machine language subroutine
with argument x.

TIMER Returns the number of seconds since

midnight or System Reset.

VARPTR(variable)

VARPTR(#f)

Returns the address of the variable

in memory.

Returns the address of the file

control block for file f.

4-22

String Functions (return a string value)
GENERAL

Function

CHR$(n)

LEFT$(x$,n)

]VnD$(x$,n,ni)

Result

Returns the character with ASCII

code n.

Returns the leftmost n characters of

x$.

Returns m characters from x$
starting at position n.

RIGHT$(x$,n) Returns the rightmost n characters of
x$.

SPACE$(n) Returns a string of n spaces.

STRING$(n,m) Returns the character with ASCII
value m, repeated n times.

STRING$(n,x$) Retiums the first character of x$
repeated n times.

I/O and MISCELLANEOUS

Function

DATES

HEX$(n)

INKEYS

Result

Returns the system date.

Converts n to a hexadecimal string.

Reads a character from the

keyboard.

INPUT$(n,#f) Reads n characters from file f.

MKI$(x), MKS$(x), MKD$(x)
Converts x in indicated precision to
proper length string.

4-23

OCT$(n) Converts n to an octal string.

SPC(n) Prints n spaces in a PRINT or
LPRINT statement.

STR$(x) Converts x to a string value.

TAB(n) Tabs to position n in a PRINT or
LPRINT statement.

TIMES Returns the system time.

VARPTR$(v) Returns a three-byte string
containing the type of variable, and
the address of the variable in

memory.

4-24

ABS

Function

Purpose: Retxxms the absolute value of the expression x.

^ Versions: Cassette Cartridge Compiler
rUfi** 9ic9ic:ic

Format: v = ABS(x)

Remarks: x may be any numeric expression.

The absolute value of a number is always positive or
zero.

Example:

Ok
PRINT ABS(7*(-5))
35

Ok

The absolute value of -35 is positive 35.

4-25

ASC

Function

Purpose:

Versions:

Format:

Remarks:

Example:

Returns the ASCII code for the first character of the -

string x$. ^ ̂

Cassette Cartridge Compiler
4:** -If-lf*

V = ASC(x^)

x$ may be any string expression.

The result of the ASC function is a numerical value

that is the ASCII code of the first character of the

string x$. (See Appendix G, "ASCII Character
Codes," for ASCII codes.) If x$ is null, an Illegal
fimction call error is returned.

The CHR$ function is the inverse of the ASC
function, and it converts the ASCII code to a
character.

Ok
10 X$ = "TEST"
20 PRINT ASC(X$)
RUN

84

Ok

This example shows that the ASCII code for a
capital T is 84. PRINT ASC("TEST") would work
just as well.

4-26

ATN

Function

Purpose: Returns the arctangent of x.

•Versions: Cassette Cartridge Compiler

Format: v = ATN(x)

Remarks:

X may be a numeric expression of any type.

The ATN function returns the angle whose tangent is
X. The result is a value in radians in the range -PI/2
to PI/2, where PI=3.141593. If you want to
convert radians to degrees, multiply by 180/PI.

The value of ATN is calculated in single precision in
Cassette BASIC and in either single or double
precision in Cartridge BASIC.

Example: The first example below calculates the arctangent of
3. The second example finds the angle whose
tangent is 1. It is .7853983 radians, or 45 degrees.

Ok
PRINT ATN{3)
1.249046

Ok

10 RADIANS=ATN(1)
20 PI=3.141593: DEGREES=RADIANS*180/PI
30 PRINT RADIANS,DEGREES
RUN

.7853983 45
Ok

4-27

AUTO

Command

Purpose: Generates a line number automatically each time you
press Enter.

Versions: Cassette Cartridge Compiler
*** ***

Format: AUTO [number] [,[incremeni]\

Remarks:

number is the number which will be used to start

numbering lines. A period (.) may be
used in place of the Une munber to
indicate the current line.

increment is the value that wiU be added to each

line number to get the next line number.

Numbering begins at number and increments each
subsequent line number by increment. If both values
are omitted, the default is 10,10. If number is
followed by a comma but increment is not specified,
the last increment specified in an AUTO command is
assumed. If number is omitted but increment is

included, then line numbering begins with 0.

AUTO is usually used for entering programs. It
spares you from having to tjrpe each line number.

If AUTO generates a line number that already exists
in the program, an asterisk (*) is printed after the
number to warn you that any input will replace the
existing line. However, if you press Enter
immediately after the asterisk, the existing line will
not be replaced and AUTO will generate the next
line number.

4-28

Example:

AUTO

Command

AUTO ends when you press the Fn key followed by
the Break key. The Une in which the Fn and Break
keys are typed is not saved. After you press the Fn
and Break keys, BASIC returns to command level.

Note: When in AUTO mode, you may make
changes only to the current line. If you want to
change another Une on the screen, be sure to exit
AUTO by first pressing the Fn key followed by
the Break key.

AUTO

This command generates Une numbers 10, 20, 30,
40,...

AUTO 100,50

This generates Une numbers 100, 150, 200,...

AUTO 500,

This generates Une numbers 500, 550, 600, 650,...
The increment is 50 since 50 was the increment in

the previous AUTO command.

AUTO ,20

This generates Une numbers 0, 20, 40, 60,...

4-29

BEEP

Statement

Purpose: Causes the speaker to beep.

Versions: Cassette Cartridge Compiler
4^%%

Format: BEEP

BEEP ON

BEEP OFF

Remarks: The BEEP statement sounds the speaker at 800
Hertz (cycles per second) for 1/4 second. BEEP
has the same effect as:

PRINT CHR$(7);

In Cartridge BASIC the BEEP statement can be
used with the SOUND statement to specify where to
direct sound. It may be directed to the internal
speaker and/or the external speaker.

BEEP ON : SOUND OFF

This sends the sound source through the
television/external speaker and the internal speaker.

BEEP OFF : SOUND OFF

This sends the sound only through the internal
speaker.

BASIC will restore the machine to the default BEEP

ON/SOUND OFF state when a RUN command is
executed.

4-30

BEEP

Statement

Refer to "SOUND Statement" in this chapter for an
explanation of SOUND with the external speaker.

Example:

2430 IF X < 20 THEN BEEP

In this example, the program checks to see if X is
less than 20 (out of range). If it is, the computer
"complains" by beeping.

4-31

BLOAD

Command

Purpose: Loads a memory image file into memory.

Versions: Cassette Cartridge Compiler
««« ***

Format: BLOAD filespec {,offset\

Remarks:

filespec is a string expression for the file
specification. It must conform to the
rules outlined under "Naming Files" in
Chapter 3, otherwise a Bad Ble name
error occurs and the load is canceled.

offset is a numeric expression in the range 0 to
65535. This is the address at which

loading is to start, specified as an offset
into the segment declared by the last
DEF SEG statement.

If offset is omitted, the offset specified at BSAVE is
assumed. That is, the file is loaded into the same
location it was saved from.

When a BLOAD command is executed, the named
file is loaded into memory starting at the specified
location. If the file is to be loaded from the device

CASl:, the cassette motor is turned on
automatically.

If you are using Cassette BASIC and the device
name is omitted, CASl: is assumed. CASl: is the
only allowable device for BLOAD in Cassette
BASIC and in Cartridge BASIC when DOS is not

4-32

BLOAD

Command

used. If you are using Cartridge BASIC with DOS
and the device name is omitted, the DOS default
diskette drive is assumed.

BLOAD is intended to be used with a file that has

previously been saved with BSAVE. BLOAD and
BSAVE are useful for loading and saving machine
language programs. (You may perform machine
language programs from within a BASIC program by
using the CALL statement.) However, BLOAD and
BSAVE are not restricted to machine language
programs. Any segment may be specified as the
target or source for these statements via the DEF
SEG statement. You have a useful way of saving
and displaying screen images: save from or load to
the screen buffer.

Warning: BASIC does not do any checking on
the address. That is, it is possible to BLOAD
anjrwhere in memory. You should not BLOAD
over BASIC'S stack, BASIC'S variable area, or I
your BASIC program.

Notes when usong CASl:

1. If you enter the BLOAD command in direct
mode, the file names on the tape wiU be displayed'
on the screen followed by a period (.) and a
single letter indicating the type of fUe. This is
followed by the message Skipped for the files not
matching the named fUe, and Found when the
named file is found. Types of files and the
associated letter are:

.B for BASIC programs in internal format
(created with SAVE command)

4-33

BLOAD

Command

.A

.M

.D

for protected BASIC programs in internal
format (created with SAVE ,P command)

for BASIC programs in ASCII format
(created with SAVE,A command)

for memory image files (created with
BSAVE command)

for data files (created by OPEN followed
by output statements)

If the BLOAD command is executed in a BASIC

program,, the file names skipped and found are
not displayed on the screen.

You may press the Fn key followed by the Break
key any time during BLOAD. This wiU cause
BASIC to stop the search and retmrn to direct
mode between files or after a time-out period.
Previous memory contents do not change.

If CASl: is specified as the device and the
filename is omitted, the next memory image (.M)
file on the tape is loaded.

4-34

BLOAD

Command

Example:

10 'load the screen buffer
20 'point SEG at screen buffer
30 DEF SEG= &HB800
40 'load PICTURE Into screen buffer
50 BLOAD "PICTURE",0

This example loads the screen buffer which is at
absolute address hex B8000. Note that the DEF

SEG statement in 30 and the offset of 0 in 50 is

wise. This ensures that the correct address is used.

The example for BSAVE in the next section
illustrates how PICTURE was saved.

4-35

BSAVE

Command

Purpose: Saves portions of the computer's memory on the
specified device.

Versions: Cassette Cartridge Compiler
Hs9|c4e ***

Format: BSAVE filespec,offset, length

Remarks:

filespec is a string expression for the file
specification. It must conform to the
rules outlined under "Naming Files" in
Chapter 3; otherwise, a Bad Ble name
error occurs and the save is canceled.

offset is a numeric expression in the range 0 to
65535. This is the offset into the

segment declared by the last DEF SEG.
Saving will start from this position.

length is a numeric expression in the range 1 to
65535. This is the length of the
memory image to be saved.

If offset or length is omitted, a Syntax error occurs
and the save is canceled.

If the device name is omitted in Cassette BASIC,
CASl: is assumed. CASl: is the only allowable
device for BSAVE in Cassette BASIC and in

Cartridge BASIC when DOS is not used. If you are
using Cartridge BASIC with DOS and the device
name is omitted, the DOS default diskette drive is
assumed.

4-36

Example:

BSAVE

Command

If you are saving to CASl:, the cassette motor will
be turned on and the memory image file will be
immediately written to the tape.

BLOAD and BSAVE are useful for loading and
saving machine language programs (which can be
caUed using the CALL statement). However,
BLOAD and BSAVE are not restricted to machine

language programs. By using the DEF SEG
statement, any segment may be specified as the
target or source for these statements. For example,
you can save an image of the screen by doing a
BSAVE of the screen buffer.

10 'Save the color screen buffer
15 'point segment at screen buffer
20 DEF SEG= &HB800
25 'save buffer In file PICTURE
30 BSAVE "PICTURE",0,&H4000

As explained in the example for BLOAD in the
previous section, the address of the 16K screen
buffer is hex B8000.

The DEF SEG statement must be used to set up the
segment address to the start of the screen buffer.
Offset of 0 and length &H4000 specifies that the
entire 16K screen buffer is to be saved.

4-37

CALL

Statement

Purpose: Calls a machine language subroutine.

Versions: Cassette Cartridge
4e%:ie Htsfesie

Compiler

Format: CALL numvar [{variable [,variable\...y\

Remarks:

numvar is the name of a numeric variable. The

value of the variable indicates the

starting memory address of the
subroutine being called as an offset into
the current segment of memory (as
defined by the last DEF SEG
statement).

variable is the name of a variable which is to be

passed as an argument to the machine
language subroutine.

The CALL statement is one way of interfacing
machine language programs with BASIC. The other
way is by using the USR function. Refer to
Appendix C, "Machine Language Subroutines" for
specific considerations about using machine language
subroutines.

4-38

CALL

Statement

Example:

100 DEF SEG=&H1800
110 0Z=0
120 CALL OZ(A,B$,C)

Line 100 sets the segment to location hex 18000.
OZ is set to zero so that the call to OZ will execute

the subroutine at location hex 18000. The variables

A, B$, and C are passed as arguments to the machine
language subroutine.

4-39

CDBL

Function

Purpose: Converts jc to a double-precision number.

Versions: Cassette Cartridge Compiler

Format:

Remarks:

Example:

V = CDBL(jc)

X may be any numeric expression.

Rules for converting from one numeric precision to
another are followed as explained in "How BASIC
Converts Numbers from One Precision to Another"

in Chapter 3. Refer also to the CINT and CSNG
functions for converting numbers to integer and
single precision.

Ok

10 A = 454.67

20 PRINT A;CDBL(A)
Ok

RUN

454.67 454.6700134277344

The value of CDBL(A) is only accurate to the
second decimal place after rounding. This is because
only two decimal places of accuracy were supphed
with A.

4-40

CHAIN

Statement

Purpose: Transfers control to another program, and passes
variables to it from the current program.

Note: This statement requires the use of DOS
2.10. If DOS 2.10 is not present, then an Illegal
function call error will occur.

Versions: Cassette Cartridge

Format:

Compiler

CHAIN [MERGE] filespec [,[//«e] [,[ALL]
[,DELETE range]]}

ry

Remarks: filespec follows the rules for file specifications
outUned in "Naming Files" in Chapter 3. The
filename is the name of the program that is
transferred to. Example:

CHAIN "A:PR0G1"

line is a hne number or an expression that evaluates
to a hne number in the chained-to program. It
specifies the hne at which the chained-to program is
to begin running. If it is omitted, execution begins at
the first hne in the chained-to program. Example:

CHAIN "A:PR0G1",1000

line (1000 in this example) is not affected by a
RENUM command. If PROGl is renumbered, this
example CHAIN statement should be changed to
point to the new hne number.

4-41

CHAIN

Statement

ALL specifies that every variable in the current
program is to be passed to the chained-to program.
If the ALL option is omitted, you must include a
COMMON statement in the chaining program to
pass variables to the chained-to program. See
"COMMON Statement" in this chapter. Example:

CHAIN "AiPROGl",1000,ALL

MERGE brings a section of code into the BASIC
program as an overlay. That is, a MERGE operation
is performed with the chaining program and the
chained-to program. The chained-to program must
be an ASCII file if it is to be merged. Example:

CHAIN MERGE "A:0VRLAY",1000

After using an overlay, you will usually want to
delete it so that a new overlay may be brought in.
To do this, use the DELETE option, which behaves
like the DELETE command. As in the DELETE

command, the line numbers specified as the first and
last hne of the range must exist, or an Illegal function
call error occurs. Example:

CHAIN MERGE "A:0VRLAY2",1000,DELETE 1000-5000

This example will delete lines 1000 through 5000 of
the chaining program before loading in the overlay
(chained-to program). The hne numbers in range are
affected by the RENUM command.

4-42

CHAIN

Statement

Notes:

1. The CHAIN statement leaves files open.

2. The CHAIN statement with MERGE option
preserves the current OPTION BASE setting.

3. Without MERGE, CHAIN does not preserve
variable types or user-defined functions for use
by the chained-to program. That is, any
DEFINT, DEFSNG, DEFDBL, DEFSTR, or
DEF FN statements containing shared variables
must be restated in the chained program.

4. The CHAIN statement does a RESTORE before

running the chained-to program. This means that
the read operation does not continue where it left
off in the chaining program. The next READ
statement accesses the first item in the first

DATA statement encountered in the program.

4-43

CHDIR

Command

Purpose: Allows you to change the current directory.

Note: This conmiand requires the use of DOS
2.10.

Versfons: Cassette Cartridge Compiler

Format: CHDDIR path

Remarks:

path is a string expression, not exceeding 63
characters, identifying the new directory
that will become the current directory.
For more information on paths refer to
"Naming Files" and "Tree-Structured
Directories" in Chapter 3.

Examples:

ROOT

/ \
/

SALES

/

\
ACCOUNTING

/
MIKE

/
/

RAM

/

/
SHANNON

\
\
CHELLE

The following examples refer to the tree-structure
above.

To change to the root directory from any
sub-directory, use:

4-44

CHDIR

Command

CHDIR "\"

To change to the directory PAM from the root
directory, use:

CHDIR "SALES\MIKE\PAM"

To change to the directory CKCELLE from the
directory ACCOUNTING, use:

CHDIR "CHELLE"

To change from the directory MIKE to the directory
SALES, use:

CHDIR

4-45

CHR$

Function

Purpose: Converts an ASCII code to its character equivalent.

Versions: Cassette Cartridge CompUer
*** ***

Format: = CHR$(n)

Remarks: n must be in the range 0 to 255.

The CHR$ function returns the one-character string
with ASCII code n. (ASCII codes are listed in
Appendix G, "ASCII Character Codes.") CHR$ is
commonly used to send a special character to the
screen or printer. For instance, the BEL character,
which beeps the speaker, might be included as
CHR$(7) as a preface to an error message (instead
of using BEEPX Look under "ASC Function,"
earher in this chapter, to see how to convert a
character back to its ASCII code.

Example:

Ok
PRINT CHR$(66)
B

Ok

The next example sets function key Fn+1 to the
string "AUTO" joined with Enter. This is a good
way to set the function keys so the Enter is
automatically done for you when you press the
function key.

Ok
KEY 1,"AUT0"+CHR$(13)
Ok

4-46

CHR$

Function

The following example is a program which shows all
the displayable characters, along with their ASCII
codes, on the screen.

10 CLS

20 FOR 1=1 TO 255
30 ' Ignore nondisplayable characters
40 IF (I>6 AND I<14) OR (I>27 AND I<32) THEN 100
50 COLOR 0,7 ' black on white
60 PRINT USING "###"; I ; ' 3-digit ASCII code
70 COLOR 7,0 ' white on black
80 PRINT " CHR$(I); "
90 IF P0S(0)>75 THEN PRINT ' go to next line
100 NEXT I

4-47

CINT

Function

Purpose: Converts x to an integer.

Versions: Cassette Cartridge Compiler

Format: v = CINT(x)

Remarks:

Example:

jc may be any numeric expression. If x is not in
the range -32768 to 32767, an Overflow error
occurs.

X is converted to an integer by rounding the
fractional portion.

See the FIX and INT functions, both of which also
return integers. See also the CDBL and CSNG
functions for converting numbers to single or double
precision.

Ok
PRINT CINT(45.67)
46

Ok

PRINT CINT(-2.89)
-3

Ok

Observe in both examples how rounding occurs.

4-48

CIRCLE

Statement

Purpose: To draw an ellipse on the screen with center ix,y)
and radius r.

Versions: Cassette Cartridge Compiler

Graphics mode only.

Format: CIRCLE ix,y)y [,attribute [,start,end [,aspect]]]

Remarks:

(x,y) are the coordinates of the center of the
ellipse. The coordinates may be given in
either absolute or relative form. See

"Specifying Coordinates" under
"Graphics Modes" in Chapter 3.

r is the radius (major axis) of the ellipse in
points.

attribute is an integer or an integer expression that
specifies the attribute of the ellipse, in
the range of 0 to 15. In low resolution
there are 16 attributes available (0 to
15). In medium resolution, there are 4 (0
to 3) or 16 (0 to 15) attributes available,
depending on the current screen mode.
In high resolution there are 2 (0 and 1)
or 4 (0 to 3) attributes available,
depending on the current screen mode.
The default attribute is always the
maximum attribute for the current screen

mode. 0 is the backgroimd attribute.
(For more information see "Graphics
Mode" in Chapter 3).

4-49

CIRCLE

Statement

start, end

aspect

Note: Screen modes 3-6 are not

supported in the BASIC Compiler.

are angles in radians and may range from —
-2*PI to 2*PI, where PI=3.141593. ^

is a numeric expression.

start and end specify where the drawing of the ellipse
will begin and end. The angles are positioned in the
standard mathematical way, with 0 to the right and
going counterclockwise:

PI/2

3*Pl/2

If the start or end angle is negative (-0 is not
allowed), the eUipse wUl be connected to the center
point with a hne, and the angles will be treated as if
they were positive (note that this is not the same as
adding 2*P1). The start angle may be greater or less
than the end angle.
For example,

10 PI=3.141593
20 SCREEN 1
30 CIRCLE (160,100),60,,-PI,-PI/2

draws a part of a circle similar to the following:

4-50

CIRCLE

Statement

aspect affects the ratio of the x-radius to the y-radius.
The default for aspect is 5/3 in low resolution, 5/6 in
medium resolution and 5/12 in high resolution.
These values give a visual circle assuming the
standard screen aspect ratio of 4/3.

If aspect is less than one, then r is the x-radius. That
is, the radius is measured in points in the horizontal
direction. If aspect is greater than one, then r is the
y-radius. For example,

10 SCREEN 1
20 CIRCLE (160,100),60,,,,5/18

will draw an ellipse like this:

In many cases, an aspect of 1 (one) will give nicer
looking circles in medium resolution. This will also
cause the circle to be drawn somewhat faster.

The last point referenced after a circle is drawn is the |
center of the circle.

Points that are off the screen are not drawn by
CIRCLE.

Example: The following example draws a face.

4-51

CIRCLE

Statement

10 PI=3.141593
20 SCREEN 1 ' medium res. graphics
30 COLOR 0,1 ' black background, palette 1
40 'two circles in color 1 (cyan)
50 CIRCLE (120,50),10,1
60 CIRCLE (200,50),10,1
70 'two horizontal ellipses
80 CIRCLE (120,50),30,,,,5/18
90 CIRCLE (200,50),30,,,,5/18
100 'arc in color 2 (magenta)
110 CIRCLE (160,0),150,2, 1.3*PI, 1.7*PI
120 'arc, one side connected to center
130 CIRCLE (160,52),50,, 1.4*PI, -1.6*PI

4-52

CLEAR

Command

Purpose: Sets all numeric variables to zero and all string
variables to null. Options set the end of memory, the
amount of stack space, and the size of video
memory.

Versioiis: Cassette Cartridge Compiler
♦♦♦ ♦♦♦ ***

Format: CLEAR [,[ot] [,5]] [,v]]

Remarks:

m is a byte coimt which, if specified, sets the
maximum number of bytes for the BASIC
workspace (where your program and data are
stored, along with the interpreter work area).
You would include m if you need to reserve
space in storage for machine language 1
programs.

s sets aside stack space for BASIC. Thedefaiilt
is 512 bytes, or one-eighth of the available
memory (whichever is smaller). You may
want to include s if you use a lot of nested
GOSUB statements or FOR-NEXT loops in [
your program, or if you use PAINT to do
complex scenes.

V is an integer in the range of (2048 to 2^) that
specifies the total number of bytes to be set
aside for video memory. The default is
16384. The integer (v) is used when you need
to increase or decrease the size of your video
memory. In order to execute a SCREEN 5 or
SCREEN 6 statement, you must set aside

4-53

CLEAR

Command

32K bjrtes for video memory. This requires a
machine with 128K memory. This option is
only supported in Cartridge BASIC.

CLEAR frees all memory used for data without
erasing the program which is currently in memory.
After a CLEAR, arrays are imdefined; numeric
variables have a value of zero; string variables have a
null value; and any information set with any DEF
statement is lost. (This includes DEF FN, DEF
SEG, and DEF USR, as well as DEFINT, DEFDBL,
DEFSNG, and DEFSTR.)

Executing a CLEAR command turns off any sound
that is running and resets to Music Background.
Also, PEN and STRIG are reset to OFF.

The last argument to CLEAR, v, is used with
Cartridge BASIC only. It is used to increase and
decrease video memory and to control the number of ^
video pages available within the video memory. ' ^
Each screen mode has a defined page size. The chart
below illustrates:

SCREEN PAGE SIZE

0 (40 wide) 2K
0 (80 wide) 4K
1 16K

2 16K

3 16K

4 16K

5 32K (requires 128K of machine
storage)

6 32K (requires 128K of machine
storage)

When you CLEAR to a specified video memory size,
BASIC divides that area into the maximum number

4-54

CLEAR

Command

of pages based on page size requirements. Below is a
diagram of video memory, SCREEN 0, WIDTH 80,
as it appears in the default size buffer of 16K:

Page

number

3

2

1

0

Highest address

{128Kor64K)

Lowest address

Screen 0 - Width 80

Page numbering always begins with 0 and page 0 is
always at the lowest address.

Referring to the chart, you can see that 16K may or I
may not be adequate storage for the screen mode
you desire. For example, in the diagram above,
BASIC has allocated four pages with the default 16K
buffer. If you need to maintain only one visual page
(refer to the SCREEN statement for a discussion of
active and visual pages), you actually need only 4K
of video memory. This would allow you to free 12K
bytes of memory. The following CLEAR statement
would do this for you:

CLEAR,,,4096

4-55

CLEAR

Command

In 40 wide text mode, you could free a maximum of
14K leaving 2K for the video memory by executing:

CLEAR,,,2048

Since the page size for SCREEN 5 and SCREEN 6
is 32K, you must set aside at least 32K.

To be sure that you have allocated enough memory
in the CLEAR statement for your application, use
the formula below:

Total avail memory - allocated video memory =
Total avail memory- (size per page)♦(no. of pages)

If you have more than one video page, it is possible
to copy the contents of one page to another using the
PCOPY statement (refer to the "PCOPY
Statement" later in this chapter).

If you allocate less video memory than what is
currently set aside, BASIC will put you into text
mode, 40 wide, page 0. This mode has the smallest
page size.

When video memory is expanded from 16K, it
acquires space from the free memory space as
designated in the memory map in Appendix I. This
free memory area can also be referenced with the
/M switch on the BASIC command line which sets
the top of free memory. If at any time video memory
and the top of the BASIC workspace meet, an Out of
memory error will occur.

If you use CLEAR, it should be the first statement in
your program because it erases all variables. For
more information on paging, see the "SCREEN ^
Statement" and the "PCOPY Statement" in this
chapter.

4-56

CLEAR

Command

The ERASE statement may be useful to free some
memory without erasing all the data in the program.
It erases only specified arrays from the work area.
Refer to "ERASE Statement" in this chapter for
details.

Example: This example clears aU data from memory (without
erasing the program):

CLEAR

The next example clears the data and sets the
maximum workspace size to 32K bytes:

CLEAR,32768

The next example clears the data and sets the size of
the stack to 2000 b5rtes:

CLEAR,,2000

The next example clears data, sets the maximum
workspace for BASIC to 32K bytes, and sets the
stack size to 2000:

CLEAR,32768,2000

The next example clears 3 2K bytes of video
memory. This is required when using SCREEN 5 or
SCREEN 6:

CLEAR,,,32768

The next example shows how you would determine
the amount of memory you would need if you
wanted to create a buffer of 4 pages of 16K each:

4 pages * 16K per page = 64K

4-57

CLEAR

Command

and if you had 128K of memory, you could
substitute for the formula the following:

128K - 64K = 128K - (16K * 4)
64K= 64K

The formula checks so you may execute the
following:

CLEAR,,,65536

4-58

CLOSE

Statement

Purpose: Concludes I/O to a device or file.

Versions: Cassette Cartridge Compiler

Format:

Remarks:

CLOSE [[#] filettum [,[#] filenum]...]

filenum is the number used on the OPEN
statement.

The association between a particular file or device
and its file niunber stops when CLOSE is executed.
Subsequent I/O operations specifying that file
number will be invalid. The file or device may be
opened again using the same or a different file
number; or the file number may be reused to open i
any device or file.

A CLOSE to a file or device opened for sequential
output causes the final buffer to be written to the file
or device.

A CLOSE with no file numbers specified causes all |
devices and files that have been opened to be closed.

Executing an END, NEW, RESET, SYSTEM or
RUN without the R option causes all open files and
devices to be automatically closed. STOP does not
close any files or devices.

Refer also to "OPEN Statement" in this chapter for
information about opening files.

Example:

4-59

CLOSE

Statement

100 CLOSE 1,#2,#3

Causes the files and devices associated with file

numbers 1,2, and 3 to be closed.

200 CLOSE

Causes all open devices and files to be closed.

4-60

CLS

Statement

Purpose: Clears the screen.

Versions: Cassette Cartridge Compiler
:(ei(i:ie

Format: CLS

Remarks: If the screen is in text mode, the active page (see
"SCREEN Statement" in this chapter) is cleared to
the backgroimd color (see "COLOR Statement,"
also in this chapter).

If the screen is in graphics mode (low or medium or
high resolution), the entire screen memory is cleared
to the background attribute 0.

The CLS statement also returns the cursor to the

home position. In all modes, this means the cursor is
located in the upper left-hand comer of the screen.
In graphics mode, the graphics cursor is moved to the}
center of the screen ((80,100) in low resolution,
(160,100) in medium resolution, (320,100) in high
resolution). If view ports are in effect, the graphics
cursor is moved to the center of the view port.

Changing the screen mode or width by using the
SCREEN or WIDTH statements also clears the

screen. The screen may also be cleared by pressing
Ctrl-Fn/Home.

In Cartridge BASIC, when you are using the VIEW
statement, CLS will only clear the active viewport.
To clear the entire screen you must use VIEW to
disable the viewport, and then use CLS to clear the
screen.

4-61

CLS

Statement

Example:

5 SCREEN 0
10 COLOR 10,1
20 CLS

This example clears the screen to Blue.

4-62

COLOR

Statement

Purpose: Sets the colors for the foreground, background, and
border in text mode and in graphics modes, sets the
background and palette or the foreground and
background depending on the current screen mode.

The sjmtax of the COLOR statement depends on
whether you are in text mode or graphics mode, as
set by the SCREEN statement. When BASIC is first
started, the foreground is white and the backgroimd
and border are black.

In text mode, you can set the following:

SCREEN 0- Foreground, maximum attribute of 15
Character blink, if desired
Background, maximum attribute of 7
Border, maximmn attribute of 15

In graphics mode, you can set the following:

SCREEN 1- Background, maximum attribute of 15
(0-15)
Palette, 1 of 2 palettes, 0 or 1
maximum attribute of 3 in each palette
(0-3)

SCREEN 3- Foreground, maximiim attribute of 15
(1-15)
Background, maximum color of 15
(0-15)

SCREEN 4- Foreground, maximum attribute of 3
(1-3)
Background, maximum color of 15
(0-15)

4-63

COLOR

Statement

SCREEN 5- Foreground, maximum attribute of 15
(1-15)
Background, maximum color of 15
(0-15)

SCREEN 6- Foreground, maximum attribute of 3
(1-3)
Background, maximum color of 15
(0-15)

In graphics mode, the border is the same as the
background color.

4-64

COLOR

Statement

The COLOR Statement in Text Mode

Versions:

Format:

Remarks:

Cassette

Cartridge Compiler
*** ***

COLOR {foreground\ [,[background] [,border\]

Text mode only.

foreground is a numeric expression in the range
of 0 to 31, for the character color.

background is a numeric expression in the range
of 0 to 7 for the backgroimd color.

border is a numeric expression in the range
of 0 to 15. It is the color for the

border.

The following colors are allowed for foreground:

0 Black 8 Gray
1 Blue 9 Light Blue
2 Green 10 Light Green
3 Cyan 11 Light Cyan
4 Red 12 Light Red
5 Magenta 13 Li^t Magenta
6 Brown 14 Y^ow
7 White 15 High-intensity White

Colors and intensity may vary depending on your
display device.

You might like to think of colors 8 to 15 as "light" or
"high-intensity" values of colors 0 to 7.

4-65

COLOR

Statement

You can make the characters blink by setting
foreground equal to 16 plus the number of the desired
attribute. That is, a value of 16 to 31 causes blinking
characters.

You may select only colors 0 through 7 for
background.

With the PALETTE and PALETTE USING

statements, it is possible to obtain any color
combination for foreground, background, and
border.

Notes:

1. Eoreground color may equal background color.
This makes any character invisible. Changing the
foreground or background color will make
characters visible again.

2. Any parameter may be omitted. When
parameters are not set, the old value is kept.

3. If the COLOR statement ends in a comma (,),
you wUl get a Missing operand error, but the color
will change. For example,

COLOR ,7,

is tnvahd.

4. Any values entered outside the range 0 to 255
result in an Illegal function call error. Previous
values are kept.

4-66

Example:

COLOR

Statement

10 COLOR 14,1,0

This sets a yellow foreground, a blue background,
and a black border screen.

10 PRINT "Enter your
20 COLOR 15,0 'highlight next word
30 PRINT "password";
40 COLOR 7 'return to default (white/black)
50 PRINT " here:
60 COLOR 0 'invisible (black on black)
70 INPUT PASSWORDS
80 IF PASSWORD$="secret" THEN 120
90 ' blink and highlight error message
100 COLOR 31: PRINT "Wrong Password": COLOR 7
110 GOTO 10

120 COLOR 0,7 'reverse image (black on white)
130 PRINT "Program continues...";
140 COLOR 7,0 'return to default (white/black)

4-67

COLOR

Statement

The COLOR Statement in Graphics Mode

Versions: Cassette Cartridge Compiler

Graphics mode only.

Format: For Screen 1:

COLOR [background\[,[palette]]

For Screens 3 to 6:

COLOR [foreground] [,[background\\

Remarks: SCREEN 1:

background is the attribute specifying the color
of the background. It is an integer
expression in the range 0 to 15.

palette is an integer expression which
chooses one of two palettes. The
maximum attribute in each palette is
3.

SCREENS 3-6:

foreground is the foreground attribute to be
used for characters and graphic
pixels. The foreground attribute is
an integer expression in the range 1
to the maximum attribute allowed

for the screen mode. The

foreground attribute may not be
zero. An Illegal function call error
will result if foreground is 0.

4-68

COLOR

Statement

background is the color {not attribute) to be used
for the background and border.
background is an integer exppresion
in the range of 0 to 15. This allows
one of 16 possible colors for the
background and border.

These modes are only supported in
Cartridge BASIC.

In SCREEN 1 the COLOR statement sets a

background color and a palette of three colors. The
colors selected when you choose each palette are as
follows:

Color Palette 0 Palette 1

1 Green Cyan
2 Red Magenta
3 Brown White

You may select any one of these three attributes for
display with the PSET, PRESET, LINE, CIRCLE,
PAINT, VIEW, and DRAW statements. If palette is
an even number, palette 0 is selected. This
associates the colors Green, Red, and Brown to the
attributes 1,2, and 3. Palette 1 (Cyan, Magenta,
White) is selected when palette is an odd number.
This is also the default palette.

In SCREEN 4 and SCREEN 6, the default colors for
attributes 1, 2 and 3 are cyan, magenta and white.

If through the PALETTE or PALETTE USING
statements you change the color for attribute 0, your

jir-r background wiU automatically change to this color
since any change to attribute 0 will be regarded as a
change to the background.

4-69

COLOR

Statement

Example:

COLOR for screen modes three through six provides
much of the same flexibihty of colors with text as
COLOR in text mode does. With the PALETTE

and PALETTE USING statements it is possible to
choose any color for foreground and background for
all modes.

Any values entered outside the range 0 to 255 cause
an Illegal function call error. Previous values wUl be
retained.

The COLOR statement has meaning only in those
modes that use color. Attempting to use COLOR in
screen 2 will result in an Illegal function call error.

5 SCREEN 1

10 COLOR 9,0

Sets the background to light blue, and selects palette
0.

20 COLOR ,1

The background stays light blue, and palette 1 is
selected.

4-70

COM(n)

Statement

Purpose: Enables or disables trapping of communications
activity to the specified communications port.

Versfons: Cassette

Format:

Cartridge
♦♦♦

Compiler

Remarks:

COM(«) ON

COM(«) OFF

COM(/i) STOP

n is the number of the communications port (1
or 2):

COMl: IBM Internal Modem or RS232 Serial

port when IBM Modem is not
present.

COMl: RS232 Serial port when IBM Modem
is present.

A COM(m) on statement must be executed to aUow
trapping by the ON COM(«) statement. After
COM(n) ON, if a non-zero line number is specified
in the ON COM(m) statement, BASIC checks to see
if any characters have come in to the communi
cations adapter every time a new statement is
executed.

If COM(n) is OFF, no trapping takes place and any
communication activity is not remembered even if it
does take place.

4-71

COM(n)
Statement

If a COM(n) STOP statement has been executed, no
trapping can take place. However, any communi
cations activity that does take place is remembered
so that an immediate trap occurs when COM(n) ON
is executed. '

4-72

COMMON

Statement

Purpose: Passes variables to a chained program.

Note: This statement requires the use of DOS.

Versions: Cassette Cartridge Compiler

Format:

Remarks:

Example:

COMMON variable _,variable\..

variable is the name of a variable that is to be

passed to the chained-to program.
Array variables are specified by
appending "()" to the variable name.

The COMMON statement is used with the CHAIN

statement. COMMON statements may appear
anjrwhere in a program, although it is recommended
that they appear at the beginning. Any number of
COMMON statements may appear in a program, but
the same variable cannot appear in more than one
COMMON statement. If all variables are to be

passed, use CHAIN with the ALL option and omit
the COMMON statement.

Any arrays that are passed do not need to be
dimensioned in the chained-to program.

This example chains to program PROGS on the
diskette in drive A, and passes the array D along with
the variables A, BEEl, C, and G$.

100 COMMON A,BEE1,C,D(),G$
110 CHAIN "A:PR0G3"

4-73

CONT

Command

Purpose: Resumes program execution after a break.

Versions: Cassette Cartridge Compiler

Format: CONT

Remarks: The CONT command may be used to resume
program execution after Fn/Break has been pressed,
a STOP or END statement has been executed, or an
error has occurred. Execution continues at the point
where the break happened. If the break occurred
after a prompt from an INPUT statement, execution
continues with the reprinting of the prompt.

CONT is usually used with STOP for debugging.
When execution is stopped, you can examine or
change the values of variables using direct mode
statements. You may then use CONT to resume
execution, or you may use a direct mode GOTO,
which resumes execution at a particular line number.
CONT is invalid if the program has been edited
during the break.

4-74

CONT

Command

Example: In the following example, we create a long loop.

Ok
10 FOR A=1 TO 50
20 PRINT A;
30 NEXT A
RUN

1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16 17 18 19 20 21 22
23 24 25 26 27 28 29

(At this point we interrupt the loop by pressing
Fn/Break.)

Break in 20

Ok

CONT
30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49
50
Ok

4-75

COS

Function

Purpose: Returns the trigonometric cosine function.

Versions: Cassette Cartridge Compiler
4:9{c){e 4:^^

Format:

Remarks:

Example:

V = COS(x)

X is the angle whose cosine is to be calculated.

The value of x must be in radians. To convert from

degrees to radians, multiply the degrees by PI/180,
where PI=3.141593.

The calculation of COS(x) is performed in single
precision in Cassette BASIC and in either single or
double precision in Cartridge BASIC.

This example shows, first, that the cosine of PI
radians is equal to - I. Then it calculates the cosine
of 180 degrees by first converting the degrees to
radians (180 degrees happens to be the same as PI
radians).

Ok

10

20
30

40

50

RUN

-1

-1

Ok

PI=3.141593

PRINT COS(PI)
DEGREES=180
RADIANS=DEGREES*PI/180
PRINT COS(RADIANS)

4-76

CSNG

Function

Purpose: Converts x to a single-precision number.

Versions: Cassette Cartridge Compiler
Hi** *** ***

Format: v = CSNGW

Remarks:

X is a numeric expression which wUl be
converted to single-precision.

The rules outlined under "How BASIC Converts

Numbers from One Precision to Another" in

Chapter 3 are used for the conversion.

See the CINT and CDBL functions for converting
numbers to the integer and double-precision data
tj^es.

Example:

Ok

10 A# = 975.3421222#
20 PRINT A#; CSNG(A#)
RUN

975.3421222 975.3421

Ok

The value of the double-precision number A# is
rounded at the seventh digit and returned as
CSNG(A#).

4-77

CSRLIN

Variable

Purpose: Returns the vertical coordinate of the cursor.

Versions: Cassette Cartridge Compiler
*** *♦* ***

Format: v = CSRLIN

Remarks: The CSRLIN variable returns the current hne (row)
position of the cursor on the active page. (The active
page is explained under "SCREEN Statement" in
this chapter.) The value returned will be in the range
1 to 25.

The POS function returns the column location of the
cursor. Refer to "POS Function" in this chapter.

Refer to "LOCATE Statement" to see how to set
the cursor line.

Example:

10 Y = CSRLIN 'record current line
20 X = POS(O) 'record current column
29 'print HI MOM on line 24
30 LOCATE 24,1: PRINT "HI MOM"
40 LOCATE Y,X 'restore position

This example saves the cursor coordinates in the
variables X and Y, then moves the cursor to hue 24
to put the words "HI MOM" on that line. Then the
cursor is moved back to its old position.

4-78

CVI, CVS, CVD

Functions

Purpose: Converts string variable tjrpes to numeric variable
types.

Versions: Cassette Cartridge Compiler

Format: v = CVli2-byte string)

V = CVSi4-byte string)

V = CVD(8-b)^e string)

Remarks: Numeric values that are read from a random file
must be converted from strings into numbers. CVI
converts a two-byte string to an integer. CVS
converts a four-byte string to a single-precision
number. CVD converts an eight-byte string to a
double-precision number.

The CVI, CVS, and CVD functions do not change
the bytes of the actual data. They only change the
way BASIC interprets those bytes.

See also "MKI$, MKS$, MKD$ Functions" in this
chapter, and Appendix B, "BASIC Diskette Input
and Output."

4-79

CVI, CVS, CVD

Functions

Example:

70 FIELD #1,4 AS N$, 12 AS B$
80 GET #1
90 Y=CVS{N$)

This example uses a random file (#1) which has
fields defined as in Une 70. Line 80 reads a record

from the file. Line 90 uses the CVS function to

interpret the first four bytes (N$) of the record as a
single-precision number. N$ was probably originally
a number which was written to the file using the
MKS$ function.

4-80

DATA

Statement

Purpose: Stores the niuneric and string constants that are read
by the program's READ statement(s).

Versions: Cassette Cartridge Compiler

Format: DATA cofistan^,constant]...

Remaiits:

constant may be a numeric or string constant.
No expressions are allowed in the list.
The numeric constants may be in any
format: integer, fixed point, floating
point, hex, or octal. String constants in
DATA statements do not need to be

surrounded by quotation marks unless
the string contains commas, colons, or
significant leading or trailing blanks.

DATA statements may be placed anywhere in the
program. A DATA statement may contain as many
constants as will fit on a line. In addition, any
number of DATA statements may be used in a
program. The information contained in the DATA
statements may be thought of as one continuous list
of items, regardless of how many items are on a line
or where the lines are placed in the program. The
READ statements access the DATA statements in

line number order.

The variable t5q)e (numeric or string) given in the
READ statement must agree with the corresponding
constant in the DATA statement or a Syntax error
occurs.

4-81

DATA

Statement

You cannot use the single quote (') to add conunents
to the end of a DATA statement. If you do, BASIC
considers it part of a string. You may, however, use
:REM to add a remark.

You can use the RESTORE statement to reread

information from any line in the list of DATA
statements. (See "RESTORE Statement" in this
chapter.)

Example: See examples under "READ Statement" in this
chapter.

4-82

DATES

Variable and Statement

Purpose: Sets or tells you the date.

Note: This statement requires the use of DOS
2.10. If DOS 2.10 is not present, an Illegal
function call error will occur.

Versions: Cassette Cartridge
I|CI|CI|C

Compiler

Format: As a variable:

= DATES

As a statement:

DATES = x$

Remarks: For the variable (v$ = DATES):

A 10-character string of the form mm-dd-yyyy is
retiumed. Here, mm represents two digits for the
month, ddis the day of the month (also two digits),
^ndyyyy is the year.

For the statement (DATES = x$):

is a string expression which is used to set the
current date. You may enter x$ in any one of the
following forms:

mm-dd-yy
mm/dd/yy
mm-dd-yyyy
mm/dd/yyyy

The year must be in the range 1980 to 2099. If you
use only one digit for the month or day, a 0 (zero) is

4-83

DATES

Variable and Statement

added in front of it. If you give only one digit for the
year, a zero is added to make it two digits. If you
give only two digits for the year, the year is assumed
to be 19yy.

Example:

Ok

10 DATE$= "8/29/82"
20 PRINT DATE$
RUN

08-29-1982

Ok

In the example, we set the date to August 29th,
1982. Notice how, when we read the date back
using the DATES function, a zero was included in
front of the month to make it two digits, and the year
became 1982. Also, the month, day, and year are
separated by hyphens even though we entered them
as slashes.

4-84

DEFFN

Statement

Purpose: Defines and names a function that you write.

Versions: Cassette Cartridge Compiler
**♦ *♦*

Format: DEF FNname[iarg [,arg]...)] =expression

Remarks:

name is a valid variable name. This name,
preceded by FN, becomes the name
of the function.

arg is an argument. It is a variable name
in the function definition that will be
replaced with a value when the
function is called. The arguments in
the list represent, on a one-to-one
basis, the values that are given when
the function is called.

expression defines the returned value of the
function. The type of the expression
(numeric or string) must match the
type declared by name.

The definition of the function is limited to one
statement. Arguments (arg) that appear in the
function definition serve only to define the function;
they do not affect program variables that have the
same name. A variable name used in the expression
does not have to appear in the list of arguments. If it
does, the value of the argument is supplied when the
function is called. Otherwise, the current value of
the variable is used.

4-85

DEF FN

Statement

Example:

The function type determines whether the function
returns a numeric or string value. The type of the
function is declared by name, in the same way as
variables are declared (see "How to Declare Variable
Types"in Chapter 3). If the type of expression
(string or numeric) does not match the function type,
a Type mismatch error occurs. If the function is
numeric, the value of the expression is converted to
the precision specified by name before it is returned
to the calling statement.

A DEF FN statement must be executed to define a

function before you may caU that function. If a
function is called before it has been defined, an
Undefined user function error occurs. On the other

hand, a function may be defined more than once.
The most recently executed definition is used.

DEF FN is invalid in direct mode.

Ok

10 PI=3.141593

20 DEF FNAREA(R)=PI*Ra2
30 INPUT "Radius? ".RADIUS
40 PRINT "Area is" FNAREA(RADIUS)
RUN

Radius?

(Suppose you respond with 2.)

Radius? 2

Area is 12.56637
Ok

Line 20 defines the function FNAREA, which
calculates the area of a circle with radius R. The

function is called in line 40.

Here is an example with two arguments:

4-86

DEFFN

Statement

Ok
10 DEF FNMUD(X,Y)=X-{INT(X/Y)*Y)
20 A = FNMUD(7.4,4)
30 PRINT A
RUN

3.4

Ok

4-87

DEF SEG

Statement

Purpose: Defines the current "segment" of storage. A
subsequent BLOAD, BSAVE, CALL, iPEEK,
POKE, or USR definition will define the actual
physical address of its operation as an offset into this
segment.

Versions: Cassette Cartridge Compiler
:ic:|e:|e 91:%% %%%

Format: DEF SEG [=address]

Remarks:

address is a muneric expression in the range 0 to
65535.

The initial setting for the segment when BASIC is
started is BASIC'S Data Segment (DS). BASIC'S
Data Segment is the beginning of your user
workspace in memory. If you execute a DEF SEG
statement which changes the segment, the value does
not get reset to BASIC'S DS when you issue a RUN
command.

If address is omitted from the DEF SEG statement,
the segment is set to BASIC'S Data Segment.

If address is given, it should be a value based upon a
16 byte boxmdary. The value is shifted left 4 bits
(multiplied by 16) to form the segment address for
the subsequent operation. That is, if address is in
hexadecimal, a 0 (zero) is added to get the actual
segment address. BASIC does not perform any
checking to assure that the segment value is valid.

4-88

Example:

DEF SEG

Statement

DEF and SEG must be separated by a space.
Otherwise, BASIC interprets the statement
DEFSEG=100 to mean: "assign the value 100 to
the variable DEFSEG."

Any value entered outside the range indicated results
in an Illegal function call error. The previous value
wUl be retained.

Refer to Appendix C, "Machine Language
Subroutines" for more information on using DEF
SEG.

100 DEF SEG ' restore segment to BASIC OS
200 ' set segment to color screen buffer
210 DEF SEG=&HB800

In the second example, the screen buffer is at
absolute address B8000 hex. Since segments are
specified on 16 byte boundaries, the last hex digit is
dropped on the DEF SEG specification.

4-89

DEFtype
Statements

Purpose: Declares variable types as integer, single-precision,
double-precision, or string variable types.

Versions: Cassette Cartridge

Compiler

Format:

Remarks:

liEFtype letter\rlettet\ [,letter [-feffer]]...

type is INT, SNG, DBL, or STR.

letter is a letter of the alphabet (A-Z).

A lySPtype statement declares that the variable
names beginning with the letter or letters specified
will be that type of variable. However, a type
declaration character (%,!, #, or $) always takes
precedence over a "DEVtype statement in the typing
of a variable. Refer to "How to Declare Variable

Types" in Chapter 3.

If no type declaration statements are encountered,
BASIC assmnes that all variables without declaration

characters are single-precision variables.
If type declaration statements are used, they should
be at the beginning of the program. The DEF^^pe
statement must be executed before you use any
variables which it declares.

4-90

DEFtype
Statements

Example:

Ok

^ 10 DEFDBL L-P
ry 20 DEFSTR A

30 OEFINT X,D-H
40 ORDER = l#/3: PRINT ORDER
50 ANIMAL = "CAT": PRINT ANIMAL
60 X=I0/3: PRINT X
RUN

.3333333333333333

CAT

3

Ok

Line 10 declares that all variables beginning with
the letter L, M, N, O, or P will be double-precision
variables.

Line 20 causes all variables beginning with the letter
A to be string variables.

Line 30 declares that all variables beginning with the
letter X, D, E, F, G, or H will be integer variables.

4-91

DEF USR

Statement

Purpose: Specifies the starting address of a machine language
subroutine, which is later called by the USR
fimction.

Versions: Cassette Cartridge Compiler

Format: DEF USR[n]=<>/y5e/

Remarks:

n may be any digit from 0 to 9. It identifies
the niunber of the USR routine whose

address is being specified. If n is omitted,
DEF USRO is assumed.

offset is an integer expression in the range 0 to
65535. The value of offset is added to the
current segment value to obtain the actual
starting address of the USR routine. See
"DEF SEG Statement" in this chapter.

It is possible to redefine the address for a USR
routine. Any number of DEF USR statements may
appear in a program, thus allowing access to as many
subroutines as necessary. The most recently
executed value is used for the offset.

Refer to Appendix C, "Machine Language
Subroutines" for complete information.

4-92

DEF USR

Statement

Example:

200 DEF SEG= &H1000

210 DEF USRO= 2400
500 X=USR0(Y+2)

This example caUs a routine at absolute location
24000 in memory.

4-93

DELETE

Command

Purpose: Deletes program lines.

Versions: Cassette Cartridge Compiler

Format:

Remarks:

DELETE [linel] [-line2]

DELETE [linel-]

linel is the line number of the first line to be

deleted.

Iine2 is the line number of the last line to be

deleted.

The DELETE command erases the specified range of
lines from the program. BASIC always returns to
command level after a DELETE is executed.

DELETE linel- deletes aU lines from the specified
line number through the end of the program. This is
for Cartridge BASIC only.

A period (.) may be used in place of the line number
to indicate the current line. If you specify a line
mnnber that does not exist in the program, an lUegal
function call error occurs.

Examples: This example deletes line 40:

DELETE 40

This example deletes lines 40 through 100,
inclusive:

4-94

DELETE

Command

DELETE 40-100

This example deletes Une 40 through the end of the
program:

DELETE 40-

The last example deletes all lines up to and including
Une 40:

DELETE -40

4-95

DIM

Statement

Purpose: Assigns the maximum values for array variable
subscripts and makes space available for them.

Versions: Cassette Cartridge Compiler

Format:

Remarks:

DIM variable(subscripts) _,variable{subscriptsy\.

variable is the name used for the array.

subscripts is a list of numeric expressions,
separated by commas, which define
the dimensions of the array.

When entered, the DIM statement first sets all the
elements of the specified numeric arrays to zero.
String array elements may vary in length, and begin
with a null value (zero length).

If an array variable name is used without a DIM
statement, the maximum value its subscript can have
is 10. If a subscript of greater than 10 is used, a
Subscript out of range error occms.

The minimum value for a subscript is always 0, the
OPTION BASE statement says otherwise (see
"OPTION BASE Statement" in this chapter). The
maximum number of dimensions for an array is 255.
The maximum number of elements per dimension is
32767. Both of these numbers are also limited by
memory size and statement length.

4-96

Example:

DIM

Statement

If you try to define an array more than once, a
Duplicate Definition error occurs. You may use the
ERASE statement to erase an array. For more
information about arrays, see "Arrays"in Chapter 3.

Ok
10 WRRMAX=2
20 DIM SIS{12), WRR${WRRMAX,2)
30 DATA 26.5, 37, 8,29,80, 9.9, &H800
40 DATA 7, 18, 55, 12, 5, 43
50 FOR 1=0 TO 12
60 READ SIS(I)
70 NEXT I

80 DATA SHERRY, ROBERT, "A:"
90 DATA "HI, SCOTT", HELLO, GOOD-BYE
100 DATA BOCA RATON, DELRAY, MIAMI
110 FOR 1=0 TO 2: FOR J=0 TO 2
120 READ WRR${I,J)
130 NEXT J,I
140 PRINT SIS(3); WRR$(2,0)
RUN

29 BOCA RATON
Ok

This example creates two arrays: a one-dimensional
numeric array named SIS with 13 elements, SIS(O)
through SIS (12); and a two-dimensional string array
named WRR$, with three rows and three columns.

4-97

DRAW Statement

Purpose: Draws an object as specified by string.

Versions: Cassette Cartridge Compiler

Graphics mode only.

Format: DRAW string

Remarks: You use the DRAW statement with a graphics
definition language to draw. The language commands
are contained in the string expression string. The
string defines an object that is drawn when BASIC
executes the DRAW statement. During execution,
BASIC examines the value of string and interprets
single letter commands from the string. These
commands are detailed below.

The following movement commands begin movement
from the graphic cursor. After each command, the
graphic cursor is

Un Move

Dn Move

L n Move

Rn Move

En Move

Fn Move

G n Move

Hn Move

4-98

DRAW Statement

n in each of the preceding conunands indicates the
distance to move. The number of points moved is n
times the scaling factor (set by the S command).

Mx,y Move absolute or relative. If x has a plus
sign (+) or a minus sign (-) in front of it,
it is relative. Otherwise, it is absolute.

The graphic statement DRAW does not take into
account the aspect ratio of the current screen mode.
That is, DRAW "R50 U50" will plot exactly 50
points to the right and then 50 up. For more
information see "Graphics Mode" in chapter 3.

The following two prefix commands may precede
any of the above movement commands.

B Move, but don't plot any points.

N Move, but return to the original position
when finished.

The following commands are also available:

A n Set angle «. n may range from 0 to 3,
where 0 is 0 degrees, 1 is 90,2 is 180, and
3 is 270. Figures rotated 90 or 270
degrees are scaled so that they appear the
same size as with 0 or 180 degrees on a
display screen with standard aspect ratio
4/3.

TA n Turn angle «. n can range from -360 to
+360. If «is positive (+), the angle turns
counterclockwise. If «is negative (-), the
angle turns clockwise. Values entered that
are outside of the range -360 to +360
cause an Illegal function call error.

4-99

DRAW Statement

C n Set color n. n may range from 0 to 15 in
low resolution, 0 to 3 or 0 to 15 in
medium resolution, and 0 to 1 or 0 to 3 in
high resolution, n selects the attribute
from the current palette and 0 is the
background attribute. The default
attribute is always the maximum attribute
for the current screen mode. In high
resolution, SCREEN 2, n equal to 0 (zero)
indicates black, and the default of 1 (one)
indicates white.

S n Set scale factor, n may range from 1 to
255. n divided by 4 is the scale factor.
For example, if «=1, then the scale factor
is 1/4. The scale factor multiplied by the
distances given with the U, D, L, R, E, F,
G, H, and relative M commands gives the
actual distance moved. The default value

is 4, so the scale factor is 1.

X variable;
Execute substring. This allows you to
execute a second string from within a
string.

P pauit,boundary
Set figure color to paint and edge attribute
to boundary. The paint parameter can
range from 0 to 3 or 0 to 15, depending
on the current screen mode. In low

resolution there are 16 attributes available

(0 to 15) In medium resolution, there are
4 (0 to 3) or 16 (0 to 15) attributes
available, depending on the current screen
mode. In high resolution there are 2 (0 to
1) or 4 (0 to 3) attributes available,
depending on the current screen mode.
The default attribute is always the

4-100

DRAW Statement

maximum attribute for the current screen

mode. 0 is the background attribute. For
more information see "Graphics Modes"
in chapter 3. The boundary parameter is
the edge attribute of the figure to be filled
in, in the range 0 to 15 as described in
paint. You must specify both paint and
boundary or an error will occur. This
command does not support tile painting.

In all these commands, the n, x, or y argument can be
a constant Uke 123 or it can be = variable', where
variable is the name of a numeric variable. The

semicolon (;) is required when you use a variable this
way, or in the X command. Otherwise, a semicolon
is optional between commands. Spaces are ignored
in string. For example, you could use variables in a
move command this way: M+=X1;,-=X2;

You can also specify variables in the form
VARPTR$(vflriu6fe), instead of =wirfti6fe;. This is I
the only form that can be used in compiled programs.
For example:

One Method Alternative Method

DRAW"XA$;" DRAW "X'-|-VARPTR$(A$)
DRAW"S=SC;" DRAW "S="+VARPTR$(SC)

The X command can be a very useful part of DRAW.
By using it, you can define a part of an object
separate from the entire object. For example, a leg
could be part of a man. You can also use X to draw
a string of commands more than 255 characters long.

4-101

DRAW Statement

Aspect Ratio

The Aspect Ratio is used to correct the shape of
objects drawn on a non-hnear surface. The idea is to
be able to draw a square, for example, that indeed
looks square.

If there were 640 by 640 dots on a screen evenly
spaced along the x and y axis, then we would say that
the aspect ratio is "1 to 1" or 1/1. This is an ideal
surface. If we execute the statement:

DRAW "RlOO DlOO LlOO UlOO"

Then the box would appear very square.

However, this is not the case. BASIC supports three
screen resolutions, each with their own aspect ratio.
These are:

Resolution Aspect
Ratio

Low resolution 160 by 200 dots 5/3
Medium resolution 320 by 200 dots 5/6
High resolution 640 by 200 dots 5/12

Note that 160/200 is not 5/3. This is because the
spacing between dots is different along the x axis
than it is along the y axis.

In order to draw a box that appears square in any of
the above resolutions, scale the y axis by the
corresponding aspect ration, or scale the x axis by
1/aspect ratio (3/5 for low resolution).

For example, to draw a square box 100 high, scale
the X axis as follows:

REM 100*6/5 is 120
DRAW "R120 DlOO L120 UlOO"

4-102

DRAW Statement

To draw a square box 100 wide, scale the y axis as
foUows:

REM 100*5/6 is 83
DRAW "RlOO DBS LlOO U83"

4-103

DRAW Statement

Examples: To draw a box:

5 SCREEN 1
10 A=20

20 DRAW "U=A;R=A;D=A;L=A;"

To draw a box and paint the interior:

10 DRAW "U50R50D50L50" 'Draw a box
20 DRAW "BEIO" 'Move up and right Into box
30 DRAW "PI,3" 'Paint interior

To draw a triangle:

10 SCREEN 1
20 DRAW "E15 F15 L30"

To create a "shooting star":

10 SCREEN 1,0: COLOR 0,0: CLS
20 DRAW "BM300,25" ' initial point
30 STAR$="M+7,17 M-17,-12 M+20,0 M-17,12 M+7,-17"
40 FOR SCALE=1 TO 40 STEP 2
50 DRAW "C1;S=SCALE; BM-2,0;XSTAR$;"
60 NEXT

To draw some "spokes":

10 FOR 0=0 to 360 STEP 10
20 DRAW "TA=D; NU50"
30 NEXT D

4-104

EDIT

Command

Purpose: Displays a line for editing.

Versions: Cassette Cartridge Compiler

Format: EDIT line

Remarks:

line is the line number of a line existing in the
program. If there is no such line, an
Undefined line number error occurs. A period
(.) can be used for the line number to refer to
the current line.

The EDIT statement displays the line specified and
positions the cursor under the first digit of the line
number. The line may then be changed as described
imder "The BASIC Program Editor" in Chapter 2.

A period (.) can be used for the line number to refer
to the current line. For example, if you have just
entered a line and want to change it, the command
EDIT redisplays the line for editing.

LIST also displays program lines for changing. Refer"
to "LIST Command" in this chapter.

4-105

END

Statement

Purpose: Terminates program execution, closes all files, and
returns to command level.

Versions: Cassette Cartridge Compiler

Format: END

Remarks: END statements may be placed anjrwhere in the
program to terminate execution. END is different
from STOP in two ways:

• END does not cause a Break message to be
printed.

• END closes all files.

An END statement at the end of a program is
optional. BASIC always returns to command level
after an END is executed.

Example:

520 IF K>1000 THEN END ELSE GOTO 20

riiis example ends the program if K is greater than
1000. Otherwise, the program branches to Une
number 20.

4-106

EOF

Function

Purpose: Indicates an end of file condition.

Versions: Cassette Cartridge

Format:

Remarks:

CompUer

V = EOF(/7fenM/n)

Example:

filenum is the number specified on the OPEN
statement.

The EOF function is useful for avoiding an Input past
end error. EOF returns -1 (true) if end of file has
been reached on the specified fUe. A 0 (zero) is
returned if end of file has not been reached.

EOF is significant only for a fUe opened for
sequential input from diskette or cassette, or for a
communications fUe. A -1 for a communications file

means that the buffer is empty.

In Cartridge BASIC, EOF(O) returns the end of file
condition on standard input devices used with
redirection of 1/O.

This example reads information from the sequential
fUe named "DATA." Values are read into the array
M untU end of fUe is reached.

10 C=0: OPEN "DATA" FOR INPUT AS #1
20 IF EOF(l) THEN END
30 INPUT #1,M(C)
40 C=C+1: GOTO 20

4-107

ERASE

Statement

Purpose: Eliminates arrays from a program.

Versions: Cassette Cartridge Compiler

Format: ERASE arrqyname[,arrayname]...

Remarks:

arrayname is the name of an array you want to
erase.

You might want to use the ERASE statement if you
are running short of storage space while running your
program. After arrays are erased, the space in
memory which had been allocated for the arrays may
be used for other purposes.

ERASE can also be used when you want to
redimension arrays in your program. If you try to
redimension an array without first erasing it, a
Duplicate Definition error occms.

The CLEAR command erases all variables from the

work area.

4-108

Example:

ERASE

Statement

Ok

10 START=FRE("")
20 DIM BIG(100,100)
30 MIDDLE=FRE("")
40 ERASE BIG

50 DIM BIGdO.lO)
60 FINAL=FRE("")
70 PRINT START, MIDDLE, FINAL
RUN

62808
Ok

21980 62289

This example uses the PRE function to show how
ERASE can be used to free memory. The array BIG
used up about 40K bjdes of memory (62808-21980)
when it was dimensioned as BIG(100,100). After it
was erased, it could be redimensioned to
BIG(10,10), and it only took up a Uttle more than
500 bytes (62808-62289).

The actual values returned by the ERE function may
be different on your computer.

4-109

ERR and ERL

Variables

Purpose: Return the error code and line number associated
with an error.

Versions: Cassette Cartridge Compiler
*** ***

Format: v = ERR

v = ERL

Remarks: The variable ERR contains the error code for the last

error, and the variable ERL contains the line number
of the line in which the error was detected. The

ERR and ERL variables are usually used in IF and
THEN statements to direct program flow in the error
handling routine (refer to "ON ERROR Statement"
in this chapter).

If you do test ERL in an IF-THEN statement, be
sure to put the line number on the right side of the
relational operator, like this:

IF ERL = line number THEN ...

The number must be on the right side of the
operator for it to be renumbered by RENUM.

If the statement that caused the error was a direct

mode statement, ERL will contain 65535. Since you
do not want this number to be changed during a
RENUM, if you want to test whether an error
occurred in a direct mode statement you should use
the form:

IF 65535 = ERL THEN ...

4-110

ERR and ERL

Variables

Example:

ERR and ERL can be set using the ERROR
statement (see next section).

BASIC error codes are listed in Appendix A,
"Messages."

10 ON ERROR GOTO 100
20 LPRINT "This goes to the printer"
30 END

100 IF ERR=27 THEN LOCATE 23,1:
PRINT "Check printer": RESUME

This example tests for a common problem:
forgetting to put paper in the printer, or forgetting to
switch it on.

4-111

ERROR

Statement

Purpose:

Versions:

Simulates the occurrence of a BASIC error; or allows
you to define your own error codes.

Cassette Cartridge

Compiler

Format:

Remarks:

ERRORn

n must be an integer expression between 0 and
255.

If the value of «is the same as an error code used by
BASIC (see Appendix A, "Messages"), the ERROR
statement simulates the occurrence of that error. If

an error handling routine has been defined by the
ON ERROR statement, the error routine is entered.
Otherwise the error message corresponding to the
code is displayed, and execution halts. (See first
example below.)

To define your own error code, use a value that is
different from any used by BASIC. (We suggest you
use the highest available values; for example, values
greater than 200.) This new error code may then be
tested in an error handling routine, just like any other
error. (See second example below.)

If you define your own code in this way, and you
don't handle it in an error handling routine, BASIC
displays the message Unprintable error, and execution
halts.

Example: The first example simulates a String too long error.

4-112

ERROR

Statement

Ok
10 T = 15

20 ERROR T
RUN

String too long in line 20
Ok

The next example is a part of a game program that
allows you to make bets. By using an error code of
210, which BASIC doesn't use, the program traps
the error if you exceed the house limit.

110 ON ERROR GOTO 400
120 INPUT "WHAT IS YOUR BET";B
130 IF B > 5000 THEN ERROR 210

400 IF ERR = 210 THEN PRINT "HOUSE LIMIT IS $5000"
410 IF ERL = 130 THEN RESUME 120

4-113

EXP

Function

Purpose: Calculates the exponential function.

Versions: Cassette Cartridge Compiler

Format: v = EXP(x)

Remarks: x may be any numeric expression.

This function returns the mathematical number e

raised to the x power, e is the base for natural
logarithms. An overflow occurs if x is greater than
88.02969.

EXP(x:) is calculated in single precision in Cassette
BASIC and in either single or double precision in
Cartridge BASIC.

Example:

Ok
10 X = 2

20 PRINT EXP(X-l)
RUN

2.718282

Ok

This example calculates e raised to the (2-1) power,
which is simply e.

4-114

FIELD

Statement

Purpose: Allocates space for variables in a random file buffer.
Note: This statement requires the use of DOS 2.10.

Versions: Cassette Cartridge Compiler
*** *♦*

Format:

Remarks:

FIELD [UyUenum, width AS stringvar [,width AS
stringvar]...

filenum is the number under which the file was
opened.

width is a numeric expression specifying the
number of character positions to be
allocated to stringvar.

stringvar is a string variable which will be used
for random file access.

A FIELD statement defines variables that are used
to get data out of a random buffer after a GET or to
enter data into the buffer for a PUT.

The statement:

FIELD 1, 20 AS N$, 10 AS 10$. 40 AS A00$

allocates the first 20 positions (bjrtes) in the random
file buffer to the string variable N$, the next 10
positions to ID$, and the next 40 positions to ADD$.
FIELD does not actually place any data into the
random file buffer. This is done by the LSET and
RSET statements (see "LSET and RSET
Statements" in this chapter).

4-115

FIELD

Statement

FIELD does not "remove" data from the file either.
Information is read from the file into the random file
buffer with the GET (file) statement. Information is
read from the buffer by simply referring to the
variables defined in the FIELD statement.

The total number of bjrtes allocated in a FIELD
statement must not exceed the record length that was
specified when the file was opened. Otherwise, a
Field overflow error occurs.

Any number of FIELD statements may be executed
for the same file number, and all FIELD statements
that have been executed are in effect at the same

time. Each new FIELD statement redefines the
buffer from the first character position, so this has
the effect of having multiple field definitions for the
same data.

Note; Be careful about using a fielded variable
name in an input or assignment statement. Once
a variable name is defined in a FIELD statement,
it points to the correct place in the random file
buffer. If a subsequent input statement or LET
statement with that variable name on the left side

of the equal sign is executed, the variable is
moved to string space and is no longer in the file
buffer.

See Appendix B, "BASIC Diskette Input and
Output" for a complete explanation of how to use
random files.

Example:

4-116

FIELD

Statement

10 OPEN "A:CUST" AS #1
20 FIELD 1, 2 AS CUSTNO$, 30 AS CUSTNAME$,

35 AS ADDR$

30 LSET CUSTNAME$="0'NEIL INC"
40 LSET ADDR$="50 SE 12TH ST, NY, NY"
50 LSET CUSTN0$=MKI$(7850)
60 PUT 1,1
70 GET 1,1
80 CNUM%= CVI{CUSTNO$): N$ = CUSTNAME$
90 PRINT CNUM%, N$, ADDR$

This example opens a file named "CUST" as a
random fUe. The variable CUSTNO$ is assigned to
the first 2 positions in each record, CUSTNAME$ is
assigned to the next 30 positions, and ADDR$ is
assigned to the next 35 positions. Lines 30 through
50 put information into the buffer, and the PUT
statement in Une 60 writes the buffer to the fUe.

Line 70 reads back that same record, and line 90
displays the three fields. Note in line 80 that it is
okay to use a variable name which was defined in a
FIELD statement on the right side of an assignment
statement.

4-117

FILES

Command

Purpose: Displays the names of files residing on the current
directory of a diskette. The FILES command in
BASIC is similar to the DIR command in DOS.

Note: This command requires the use of DOS
2.10. If DOS 2.10 is not present, an Illegal
function call error will occur.

Versions: Cassette Cartridge Compiler

Format: FILES \filespec\

Remarks:

filespec is a string expression for the file
specification as explained under
"Naming Files" in Chapter 3. If filespec
is omitted, all the files on the current
directory of the DOS default drive will
be listed.

All files matching the filename are displayed. The
filename may contain question marks (?). A
question mark matches any character in the name or
extension. An asterisk (*) as the first character of
the name or extension will match any name or any
extension.

If a drive is specified as part of filespec, files which
match the specified filename on the current directory
of that drive are listed. Otherwise, the DOS default
drive is used.

Example:

FILES

4-118

FILES

Command

This displays all files on the current directory of the
DOS default drive.

FILES "*.BAS"

This displays all fUes with an extension of .BAS on
the current directory of the DOS default drive.

FILES "TEST??.BAS"

This Usts each file on the current directory of the
DOS default drive that has a filename begirming with
TEST followed by up to two other characters, and an
extension of .BAS .

In addition to Usting all the files on the current
directory of the drive, BASIC also displays the
current directory name and the number of bytes free.

When using tree-structured directories in Cartridge
BASIC, each sub-directory contains two special
entries—you will see them listed when you use the
FILES command to list a sub-directory. The first
contains a single period instead of a filename. It
identifies this "file" as a sub-directory. The second
entry contains two periods instead of a filename, and
is used to locate the higher level directory that
defines this sub-directory (the "parent" of the
sub-directory).

FILES

A:\LEVEL1

<DIR> .. <DIR>

32824 Bytes free

This example lists all fUes in the current
sub-directory called LEVEL 1 on drive A.

4-119

FILES

Command

FILES "LVL1\"

The Fn.ES command can also be used to list files in
other directories. The example above lists all files in
the sub-directory LVLl. The backslash must be
used after the directory name.

FILES "LVL2*.BAS"

This example lists all files in the directory LVL2
with an extension of .BAS.

4-120

FIX

Function

Purpose: Truncates x to an integer.

Versions: Cassette Cartridge
HfiUti ***

Compiler

Format:

Remarks:

Example:

V = FIX(jc)

X may be any numeric expression.

FIX strips all digits to the right of the decimal point
and returns the value of the digits to the left of the
decimal point.

The difference between FIX and INT is that FIX

does not return the next lower number when x is
negative.

See the INT and CINT functions, which also return
integers.

Ok

PRINT FIX(45.67)
45

Ok

PRINT FIX(-2.89)
-2

Ok

Note in the examples how FIX does not round the
decimal part when it converts to an integer.

4-121

FOR and NEXT

Statements

Purpose: Performs a series of instructions in a loop a given
number of times.

Versions: Cassette Cartridge

Compiler

Format: FOR mriable=x TO y [STEP z]

NEXT [variable [^variable]...]

Remarks:

variable is an integer or single-precision variable
to be used as a counter.

is a numeric expression which is the
initial value of the counter.

is a numeric expression which is the
final value of the counter.

z is a numeric expression to be used as an
increment.

The program lines following the FOR statement are
executed until the NEXT statement is encountered.

Then the coimter is incremented by the amount
specified by the STEP value (z). If you do not
specify a value for z, the increment is assumed to be
1 (one). A check is performed to see if the value of
the counter is now greater than the final value j;. If it
is not greater, BASIC branches back to the
statement after the FOR statement and the process is

4-122

FOR and NEXT

Statements

repeated. If it is greater, execution continues with
the statement following the NEXT statement. This
is a FOR-NEXT loop.

If the value of z is negative, the test is reversed. The
counter is decremented each time through the loop,
and the loop is executed until the coimter is less than
the final value.

The body of the loop is skipped if x is already greater
than j' when the STEP value is positive, or if x is less
than j; when the STEP value is negative. If z is zero,
an infinite loop is created unless you provide some
way to set the counter greater than the final value.

Program performance will be improved if you use
integer counters whenever possible.

Nested Loops

FOR-NEXT loops may be nested; that is, one
FOR-NEXT loop may be placed inside another
FOR-NEXT loop. When loops are nested, each
loop must have a unique variable name as its coimter.
The NEXT statement for the inside loop must appear
before that for the outside loop. If nested loops have
the same end point, a single NEXT statement may be
used for aU of them.

4-123

FOR and NEXT

Statements

A NEXT statement of the form:

NEXT varl, var2, var3 ...

is equivalent to the sequence of statements:

NEXT varl
NEXT var2
NEXT var3

The variable(s) in the NEXT statement may be
omitted, in which case the NEXT statement matches
the most recent FOR statement. If you are using
nested FOR-NEXT loops, you should include the
variable(s) on all the NEXT statements. It is a good
idea to include the variables to avoid confusion; but
it can be necessary if you do any branching out of
nested loops. (However, using variable names on the
NEXT statements will cause your program to
execute somewhat slower.)

If a NEXT statement is encountered before its

corresponding FOR statement, a NEXT without FOR
error occurs.

4-124

FOR and NEXT

Statements

Example: The first example shows a FOR-NEXT loop with a
STEP value of 2.

Ok

10 J=10: K=30
20 FOR 1=1 TO J STEP 2
30 PRINT I;
40 K=K+10
50 PRINT K

60 NEXT

RUN

1 40

3 50

5 60

7 70

9 80

Ok

In this example, the loop does not execute because
the initial value of the loop is more than the final
value:

Ok

10 J=0
20 FOR 1=1 TO J
30 PRINT I
40 NEXT I

RUN

Ok

This next program will result in a NEXT without
FOR error. There may be only one NEXT statement
for every FOR statement. (TWs is different from
other versions of BASIC which allow a different

physical NEXT statement when jumping out of a
loop.)

10 FOR 1=1 TO 5
20 IF 1=2 GOTO 50
30 NEXT
40 GOTO 60

50 NEXT

60 END

4-125

FOR and NEXT

Statements

In the last example, the loop executes ten times.
The final value for the loop variable is always set
before the initial value is set. (This is different from
some other versions of BASIC, which set the initial
value of the counter before setting the final value. In
another BASIC the loop in this example might
execute six times.)

Ok
10 1=5
20 FOR 1=1 TO 1+5
30 PRINT I;
40 NEXT
RUN

1 2 3 4 5 6 7 8 9 10
Ok

4-126

FRE

Function

Purpose: Returns the number of bjrtes in memory that are not
being used by BASIC. TTiis number does not include
the size of the reserved portion of the interpreter
work area (normaUy 2.5K to 4K bytes).

Versions: Cassette Cartridge Compiler
(»»)♦ **

Format: v = FRE(jc)

V = FRE(x^)

Remarks: xandx^ are dummy arguments.

Since strings in BASIC can have variable lengths
(each time you do an assignment to a string its length
may change), strings are manipulated dynamically.
For this reason, string space may become i
fragmented.

FRE with any string value causes a housecleaning
before returning the number of free bytes.
Housecleaning is when BASIC collects all its useful
data and frees up unused areas of memory that were
once used for strings. The data is compressed so you
can continue until you really run out of space.

BASIC also automatically does a housecleaning
when it is running out of usable work area. Be
patient, housecleaning may take a while.

CLEAR ,« sets the maximiim number of bjdes for
the BASIC workspace. FRE returns the amount of
free storage in the BASIC workspace. If nothing is
in the workspace, then the value returned by FRE

4-127

FRE

Function

will be 2.5K to 4K bytes (the size of the reserved
interpreter work area) smaller than the number of
bytes set by CLEAR.

Example:

Ok
PRINT FRE(O)
14542

Ok

The actual value returned by FRE on your computer
may differ from this example.

4-128

GET

Statement (Files)

Purpose: Reads a record from a random file into a random
buffer.

Note: This statement requires the use of DOS
2.10.

Versions: Cassette Cartridge Compiler

Format: GET [#yilenum[, number]

Remarks:

filenum is the munber under which the file was
opened.

number is the munber of the record to be read, in
the range 16,777,215. If MM/nber is
omitted, the next record (after the last
GET) is read into the buffer.

After a GET statement, INPUT #, LINE INPUT #,
or references to variables defined in the FIELD

statement may be used to read characters from the
random file buffer. Refer to Appendix B, "BASIC
Diskette Input and Output," more complete
information on using GET.

Because BASIC and DOS block as many records as
possible in 512 byte sectors, the GET statement does
not necessarily perform a physical read from the
diskette.

GET may also be used for communications files. In
this case number is the number of bytes to read from

4-129

GET

Statement (Files)

Example:

the communications buffer. This number cannot

exceed the value set by the LEN option on the
OPEN "COM... statement.

The maximum record number allowed in the BASIC ^

Compiler is 32767 instead of 16,777,215.

in nPFN "A-riKT" #i

20 FIELD l', 30 AS CUSTNAME$, 30 AS ADDR$,
35 AS CITY$

30 GET 1
40 PRINT CUSTNAME$, ADDR$, CITY$

This example opens the file "CUST" for random
access, with fields defined in line 20. The GET
statement on hne 30 reads a record into the file

buffer. Line 40 displays the information from the
record that was read.

4-130

GET

Statement (Graphics)

Purpose: Reads points from an area of the screen.

Versions: Cassette Cartridge Compiler

Graphics mode only.

Format: GET (xl,yl)-{x2,y2),arrayname

Remarks:

(xl,yl), (x2,y2)
are coordinates in either absolute or

relative form. Refer to "Specif jring
Coordinates" under "Graphics Modes"
in Chapter 3 for information on
coordinates.

arraymme is the name of the array you want to
hold the information.

GET reads the colors of the points within the
specified rectangle into the array. The specified
rectangle has points {xl,yl) and ix2,y2) as opposite
comers. (This is the same as the rectangle drawn by
the LINE statement using the B option.)

GET and PUT can be used for high speed object
motion in graphics mode. You might think of GET
and PUT as "bit pump" operations which move bits
onto (PUT) and off of (GET) the screen.
Remember that PUT and GET are also used for

random access files, but the syntax of these
statements is different.

4-131

GET

Statement (Graphics)
The array is used simply as a place to hold the image
and must be numeric; it may be any precision,
however. The required size of the array, in bjrtes, is:

A+T^n!{ix*bitsperpixel-\-l)/%)*y

where x and y are the lengths of the horizontal and
vertical sides of the rectangle, respectively. The
value of bitsperpixel is 4 in low resolution, 2 or 4 in
medium resolution, and 1 or 2 in high resolution
depending upon the current screen mode.

For example, suppose we want to use the GET
statement to get a 10 by 12 image in medium
resolution. The number of bytes required is
4+INT((10*2+7)/8)'''12, or 40 bytes. The bytes
per element of an array are:

• 2 for integer string
• 4 for single-precision string
• 8 for double-precision string

Therefore, we could use an integer array with at least
20 elements.

The information from the screen is stored in the

array as follows:

1. two bsdes giving the x dimension in bits
2. two bytes giving the y dimension in bits
3. the data itself

It is possible to examine the x and y dimensions and
even the data itself if an integer array is used. The x
dimension is in element 0 of the array, and the y
dimension is in element 1. Keep in mind, however, _
that integers are stored low bjde first, then high bjrte;
but the data is actually transferred high bjde first,
then low b5d;e.

4-132

GET

Statement (Graphics)
The data for each row of points in the rectangle is
left justified on a byte boundary, so if there are less
than a multiple of eight bits stored, the rest of the
byte will be filled with zeros.

PUT and GET work significantly faster in all
resolutions when xl MOD (S/bitsperpixel) is equal to
zero. This is a special case where the rectangle
boundaries fall on the byte boundaries.

4-133

GOSUB and RETURN

Statements

Purpose: Branches to and returns from a subroutine.

Versions: Cassette Cartridge Compiler

Format: GOSUB line

Remarks:

RETURN

line is the line number of the first line of the

subroutine.

A subroutine may be called any number of times in a
program, and a subroutine may be called from within
another subroutine. Such nesting of subroutines is
limited only by available memory.

The RETURN statement causes BASIC to branch

back to the statement following the most recent
GOSUB statement. A subroutine may contain more
than one RETURN statement, if you want to return
from different points in the subroutine. Subroutines
may appear anywhere in the program.

To prevent your program from accidentally entering
a subroutine, you may want to put a STOP, END, or
GOTO statement before the subroutine to direct

program control around it.

Use ON-GOSUB to branch to different subroutines

based on the result of an expression.

4-134

Example:

GOSUB and RETURN

Statements

Ok
10 GOSUB 40
20 PRINT "BACK FROM SUBROUTINE"
30 END

40 PRINT "SUBROUTINE";
50 PRINT " IN";
60 PRINT " PROGRESS"
70 RETURN

RUN

SUBROUTINE IN PROGRESS
BACK FROM SUBROUTINE
Ok

This example shows how a subroutine works. The
GOSUB in hne 10 caUs the subroutine in hne 40. So

the program branches to hne 40 and starts executing
statements there until it sees the RETURN statement

in hne 70. At that point the program goes back to
the statement after the subroutine call; that is, it
returns to line 20. The END statement in hne 30

prevents the subroutine from being performed a I
second time.

4-135

GOTO

Statement

Purpose: Branches unconditionally out of the normal program
sequence to a specified line number.

Versions: Cassette Cartridge Compiler
:ie%^

Format: GOTO line

Remarks:

line is the line number of a line in the program.

If line is the line number of an executable statement,
that statement and those following are executed. If
line refers to a nonexecutable statement (such as
REM or DATA), the program continues at the first
executable statement after line.

The GOTO statement can be used in direct mode to

re-enter a program. This can be useful in debugging.

Use ON-GOTO to branch to different lines based

on the result of an expression.

4-136

GOTO

Statement

Example:

Ok
5 DATA 5,7,12
10 READ R
20 PRINT "R =";R,
30 A = 3.14*Ra2
40 PRINT "AREA =";A
50 GOTO 5
RUN

R = 5 AREA = 78.5
R = 7 AREA = 153.86
R = 12 AREA = 452.16
Out of data in 10
Ok

The GOTO statement in line 50 puts the program
into a continuous loop. The loop stops when the
program runs out of data in the DATA statement.
(Notice how branching to the DATA statement did
not add values to the internal data table.)

4-137

HEX$

Function

Purpose: Returns a string which represents the hexadecimal
value of the decimal argument.

Versions: Cassette Cartridge Compiler
*** *** ***

Format: = HEX$(n)

Remarks:

n is a numeric expression in the range -32768 to
65535.

If n is negative, the two's complement form is used.
That is, HEX$(-«) is the same as HEX$(65536-/j).

See the OCT$ function for octal conversion.

Example: The following example uses the HEX$ function to
figure the hexadecimal representation for the two
decimal values which are entered.

Ok
10 INPUT X

20 A$ = HEX$(X)
30 PRINT X "DECIMAL IS " A$ " HEXADECIMAL"
RUN

? 32

32 DECIMAL IS 20 HEXADECIMAL
Ok
RUN

? 1023

1023 DECIMAL IS 3FF HEXADECIMAL
Ok

4-138

IF

Statement

Purpose:

Versioiis:

Fomiat:

Remarks:

Makes a decision about program flow based on the
result of an expression.

Cassette

Cartridge Compiler

IF expression [,]THEN clause [ELSE clause]

IF expression [JGOTO line [[JELSE clause]

expression may be any muneric expression.

clause may be a BASIC statement or a
sequence of statements (separated by
colons); or it may be simply the number
of a line to branch to.

line is the line number of a line existing in
the program.

If the expression is true (not zero), the THEN or
GOTO clause is executed. THEN may be followed
by either a line number for branching or one or more
statements to be executed. GOTO is always
followed by a line number.

If the result of expression is false (zero), the THEN
or GOTO clause is ignored and the ELSE clause, if
present, is executed. Execution then continues with
the next numbered line containing an executable
statement.

If you enter an IF-THEN statement in direct mode,
and it directs control to a line munber, then an

4-139

IF

Statement

Undefined line number error results unless you
previously entered a line with the specified line
number.

Note: When using IF to test equality for a value
that is the result of a single- or double-precision
computation, remember that the internal
representation of the value may not be exact.
(This is because single- and double-precision
values are stored in floating point binary format.)
Therefore, the test should be against the range
over which the accuracy of the value may vary.
For example, to test a computed variable A
against the value 1.0, use:

IF ABS (A-1.0)<1.0E-6 THEN ...

This test returns a true result if the value of A is

1.0 with a relative error of less than l.OE-6.

Also note that IF-THEN-ELSE is just one statement.
Once an IF statement occurs on a Une, everything
else on that line is part of the IF statement. Because
IF-THEN-ELSE is all one statement, the ELSE
clause cannot be a separate program line. For
example:

10 IF A=B THEN X=4
20 ELSE P=Q

is invalid. Instead, it should be:

10 IF A=B THEN X=4 ELSE P=Q

Nesting of IF Statements: IF-THEN-ELSE
statements may be nested. Nesting is limited only by
the length of the line. For example,

IF X>Y THEN PRINT "GREATER" ELSE IF Y>X ^
THEN PRINT "LESS THAN" ELSE PRINT "EQUAL"

4-140

IF

Statement

is a valid statement. If the statement does not

contain the same number of ELSE and THEN

clauses, each ELSE is matched with the closest
unmatched THEN. For example:

IF A=B THEN IF B=C THEN PRINT "A=C"
ELSE PRINT "A<>C"

will not print "A<>C" when A<>B.

Example: This statement gets record I if I is not zero:

200 IF I THEN GET #1,1

In the next example, if I is between 10 and 20, DB
is calculated, and execution branches to line 300. If I
is not in this range, the message OUT OF RANGE is
printed. Note the use of two statements in the
THEN clause.

100 IF (I>10) AND (I<20) THEN
DB=1982-I: GOTO 300

ELSE PRINT "OUT OF RANGE"

This next statement causes printed output to go to
either the screen or the printer, depending on the
value of a variable (lOFLAG). If lOFLAG is false
(zero), output goes to the printer; otherwise, output
goes to the screen:

210 IF lOFLAG THEN PRINT A$ ELSE LPRINT A$

In line 20 of the following example everything after
the THEN is part of the clause. This means that the
NEXT is not executed unless N= 1. When hne 20

executes, N does not equal I so the IF evaluation is
false. Therefore, the NEXT is not performed and
the program falls through to line 30. The NEXT
must be coded on a separate hne if you want the
program to loop until N=I.

4-141

IF

Statement

10 N=15

20 FOR 1=1 TO 20:IF N=I THEN 40:NEXT
30 PRINT "N <> I":END
40 PRINT "N = I"
RUN

N <> I

Ok

See "IF-THEN" in Appendix D, "Converting
Programs to PCjr BASIC" for information on how
the IF statement in PCjr BASIC differs from the IF
statement in other BASICs.

4-142

INKEYS

Variable

Purpose: Reads a character from the keyboard.

VersiGiis: Cassette Cartridge Compiler

Foimat: = E>JKEY$

Remarks: INKEY$ only reads a single character, even if there
are several cWacters waiting in the keyboard buffer.
The retiumed value is a zero-, one-, or two-character
string.

• A null string (length zero) indicates that no
character is pending at the keyboard.

• A one-character string contains the actual
character read from the keyboard.

• A two-character string indicates a special
extended code. The first character will be hex

00. For a complete list of these codes, see
Appendix G, "ASCII Character Codes."

You must assign the result of INKEY$ to a string
variable before using the character with any BASIC
statement or function.

While INKEY$ is being used, no characters are
displayed on the screen and all characters are passed
throu^ to the program except for:

• Fn followed by Break, which stops the program

• Fn followed by Pause, which sends the system
into a pause state

• Alt-Ctrl-Del, which does a System Reset

4-143

INKEY$

Variable

• Fn followed by PrtSc, which prints the screen

If you press Enter in response to INKEY$, the
carriage return character passes through to the
program.

Example: The following section of a program stops the
program until any key on the keyboard is pressed:

110 PRINT "Press any key to continue"
120 A$=INKEY$: IF A$="" THEN 120

The next example shows program hues that could be
used to test a two-character code being returned:

210 KB$=INKEY$
220 IF LEN(KB$)=2 THEN KB$=RIGHT$(KB$,1)

4-144

INP

Function

Purpose: Returns the b5h;e read from port n.

Versions: Cassette Cartridge Compiler

Format: v = INP(n)

Remarks: n must be in the range 0 to 65535.

INP is the complementary function to the OUT
statement (see "OUT Statement" in this chapter).

INP performs the same function as the IN instruction
in assembly language. Refer to the PCjr Technical
Reference manual for a description of valid port
numbers (I/O addresses).

Example:

100 A=INP(255)

This instruction reads a bjrte from port 255 and
assigns it to the variable A.

4-145

INPUT Statement

Purpose: Receives input from the keyboard during program
execution.

Versions: Cassette Cartridge Compiler
:|c4cic :|c9|e4i

Format: INPUT[;]['Jprompt";] variable[,variable].

Remarks:

"prompt"

variable

is a string constant which will be used to
prompt you for input.

is the name of the numeric or string
variable or array element which wiU
receive the input.

When the program sees an INPUT statement, it
pauses and displays a question mark on the screen to
indicate that it is waiting for data. If a "prompt" is
included, the string is displayed before the question
mark. You may then enter the required data from
the keyboard.

You may use a comma instead of a semicolon after
the prompt string to stop the question mark from
printing. For example, the statement INPUT
"ENTER BIRTHDATE: ",B$ prints the prompt
without the question mark.

The data that you enter is assigned to the variable(s)
given in the variable list. The data items you supply
must be separated by commas, and the number of
data items must be the same as the number of

variables in the list.

4-146

Example:

INPUT Statement

The type of each data item that you enter must agree
with the t5rpe specified by the variable name.
(Strings entered in response to an INPUT statement
need not be surrounded by quotation marks.)

If you respond to INPUT with too many or too few
items, or with the wrong type of value (letters
instead of numbers, etc.), BASIC displays the
message ?Redo from start. If a single variable is
requested, you may simply press Enter to indicate
the default values of 0 for numeric input or null for
string input. However, if more than one variable is
requested, pressing Enter causes the ?Redo from
start message to be printed because too few items
were entered. BASIC does not assign any of the
input values to variables until you give an acceptable
response.

In.Cartridge BASIC, if INPUT is immediately
followed by a semicolon, then pressing Enter to input _
data does not produce a carriage return/line feed
sequence on the screen. This means that the cursor
remains on the same line as your response.

Ok
10 INPUT X

20 PRINT X "SQUARED IS" Xa2
30 END
RUN
?

In this example, the question mark displayed by the
computer is a prompt to tell you it wants you to enter
something. Suppose you enter a 5. The program
continues:

4-147

INPUT Statement

? 5

5 SQUARED IS 25
Ok

Ok

10 PI=3.14

20 INPUT "WHAT IS THE RADIUS";R
30 A=PI*Ra2
40 PRINT "THE AREA OF THE CIRCLE IS";A
50 END

RUN

WHAT IS THE RADIUS?

For this second example, a prompt was included in
line 20, so this time the computer prompts with
"WHAT IS THE RADIUS? Suppose you respond
with 7.4. The program continues:

WHAT IS THE RADIUS? 7.4
THE AREA OF THE CIRCLE IS 171.9464

Ok

4-148

INPUT #

Statement

Purpose: Reads data items from a sequential device or file and
assigns them to program variables.

Versions: Cassette Cartridge Compiler
♦♦♦ ***

Format: INPUT Ufilenum, variable [,vanaZ>fe]...

Remarks:

filenum is the munber used when the file was
opened for input.

variable is the name of a variable that will have

an item in the file assigned to it. It may
be a string or numeric variable, or an
array element.

The sequential file may reside on diskette or on
cassette; it may be a sequential data stream from a
communications adapter; or it may be the keyboard
(KYBD:).

The type of data in the file must match the type
specified by the variable name. Unlike INPUT, no
question mark is displayed with INPUT #.

The data items in the file should appear just as they
would if the data were being typed in response to an
INPUT statement. With numeric values, leading
spaces, carriage returns, and line feeds are ignored.
The first character encountered that is not a space,
carriage return, or line feed is assumed to be the start
of the number. The number ends with a space,
carriage return, line feed, or comma.

4-149

INPUT #

Statement

If BASIC is scanning the data for a string item,
leading spaces, carriage returns, and line feeds are
also ignored. The first character encountered that is
not a space, carriage return, or line feed is assumed
to be the start of the string item. If this first
character is a quotation mark ("), the string item will
consist of all characters read between the first

quotation mark and the second. Thus, a quoted
string may not contain a quotation mark as a
character. If the first character of the string is not a
quotation mark, the string is an unquoted string; it
will end when a comma, carriage return, or line feed,
or after 255 characters have been read. If end of file

is reached when a numeric or string item is being
input, the item is canceled.

INPUT # can also be used with a random file.

Example: See Appendix B.

4-150

INPUTS

Function

Purpose: Returns a string of n characters, read from the
keyboard or from file number filenum.

Versions: Cassette Cartridge Compiler
9ie4(9ie ***

Format: = INPUT$(«[,[#l/iffenMm])

Remarks:

n is the number of characters to be read
from the file.

filenum is the file number used on the OPEN
statement. If filenum is omitted, the
keyboard is read.

If the keyboard is used for input, no characters will
be displayed on the screen. All characters (including
control characters) are passed through except
Fn/Break, which is used to interrupt the execution
of the INPUTS function. When responding to
INPUTS from the keyboard, it is not necessary to
press Enter.

The INPUTS function allows you to read characters
from the keyboard which are significant to the
BASIC program editor, such as Backspace (ASCII
code 8). If you want to read these special characters,
you should use INPUTS or INKEYS (not INPUT or
LINE INPUT).

For communications files, the INPUTS function is
preferred over the INPUT # and LINE INPUT #
statements, since all ASCII characters may be
significant in communications. Refer to Appendix F,
"Communications."

4-151

INPUTS

Function

Example: The following program lists the contents of a
sequential file in hexadecimal.

10 OPEN "DATA" FOR INPUT AS #1
20 IF EOF(I) THEN 50
30 PRINT HEX$(ASC(INPUT$(I,#I)));
40 GOTO 20
50 PRINT

60 END

The next example reads a single character from the
keyboard in response to a question.

100 PRINT "TYPE P TO PROCEED OR S TO STOP"
no X$=INPUT$(I)
120 IF X$="P" THEN 500
ISO IF X$="S" THEN 700 ELSE 100

4-152

INSTR

Function

Purpose: Searches for the first occurrence of string in x$
and returns the position at which the match is found.
The optional offset n sets the position for starting the
search in x$

Versions: Cassette Cartridge CompUer
*** *** ***

Format:

Remarks:

Example:

V = INSTR([n,Mj^)

n is a numeric expression from 1 to 255.

x$, y$ may be string variables, string expressions
or string constants.

If n>LEN(jc.^), or if x$ is null, or if y$ cannot be i
found, INSTR returns 0. If y$ is nuU, INSTR returns
n (or 1 if « is not specified).

If n is out of range, an Dlegal function call occurs.

This example searches for the string "B" within the
string "ABCDEB". When the string is searched
from the beginning, "B" is found at position 2; when
the search starts at position 4, "B" is found at
position 6.

Ok

10 A$ = "ABCDEB": B$="B"
20 PRINT INSTR(A$,B$);INSTR(4,A$,B$)
RUN

2 6

Ok

4-153

INT

Function

Purpose: Returns the largest integer that is less than or equal
to X.

Versions: Cassette Cartridge Compiler
4c4(9|c

Format:

Remarks:

Example:

V = INT(jc)

X is any numeric expression.

This is called the "floor" function in some other

programming languages.

See the FIX and CINT functions, which also return
integer values.

Ok
PRINT INT(45.67)
45

Ok

PRINT INT{-2.89)
-3

Ok

This example shows how INT truncates positive
integers, but rounds negative numbers upward (in a
negative direction).

4-154

KEY

Statement

Purpose: Sets or displays the soft keys.

Versions: Cassette Cartridge
*»»

Format:

Compiler

Remarks:

KEY ON

KEY OFF

KEY LIST

KEY n, x$

n is the function key number in the range 1 to
10.

x$ is a string expression which will be assigned to
the key. (Remember to enclose string
constants in quotation marks.)

The KEY statement allows function keys to be
designated soft keys. That is, you can set each
function key to automatically type any sequence of
characters. A string of up to 15 characters may be
assigned to any one or all the ten function keys.
When the key is pressed, the string will be input to
BASIC.

4-155

KEY

Statement

Initially, the soft keys are assigned the following
values:

F1 LIST F6 ,"LPTl:"-(- ^
F2 RUN-<- F7 TRON-f-
F3 LOAD" F8 TROFF-«-
F4 SAVE" F9 KEY
F5 CONT-«- FIO SCREEN 0,0,0-H

The arrow (■«-) indicates Enter.

KEY ON causes the soft key values to be displayed
on the 25th line. When the width is 20, two of the
ten soft keys are displayed. When the width is 40,
five of the ten soft keys are displayed. When the
width is 80, all ten are displayed. In any width, only
the first six characters of each value are displayed.
ON is the default state for the soft key display.

KEY OFF erases the soft key display from the 25th
line, making that line available for program use. It
does not disable the function keys.

After turning off the soft key display with KEY
OFF, you can use LOCATE 25,1 followed by
PRINT to display an5dhing you want on the Wtom
line of the screen. Information on line 25 is not
scrolled, as are lines 1 through 24.

KEY LIST lists aU ten soft key values on the screen.
All 15 characters of each value are displayed.

KEY n, x$ assigns the value of x$ to the function
key specified (1 to 10). x$ may be 1 to 15
characters in length. If it is longer than 15
characters, only the first 15 characters are assigned.

Assigning a nuU string (string of length zero) to a
soft key disables the function key as a soft key.

4-156

KEY

Statement

If the value entered for n is not in the range 1 to 10,
an Illegal function call error occurs. The previous key
string assignment is retained.

When a soft key is pressed, the INKEY$ function
returns one character of the soft key string each time
it is called. If the soft key is disabled, INKEY$
returns a two character string. The first character is
binary zero, the second is the key scan code, as listed
in Appendix G, "ASCII Character Codes."

In Cartridge BASIC, there are six additional
definable key traps. This lets you trap any Ctrl,
Shift, or super-shift key. These additional keys are
defined by the statement:

KEY n,CHR$(shift)+CHR$(scan code)

n is a numeric expression in the range 15 to
20.

shift is a numeric value that corresponds to the
hex value for the latched keys. The hex
values for each key are:

Caps Lock &H40

Alt &H08

Ctrl &H04

Shift &H01, &H02, &H03

Note that key trapping assumes that the left and right
Shift keys are the same, so you can use a value of
&H01, &:H02, or &H03 (the sum of hex 01 and hex
02) to denote a Shift key.

4-157

KEY

Statement

You can also add multiple shift states together, such
as the Ctrl and Alt keys added together. Shift state
values must be in hex.

scan code is a number in the range 1 to 83 that
identifies the key to be trapped. See
Appendix K, "Keyboard Diagram and
Scan Codes," for a complete table of
scan codes and their associated key
positions.

When you trap keys, they are processed in the
following order:

1. Fn followed by Echo, which activates the hne
printer, is processed first. To trap this you will
need to trap on Ctrl followed by scan code 55.
Even if Fn-Echo is defined as a trappable key
combination, it can still be pressed to echo
display output to the printed.

2. Next, the function keys Fn plus FX to FIO,
Cursor Up, Cursor Down, Cursor Right, and
Ciursor Left (1-14) are processed. Setting scan
codes 59 to 68, 72, 75, 77, or 80 as key traps has
no effect, because they are considered to be
predefined.

3. Last, the keys you define for 15 to 20 are
processed.

Notes:

1. Trapped keys do not go into the keyboard buffer.

2. You cannot trap Fn by itself, Fn/Pause,
Fn/PrtSc, or some three key combination.

4-158

Examples:

KEY

Statement

3. To trap Fn/Sc Lock you will need to trap on scan
code 70.

4. To trap Fn/Break you will need to trap on Ctrl
followed by scan code 71.

5. Be careful when you trap Fn-Break and
Ctrl-Alt-Del, because unless you have a test in
your trap routine, you wiU have to turn the power
off to stop your program.

See the following section, "KEY(n) Statement," to
see how to enable and disable function key trapping
in Cartridge BASIC.

10 KEY ON

displays the soft keys on the 25th hne.

200 KEY OFF

erases soft key display. The soft keys are still
active, but not displayed.

10 KEY 1,"FILES"+CHR${13)

assigns the string "FILES"-FEnter to soft key 1.
This is a way to assign a commonly used command to
a function key.

20 KEY 1,""

disables function key 1 as a soft key.

100 KEY 15, CHR$(&H40)+CHR$(25)
100 ON KEY(15) GOSUB 1000
120 KEYdS) ON

4-159

KEY

Statement

sets up a key trap for capital P. Note that all three
KEY statements—BCEY, KEY(n), and ON
KEY—are used with key trapping.

200 KEY 20, CHR$(&H04+&H03)+CHR$(30)
210 ON KEy(20) GOSUB 2000
220 KEY(20) ON

sets up a key trap for Ctrl-Shift-A. Notice that the
hex values for Ctrl (&H04) and Shift (&H03) are
added together to get the shift state.

4-160

KEY(n)
Statement

Purpose: Activates and deactivates trapping of the specified
key in a BASIC program. See "ON KEY(n)
Statement" in this chapter.

Versioiis: Cassette Cartridge

Compiler

Format:

Remarks:

KEY(n) ON

KEY(«) OFF

KEY(«) STOP

n is a numeric expression in the range 1 to 20, and
indicates the key to be trapped:

1-10 function keys Fn plus FX to FIG
11 Cursor Up
12 Cursor Left

13 Cursor Right
14 Cursor Down

15-20 keys defined by the form:
KEY n,CHR$ishift)+CHR$(scan code)

KEY(n) ON must be executed to activate trapping of
function key or cursor control key activity. After
KEY(n) ON, if a non-zero line number was specified
in the ON KEY(«) statement then every time BASIC
starts a new statement it will check to see if the

specified key was pressed. If so it will perform a
GOSUB to the line number specified in the ON
KEY(m) statement. AKEY(«) statement cannot
precede an ON KEY(n) statement.

4-161

KEY(n)

Statement

If KEY(/j) is OFF, no trapping takes place and even
if the key is pressed, the event is not remembered.

Once a KEY(n) STOP statement has been executed,
no trapping will take place. However, if you press
the specified key your action is remembered so that
an immediate trap takes place when KEY(n) ON is
executed.

KEY(/i) ON has no effect on whether the soft key
values are displayed at the bottom of the screen.

If you use a BGEY(n) statement in Cassette you will
get a Syntax error. Refer to the previous section,
"KEY Statement," for an explanation of the KEY
statement.

4-162

KILL

Command

Purpose: Deletes a file from a diskette. The KILL command
in BASIC is similar to the ERASE command in DOS.

Note: This command requires the use of DOS
2.10. If DOS 2.10 is not present, an Illegal
function call error will occur.

Versions: Cassette Cartridge Compiler

Format: KILL filespec

Remarks:

filespec is a valid file specification as explained
under "Naming Files" in Chapter 3.
The device name must be a diskette

drive. If the device name is omitted, the
DOS default drive is used.

In Cartridge BASIC, filespec can also be
a path, as explained under "Naming
Fhes" in Chapter 3.

KILL can be used for all types of diskette files. The
name must include the extension, if one exists. For
example, you may save a BASIC program using the
command

SAVE "TEST"

BASIC supplies the extension .BAS for the SAVE
command, but not for the KILL command. If you
want to delete that program file later, you must say
KILL "TEST.BAS", not KILL "TEST".

4-163

KILL

Command

If a KILL statement is given for a file that is
currently open, a File already open error occurs.

Example: To delete the file named "DATAl" on drive A, you
might use:

200 KILL "A:DATAl"

To delete the fUe "PROG.BAS" in the LEVEL2

sub-directory, you might use:

KILL "LEVEL1\LEVEL2\PR0G.BAS"

Note that KILL can only be used to delete files.
The RMDIR command must be used to remove

directories.

4-164

LEFTS

Function

Purpose: Returns the leftmost n characters of x$.

Versions: Cassette Cartridge Compiler
4=4:% 4ci|l*

Format:

Remarks:

Example:

= LEFT$(jc^,«)

x$ is any string expression.

n is a numeric expression which must be in the
range 0 to 255.It specifies the number of
characters which are to be in the result.

If n is greater than LEN(jc.$), the entire string (x$) is
returned. If n=0, the nuU string (length zero) is
returned.

Also see the MID$ and RIGHTS functions.

Ok
10 A$ = "BASIC PROGRAM"
20 8$ = LEFT$(A$,5)
30 PRINT B$
RUN

BASIC

Ok

In this example, the LEFTS function is used to
extract the first five characters from the string
"BASIC PROGRAM."

4-165

LEN

Function

Purpose: Returns the number of characters in x$.

Versions: Cassette Cartridge Compiler

Format: v = LEN(x^)

Remarks: x$ is any string expression.

Example:

Unprintable characters and blanks are included in
the count of the number of characters.

10 X$ = "BOCA RATON, FL"
20 PRINT LEN(X$)
RUN

14

Ok

There are 14 characters in the string "BOCA
RATON, FL," because the comma and the blank are
counted.

4-166

LET

Statement

Purpose: Assigns the value of an expression to a variable.

Versions: Cassette Cartridge Compiler
isieis

Format: [LET] variable=expression

Remarks:

variable is the name of the variable or array
element which is to receive a value. It

may be a string or numeric variable or
array element.

expression is the expression whose value will be
assigned to variable. The tj^e of the
expression (string or numeric) must
match the type of the variable, or a i
Type mismatch error wUl occur.

The use of the word LET is optional when assigning
an expression to a variable name. The equals sign
can be by itself to produce the same results.

Example:

110 LET D0RI=12
120 LET E=D0RI+2

130 LET FDANCE$="HORA"

This example assigns the value 12 to the variable
DORI. It then assigns the value 14, which is the
value of the expression DORI+2, to the variable E.
The string "HORA" is assigned to the variable
FDANCE$.

The same statements could have also been written:

4-167

LET

Statement

no DORI= 12
120 E =D0RI+2
130 FDANCE$ = "HORA"

4-168

UNE

Statement

Purpose: Draws a line or a box on the screen.

Versioiis: Cassette Cartridge Compiler
*** ***

Graphics mode only.

Format: LINE [{xl,yl)\ -(x2,y2) [,[attribute] [,B[F]] \jStyle]\

Remarks:

(xl,yl), (x2,y2)
are coordinates in either absolute or

relative form. (See "Specifying
Coordinates"under "Graphics Modes"
in Chapter 3.)

attribute is an integer or integer expression in the
range of 0 to 15. In low resolution,
there are 16 attributes available (0 to
15). In medium resolution, there are 4
(0 to 3) or 16 (0 to 15) attributes
available, depending on the current
screen mode. In high resolution, there
2 (0 to 1) or 4 (0 to 3) attributes
available, depending on the current
screen mode. The default attribute is

always the maximmn attribute for the
current screen mode. 0 is the

background attribute. For more
information see "Graphics Modes" in
Chapter 3.

style is a 16-bit integer mask used to put
points on the screen. The style option is
used for normal lines and boxes, but
cannot be used with filled boxes (BF).

4-169

LINE

Statement

Using style with BF results in a Syntax
error. This technique, called line
styling, is for use in Cartridge BASIC
only.

The simplest form of LINE is:

LINE -(X2,Y2)

This wiU draw a line from the last point referenced
to the point (X2,Y2) in the foreground attribute.

We can include a starting point also:

LINE (0,0)-(319,199) 'diagonal down screen
LINE (0,100)-(319,100) 'bar across screen

We can indicate the color to draw the hne in:

LINE (10,10)-{20,20),2 'draw in color 2

1 'draw random lines in random colors
10 SCREEN 1,0,0,0: CLS
20 LINE -(RND^319,RND*199),RND*4
30 GOTO 20

1 'alternating pattern - line on, line off
10 SCREEN 1,0,0,0: CLS
20 FOR X=0 TO 319
30 LINE (X,0)-(X,199),X AND 1
40 NEXT

The next argument to LINE is B (box), or BF (fiUed
box). We can leave out color and include the
argument:

LINE (0,0)-(100,100),,B 'box in foreground

or we may include the color:

LINE (0,0)-(100,100),2,BF 'filled box color 2

4-170

LINE

Statement

The B tells BASIC to draw a rectangle with the
points i.xl,yl) and {x2,y2) as opposite corners. This
avoids having to give the four LINE commands:

LINE (X1,Y1)-(X2,Y1)
LINE (X1,Y1)-(X1,Y2)
LINE (X2,Y1)-(X2,Y2)
LINE {X1,Y2)-(X2,Y2)

which perform the equivalent function.

The BF means draw the same rectangle as B, but also
fill in the interior points with the selected color.

The last argument to line is style. LINE uses the
current circulating bit in s yle to plot (or store) points
on the screen. If the bit is 0 (zero), no point is
plotted. If the bit is 1 (one), a point is plotted.
After each point, the next bit position in style is
selected. When the last bit position in style is
selected, LINE "wraps around" and begins with the
first bit position again.

Note that a 0 (zero) hit indicates no store and does
not erase the existing point on the screen. You may
want to draw a background Une before a styled line
to force a known background.

The style option can be used to draw a dotted Une
across the screen by plotting (storing) every other
point. Because style is 16 bits wide, the pattern for a
dotted Une looks like this:

1010101010101010

This is equal to AAAA in hexadecimal notation.
For help in choosing the correct hexadecimal values,
see Appendix H, "Hexadecimal Conversion Tables."

4-171

LINE

Statement

Examples: To draw a dotted line:

10 SCREEN 1,0
20 LINE (0,0)-(319,199),,,&HAAAA

To draw a cyan box with dashes:

10 SCREEN 1,0
20 LINE (0,0)-(100,100),l,B,&HCCCC

In Cartridge BASIC, out-of-range coordinates are
not visible on the viewing surface. This is called line
clipping because the image that is outside of the
coordinate range is "chpped" at the boundaries of
the viewing surface.

The last point referenced after a LINE statement is
point (x2,y2). If you use the relative form for the
second coordinate, it is relative to the first
coordinate. For example,

LINE (100,100)-STEP (10,-20)

will draw a hne from (100,100) to (110,80).

This example will draw random filled boxes in
random colors.

10 CLS

20 SCREEN 1,0: COLOR 0,0
30 LINE -(RND*319,RND*199),RND*2+1,BF
40 GOTO 30 'boxes will overlap

4-172

UNE INPUT

Statement

Purpose: Reads an entire line (up to 254 characters) from the
keyboard into a string variable, ignoring delimiters.

Versions: Cassette Cartridge Compiler

Format: LINE INPUT[;]["prompt";] stringvar

Remarks:

"prompt"

stringvar

Example:

is a string constant that is displayed on
the screen before input is accepted. A
question mark is not printed u^ess it is
part of the prompt string.

is the name of the string variable or
array element to which the line will be
assigned. All input from the end of the
prompt to the Enter is assigned to
stringvar. Trailing blanks are ignored.

In Cartridge BASIC, if LINE INPUT is immediately
followed by a semicolon, then pressing Enter to end
the input line does not produce a carriage return/line
feed sequence on the screen. That is, the cursor [
remains on the same line as your response.

You can exit LINE INPUT by pressing the Fn key
followed by Break key. BASIC returns to command
level and displays Ok. You may then enter CONT to
resume execution at the LINE INPUT.

See example in the next section, "LINE INPUT #
Statement."

4-173

LINE INPUT #

Statement

Purpose: Reads an entire line (up to 254 characters), ignoring
delimiters, from a sequential file into a string
variable.

Versions: Cassette Cartridge Compiler

Format: LINE INPUT Ufilenum, stringvar

Remarks:

filenum is the number under which the file was
opened.

stringvar is the name of a string variable or array
element to which the line will be

assigned.

LINE INPUT # reads all characters in the sequential
file up to a carriage return. It then skips over the
carriage return/line feed sequence, and the next
LINE INPUT # reads aU characters up to the next
carriage return. (If a line feed/carriage return
sequence is encountered, it is preserved. That is, the
line feed/carriage return characters are returned as
part of the string.)

LINE INPUT # is especially useful if each line of a
file has been broken into fields, or if a BASIC
program saved in ASCII mode is being read as data
by another program.

LINE INPUT # can also be used for random files.

See Appendix B, "BASIC Diskette Input and
Output."

4-174

LINE INPUT #

Statement

Example: The following example uses LINE INPUT to get
information from the keyboard, where the
information is likely to have commas or other
delimiters in it. Then the information is written to a

sequential fUe, and read back out from the file using
LINE INPUT #.

Ok

10 OPEN "LIST" FOR OUTPUT AS #1
20 LINE INPUT "Address? ";C$
30 PRINT #1, C$
40 CLOSE 1
50 OPEN "LIST" FOR INPUT AS #1
60 LINE INPUT #1, C$
70 PRINT C$
80 CLOSE 1
RUN

Address?

Suppose you respond with DELRAY BEACH, FL
33445. The program continues:

Address? DELRAY BEACH, FL 33445

DELRAY BEACH, FL 33445
Ok

4-175

LIST

Command

Purpose: Lists the program currently in memory on the screen
or other specified device.

Versions: Cassette Cartridge Compiler

Format: LIST [linel] [-[line2]] [,filespec]

Remarks:

linel, line2 are valid line numbers in the range 0
to 65529. linel is the first line to be

listed. Iine2 is the last line to be

listed. A period (.) may be used for
either line number to indicate the

current line.

filespec is a string expression for the file
specification as outlined under
"Naming Files" in Chapter 3. If
filespec is omitted, the specified lines
are Usted on the screen.

Any listing to either the screen or the printer may be
interrupted by pressing the Fn key followed by the
Break key.

If the line range is omitted, the entire program is
listed.

4-176

LIST

Command

When the dash (-) is used in a Une range, three
options are available:

• If only linel is given, that line and all higher
numbered lines are hsted.

• If only linel is given, all lines from the beginning
of the program through linel are listed.

• If both line numbers are specified, aU Unes from
linel through linel, inclusive, are hsted.

When you Ust to a fUe on cassette or diskette, the
specified part of the program is saved in ASCII
format. This fUe may later be used with MERGE.

BASIC always returns to the command level after a
LIST is executed.

Example: To hst the entire program on the screen:

LIST

To hst line 35 on the screen:

LIST 35,"SCRN:"

To hst hnes 10 through 20 on the printer:

LIST 10-20, "LPTl:"

To hst from the first hne through hne 200 to a fUe
named "BOB" on cassette:.

LIST -200,"CAS1:B0B"

4-177

LUST

Command

Purpose: Lists all or part of the program currently in memory
on the printer (LPTl:).

Versions: Cassette Cartridge Compiler

Format: LLIST [lineal- [line2]]

Remarks: The line number ranges for LLIST work the same as
for LIST.

BASIC always returns to command level after an
LLIST is executed.

Example: To print a hsting of the entire program:

LLIST

To print line 35:

LLIST 35

To Ust lines 10 through 20 on the printer:

LLIST 10-20

To print all lines from line 100 through the end of
the program:

LLIST 100-

To print the first line through hne 200:

LLIST -200

4-178

LOAD

Command

Purpose: Loads a program from the specified device into
memory, and optionally runs it.

Versaons: Cassette Cartridge Compiler

Format: LOAD filespec[,R]

Remarks:

filespec is a string expression for the file
specification. It must conform to the
rules outlined under "Naming Files" in
Chapter 3, otherwise an error occurs
and the load is canceled.

LOAD closes all open files and deletes all variables
and program lines currently residing in memory
before it loads the specified program. If the R option
is omitted, BASIC returns to direct mode after the
program is loaded.

However, if the R option is used with LOAD, the
program is run after it is loaded. In this case all open
data files are kept open. Thus, LOAD with the R
option may be used to chain several programs (or
segments of the same program). Information may be
passed between the programs using data files.

LOAD filespec,R is equivalent to RUN filespec.

If you are using Cassette BASIC and the device
name is omitted, CAS 1: is assiuned. CASListhe
only allowable device for LOAD in Cassette BASIC
and for Cartridge BASIC without DOS.

4-179

LOAD

Command

If you are using Cartridge BASIC and DOS is
present, the DOS default diskette drive is used if the
device is omitted.

The extension .HAS is added to the filename if no

extension is supplied and the filename is eight
characters or less.

Notes when using CASl:

1. If the LOAD statement is entered in direct mode,
the file names on the tape will be displayed on
the screen followed by a period (.) and a single
letter indicating the type of file. This is followed
by the message Skipped for the files not matching
the named file, and Found when the named file is
foimd. Types of fUes and their corresponding
letter are:

.B for BASIC programs in internal format
(created with SAVE command)

.P for protected BASIC programs in internal
format (created with SAVE ,P command)

.A for BASIC programs in ASCII format
(created with SAVE ,A command)

.M for memory image files (created with
BSAVE command)

•D for data files (created by OPEN followed
by output statements)

To see what files are on a cassette tape, rewind
the tape and enter some name that is known not
to be on the tape. For example, LOAD
"CASl:NOWHERE". All file names will then be
displayed.

4-180

LOAD

Command

If the LOAD command is executed in a BASIC

program, the file names skipped and found are
not displayed on the screen.

2. Note that Fn and Break keys may be typed at any
time during LOAD. Between files or after a
time-out period, BASIC will exit the search and
return to command level. Previous memory
contents remain unchanged.

3. If CASl: is specified as the device and the
filename is omitted, the next program file on the
tape is loaded.

Example:

LOAD "MENU"

Loads the program named MENU, but does not run
it.

LOAD "INVENT",R

Loads and runs the program INVENT.

RUN "INVENT"

Same as LOAD "INVENT",R.

LOAD "A:REPORT.BAS"

Loads the file REPORT.BAS from diskette drive A.

Note that the .HAS did not have to be specified.

LOAD "CASl:"

Loads the next program on the tape.

4-181

LOC

Function

Purpose: Returns the current position in the file.

Note: This function requires the use of DOS 2.10.

Versions: Cassette Cartridge Compiler

Format: v = IXiCifilenum)

Remarks:

filenum is the file number used when the file was
opened.

With random files, LOC returns the record number
of the last record read or written to a random file.

With sequential files, LOC returns the number of
records read from or written to the fUe since it was

opened. (A record is a 128 byte block of data.)
When a file is opened for sequential input, BASIC
reads the first sector of the file, so LOC will return a
1 even before any input from the file.

For a communications file, LOC returns the number
of characters in the input buffer waiting to be read.
The default size for the input buffer is 256
characters, but you can change this with the /€:
option on the BASIC command. If there are more
than 255 characters in the buffer, LOC returns 255.
Since a string is limited to 255 characters, this
practical limit alleviates the need for you to test for
string size before reading data into it. If fewer than
255 characters remain in the buffer, then LOC
returns the actual count.

4-182

LOC

Function

Example:

200 IF L0C(1)>50 THEN STOP

This first example stops the program if we've gone
past the 50th record in the file.

300 PUT #1,L0C(1)

The second example could be used to re-write the
record that was just read.

4-183

LOCATE

Statement

Purpose: Places the cursor on the active screen. Optional
parameters turn the blinking cursor on and off and
define the size of the blinking cursor.

Versions: Cassette Cartridge Compiler

Format: LOCATE [row\i,{coV!i,{cursor\[,\stari\ [,5top]]]]

Remarks:

row is a numeric expression in the range 1 to
25. It indicates the screen line number

where you want to place the cursor.

col is a numeric expression in the range 1 to
20,1 to 40 or 1 to 80, depending upon
screen width. It indicates the screen

column number where you want to place
the cursor.

cursor is a value indicating whether the cursor is
visible or not. A 0 (zero) indicates off, 1
(one) indicates on.

start is the cursor starting scan line. It must be
a niuneric expression in the range 0 to 31.

stop is the cursor stop scan line. It also must
be a numeric expression in the range 0 to
31.

cursor, start and stop do not apply to graphics mode.

start and stop allow you to make the cursor any size
you want. You indicate the starting and ending scan
lines. The scan lines are numbered from 0 at the top

4-184

LOCATE

Statement

of the character position. The bottom scan line is 7.
If start is given and stop is omitted, stop assumes the
value of start. If start is greater than stop, you will get
a two-part cursor. The cursor "wraps" from the
bottom line back to the top.

After a LOCATE statement, I/O statements to the
screen begin placing characters at the specified
location.

When a program is running, the cursor is normally
off. You can use LOCATE „1 to turn it back on.

Normally, BASIC will not print to line 25. However,
you can turn off the soft key display using KEY
OFF, then use LOCATE 25,1: PRINT... to put
things on line 25.

Any parameter may be omitted. Omitted parameters
assume the current value.

Any values entered outside the ranges indicated will
result in an Illegal function call error. Previous values
are kept.

Examples:

10 LOCATE 1,1

Moves the cursor to the home position in the upper
left-hand corner of the screen.

20 LOCATE ,,1

Makes the bUnking cursor visible; its position
remains unchanged.

30 LOCATE ,,,7

4-185

LOCATE

Statement

Position and cursor visibility remain unchanged.
Sets the cursor to display at the bottom of the
character, (starting and ending on scan Une 7).

40 LOCATE 5,1,1,0,7

Moves the cursor to line 5, column 1. Makes the
cursor visible, covering the entire character cell
starting at scan Une 0 and ending on scan line 7.

7^

4-186

LOF

Function

Purpose: Returns the number of bytes allocated to the file
(length of the file).

Versions: Cassette Cartridge Compiler
♦ **

Format: v = LOF(/Vfe«M/n)

Remarks:

Example:

filenum is the file number used when the file was
opened.

For diskette files created by BASIC 1.10, LOF will
return a multiple of 128. For example, if the actual
data in the file is 257 bytes, the number 384 will be
returned.

For diskette files created outside BASIC (for
example, by using EDLIN) and for files created by
Cartridge BASIC, LOF returns the actual number of
bytes allocated to the file.

For communications, LOF returns the amount of
free space in the input buffer. That is,
size-LOC(filenunt), where size is the size of the
communications buffer, which defaults to 256 but
may be changed with the /€: option on the BASIC
command. Use of LOF may be used to detect when
the input buffer is getting fuU. In practicality, LOC
is adequate for this purpose, as demonstrated in the
example in Appendix F, "Communications."

These statements will get the last record of the file
named BIG, assuming BIG was created with a record
length of 128 bytes:

4-187

LOF

Function

10 OPEN "BIG" AS #1
20 GET #1,L0F(1)/128

4-188

LOG

Function

Purpose: Returns the natural logarithm of x.

Versions: Cassette Cartridge Compiler
s|c:(::|c *** ***

Format: v = LOG(a:)

Remarks:

X must be a numeric expression which is greater
than zero.

The natural logarithm is the logarithm to the base e.

LOG(x:) can be calculated in single precision in
Cassette BASIC and in either single or double
precision in Cartridge BASIC.

Example: The first example calculates the logarithm of the
expression 45/7:

Ok
PRINT L0G(45/7)
1.860752

Ok

4-189

LOG

Function

The second example calculates the logarithm of e
and of e^\

Ok
E= 2.718282
Ok
? LOG(E)
1

Ok
? LOG(E*E)
2

Ok

4-190

LPOS

Function

Purpose: Returns the current position of the print head within
the printer buffer for LPTl:.

Versions: Cassette Cartridge Compiler

Format: v = LPOS(n)

Remarks:

is a numeric expression which is a dummy
argument in Cassette BASIC. In Cartridge
BASIC, n indicates which printer is being
tested, as follows:

0 or 1 LPTl:

Example:

The LPOS function does not necessarily give the
physical position of the print head on the printer.

In this example, if the hne length is more than 60
characters long we send a carriage return character
to the printer so it will skip to the next hne.

100 IF LP0S(0)>60 THEN LPRINT CHR$(13)

4-191

LPRINT and LPRINT USING

Statements

Purpose: Prints data on the printer (LPTl:).

Versions: Cassette Cartridge Compiler
:ic:ic:|c

Format:

Remarks:

LPRINT [list of expressions] [;]

LPRINT USING v$; list of expressions [;]

list of expressions
is a list of the numeric and/ or string
expressions that are to be printed. The
expressions must be separated by commas or
semicolons.

is a string constant or variable which identifies
the format to be used for printing. This is
explained in detail xmder "PRINT USING
Statement."

These statements function hke PRINT and PRINT

USING, except output goes to the printer. See
"PRINT Statement" and "PRINT USING

Statement."

LPRINT assumes an 80-character wide printer. That
is, BASIC automatically inserts a carriage return/line
feed after printing 80 characters. This wiU result in
two Unes being skipped when you print exactly 80
characters, unless you end the statement with a
semicolon. You may change the width value with a
WIDTH "LPTl:" statement.

If you do a form feed (LPRINT CHR$(12);)
followed by another LPRINT and the printer takes

4-192

LPRINT and LPRINT USING

Statements

more than 20 seconds to do the form feed, you may
get a Device Timeout error on the second LPRINT.
To avoid this problem, do the following:

1 ON ERROR GOTO 65000

65000 IF ERR = 24 THEN RESUME '24=t1meout

You might want to test ERL to make sure the
timeout was caused by an LPRINT statement.

Example: This is an example of sending special control
characters to the IBM 80 CPS Matrix Printer using
LPRINT and CHR$. The printer control characters
are hsted in the the PC jr Technical Reference
manual.

10 LPRINT CHR$(14);" Title Line"
^ 20 FOR 1=2 TO 4

30 LPRINT "Report line";I ,
40 NEXT I

50 LPRINT CHR$(15);"Condensed print; 132 char/line"
60 LPRINT CHR$(18);"Return to normal"
70 LPRINT CHR$(27);"E";
80 LPRINT "This is emphasized print"
90 LPRINT CHR$(27);"F^'
100 LPRINT "Back to normal again"

The output produced by this program looks like this:

4041

4-193

LSET and RSET

Statements

Purpose: Moves data into a random file buffer (in preparation
for a PUT (file) statement).

Versions: Cassette Cartridge

Compiler

Format:

Remarks:

LSET stringvar = x$

RSET stringvar = x$

stringvar is the name of a variable that was
defined in a FIELD statement.

x$ is a string expression for the information
to be placed into the field identified by
stringvar.

If x$ requires fewer bytes than were specified for
stringvar in the FIELD statement, LSET left-justifies
the string iu the field, and RSET right-justifies the
string. (Spaces are used to pad the extra positions.)
If x$ is longer than stringvar, characters are dropped
from the right.

Numeric values must be converted to strings before
they are LSET or RSET. See "MKI$, MKS$,
MIUD$ Functions" in this chapter.

Refer to Appendix B, "BASIC Diskette Input and
Output" for a complete explanation of using random
files.

4-194

LSET and RSET

Statements

Note: LSET or RSET may also be used with a
string variable which was not defined in a FIELD
statement to left-justify or right-justify a string in
a given field. For example, the program lines;

110 A$=SPACE${20)
120 RSET A$=N$

right-justify the string N$ in a 20-character
field. This can be useful for formatting printed
output.

Example: This example converts the numeric value AMT into a
string, and left-justifies it in the field A$ in
preparation for a PUT (fUe) statement.

150 LSET A$=MKS$(AMT)

4-195

MERGE

Command

Purpose:

Versions:

Merges the lines from an ASCII program file into the
program currently in memory.

Cassette

Cartridge Compiler

Format: MERGE filespec

Remarks:

filespec is a string expression for the file
specification. It must conform to the
rules for naming files as outlined in
"Naming Files" in Chapter 3; otherwise
an error occurs and the MERGE is

canceled.

The device is searched for the named fUe. If found,
the program lines in the device file are merged with
the lines in memory. If any lines in the file being
merged have the same line number as lines in the
program in memory, the lines from the file replace
the corresponding lines in memory.

After the MERGE command, the merged program
resides in memory, and BASIC returns to command
level.

In Cassette BASIC, if the device name is omitted,
CASl: is assumed. CASl: is the only allowable
device for MERGE in Cassette BASIC and

Cartridge BASIC when DOS is not present. With
Cartridge BASIC, if the device name is omitted and
DOS is present, the DOS defaiilt drive is assmned.

4-196

MERGE

Command

If CASl: is specified as the device name and the
filename is omitted, the next ASCII program file
encountered on the tape is merged.

If the program being merged was not saved in ASCII
format (using the A option on the SAVE command),
a Bad file mode error occurs. The program in
memory remains unchanged.

Example:

MERGE "A;NUMBRS"

This merges the file named "NUMBRS" on drive A
with the program in memory.

4-197

MID$

Function and Statement

Purpose: Returns the requested part of a given string. When
used as a statement, as in the second format, replaces
a portion of one string with another string. ^

Versions: Cassette Cartridge Compiler

Format: As a function:

v$ = MID$(x^,n[, /n])

As a statement:

MID$(v.^,m[, w]) = y$

Remarks: For the function (v$=MID$...):

x$ is any string expression.

n is an integer expression in the range 1 to 255.

m is an integer expression in the range 0 to 255.

The function returns a string of length m characters
from x$ beginning with the nth character. If m is
omitted or if there are fewer than m characters to the

right of the nth character, all rightmost characters
beginning with the nth character are returned. If m
is equal to zero, or if n is greater than LEN(x:^), then
MID$ returns a null string.

Also see the LEFT$ and RIGHTS functions.

4-198

MID$

Function and Statement

For the statement (MID$...=y$):

is a string variable or array element that will
have its characters replaced.

n is an integer expression in the range 1 to 255.

m is an integer expression in the range 0 to
255.

y$ is a string expression.

The characters in v^, beginning at position n, are
replaced by the characters in y$. The optional m
refers to the number of characters from that will

be used in the replacement. If m is omitted, all of y$
is used.

However, regardless of whether m is omitted or
included, the length of does not change. For
example, if v$ is four characters long and y$ is five
characters long, then after the replacement v,^ will
contain only the first four characters of y$.

Note: If either « or m is out of range, an lUegal
function call error is returned.

Example: The first example uses the MID$ function to select
the middle portion of the string B$.

Ok
10 A$="600D "
20 B$="MORNING EVENING AFTERNOON"
30 PRINT A$;MID$(B$,9,7)
RUN

GOOD EVENING
Ok

4-199

MID$

Function and Statement

The next example uses the MID$ statement to
replace characters in the string A$.

Ok /^\
10 A$="MARATHON, GREECE" '
20 MID$(A$,11)="FLA.
30 PRINT A$
RUN

MARATHON, FLA.
Ok

Note in the second example how the length of A$
was not changed.

4-200

MKDIR

Command

Purpose: Creates a directory on the specified diskette.

Note: This command requires the use of DOS
2.10.

Versions: Cassette Cartridge CompUer

Format: MKDIR path

Remarks:

path is a string expression, not exceeding 63
characters, that identifies the new directory to
be created. For more information about paths
refer to "Naming Files" and "Tree-Structured
Directories" in Chapter 3.

Examples: From the root directory, create a sub-directory called
SALES.

MKDIR "SALES"

From the root directory, create a sub-directory
called MIKE under the directory SALES.

MKDIR "SALES\MIKE"

From the root directory, create a sub-directory
called PAM under the directory MIKE.

MKDIR "SALES\MIKE\PAM"

4-201

MKDIR

Command

From the root directory, create a sub-directory
caUed ACCOUNTING.

MKDIR "ACCOUNTING"

Make ACCOUNTING the current directory, then
create two sub-directories called SHANNON and

CHELLE.

CHOIR "ACCOUNTING":MKDIR "SHANNON":MKDIR "CHELLE"

The same structure could have been created from

the root by entering;

MKDIR "ACCOUNTING\SHANNON"

MKDIR "ACCOUNTING\CHELLE"

By following the above examples, you have created
a tree structure that looks like this:

ROOT

/ \

/ \
SALES ACCOUNTING

/ / \

/ / \
MIKE SHANNON CHELLE

/
/

RAM

4-202

MKI$, MKS$, MKD$

Functions

Purpose: Convert numeric type values to string type values.

Versions: Cassette Cartridge Compiler

Format: v.^ = MKI$ (mteger expression)

v$ = MKS$(«ng/e-precMioM expression)

v$ = MKD$(ddM6fe-precMio« expression)

Remarks: Any numeric value that is placed in a random file
buffer with an LSET or RSET statement must be

converted to a string. MKI$ converts an integer to a
2-byte string. MKS$ converts a single-precision
number to a 4-byte string. MKD$ converts a
double-precision number to an 8-bjrte string.

These functions differ from STR$ because they do
not really change the bytes of the data, just the way
BASIC interprets those bytes.

See also "CVI, CYS, CVD Functions" in this
chapter and Appendix B, "BASIC Diskette Input and|
Output."

Example: This example uses a random file (#1) with fields
defined in line 100. The first field, I>$, is intended to
hold a numeric value, AMT. Line 110 converts
AMT to a string value using MKS$ and uses LSET
to place what is really the value of AMT into the
random file buffer. Line 120 places a string into the
buffer (we don't need to convert a string); then Une
130 writes the data from the random file buffer to

the file.

4-203

MKI$, MKS$, MKD$

Functions

100 FIELD #1, 4 AS 0$, 20 AS N$
110 LSET 0$ = MKS$(AMT)
120 LSET N$ = A$
130 PUT #1

4-204

MOTOR

Statement

Purpose: Turns the cassette player on and off from a program.

Versions: Cassette Cartridge Compiler
9ic9ie:fc

Format:

Remarks:

MOTOR [state]

state is a numeric expression indicating on or
off.

If state is non zero, the cassette motor is turned on.
If state is zero, the cassette motor is turned off.

If state is omitted, the cassette motor state is
switched. That is, if the motor is off, it is turned on
and vice-versa.

Example: The following sequence of statements turns the
cassette motor on, then off, then back on again.

10 MOTOR 1
20 MOTOR 0
30 MOTOR

4-205

NAME

Command

Purpose: Changes the name of a diskette file. The NAME
command in BASIC is similar to the RENAME

command in DOS.

Note: This command requires the use of DOS
2.10. If DOS 2.10 is not present an Illegal
function call error will occur.

Versions: Cassette Cartridge Compiler

Format;

Remarks:

NAME filespec AS filename

filespec is a file specification as outlined under
"Naming Files" in Chapter 3.

filename will be the new filename. It must be a
vaUd filename as outlined in the same

section.

Example:

The file specified by filespec must exist and filename
must not exist on the diskette, otherwise an error wUl
result. If the device name is omitted, the DOS
default drive is assumed. Note that the file extension

does not default to .BAS.

After a NAME command, the file exists on the same
diskette, in the same area of diskette space, with the
new name.

NAME "AiACCTS.BAS" AS "LEDGER.BAS"

4-206

NAME

Command

In this example, the file that was formerly named
ACCTS.BAS on the diskette in drive A is now

named LEDGER.BAS.

4-207

NEW

Command

Purpose:

Versions:

Deletes the program currently in memory and clears
all variables.

Cassette Cartridge

Compiler

Format:

Remarks:

Example:

NEW

NEW is usually used to free memory before entering
a new program. BASIC always returns to command
level after NEW is executed. NEW causes all files to

be closed, turns trace off if it was on, and resets to
music background. (See "TRON and TROEF
Commands," later in this chapter).

Ok

NEW

Ok

The program that had been in memory is now
deleted.

4-208

NOISE

Statement

Purpose: Generates noise through the external speaker.

Versions: Cassette Cartridge Compiler

Format: NOISE source,volume,duration

Remarks:

source is the noise source. It is a numeric

expression in the range 0 to 7. If source
is in the range 0 to 3, then periodic noise
is selected. If source is in the range 4 to
7, then white noise is selected.

Periodic White Source is Oock Frequency (3.579)

0 4 3.579/512 (high pitch, less coarse
hiss)

1 5 3.579/1024
2 6 3.579/2048 (low pitch, more

coarse hiss)
3 7 source is frequency from voice 3

Note that for source values of 3 and 7, the frequency
of voice 3 is used instead of the system clock. The
voice 3 frequency can be set by the PLAY statement
or the SOUND statement.

volume is a numeric expression in the range 0 to
15.

duration is the desired duration in clock ticks. The

clock ticks occur 18.2 times per second.
duration must be a numeric expression in
the range 0 to 65535.

4-209

NOISE

Statement

Example:

Sound produced by the NOISE Statement will go to
the external speaker. A SOUND ON statement must
he executed before using NOISE or you will get an
Illegal function call error.

If you want to use a noise source of 3 or 7, then refer
to the "PLAY Statement" and the "SOUND

Statement" in this chapter for information on
multiple voices.

10 SOUND ON

20 FOR N=0 TO 7

30 NOISE N,15,250
40 PLAY "","","V0"
50 FOR 1=1 to 6

60 PLAY "","","V15;0=I;CDEF"
70 NEXT I

80 NEXT N

This example demonstrates all the possible noise
sources. Note the use of three voices with the play
statement.

7^

4-210

OCT$

Function

Purpose: Returns a string which represents the octal value of
the decimal argument.

Versions: Cassette Cartridge Compiler

Format:

Remarks:

Example:

= OCT$(/i)

n is a numeric expression in the range -32768 to
65535.

If n is negative, the two's complement form is used.
That is, OCT$(-/j) is the same as OCT$(65536-n).

See the HEX$ function for hexadecimal conversion.

Ok
PRINT 0CT$(24)
30

Ok

This example shows that 24 in decimal is 30 in
octal.

4-211

ON COM(n)
Statement

Purpose: Sets up a line number for BASIC to trap to when
there is information coming into the communications
buffer.

Versions: Cassette Cartridge Compiler

Format: ON COM(n) GOSUB line

Remarks:

n is the mnnber of the communications ports (1
or 2).

line is the line number of the beginning of the trap
routine. Setting line equal to 0 (zero) disables
trapping of communications activity for the
specified port.

A COM(n) ON statement must be executed to
activate this statement for port n. After COM(n)
ON, if a non-zero line number is specified in the ON
COM(n) statement then every time the program
starts a new statement, BASIC checks to see if any
characters have come in to the specified
communications port. If so, BASIC performs a
GOSUB to the specified line.

If COM(/i) OFF is executed, no trapping takes place
for the port. Even if communications activity does
take place, the event is not remembered.

If a COM(/i) STOP statement is executed, no
trapping takes place for the port. However, any
characters being received are remembered so an
immediate trap takes place when COM(«) ON is
executed.

4-212

ON COM(n)
Statement

When the trap occurs an automatic COM(m) STOP
is executed so recmsive traps can never take place.
The RETURN from the trap routine automatically
does a COM(n) ON unless an explicit COM(n) OFF
was performed inside the trap routine.

Event trapping does not take place when BASIC is
not executing a program. When an error trap
(resulting from an ON ERROR statement) takes
place all trapping is automatically disabled (including
ERROR, STRIG(n), PEN, COM(n), and KEY(n)).

Typically, the communications trap routine reads an
entire message from the communications line before
returning back. It is not recommended that you use
the communications trap for single character
messages since at high baud rates the overhead of
trapping and reading for each individual character
may allow the interrupt buffer for communications to
overflow.

You may use RETURN line if you want to go back
to the BASIC program at a fixed line number. Use
of this non-local return must be done with care,
however, since any other GOSUBs, WHILEs, or
FORs that were active at the time of the trap will
remain active.

4-213

ON COM(n)
Statement

Example:

150 ON COM(l) GOSUB 500
160 COMd) ON

500 REM incoming characters

590 RETURN 300

This example sets up a trap routine for
communications at line 500.

4-214

ON ERROR

Statement

Purpose: Enables error trapping and specifies the first line of
the error handling subroutine.

Versioiis: Cassette Cartridge
♦ill* ***

Format: ON ERROR GOTO line

Compiler

Remarks:

line is the line number of the first line of the error
trapping routine. If the line number does not
exist, an Undefined line ninnber error results.

Once error trapping has been enabled, all errors
detected (including direct mode errors) will cause a
jump to the specified error handling subroutine.

To disable error trapping, execute an ON ERROR
GOTO 0. Subsequent errors will print an error
message and halt execution. An ON ERROR GOTO|
0 statement that appears in an error trapping
subroutine causes BASIC to stop and print the error
message for the error that caused the trap. It is
recommended that all error trapping subroutines
execute an ON ERROR GOTO 0 if an error is
encountered for which there is no recovery action.

BASIC considers itself to be within the error
trapping routine from the time an error occurs and it
branches to the line specified by the ON ERROR
statement, until a RESUME statement is
encoimtered. You use the RESUME statement to
exit from the error trapping routine; a simple GOTO
statement is not sufficient. Refer to "RESUME
Statement" in this chapter. Because error trapping
does not occur within the error trapping routine, an

4-215

ON ERROR

Statement

Example:

ON ERROR GOTO line (within the error trapping
routine), where line is anything other than 0, will not
work.

Note: If an error occurs during execution of an
error handling subroutine, the BASIC error
message is printed and execution terminates.
Error trapping does not occur within the error
handhng subroutine.

10 ON ERROR GOTO 100
20 LPRINT "This goes to the printer."
30 END

100 IF ERR=27 THEN PRINT "Check printer"
: RESUME

This example shows how you might trap a common
error—forgetting to put paper in the printer, or
forgetting to switch it on.

4-216

ON-GOSUB and ON-GOTO

Statements

Purpose:

Versions:

Branches to one of several specified line numbers,
depending on the value of an expression.

Cassette

Cartridge
:ie4c%

Compiler

Format: ON n GOTO line[,line]...

ON n GOSUB line[,line]..

Remarks:

n is a numeric expression which is rounded to
an integer, if necessary. It must be in the
range 0 to 255, or an Illegal function call error
occurs.

line is the line number of a line you wish to branch|
to.

The value of n determines which line niimber in the

list will be used for branching. For example, if the
value of »is 3, the third line number in the list will
be the destination of the branch.

In the ON-GOSUB statement, each Une number in
the list must be the first line number of a subroutine.

That is, you eventually need to have a RETURN
statement to bring you back to the line following the
ON-GOSUB.

If the value of n is zero or greater than the number of
items in the Ust (but less than or equal to 255),
BASIC continues with the next executable

statement.

4-217

ON-GOSUB and ON-GOTO

Statements

Example: The first example branches to hne 150 if L-1 equals
1, to hne 300 if L-1 equals 2, to hne 320 if L-1
equals 3, and to hne 390 if L-1 equals 4. If L-1 is
equal to 0 (zero) or is greater than 4, then the
program just goes on to the next statement.

100 ON L-1 GOTO 150,300,320,390

The next example shows how to use an
ON-GOSUB statement.

100 REM display menu
110 PRINT "1. Routine 1"
120 PRINT "2. Routine 2"
130 PRINT "3. Routine 3"
140 PRINT "4. Routine 4"
150 INPUT "Your choice?"; CHOICE
160 ON CHOICE GOSUB 200, 300, 400, 500
170 GOTO 100 ' redisplay menu after routine is done
200 REM start of first routine

290 RETURN

300 REM start of second routine

4-218

ON KEY(n)

Statement

Purpose: Sets up a line number for BASIC to trap to when the
specified function key or cursor control key is
pressed.

Versions: Cassette Cartridge Compiler
*** (**)

Format: ON KEY(n) GOSUB line

Remarks:

n is a numeric expression in the range 1 to 20
indicating the key to be trapped, as follows:

1-10 function keys Fn and F1 to FIG
11 Cursor Up
12 Cursor Left

13 Cursor Right
14 Cursor Down

15-20 keys defined by the form:
KEY n,CHR.$(shift)+CHR$(scan
code). See "KEY Statement" and
"KEY(n) Statement" in this chapter
for more information. This form is

not supported in the BASIC
Compiler.

line is the line number of the beginning of the
trapping routine for the specified key. Setting
line equal to 0 (zero) stops trapping of the
key.

A KEY(n) ON statement must be executed to
activate this statement. After KEY(«) ON, if a
non-zero line number is specified in the ON KEY(/i)
statement then every time the program starts a new

4-219

ON KEY(n)
Statement

Statement, BASIC checks to see if the specified key
was pressed. If so, BASIC performs a GOSUB to
the specified line.

If a KEY(«) OFF statement is executed, no trapping
takes place for the specified key. Even if the key is
pressed, the event is not remembered.

If a KEY(«) STOP statement is executed, no
trapping takes place for the specified key. However,
if the key is pressed the event is remembered, so an
immediate trap takes place when KEY(«) ON is
executed.

When the trap occurs an automatic KEY(«) STOP is
executed so recursive traps can never take place.
The RETURN from the trap routine automatically
does a KEY(«) ON unless an explicit KEY(«) OFF
was performed inside the trap routine.

Event trapping does not take place when BASIC is
not executing a program. When an error trap
(resulting from an ON ERROR statement) takes
place all trapping is automatically disabled (including
ERROR, STRIG(«), PEN, COM(«), and KEY(«)).

Key trapping may not work when other keys are
pressed before the specified key. The key that
caused the trap caimot be tested using INPUTS or
INKEY$, so the trap routine for each key must be
different if a different function is desired.

You may use RETURN line if you want to go back
to the BASIC program at a fixed line number. Use
of this non-local return must be done with care,
however, since any other GOSUBs, WHILEs, or
FORs that were active at the time of the trap will
remain active.

4-220

ON KEY(n)

Statement

KEY(«) ON has no effect on whether the soft key
values are displayed at the bottom of the screen.

Example: The following is an example of a trap routine for
function key 5.

100 ON KEY(5) GOSUB 200
110 KEY(5) ON

200 REM function key 5 pressed

290 RETURN 140

4-221

ON KEY(n)
Statement

This example traps Fn/Break and Ctrl-Alt-Del.
Note that this example only works in Cartridge
BASIC.

10 KEY 15,CHR$(&H04)+CHR$(70) ' Fn/Break
20 KEY 16,CHR$(&H04+&H08)+CHR$(83)

'Ctrl-Alt-Del
30 ON KEY (15) GOSUB 1000
40 ON KEY (16) GOSUB 2000
50 KEY (15) ON: KEY (16) ON

1000 PRINT "Trapping for Fn and Break"
1010 RETURN
2000 TRAPS=TRAPS+1
2010 ON TRAPS GOTO 2100,2200,2300,2400,2500
2020 '
2100 PRINT "1st trap of System Reset":RETURN
2200 PRINT "2nd trap of System Reset":RETURN
2300 PRINT "3rd trap of System Reset":RETURN
2400 PRINT "4th trap of System Reset":RETURN
2500 KEY (16) OFF 'Disable trap of Sys. Reset
2510 RETURN

4-222

ON PEN

Statement

Purpose: Sets up a line number for BASIC to transfer control
to when the light pen is activated.

Versions: Cassette Cartridge

Format: ON PEN GOSUB line

Compiler
(»♦)

Remarks:

line is the line number of the beginning of the trap
routine for the light pen. Using a line number
of 0 disables trapping of the light pen.

A PEN ON statement must be executed to activate
this statement. After PEN ON, if a non-zero line
number is specified in the ON PEN statement, then
every time the program starts a new statement i
BASIC will check to see if the pen was activated. If
so, BASIC performs a GOSUB line.

If PEN OFF is executed, no trapping takes place.
Even if the light pen is activated, the event is not
remembered.

If a PEN STOP statement is executed, no trapping
takes place, but pen activity is remembered so that
an immediate trap takes place when PEN ON is
executed.

When the trap occurs, an automatic PEN STOP is
executed so recursive traps can never take place.
The RETURN from the trap routine automatically
does a PEN ON imless an explicit PEN OFF was
performed inside the trap routine.

4-223

ON PEN

Statement

Event trapping does not take place when BASIC is
not executing a program. When an error trap
(resulting from an ON ERROR statement) takes
place all trapping is automatically disabled (including
ERROR, STRIG(n), PEN, COM(n), and KEY(n)).

PEN(O) is not set when pen activity causes a trap.

You may use RETURN line if you want to go back
to the BASIC program at a fixed Une number. Use
of this non-local return must be done with care,
however, since any other GOSUBs, WHILEs, or
FORs that were active at the time of the trap wiU
remain active.

Note: Do not try any cassette I/O while PEN is
ON.

Example: This example sets up a trap routine for the Ught pen.

10 ON PEN GOSUB 500
20 PEN ON

500 REM subroutine for pen

650 RETURN 30

4-224

ON PLAY(n)
Statement

Purpose: Allows continuous music to play during program
' ̂ execution.

Versions: Cassette Cartridge Compiler

Format: ON PLAY(n) GOSUB line

Remarks:

line

is an integer expression in the range 1 to 32
indicating the notes to be trapped. Values
entered outside of this range result in an
niegal function call error.

is the beginning line number of the trap
routine for PLAY. A line number of 0 (zero)
stops play trapping.

A PLAY ON statement must be used to start the ON

PLAY(n) statement. After PLAY ON, if a non-zero
line number is specified in the PLAY(n) statement,
each time the program starts a new statement BASIC
checks to see if the music buffer has gone from n to
n-1 notes. If so, BASIC performs a GOSUB to the |
specified line.

If multiple voices are playing simultaneously the last
voice to go from n to n-l in the queue will cause
BASIC to perform the GOSUB to the specified line.

If PLAY OFF is used, no trapping takes place,
if a play activity takes place, the event is not
remembered.

Even

4-225

ON PLAY(n)
Statement

If a PLAY STOP statement is used, no trapping
takes place, but play activity is remembered so that
an immediate trap takes place when PLAY ON is
executed.

When the trap occurs, an automatic PLAY STOP is
run so recursive traps can never take place. The
RETURN from the trap routine automatically does a
PLAY ON unless an explicit PLAY OFF was
performed inside the trap routine.

Event trapping does not take place when BASIC is
not running a program. When an error trap
(resulting from an ON ERROR statement) takes
place all trapping is automatically disabled (including
ERROR, STRIG(«), PEN, COM(n), and KEY(n)).

You can use RETURN line if you want to go back to
the BASIC program at a fixed line number. You
must use this non-local return with care, however,
since any other GOSUBs, WHILEs, or FORs that
were active at the time of the trap will remain active.

Notes:

1. A PLAY event trap is not issued if the music
buffer is already empty when a PLAY ON
statement is performed.

2. Be careful choosing values for n. For example:
ON PLAY(32) causes so many event traps that
little time remains to run the rest of the program.

Refer to the "PLAY(n) Function" in this chapter for
additional information.

4-226

ON PLAY(n)
Statement

Example: This example sets up a trap routine which is invoked
when five notes are left in the background music
buffer.

10 ON PLAY{5) GOSUB 500
20 PLAY ON

500 REM subroutine for background music

650 RETURN 30

4-227

ON STRIG(n)
Statement

Purpose:

Versions:

Format:

Remarks:

Sets up a line number for BASIC to trap to when one
of the joystick buttons (triggers) is pressed.

Cassette Cartridge Compiler

ON STRIG(«) GOSUB line

may be 0, 2,4, or 6, and indicates the button
to be trapped as follows:

0 button A1

button B1

button A2

button B2

line is the beginning line number of the trap
routine for STRIG. A line number of 0 (zero)
stops trapping of the joystick button.

A STRIG(«) ON statement must be executed to
activate this statement for button n. If STRIG(«)
ON is executed and a non-zero line niunber is

specified in the ON STRIG(n) statement, then every
time the program starts a new statement BASIC
checks to see if the specified button has been
pressed. If so, BASIC performs a GOSUB to the
specified line.

If STRIG(m) off is executed, no trapping takes
place for button n. Even if the button is pressed, the
event is not remembered.

4-228

ON STRIG(n)
Statement

If a STRIG(«) STOP statement is executed, no
trapping takes place for button n, but the button
being pressed is remembered so that an immediate
trap takes place when STRIG(n) ON is executed.

When the trap occurs, an automatic STRIG(n) STOP
is executed so recursive traps can never take place.
The RETURN from the trap routine automatically
does a STRIG(n) ON unless an explicit STRIG(«)
OFF was performed inside the trap routine.

Event trapping does not take place when BASIC is
not executing a program. When an error trap
(resulting from an ON ERROR statement) takes
place all trapping is automatically disabled (including
ERROR, STRIG(n), PEN, COM(n), and KEY(/i)).

Using STRIG(n) ON will activate the interrupt
routine that checks the button status for the specified
joy stick button. Downstrokes that cause trapping
will not set functions STRIG(O), STRIG(2), I
STRIG(4), or STRIG(6).

You may use RETURN line if you want to go back
to the BASIC program at a fixed line munber. Use
of this non-local return must be done with care,
however, since any other GOSUBs, WUILEs, or
FORs that were active at the time of the trap will I
remain active.

4-229

ON STRIG(n)

Statement

Example: This is an example of a trapping routine for the
button on the first joy stick.

100 ON STRIG(O) GOSUB 2000
110 STRIG(O) ON

2000 REM subroutine for 1st button

2100 RETURN

4-230

ON TIMER

Statement

Purpose: Transfers control to a given line number in a BASIC
program when a defined period of time has elapsed.

Note: This statement requires the use of DOS
2.10.

Versions: Cassette Cartridge

Compiler

Format: ON TIMER(n) GOSUB line

Remarks:

line

is a numeric expression in the range 1 to
86,400 (1 second through 24 hours). Values
entered that are outside of this range result in
an Dl^al function call error.

is the beginning line number of the trap
routine for TIMER. A line number of 0

(zero) stops timer trapping.

A TIMER ON statement must be used to start the

ON TIMER statement. After TIMER ON,
specifying a non-zero line number in the ON
TIMER(/i) statement causes BASIC to keep track of
the passing seconds. When n seconds have elapsed,
BASIC performs a GOSUB to the specified line.
The event trap occurs, and BASIC starts counting
again from 0.

If TIMER OFF is used, no trapping takes place.
Even if TIMER activity takes place, the event is not
remembered.

4-231

ON TIMER

Statement

If a TIMER STOP statement is used, no trapping
takes place but TIMER activity is remembered so
that an immediate trap occurs when TIMER ON is
used.

When the trap occurs, an automatic TIMER STOP is
executed so recursive traps can never take place.
The RETURN from the trap routine automaticaUy
does a TIMER ON unless an expUcit TIMER OEE
was performed inside the trap routine.

Event trapping does not take place when BASIC is
not running a program. When an error trap
(resulting from an ON ERROR statement) takes
place all trapping is automatically disabled (including
ERROR, STRIG(n), PEN, COM(n), KEY(n) and
PLAY)

You can use RETURN line if you want to go back to
the BASIC program at a fixed Une number. You
must use this non-local return with care, however,
since any other GOSUBs, WHILEs, or FORs that
were active at the time of the trap will remain active.

ON TIMER is useful in programs that need an
interval tuner. For example, to display the time of
day on hue one every minute

10 ON TIMER(60) GOSUB 10000
20 TIMER ON

10000 OLDROW=CSRLIN 'save current row
10010 0LDC0L=P0S(0) 'save current column
10020 LOCATE 1,1: PRINT TIME$;
10030 LOCATE OLDROW,OLDCOL 'restore row,col
10040 RETURN

4-232

OPEN

Statement

Purpose: Allows I/O to a file or device.

Verstons: Cassette Cartridge Compiler
♦** ***

Format: First form:

OPEN filespec [FOR mode] AS [#]filenum
[LEN=rec/]

OPEN path [FOR mode] AS [#]filenum [LEN=recfl

Alternate form:

OPEN model, [#]filenum, filespec [,recl]

OPEN model, [U]filenum, path [,recl] i

mode in the first form, is one of the following:

OUTPUT specifies sequential output
mode. I

INPUT specifies sequential input mode.

APPEND specifies sequential output
mode where the file is
positioned to the end of data on
the file when it is opened.

Note that mode must be a string constant,
not enclosed in quotation marks. If mode
is omitted, random access is assumed.

Remarks:

4-233

OPEN

Statement

model in the alternate form, is a string expression
with the first character being one of the
following:

O specifies sequential output
mode

I

R

For both formats:

specifies sequential input mode

specifies random input/output
mode

filenum is an integer expression whose value is
between one and the maximum ntimber of

files allowed. In Cassette BASIC and in

Cartridge BASIC without DOS the
maximum number is 4. In Cartridge
BASIC, when DOS is present, the default
maximum is 3, but this can be changed
with the /F: switch on the BASIC
command line.

filespec is a string expression for the fUe
specification as explained under "Naming
Files" in Chapter 3.

path is a string expression not exceeding 63
characters as explained under "Naming
Files" in Chapter 3. Refer also to
"Tree-Structured Directories" in Chapter
3. Valid only in Cartridge BASIC when
using DOS 2.0.

red is an integer expression which, if included,
sets the record length for random files. It
may range from 1 to 32767. In Cartridge
BASIC, you can use rediox sequential

4-234

OPEN

Statement

files. The default record length is 128
bytes, red may not exceed the value set
by the /S: switch on the BASIC
command.

OPEN allocates a buffer for I/O to the file or device
and determines the mode of access that will be used

with the buffer.

filenum is the number that is associated with the file
for as long as it is open and is used by other I/O
statements to refer to the file or device.

An OPEN must be executed before any I/O may be
done to a device or file using any of the following
statements, or any statement or fimction requiring a
file number:

PRINT# INPUT#

PRINT # USING LINE INPUT #

WRITE# GET

INPUTS PUT

GET and PUT are valid for random files (or
communications file—see the "OPEN "COM...
Statement" section). A diskette file may be either
random or sequential, and a printer may be opened
in either random or sequential mode; however, all
other devices may be opened only for sequential
operations.

BASIC normally adds a line feed after each carriage
return (CHR$(13)) sent to a printer. However, if
you open a printer (LPTl:) as a random file with
width 2SS, this line feed is suppressed.

APPEND is valid only for diskette files. The file
pointer is initially set to the end of the file and the
record number is set to the last record of the file.

PRINT # or WRITE # will then extend the file.

4-235

OPEN

Statement

Note: At any one time, it is possible to have a
particular file open under more than one file
number. This allows different modes to be used

for different purposes. Or, for program clarity,
you may use different file numbers for different
modes of access. Each file number has a

different buffer, so you should use care if you are
writing using one fUe number and reading using
another file munber.

However, a file cannot be opened for sequential
output or append if the file is already open.

If the device name is omitted when you are using
Cassette BASIC, CASl: is assumed. If you are using
Cartridge BASIC and DOS is present, the DOS
default drive is assumed.

If CASl: is specified as the device and the filename
is omitted, then the next data file on the cassette is
opened.

In Cassette BASIC, and Cartridge BASIC without
DOS, a maximum of four files may be open at one
time (cassette, printer, keyboard, and screen). Note
that only one cassette file may be open at a time.
For Cartridge BASIC the default maximum is three
files when DOS is present. If using DOS, you can
override this value by using the /F: option on the
BASIC command line.

If a file opened for input does not exist, a File not
found error occurs. If a file which does not exist is

opened for output, append, or random access, a file
is created.

Any values given outside the ranges indicated will
result in an Illegal function call error. The file is not
opened.

4-236

OPEN

Statement

See Appendix B, "BASIC Diskette Input and
Output" for a complete explanation of using diskette
files Refer to the next section, "OPEN "COM...
Statement," for information on opening
communications files.

Examples: Either of these statements opens the file named
"DATA" for sequential output on the default device
(CASl: for Cassette BASIC, default drive for
Cartridge BASIC when using DOS).

10 OPEN "DATA" FOR OUTPUT AS #1

or

10 OPEN "0",#1,"DATA"

In the above example, note that opening for output
destroys any existing data in the file. If you do not
wish to destroy data you should open for APPEND.

20 OPEN "A:SSFILE" AS 1 LEN=256

or

20 OPEN "R",1,"A:SSFILE",256

Either of the preceding two statements opens the
file named "SSFILE" on the diskette in drive A for

random input and output. The record length is 256.

25 FILES = "A:DATA.ART"
30 OPEN FILES FOR APPEND AS 3

This example opens the fUe "DATA.ART" on the
diskette in drive A and positions the file pointers so
that any output to the file is placed at the end of
existing data in the fUe.

4-237

OPEN

Statement

Ok
10 OPEN "LPTl:" AS #1' random access
20 PRINT #1,"Printing width 80"
30 PRINT #l,"Now change to width 255"
40 WIDTH #1 255
50 PRINT #l,"This line will be underlined"
60 WIDTH #1,80
70 PRINT #1, STRING$(28,"_")
80 PRINT #1,"Printing width 80 with CR/LF"
RUN

OK

This is printed on the printer:

Printing width 80
Now change to width 255
This line will be underlined
Printing width 80 with CR/LF

Line 10 in this example opens the printer in random
mode. Because the default width is 80, the lines
printed by hnes 20 and 30 end with a carriage
return/line feed. Line 40 changes the printer width
to 255, so the line feed after the carriage return is
suppressed. Therefore, the hne printed by line 50
ends only with a carriage return and not a line feed.
This causes the line printed hy hne 70 to overprint
"This line will be underUned," causing the hne to be
underlined. Line 60 changes the width back to 80 so
the underhnes and following hnes will end with a hne
feed.

In Cartridge BASIC, when DOS is present, it is
possible to OPEN fUes using paths as described
under "Naming Files" in Chapter 3. The fohowing
examples ihustrate the use of paths for filespec.

10 OPEN "LVLl LVL2 DATA" FOR OUTPUT AS #1

or

10 OPEN "0",#1,"LVL1 LVL2 DATA"

4-238

OPEN

Statement

Either of these statements opens the file called
"DATA" for sequential output on the default device
in the directory called LVE2.

20 OPEN "A:LVL1 RRFILE" AS 1 LEN=256

or

20 OPEN "RM,"A:LVL1 RRFILE",256

Either of the preceding two statements opens the
file named "RRFILE" in the LVLl directory on the
diskette in drive A for random input and output. The
record length is 256.

25 FILE$="A:LVL1 LVL2 LVL3 DATA.FIL"
30 OPEN FILES FOR APPEND AS 3

This example opens the file "DATA.FIL" on the
diskette in drive A in the directory called LVL3 and
positions the file pointers so that any output to the
file is placed at the end of the existing data in the
file.

4-239

OPEN "COM...

Statement

Purpose:

Versions:

Format:

Remarks:

Opens a communications file.

Cassette Cartridge

Compiler

OPEN "COMn\[speed\ \.,parity\ [, datd\ [, stop] [,RS]
[,CS[«]] [,DS[«]] [,CD[n]] [,LF] [,PE]" AS
{UyHenum [LEN=««/nZjer]

n is 1 or 2, indicating the munber of the
Asynchronous Communications port.

speed is an integer constant specifying the
transmit/receive bit rate in bits per second
(bps). Valid speeds are 75,110,150, 300,
600,1200,1800, 2400, and 4800 for the
RS232 Serial Port. Valid speeds for the
IBM Modem option are 110 or 300. The
default is 300 bps.

parity is a one-character constant specif jdng the
parity for transmit and receive as follows:

S SPACE: Parity bit always trans
mitted and received as a space (0
bit).

O ODD: Odd transmit parity, odd
receive parity checking.

M MARK: Parity bit always
transmitted and received as a mark

(1 bit).

4-240

OPEN "COM...

Statement

E EVEN: Even transmit parity, even
receive parity checking.

N NONE: No transmit parity, no
receive parity checking.

The default is EVEN (E).

data is an integer constant indicating the
number of transmit/receive data bits.
Vahd values are: 4, 5, 6, 7, or 8. The
default is 7.

stop is an integer constant indicating the
number of stop bits. Valid values are 1 or
2. The default is two stop bits for 75 and
110 bps, one stop bit for all others. K you
use 4 or 5 tox data, a 2 here will mean 1
1/2 stop bits.

filenum is an integer expression which evaluates to I
a vahd file number. The number is then

associated with the file for as long as it is
open and is used by other communications
I/O statements to refer to the file.

number is the maximum number of bytes which
can be read from the communication

buffer when using GET or PUT. The
default is 128 bytes.

OPEN "COM... allocates a buffer for I/O in the
same fashion as OPEN for diskette files. It supports
RS232 asynchronous communication with other
computers and peripherals.

Note: If the keyboard is struck or the diskette
drive is read from or written to, then characters

4-241

OPEN "COM..

Statement

may be lost unless you use XOFF to stop
communication transmission. See the example in
Appendix F.

A communications device may be open to only one
file number at a time.

The RS, CS, DS, CD, LF and PE options affect the
line signals as follows:

RS suppresses RTS (Request To Send)
CS[n] controls CTS (Clear To Send)
DS[n] controls DSR (Data Set Ready)
CD[n] controls CD (Carrier Detect)
LF sends a line feed following each carriage

return

PE enables parity checking

The CD (Carrier Detect) is also known as the RLSD
(Received Line Signal Detect).

Note: The speed, parity, data, and stop parameters
are positional, but RS, CS, DS, CD, LF, and PE
are not.

The RTS (Request To Send) line is turned on when
you execute an OPEN "COM... statement unless
you include the RS option.

The n argument in the CS, DS, and CD options
specifies the number of milliseconds to wait for the
signal before returning a Device Timeout error, n
may range from 0 to 65535. If n is omitted or is
equal to zero, then the line status is not checked at
aU.

The defaults are CSIOOO, DSIOOO, and CDO. If RS
was specified, CSO is the default.

4-242

OPEN "COM...

Statement

That is, normally I/O statements to a communi
cations file will fail if the CTS (Clear To Send) or
DSR (Data Set Ready) signals are off. The system
waits one second before returning a Device Timeout.
The CS and DS options allow you to ignore these
lines or to specify the amount of time to wait before
the timeout.

Normally Carrier Detect (CD or RLSD) is ignored
when an OPEN "COM... statement is executed. The
CD option allows you to test this line by including
the n parameter, in the same way as CS and DS. If n
is omitted or is equal to zero, then Carrier Detect is
not checked at all (which is the same as omitting the
CD option).

The LF parameter is intended for those using
communication fUes as a means of printing to a serial
line printer. When you specify LF, a line feed
character (hex OA) is automatically sent after each
carriage return character (hex OC). (This includes
the carriage return sent as a result of the width
setting.) Note that INPUT # and LINE INPUT #,
when used to read from a conununications file that

was opened with the LF option, stop when they see a |
carriage return. The line feed is always ignored.

The PE option enables parity checking. The default
is no parity checking. The PE option will cause a
Device I/O error on parity errors and will turn the
high order bit on for 7 or less data bits. The PE
option does not affect framing and overrun errors.
These errors will always turn on the high order bit
and cause a Device 1/ O error.

Any coding errors within the string expression
starting with speed result in a Bad Ble name error. An
indication as to which parameter is in error is not
given.

4-243

OPEN "COM...

Statement

Examples:

Refer to Appendix F, "Communications," for more
information on control of output signals and other
technical information on communications support.

If you specify 8 data bits, you must specify parity N.
If you specify 4 data bits, you must specify a parity,
that is, N parity is invalid. BASIC uses all 8 bits in a
byte to store numbers, so if you are transmitting or
receiving numeric data (for example, by using PUT),
you must specify 8 data bits. (This is not so if you
are sending numeric data as text.)

Refer to the previous section for opening devices
other than communications devices.

10 OPEN "COMl:" AS 1

FUe 1 is opened for communication with all
defaults. The speed is 300 bps with even parity.
There will be 7 data bits and one stop bit.

10 OPEN "COMl:2400" AS #2

File 2 is opened for communication at 2400 bps.
Parity, number of data bits, and number of stop bits
are defaulted.

20 OPEN "C0M2:1200,N,8" AS #1

FUe number 1 is opened for asynchronous I/O at
1200 bps, no parity is to be produced or checked,
8-bit bytes wUl be sent and received, and 1 stop bit
wiU be transmitted.

10 OPEN "C0M1:300,N,8,,CS,DS,CD" AS #1

4-244

OPEN "COM...

Statement

Opens COMl at 300 bps with no parity and eight
data bits. CTS, DSR, and RLSD are not checked.

50 OPEN "C0M1:1200,,,,CS,DS2000" AS #1

Opens COMl at 1200 bps with the defaults of even
parity and seven data bits. RTS is sent, CTS is not
checked, and Device Timeout is given if DSR is not
seen within two seconds. Note that the commas are

required to indicate the position of the parity, start,
and stop parameters, even though a value is not
specified. This is what is meant by positional
parameters.

An OPEN statement may be used with an ON
ERROR statement to make sure a modem is working
properly before sending any data. For example, the
following program makes sure we get Carrier Detect
(CD or RLSD) from the modem before starting.
Line 20 is set to timeout after 10 seconds. TRIES is

set to 6 so we give up if Carrier Detect is not seen
within one minute. Once communication is

estabUshed, we reopen the file with a shorter delay
until timeout.

5 TRIES=6

10 ON ERROR GOTO 100
20 OPEN "C0M1:300,N,8,2,CS,DS,CD10000" AS #1
30 ON ERROR GOTO 0
40 CLOSE #1 ' works so can continue
50 GOTO 1000

100 TRIES=TRIES-1
110 IF TRIES=0 THEN ON ERROR GOTO 0 ' give up
120 RESUME

1000 OPEN "C0M1:300,N,8,2,CS,DS,CD2000" AS #1

4-245

OPEN "COM...

Statement

The next example shows a typical way to use a
communication file to control a serial line printer.
The LF parameter in the OPEN statement ensures
that lines do not print on top of each other. ^

10 WIDTH "COMl:", 132
20 OPEN "COM1:1200,N,8,,CS10000,DS10000,CD10000,LF"

AS #1

4-246

OPTION BASE

Statement

Purpose: Declares the miniirium value for array subscripts.

Versions: Cassette Cartridge Compiler
:ie:ie:|c 9t(9|c:|e

Format: OPTION BASE n

Remarks: n is 1 or 0.

The default base is 0. If the statement:

OPTION BASE 1

is executed, the lowest value an array subscript may
have is one.

The OPTION BASE statement must be coded before
you define or use any arrays. An error occurs if you
change the base value when arrays exist.

4-247

OUT

Statement

Purpose: Sends a byte to a machine output port.

Versions: Cassette Cartridge Compiler
9{:9ic9ic ^4:^

Format:

Remarks:

OUT n,m

m

is a numeric expression for the port number,
in the range of 0-65535.

is a numeric expression for the data to be
transmitted, in the range of 0-255.

Refer to the PCjr Technical Reference manual for a
description of valid port numbers (I/O addresses).

OUT is the complementary statement to the IN?
function. Refer to "IN? Function" in this chapter.

One use of OUT is to affect the video output. On
some displays you may find that the first two or
three characters on the hne don't show up on the
screen. If your display does not have a horizontal
adjustment control, you can use the following
statements to shift the display in 40 column width:

OUT 980,2: OUT 981,41

This shifts the display two characters to the right.
The shift caused by this OUT statement remains in
effect until a WIDTH or SCREEN statement is

executed. Another way to shift the screen is with the
key combination Alt-Ctrl--«- or Alt-Ctrl-->-. /-N

4-248

OUT

Statement

Example:

100 OUT 32,100

This sends the value 100 to output port 32.

4-249

PAINT

Statement

Purpose: Fills in an area on the screen with the selected color.

Versions: Cassette Cartridge Compiler

Graphics mode only.

Format: PAINT ix,y) [[, paini\[, boundary\[, background^

Remarks:

(x,y) are the coordinates of a point within the
area to be filled in. The coordinates

may be given in absolute or relative
form (see "Specifying Coordinates"
under "Graphics Modes" in Chapter 3).
This point will be used as a starting
point.

paint can be a numeric or string expression.
If paint is a muneric expression, it is the
attribute to be painted with. If paint is
omitted, it defaults to the maximum
attribute for the current screen mode.

In low resolution, there are 16 attributes
available (0 to 15). In medium
resolution, there are 4 (0 to 3) or 16 (0
to 15) attributes available, depending on
the current screen mode. In high
resolution, there are 2 (0 to 1) or 4 (0
to 3) attributes available, depen(hng on
the ciurent screen mode. For more

information see "Graphics Modes" in
Chapter 3.

4-250

PAINT

Statement

If paint is a string expression, then
"tiling" is performed, as described later
in this section.

boundary is the edge of the figture to be filled, in
the range 0 to 3 or 0 to 15, depending
on the screen mode, as described above.
If boundary is omitted, then the paint
attribute is assumed.

background is a one-byte string expression used in
paint tiling.

The figture to be filled in is the figme with edges of
boundary color. That is, the figure should be drawn
in the boundary color. The figture is filled in with the
color paint.

In.meditun resolution, we can fill in a border of color
2 with color 1. Visually this might mean a green ball
with a red border. I

The starting point of PAINT must be inside the
figture to be painted. Points plotted that are outside
of the screen limits are not drawn and no error

occturs. If the specified point already has the color
boundary, then PAINT will have no effect. If paint is
omitted the maximtun attribute of the cturent screen I
mode is used (15 in low resolution, 15 or 3 in
meditun resolution, and 1 or 3 in high resolution).
PAINT can paint any type of figure; "jagged" edges
on a figure increase the amount of stack space
required by PAINT. So if a lot of complex painting
is being done you may want to use CLEAR at the
beginning of the program to increase the stack space
available. Getting an Out of memory error on a
PAINT statement is a good indication that more
stack space is required.

4-251

PAINT

Statement

When paint is a string expression, painting can be
performed as a pattern of 1 or more colors.
Examples of the form of the string expression follow
later in this section.

Occasionally, you may want to tile paint over an
already painted area that is the same color as two
consecutive lines in the tile pattern. Normally, this
constitutes a terminating condition because your
point is surrounded by the same bit pattern that is
being plotted.

You can use the background attribute to skip this
terminating condition. You cannot specify more
than two consecutive lines in the tile pattern
matching this background attribute. Specif jdng more
than two consecutive lines in the tile pattern that
match background causes an Dl^al function call
error.

The PAINT statement allows scenes to be displayed
with very few statements.

The PAINT statement in line 20 fills in the box

drawn in line 10 with color number 1.

5 SCREEN 1

10 LINE (0,0)-(100,150),2,B
20 PAINT (50,50),1,2

To use paint tiling, the paint attribute must be a
string expression of the form:

CHR$(&Hnn)+CHR$(&Hnn)+CHR$(&Him)

The tile mask is always 8 bits wide. The two
hexadecimal numbers in the CHR$ expression
correspond to 8 bits. The string expression may
contain up to 64 bytes. The structure of the string
expression appears as follows:

4-252

r\

PAINT

Statement

X increases ~ >

bit of Tile b)^e
x,y 7 6 5 4 3 2 1 0
0,0 xxxxxxxx Tile byte 0
0,1 xxxxxxxx Tile byte 1
0,2 xxxxxxxx Tile b5^e 2

0,63 xxxxxxxx Tile byte 63
(maximum
allowed)

The tile pattern is repeated uniformly over the entire
screen. Each byte in the tile string masks 8 bits
along the x axis when plotting points. Each byte in
the tile string is rotated as required to align along the
y axis, such that tOe.byte.mask=y mod tile.length.

Because there is only one bit per pixel in high
resolution (screen 2) a point is plotted at every
position in the bit mask which has a value of 1. The
screen can be painted with x's using the following
example:

PAINT (320,100),CHR$(&H81)+CHR$(&H42)+CHR$(&H24)|
+CHR$(&H18)+CHR$(&H18)+CHR$(&H24)+CHR$(&H42)+
CHR$(&H81)

The length of this mask is eight, indexed zero
through seven. In this case, PAINT at coordinates
(320,100) will begin by plotting byte four. This is
calculated using the y mod tUe.length formula by
substituting 100 for y and eight for tile.length. This
pattern appears on the screen as:

X increases ~>
bit of Tile byte
76543210

Tile byte 0 1000 000 1 CHR$(&H81)

4-253

PAINT

Statement

Tile bjrte 1
Tile byte 2
Tile bjfte 3
Tile byte 4
TUe byte 5
Tile byte 6
Tile bjrte 7

010 0 0 0 10 CHR$(&H42)
0 010 0 10 0 CHR$(&H24)
000 1 1000 CHR$(&H18)
0001 1000 CHR|(&H18)
0 010 010 0 CHR|(&H24)
010 0 0 0 10 CHR|(&H42)
1000 0001 CHR$(&H81)

The method of designing patterns in each screen will
vary depending on the number of colors available in
each screen mode. This is because the number of bits

per pixel is directly related to the numbers of colors
available in each screen mode. In any screen, where
X is the total number of colors available for that

screen,

LOGalX) = Y
where Y is the number of bits per pixel. In high
resolution, each byte of the string is able to plot eight
points across the screen (one bit per pixel) since
L0G2(2) = 1.

However, in Screen 5, one medium resolution tile
byte describes only two pixels since medium
resolution has only two bits per pixel since
LOGaClb) = 4 bits per pixel. Every four bits of the
tile bjrte describes one of 16 possible colors
associated with each of the two pixels to be plotted.

The following chart shows the binary and
hexadecimal values associated with the given colors
in Screen 1.

Color Color Pattern to Pattern to

Palette no. in draw solid draw solid

0 binary line in line in

binary hexadecimal

green 01 01010101 &H55

red 10 10101010 &HAA

brown 11 11111111 &HFF

4-254

PAINT

Statement

Color Color Pattern to Pattern to

Palette no. in draw solid draw solid

1 binary line in line in

binary hexadecimal

cyan 01 01010101 &H55

magenta 10 10101010 &HAA

white 11 11111111 &HFF

In medium resolution, SCREEN 1, the following
example plots a pattern of boxes with a border color
of red in palette 0 and magenta in palette 1.

PAINT (320,100),CHR$(«iHAA)+CHR$(&H82)+CHR$(&H82)
+CHR$(&H82)+CHR$(&H82)+CHR$(&H82)+CHR$(&H82)
+CHR$(&HAA)

Tile byte 0
TUe byte 1
Tile byte 2
Tile byte 3
TUe byte 4
TUe b5d;e 5
TUe bjde 6
TUe byte 7

X increases ~>
bit of TUe byte
7 65 4 3 2 1 0
10101010
10000010
10000010
1000
1000
1000
1000
10 10

00 10
00 10
00 10
00 1 0
10 10

CHR$i
CHR$i
CHR$(
chr:
chr:
CHR$I
chr:
chr:

&HAA)
&H82)
&H82)
&H82)
&H82)
&H82)
&H82)
&HAA)

Examples: The program below demonstrates how to tUe an area
with three lines of red, two hnes of green, and one
Une of magenta.

in off

20 TIL$=CHR$(&H44)+CHR$(&H44)+CHR$(&H44)
+CHR$(&H22)+CHR$(&H22)+CHR$(&H55)

40 VIEW (40,50)-(120,150),0,9
50 GOSUB 1000

70 GOTO 1020
1000 PAINT (80,100),TIL$,9
1010 RETURN

1020 END

4-255

PAINT

Statement

The following example uses paint tiMng with the
background attribute.

10 SCREEN 1:CLS:C0L0R 0,1
20 TIL$=CHR$(&H5F)+CHR$(&H5F)+CHR$(&H27)

+CHR${&H81)
30 VIEW (1,1)-(150,100),0,2
40 LOCATE 3,22:PRINT "<—Without back-"
50 LOCATE 4,22:PRINT " ground tile"
60 PAINT (125,50),CHR$(&H5F)
70 PAINT (125,50),TIL$,2
80 '
90 'with background tile'
100 '
110 VIEW (160,100)-(310,198),0,2
120 LOCATE 16,1:PRINT "With background-->
130 LOCATE 17,1:PRINT "tile chr$(&H5F)"
140 PAINT {125,50),CHR$(&H5F)
150 PAINT (125,50),TIL$,2,CHR$(&H5F)
160 LINE {1,100)-319,100),3
170 FOR 1=1 TO 2500: NEXT I
180 END

4-256

PALETTE

Statement

Purpose: Allows control of the hardware palette.

Versions: Cassette Cartridge Compiler

Format: PALETTE [attribute][, color]

Remarks:

attribute is an expression which evaluates to an
integer value in the range of 0 to IS that
indicates the attribute that is to be

changed.

color is an expression that evaluates to an
integer value which is a color in the
range of 0 to 15 to be assigned to
attribute. In low resolution, there are |
16 attributes available (0 to 15). In
mediiun resolution, there are 4 (0 to 3)
or 16 (0 to 15) attributes available,
depending on the current screen mode.
In high resolution, there are 2 (0 to 1)
or 4 (0 to 3) attributes available,
depending on the current screen mode. |
The default attribute is always the
maximum attribute for the current

screen mode. For more information see

"Graphics Modes" in Chapter 3.

The PALETTE statement without any
arguments can be used to reset all
palettes to their original color.

The PALETTE statement can also be

used to change the color of text.
PALETTE used in conjunction with the

4-257

PALETTE

Statement

COLOR statement allows as much

flexibility with text in graphics mode as
in text mode. PALETTE can be used to

give the effect of making lines
disappear. You can draw an object in a
given color and then use the PALETTE
statement to change the object to the
background color making the object
seem to disappear.

When you want to assign colors to many
attributes quickly you should use the
PALETTE USING statement. See the

"PALETTE USING Statement" in this

chapter for more information.

Example: The PALETTE statement allows you to change the
color of any object or text on the screen. For
example, the following statement draws a blue line.

LINE (0,0)-(100,100),l

The PALETTE statement can be used to change the
color of the Une.

PALETTE 1,3

This statement says that every time the system sees
the attribute I you will see the color 3 (cyan). From
this point on when you reference the color attribute
1, you will actually see the color cyan.

4-258

PALETTE USING

Statement

Purpose: Allows the setting of all palette entries with one
statement.

Versions: Cassette Cartridge Compiler

Format: PALETTE USING [arraynameistarting)]

Remarks:

array name is an integer array which must have
16 elements indexed from the starting
index.

starting is an integer indicating the starting
position in the array for assigning the
palette colors.

PALETTE USING allows you to quickly assign the
colors for many attributes simultaneously. Any entry |
in the array with a value of -1 will not modify the
current color for that attribute. PALETTE USING

is valid for both text and graphic modes.

4-259

PALETTE USING

Statement

Example:

5 DEFINT A-Z
10 SCREEN 1:CLS:
20 LINE (50,50)-(120,120),l,BF
30 LINE (60,60)-(110,110),2,BF
40 LINE (70,70)-(100,100),3,BF
50 LINE (80,80)-(90,90),0,BF
60 DIM PAL (16)
70 DATA 14,4,5,6,-1,-1,-1,-1
75 DATA -1,-1,-1,-1,-1,-1,-1,-
80 FOR I = 0 TO 15
90 READ PAL(I)
100 NEXT I

110 FOR T=1 TO 1000: NEXT T
200 PALETTE USING PAL(O)
300 END

'define all variables integer

'delay loop
'change colors

The attributes of 0, 1, 2, and 3 have been reassigned
colors 14, 4, 5, and 6, respectively. The rest of the
colors remain unchanged. Statement 200 changes
the colors on the screen from black, blue, green, and
cyan to yellow, red, magenta, and brown. Attribute
1 now corresponds to color 14; attribute 2 now
corresponds to red, and so on.

Attribute Old Color New Color

0 Black 14-YeUow

1 Blue 4-Red

2 Green 5-Magenta
3 Cyan 6-Brown'

4 Red -1-Unchanged
5 Magenta -1-Unchanged
6 Brown -1-Unchanged
7 White -1-Unchanged
8 Gray -1-Unchanged
9 Light Blue -1-Unchanged
10 Light Green -1-Unchanged
11 Light Cyan -1-Unchanged
12 Light Red -1-Unchanged

4-260

PALETTE USING

Statement

Attribute Old Color New Color

13 Light Magenta -1-Unchanged

14 Yellow -1-Unchanged
15 Hi-Int-White -1-Unchanged

4-261

PCOPY

Statement

Purpose:

Versions:

Format:

Remarks:

Allows copying from one screen page to another in
all screen modes.

Cassette Cartridge Compiler

PCOPY [source page], [destination page]

source page is an integer expression in the range
of the number of pages which is
determined by the current video
memory size and the size per page for
the current screen mode.

destination page

Example:

The destination page has the same
requirements as the source page. For
more information on pages and
memory allocation, refer to the
CLEAR statement, the SCREEN
statement, and the section in Chapter
3 on graphics.

PCOPY 1,2

This copies the contents of page 1 to page 2.

4-262

PEEK

Function

Purpose: Returns the byte read from the indicated memory
position.

Versions: Cassette Cartridge Compiler
♦♦♦ ***

Format: v = PEEK(n)

Remarks:

n is an integer in the range 0 to 65535. « is
the offset from the current segment as
defined by the DEF SEG statement, and
indicates the address of the memory
location to be read. (See "DEF SEG
Statement" in this chapter.)

The returned value will be an integer in the range 0
to 255.

PEEK is the complementary fimction to the POKE
statement (see "POKE Statement," later in this
chapter).

4-263

PEN

Statement and Function

Purpose: Reads the light pen.

Versions: Cassette Cartridge

Format:

Compiler

PEN STOP only in Cartridge BASIC and the BASIC
Compiler.

As a statement:

PEN ON

PEN OFF

PEN STOP

As a function:

V = PEN(n)

Remarks: The PEN function, v=PEN(n), reads the light pen
coordinates.

n is a muneric expression in the range 0 to 9,
and affects the value returned by the function
as follows:

0 A flag indicating if pen was down since
last poll. Returns -1 if down, 0 if not.

1 Returns the x coordinate where pen was
last activated. The range is 0 to 159 in
low resolution, 0 to 319 in medium
resolution, and 0 to 639 in high
resolution.

4-264

PEN

Statement and Function

2 Returns the y coordinate where pen was
last activated. The range is 0 to 199.

3 Returns the current pen switch value.
-1 if down, 0 if up.

4 Returns the last known valid x

coordinate. The range is 0 to 159 in low
resolution, 0 to 319 in medium
resolution, and 0 to 639 in high
resolution.

5 Returns the last known valid y
coordinate. The range is 0 to 199.

6 Returns the character row position
where pen was last activated. The range
is 1 to 24.

7 Returns the character column position
where pen was last activated. The range
is 1 to 20,1 to 40 or 1 to 80 depending
on WIDTH.

8 Returns the last known valid character

row. The range is 1 to 24.

9 Returns the last known valid character
column position. The range is 1 to 20,1
to 40 or 1 to 80 depending on WIDTH.

PEN ON enables the PEN read function. The PEN

function is initially off. A PEN ON statement must
be executed before any pen read function calls can
be made. A call to the PEN function while the PEN
function is off results in an DIegal function call error.

4-265

PEN

Statement and Function

Conversely, to improve execution speed, it is a good
idea to turn the pen off with a PEN OFF statement
when you are not using the light pen.

For Cartridge BASIC, executing PEN ON will also
allow trapping to take place with the ON PEN
statement. After PEN ON, if a nonzero hne number
was specified in the ON PEN statement, then every
time the program starts a new statement BASIC
checks to see if the pen was activated. Refer to "ON
PEN Statement" in this chapter.

PEN OFF disables the PEN read function. For

Cartridge BASIC, no trapping of the pen takes place
and action by the light pen is not remembered even if
it does take place.

PEN STOP is only available in Cartridge BASIC. It
disables trapping of Ught pen activity, but if activity
happens it is remembered so an immediate trap
occurs when a PEN ON is executed.

When the pen is down in the border area of the
screen, the values returned are inaccurate.

Example:

You should not try I/O to cassette while PEN is ON.

50 PEN ON
60 FOR 1=1 TO 500
70 X=PEN(0): X1=PEN(3)
80 PRINT X, XI
90 NEXT

100 PEN OFF

This example prints the pen value since the last poll,
and the current value.

4-266

PLAY

Statement

Purpose: Plays music as specified by string.

Versions: Cassette Cartridge Compiler

Format: PLAY string [,[string^ [, string^

Remarks: PLAY is a statement similar to DRAW because it
imbeds a "time definition language" into a character
string.

string is a string expression consisting of single
character music commands. In Cartridge
BASIC, PLAY supports three separate
strings to allow independent control of
each of three voices (only when SOUND
is ON).

The single character commands in PLAY are:

A to G with opticHial #, +, or -
Plays the indicated note in the current
octave. A number sign (#) or plus sign
(+) afterwards indicates a sharp, a minus
sign (-) indicates a flat. The #, +, or - is
not allowed unless it corresponds to a
black key on a piano. For example, B# is
an invalid note.

On Octave. Sets the current octave for the .
following notes. There are 7 octaves,
numbered 0 to 6. Each octave goes from
C to B. Octave 3 starts with middle C.
Octave 4 is the default octave.

The lowest frequency the multi-voice
sound chip can produce is 110 Hz. This

4-267

PLAY

Statement

> n

< n

Nn

Ln

corresponds to the note A of octave 0. If
you try to play a note below 110 Hz
BASIC will not give an error, but will play
the note A for all notes below 110 Hz.

See the "SOUND Statement" in this

chapter for information on notes and their
corresponding frequencies.

Go up to the next higher octave and play
note n. Each time note n is played, the
octave goes up, until it reaches octave 6.
For example, PLAY ">A" raises the
octave and plays note A. Each time
FLAY ">A" is executed, the octave goes
up until it reaches octave 6; then each
time PLAY ">A" executes, note A plays
at octave 6. Cartridge BASIC only.

Go down one octave and play note n.
Each time note n is played, the octave
goes down, until it reaches octave 0. For
example, PLAY "<A" lowers the octave
and plays note A. Each time PLAY "<A"
is executed, the octave goes down until it
reaches octave 0, then each time PLAY
"<A" executes, note A plays at octave 0.
Cartridge BASIC only.

Plays note n. n may range from 0 to 84.
In the 7 possible octaves, there are 84
notes. n=0 means rest. This is an

alternative way of selecting notes besides
specifying the octave (O n) and the note
name (A-G).

Sets the length of the following notes.
The actual note length is 1/n. n may
range from 1 to 64. The following table
may help explain this:

4-268

PLAY

Statement

Length Equivalent

LI whole note

L2 half note

L3 one of a triplet of three half notes
(1/3 of a 4 beat measure)

L4 quarter note
L5 one of a quintuplet (1/5 of a

measiure)
L6 one of a quarter note triplet

L64 sixty-fourth note

The length may also follow the note when
you want to change the length only for the
note. For example, A16 is equivalent to
L16A.

P n Pause (rest), n may range from 1 to 64,
and figures the length of the pause in the
same way as L (length).

(dot or period) After a note, causes the
note to be played as a dotted note. That
is, its length is multiplied by 3/2. More
than one dot may appear after the note,
and the length is adjusted accordingly.
For example, "A.." will play 9/4 as long
as L specifies, "A..." will play 27/8 as
long, etc. Dots may also appear after a
pause (?) to scale the pause length in the
same way.

T n Tempo. Sets the number of quarter notes
in a minute, n may range from 32 to 255.
The default is 120. Under "SOUND

4-269

PLAY

Statement

MF

MB

MN

ML

MS

Statement," later in this chapter, is a table
listing common tempos and the equivalent
beats per minute.

Music foreground. Music (created by
SOUND or PLAY) nms in foreground.
That is, each subsequent note or sound
will not start until the previous note or
soimd is finished. You can press the Fn
key followed the Break key to exit PLAY.

Music backgroimd. Music (created by
SOUND or PLAY) runs in background
instead of in foreground. That is, each
note or sound is placed in a buffer
allowing the BASIC program to continue
executing while music plays in the
background. Up to 32 notes (or rests)
may be played in background at a time.
Music backgroimd is the default state.

Music normal. Each note plays 7/8 of the
time specified by L (length). This is the
default setting of MN, ML, and MS.

Music legato. Each note plays the full
period set by L (length).

Music staccato. Each note plays 3/4 of
the time specified by L.

X variable;
Executes specified string.

Volume. Valid only when SOUND is
turned ON. Sets volmne in the range 0 to
15. The default value is 8.

4-270

PLAY

Statement

In all these commands the n argument can be a
constant like 12 or it can be = variable', where variable
is the name of a variable. The semicolon (;) is
required when you use a variable in this way, and
when you use the X command. Otherwise, a
semicolon is optional between commands. A
semicolon is not allowed after MF, MB, MN, ML, or
MS. Also, any blanks in string are ignored.

You can also specify variables in the form
VARPTR$(vanaZ>fe), instead of =variable;. The
VARPTR$ form is the only one that can be used in
compiled programs. For example:

One Method Alternative Method

PLAY"XA$;" PLAY "X"+VARPTR$(A$)
PLAY "0=I;" PLAY "0="+VARPTR$(I)

You can use X to store a "subtune" in one string and
caU it over again with different tempos or octaves
from another string.

Examples: The following example plays a tune.

10 REM little lamb
20 MARY$="GFE-FGGG"
30 PLAY "MB TlOO 03 L8;XMARY$;P8 FFF4"
40 PLAY "GB-B-4; XMARY$; GFFGFE-."

The following example plays the scale from octave 0
to octave 6.

4-271

PLAY

Statement

10 ' Play the scale using > octave
20 SCALE$="CDEFGAB"
30 PLAY "00 XSCALE$;"
40 FOR 1=1 TO 6
50 PLAY ">XSCALE$;"
60 NEXT

70 ' Play the scale using < octave
80 PLAY '*'06 XSCALE$;"
90 FOR 1=1 TO 6
100 PLAY "<XSCALE$;"
110 NEXT

The following example shows the use of multiple
voices.

10 SOUND ON
20 CLS

30 PRINT "Turn the external speaker on for demo"
50 PLAY "MBML01T255","02MLT255","03MLT255"
100 A$="CDECCDEC"
110 B$="EFGGEFGG"
120 C$="CGCCCGCC"
140 FOR L=32 TO 4 STEP -4
145 PRINT "Turn the external speaker on for demo"^^>
150 PLAY "1=1;","1=1;","1=1;"
200 PLAY A$,B$,C$
210 PLAY B$,C$,A$
220 PLAY C$,A$,B$
225 NEXT L

230 GOTO 140

4-272

PLAY(n)
Function

Purpose: Returns the number of notes currently in the music
background buffer.

Venaons: Cassette Cartridge
♦♦♦

Compiler

Format:

Remarks:

v=PLAY(n)

n is a dummy argument that can have any value
when SOUND is turned OFF.

When SOUND is turned ON n may have one
of the following values:

0 returns the number of notes left to play on
voice channel 0

1 returns the number of notes left to play on
voice channel 1

2 returns the number of notes left to play on
voice channel 2

If n is not 0,1, or 2, then the notes remaining
on voice channel 0 will be returned.

The mayimiim value that can be returned is 32, the
maYimiinn number of notes held in the buffer.

PLAY(n) returns a 0 when the program is running in
music foregroxmd mode.

Example:

4-273

PLAY(n)
Function

10 'when 5 notes are left in the music buffer
20 'go to line 1000 and play another tune
30 PLAY "MB CDEFGAB"
40 IF PLAY{0)= 5 GOTO 1000

1000 PLAY "MB 04 1200 L4 MS GG#GE"

4-274

PMAP

Function

Purpose: Maps physical coordinates to world coordinates or
world coordinates to physical coordinates.

Versioiis: Cassette Cartridge Compiler

Graphics mode only.

Fonnat: v=PMAP(jc,n)

Remarks:

X coordinate of the point that is to be mapped

n may be a value in the range 0 to 3 such that

0 maps the world coordinate x to the
physical coordinate x

1 maps the world coordinate y to the
physical coordinate y

2 maps the physical coordinate x to the
world coordinate x

3 maps the physical coordinate y to the
world coordinate y

PMAP is used to translate coordinates between the

world system as defined by the WINDOW statement
and the physical coordinate system as defined by the
VIEW statement.

PMAP(x,0) and PMAP(x,l) are used to map values
from the world coordinate system to the physical
coordinate system.

4-275

PMAP

Function

PMAP(x,2) and PMAP(x,3) are used to map values
from the physical coordinate system to the world
coordinate system.

For example, if the statement

SCREEN 1: WINDOW (-1,-1)-(1,1)

is in effect we can use PMAP to map the world
coordinate points of (-1,-1) and (1,1) to then-
corresponding physical points on the screen.

PMAP(-1,0) returns the physical x coordinate value
of 0.

PMAP(-1,1) returns the physical y coordinate value
of 199.

PMAP(1,0) returns the physical x coordinate value
of 319.

PMAP (1,1) returns the physical y coordinate value
of 0.

The above information tells us that the point (-1,-1)
which is in the lower left corner of the screen

corresponds to the physical point (0,199). We also
know that the point (1,1) which is in the upper right
comer corresponds to the physical point (319,0).

4-276

POINT

Function

Purpose: Returns the color of the specified point on the screen
or current graphics coordinate or returns the value of
the current x or y coordinate.

Versioiis: Cassette Cartridge
if** ***

Compiler

Format:

Remarks:

Graphics mode only.

V = POINT (x,y)

V = POINT (n)

(x,y) are the coordinates of the point to be used.
The coordinates must be in absolute form

(see "Specifying Coordinates"under
"Graphics Modes" in Chapter 3).

If the point given is out of range the value -1
is returned. In low resolution, valid returns
are 0 to 15. In mediiun resolution, valid
returns are 0 to 3 or 0 to 15, depending on
the screen mode. In high resolution, valid
returns are 0 to 1 or 0 to 3, depending on the
current screen mode. For more information

see "Graphics Modes" in Chapter 3.

n returns the value of the current x or y
graphics coordinate, n can have a value
from 0 to 3 where:

0 returns the current physical x
coordinate.

4-277

POINT

Function

returns the current physical y
coordinate.

returns the current world x coordinate

if WINDOW is active. If WINDOW is

not active, returns the current physical
X coordinate.

3 returns the current world y coordinate
if WINDOW is active. If WINDOW is

not active, returns the current physical
y coordinate.

For more information, see "WINDOW Statement"

in this chapter.

Examples: The following example inverts the current setting of
point (1,1).

5 SCREEN 2

10 IF P0INT(I,I)<>0 THEN PRESET(I,I)
ELSE PSET(I,I)

or

10 PSET(I,I),1-P0INT(I,I)

4-278

POINT

Function

The following example illustrates values returned by
the POINT function. Note the change in the values
depending upon WINDOW.

10 CLS: SCREEN 1,0
15 PRINT "POINT(n) with WINDOW inactive"
20 GOSUB 100
30 WINDOW (0,0)-(319,199)
40 PRINT "POINT(n) with WINDOW active"
50 GOSUB 100
60 PRINT "POINT(n), WINDOW.and SCREEN active"
70 WINDOW SCREEN {0,0)-(319,199)
80 GOSUB 100

90 END
100 PSET (5,15)
110 FOR 1=0 TO 3
120 PRINT POINT (I);
130 NEXT
135 PRINT: PRINT
140 RETURN
Ok

RUN

POINT(n) with WINDOW inactive
5 15 5 15

POINT(n) with WINDOW active
5 184 5 15
POINT(n), WINDOW and SCREEN active
5 15 5 15

4-279

POKE Statement

Purpose: Writes a bjfte into a memory location.

Versions: Cassette Cartridge Compiler
^4^4:

Format: POKE n,m

Remarks:

m

must be in the range 0 to 65535 and indicates
the address of the memory location where the
data is to be written. It is an offset from the

current segment as defined by the DEF SEG
statement (see "DEF SEG Statement" in this
chapter).

m is the data to be written to the specified
location. It must be in the range 0 to 255.

The complementary function to POKE is PEEK.
(See "PEEK Function" in this chapter.) POKE and
PEEK are useful for efficient data storage, loading
machine language subroutines, and passing
arguments and results to and from machine language
subroutines.

Waming: BASIC does not do any checking on
the address. So don't go POKEing around in
BASIC'S stack, BASIC'S variable area, or your
BASIC program.

4-280

POS

Function

Purpose: Returns the current cursor column position.

Versions: Cassette Cartridge Compiler

Format: v = POS(/i)

Remarks: n is a dummy argument.

The current horizontal (column) position of the
cursor is returned. The returned value will be in the

range 1 to 20, 1 to 40 or 1 to 80, depending on the
current WIDTH setting. CSRLIN can be used to
find the vertical (row) position of the cursor (see
"CSRLIN Variable" in this chapter).

Example:

Also see the LPOS function.

IF P0S(0)>60 THEN PRINT CHR$(13)

This example prints a carriage return (moves the
cursor to the begiiming of the next line) if the cursor
is beyond position 60 on the screen.

4-281

PRINT

Statement

Purpose: Displays data on the screen.

Versions: Cassette Cartridge Compiler
*** ***

Format: PRINT [list of expressions] [;]

? [list of expressions^ [;]

Remarks:

list of expressions is a list of numeric and/or string
expressions, separated by
commas, blanks, or semicolons.
Any string constants in the list
must be enclosed in quotation
marks.

If the Ust of expressions is omitted, a blank line is
displayed. If the Ust of expressions is included, the
values of the expressions are displayed on the screen.

i as aNote: The question mark (?) may be used;
short way of entering PRINT only when you are
using the BASIC program editor.

Print Positions

The position of each printed item depends on the
punctuation used to separate the items in the Ust.
BASIC divides the line into print zones of 14 spaces
each.

In the Ust of expressions:

4-282

PRINT

Statement

• Typing a comma causes the next value to be
printed at the begimung of the next zone.

• Typing a semicolon causes the next value to be
printed immediately after the last value.

• Typing one or more spaces between expressions
has the same effect as typing a semicolon.

If a comma, semicolon, or SPC or TAB function
ends the list of expressions, the next PRINT
statement begins printing on the same line, spacing
accordingly. If the list of expressions ends without a
comma, semicolon, SPC or TAB function, a carriage
return is printed at the end of the line; that is,
BASIC moves the cursor to the beginning of the next
line.

If the value to be printed is longer than the number
of character positions on the current line, then the
value will be printed at the beginning of the next line.l
If the value to be printed is longer than the defined
WIDTH, BASIC prints as much as it can on the
current line and prints the rest on the next line.

Scrolling occurs as described imder "Text Mode" in
Chapter 3.

Printed numbers are always followed by a space.
Positive numbers are preceded by a space. Negative
numbers are preceded by a minus sign.
Single-precision munbers that can be represented
with 7 or fewer digits in fixed point format as
accurately as they can be represented in the floating
point format, are output using fixed point or integer
format. For example, 10 a (-7) is output as .0000001
and 10a (-8) is output as lE-8.

4-283

PRINT

Statement

Example:

BASIC automatically places a carriage return/line
feed after printing width characters, where width is
20, 40 or 80, as defined by the WIDTH statement.
This causes two hues to be skipped when you print
exactly 20, 40 or 80 characters, unless the PRINT
statement ends in a semicolon (;).

LPRINT is used to print information on the printer.
See "LPRINT and LPRINT USING Statements"

earUer in this chapter.

Ok

10 X=5

20 PRINT X+5, X-5, X*(-5)
30 END

RUN

10 0 -25
Ok

In this example, the commas in the PRINT
statement cause each value to be printed at the
beginning of the next print zone.

Ok

10 INPUT X

20 PRINT X "SQUARED IS" Xa2 "AND";
30 PRINT X "CUBED IS" Xa3
RUN

? 9

9 SQUARED IS 81 AND 9 CUBED IS 729
Ok

RUN

? 21

21 SQUARED IS 441 AND 21 CUBED IS 9261
Ok

Here, the semicolon at the end of line 20 causes
both PRINT statements to be printed on the same
line.

4-284

PRINT

Statement

Ok
10 FOR X = 1 TO 5
20 J=J+5

30 K=K+10
40 ?J;K;
50 NEXT X

RUN
5 10 10 20 15 30 20 40 25 50
Ok

Here, the semicolons in the PRINT statement cause
each value to be printed immediately after the
preceding value. (Don't forget, a number is always
followed by a space and positive numbers are
preceded by a space.) In Une 40, a question mark is
used instead of the word PRINT.

4-285

PRINT USING

Statement

Purpose: Prints strings or numbers using a specified format.

Versions: Cassette Cartridge Compiler

Format: PRINT USING v$; list of expressions [;]

Remarks:

v$ is a string constant or variable which
consists of special formatting
characters. These formatting
characters (see below) determine the
field and the format of the printed
strings or numbers.

list of expressions
consists of the string expressions or
numeric expressions that are to be
printed, separated by semicolons or
commas.

String Fields

When PRINT USING is used to print strings, one of
three formatting characters may be used to format
the string field:

! Specifies that only the first character in
the given string is to be printed.

\n spacesX Specifies that 2+n characters from the
string are to be printed. If the
backslashes are typed with no spaces,
two characters are printed; with one
space, three characters are printed, and

4-286

PRINT USING

Statement

so on. If the string is longer than the
field, the extra characters are ignored.
If the field is longer than the string, the
string is left-justified in the field and
padded with spaces on the right.

Example:

10 A$="LOOK": B$="OUT"
30 PRINT USING ."!";A$;B$
40 PRINT USING "\ \";A$;B$
50 PRINT USING "\ \";A$;B$;"!!"
RUN

LO

LOOKOUT
LOOK OUT !!

& Specifies a variable length string field.
When the field is specified with the
string is output exactly as input.
Example:

10 A$="LOOK": B$="OUT"
20 PRINT USING "!";A$;
30 PRINT USING "&";B$
RUN
LOUT

Numeric Fields

When PRINT USING is used to print numbers, the
following special characters may be used to format
the numeric field:

A number sign is used to represent each
digit position. Digit positions are always
filled. If the number to be printed has

4-287

PRINT USING

Statement

fewer digits than positions specified, the
number is right-justified (preceded by
spaces) in the field.

A decimal point may be inserted at any
position in the field. If the format string
specifies that a digit is to precede the
decimal point, the digit wiU always be
printed (as 0 if necessary). Numbers
are rounded as necessary.

PRINT USING 78
0.78

PRINT USING "###.##";987.654
987.65

PRINT USING "##.## ";10.2,5.3,66.789,.234
10.20 5.30 66.79 0.23

In the last example, three spaces were
inserted at the end of the format string
to separate the printed values on the
Une.

A plus sign at the beginning or end of
the format string causes the sign of the
number (plus or minus) to be printed
before or after the number.

A minus sign at the end of the format
field causes negative numbers to be
printed with a trailing minus sign.

PRINT USING "+##.## ";-68.95,2.4,55.6,-.9
-68.95 +2.40 +55.60 -0.90

PRINT USING "##.##- ";-68.95,22.449,:j' C
68.95- 22.45 7.01-

** A double asterisk at the beginning of
the format string causes leading spaces

01

4-288

PRINT USING

Statement

in the numeric field to be filled with

asterisks. The ** also specifies positions
for two more digits.

PRINT USING "**#.# ";12.39,-0.9,765.1
*12.4 *-0.9 765.1

$$ A double doUar sign causes a dollar
sign to be printed to the immediate left
of the formatted number. The $$
specifies two more digit positions, one
of which is the dollar sign. The
exponential format cannot be used with
$$. Negative numbers cannot be used
unless the minus sign trails to the right.

PRINT USING "$$###.##";456.78
$456.78

**$ The **$ at the beginning of a format
string combines the effects of the above
two symbols. Leading spaces are filled
with asterisks and a dollar sign will be
printed before the number. **$
specifies three more digit positions, one
of which is the dollar sign.

PRINT USING "**$##.##";2.34
***$2.34

, A comma that is to the left of the
decimal point in a formatting string
causes a comma to he printed to the left
of every third digit to the left of the
decimal point. A comma that is at the
end of the format string is printed as
part of the string. A comma specifies
another digit position. The comma has
no effect if used with the exponential
(a A A a) format.

4-289

PRINT USING

Statement

PRINT USING "####,.##";1234.5
1,234.50

PRINT USING "####.##,";1234.5
1234.50,

A A A A Four carets may be placed after the
digit position characters to specify
exponential format. The four carets
allow space for E+nn or D+nn to be
printed. Any decimal point position
may be specified. The significant digits
are left-justified, and the exponent is
adjusted. Unless a leading + or trailing
+ or - is specified, one digit position is
used to the left of the decimal point to
print a space or a minus sign.

Ok

PRINT USING "##.##aaaa";234.56
2-355+02

Ok

PRINT USING ".###aaaa-";-88888
.889E+05-

Ok

PRINT USING "+.##aaaa";123
+.12E+03
Ok

An underscore in the format string
causes the next character to be output
as a hteral character.

PRINT USING " !##.## !";12.34
112.34!

The literal character itself may be an
underscore by placing two underscores
" " in the format string.

If the number to be printed is larger than the
specified numeric field, a percent sign (%) is printed

4-290

PRINT USING

Statement

in front of the number. If rounding causes the
number to exceed the field, the percent sign is
printed in front of the rounded number.

Ok

PRINT USING "##.##";111.22
%111.22
Ok
PRINT USING 999
%1.00
Ok

If the number of digits specified exceeds 24, an
Illegal function call error occurs.

Example: This example shows how you can include string
constants in the format string.

Ok
PRINT USING "THIS IS EXAMPLE 1
THIS IS EXAMPLE #1
Ok

4-291

PRINT # and PRINT #

USING Statements

Purpose: Writes data sequentially to a fUe.

Versions: Cassette Cartridge Compiler

Format: PRINT Ufilenum, [USING list of exps [;]

Remarks:

filenum is the number used when the fUe was
opened for output.

x$ is a string expression comprised of
formatting characters as described in
the previous section, "PRINT USING
Statement."

list of exps is a hst of the numeric and/or string
expressions that wiU be written to the
fUe.

PRINT # does not compress data on the fUe. An
image of the data is written to the fUe just as it would
be displayed on the screen with a PRINT statement.
For this reason, care should be taken to delimit the
data on the fUe, so that it wiU be input correctly from
the fUe.

In the list of expressions, numeric expressions should
be delimited by semicolons. For example,

PRINT #1,A;B;C;X;Y;Z

(If commas are used as delimiters, the extra blanks
that are inserted between print fields are also written
to the fUe.)

4-292

PRINT# and PRINT#

USING Statements

String expressions must be separated by semicolons
in the list. To format the string expressions correctly
on the file, use expUcit delimiters in the list of
expressions.

For example, let A$="CAMERA" and
B$="93604-l." The statement

PRINT #1,A$;B$

writes CAMERA93604-1 to the file. Because there

are no delimiters, this could not be input as two
separate strings. To correct the problem, insert
expUcit delimiters into the PRINT # statement as
foUows:

PRINT #1,A$;",";B$

The image written to the file is

CAMERA,93604-1

which can be read back into two string variables.

If the strings themselves contain commas,
semicolons, significant leading blanks, carriage
returns, or line feeds, write them to the file
surrounded by explicit quotation marks using
CHR$(34).

For example, let A$="CAMERA, AUTOMATIC"
andB$=" 93604-1." The statement:

PRINT #1,A$;B$

writes the following image to the fUe:

CAMERA, AUTOMATIC 93604-1

and the statement:

4-293

PRINT# and PRINT#

USING Statements

INPUT #1,A$,B$

inputs the string "CAMERA" to A$ and
"AUTOMATIC 93604-1" toB$.

To separate these strings properly on the file, write
double quotes to the file image using CHR$(34).
The statement:

PRINT #1,CHR$(34);A$;CHR${34);CHR$(34);B$;CHR$(34)

writes the following image to the file:

"CAMERA, AUTOMATIC"" 93604-1"

and the statement:

INPUT #1,A$,B$

inputs "CAMERA, AUTOMATIC" to A$ and
" 93604-1" to B$. ^

The PRINT # statement may also be used with the
USING option to control the format of the fUe. For
example:

PRINT #1,USING"$$###.##,";J;K;L

The easy way to avoid aU these problems is to use
the WRITE # statement rather than the PRINT #

statement. (Refer to "WRITE # Statement," at the
end of this chapter.)

Example: For more examples using PRINT # and WRITE #,
see Appendix B, "BASIC Diskette Input and
Output."

4-294

PSET and PRESET

Statements

Purpose: Draws a point at the specified position on the screen.

Versions: Cassette Cartridge Compiler
:ie4e:ie *** ***

Format:

Remarks:

Graphics mode only.

PSET (x,y) [,attribute]

PRESET ix,y) [.attribute]

(x,y) are the coordinates of the point to be
set. They may be in absolute or relative
form, as explained in the section
"Specifying Coordinates"under
"Graphics Modes" in Chapter 3. i

attribute is an integer or integer expression in the
range of 0 to 15. In low resolution,
there are 16 attributes available (0 to
15). In medium resolution, there are 4
(0 to 3) or 16 (0 to 15) attributes
available, depending on the current
screen mode. In high resolution, there
are 2 (0 to 1) or 4 (0 to 3) attributes
available, depending on the current
screen mode. The default attribute is

always the maximum attribute. 0 is the
background attribute. For more
information see "Graphics Mode" in
Chapter 3.

Screen modes 3-6 are not supported in the BASIC
Compiler.

4-295

PSET and PRESET

Statements

PRESET is almost identical to PSET. The only
difference is that if no attribute parameter is given to
PRESET, the baekground attribute (0) is selected. If
attribute is included, PRESET is identical to PSET.
Line 70 in the example below could just as easily be:

70 PSET(I,I),0

If an out of range coordinate is given to PSET or
PRESET no action is taken nor is an error given. If
attribute is greater than 15, an Illegal function call
error results.

Example: Lines 20 through 40 of this example draw a diagonal
Une from the point (0,0) to the point (100,100).
Then Unes 60 through 80 erase the Une by setting
each point to a color of 0.

10 SCREEN 1
20 FOR 1=0 TO 100
30 PSET (1,1)
40 NEXT

50 'erase line
60 FOR 1=100 TO 0 STEP -1
70 PRESET(I,I)
80 NEXT

4-296

PUT

Statement (Files)

Purpose: Writes a record from a random buffer to a random

Note: This statement requires the use of DOS
2.10.

Versions: Cassette Cartridge Compiler

Format: PUT [uyUenum [, number]

Remarks:

filenum is the number under which the file was
opened.

number is the record number for the record to

be written, in the range of 1 to
16,777,215. In the BASIC Compiler,
number must be in the range of 1 to
32767.

If number is omitted, the record has the next
available record number (after the last PUT).

PRINT #, PRINT # USING, WRITE #, LSET, and
RSET may be used to put characters in the random
file buffer before a PUT statement. In the case of

WRITE #, BASIC pads the buffer with spaces up to
the carriage return.

Any attempt to read or write past the end of the
buffer causes a Field overflow error. Refer to

Appendix B, "BASIC Diskette Input and Output."

4-297

PUT

Statement (Files)
Because BASIC and DOS block as many records as
possible in 512 byte sectors, the PUT statement does
not necessarily perform a physical write to the
diskette.

PUT can be used for a communications file. In that

case number is the number of bytes to write to the
communications file. This number must be less than

or equal to the value set by the LEN option on the
OPEN "COM... statement.

Example: See Appendix B.

4-298

PUT

Statement (Graphics)

Purpose: Writes colors onto a specified area of the screen.

Versions: Cassette Cartridge Compiler

Format:

Remarks:

Graphics mode only.

PUT (x,y),array [^action]

(x,y) are the coordinates of the top left comer
of the image to be transferred.

array is the name of a muneric array containing
the information to be transferred. See

"GET Statement (Graphics)" in this
chapter for more information on this i
array.

action is one of:

PSET

PRESET

XOR

OR

AND

XOR is the default.

PUT is the opposite of GET in the sense that it takes
data out of the array and puts it onto the screen.
However it also provides the option of interacting
with the data already on the screenusing the action.

4-299

PUT

Statement (Graphics)
PSET as an action simply stores the data from the
array onto the screen, so this is the true opposite of
GET.

PRESET is the same as PSET except a negative
image is produced. That is, a value of 0 in the array
causes the corresponding point to have attribute
number 3, and vice versa; a value of 1 in the array
causes the corresponding point to have attribute 2,
and vice versa.

AND is used when you want to transfer the image
only if an image already exists under the transferred
image.

OR is used to superimpose the image onto the
existing image.

XOR is a special mode which may be used for
animation. XOR causes the points on the screen to
be inverted where a point exists in the array image.
XOR has a unique property that makes it especially
useful for animation: when an image is PUT against
a complex backgroimd twice, the background is
restored unchanged. This allows you to move an
object around without obliterating the background.

In medium resolution mode (SCREEN 1 or
SCREEN 4), the AND, XOR, and OR operations
have the following effects on attribute selections:

4-300

XOR

PUT

Statement (Graphics)

AND

array value

screen 0 1 2 3

0 0 0 0 0

1 0 1 0 1

2 0 0 2 2

3 0 1 2 3

OR

array value

screen 0 1 2 3

0 0 1 2 3

1 1 1 3 3

2 2 3 2 3

3 3 3 3 3

4-301

PUT

Statement (Graphics)

array value

screen 0 1 2 3

0 0 1 2 3

1 1 0 3 2

2 2 3 0 1

3 3 2 1 0

Animation of an object can be performed as follows:

1. PUT the object on the screen (with XOR)

2. Recalculate the new position of the object

3. PUT the object on the screen (with XOR) a
second time at the old location to remove the old

image.

4. Go to step 1, this time putting the object at the
new location.

Movement done this way leaves the background
unchanged. Flicker can be reduced by minimising
the time between steps 4 and 1, and making sure
there is enough time delay between steps 1 and 3. If
more than one object is being animated, every object
should be processed at once, one step at a time.

If it is not important to preserve the background,
animation can be performed using the PSET action
verb. But you should remember to have an image
area that will contain the "before" and "after"

images of the object. This way the extra area will
effectively erase the old image. This method may be
somewhat faster than the method using XOR

4-302

PUT

Statement (Graphics)
described above, since only one PUT is required to
move an object (although you must PUT a larger
image).

If the image to be transferred is too large to fit on
the screen, an Dlegal function call error occurs.

4-303

RANDOMIZE

Statement

Purpose: Reseeds the random number generator.

Versions: Cassette Cartridge
tfctfetie iiesie^

Compiler

Format:

Remarks:

RANDOMIZE [n]

RANDOMIZE TIMER

n is an integer, single- or double-precision
expression that is used as the random
number seed. In Cassette BASIC, n must
be an integer expression.

If n is omitted, BASIC suspends program execution
and asks for a value by displaying:

Random Number Seed (-32768 to 32767)?

before executing RANDOMIZE.

If the random number generator is not reseeded, the
RND function returns the same sequence of random
numbers each time the program is run. To change
the sequence of random numbers every time the
program is run, place a RANDOMIZE statement at
the beginning of the program and change the seed
with each run.

In Cartridge BASIC, if DOS is present, the internal
clock can be a useful way to get a random niunber
seed. You can use VAL to change the last two digits
of TIMES to a number, and use that number for n.

4-304

Example:

RANDOMIZE

Statement

In Cartridge BASIC, with DOS present, you can get
a new random number seed without being prompted.
To do this, use the TIMER function in the
expression. Note that the sequence is different each
time the programs runs.

10 RANDOMIZE
20 FOR 1=1 TO 4
30 PRINT RND;
40 NEXT I

RUN

Random Number Seed (-32768 to 32767)?

Suppose you respond with 3. The program
continues:

Random Number Seed (-32768 to 32767)7 3
.7655695 .3558607 .3742327 .1388798
Ok
RUN

Random Number Seed (-32768 to 32767)7

Suppose this time you respond with 4. The program
continues:

Random Number Seed (-32768 to 32767)7 4
.1719568 .5273236 .6879686 .713297
Ok
RUN

Random Number Seed (-32768 to 32767)7

If you try 3 again, you'll get the same sequence as
the first run:

Random Number Seed (-32768 to 32767)7 3
.7655695 .3558607 .3742327 .1388798
Ok

In the program below, note that each time the
program is run you see a different sequence of
numbers.

4-305

RANDOMIZE

Statement

10 RANDOMIZE TIMER
20 FOR 1=1 TO 4
30 PRINT RND;
40 NEXT
RUN ^ y
.9590051 .1036786 .1464037 .7754918 v
Ok
RUN

.8261163 .17422 .9191545 .5041142
Ok

4-306

READ

Statement

Purpose: Reads values from a DATA statement and assigns
them to variables (see "DATA Statement" in this
chapter).

Versions: Cassette Cartridge Compiler

Format: READ variable [,variable\...

Remarks:

variable is a numeric or string variable or array
element which is to receive the value

read from the DATA table.

A READ statement must always be used with a
DATA statement. READ statements assign DATA
statement values to the variables in the READ i

statement on a one-to-one basis. READ statement

variables may be muneric or string, and the values
read must agree with the variable t5rpes specified. If
they do not agree, a Syntax error results.

A single READ statement may access one or more
DATA statements (they will be accessed in order),
or several READ statements may access the same
DATA statement. If the number of variables in the

hst of variables exceeds the number of elements in

the DATA statement(s), an Out of data error occurs.
If the number of variables specified is fewer than the
number of elements in the DATA statement(s), the
READ statements following it begin reading at the
first umead element. If there are no subsequent
READ statements, the extra data is ignored.

4-307

READ

Statement

Example:

To reread data from any line in the list of DATA
statements, use the RESTORE statement (see
"RESTORE Statement" in this ehapter).

80 FOR 1=1 TO 10
90 READ A(I)
100 NEXT I
110 DATA 3.08,5.19,3.12,3.98,4.24
120 DATA 5.08,5.55,4.00,3.16,3.37

This program segment reads the values from the
DATA statements into the array A. After execution,
the value of A(l) is 3.08, and so on.

Ok

10 PRINT "CITY", "STATE", " ZIP"
?n RFfln rt 7

30 DATA "DENVER,", COLORADO, 80211
40 PRINT C$,S$,Z
RUN

CITY STATE ZIP

DENVER, COLORADO 80211
Ok

This program reads string and numeric data from
the DATA statement in hne 30. Note that you don't
need quotation marks around COLORADO, because
it doesn't have commas, semicolons, or significant
leading or trailing blanks. However, you do need the
quotation marks around "DENVER" because of the
comma.

4-308

REM

Statement

Purpose: Inserts explanatory remarks in a program.

Versions: Cassette

Cartridge Compiler

Format: REM remark

ry

Remarks: remark may be any sequence of characters.

REM statements are not executed but are output
exactly as entered when the program is Usted.
However, they do slow up execution time somewhat,
and take up space in memory.

REM statements may be branched into (from a
GOTO or GOSUB statement), and execution
continues with the first executable statement after

the REM statement.

Remarks may be added to the end of a Une by
preceding the remark with a single quotation mark
instead of :REM. If you put a remark on a line with
other BASIC statements, the remark must be the last
statement on the hne.

Example:

100 REM calculate average velocity
110 SUM=0: REM initialize SUM

Line 110 might also be written:

110 SUM=0 ' initialize SUM

4-309

RENUM

Command

Purpose:

Versions:

Renumbers program lines.

Cassette

Cartridge Compiler

Format: RENUM \newnum\ [,[oldnurn\ _,mcrement]\

Remarks:

newnum is the first line number to be used in the

new sequence. The default is 10.

oldnum is the line in the current program where
renumbering is to begin. The default is
the first line of the program.

increment is the increment to be used in the new

sequence. The default is 10.

RENUM also changes all line number references
foUowing GOTO, GOSUB, THEN, ELSE,
ON...GOTO, ON...GOSUB, RESTORE, RESUME,
and ERL test statements to reflect the new line

numbers. If a nonexistent line number appears after
one of these statements, the error message Undefined
line number xxxxx in yyyyy is printed. The incorrect
line number reference (xxxxx) is not changed by
RENUM, but line munber yyyyy may be changed.

Note: RENUM cannot be used to change the
order of program lines (for example, RENUM
15,30 when the program has three lines
numbered 10,20 and 30) or to create line
numbers greater than 65529. An Dl^al function
call error results.

4-310

Example:

RENUM

Command

RENUM

Renumbers the entire program. The first new hne
number is 10. Lines increment by 10.

RENUM 300,,50

Renumbers the entire program. The first new line
number is 300. Lines increment by 50.

RENUM 1000,900,20

Renumbers the lines from 900 up so they start with
hne number 1000 and increment by 20.

4-311

RESET

Command

Purpose: Closes aU diskette files and clears the system buffer.

Note: This command requires the use of DOS
2.10. If DOS 2.10 is not present, an Illegal
function call error will occur.

Versions: Cassette Cartridge Compiler
:ic4c4c ***

Format: RESET

Remarks: If aU open fUes are on diskette, then RESET is the
same as CLOSE with no file numbers after it.

4-312

RESTORE

Statement

Purpose: Allows DATA statements to be reread from a
specified line.

Versions: Cassette Cartridge Compiler
9ic)it9ie

Format: RESTORE [line]

Remarks:

Example:

line is the line number of a DATA statement in

the program.

After a RESTORE statement is executed, the next
READ statement accesses the first item in the first

DATA statement in the program. If line is specified,
the next READ statement accesses the first item in

the specified DATA statement. i

Ok
10 READ A,B,C
20 RESTORE
30 READ D,E,F
40 DATA 57, 68, 79
50 PRINT A;B;C;D;E;F
RUN

57 68 79 57 68 79
Ok

The RESTORE statement in line 20 resets the

DATA pointer to the beginning, so that the values
that are read in Une 30 are 57, 68, and 79.

4-313

RESUME

Statement

Purpose: Continues program execution after an error recovery
procedure is performed.

Versions: Cassette Cartridge
4c9ie^ :ic9|::|c

Compiler

Format: RESUME [0]

RESUME NEXT

RESUME line

Remarks: Any of the formats shown above may be used,
depending on where execution is to resume:

RESUME or RESUME 0

Execution resumes at the

statement which caused the

error.

Note: If you try to renumber
a program containing a
RESUME 0 statement, you
will get an Undefined We
number error. The statement

will still say RESUME 0,
which is okay.

RESUME NEXT

RESUME line

Execution resumes at the

statement immediately following
the one which caused the error.

Execution resumes at the

specified line number.

4-314

RESUME

Statement

A RESUME statement that is not in an error trap
routine causes a RESUME without error message to
occur.

Example:

10 ON ERROR GOTO 900

900 IF (ERR=230)AND(ERL=90) THEN PRINT
"TRY AGAIN": RESUME 80

Line 900 is the beginning of the error trapping
routine. The RESUME statement causes the

program to return to hne 80 when error 230 occurs
in line 90.

4-315

RETURN

Statement

Purpose: To bring you back from a subroutine. See "GOSUB
and RETURN Statements" in this chapter.

Versions: Cassette Cartridge Compiler
4c9ieHc

Format:

Remarks:

line valid only in Cartridge BASIC and the BASIC
Compiler.

RETURN [line]

line is the line number of the program line you
wish to return to. You may use it only in
Cartridge BASIC.

Although you can use RETURN line to return from
any subroutine, this enhancement was added to allow
non-local returns from the event trapping routines.
From one of these routines you will often want to go
back to the BASIC program at a fixed line niimber
while still eliminating the GOSUB entry the trap
created. Use of the non-local RETURN must be

done with care, however, since any other GOSUB,
WHILE, or FOR statements that were active at the
time of the trap will remain active.

4-316

RIGHTS

Function

Purpose: Returns the rightmost n characters of string x$.

Versions: Cassette Cartridge Compiler

Format:

Remarks:

Example:

v$ = RIGHT$(x5,n)

x$ is any string expression.

n is an integer expression specifying the number
of characters to be in the result.

If n is greater than or equal to LEN(x^), then x$ is
returned. If n is zero, the nuU string (length zero) is
returned.

Also see the MID$ and LEFT$ functions.

Ok
10 A$="BOCA RATON, FLORIDA"
20 PRINT RIGHT$(A$,7)
RUN

FLORIDA

Ok

The rightmost seven characters of the string A$ are
returned.

4-317

RMDIR

Command

Purpose: Removes a directory from the specified diskette.

Note: This command requires the use of DOS
2.10.

Versions: Cassette Cartridge Compiler

Format: RMDIR path

Remarks:

path is a string expression, not exceeding
63 characters, that identifies the
sub-directory to be removed from the
existing directory. Refer to "Naming
Files" and "Tree-Structured

Directories" in Chapter 3 for more
information.

The directory must be empty of all files and
sub-directories before it can be removed, with the
exception of the "." and ".." entries, or a Path/ffle
access error occurs.

4-318

Examples:

RMDIR

Command

ROOT

/ \

/ \
SALES ACCOUNTING

/ / \

/ / \
MIKE SHANNON CHELLE

/
/

RAM

The following examples refer to the tree-structure
above.

If you are in the root directory and you want to
remove the directory called PAM, use:

RMDIR "SALES\MIKE\PAM"

If you want to make ACCOUNTING the current
directory and remove the directory called CHELLE,
use:

CHOIR "ACCOUNTING"
RMDIR "CHELLE"

Another way to remove the directory CHELLE is
to make the root the current directory and then
remove CHELLE.

CHOIR "\"

RMDIR "a::^

The directory preceding the current directory
cannot be removed. Using the tree-structure above,
suppose that MIKE is the current directory. If you
try to remove the SALES directory you wUl get a
Path/file access error.

4-319

RMDIR

Command

If you try to use the KILL conunand to remove a
directory, you will get a Path/file access error.

4-320

RND

Function

Purpose: Returns a random number between 0 and 1.

Versions: Cassette Cartridge Compiler
:icic:i:

Format: v = RND[(x)]

Remarks:

X is a numeric expression which affects the
returned value as described below.

The same sequence of random numbers is generated
each time the program is run unless the random
number generator is reseeded. This is most easily
done using the RANDOMIZE statement (see
"RANDOMIZE Statement" in this chapter). You
may also reseed the generator when you call the
RND function by using x where x is negative. This
always generates the particular sequence for the
given X. This sequence is not affected by
RANDOMIZE, so if you want it to generate a
different sequence each time the program is run, you
must use a different value for x each time.

If X is positive or not included, RND(x) generates the'
next random number in the sequence.

RND(O) repeats the last number generated.

To get random numbers in the range 0 (zero)
through n, use the formula:

INT(RND * (m+1))

4-321

RND

Function

Example: The first horizontal Une of results shows three
random numbers, generated using a positive x.

In Une 40, a negative number is used to reseed the
random number generator. The random numbers
produced after this reseeding are in the second row
of results.

Line 80 uses RANDOMIZE to reseed the random

number generator; in Une 90 it is reseeded again by
caUing RND with the same negative value we used in
Une 40. This cancels the effect of the RANDOMIZE

statement, as you can see; the third Une of results is
identical to the second Une.

In Une 130, RND is called with an argument of zero,
so the last number printed is the same as the
preceding number.

Ok
10 FOR 1=1 TO 3
20 PRINT RND(I); ' x>0
30 NEXT I

40 PRINT: X=RND(-6) ' x<0
50 FOR 1=1 TO 3
60 PRINT RND(I); ' x>0
70 NEXT I

80 RANDOMIZE 853 'randomize
90 PRINT: X=RND(-6) ' x<0
100 FOR 1=1 TO 3
110 PRINT RND; ' same as x>0
120 NEXT I

130 PRINT: PRINT RND(O)
RUN

.6291626 .1948297 .6305799

.6818615 .4193624 .6215937

.6818615 .4193624 .6215937

.6215937

Ok

4-322

RUN

Command

Purpose: Begins execution of a program.

Versioiis: Cassette Cartridge

Format: RUN [line]

RUN /ifejfpec[,R]

Remarks:

Compiler
(»♦)

line is the line number of the program in
metnory where you wish execution to
begin.

filespec is a string expression for the file
specification, as explained under
"Naming Files" in Chapter 3. The
default extension .HAS is supplied for
diskette files.

RUN or RUN line begins execution of the program
ciurently in memory. If line is specified, execution
begins with the specified line number. Otherwise,
execution begins at the lowest line number.

RUN filespec loads a file from diskette or cassette
into memory and runs it. It closes all open files and
deletes the current contents of memory before
loading the designated program. However, with the
R option, all data files remain open. Refer also to
Appendix B, "BASIC Diskette Input and Output."

Executing a RUN command will turn off any sound
that is running and reset to music background. All

4-323

RUN

Command

Example:

sound output will be reset to the default SOUND
OFF/BEEP ON state. Also, PEN and STRIG will
be reset to OFF.

Ok
10 PRINT 1/7
RUN

.1428571

Ok
10 PI=3.141593
20 PRINT PI

RUN 20
0

Ok

In this first example, we use the first form of RUN
on two very small programs. The first program is run
from the beginning. We used the RUN line option
for the second example to run the program from Une
20. In this case, line 10 does not get executed, so PI
does not receive its proper value. A 0 is printed
because all numeric variables have an initial value of

zero.

RUN "CAS1:NEWFIL",R

The preceding example loads the program
"NEWFIL" from the tape and runs it, keeping fUes
open.

4-324

SAVE

Command

Purpose: Saves a BASIC program file on diskette or cassette.

Versions: Cassette Cartridge Compiler
*** ***

Format: SAVE filespec [,A]

SAVE filespec [,P]

Remarks:

filespec is a string expression for the file
specification. If filespec does not
conform to the rides outlined under
"Naming Files" in Chapter 3, an error is
issued and the save is canceled.

The BASIC program is written to the specified
device. When saving to CASl:, the cassette motor is |
turned on and the file is immediately written to the
tape.

For diskette files, if the filename is eight characters
or less and no extension is supplied, the extension
.HAS is added to the name. If a file with the same

filename already exists on the diskette, it will be
written over.

When using Cassette BASIC and Cartridge BASIC
without DOS, if the device name is omitted, CASl:
is assumed. CASl: is the only allowable device for
SAVE in Cassette BASIC.

For Cartridge BASIC, the device defaults to the
DOS default drive when DOS is present or else the
device defaults to cassette.

4-325

SAVE

Command

Example:

The A option saves the program in ASCII format.
Otherwise, BASIC saves the file in a compressed
binary (tokenized) format. ASCII files take up more
space, but some types of access require that files be
in ASCII format. For example, a file intended to be
merged must be saved in ASCII format. Programs
saved in ASCII may be read as data files.

The P option saves the program in an encoded binary
format. This is the protection option. When a
protected program is later run (or loaded), any
attempt to LIST or EDIT it fails with an Illegal
function call error. No way is provided to
"unprotect" such a program.

Note: The diskette directory entry for a BASIC
program file gives no indication that the file is
either protected or stored in ASCII format. The
.BAS extension is used in any case.

See also Appendix B, "BASIC Diskette Input and
Output."

SAVE "INVENT"

Saves the program in memory as INVENT. The
program is saved on cassette if you are using
Cassette BASIC. If you are using Cartridge BASIC,
and you are using DOS, the program is saved on the
diskette in the DOS default drive and given an
extension of .BAS.

SAVE "A:PROG",A

Saves PROG.BAS on drive A in ASCII, so it can be
merged later.

4-326

SAVE

Command

SAVE "A:SECRET.BOZ",P

Saves SECRET.BOZ on drive A, protected so it
may not be altered.

4-327

SCREEN

Function

Purpose: Returns the ASCII code (0-255) for the character on
the active screen at the specified row (line) and
column.

Versions: Cassette Cartridge Compiler

Format:

Remarks:

V = SCREEN(roM',co/[^])

row is a numeric expression in the range 1 to 25.

col is a numeric expression in the range 1 to 20,1
to 40 or 1 to 80 depending on the WIDTH
setting.

z is a numeric expression which evaluates to a
true or false value, z is only valid in text
mode.

Refer to Appendix G, "ASCII Character Codes" for
a list of ASCn codes.

In text mode, if z is included and is true (non-zero),
the color attribute for the character is returned

instead of the code for the character. The color

attribute is a number in the range 0 to 255. This
number, v, may be explained as follows:

(v MOD 16) is the foreground color.

(((v - foreground)/16) MOD 128) is the
background color, where foreground is calculated
as above.

4-328

Example:

rN

SCREEN

Function

(v>127) is true (-1) if the character is blinking,
false (0) if not.

Refer to "COLOR Statement" for a Ust of colors

and their associated numbers.

In graphics mode, if the specified location contains
graphic information (points or lines, as opposed to
just a character), then the SCREEN function returns
zero.

Any values entered outside the ranges indicated
result in an Illegal function call error.

The SCREEN statement is explained in the next
section.

100 X = SCREEN (10,10)

If the character at 10,10 is A, then X is 65.

110 X = SCREEN (1,1,1)

Returns the color attribute of the character in the

upper left hand corner of the screen.

4-329

SCREEN

Statement

Purpose: Sets the screen attributes to be used by subsequent
statements.

Versions: Cassette Cartridge Compiler
Hn** 4c*:ic

Format: SCREEN [mode] [,[apage] Lvpage'W [,erase]]

Remarks:

mode is a numeric expression resulting in an
integer value in the range of 0 through 6.
Valid modes are:

0 Text mode at current WIDTH (40 or
80). 2K page size when using
WIDTH 40, and 4K page size when
using WIDTH 80. WIDTH 80 is
available only if you have 128K of
memory.

1 Medium resolution graphics mode
(320x200). 4 colors. 16K page size.

2 High resolution graphics mode
(640x200). 2 colors. 16K page size.

3 Low resolution graphics mode
(160x200). 16 colors. 16K page
size. Supported in Cartridge BASIC
only.

4 Medium resolution graphics mode _
(320x200). 4 colors. 16K page size.
Supported in Cartridge BASIC only.

4-330

SCREEN

Statement

5 Medium resolution graphics mode
(320x 200). 16 colors. 32K page
size. Available only if you have
128K of memory. Supported in
Cartridge BASIC only.

6 High resolution graphics mode
(640x200). 4 colors. 32K page size.
Available only if you have 128K of
memory. Supported in Cartridge
BASIC only.

burst is a muneric expression resulting in either
a 0 or a 1. It enables or disables color.

On an RGB monitor, color bmst is always
on. On a composite monitor, color burst
may be on or off. In text mode
(mode=0), a zero value disables color
(grey scale images only) and a 1 value
enables color (allows color images). In
medium resolution graphics (mode=l or
mode=:4), a 0 value enables color and a 1
value disables color. Burst off for

mode=l and mode=4 also produces a
grey scale. Color burst has no effect for
mode=2, mode=:3, mode=5, or mode=6.
Color burst is always on for these modes.

apage (active page) is an integer expression in
the range of 0 to n determined by current
video memory size and page size for
current screen mode. It selects the page to
be written to by output statements to the
screen, apage is valid in all screen modes.
If omitted, the defaiilt is the current active

^page (visual page) selects which page is to be
displayed on the screen, in the same way

4-331

SCREEN

Statement

erase

as apage above. The visual page may be
different from the active page, ypage is
valid in all screen modes. If omitted, vpage
defaults to apage.

is an integer expression in the range of 0-2
indicating how much or how little of video
memory should be erased.

0 Do not erase video memory even if
the mode changes.

1 Erase the union of the new page and
the old page if the mode or burst
changes.

2 Erase aU of video memory if mode
or burst changes. The default is 1.

erase is only supported in Cartridge x*—^
BASIC. '

Mode Desc Width Paze Colors

0 Alpha 40,80 2k 4k 16

1 320x200 40 16k 4

2 640x200 80 16k 2

3 160x200 20 16k 16

4-332

SCREEN

Statement

Mode Desc Width Psize Colors

4 320x200 40 16k 4

5 320x200 40 32k 16

6 640x200 80 32k 4

If aU parameters are valid, the new screen mode is
stored, the screen is erased, (video memory may or
may not be erased) the foreground color is set to
white, and the backgrotmd and border colors are set
to black.

If the new screen mode is the same as the previous
mode, and the color burst does not change, nothing
is changed.

In all modes if apage and vpage are specified, it is
possible to change display pages for viewing.
Initially, both active and visual pages default to page
0 (zero). By switching around active and visual ■
pages, you can display one page while building
another. Then you can switch visual pages
instantaneously.

BASIC forces the visual page to the active page
imder the following conditions:

1. When BASIC retiums to direct mode as a result

of an error.

2. When BASIC exits the program via the END
statement or by running off the end of the
program.

3.)Vhen a STOP statement is encountered.

Note: There is only one cursor shared among all
the pages. If you are going to switch active pages
back and forth, you should save the cursor

4-333

SCREEN

Statement

position on the current active page (using POS(O)
and CSRLIN), before changing to another active
page. Then when you return to the original page,
you can restore the cursor position using the
LOCATE statement.

Any parameter may be omitted. Omitted
parameters, except vpage, assume the old value.

Any values entered outside the ranges indicated will
result in an Illegal function call error. Previous values
are kept.

Example: The following program contains a step-by-step
explanation of what each line does.

10 SCREEN 0,1,0,0: WIDTH 80

Selects text mode with color, and sets active and
visual page to 0. The page size is 4K.

20 SCREEN ,,1,2

Mode and color burst remain unchanged. Active
page is set to 1 and display page to 2.

4-334

SCREEN

Statement

30 SCREEN 2,,0,0,1

Switches to high resolution graphics mode. The
union of the old page and current page is erased.

40 SCREEN 3,,,,0

Switches to low resolution color graphics. Video
memory is not erased.

50 SCREEN 4,,,,2

Sets medium resolution graphics. All of Video
memory is erased.

This is an example of how you can have 3 different
kinds of print on the screen at the same time by using
the erase parameter.

20 KEY OFF
30 SCREEN 3,1,0,0,2
50 FOR C=15 TO STEP -1
60 COLOR C
70 PRINT "SCREEN 3,1,0,0,2"
80 NEXT C
150 SCREEN 4,1,0,0,0
160 LOCATE 16,1
170 FOR C=3 TO 1 STEP -1
180 COLOR C
190 PRINT "SCREEN 4,1,0,0,0"
200 NEXT C

300 SCREEN 2,1,0,0,0
310 LOCATE 19,1
320 FOR C=1 TO 3
330 PRINT "SCREEN 2,1,0,0,0"
340 NEXT C

350 FOR J=1 TO 2000: NEXT J
360 GOTO 30

4-335

SGN

Function

Purpose: Returns the sign of x.

Versions:

Format:

Remarks:

Example:

Cassette
4c 4c 4c

Cartridge
4c4(4i

CompUer
4c 4c 4c

V = SGN(x)

X is any numeric expression.

SGN(x) is the mathematical signum function:

• If jc is positive, SGN(a:) returns 1.
• If X is zero, SGN(x) returns 0.
• If X is negative, SGN(x) returns -1.

ON SGN(X)+2 GOTO 100,200,300

branches to 100 if X is negative, 200 if X is zero,
and 300 if X is positive.

4-336

SIN

Function

Purpose: Calculates the trigonometric sine function.

Versions: Cassette Cartridge Compiler
9ic9ic:)(9(c9|c9f;

Format: v = SIN(x)

Remarks: x is an angle in radians.

If you want to eonvert degrees to radians, multiply
by PI/180, where PI=3.141593.

SIN(x) is ealculated in single precision in Cassette
BASIC and in either single or double precision in
Cartridge BASIC.

Example:

Ok

10 PI=3.141593
20 DEGREES = 90

30 RADIANS=DEGREES * PI/180 ' PI/2
40 PRINT SIN(RADIANS)
RUN

1

Ok

This example calculates the sine of 90 degrees, after
first converting the degrees to radians.

4-337

SOUND

Statement

Purpose: Produces sound through the speaker.

Versions: Cassette Cartridge Compiler
4c 4^% 4c 4c 4c 4c 4c 4c

Format:

Remarks:

SOUND freq, duration [_,[volume\, [voice]]]

SOUND ON

SOUND OFF

freq is the desired rate of occurence in Hertz
(cycles per second). It must be a
numeric expression in the range 37 to
32767. The lowest frequency the
mtiltivoice sound chip can produce is
110 Hz. Any values below 110 Hz wiU
soimd at 110 Hz. BASIC will not give
an error.

duration is the desired length of time in clock
ticks. The clock ticks occur 18.2 times

per second. The duration must be a
numeric expression. In Cartridge
BASIC, duration is .0015 to 65535.

volume is a numeric expression in the range of 0
to 15. If volxime is omitted 15 is

assumed. SOUND must be ON or you
will get an IDegal function caO error.
Supported in Cartridge BASIC only.

voice is a numeric expression in the range of 0
to 2. If voice is omitted, 0 is assumed.

4-338

SOUND

Statement

SOUND must be ON or you get an
niegal function call error. Supported in
Cartridge BASIC only.

When the SOUND statement produces a soimd, the
program continues to execute imtil it reaches another
SOUND statement. If duration of the new SOUND

statement is zero, the current SOUND statement that
is running is turned off. Otherwise, the program
waits until the first soimd completes before it
executes the new SOUND statement.

If you are using Cartridge BASIC, you can cause the
sounds to be buffered so that the program continues
to execute even when it comes to a new SOUND

statement. See the MB command explained under
"PLAY Statement" in this chapter for details.

If no SOUND statement is running, SOUND x,0 has
no effect.

In Cartridge BASIC the SOUND statement can be
used with the BEEP statement to send sound to the

internal speaker and the external speaker. SOUND
ON is used to enable soimd to the external speaker
which will support multi-voice sound using the
PLAY statement or the SOUND statement.

SOUND ON

Sound will come from the television/external
speaker. The internal speaker is disabled. By
turning SOUND ON, you can then use multiple
voices with the PLAY or SOUND statements and

you can control the volume of PLAY or SOUND
with the V parameter.

SOUND OFF : BEEP ON

4-339

SOUND

Statement

This sends the sound through the
television/ external speaker and the internal speaker.

SOUND OFF : BEEP OFF

This sends the sound only through the internal
speaker.

BASIC will restore the machine to the default BEEP

ON/SOUND OFF state when it exits.

Refer to the "PLAY Statement" in this chapter for
an explanation of PLAY with multiple voices and
volume.

4-340

SOUND

Statement

The tuning note, A, has a frequency of 440. The
following table correlates notes with their
frequencies for two octaves on either side of middle
C.

Note Frequency Note Frequency

C 130.810 c* 523.250

D 146.830 D 587.330

E 164.810 E 659.260

F 174.610 F 698.460

G 196.000 G 783.990

A 220.000 A 880.000

B 246.940 B 987.770

C 261.630 C 1046.500

D 293.660 D 1174.700

E 329.630 E 1318.500

F 349.230 F 1396.900

G 392.000 G 1568.000

A 440.000 A 1760.000

B 493.880 B 1975.500

* middle C. Higher (or lower) notes may be
approximated by doubling (or halving) the frequency
of the corresponding note in the previous (next)
octave.

To create periods of silence, use SOUND
'ill 61,duration.

The time limit for one beat can be calculated from

beats per minute by dividing the beats per minute
into 1092 (the number of clock ticks in a minute).

The next table shows typical tempos in terms of
clock ticks:

4-341

SOUND

Statement

Tempo Beats/
Minute

Ticks/ Beat

very slow Larghissimo
Largo 40-60 27.3-18.2

Larghetto 60-66 18.2-16.55

Grave

Lento

Adagio 66-76 16.55-14.37
slow Adagietto

Andante 76-108 14.37-10.11
medium Andantino

Moderato 108-120 10.11-9.1
fast Allegretto

Allegro 120-168 9.1-6.5

Vivace

Veloce

Presto 168-208 6.5-5.25
very fast Prestissimo

Example: The following program creates a glissando up and
down in three voices.

5 SOUND ON: BEEP OFF
10 FOR 1=440 TO 1000 STEP 5

20 SOUND I,0.5,,0
25 SOUND I,0.5,,l
27 SOUND 1,0.5,,2
30 NEXT

40 FOR 1=1000 TO 440 STEP -5

50 SOUND 1,0.5,3,0
60 SOUND 1,0.5,6,1
70 SOUND 1,0.5,9,2
80 NEXT

4-342

SPACES

Function

Purpose: Returns a string consisting of n spaces.

Versions: Cassette Cartridge Compiler
9{;Hc:tc ***

Format: = SPACE$(w)

Remarks: n must be in the range 0 to 255.

Refer also to the SPC function.

Example:

Ok
10 FOR I = 1 TO 5
20 X$ = SPACE$(I)
30 PRINT X$;I
40 NEXT I

RUN

1

2

3
4

5

Ok

This example uses the SPACES function to print
each number I on a Une preceded by I spaces. An
additional space is inserted because BASIC puts a
space in front of positive numbers.

4-343

SPC

Function

Purpose: Skips n spaces in a PRINT statement.

Versions: Cassette Cartridge Compiler

Format: PRINT SPC(«)

Remarks: n must be in the range 0 to 255.

If n is greater than the defined width of the device,
then the value used is n MOD width. SPC may only
be used with PRINT, LPRINT and PRINT #
statements.

If the SPC function is at the end of the hst of data

items, then BASIC does not add a carriage return, as
though the SPC function had an implied semicolon
after it.

Example:

Also see the SPACES function.

Ok
PRINT "OVER" SPC(15) "THERE"
OVER THERE
Ok

This example prints OVER and THERE separated
by 15 spaces.

4-344

SQR

Function

Purpose: Returns the square root of x.

Versions: Cassette Cartridge CompUer
9|e:ic:ic *** ***

Format: v = SQR(x)

Remarks: x must be greater than or equal to zero.

SQR is calculated in single precision in Cassette
BASIC and in either single or double precision in
Cartridge BASIC.

Example:

Ok
10 FOR X = 10 TO 25 STEP 5
20 PRINT X, SQR(X)
30 NEXT
RUN

10 3.162278
15 3.872984
20 4.472136
25 5

Ok

This example calculates the square roots of the
numbers 10, 15, 20 and 25.

4-345

STICK

Function

Purpose: Returns the x and y coordinates of two joysticks.

Versions: Cassette Cartridge Compiler

Format: v = STICK(n)

Remarks:

n is a ntimeric expression in the range 0 to 3
which affects the result as follows:

0 returns the x coordinate for joystick A.

1 returns the y coordinate of joystick A.

2 returns the x coordinate of joystick B.

3 returns the y coordinate of joystick B.

Note: STICK(O) retrieves all four values for the
coordinates, and returns the value for STICK(O).
STICK(l), STICK(2), and STICK(3) do not
sample the joy stick. They get the values
previously retrieved by STICK(O).

Then range of values for x and y depends on your
particular joysticks.

4-346

Example:

STICK

Function

10 PRINT "Joystick B"
20 PRINT "x coordinate","y coordinate"
30 FOR J=1 TO 100
40 TEMP=STICK(0)
50 X=STICK(2): Y=STICK{3)
60 PRINT X,Y
70 NEXT

This program takes 100 samples of the coordinates of
joystick B and prints them.

4-347

STOP

Statement

Purpose: Terminates program execution and returns to
command level.

Versions: Cassette Cartridge Compiler
*** ***

Format: STOP

Remarks: STOP statements may be used anjrwhere in a
program to terminate execution. When BASIC
encounters a STOP statement, it displays the
following message:

Break in nnnnn

where nrmnn is the line number where the STOP

occurred.

Unlike the END statement, the STOP statement does
not close files.

BASIC always returns to command level after it
executes a STOP. You can resume execution of the

program by issuing a CONT command (see "CONT
Command" in this chapter).

4-348

Example:

STOP

Statement

10 INPUT A, B
20 TEMP= A*B
30 STOP
40 FINAL = TEMP+200: PRINT FINAL
RUN

? 26, 2.1
Break in 30

Ok
PRINT TEMP

54.6

Ok
CONT
254.6

Ok

This example calculates the value of TEMP, then
stops. While the program is stopped, we can check
the value of TEMP. Then we can use CONT to

resume program execution at line 40.

4-349

STR$

Function

Purpose: Returns a string representation of the value of x.

Versions: Cassette Cartridge Compiler

Format: = STR$(x)

Remarks: x is any numeric expression.

If X is positive, the string returned by STR$ contains
a leading blank (the space reserved for the plus sign).
For example;

Ok

? STR$(321); LEN(STR$(321))
321 4

Ok

The VAL function is complementary to STR$.

Example: This example branches to different sections of the
program based on the number of digits in a number
that is entered. The digits in the number are counted
by using STR$ to convert the number to a string,
then branching based on the length of the string.

5 REM arithmetic for kids
10 INPUT "TYPE A NUMBER";N
20 ON LEN(STR$(N))-1 GOSUB 30,100,200,300

4-350

STRIG

Statement and Function

Purpose: Returns the status of the joystick buttons (triggers).

Versioiis: Cassette Cartridge Compiler
%9is9ie :ic:ic:ic

Format: As a statement:

STRIG ON

STRIG OFF

Remarks:

As a function:

V = STRIG(n)

is a numeric expression in the range 0 to 3. It
affects the value returned by the function as
follows:

0 Returns -1 if button A1 was pressed
since the last STRIG(O) function call,
returns 0 if not.

1 Returns -1 if button A1 is currently
pressed, returns 0 if not.

2 Returns -1 if button B1 was pressed
since the last STRIG(2) function call,
returns 0 if not.

3 Returns -1 if button B1 is currently
pressed, returns 0 if not.

4-351

STRIG

Statement and Function

In Cartridge BASIC and the BASIC
Compiler, you can read four buttons from the
joy sticks. The additional values for n are:

4 Returns -1 if button A2 was pressed
since the last STRIG(4) function call,
returns 0 if not.

5 Returns -1 if button A2 is currently
pressed, returns 0 if not.

6 Returns -1 if button B2 was pressed
since the last STRIG(6) function call,
returns 0 if not.

7 Returns -1 if button B2 is currently
pressed, returns 0 if not.

STRIG ON must be executed before any STRIG(n)
function calls may be made. After STRIG ON, every
time the program starts a new statement BASIC
checks to see if a button has been pressed.

If STRIG is OFF, no testing takes place.

Refer also to the next section, "STRIG(n)
Statement" for enhancements to the STRIG function

in Cartridge BASIC.

4-352

STRIG(n)
Statement

Purpose: Enables and disables trapping of the joystick
buttons.

Versions: Cassette Cartridge Compiler

Format: STRIG(«) ON

STRIG(«) OFF

STRIG(«) STOP

Remarks:

may be 0, 2,4, or 6, and indicates the button
to be trapped as follows:

0

2

4

6

button A1

button B1

button A2

button B2

STRIG(n) ON must be executed to enable trapping
by the ON STRIG(m) statement (see "ON STRIG(n) I
Statement" in this chapter). After STRIG(7i) ON, [
every time the program starts a new statement,
BASIC checks to see if the specified button has been
pressed.

If STRIGCn) OFF is executed, no testing or trapping
takes place. Even if the button is pressed, the event
is not remembered.

If a STRIG(m) stop statement is executed, no
trapping takes place. However, if the button is
pressed it is remembered so that an immediate trap
takes place when STRIG(m) ON is executed.

4-353

STRIG(n)
Statement

Refer also to the previous section, "STRIG
Statement and Function."

4-354

STRINGS

Function

Purpose: Returns a string of length n whose characters all have
ASCII code m or the first character of x$.

Versions: Cassette Cartridge Compiler

Format: v$ = STRING$(n,m)

= STRINGS

Remarks:

n, m are in the range 0 to 255.

x$ is any string expression.

Example: The first example repeats an ASCII value of 45 to
print a string of hyphens. |

Ok
10 X$ = STRING$(10,45)
20 PRINT X$ "MONTHLY REPORT" X$
RUN

MONTHLY REPORT —
Ok

The second example repeats the first character of
the string "ABCD."

Ok
10 X$="ABCD"
20 Y$=STRING$(10,X$)
30 PRINT Y$
RUN

AAAAAAAAAA

^ Ok

4-355

SWAP

Statement

Purpose: Exchanges the values of two variables.

Versions: Cassette Cartridge Compiler
*** *** ***

Format: SWAP variablel, variable!

Remarks:

variablel, variable!

are the names of two variables or array
elements.

Any type variable may be swapped (integer,
single-precision, double-precision, string), but the
two variables must be of the same type or a Type
mismatch error results.

Example:

Ok

10 A$=" ONE " : B$=" ALL " : C$="FOR"
20 PRINT A$ C$ B$
30 SWAP A$, B$
40 PRINT A$ C$ B$
RUN

ONE FOR ALL
ALL FOR ONE

Ok

After line 30 is executed, A$ has the value " ALL "
and B$ has the value " ONE ."

4-356

SYSTEM

Command

Purpose: Exits BASIC and returns to DOS.

Note: This command requires the use of DOS
2.10. If DOS 2.10 is not present then an Illegal
function call error will occur.

Veraons: Cassette Cartridge Compiler
4e4e9|c

Format: SYSTEM

Remarks: SYSTEM closes all files before it retmms to DOS.
Your BASIC program is lost.

If you entered BASIC through a Batch file from
DOS, the SYSTEM command returns you to the
Batch file, which continues executing at the point it
left off.

4-357

TAB

Function

Purpose: Tabs to position n.

Versions: Cassette Cartridge Compiler

Format:

Remarks:

Example:

PRINT TAB(n)

n must be in the range 1 to 255.

If the current print position is already beyond space
n, TAB goes to position n on the next line. Space 1
is the leftmost position, and the rightmost position is
the defined WIDTH.

TAB may only be used in PRINT, LPRINT, and
PRINT # statements.

If the TAB function is at the end of the hst of data

items, then BASIC does not add a carriage return, as
though the TAB function had an impUed semicolon
after it. TAB is used in the following example to
cause the information on the screen to hne up in
columns.

Ok
10 PRINT "NAME" TAB(25) "AMOUNT"
20 READ A$,B$
30 PRINT A$ TAB(25) B$
40 DATA "L. M. JACOBS","$25.00"
RUN

NAME AMOUNT

L. M. JACOBS $25.00
Ok

4-358

TAN

Function

Purpose: Returns the trigonometric tangent of x.

Versions: Cassette Cartridge Compiler

Format: v = TAN(x)

Remarks:

X is the angle in radians. To convert degrees to
radians, multiply by PI/180, where
PI=3.141593.

TAN(x) is calculated in single precision in Cassette
BASIC and in either single or double precision in
Cartridge BASIC.

Example:

Ok
10 PI=3.141593
20 DEGREES=45
30 PRINT TAN(DEGREES*PI/180)
RUN

1

Ok

This example calculates the tangent of 45 degrees.

4-359

TERM

Statement

Purpose: Enters Terminal Emulation.

Versions: Cassette Cartridge Compiler

Format:. TERM

Remarks: The TERM statement is used to load and run a

Terminal Emulator program. The Terminal
Emulator is a BASIC program that resides in the
BASIC Cartridge.

This program supports simple RS232 communication
with another computer via the IBM Internal Modem
(optional) or through the RS232 Serial
Communications port.

When TERM is entered, or executed in a program,
the following actions are taken:

1. Any open files are closed.

2. The BASIC workspace is scratched. That is, any
BASIC program and data in memory is erased as
if a NEW statement were executed.

If you are in the process of writing a BASIC
program, be sure to SAVE it before executing the
TERM statement or your program will be lost.

3. The Terminal Emulator BASIC program is loaded
into memory and begins execution.

4. The program begins by clearing the screen and
displaying the message:

(TERM) - Terminal Emulator

4-360

TERM

Statement

If you have 128k bytes of memory, the screen
width is set to 80.

If you have 64k bytes of memory, the screen
width is set to 40.

The program then determines if the optional IBM
Internal Modem is installed. If so, and if the Line
bit rate is set to 300, then it will be used.
Otherwise, the RS232 Serial port wiU be used.

5. The program now continues with the terminal
selection menu. The menu lets you select
communication parameters.

The terminal selection menu is as follows:

(TERM) - Terminal Emulator

1 Line Bit Rate [300] (300..4800)
2 Data bits [7] (7 or 8)
3 Parity type [E] {E,0,N)

4 Host echos [Y] (Y or N)
5 Screen width [80] (40 or 80)

6 Modem Command []

Change <line,data>?

fl=Conv f2=Exit f3=Nul f4=Break

Setting Terminal parameters

There are 6 parameters which may be altered. To
change any of these, enter the hne number, followed
by a comma (,) followed by the parameter data. The
parameter is changed to <data> when the ENTER
key is typed.

4-361

TERM

Statement

The current parameter setting is displayed in square
brackets ([]). A list of valid options for each
parameter line is displayed in parentheses following
the current value.

If the line number is omitted, or is not in the range 1
to 6, no error is given and the change line you typed
is ignored.

If the comma between the line number and data is
omitted, no error is given and the change line you
typed is ignored.

T3rping a line number and comma with no addition
data has the effect of erasing the parameter.

If you make a mistake while typing a change, press
the Esc key. This erases the line you are typing so
you may begin again. No other edit keys are
recognized. That is. Ins, Del, Cursor Left, Cursor
Right, and Backspace are ignored.

The parameters and their valid options are:

1 Line bit rate Selects the speed for data
transmission. VaUd speeds are:
300, 600, 1200, 1800, 2400,
and 4800.

If the IBM Internal Modem is

instaUed, and the line bit rate is
set to 300, then it will be used.
For any higher speed, the
RS232 Serial Communication

Port will be used.

4-362

2 Data bits

3 Parity type

4 Host echoing

TERM

Statement

Note: Modem Commands

are ignored when the RS232
Serial Communication Port

is used.

Only 7 or 8 data bits may be
transmitted and received.

Selects Even(E), Odd(O), or
No(N) parity. Even is most
common, some computers may

require 8 data bits, no parity.

The most common full duplex
protocol specifies that
characters typed on the
keyboard and transmitted will
be echoed (sent back when
received) by the host computer.
The terminal then displays only
the characters received from the

other computer. This mode of
operation is host echoing of
characters.

If characters are not being
echoed by the other computer,
then they must be displayed on
the screen as they are typed.
This mode of operation is local
echoing of characters.

The default value for this

parameter is Yes (Y), Host
echoes characters. If the

computer you are connected to
does not echo characters (for
example, VM/370), then set
this parameter to No (N). "The

4-363

TERM

Statement

terminal emulator program will
then echo all characters as they
are typed (local echoing).

5 Screen width Allows you to set the screen
width to 40 or 80 columns. If

you have 64k bytes of memory,
the width can only be 40. If
you have 128k bjdes of
memory, the width can be 40 or
80.

6 Modem Command This line is displayed only when
the IBM Internal Modem is

installed in the machine. Any
data up to 252 characters may
be entered. The data entered

for this parameter is sent, as
entered, to the Modem when
Fn/Fl is pressed (Entering
conversational mode).

A modem conunand may be as
simple as "DIAL 255-1234" or
several commands separated by
conunas such as "COUNT 3,
DIAL 9W555-1234, RETRY."
Refer to the Commands section

of the IBM Internal Modem in

the Technical Reference manual
for a complete discussion of
modem commands and syntax.

Once all of the desired parameters are set, you are
ready to communicate with the other computer. You
do so by entering "conversational" mode (Fn/Fl).

4-364

TERM

Statement

U»i^ the Function keys

Only the first four function keys have meaning in the
terminal emulator.

Fn/Fl Conv. Typing Fn/Fl while in the
terminal selection menu clears

the screen, changes the
definition of function key 1 to
"Menu," and places the
program in conversation mode
with the other computer.

If the IBM Internal Modem is

installed, the line bit rate is set
to 300, and a modem command
was specified, then the modem
command is sent to the modem.

Call progress reporting is now
displayed xmtil the other
computer answers, or the IBM
Internal modem gives up.
(Refer to "Call progress
reporting" in the IBM Internal
modem attachment of the

Technical Reference manual for
a discussion of the messages
displayed). You are now
communicating with the other
computer as a terminal.

If the line bit rate is other than

300, or the IBM Internal
Modem is not installed, then the
Modem Command is not sent.

You are now communicating
with the other computer as a
terminal.

4-365

TERM

Statement

Fn/F2 Exit

F3Nul

F4 Break

T3^ing Fn/Fl whUe in
conversation mode returns the

program to the menu. The
communication link is lost.

That is, if you are using the
IBM Internal modem, it will
disconnect the telephone
coimection (hang up). If you
are using the RS232 Serial
Communication Fort, the line
may or may not be
discormected depending on
what tjrpe of equipment the
serial port is connected to
(external modem, or other
computer).

May be pressed at any time.
This causes line disconnect (the
communication file is closed)
and the program returns to
BASIC'S direct mode. The

program remains in memory.
You may list it or use it as the
basis of a more advanced

communication program.

This allows you to send a null
(CHR$(0)) to the other
computer. This key is enabled
only when you are in
conversation mode.

Pressing F4 produces a BREAK
signal on the communication
line. Some computers may
require a break signal in order
to stop producing output, or
stop a program.

4-366

TERM

Statement

XON/XOFF Protocol

At line bit rates of 1200 or higher, it becomes
necessary to suspend character transmission from the
other computer long enough to "catch up." This is
done by sending the ASCII characters XOFF (Hex
13) and XON (Hex 11) to the other computer.
XOFF tells the other computer to suspend
transmission, and XON tells it to resmne.

The terminal emulator does this for you
automatically when the line bit rate is 1200 or above.
At speeds below 1200, XON and XOFF are not
necessary.

Note: Some hosts (such as VM/370) do not
recognize XON and XOFF in this way. If this
presents a problem, you may want to redefine
these character values in line 100 of the Terminal

Emulation program.

4-367

TIMES

Variable and Statement

Purpose: Sets or brings back the current time.

Note: This statement requires the use of DOS
2.10. If DOS 2.10 is not present then an Illegal
function call error will occur.

Versions: Cassette Cartridge Compiler

Format: As a variable:

v.$ = TIMES

As a statement:

TIMES = x$

Remarks: For the variable (v$ = TIMES):

The current time is returned as an 8 character string.
The string is of the form hh:mm:ss, where hh is the
hour (00 to 23), mm is the minutes (00 to 59), and ss
is the seconds (00 to 59). The time may have been
set by DOS before entering BASIC.

For the statement (TIMES = x$):

The current time is set. x$ is a string expression
indicating the time to be set. x$ may be given in one
of the following forms:

hh Set the hour in the range 0 to 23.
Minutes and seconds default to 00.

hh:mm Set the hour and minutes. Minutes must

be in the range 0 to 59. Seconds default
to 00.

4-368

TIMES

Variable and Statement

hh:mm:ss Set the hour, minutes, and seconds.
Seconds must be in the range 0 to 59.

A leading zero may be omitted from any of the
above values, but you must include at least one digit.
For example, if you wanted to set the time as a half
hour after midnight, you could enter
TIME$="0:30," but not TIME$=";30." If any of
the values are out of range, an Illegal function call
error is issued. The previous time is retained. If x$
is not a vaUd string, a Type mismatch error results.

Example: The following program displays the time
continuously in the middle of the screen.

10 CIS

20 LOCATE 10,15
30 PRINT TIME$
40 GOTO 30

4-369

TIMER

Variable

Purpose: Returns a single-precision number representing the
number of seconds that have elapsed since midnight
or System Reset.

Note: This function requires the use of DOS
2.10. If DOS 2.10 is not present then an Illegal
function call error will occur.

Versions: Cassette Cartridge Compiler

Format: v=TIMER

Remarks: Fractional seconds are calculated to the nearest

degree possible. TIMER is a read-only variable.

Example:

Ok
20 TIME$="23:59:59"
30 FOR 1=1 TO 20
40 PRINT "TIME$= ";TIME$,"TIMER=";TIMER
50 NEXT

RUN

TIME$= 23:59:59
TIME$= 23:59:59
TIME$= 23:59:59

TIMER= 86399.06

TIMER= 86399.11

TIMER= 86399.18

TIME$= 24:00:00
TIME$= 00:00:00
TIME$= 00:00:00
TIME$= 00:00:00
Ok

TIMER= 0

TIMER= .05

TIMER= .16

TIMER= .21

4-370

TRON and TROFF

Commands

Purpose: Traces the execution of program statements.

Versions: Cassette Cartridge

Format: TRON

TROFF

Compiler

Remarks: As an aid in debugging, the TRON command (which
may be entered in indirect mode) enables a trace flag
that prints each hne number of the program as it is
executed. The numbers appear enclosed in square
brackets. The trace is turned off by the TROFF
command.

Example:

Ok

10 K=10

20 FOR J=1 TO 2
30 L=K + 10
40 PRINT J;K;L
50 K=K+10
60 NEXT

70 END

TRON
Ok

RUN
[10][20][30][40] 1 10 20
[50][60][30]C40] 2 20 30
[50][60][70]
Ok
TROFF

Ok

This example uses TRON and TROFF to trace
execution of a loop. The numbers in brackets are

4-371

IRON and TROFF

Commands

line numbers; the numbers not in brackets at the end
of each line are the values of J, K, and L which are
printed by the program. _

4-372

USR

Function

Purpose: Calls the indicated machine language subroutine with
the argument arg.

Versions: Cassette Cartridge Compiler
*** ***

Format: v = USR[n](arg)

Remarks:

n is in the range 0 to 9 and corresponds to the
digit supplied with the DEF USR statement
for the desired routine (see "DEF USR
Statement" in this chapter). If n is omitted,
USRO is assumed.

arg is any numeric expression or string variable,
which win be the argument to the machine i
language subroutine.

The CALL statement is another way to call a
machine language subroutine. See Appendix C,
"Machine Language Subroutines" for complete
information on using machine language subroutines.

Example:

10 DEF USRO = &HFOOO
50 C = USR0(B/2)
60 D = USR0(B/3)

The function USRO is defined in line 10. Line 50

calls the function USRO with the argument B/2.
Line 60 calls USRO again, with the argument B/3.

4-373

VAL

Function

Purpose: Returns the numerical value of string x$.

Versions: Cassette Cartridge Compiler

Format: v = VAL(x^)

Remarks: x$ is a string expression.

The VAL function strips blanks, tabs, and line feeds
from the argument string to determine the result.
For example,

VAL(" -3")

returns -3.

If the first characters of x$ are not numeric, then
VAL(jc.^) returns 0 (zero).

See the STR$ function for numeric to string
conversion.

Example:

Ok
PRINT VAL("3408 SHERWOOD BLVD.")
3408

Ok

In this example, VAL is used to extract the house
number from an address.

4-374

VARPTR

Function

Purpose: Returns the address in memory of the variable or file
control block.

Versions: Cassette Cartridge Compiler
4c:fe:ic

Format: v = VARPTR(variaZ>fe)

V = VARPTR(#//fe«Mm)

Remarks:

variable is the name of a numeric or string
variable or array element in your
program. A value must be assigned to
variable before the call to VARPTR, or
an niegal function call error results.

filenum is the number imder which the file was
opened.

For both formats, the address returned is an integer
in the range 0 to 65535. This number is the offset
into BASIC'S Data Segment. The address is not
affected by the DEF SEG statement.

The first format returns the address of the first bjrte
of data identified with variable. The format of this

data is described in Appendix I under "How
Variables Are Stored."

Note: All simple variables should be assigned
before calling VARPTR for an array, because
addresses of arrays change whenever a new
simple variable is assigned.

4-375

VARPTR

Function

VARPTR is usually used to get the address of a
variable or array so it may be passed to a USR
machine language subroutine. A function call of the
form VARPTR(A(0)) is usually specified when
passing an array, so that the lowest-addressed
element of the array is returned.

The second format returns the starting address of the
file control block for the specified file. This is not
the same as the DOS file control block. Refer to

"BASIC File Control Block" in Appendix I for
detailed information about the format of the file

control block.

VARPTR is meaningless for cassette fUes.

Example: This example reads the first byte in the buffer of a
random file:

10 OPEN "DATA.FIL" AS #1 ^
20 GET #1
30 'get address of control block
40 FCBADR = VARPTR(#1)
50 'figure address of data buffer
60 DATADR = FCBADR+188
70 'get first byte in data buffer
80 A% = PEEK(DATADR)

4-376

o

rv

VARPTR

Function

The next example use VARPTR to get the data
from a variable. In line 30, P gets the address of the
data. Integer data is stored in two bytes, with the
less significant byte first. The actual value stored at
location P is calculated in line 40. The bytes are read
with the PEEK function, and the second byte is
multiplied by 256 because it contains the high-order
bits.

10 DEFINT A-Z

20 DATA1=500
30 P=VARPTR(DATA1)
40 V=PEEK(P) + 256*PEEK(P+1)
50 PRINT V

4-377

VARPTRS

Function

Purpose: Returns a character form of the address of a variable
in memory. It is primarily for use with PLAY and
DRAW in programs that wiU later be compiled.

Versions: Cassette Cartridge Compiler

Format: = VARPTR$(varwhfe)

Remarks:

variable is the name of a variable existing in the
program.

Note: All simple variables should be assigned
before calling VARPTR$ for an array element,
because addresses of arrays change whenever a
new simple variable is assigned.

VARPTR$ returns a three-b3de string in the form:

Byte 0 Bytel Byte 2

type low bjde of
variable address

high bjde of
variable address

type indicates the variable tjrpe:

2 integer
3 string
4 single-precision
8 double-precision

4-378

VARPTR$

Function

The value returned by VARPTR$ is the same as:

CHR$(type)+MKI$(VARPTR{variable))

You can use VARPTR$ to indicate a variable name
in the command string for PLAY or DRAW. For
example:

Method One Alternative Method

PLAY"XA$;" PLAY "X"+VARPTR$(A$)
PLAY "0=I;" PLAY "0="+VARPTR$(I)

This technique is mainly for use in programs which
will later be compiled.

4-379

VIEW

Statement

Purpose: Allows you to define subsets of the viewing surface,
called viewports, onto which window contents are
mapped.

Versions: Cassette Cartridge Compiler
Hc:i(4e

Graphics mode only.

Format: VIEW [[SCREEN] {{xl.yl)- (.x2,y2) Hattrihute]
LiboundatyWA]

Remarks:

(xl,yl)-(x2.y2)
are the upper-left ixl,yl) and the
lower-right {x2,y2) coordinates of the
viewport defined. The x and
coordinates must be within the actual

limits of the screen or an Dlegal
function call error occurs. For more

information, see "Specifying
Coordinates" imder "Graphics
Modes" in Chapter 3.

attribute lets you fill the defined viewport with
color assigned to that attribute. If
attribute is omitted, the viewport is
not filled. Attribute is in the range of
0 to 15. In low resolution, there are
16 attributes available (0 to 15). In
medium resolution, there are 4 (0 to
3) or 16 (0 to 15) attributes available,
depending on the ciurent screen
mode. In high resolution, there are 2
(0 to 1) or 4 (0 to 3) attributes
available, depending on the ciurent

4-380

VIEW

Statement

screen mode. The default attribute is

always the maximum attribute for the
current screen mode. For more

information see "Graphics Modes" in
' Chapter 3.

boundary lets you draw a boundary Une around
the viewport (if space is available). If
boundary is omitted, no boundary is
drawn, boundary can be an attribute
in the range 0 to 15 as described in
attribute.

It is important to note that VIEW sorts the x and y
argument pairs, placing the smallest values for x and
y first. For example:

VIEW (100,100)-(5,5)

becomes:

VIEW (5,5)-(100,100)

Another example:

VIEW (-4,4)-(4,-4)

becomes:

VIEW (-4,-4)-(4,4)

AH possible pairings of x and y are vahd. The only
restriction is that xl cannot equal x2 and yl cannot
equal ̂2. The viewport cannot be larger than the
viewing surface.

If the SCREEN argument is omitted, all points
plotted are relative to the viewport. That is, xl and
yl are added to the x and coordinate before
plotting the point on the screen. For example if:

4-381

VIEW

Statement

10 VIEW (10,10)-(200,100)

is executed, then the point plotted by PSET (0,0),3
is at the actual screen location 10,10.

If the SCREEN argument is included, all points
plotted are absolute and may be inside or outside of
the screen limits. However, only those points that
are within the viewport limits are visible. For
example if:

10 VIEW SCREEN (10,10)-(200,100)

is executed, then the point plotted by PSET (0,0),3
does not appear on the screen because 0,0 is outside
of the viewport. PSET (10,10),3 is within the
viewport and places the point in the upper-left
corner.

VIEW with no arguments defines the entire viewing
surface as the viewport. This is equivalent to VIEW
(0,0)-(159,199) in low resolution, VIEW
(0,0)-(319,199) in medium resolution and VIEW
(0,0)-(639,199) in high resolution.

You can define multiple viewports, but only one
viewport may be active at a time. RUN and
SCREEN will disable the viewports.

VIEW allows you to do scaling by changing the size
of your viewport. A large viewport wiU make your
objects large and a small viewport will make your
objects small. ScaUng with VIEW is similar to
zooming with WINDOW. (Refer to "WINDOW
Statement" in this chapter.)

Note: When using VIEW, the CLS statement
will only clear the active current viewport. To
clear the entire screen, you must use VIEW to
disable the viewport and then use CLS to clear

4-382

VIEW

Statement

the screen. Using CLS with viewports does not
home the cursor. Ctrl-Home will home the

cursor and clear the entire screen.

Examples: The following example defines four viewports:

10 SCREEN 1: VIEW: CLS: KEY OFF
20 VIEW (1,1)-(151,91),,1
30 VIEW (165,1)-(315,91),,2
40 VIEW (1,105)-(151,195),,2
50 VIEW (165,105)-{315,195),,1
60 LOCATE 2,4: PRINT "Viewport 1"
70 LOCATE 2,25: PRINT "Viewport 2"
80 LOCATE 15,4: PRINT "Viewport 3"
90 LOCATE 15,25: PRINT "Viewport 4"
100 VIEW (1,1)-(151,91): GOSUB 1000
200 VIEW (165,1)-(315,91): GOSUB 2000
300 VIEW (1,105)-(151,195): GOSUB 3000
400 VIEW (165,105)-(315,195): GOSUB 4000
900 END
1000 CIRCLE (65,50),30,2
1010 'draw a circle in first viewport
1020 RETURN
2000 LINE (45,50)-(90,75),l,B
2010 'draw a line in second viewport
2020 RETURN
3000 FOR 0=0 TO 360: DRAW "ta=d;nu20": NEXT
3010 'draw spokes in third viewport
3020 RETURN
4000 PSET(60,50),2: DRAW "el5;fl5;130"
4010 'draw a triangle in fourth viewport
4020 RETURN

4-383

VIEW

Statement

This example demonstrates scaling with VIEW.

10 KEY OFF: CIS: SCREEN 1,0: COLOR 0,0
20 WINDOW SCREEN(320,0)-(0,200)
30 GOTO 140
40 '
50 =========================

60 'PICTURE
70 C=1

80 CIRCLE (160,100),60,C,,,5/18
90 CIRCLE (160,100),60,C,,,1
100 '
110 RETURN
120 '========================
130 '
140 GOSUB 60: FOR 1=1 TO 1000: NEXT I: CLS
150 'Create the picture
160 VIEW (1,1)-(160,90),,2: GOSUB 60
170 'Make It small
180 END

4-384

WAIT

Statement

Purpose: Suspends program execution while monitoring the
status of a machine input port.

Versions: Cassette Cartridge Compiler
*** ♦♦♦

Format: WATT port, n[,/n]

Remarks:

port is the port number, in the range 0 to 65535.

n, m are integer expressions in the range 0 to 255.

Refer to the PCjr Technical Reference manual for a
description of valid port numbers (I/O addresses).

The WATT statement causes execution to be

suspended until a specified machine input port
develops a specified bit pattern.

The data read at the port is XORed with the integer
expression m and then ANDed with n. If the result
is zero, BASIC loops back and reads the data at the
port again. If the result is nonzero, execution
continues with the next statement. If m is omitted, it
is assumed to be zero.

The WATT statement lets you test one or more bit
positions on an input port. You can test the bit
position for either a 1 or a 0. The bit positions to be
tested are specified by setting I's in those positions
in n. If you do not specify m, the input port bits are
tested for I's. If you do specify m, a 1 in any bit
position in m (for which there is a 1 bit in n) causes
WATT to test for a 0 for that input bit.

4-385

WAIT

Statement

When executed, the WATT statement loops testing
those input bits specified by I's in «. K any one of
those bits is 1 (or 0 if the corresponding bit in m is
1), then the program continues with the next
statement. Thus WAIT does not wait for an entire

pattern of bits to appear, but only for one of them to
occur.

Note: It is possible to enter an infinite loop with
the WAIT statement. You can do a Fn and

Break or a System Reset to exit the loop.

Example: To suspend program execution until port 32 receives
a 1 bit in the second bit position:

100 WAIT 32,2

4-386

WHILE and WEND

Statements

Purpose: Executes a series of statements in a loop as long as a
given condition is true.

Versions: Cassette Cartridge
*** ***

Format: WHILE expression

Compiler

(loop statements)

WEND

Remarks:

expression IS any numeric expression.

Example:

If expression is true (not zero), loop statements are
executed until the WEND statement is encountered.

BASIC then returns to the WHILE statement and
checks expression. If it is still true, the process is
repeated. If it is not true, execution resumes with the |
statement following the WEND statement.

WHILE-WEND loops may be nested to any level.
Each WEND will match the most recent WHILE.

An unmatched WHILE statement causes a WHILE

without WEND error, and an unmatched WEND
statement causes a WEND without WHILE error.

This example sorts the elements of the string array
A$ into alphabetical order. A$ was defined with J
elements.

4-387

WHILE and WEND

Statements

90 'bubble sort array A$
100 FLIPS=1 'force one pass thru loop
110 WHILE FLIPS

115 FLIPS=0
120 FOR 1=1 TO J-1
130 IF A$(I)>A$(I+1) THEN

SWAP A$(I),A$(I+1): FLIPS=1
140 NEXT I

150 WEND

4-388

WIDTH

Statement

Purpose: Sets the output line width in number of characters.
After outputting the indicated number of characters,
BASIC adds a carriage return.

Versfons: Cassette Cartridge

Format: WIDTH ste

Compiler

Remarks:

WIDTH device,size

WIDTH #filenum,size

size is a numeric expression in the range 0 to
255. This is the new width. WIDTH 0 is

the same thing as WIDTH 1.

device is a string expression for the device
identifier. Valid devices are SCRN:,
LPTl:, COMl:, or COM2:

filenum is a numeric expression in the range 1 to
15. This is the number of a file opened to
one of the devices listed below.

Depending on the device specified, the following
actions are possible:

WIDTH size or WIDTH "SCRN:",size
Sets the screen width. 20,40 or 80
column widths are allowed. You must

have 128k of memory to use WIDTH 80
or an Dlegal Function call error will occur.
If the screen is in low resolution (screen

4-389

WIDTH

Statement

3), WIDTH 40 forces the screen into
medium resolution. WIDTH 80 forces the

screen into high resolution.

If the screen is in medium resolution

graphics mode (as would occur with a
SCREEN 1 statement), WIDTH 80 forces
the screen into high resolution (like a
SCREEN 2 statement). WIDTH 20
forces screen into low resolution, (like a
SCREEN 3 statement)

If the screen is in high resolution graphics
mode (as would occur with a SCREEN 2
statement), WIDTH 40 forces the screen
into medium resolution (like a SCREEN 1
statement). WIDTH 20 forces screen into
low resolution, (like a SCREEN 3
statement)

Note: Changing the screen width
causes the screen to be cleared, and
sets the border screen color to black.

WIDTH device,size
Used as a deferred width assignment for
the device. This form of width stores the

new width value without really changing
the current width setting. A subsequent
OPEN to the device will use this value for

width while the file is open. The width
does not change immediately if the device
is already open.

Note: LPRINT, LLIST, and
LIST,"LPTn:" do an implicit OPEN
and are therefore affected by this
statement.

4-390

WIDTH

Statement

WIDTH #fileniiii]i,i^
The width of the device associated with
filenum is immediately changed to the new
size specified. This aUows the width to be
changed at wiU while the file is open. This
form of WIDTH has meaning only for
LPTl: in Cassette BASIC. Cartridge
BASIC also allows COMl: and COM2:.

Note that the number sign (#) is required.

Any value entered outside of the ranges indicated
will result in an Dlegal function call error. The
previous value is retained.

WIDTH has no effect for the keyboard (KYBD) or
cassette (CASl:).

The width for each printer defaults to 80 when
BASIC is started. The maximum width for the IBM

80 CPS Matrix Printer is 132. However, no error is
returned for values between 132 and 255.

It is up to you to set the appropriate physical width
on your printer. Some printers are set by sending
special codes, some have switches. For the IBM 80
CPS Matrix Printer you should use LPRINT
CHR$(15); to change to a condensed typestyle when|
printing at widths greater than 80. Use LPRINT
CHR$(18); to return to normal. The IBM 80 CPS
Matrix Printer is set up to automatically add a
carriage return if you exceed the maximum line
length.

Specifjring a width of 255 disables line folding. This
has the effect of "infinite" width. WIDTH 255 is

- the default for communications files.

4-391

WIDTH

Statement

Example:

Changing the width for a communications file does
not change either the receive or the transmit buffer;
it just causes BASIC to send a carriage return
character after every size characters.

Changing screen mode affects screen width only
when moving between different screen modes such
as high resolution to low resolution, high resolution
to medium resolution. "SCREEN Statement" in this

chapter.

10 WIDTH "LPT1:",75
20 OPEN "LPTl:" FOR OUTPUT AS #1

6020 WIDTH #1,40

In the preceding example, Une 10 stores a printer
width of 75 characters per line. Line 20 opens file
#1 to the printer and sets the width to 75 for
subsequent PRINT #1,... statements. Line 6020
changes the current printer width to 40 characters
per line.

SCREEN 1,0 'Set
WIDTH 80 'Go
WIDTH 40 'Go

SCREEN 0,1 'Go
WIDTH 80 'Go

4-392

WINDOW

Statement

Purpose: Allows you to redefine the coordinates of the screen.

Versaons: Cassette Cartridge Compiler

Graphics mode only.

Format: WINDOW [[SCREEN] (.xl,yl)- (x2,y2)]

(xl,yl),(x2,y2)
are programmer defined coordinates
called world coordinates. These

coordinates are single-precision,
floating-point numbers. They define the
world coordinate space that wiU be
mapped into the the physical coordinate
space, as defined by the VIEW
statement. (Refer to "VIEW Statement"
in this chapter.)

WINDOW allows you to draw objects in space
("world coordinate system") and not be bounded by
the logical limits of the screen ("physical coordinate
system"). This is done by specifying the world
coordinate pairs (xi,yi)and (x2,y2). This
rectangular region in the world coordinate space is
called a window.

BASIC converts the world coordinate pairs into the
appropriate physical coordinate pairs for display
within the screen.

4-393

WINDOW

Statement

In the physical coordinate system, if you enter the
following:

NEW

SCREEN 2

the screen will appear with standard coordinates as;

"N
0,0 320,0

y increases

639,0

0,199

320,100

320,199 639,199

WINDOW (-1,-1)-(1,1)

the screen appears as:

-1,1 0,1

y increases

0,0

1,1

/\

\/
y decreases

-1,-1 0,-1 1,-1

Note that the y coordinate is inverted so that (xl,yl)
is the lower-left coordinate and (x2,y2) is the
upper-right coordinate.

When the SCREEN attribute is omitted, the screen is
viewed in true Cartesian coordinates. For example,
given:

4-394

WINDOW

Statement

When the SCREEN attribute is included, the
coordinates are not inverted so that (xl,yl) is the
upper-left coordinate and (x2,y2) is the lower-right
coordinate. Eor example:

WINDOW SCREEN (-1,-1)-(1,1)

defines the screen to look like this:

-1,-1

•1,1

/i\

0,-1

y decreases

0,0

y increases

0,1

1,-1

1,1

It is important to note that WINDOW sorts the x and
y argument pairs, placing the smallest values for x
and y first. Eor example:

WINDOW (100,100)-(5,5) I

becomes:

WINDOW (5,5)-(100,100)

Another example:

WINDOW (-4,4)-{4,-4)

becomes:

WINDOW (-4,-4)-(4,4)

4-395

WINDOW

Statement

All possible pairings of x and are valid. The only
restriction is that xl cannot equal andyl cannot
equal ̂>2.

The WINDOW statement uses line clipping, or just
"clipping." Clipping is a process in which points
referenced outside of a coordinate range are made
invisible to the viewing area. Any object lying
partially within and partially without a coordinate
range is cut off so that only the points referenced in
range will appear.

WINDOW also allows you to "zoom" and "pan."
Using a window with coordinates larger than an
image will display the entire image, but the image
will be small and blank spaces will appear on the
sides of the screen. Choosing window coordinates
smaller than an image forces clipping an allows only
a portion of the image to be displayed and magnified.
By specifying small and large window sizes, you can
zoom in until an object occupies the entire screen, or
you can pan out until the image is nothing but a spot
on the screen.

RUN, SCREEN, and WINDOW with no attributes
will (^able any WINDOW coordinates and return
the screen to physical coordinates.

Examples: The following example shows clipping using

2: CLS
(-6,-6)-(6,6)

WINDOW.

10 SCREEN
20 WINDOW
30 CIRCLE
40 'the ci
50 WINDOW
60 CIRCLE
70 END

'the circle is very small _

4-396

WINDOW

Statement

The following example shows the effect of zooming
using WINDOW.

10 KEY OFF: CIS: SCREEN 1,0
20 '
30 GOTO 160
40 '=====================

50 'procedure display
60 '
70 LINE (X,0)-{-X,0),,,&HAAOO 'create x axis
80 LINE {0,X)-(0,-X),,,&HAAOO 'create y axis
90 '
100 CIRCLE {X/2,X/2),R 'circle has radius r
110 FOR P=1 TO 50:NEXT P 'delay loop
120 '
130 RETURN
140 '====================

150 '
160 X=1000:WIND0W (-X,-X)-(X,X):R=20
170 'create a graph with large coord range
180 GOSUB 50:F0R P=1 TO 1000:NEXT P:CLS
190 '
200 X=60:WIND0W (-X,-X)-(X,X):R=20
210 'smaller coord range increase circle size
220 GOSUB 50:FOR P=1 TO 1000:NEXT P:CLS
230 '
240 X=100:WIND0W (-5,-5)-(X,X):R=20
250 'modify window to show only portion of axesi
260 GOSUB 50:FOR P=1 TO 1000:NEXT P:CLS
270 '
280 PRINT "...an illustration of zooming..."
290 FOR P=1 TO 1500:NEXT P
300 CLS:T=-50:U=100:X=U

310 FOR 1=1 TO 45
320 T=T + 1:U=U - 1:X=X-1:R=20

330 WINDOW (T,T)-(U,U):CLS:GOSUB 50
340 NEXT I

350 END

4-397

WRITE

Statement

Purpose: Outputs data on the screen.

Versions: Cassette Cartridge Compiler

Format: WRITE [/is/ of expressions]

If the list of expressions is omitted, a blank line is
output. If the list of expressions is included, the
values of the expressions are output on the screen.

When the values of the expressions are output, each
item is separated from the last by a comma. Strings
are delimited by quotation marks. After the last item
in the list is printed, BASIC adds a carriage
return/line feed.

WRITE is similar to PRINT. The difference

between WRITE and PRINT is that WRITE inserts

commas between the items as they are displayed and
delimits strings with quotation marks. Also, positive
munbers are not preceded by blanks.

Example: This example shows how WRITE displays numeric
and string values.

10 A=80: B=90: C$="THAT'S ALL"
20 WRITE A,B,C$
RUN

80,90,"THAT'S ALL"
Ok

4-398

WRITE#

Statement

Purpose: Writes data to a sequential file.

Versions: Cassette Cartridge Compiler
*** ***

Format: WRITE Ufilenum, list of expressions

Remarks:

filenum is the number under which the file
was opened for output.

list of expressions
is a Ust of string and/or numeric
expressions, separated by commas or
semicolons.

The difference between WRITE # and PRINT # is

that WRITE # inserts commas between the items as

they are written and delimits strings with quotation
marks. Therefore, it is not necessary for you to put
exphcit delimiters in the Ust. Also, WRITE # does
not put a blank in front of a positive number. A
carriage return/line feed sequence is inserted after
the last item in the list is written.

Example: Let A$="CAMERA" and B$="93604-l". The
statement:

WRITE #1,A$,B$

writes the following image to the file.

"CAMERA","93604-1"

A subsequent INPUT # statement, such as:

4-399

WRITE #

Statement

INPUT #1,A$,B$

would input "CAMERA" to A$ and "93604-1" to
B$.

4-400

Appendixes

Contents

Appendix A. Messages A-3

Quick Reference A-19

Appendix B. BASIC Diskette Input and Output ... B-1

Specifying FUenames B-2

Conunands for Program Flies B-2

Protected Files : B-3

Diskette Data Flies - Sequentiai and Random I/O . B-4
Sequential Files B-4

Creating and Accessing a Sequential File . B-4
Adding Data to a Sequential File B-7

Random Files B-8

Creating a Random File B-9
Accessing a Random File B-10
A Sample Program B-12

^pendix C. Machine Language Subroutines C-1
Reference Material C-1

Setting Memory Aside for Your Subroutines C-2

Getting the Subroutine Code into Memory C-3

Poking a Subroutine into Memory C-4
Loading the Subroutine from a File C-5

Calling the Subroutine from Your BASIC Program . C-9
Common Features of CALL and USR C-9

A-1

CALL Statement C-11

Notes for the CALL Statement C-12

USR Function Calls C-15

Appendix D. ConvertiDg Programs to PCjr BASIC D-1
File I/O D-1
FOR-NEXT Loops D-1
Graphics D-2
IF-THEN D-2

Line Feeds D-3

Logical Operations D-3
MAT Functions D-4

Multiple Assignments D-4
Multiple Statements D-4
PEEKS and POKEs D-5

Relational Expressions D-5
Remarks D-5

Rounding of Nmnbers D-5
Sounding the Bell D-6
String Handling D-6
Use of Blanks D-7

Other D-7

Appendix F. Conununicatioiis F-1

Opening a Communications File F-1
Communication I/O F-1

GET and PUT for Communications Files . F-2

1/O Functions F-2
INPUTS Function F-3

Sample Program 1 F-4
Notes on the Program F-5

Sample Program 2 F-6

Operation of Control Signals F-7
Control of Output Signals with OPEN F-7
Use of Input Control Signals F-8
Testing for Modem Control Signals F-8

A-2

Direct Control of Output Control Signals F-9
Communication Errors F-10

Appendix G. ASCII Character Codes G-1

Extended Codes G-6

Appendix H. Hexadecimal Conversion Tables H-1

Binary to Hexadecimal Conversion Table H-2

Appendix I. Technical Information and Tips I-l
Memory Map 1-2
How Variables Are Stored 1-4

BASIC File Control Block 1-5

Keyboard Buffer 1-8
The Second Cartridge 1-8

Tips and Techniques 1-9

Appendix J. Glossary J-1

Appendix K. Keyboard Diagram and Scan Codes .. K-1

Keyboard Scan Codes for 62-key Keyboard K-2

A-2.1

Notes

A-2.2

Appendix A. Messages

If BASIC detects an error that causes a program to stop
_ running, an error message is displayed. It is possible to

trap and test errors in a BASIC program using the ON
EIIROR statement and the ERR and ERL variables.

(For complete explanations of ON ERROR, ERR and
ERL, see their explanations in Chapter 4.)

This appendix has two sections. The first section hsts
alphabetically all of the BASIC error messages with
their associated error numbers and includes an

explanation of each message. The second section is
designed as a quick reference and all message titles are
listed in numeric order.

Number Message

73 Advanced Feature

Your program used an Advanced BASIC
feature while you were using Disk BASIC.

Start Advanced BASIC and rerun your
program.

54 Bad ffle mode

You tried to use PUT or GET with a

sequential file or a closed file; or to execute
an OPEN with a file mode other than input,
output, append, or random.

Make sure the OPEN statement was entered

and executed properly. GET and PUT
require a random file.

This error also occurs if you try to merge a
file that is not in ASCII format. In this case.

A-3

make sure you are merging the right file. If
necessary, load the program and save it again
using the A option.

64 Bad Ble name

An invaUd form is used for the filename with

KILL, NAME, or FILES.

Check "Naming Files" in Chapter 3 for
information on vahd filenames, and correct
the filename in error.

52 Bad file number

A statement uses a file number of a file that

is not open, or the file number is out of the
range of possible file numbers specified at
initialization. Or, the device name in the file
specification is too long or invalid, or the
filename was too long or invaUd.

Make sure the file you wanted was opened
and that the file number was entered

correctly in the statement. Check that you
have a valid file specification (refer to
"Naming Files" in Chapter 3 for information
on file specifications).

63 Bad record number

In a PUT or GET (fUe) statement, the record
number is either greater than the maximum
allowed (32767) or equal to zero. In
Cartridge BASIC, GET and PUT have been
enhanced to allow record numbers in the

range 1 to 16,777,215 to accomodate large
files with short record numbers.

Correct the PUT or GET statement to use a

valid record number.

A-4

17 Can't continue

You tried to use CONT to continue a

program that:

• Halted because of an error,

• Was changed during a break in execution,
or

• Does not exist

Make sure the program is loaded, and use
RUN to run it.

— Cartridge Required
You attempted to run BASIC from a diskette
without the BASIC cartridge present under
one of the following conditions:

• BASIC 1.x with DOS 1.x

. BASIC 1.x with DOS 2.0

. BASIC 2.0 with DOS 2.0

On a 64K system, attempting to load
Advanced BASIC 2.0 with DOS 2.0 gives a
PROGRAM TO BIG TO FIT INTO

MEMORY error.

With your DOS diskette in the drive, you
should first insert the BASIC Cartridge and
then load BASIC from diskette.

69 Communication buffer overflow

A communication input statement was
executed, but the input buffer was already
fuU.

You should use an ON ERROR statement to

retry the input when this condition occurs.

A-5

Subsequent inputs try to clear this fault
unless characters continue to be received

faster than the program can process them. K
this happens there are several possible
solutions:

• Increase the size of the communications

buffer using the /C: option when you
start BASIC.

• Implement a "hand-shaking" protocol
with the other computer to teU it to stop
sending long enough so you can catch up.
(See the example in Appendix F,
"Communications.")

• Use a lower baud rate to transmit and

receive.

25 Device Fault

A hardware error indication was retiumed by
an interface adapter. In Cassette BASIC,
this only occurs when a fault status is
returned from the printer interface adapter.

This message may also occur when
transmitting data to a communications file.
In this case, it indicates that one or more of
the signals being tested (specified on the
OPEN "COM... statement) was not found in
the specified period of time.

57 Device I/O Error
An error occurred on a device I/O operation.
DOS cannot recover from the error.

When receiving communications data, this
error can occm from overrun, framing,
break, or parity errors. When you are
receiving data with 7 or less data bits, the
eighth bit is turned on in the bjrte in error.

A-6

24 Device Timeout

BASIC did not receive information from an

input/output device within a predetermined
amount of time. In Cassette BASIC, this
only occurs while the program is trying to
read from the cassette or write to the printer.

For communications files, this message
indicates that one or more of the signals
tested with OPEN "COM... was not found in

the specified period of time.

Retry the operation.

68 Device Unavailable

You tried to open a file to a device which
doesn't exist. Either you do not have the
hardware to support the device, or you have
disabled the device. (For example, you.may
have used /C:0 on the BASIC command to
start Cartridge BASIC. That would disable
communications devices.)

Make sure the device is installed correctly. If
necessary, enter the command:

SYSTEM

This returns you to DOS where you can
re-enter the BASIC command.

66 Direct statement in file

A direct statement was encountered while

loading or chaining to an ASCII format file.
The LOAD or CHAIN is terminated.

The ASCn fUe should consist only of
statements preceded by line numbers. This
error may occur because of a line feed

A-7

character in the input stream. Refer to
"Appendix D. Converting Programs to PC jr
BASIC."

61 DiskfuU

All diskette storage space is in use. Files are
closed when this error occurs.

If there are any files on the diskette that you
no longer need, erase them; or, use a new
diskette. Then retry the operation or rerun
the program.

72 Disk Media Error

The controller attachment card detected a

hardware or media fault. Usually, this means
that the diskette has gone bad.

Copy any existing files to a new diskette and
re-format the bad diskette. If formatting
fails, the diskette should be discarded.

71 Disk not Ready
The diskette iive door is open or a diskette ,
is not in the drive.

Place the correct diskette in the drive and

continue the program.

70 Disk Write. Protect

You tried to write to a diskette that is

write-protected.

Make sure you are using the right diskette. If
so, remove the write protection, then retry
the operation.

This error may also occur because of a
hardware failure.

A-8

11 Divisaon by zero
In an expression, you tried to divide by zero,
or you tried to raise zero to a negative power.

It is not necessary to fix this condition,
because the program continues running.
Machine infinity with the sign of the number
being divided is the result of the division; or,
positive machine infinity is the result of the
exponentiation. This error cannot be
trapped.

10 Duplicate Definition
You tried to define the size of the same array
twice. This may happen in one of several
ways:

• The same array is defined in two DIM
statements.

• The program encounters a DIM
statement for an array after the default
dimension of 10 is established for that

array.

• The program sees an OPTION BASE
statement after an array has been
dimensioned, either by a DIM statement
or by default.

Move the OPTION BASE statement to make ■
sure it is executed before you use any arrays;
or, fix the program so each array is defined
only once.

50 FIELD overflow

A FIELD statement is attempting to allocate
more bytes than were specified for the record|
length of a random file in the OPEN
statement. Or, the .end of the FIELD buffer

A-9

is encountered while doing sequential 1/O
(PRINT #, WRITE #, INPUT #) to a
random file.

Check the OPEN statement and the FIELD

statement to make sure they correspond. If
you are doing sequential I/O to a random
file, make sure that the length of the data
read or written does not exceed the record

length of the random file.

58 FOe already exists
The filename specified in a NAME command
matches a filename already in use on the
diskette.

Retry the NAME command using a different
name.

55 File already open
You tried to open a file for sequential output
or append, and the file is already opened; or,
you tried to use KILL on a file that is open.

Make sure you only execute one OPEN to a
file if you are writing to it sequentially.
Close a file before you use KILL.

53 File not found

A LOAD, KILL, NAME, FILES, or OPEN
references a file that does not exist on the

diskette in the specified drive.

Verify that the correct diskette is in the drive
specified, and that the file specification was
entered correctly. Then retry the operation.

26 FOR widiout NFXT

A FOR was encountered without a matching
NEXT. That is, a FOR loop was active
when the physical end of the program was
reached.-

A-10

Correct the program so it includes a NEXT
statement.

12 Dlegal direct
You tried to enter a statement in direct mode

which is invalid in direct mode (such as DEF

The statement should be entered as part of a
program line.

5 Illegal function call
A parameter that is out of range is passed to
a system function. The error may also occur
as the result of:

• A negative or unreasonably large
subscript

• Trying to raise a negative number to a
power that is not an integer

• Calling a USR function before defining
the starting address with DEF USR

• A negative record number on GET or
PUT (file)

• An improper argiunent to a function or
statement

• Trying to list or edit a protected BASIC
program

• Trying to delete line numbers which don't)
exist

Correct the program. Refer to Chapter 4 for |
information about the particular statement or
function.

A-11

— Incorrect DOS version

The command you just entered requires a
different version of DOS from the one you
are running.

62 Input past end
This is an end of file error. An input
statement is executed for a null (empty) file, ^
or after all the data in a sequential file was
already input.

To avoid this error, use the EOF function to
detect the end of file.

This error also occurs if you try to read from
a file that was opened for output or append.
If you want to read from a sequential output
(or append) file, you must close it and open
it again for input.

51 Internal error

An internal malfxmction occurred in BASIC.

Recopy your diskette. Check the hardware
and retry the operation. If the error
reoccurs, report to your computer dealer the
conditions under which the message
appeared.

23 Line buffer overflow

You tried to enter a line that has too many
characters.

Separate multiple statements on the line so
they are on more than one line. You might
also use string variables instead of constants
where possible.

A-12

22 Missing operand
An expression contains an operator, such as
* or OR, with no operand following it.

Make sure you include all the required
operands in the expression.

1 NEXT without FOR

The NEXT statement doesn't have a

corresponding FOR statement. It may be
that a variable in the NEXT statement does

not correspond to any previously executed
and unmatched FOR statement variable.

Fix the program so the NEXT has a
matching FOR.

19 No RESUME

The program branched to an active error
trapping routine as a result of an error
condition or an ERROR statement. The

routine does not have a RESUME statement.

(The physical end of the program was
encountered in the error trapping routine.)

Be sure to include RESUME in your error
trapping routine to continue program
execution. You may want to add an ON
ERROR GOTO 0 statement to your error
trapping routine so BASIC displays the
message for any untrapped error.

4 Out of data

A READ statement is trying to read more
data than is in the DATA statements.

Correct the program so that there are enoughl
constants in the DATA statements for all the [
READ statements in the program.

A-13

7 Out of memory
A program is too large, has too many FOR
loops or GOSUBs, too many variables,
expressions that are too complicated, or
complex painting.

You may want to use CLEAR at the
beginning of your program to set aside more
stack space or memory area. See "Tips and
Techniques" in Appendix I for further
explanation of Out of memory errors.

27 Out of Paper
The printer is out of paper, or the printer is
not switched on.

You should insert paper (if necessary), verify
that the printer is properly connected, and
make sure that the power is on; then,
continue the program.

14 Out of strii^ space
BASIC allocates string space dynamically
until it runs out of memory. This message
means that string variables caused BASIC to
exceed the amount of free memory remaining
after housecleaning.

6 Overflow

The magnitude of a munber is too large to be
represented in BASIC'S number format.
Integer overflow will cause execution to stop.
Otherwise, machine infinity with the
appropriate sign is supplied as the result and
execution continues. Integer overflow is the
only tjrpe of overflow that can be trapped

To correct integer overflow, you need to use
smaller nmnbers, or change to single- or
double-precision variables.

A-14

Note: If a number is too small to be

represented in BASIC'S number format,
we have an underflow condition. If this
occurs, the result is zero and execution
continues without an error.

75 Padi/fQe access error
During an OPEN, RENAME, MKDER,
CHDIR or RMDIR operation, an attempt
was made to use a path or filename to an
inaccessible file. For example, you tried to
open a directory or volume identifier; you
tried to open a read only file for writing; or
you tried to remove the current directory.
The operation is not completed.

76 Path not found

During an OPEN, MKDIR, CHDIR or
RMDIR operation, DOS is unable to find the
path the way it is specified. The operation is
not completed.

74 Rename across disks

You tried to rename a file, but you specified
the incorrect disk. The renaming operation is
not performed.

20 RESUME without error

The program has encountered a RESUME
statement without having trapped an error.
The error trapping routine should only be
entered when an error occurs or an ERROR

statement is executed.

You probably need to include a STOP or
END statement before the error trapping
routine to prevent the program from "falling
into" the error trapping code.

RETURN without GOSUB

A RETURN statement needs a previous
unmatched GOSUB statement.

A-15

Gorrect the program. You probably need to
put a STOP or END statement before the
subroutine so the program doesn't "fall" into
the subroutine code.

16 String formula too complex
A string expression is too long or too
complex.

The expression should be broken into smaller
expressions.

15 String too long
You tried to create a string more than 255
characters long.

Try to break the string into smaller strings.

9 Subscript out of range
You used an array element either with a
subscript that is outside the dimensions of
the array, or with the wrong number of
subscripts.

Check the usage of the array variable. You
may have put a subscript on a variable that is
not an array, or you may have coded a
built-in function incorrectly.

2 Syntax error
A line contains an incorrect sequence of
characters, such as an unmatched
parenthesis, a misspelled command or
statement, or incorrect punctuation. Or, the
data in a DATA statement doesn't match the

type (numeric or string) of the variable in a
^AD statement.

When this error occurs, the BASIC program
editor automatically displays the line in error. ^
Correct the line or the program.

A-16

67 Too many files
An attempt is made to create a new file
(using SAVE or OPEN) when all directory
entries on the diskette are full, or when the
file specification is invalid.

If the file specification is okay, use a new
formatted diskette and retry the operation.

13 Type mismatch
You gave a string value where a numeric
value was expected, or you had a numeric
value in place of a string value. This error
may also be caused by trying to SWAP
variables of different types, such as single-
and double-precision.

8 Undefined line number

A hne reference in a statement or command
refers to a line which doesn't exist in the

program.

Check the line numbers in your program, and
use the correct line number.

18 Undefined user function

You called a fimction before defining it with
the DEF FN statement.

Make sure the program executes the DEF
FN statement before you use the function.

— Unprintable error
An error message is not available for the
error condition which exists. This is usually
caused by an ERROR statement with an
undefined error code.

Check your program to make sure you
handle all error codes which you create.

30 WEND without WHILE

A-17

A WEND is encountered before a matching
WHILE was executed.

Correct the program so that there is a
WIDLE for each WEND.

29 WHILE without WEND

A WHEL/E statement does not have a

matching WEND. That is, a WHILE was
still active when the physical end of the
program was reached.

Correct the program so that each WHILE
has a corresponding WEND.

A-18

Quick Reference

Number Message

1 NEXT without FOR

2 Syntax error
3 RETURN without GOSUB

4 Out of data

5 Illegal function call
6 Overflow

7 Out of memory
8 Undefined line number

9 Subscript out of range
10 Duplicate Definition
11 Division by zero
12 Illegal direct
13 Type mismatch
14 Out of string space
15 String too long
16 String formula too complex
17 Can't continue

18 Undefined user function

19 No RESUME

20 RESUME without error

22 Missing operand
23 Line buffer overflow

24 Device Timeout

25 Device Fault

26 FOR without NEXT

27 Out of paper
29 WHILE without WEND

30 WEND without WHILE

50 FIELD overflow

51 Internal error

A-19

Number Message

52 Bad file number

53 File not found

54 Bad file mode

55 File already open
57 Device 1/ O error
58 File already exists
61 Disk full

62 Input past end
63 Bad record number

64 Bad file name

66 Direct statement in file

67 Too many files
68 Device unavailable

69 Communication buffer overflow

70 Disk Write Protect

71 Disk not ready
72 Disk media error

73 Advanced feature

74 Rename across disks

75 Path/file access error
76 Path not found

— Unprintable error
— Incorrect DOS Version

— Cartridge Required

A-20

Appendix B. BASIC Diskette Input and
Output

This appendix describes procedures and special
considerations for using diskette input and output. It
contains lists of the commands and statements that are

used with diskette files, and explanations of how to use
them. Several sample programs are included to help
clarify the use of data files on diskette. If you are new
to BASIC or if you're getting diskette-related errors,
read through these procedures and program examples to
make sure you're using all the diskette statements
correctly.

You may also want to refer to the IBM Personal
Computer Disk Operating System manual for other
information on handling diskettes and diskette fUes.

Note: Most of the information in this appendix
about program files and sequential files applies to
cassette I/O as well. The cassette cannot be opened
in random mode, however.

B-1

Specifying Filenames

FUenames for diskette files must conform to DOS

naming conventions in order for BASIC to be able to
read them. Refer to "Naming Files" in Chapter 3 to be
sme you are specifying your diskette files correctly.

Commands for Program Files

The commands which you can use with your BASIC
program files are listed below, with a quick description.
For more detailed information on any of these
commands, refer to Chapter 4.

SAVE fOespec [,A]
Writes to diskette the program that is
currently residing in memory. Optional A
writes the program as a series of ASCII
characters. (Otherwise, BASIC uses a
compressed binary format.)

LOAD filespec [,R]
Loads the program from diskette into
memory. Optional R runs the program
immediately. LOAD always deletes the
current contents of memory and closes all
files before loading. If R is included,
however, open data files are kept open.
Thus, programs can be chained or loaded
in sections, and can access the same data
files.

RUN filespec [,R]
RUN filespec loads the program from
diskette into memory and runs it. RUN
deletes the current contents of memory f

B-2

and closes all files before loading the
program. If the R option is included,
however, all open data files are kept open.

MERGE fOespec
Loads the program from diskette into
memory, but does not delete the current
contents of memory. The program hne
numbers on diskette are merged with the
line numbers in memory. If two lines have
the same number, only the line from the
diskette program is saved. After a
MERGE command, the "merged"
program resides in memory, and BASIC
returns to command level.

KILL filespec
Deletes the file from the diskette.

NAME filespec AS filename
Changes the name of a diskette file.

Protected Files

If you wish to save a program in an encoded binary
format, use the P (protect) option with the SAVE
command. For example:

SAVE "MYPROG",P

A program saved this way cannot be listed, saved, or
edited. Since you cannot "unprotect" such a program,
you may also want to save an unprotected copy of the
program for Usting and editing purposes.

B-3

Diskette Data Files - Sequential and
Random I/O

Two types of diskette data fUes may be created and
accessed by a BASIC program: sequential files and
random access files.

Sequential Files

Sequential files are easier to create than random files
but are limited in flexibility and speed when it comes to
accessing the data. The data that is written to a
sequential file is stored sequentially, one item after
another, in the order that each item is sent. Each item
is read back in the same way, from the first item in the
file, to the last item.

The statements and functions that are used with

sequential files are:

CLOSE WRITE #

INPUT # EOF

LINE INPUT # INPUTS
OPEN LOC

PRINT # LOF

PRINT # USING

Creatii^ and Accessing a Sequential File

To create a sequential file and access the data in the
file, include the following steps in your program:

1. Open the file for output or append using the OPEN
statement.

2. Write data to the file using the PRINT #, WRITE #,
or PRINT # USING statements.

B-4

3. To access the data in the file, you must close the fUe
(using CLOSE) and reopen it for input (using
OPEN).

4. Use the INPUT # or LINE INPUT # statements to

read data from the sequential file into the program.

The following are example program lines that
demonstrate these steps.

100 OPEN "DATA" FOR OUTPUT AS #1 'step 1
200 WRITE #1,A$,B$,C$ 'step 2
300 CLOSE #1 'step 3
400 OPEN "DATA" FOR INPUT AS #1 'also step 3
500 INPUT #1,X$,Y$,Z$ 'step 4

The above program could also have been written as
follows:

100 OPEN "0",#1,"DATA" 'step 1
200 WRITE #1,A$,B$,C$ 'step 2
300 CLOSE #1 'step 3
400 OPEN "I",#1,"DATA" 'still step 3
500 INPUT #1,X$,Y$,Z$ 'step 4

Notice that both ways of writing the OPEN statement
yield the same results. Look under "OPEN Statement"
in Chapter 4 for details of the syntax of each form of
OPEN.

The following program, PROGRAMl, is a short
program that creates a sequential file, "DATA," from
information you enter at the keyboard.

B-5

Program 1

1 REM PROGRAMl - create a sequential file
10 OPEN "DATA" FOR OUTPUT AS #1
20 INPUT "NAME";N$
25 IF N$="DONE" THEN CLOSE: END
30 INPUT "DEPARTMENT";D$
40 INPUT "DATE HIRED" ;H$
50 WRITE #1,N$,D$,H$ ^ ^
60 PRINT: GOTO 20
RUN

NAME? MICHELANGELO
DEPARTMENT? AUDIO/VISUAL AIDS
DATE HIRED? 01/12/72

NAME? SHERLOCK HOLMES
DEPARTMENT? RESEARCH

DATE HIRED? 12/03/65

NAME? EBENEEZER SCROOGE

DEPARTMENT? ACCOUNTING

DATE HIRED? 04/27/78

NAME? SUPER MANN
DEPARTMENT? MAINTENANCE

DATE HIRED? 08/16/78

NAME? DONE /«>
Ok r

Now look at PR0GRAM2. It accesses the file

"DATA" that was created in PROGRAMl and

displays the name of everyone hired in 1978.

Program 2

1 REM PR0GRAM2 - accessing a sequential file
10 OPEN "DATA" FOR INPUT AS 1
20 INPUT #1,N$,D$,H$
30 IF RIGHT$(H$,2)="78" THEN PRINT N$
40 GOTO 20

RUN

EBENEEZER SCROOGE

SUPER MANN

Input past end in 20
Ok

B-6

PROGRAM2 reads, sequentially, every item in the file.
When all the data has been read, Une 20 causes an Input
past end error. To avoid getting this error, insert line 15
which uses the EOF function to test for end of fUe:

15 IF EOFd) THEN CLOSE: END

and change line 40 to GOTO 15. The end of file is
indicated by a special character in the file. This
character has ASCII code 26 (hex lA). Therefore, you
should not put a CHR$(26) in a sequential file.

A program that creates a sequential file can also write
formatted data to the diskette with the PRINT #

USING statement. For example, the statement:

PRINT #1,USING "####.## ";A,B,C,D

could be used to write numeric data to diskette without

exphcit delimiters. The space at the end of the format
string serves to separate the items in the diskette file.

The LOG function, when used with a sequential file,
returns the number of records that have been written to

or read from the file since it was opened. (A record is a
128-byte block of data.) The EOF function returns the
number of bytes allocated to the file. This number is
always a multiple of 128 (by rounding upward, if
necessary) in BASIC 1.10. In Cartridge BASIC, using
DOS, records are exact length. They are not rounded
to a multiple of 128.

Adding Data to a Sequential File

If you have a sequential file residing on diskette and
later want to add more data to the end of it, you cannot
simply open the fUe for output and start writing data.
When you open a sequential fUe for output, you destroy
its current contents. Instead, you should open the fUe
for APPEND. Refer to "OPEN Statement" in Chapter
4 for detaUs.

B-7

Random FUes

Creating and accessing random files requires more
program steps than sequential files, but there are
advantages to using random files. For instance,
munbers in random files are usually stored on diskette
in binary formats, while numbers in sequential files are
stored as ASCII characters. Therefore, in many cases
random files require less space on diskette than
sequential files.

The biggest advantage to random files is that data can
be accessed randomly; that is, anywhere on the
diskette. It is not necessary to read through all the
information, as with sequential files. This is possible
because the information is stored and accessed in

distinct units called records, and each record is
numbered.

Records may be any length up to 32767 bjrtes. The size
of a record is not related to the size of a sector on the

diskette (512 bytes). BASIC automatically uses all 512
bytes in a sector for information storage. It does this
by both blocking records and spanning sector
boundaries (that is, part of a record may be at the end
of one sector and the other part at the beginning of the
next sector).

The statements and functions that are used with

random files are:

CLOSE CVI

FIELD CVS

GET LOC

LSET/RSET LOF
OPEN MKD$
PUT MKI$
CVD MKS$

B-8

Creating a Random File

The following program steps are required to create a
random file.

1. Open the file for random access. The example which
follows to show these steps specifies a record length
of 32 bytes. If the record length is omitted, the
default is 128 bytes.

2. Use the FIELD statement to allocate space in the
random buffer for the variables that will be written

to the random file.

3. Use LSET or RSET to move the data into the

random buffer. Numeric values must be made into

strings when placed in the buffer. To do this, use
the "make" functions: MKI$ to make an integer
value into a string, MKS$ for a single-precision
value, and MKD$ for a double-precision value.

4. Write the data from the buffer to the diskette using
the PUT statement.

The following lines show these steps:

100 OPEN "FILE" AS #1 LEN=32 'step 1
200 FIELD #1,20 AS N$, 4 AS A$, 8 AS P$

'step 2
300 LSET N$=X$ 'step 3
400 LSET A$=MKS$(AMT) 'still step 3
500 LSET P$=TEL$ 'still step 3 i
600 PUT #I,CODE% 'step 4

Note: Do not use a string variable which has been
defined in a FIELD statement in an input statement
or on the left side of an assignment (LET)
statement. This causes the pointer for that variable
to point into string space instead of the random file
buffer.

Look at PROGRAM3. It takes information that is

entered at the keyboard and writes it to a random file.

B-9

Each time the PUT statement is executed, a record is
written to the fUe. The two-digit code that is input in
line 30 becomes the record number.

Program 3

1 REM PROGRAMS - create a random file
10 OPEN "FILE" AS #1 LEN=32
20 FIELD #1,20 AS N$, 4 AS A$, 8 AS P$
30 INPUT "2-DIGIT CODE";CODE%
35 IF C0DE%=99 THEN CLOSE: END
40 INPUT "NAME";X$
50 INPUT "AMOUNT";AMT
60 INPUT "PHONE";TEL$: PRINT
70 LSET N$=X$
80 LSET A$=MKS${AMT)
90 LSET P$=TEL$
100 PUT #1,C0DE%
110 GOTO 30

Accessing a Random File

The following program steps are required to access a
random fUe:

1. Open the file for random access.

2. Use the FIELD statement to allocate space in the
random buffer for the variables that will be read

from the file.

Note: In a program that performs both input
and output on the same random file, you can
usually use just one OPEN statement and one
FIELD statement.

3. Use the GET statement to move the desired record

into the random buffer.

4. The data in the buffer may now be accessed by the
program. Numeric values must be converted back

B-10

to numbers using the "convert" functions: CVI for
integers, CVS for single-precision values, and CVD
for double-precision values.

The following program lines show these steps:

100 OPEN "FILE" AS 1 LEN=32 'step 1
200 FIELD #1 20 AS N$, 4 AS A$, 8 AS P$

step 2
300 GET #1,C0DE% 'step 3
400 PRINT N$ 'step 4
500 PRINT CVS(A$) 'still step 4

PROGRAM4 accesses the random file "FILE" that

was created in PROGRAMS. By entering the two-digit
code at the keyboard, the information associated with
that code is read from the fUe and displayed.

Program 4

1 REM PR0GRAM4 - access a random file
10 OPEN "FILE" AS 1 LEN=32
20 FIELD #1, 20 AS N$, 4 AS A$, 8 AS P$
30 INPUT "2-DIGIT CODE";CODE%
35 IF C0DE%=99 THEN CLOSE: END
40 GET #1, CODE%
50 PRINT N$
60 PRINT USING "$$###.##";CVS(A$)
70 PRINT P$: PRINT
80 GOTO 30

The LOG function, with random files, returns the
"current record number. "The current record number is

the last record number that was used in a GET or PUT

statement. For example, the statement

IF L0C(1)>50 THEN END
ends program execution if the current record number in
fUe #1 is higher than 50.

B-11

A Sample Program

PROGRAMS is an inventory program that illustrates
random file access. In this program, the record number
is used as the part number, and it is assumed the
inventory will contain no more than 100 different part
numbers. Lines 690-750 initialize the data file by
writing CHR$(255) as the first character of each
record. This is used later (hue 180 and Une 320) to
determine whether an entry already exists for that part
number.

Lines 40-120 display the different inventory functions
that the program performs. When you type in the
desired function number, Une 140 branches to the
appropriate subroutine.

Program 5

1 REM PROGRAMS - inventory
120 OPEN "INVEN.DAT" AS #1 LEN=39
125 FIELD #1,1 AS F$,30 AS D$,2 AS Q$,2 AS R$,4 AS P$
130 PRINT: PRINT "OPTIONS:": PRINT
135 PRINT 1,"INITIALIZE FILE"
140 PRINT 2,"CREATE A NEW ENTRY"
150 PRINT 3,"DISPLAY INVENTORY FOR ONE PART"
160 PRINT 4,"ADD TO STOCK"
170 PRINT 5,"SUBTRACT FROM STOCK"
180 PRINT 6,"LIST ITEMS BELOW REORDER LEVEL"
190 PRINT 7,"END APPLICATION"
220 PRINT: PRINT: INPUT "CHOICE";CHOICE
225 IF (CH0ICE<1)0R(CH0ICE>7) THEN PRINT

"BAD CHOICE NUMBER": GOTO 130
230 ON CHOICE GOSUB 900,250,390,480,560,680,2000
240 GOTO 220
250 REM build new entry
260 GOSUB 840
270 IF ASC(F$)<>255 THEN INPUT "OVERWRITE";A$:

IF A$<>"Y" THEN RETURN
280 LSET F$=CHR$(0)
290 INPUT "DESCRIPTION";DESC$
300 LSET D$=DESC$
310 INPUT "QUANTITY IN STOCK";Q%
320 LSET Q$=MKI$(Q%)
330 INPUT "REORDER LEVEL";R%

B-12

340 LSET R$=MKI$(R%)
350 INPUT "UNIT PRICE";P
360 LSET P$=MKS$(P)
370 PUT #1,PART%
•380 RETURN
390 REM display entry
400 GOSUB 840

410 IF ASC(F$)=255 THEN PRINT "NULL ENTRY": RETURN
420 PRINT USING "PART NUMBER ###";PART%
430 PRINT D$
440 PRINT USING "QUANTITY ON HAND #####";CVI(Q$)
450 PRINT USING "REORDER LEVEL #####";CVI(R$)
460 PRINT USING "UNIT PRICE $$##.##";CVS(P$)
470 RETURN

480 REM add to stock
490 GOSUB 840
500 IF ASC(F$)=255 THEN PRINT "NULL ENTRY": RETURN
510 PRINT D$: INPUT "QUANTITY TO ADD ";A%
520 Q%=CVI(Q$)+A%
530 LSET Q$=MKI$(Q%)
540 PUT #1,PART%
550 RETURN

560 REM remove from stock
570 GOSUB 840
580 IF ASC(F$)=255 THEN PRINT "NULL ENTRY": RETURN
590 PRINT D$
600 INPUT "QUANTITY TO SUBTRACT";S%
610 Q%=CVI(Q$)
620 IF (Q%-S%)<0 THEN PRINT "ONLY";Q%;

" IN STOCK": GOTO 600
630 Q%=Q%-S%
640 IF Q%=<CVI(R$) THEN PRINT "QUANTITY NOW";

Q%;" REORDER LEVEL";CVI(R$)
650 LSET Q$=MKI$(Q%)
660 PUT #1,PART%
670 RETURN

680 REM list items below reorder level
690 FOR 1=1 TO 100

710 GET #1,1
720 IF CVI(Q$)<CVI(R$) THEN PRINT D$;

" QUANTITY";CVI{Q$) TAB(50)
"REORDER LEVEL";CVI(R$)

730 NEXT I

740 RETURN

840 INPUT "PART NUMBER";PART%
850 IF (PART%<1)0R(PART%>100) THEN PRINT

"BAD PART NUMBER": GOTO 840
ELSE GET #1,PART%: RETURN

900 REM initialize file
910 INPUT "ARE YOU SURE";B$: IF B$<>"Y" THEN RETURN
920 LSET F$=CHR$(255)
930 FOR 1=1 TO 100

B-13

940 PUT #1,1
950 NEXT I

960 RETURN
2000 REM end application
2010 CLOSE: END

B-14

Appendix C. Machine Language
Subroutines

This appendix describes how BASIC interfaces with
machine language subroutines. In particular, it
describes:

• How to allocate memory for the subroutines

• How to get the machine language subroutine into
memory

• How to call the subroutine from BASIC and pass
parameters to it

This appendix is intended to be used by an experienced
machine language programmer.

Reference Material

Rector, Russell and Alexy, George. The 8086
Book. Osbome/McGraw-Hill, Berkeley, California,
1980. (includes the 8088)

Intel Corporation Literature Department. The 8086\
Family User's Manual, 9800722. 3065 Bowers
Avenue, Santa Clara, CA 95051.

IBM Corporation Personal Computer library.
Macro Assembler. Boca Raton, FL 33432.

^ IBM Corporation Personal Computer library.
Technical Reference. Boca Raton, FL 33432.

C-1

Setting Memory Aside for Your
Subroutines

BASIC normally uses all memory available from its
starting location up to a maximum of 64K-bjrtes. This
BASIC work area contains your BASIC program, and
data, along with the interpreter work area and BASIC'S
stack. You may allocate memory space for machine
language subroutines either inside or outside this
BASIC 64K work area. Where you decide to put the
routines depends on the total amount of available
memory and the size of the applications to be loaded.

Your system needs more than 64K-b5d;es of memory if
you want to put your machine language subroutines
outside BASIC'S 64K work area. If you are using DOS
2.00, DOS takes up about 24K-bytes, so you need
128K-b3rte system in order for there to be room outside
the BASIC work area for the machine language
subroutines.

Outside the BASIC Work Area: If yom system has
enough memory that you can put your subroutines
outside the BASIC 64K-byte work area, you don't have
to do anjrthing to reserve that area. You use the DEF
SEG statement to address the external subroutine area

outside the BASIC work area.

For example, in a 128K-byte system, to specify an
address beyond BASIC'S workspace, you could use:

110 DEF SEG=&H1700

This statement specifies a segment starting at
hexadecimal location 17000 (92K).

C-2

Remember,

DOS 2.10 = 24k-bytes
workspace = 64k-bytes

Total = 88k-bytes

Inside the BASIC Work area: To keep BASIC from
writing over your subroutines in memory, use either:

• The CLEAR statement, which is available in aU
versions of BASIC

• The /M: option on the BASIC or BASICA
command to start BASIC from DOS

Only the highest memory locations can be set aside for
subroutines. For example, to reserve the highest
4K-byte area of BASIC'S 64K-byte work area for your
machine language subroutines, you could use:

10 CLEAR ,&HFOGO

or start BASIC with the DOS command:

BASIC /M:&HFOGO

Either of these statements restricts the size of the

BASIC work area to hex FOOO (60K) bytes, so you can
use the uppermost 4K-bytes for machine language
subroutines.

Getting the Subroutine Code into
Memory

The following are offered as suggestions about how
machine language subroutines can be loaded. We don't
describe all possible situations.

C-3

Two common ways to get a machine language program
into memory are:

• Poking it into memory from your BASIC program

• Loading it from a file on diskette or cassette

Poking a Subroutine into Memory

You can code relatively short subroutines in machine
language and use the POKE statement to put the code
into memory. In this way, the subroutine actually
becomes a part of yoiu: BASIC program. One way to
do this is:

1. Determine the machine code for your subroutine.

2. Put the hex value (&Hxx format) of each b3ite of the
code into DATA statements.

3. Execute a loop which reads each data b3rte, and then
pokes it into the area you've selected for the
subroutine (see the preceding discussion).

4. After the loop is complete, the subroutine is loaded.
If you are going to call the subroutine using the
USR function, then you must execute a DEF USR
statement to define the entry address of the
subroutine; if you are going to call the subroutine
using the CALL statement, you must set the value
of the subroutine variable to the subroutine's entry
address.

For example:

Ok
10 DEFINT A-Z
20 DEF SEG=&H1700

30 FOR 1=0 TO 21
40 READ J

50 POKE I,J
60 NEXT
70 SUBRT=0

C-4

80 A=2:B=3:C=0
90 CALL SUBRT(A,B,C)
100 PRINT C
110 END
120 DATA &H55,&H8B,&HEC,&H8B,&H76,&H0A
130 DATA &H8B,&H04,&H8B,&H76,&H08
140 DATA &H03,&H04,&H8B,&H7E,&H06
150 DATA &H89,&H05,&H5D,&HCA,&H06,&H00
RUN

5

Ok

Loading the Subroutine from a FUe

You use the BASIC BLOAD command to load a

memory image file directly into memory. The memory
image can be a machine language subroutine which was
saved using the BSAVE command. Of course, that
leads to the question of how the subroutine got there in
the first place. The machine language subroutine may
be an executable file which was created by the hnker
from DOS, and which was placed into memory using
DEBUG. DEBUG and the linker are explained in the
IBM Personal Computer Disk Operating System manual.

The following is a suggested way to use BLOAD to get
such a machine language subroutine into memory:

1. Use the linker to produce an .EXE file of your
routine (let's call it ASMROUT.EXE) so it will load
at the HIGH end of memory.

2. Load BASIC under DEBUG by entering:

DEBUG BASIC.COM

3. Display the registers (use the R command) to find
out where BASIC was put in memory. Record the
values contained in the registers (CS, IP, SS, SP,
DS, ES) for later reference.

C-5

4. Use DEBUG to load the .EXE file (your
subroutine) into HIGH memory, where it will
overlay the transient portion of COMMAND.COM.

N ASMROUT.EXE
L

5. Display the registers (use the R command) to find
out where the subroutine was placed in memory.
Record the values contained in the CS and IP

registers for later use.

6. Reset the registers (use the R command) back to
the values they contained when BASIC.COM was
originally loaded, using the values noted in step 3.

7. Pass parameters to BASIC, if required, by using the
N command of DEBUG to initialize the parameter
passing area.

N/M:40000

Note: The /M:max workspace entry is required
only when the subroutine is inside the BASIC
64K work area.

8. Use the G command to branch to the BASIC entry
point and to set breakpoints (if desired) in the
machine language subroutine.

9. When BASIC prompts, load your BASIC
application program and edit the DEF SEG and
either the DEF USR statement or the value of the

CALL variable to correspond with the location of
the subroutine as determined when you loaded the
subroutine in step 5.

• Use the previously recorded value in the CS
register for DEF SEG

• Use the previously recorded value in the IP
register for the DEF USR or the variable value
of the CALL

C-6

10. In direct mode in BASIC, enter a BSAVE command
to save the subroutine area. Use the starting
location defined by the CS and IP registers when
the subroutine was loaded in step 5, and the code
length printed on the assembler listing or LINK
map. (Refer to "BSAVE Command" in Chapter

11. Edit your BASIC application program so it contains
a BLOAD statement after the DEF SEG that sets

the proper value of CS for the subroutine.

Note: If the machine language routine is
self-relocatable, BLOAD can be used to put the
subroutine some place other than where the
linker orginally placed it. If you make such a
change, be sure to make a corresponding change
to the DEF SEG statement associated with the

caU so that BASIC can find the subroutine at

execution time.

Some suggestions for alternate locations for the
subroutine are:

• An imused screen buffer

• An unused file buffer (located with
VARPTR(#^)

• A string variable area located with
VARPTR(stringvar)

• A variable array area pointed to by the
VARPTR(ami>^»ie(0)).

(See "BLOAD Command" and "VARPTR
Function" in Chapter 4.)

12. Save the resulting changed BASIC apphcation.

A sample BASIC routine calling assembler subroutine:

C-7

5 A%=2 : A%=3
10 DEF SEG=&H1700

15 BLOAD "B:ASMROUT", 0
20 SUBRT=0
30 CALL SUBRT (A%,B%,C%)
40 PRINT C%

Some Notes on Usiiig DEBUG with BASIC: When
you run BASIC under DEBUG, BASIC is loaded after
DEBUG in memory, so DEBUG is not written over if
you load a large BASIC program. If you set
breakpoints in your machine language subroutine, they
return you to DEBUG. The SYSTEM command also
returns you from BASIC to DEBUG.

C-8

Calling the Subroutine from Your
BASIC Program

All versions of BASIC have two ways to call machine
language subroutines: the USR function, and the
CALL statement. This section describes the use of

both USR and CALL.

Common Features of CALL and USR

Whether you call your machine language subroutines
with CALL or with the USR function, you must keep
the following things in mind:

Entering the Subroutine

• At entry, the segment registers DS, ES, and SS" are
all set to the same value, the address of BASIC'S
data space (the default for DEF SEG).

• At entry, the code segment register, CS, contains
the current value specified in the latest DEF SEG.
If DEF SEG has not been specified, or if the latest
DEF SEG did not specify an override value, the
value in CS is the same as in the other three

segment registers.

String Ai^iuments

• If an input argument is a string, the value received in|
the argument is the address of a three-byte area
called the string descriptor.

1. Byte 0 of the string descriptor contains the
length of the string (0 to 255).

2. Byte 1 of the string descriptor contains the lower
8 bits of the offset of the string in BASIC'S data
space.

C-9

3. B3rte 2 of the string descriptor contains the
higher 8 bits of the offset of the string in
BASIC'S data space.

The string itself is pointed to by the last two bytes
of the string descriptor.

Warning:
The subroutine must not change the contents of
any of the three bjrtes of the descriptor.

The subroutine may change the content of the string
itself, but not its length.

If the subroutine changes a string, be aware that this
may modify your program. The following example
may change the string "TEXT" in the BASIC
program.

A<t = "TFYT"

CALL SUBRT(A$)

However, the next example does not change the
program, because the string concatenation causes
BASIC to copy the string into the string space
where it may be safely changed without affecting
the original text.

A$ = "BASIC"+""
CALL SUBRT(A$)

Returning from the Snbrontine

• The return to BASIC must be by an inter-segment
RET instruction. (The subroutine is a FAR
procedure.)

• At exit, all segment registers and the stack pointer,
SP, must be restored. AH other registers (and flags)
may be altered.

• The stack pointer, at entry, indicates a stack that
has only 16 b3des (eight words) available for use by

C-10

the subroutine. If more stack space is needed, the
subroutine must set up its own stack segment and
stack pointer. You should make sure that the
location of the current stack is recorded so its

pointer can be restored just before return.

• If interrupts were disabled by the subroutine, they
should be enabled before return.

CALL Statement

Machine language subroutines may be called using the
BASIC CALL statement. The format of the CALL

statement is:

CALL numvar [{variable /ist)]

numvar is the name of a numeric variable. Its value

is the offset, from the segment set by DEF
SEG, that is the starting point in memory of
the subroutine being called.

variable list

contains the variables, separated by commas,
that are to be passed as arguments to the
routine. (The arguments cannot be
constants.)

Execution of a CALL statement causes the following:

1. For each variable in the variable list, the variable's
location is pushed onto the stack. The location is
specified as a two-byte offset into BASIC'S data
segment (the default DEF SEG).

2. The return address specified in the CS register and
the offset are pushed onto the stack.

C-11

C-12

3. Control is transferred to the machine language
routine using the segment address specified in the
last DEF SEG statement and the offset specified by
the value of numvar.

Notes for the CALL Statement

You can return values to BASIC through the
arguments by changing the values of the variables in
the argument list.

If the argument is a string, the offset for the
argument points to the tlu:ee-b5rte string descriptor as
explained previously.

The called routine must know how many arguments
were passed. Parameters are referenced by adding a
positive offset to BP after the called routine moves
the current stack pointer into BP. The first
instructions in the subroutine should be:

PUSH BP ;SAVE BP
MOV BP,SP ;MOVE SP TO BP

The offset into the stack of any one particular argument
is calculated as follows:

offset from BP = 2*(/i-m)+6

where:

n is the total number of arguments passed.

m is the position of the specific argument in the
argument Ust of the BASIC CALL statement (w
may range from 1 to n).

/

Example: The following example adds the values in
A% and B% and stores the result in C%:

The following statements are in BASIC:

100 A%=2: B%=3
200 DEF SEG=&H1700
250 BLOAD "SUBRT.EXE",0
300 SUBRT=0

400 CALL SUBRT (A%,B%,C%)
500 PRINT Ct

Note: Line 200 sets the segment to location hex
17000. SUBRT is set to 0 so that the call to

SUBRT executes the subroutine at location

&H17000.

The following statements are in IBM Personal
Computer Macro Assembler source code:

CSEG SEGMENT

ASSUME OS:CSEG
SUBRT PROC FAR

PUSH BP

MOV BP,SP
MOV SI,[BP]+10
MOV AX,[SI]
MOV SI,[BP]+8
ADD AX,[SI]
MOV DI,[BP]+6
MOV [DI],AX
POP BP
RET 6

SUBRT ENDP

CSEG ENDS

END

SAVE BP

SET BASE PARM LIST

GET ADDR PARM A
GET VALUE OF A
GET ADDR PARM B

ADD VALUE B TO REG
GET ADDR PARM C
PASS BACK SUM

RESTORE BP

FAR RETURN TO BASIC

Note: When you call a routine using the CALL
statement, the routine must return with a RET n,
where n is 2 times the number of arguments in the
variable list. This is necessary to adjust the stack to
the point at the start of the calling sequence.

C-13

As another example:

10 DEFINT A-Z

100 DEF SEG=&H1800
110 BLOAD "SUBRT.EXE",0
120 SUBRT=0

130 CALL SUBRT (A,B$,C)

The following sequence of Macro Assembler code
shows how the arguments (including the address of a
string descriptor) are passed and accessed, and how the
result is stored in variable C:

PUSH

MOV

MOV

MOV

MOV

BP

BP,SP
BX,[BP]+8
CL,[BX]
DX,1[BX]

SAVE BP

GET CURRENT STK POSITION INTO BP

GET ADDR OF B$ STRING DESCRIPTOR
GET LENGTH OF B$ INTO CL
GET ADDR OF B$ TEXT INTO DX

MOV

MOV
MOVS

POP

RET

END

SI,[BP]+10
DI,[BP]+6
WORD

BP

6

GET ADDR OF A INTO SI
GET ADDR OF C INTO DI
STORE VARIABLE A INTO C

RESTORE BP

RESTORE STACK, RETURN

Warning: It is entirely up to you to make sure that
the arguments in the CALL statement match in
number, type, and length with the arguments
expected by the subroutine.

In the preceding example, the instruction MOVS
WORD copies only two bytes because variables A and
C are integers. However, if A and C are single-
precision, four bytes must be copied; if A and C are
double-precision, eight bytes must be copied.

C-14

USR Function Calls

The other way to call machine language subroutines
from BASIC is with the USR function. The format of
the USR function is:

USR[n](ar?)

n must be a single digit in the range 0 through 9.

arg is any numeric expression or a string variable
name.

n specifies which USR routine is being called, and
corresponds with the digit supplied in the DEF USR
statement for that routine. If /i is omitted, USRO is
assmned. The address specified in the DEF USR
statement determines the starting address of the
subroutine. Even if the subroutine does not require an
argument, a dmnmy argument must still be supplied.

When the USR function is called, register AL contains
a value that specifies the type of argument that was
supplied. The value in AL will be one of the following:

Value in AL Type of Argument

2 Two-byte integer (two's complement)

3 String

4 Single-precision number

8 Double-precision munber

If the argxxment is a string, the DX register points to the|
three-b3rte string descriptor. (See "Common Featiures
of CALL and USR," described previously.)

If the argument is a number and not a string, the value
of the argument is placed in the Floating Point
Accumulator (FAC), which is an eight-byte area in

C-15

BASIC'S data space. In this case, the EX register
contains the offset within the BASIC data space to the
fifth byte of the eight-byte FAC. For the following
examples, assume that the FAC is in bytes hex 49F
through hex 4A6; that is, BX contains hex 4A3:

If the argument is an integer: ^,5—^

• Hex 4A4 contains the upper 8 bits of the argument.

• Hex 4A3 contains the lower 8 bits of the argument.

If the argument is a single-precision number:

• Hex 4A6 contains the exponent minus 128, and the
binary point is to the left of the most significant bit
of the mantissa. Hex 4A5 contains the highest 7
bits of the mantissa with the leading 1 suppressed
(implied). Bit 7 is the sign of th^ number (0 =
positive; 1 = negative).

• Hex 4A4 contains the middle 8 bits of the mantissa.

• Hex 4A3 contains the lowest 8 bits of the mantissa.

If the argument is a double-precision number:

• Hex 4A3 through hex 4A6 are the same as
described under single-precision floating-point
number in the preceding paragraph.

• Hex 49F through Hex 4A2 contain four more bytes
of the mantissa (hex 49F contains the lowest 8
bits).

Usually, the value returned by a USR function is the
same type (integer, string, single-precision, or
double-precision) as the argument that was passed to it.
However, a numerical argument of the function,
regardless of its type, may be forced to an integer value ' ^
by calling the FRCD^ routine to get the integer
equivalent of the argument placed into register BX.

C-16

If the value being returned by the function is to be an
integer, place the resulting value into the BX register.
Then make a call to MAKINT just before the inter
segment return. This passes the value back to BASIC
by placing it into the FAC.

The methods for accessing FRCINT and MAKINT are
shown in the following example:

100 DEF SEG=&H1800
120 BLOAD "SUBRT.EXE",0
130 DEF USR0=0

X = 5 'Note that X is single-precision
Y = USRO(X)

140

150

160 PRINT

At location 1800:0 (segment:offset), the following
Macro Assembler language routine has been loaded.
The routine doubles the argument passed and returns
an integer result:

RSEG SEGMENT AT 0F600H jBASE OF BASIC
ORG 3

FRCINT LABEL FAR
ORG 7

MAKINT LABEL FAR
RSEG ENDS

ROM

OFFSET TO FORCE INTEGER

OFFSET TO MAKE INTEGER

CSEG SEGMENT

USRPRG PROC FAR ;
CALL FRCINT ;
ADD BX.BX ;
CALL MAKINT ;
RET ;

USRPRG ENDP

CSEG ENDS

ENTRY POINT
FORCE ARG IN FAC INTO [BX]
[BX] = [BX] * 2
PUT INT RSLT IN BX INTO FAC
INTER-SEGMENT RETURN TO BASICl

Note: FRCINT and MAKINT perform
inter-segment returns. You should make sure that
the calls to FRCINT and MAKINT are defined by a|
FAR procedure.

C-17

Notes

C-18

Appendix D. Converting Programs to
PCjr BASIC

Since PCjr BASIC is similar to many microcomputer
BASICS, the PCjr will support programs written for a
wide variety of microcomputers. If you have programs
written in a BASIC other than the PCjr BASIC, some
minor adjustments may be necessary before running
them with PCjr BASIC. Here are some specific things
to look for when converting BASIC programs.

FOel/O

In PCjr BASIC, you read and write information to a
file on diskette or cassette by opening the file to
associate it with a particular file number; then by using
particular I/O statements which specify that file
number. I/O to diskette and cassette files is imple
mented differently in some other BASICs. Refer to the
section in Chapter 3 called "Files," and to "OPEN
Statement" in Chapter 4 for more specific information.

Also, in PCjr BASIC, random file records are
automatically blocked as appropriate to fit as many
records as possible in each sector.

FOR-NEXT Loops

In PCjr BASIC, when you exit from a FOR-NEXT
loop, the counter is set to the first unused value. This
differs from some other BASICis where the coimter is
set to the last value used. For example:

10 FOR 1=1 to 5
20 NEXT
30 PRINT I

D-1

The result on the PCjr is 6; in another BASIC it may
be 5.

Graphics

How you draw on the screen varies greatly between
different BASICs. Refer to the discussion of graphics
in Chapter 3 for specific information about PCjr
BASIC.

IF-THEN

The IF statement in PCjr BASIC contains an optional
ELSE clause, which is performed when the expression
being tested is false. Some other BASICs do not have
this capability. For example, in another BASIC you
may have:

10 IF A=B THEN 30
20 PRINT "NOT EQUAL" : GOTO 40
30 PRINT "EQUAL"
40 REM CONTINUE

This sequence of code will still function correctly in
PCjr BASIC, but it may also be conveniently receded
as:

10 IF A=B THEN PRINT "EQUAL" ELSE PRINT "NOT EQUAL'
20 REM CONTINUE

PCjr BASIC also allows multiple statements in both
the THEN and ELSE clauses. This may cause a
program written in another BASIC to perform
differently. Eor example:

10 IF A=B THEN GOTO 100 : PRINT "NOT EQUAL"
20 REM CONTINUE

In some other BASICs, if the test A=B is false, control
branches to the next statement", that is, if A is not equal
to B, "NOT EQUAL" is printed. In PCjr BASIC,
both GOTO 100 and PRINT "NOT EQUAL" are

D-2

considered to be part of the THEN clause of the IF
statement. If the test is false, control continues with
the next program line', that is, to line 20 in this example.
PRINT "NOT EQUAL" can never be executed.

This example can be recoded in PCjr BASIC as:

10 IF A=B THEN GOTO 100 ELSE PRINT "NOT EQUAL"
20 REM CONTINUE

Line Feeds

In other BASICs, when you enter a line feed, a line feed
character is actually inserted into the text. On the
PCjr, entering a line feed will pad the rest of the
display line with spaces - it does not insert the line feed
character. If you try to load a program with line feed
characters in it, you wUl get a Direct statement in file
error.

Logical Operations

In PCjr BASIC, logical operations (NOT, AND, OR,
XOR, IMP, and EQV) are performed bit-by-bit on
integer operands to produce an integer result. In some
other BASICs, the operands are considered to be simple
"true" (non-zero) or "false" (zero) values, and the
result of the operation is either true or false. As an
example of this difference, consider this small program:

10 A=9; B=2

20 IF A AND B THEN PRINT "BOTH A AND B ARE TRUE"

This example in another BASIC wUl perform as
follows: A is non-zero, so it is true; B is also non-zero,
so it is also true; because both A and B are true, A
AND B is true, so the program prints BOTH A AND B
ARE TRUE.

However, PCjr BASIC calculates it differently: A is
1001 in binary form, and B is 0010 in binary form, so

D-3

A AND B (calculated bit-by-bit) is 0000, or zero; zero
indicates false, so the message is not printed, and the
program continues with the next line.

This can affect not only tests made in IF statements,
but calculations as well. To get similar results, recode
logical expressions like the following:

10 A=9: B=2
20 IF (A<>0) AND (B<>0)

THEN PRINT "BOTH A AND B ARE TRUE"

MAT Functions

Programs using the MAT functions available in some
BASICS must be rewritten using FOR-NEXT loops to
execute properly.

Multiple Assignments

Some BASICS allow statements of the form:

10 LET B=C=0

to set B and C equal to zero. PCjr BASIC would
interpret the second equal sign as a logical operator and
set B equal to -1 if C equaled 0. Instead, convert this
statement to two assignment statements:

10 C=0:B=0

Multiple Statements

Some BASICS use a backslash (&intdiv.) to separate
multiple statements on a line. With PCjr BASIC, be
sure all statements on a line are separated by a colon

D-4

PEEKS and POKEs

Many PEEKs and POKEs are dependent on the
particular computer you are using. You should examine
the purpose of the PEEKs and POKEs in a program in
another BASIC, and translate the statement so it
performs the same function on the PCjr.

Relational Expressions

In PCjr BASIC, the value returned by a relational
expression, such as A>B, is either -1, indicating the
relation is true, or 0, indicating the relation is false.
Some other BASICs return a positive 1 to indicate true.
If you use the value of a relational expression in an
arithmetic calculation, the results are likely to be
different from what you want.

Remarks

Some BASICs allow you to add remarks to the end of a
line using the exclamation point (!). Be sure to change
this to a single quote (') when converting to PCjr
BASIC.

Rounding of Numbers

PCjr BASIC rounds single- or double-precision
numbers when it requires an integer value. Many other
BASICs tnmcate instead. This can change the way
your program runs, because it affects not only assign
ment statements (for example, 1%=2.5 results in 1%
equal to 3), but also affects function and statement
evaluations (for example, TAB(4.5) goes to the fifth
position, A(1.5) is the same as A(2), and X=11.5

— MOD 4 will result in a value of 0 for X). Note in
particular that rounding may cause PCjr BASIC to
select a different element from an array than another
BASIC — possibly one that is out of range!

D-5

Sounding the Bell

Some BASICS require PRINT CHR$(7) to send an
ASCII bell character. In PCjr BASIC, you may
replace this statement with BEEP, although it is not
required.

String Handling

String Length: Since strings in PCjr BASIC are all
variable length, you should delete all statements that
are used to declare the length of strings. A statement
such as DIM A$(I,J), which dimensions a string array
for J elements of length I, should be converted to the
PCjr BASIC statement DIM A$(J).

Concatenation: Some BASICs use a comma or

ampersand for string concatenation. Each of these
must be changed to a plus sign, which is the operator
for PCjr BASIC string concatenation.

Substrings: In PCjr BASIC, the MID$, RIGHTS, and
LEFTS functions are used to take substrings of strings.
Forms such as AS (I) to access the Ith character in AS,
or AS(I,J) to take a substring of AS from position I to
position J, must be changed as follows:

Other BASIC PCjr BASIC

X$=A$(I) XS=MID$(AS,I,1)
XS=AS(I,J) XS=MIDS(AS,I,J-I+1)

If the substring reference is on the left side of an
assignment and XS is used to replace characters in AS,
convert as follows:

Other BASIC PCjr BASIC

AS(I)=XS MIDS(AS,I,1)=XS
AS(I,J)=XS MIDS(AS,I,J-I+1)=XS

D-6

Use of Blanks

Some BASICS allow statements with no separation of
keywords:

20FORI=1TOX

With PCjr BASIC be sure all ke5rwords are separated
by a space:

20 FOR 1=1 TO X

Other

The BASIC language on another computer may be
different from the PCjr BASIC in other ways than
those listed here. You should become familiar with
PCjr BASIC as much as possible to be able to
appropriately convert any function you may require.

D-7

Notes

D-8

Appendix F. Communications

This appendix describes the BASIC statements required
_ to support RS232 asynchronous communication with

other computers and peripherals.

Opening a Communications File

OPEN "COM... allocates a buffer for I/O in the same
fashion as OPEN for diskette files. Refer to "OPEN

"COM... Statement"in Chapter 4.

Communication I/O

Since each communications port is opened as a file, all
input/output statements that are valid for diskette files
are valid for communications.

Communications sequential input statements are the
same as those for diskette files. They are:

INPUT#

LINE INPUT#

INPUTS

Communications sequential output statements are the
same as those for diskette files, and are:

PRINT#

PRINT # USING

WRITE#

Refer to the INPUT and PRINT sections for details of

coding syntax and usage.

F-1

GET and PUT for Conununications Files

GET and PUT are only slightly different for
conununications files than for diskette files. They are
used for fixed length 1/O from or to the
conununications file. In place of specifying the record
number to be read or written, you specify the number
of bjdes to be transferred into or out of the file buffer.
This number cannot exceed the value set by the LEN
option on the OPEN "COM... statement. Refer to the
GET and PUT sections in Chapter 4.

I/O Functions

The most difficult aspect of asynchronous
communication is being able to process characters as
fast as they are received. At rates of 1200 bps or
higher, it may be necessary to suspend character
transmission from the other computer long enough to
"catch up." This can be done by sending XOFF
(CHDR.$(19)) to the other computer and XON
(CHR$(17)) when ready to resume. XOFF tells the
other computer to stop sending, and XON teUs it it can ^
start sending again.

Note: This is a commonly used convention, but it is
not universal. It depends on the protocol
implemented between you and the other computer
or peripheral.

Cartridge BASIC provides three functions which help
in determining when an "overrun" condition may
occur. These are:

LOC(f) Returns the number of characters in the
input buffer waiting to be read. If the
number is greater than 255, LOC returns
255.

LOF(f) Returns the amount of free space in the
input buffer. This is the same as

F-2

n-LOC(f), where n is the size of the
communications buffer as set by the /C:
option on the BASIC command. The
default for n is 256.

EOF(f) Returns true (-1) if the input buffer is
empty; false (0) if there are any characters
waiting to be read.

Note: A Communication buffer overflow can occur if

a read is attempted after the input buffer is full (that
is, when LOF(f) returns 0).

INPUTS Function

The INPUTS function is preferred over the INPUT #
and LINE INPUT # statements when reading
communications fUes, since all ASCII characters may
be significant in communications. INPUT # is least
desirable because input stops when a comma (,) or
carriage return is seen. LINE INPUT # stops when a
carriage return is seen.

INPUTS allows all characters read to be assigned to a
string. INPUTS (w,/) will return n characters from the
#/ file. The following statements are efficient for
reading a communications file:

110 WHILE NOT EOF(l)
120 A$=INPUT$(L0C(1),#1)

(process data returned in A$)

190 WEND

These statements return the characters in the buffer

into AS and process them, as long as there are
characters in the input buffer. If there are more than
255 characters in the buffer, only 255 will be returned

F-3

at a time to prevent String overflow. Further, if this is
the case, EOF(l) is false and input continues untU the
input buffer is empty. Simple, concise, and fast.

To process characters quickly, avoid, if possible,
examining every character as you receive it. If you are
looking for special characters (such as control
characters), you can use the INSTR function to find
them in the input string.

Sample Program 1

The following program allows the PCjr to be used as a
conventional "dumb" terminal in a full duplex mode.
This program assumes a 300 bps line and an input
buffer of 256 bytes (the /C: option was not used on the
BASIC command).

10 REM dumb terminal example
20 'set screen to black and white text mode
30 ' and set width to 40
40 SCREEN 0,0: WIDTH 40
50 'turn off soft key display; clear screen;
60 ' make sure all files are closed '
70 KEY OFF: CLS: CLOSE
80 'define all numeric variables as integer
90 DEFINT A-Z
100 'define true and false
110 FALSE=0: TRUE= NOT FALSE
120 'define the XON, XOFF characters
130 X0FF$=CHR$(19): X0N$=CHR$(17)
140 'open communications to file number 1,
150 ' 300 bps, EVEN parity, 7 data bits
160 OPEN "C0M1:300,E,7" AS #1
170 'use screen as a file, just for fun
180 OPEN "SCRN:" FOR OUTPUT AS 2
190 'turn cursor on
200 LOCATE ,,1
400 PAUSE=FALSE: ON ERROR GOTO 9000
490 '
500 'send keyboard input to com line
510 B$=1NKEY$: IF B$<>"" THEN PRINT #1,B$;
520 'if no chars in com buffer, check key in
530 IF EOF(l) THEN 510
540 'if buffer more than 1/2 full, then
550 ' set PAUSE flag to say input suspended,
560 ' send XOFF to host to stop transmission

F-4

rv

570 IF L0C(1)>128 THEN PAUSE=TRUE: PRINT #1,X0FF$;
580 'read contents of com buffer
590 A$=INPUT$(L0C(1),#1)
600 'get rid of linefeeds to avoid double spaces
610 ' when input displayed on screen
620 LFP=0

630 LFP=INSTR(LFP+1,A$,CHR${10)) 'look for LF
640 IF LFP>0 THEN MID${A$,LFP,1)=" GOTO 630
650 'display com input, and check for more
660 PRINT #2,A$;: IF L0C(1)>0 THEN 570
670 'if transmission suspended by XOFF,
680 ' resume by sending XON
690 IF PAUSE THEN PAUSE=FALSE: PRINT #1,X0N$;
700 'check for keyboard input again
710 GOTO 510
8999 'if error, display error number and retry
9000 PRINT "ERROR NO.";ERR: RESUME

Notes on the Program

"Asynchronous" communication implies character
1/O as opposed to line or block 1/O. Therefore, all
PRINTS (either to communications file or to screen)
are ended with a semicolon (;). This stops the
carriage return normally issued at the end of the list
of values to be printed.

Line 90, where all numeric variables are defined as
integer, is coded because any program looking for
speed optimization should use integer counters in
loops where possible.

Note in line 510 that INKEY$ wiU return a null
string if no character is pending.

Note: Commands entered into the IBM Internal

Modem will not be echoed back to the program.
Therefore, if you desire to see command data as
being entered, your program must display it to the
screen. Command data can be interpreted as all
input between CTL n and Carriage Return.

F-5

Sample Program 2

Characters received by the communiction port during
the time that the diskette is being written to are lost.
This presents a special problem for the BASIC program
that writes communication data to a disk file.

Therefore, we must suspend data transmission from the
other computer long enough to write data to the
diskette.

The following BASIC program does this by sending
XOFF to the other computer just before writing to the
disk file. After the data is written, an XON character is
sent to the host telling it to resume transmission.

Note: This is the only way to reliably write data to
disk from the communication port. If the computer
you are connected to does not have a means for
suspending transmission, then characters will
invariably be lost....

This program assumes that data is being sent to it from
another computer. Data received is printed on the
screen while being written to a disk file called
DATA.LOG. The program stops, closes all files, and
returns to BASIC'S direct mode when a Ctrl-Z

character (CHR$(26)) is received:

1 X0FF$=CHR$(19) : X0N$=CHR$(17)
10 OPEN "COM1;300,E,7" AS 1
20 OPEN "SCRN;" FOR OUTPUT AS 2
30 OPEN "DISK.DAT" FOR OUTPUT AS 3
40 ON COM(l) GOSUB 2000:C0M(1) ON 'If buffer gets full, send XOFF
50 IF EOF(l) THEN 50 'Wait until something to read
60 A$=INPUT$(1,1) 'read 1 character from comm
70 IF A$=CHR$(26) THEN 900 'Go close files if EOF
80 PRINT A$: 'Echo character to screen
90 GOSUB 1000 'Suspend transmission, write to disk
100 GOTO 50 'Repeat until EOF
110 ' '
900 CLOSE:END
999 '
1000 IF PAUSE THEN 1020 'Don't suspend if already stopped
1010 PRINT #1,X0FF$;:PAUSE= -1

F-6

1020 FOR 1=1 TO 400:NEXT I 'Some time to be sure stopped
1030 PRINT #3,A$; 'Write to disk file
1050 IF L0C(1)<16 AND PAUSE THEN PRINT #1,X0N$;:PAUSE=0
1060 RETURN
1070 '
2000 IF LOC(l) > 224 THEN PRINT #1,XOFF$;:PAUSE= -1
2010 RETURN

Operation of Control Signals

This section contains more detailed technical
information that you may need to know to
communicate with another computer or peripheral from
BASIC.

The output from the Asynchronous Communications
Port conforms to the EIA RS232-C standard for
interface between Data Terminal Equipment (DTE)
and Data Communications Equipment (DCE). This
standard defines several control signals that are
transmitted or received by yom PCjr to control the

■ ̂ interchange of data with another computer or
peripheral. These signals are DC voltages that are
either ON (greater than +3 volts) or OFF (less than -3
volts). See the IBM Personal Computer Technical
Reference manual for details.

Control of Output Signals with OPEN

When you start BASIC on your PCjr, the RTS
(Request To Send) and DTR (Data Terminal Ready!
lines are held OFF. When an OPEN "COM...
statement is performed, both of these lines are normally |
turned ON. However, you can specify the RS option
on the OPEN "COM... statement to suppress the RTS
signal. The lines remain ON until the communications
file is closed (by CLOSE, END, NEW, RESET,
SYSTEM, or RUN without the R option). Even if the
OPEN "COM... statement fails with an error (as
described below), the DTR line (and RTS line, if

F-7

applicable) is turned ON and stays ON. This allows
you to retry the OPEN without having to execute a
CLOSE.

Use of Input Control Signals

Normally, if either the CTS (Clear To Send) or DSR
(Data Set Ready) lines are OFF, then an OPEN
"COM... statement will not execute. After one second,
BASIC will return with a Device Timeout error (error
code 24). The Carrier Detect (sometimes called
Receive Line Signal Detect) can be either ON or OFF;
it has no effect on the operation of the program.

However, you can specify how you want these lines
tested with the RS, CS, DS, and CD options on the
OPEN "COM... statement. Refer to "OPEN "COM...
Statement" in Chapter 4 for details.

If any of the signals that are being tested are turned
OFF while the program is executing, I/O statements
associated with the communications file won't work.

For example, when you execute a PRINT # statement
after the CTS or DSR line is turned off, a Device Fault
(code 25) or Device Timeout (code 24) error occurs.
The RTS and DTR remain on even if such an error

occurs.

You can test for a line disconnect by using the INP
function to read the bits in the MODEM Status

Register on the Asynchronous Communications Port.
See the following section, "Testing for Modem Control
Signals," for details.

Testing for Modem Control Signals

There are four input control signals picked up by the _
Asynchronous Communications Port. These signals are
the CTS and DSR signals described previously, the
Carrier Detect (sometimes called Received Line Signal

F-8

Detect) (pin 8), and Ring Indicator (pin 22). You can
specify how you want to test the CTS, DSR, and CD
lines with the OPEN "COM... statement. Ring
Indicator is not used at all by the communications
function in BASIC.

If you need to test for any of these signals in a program,
you can check the bits corresponding to these signals in
the MODEM Status Register on the Asynchronous
Communications Port. To read the eight bits in this
register, you use the INP function—^use INP(&H3FE)
to read the register on the IBM internal modem, and
INP(&H2FE) to read the register on the RS232 Serial
Port. See the "Asynchronous Communications Port"
section of the PCjr Technical Reference manual for a
description of which bits in the Status Register
correspond to which control signals. You can also use
the Delta bits in this register to determine if transient
signals have appeared on any of the control lines. .Note
that for a control signal to have meaning, the pin
corresponding to that signal must be connected in the
cable to your modem or to the other computer.

You can also test for bits in the Line Status Register on
the Asynchronous Communications Port. Use
INP(&H3FD) to access this register on the IBM
Internal Modem, and INP(&H2FD) to access it on a
RS232 Serial Port. Again, the bits are described in the
PCjr Technical Reference manual. These bits can be
used to determine what types of errors have occurred
on receipt of characters from the communications line
or whether a break signal has been detected.

Direct Control of Output Control Signals

You can control the RTS or DTR control signals
directly from a BASIC program with an OUT
statement. The states (ON or OFF) of these sipals are"
controlled by bits in the MODEM Control Register on
the Asynchronous Communications Port. The address
of this register is &H3FC on the IBM Internal Modem

F-9

and &H2FC on the RS232 Serial Port. The PCjr
Technical Reference manual describes which of these
bits correspond to which signals.

You can also change bits in the Line Control Register
on the Asynchronous Communications Port. You
should be careful in changing these bits as most of the
bits in this register have been set by BASIC at the time
an OPEN statement is executed and changing a bit
could cause communications failure. The Line Control

Register is at address &H3FB on the IBM Internal
Modem and at address &H2FB on the RS232 Serial

Port.

When changing bits in either the MODEM Control
Register or the Line Control Register, you should first
read the register (with an INP function) and then
rewrite the register with only the pertinent bit or bits
changed.

A bit you may wish to control in the Line Control
Register is bit 6, the Set Break bit. This bit permits you
to produce a Break signal on the communications send
line. A Break is often used to signal a remote computer
to stop transmission. Typically a Break lasts for half a
second. To produce such a signal, you must turn ON
the Set Break, wait for the desired time of the Break
signal, and then turn the bit OFF. The following
BASIC statements will produce a Break signal of about
half a second duration on the IBM Internal Modem.

100 IC%=INP(&H3FB) 'get contents of modem register
110 IZ%=IC% OR &H40 "'^turn ON the Set Break bit
110 OUT &H3FB,IZ% 'transmit to modem control register
120 FOR 1=1 TO 500: NEXT I 'delay half a second
130 OUT &H3FB,IC% 'turn Set Break bit OFF in register

Commumcation Errors

Errors occur on communication files in the following
order:

F-10

1. When opening the fUe—

a. Device Timeout if one of the signals to be tested
(CTS, DSR, or CD) is missing.

2. When reading data—

a. Com buffer overflow if overrun occurs.

b. Device I/O error for overrun, break, parity, or
framing errors.

c. Device Fault if you lose DSR or CD.

3. When writing data—

a. Device Fault if you lose CTS, DSR, or CD on a
Modem Status Interrupt while BASIC was doing
something else.

b. Device Timeout if you lose CTS, DSR, or CD
while waiting to put data in the output buffer.

F-11

Notes

F-12

Appendix G. ASCII Character Codes

The following table lists all the ASCII code^in
decimal) and their associated characters. These
characters can be displayed using PRINT CHR$(/i),
where n is the ASCII code. The column headed

"Control Character" lists the standard interpretations
of ASCn codes 0 to 31 (usually used for control
functions or communications).

Each of these characters may be entered from the
keyboard by pressing Alt-Fn/n, then pressing and
holding the Alt key, then pressing the digits for the
ASCn code. Note, however, that some of the codes
have special meaning to the BASIC program
editor—^the program editor uses its own interpretation
for the codes and may not display the special character
listed here. To reset, press and hold the Alt key and
then the Fn/n key.

G-1

ASCII Control ASCII

value Character character value Ch

000 (null) NUL 032 (SF

001 © SOH 033 I

002 9 STX 034
ft

003 V ETX 035 #

004 ♦ EOT 036 $

005 ENQ 037 %

006 * ACK 038 &

007 (beep) BEL 039
r

008 a BS 040 (
009 (tab) HT 041)

010 (line feed) LF 042
*

Oil (home) VT 043 +

012 (form feed) FF 044 /

013 (carriage return) CR 045 -

014 SO 046 ,

015 SI 047 /

016 ► OLE 048 0

017 DC1 049 1

018 DC2 050 2

019 1! DCS 051 3

020 DC4 052 4

021 § NAK 053 5

022
1

SYN 054 6

023 i ETB 055 7

024 4 CAN 056 8

025 \ EM 057 9

026 SUB 058 ;

027 ESC 059 /

028 (cursor right) FS 060 <

029 (cursor left) GS 061 =

030 (cursor up) RS 062 >

031 (cursor down) US 063 7

Character

G-2

ASCII ASCII

value Character value Character

064 @ 096

065 A 097 a

066 B 098 b

067 C 099 c

068 D 100 d

069 E 101 e

070 F 102 f

071 G 103 g

072 H 104 h

073 1 105 i

074 J 106 j

075 K 107 k

076 L 108 1

077 M 109 m

078 N 110 n

079 0 111 0

080 P 112 P

081 Q 113 q

082 R 114 r

083 S 115 s

084 T 116 t

085 U 117 u

086 V 118 V

087 w 119 w

088 X 120 X
Si.

089 Y 121 y

090 z 122 z w

091 [123 {
l-H

092 \ 124
1

1 h-H

093] 125 }
X
w

094 A 126 ~

C/5

095 127

G-3

ASCII ASCII

value Character value Che

128 Q 160 a

129 U 161 \

130 e 162 6

131 a 163 u

132 a 164 n

133 a 165 N

134 a 166 a

135 9 167 o

136
/\

0 168 c

137 169 1—

138 170

139 171 y2

140 172 %

141 173 i

142 A 174 «

143 A 175 »

144 E 176

145 ae 177

146 /£ 178 »

147
/N

0 179 1

148 6 180 H

149 6 181 H

150 u 182 HI

151 u 183 -Jl

152 Y 184

153 6 185 HI

154 0 186 II

155 4: 187

156 £ 188

157 ¥ 189 _U

158 Pt 190 =1

159 / 191

G-4

ASCII ASCII

value Character value Character

192 L 224 a

193 _L 225 p
194 T 226 r

195 h 227 TT

196 — 228 z

197 + 229 cr

198 1= 230

199 li 231 T

200 lt; 232 $

201 F 233 -0-

202
-IL

234 Q

203 235 6

204 Ih 236 00

205 = 237 0

206
JL
nr 238 e

207 239 n

208 _1L. 240 =

209 =F 241 ±

210 -rr 242 >

211 ll_ 243 <

212 1= 244 f

213 F 245 j

214 rr 246

215 -f 247 %

216 + 248
o

>
217 _l 249 •

218 r 250 •

W

219 ■ 251 4
0
HH220 ■i 252 n

221 1 253 2 X
w

222 1 254 ■ C/i

223 255 (blank 'FF')

G-5

Extended Codes

For certain keys or key combinations that cannot be
represented in standard ASCII code, an extended code
is returned by the INKEY$ system variable. A null
character (ASCII code 000) will be returned as the first
character of a two-character string. If a two-character
string is received by INKEY$, then you should go back
and examine the second character to determine the

actual key pressed. Usually, but not always, this second
code is the scan code of the primary key that was
pressed. The ASCII codes (in decimal) for this second
character, and the associated key(s) are listed below.

Second Code Meaning

3 (nuU character) NUL
15 (shift tab) 1 <—
16-25 Alt- Q, W, E, R, T, Y, U, I, 0, P
30-38 Alt- A, S, D, F, G, H, J, K, L
44-50 Alt- Z, X, C, V, B, N, M
59-68 function keys Fn plus F1 through FIO

(when disabled as soft keys)
71 Fn/Home
72 Home

73 Fn/PgUp
75 PgUp
77 PgDn
79 Fn/End
80 End

81 Fn/Pg Dn
82 Ins

83 Del

84-93 F11-F20 (Shift- Fn/Fl through FIO)
94-103 F21-F30 (Ctrl- Fn/Fl through FIO)
104-113 F31-F40 (Alt- Fn/Fl through FIO)
114 Fn/Prtsc
115 Ctrl-Pg Up (Previous Word)
116 Ctrl-Pg Dn (Next Word)
117 Ctrl-Fn/End
118 Ctrl-Fn/Pg Dn

G-6

119 Ctrl-Fn/Home
120-131 Alt-1,2,3,4,5,6,7,8,9,0,-,=
132 Ctrl-Fn/Pg Up

G-7

Notes

G-8

Appendix H. Hexadecimal Conversion
Tables

Hex Decimal Hex Decimal

1 1 10 16

2 2 20 32

3 3 30 48

4 4 40 64

5 5 50 80

6 6 60 96

7 7 70 112

8 8 80 128

9 9 90 144

A 10 AO 160

B 11 BO 176

C 12 CO 192

D 13 DO 208

E 14 EO 224

F 15 FO 240

100 256 1000 4096

200 512 2000 8192

300 768 3000 12288

400 1024 4000 16384

500 1280 5000 20480

600 1536 6000 24576

700 1792 7000 28672

800 2048 8000 32768

900 2304 9000 36864

AOO 2560 AOOO 40960

BOO 2816 BOOO 45056

COO 3072 COOO 49152

DOO 3328 DOOO 53248

EOO 3584 EOOO 57344

FOO 3840 FOOO 61440

H-1

Binary to Hexadecimal Conyersion
Table

Binaty
bit pattern

Hex value Decimal value

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

1000 8 8

1001 9 9

1010 A 10

1011 B 11

1100 C 12

1101 D 13

1110 E 14

1111 F 15

H-2

Appendix I. Technical Information and
Tips

This appendix contains more specific technical
information about BASIC. Included are a memory
map, descriptions of how BASIC stores data internally,
and some special techniques you can use to improve
program performance.

Other information may be found in the PCjr Technical
Reference manual.

I-l

Memory Map

The following is a memory map for Cartridge BASIC.
DOS and the BASIC extensions are not present for
Cassette BASIC. Addresses are in hexadecimal in the
form segmenf.offset.

1-2

free memory

free memory [FRE(O)]

file buffers

COM buffers

DOS area

BASIC stack

string space

BASIC

statements

scalar data

arrays

BASIC program
in cartridge

video memory

(initially 16K)

Cartridge

BASIC

Resides at E800:0

If present, must

reside at D000;0

Top of memory (64K or 128K)
Last parameter of CLEAR

expands or contracts video memory

Top - 16K

(If available)

Top of OS, ES, SS (64K maximum)

(512 bytes, or set by CLEAR)

Top of string space

Strings grow down

Bottom of string space
lOUT OF MEMORY!

if bottom of strings
hit top of arrays

Top of arrays

(Arrays grow up)

Top of scalar data

(Scalar data grows up

pushing arrays up)

Top of user's BASIC program
BASIC program grows up
pushing up scalars and arrays

Bottom of user's BASIC program
Size determined

by /F: and /S:

(Dynamic boundary if RS232;
determined by /Crsize)

(Dynamic boundary if /C:0)

Bottom of user area

interrupt vectors

Cartridge

BASIC

BASIC program

in cartridge

video memory

(initially 16K)

0000:0000

Resides at E800:0

If present, must

reside at 0000:0

Top of memory {64K or 128K)
Last parameter of CLEAR
expands or contracts video memory

Top - 16K

free memory (If available)

BASIC stack

string space

free memory [FRE(O)]

arrays

scalar data

BASIC

statements

Top of OS, ES, SS (64K maximum)
(512 bytes, or set by CLEAR)

Top of string space

Strings grow down

Bottom of string space

lOUT OF MEMORY!

if bottom of strings

hit top of arrays

Top of arrays

(Arrays grow up)

Top of scalar data
(Scalar data grows up

pushing arrays up)

Top of user's BASIC program

BASIC program grows up

pushing up scalars and arrays

Bottom of user's BASIC program

file buffers

COM buffers

Three files pre-allocated

(Dynamic boundary if RS232;
defaulted as if /C:256)

(Dynamic boundary if no RS232)

60:0 (same as Cassette BASIC)

1-3

How Variables Are Stored

Scalar variables are stored in BASIC'S data area as

follows:

Byte 1

char char

-AA AA-
4+;engt/i

length length chars

vA A/"

2,3,4, or 8 bytes

type identifies the variable's tjrpe:

2 integer
3 string
4 single-precision
8 double-precision

name is the name of the variable. The first two

characters of the name are stored in the

bytes 1 and 2. Byte 3 tells how many more
characters are in the variable name. These

additional characters are stored starting at
byte 4.

Note that this means any variable name will
take up at least three bytes. A one- or
two-character name will occupy exactly three
bytes; an x character name will occupy x+1
bytes.

data follows the name of the variable, and may be
either two, three, four, or eight bytes long (as
described by tjpe). The value returned by
the VARPTR function points to this data.

1-4

For string variables, data is the string descriptor.

• The first byte of the string descriptor contains the
length of the string (0 to 255).

• The last two bytes of the string descriptor contain
the address of the string in BASIC'S data space (the
offset into the default segment). Addresses are
stored with the low byte first and the high byte
second, so:

- The second byte of the string descriptor contains
the low byte of the offset.

- The third byte of the string descriptor contains
the high bjrte of the offset.

For numeric variables data contains the actual value of

the variable:

• Integer values are stored in two bytes, with the low
byte first and the high byte second.

• Single-precision values are stored in four b5rtes in
BASIC'S internal floating point binary format.

• Double-precision values are stored in eight bytes in
BASIC'S internal floating point binary format.

BASIC FOe Control Block

When you call VARPTR with a file number as an
argument, the returned value is the address of the
BASIC file control block. The address is specified as
an offset into BASICs Data Segment. (Note that the
BASIC file control block is not the same as the DOS
file control block.)

1-5

Information contained in the file control block is as

follows (offsets are relative to the value returned by
VARPTR):

Offset Length Description

0 1 The mode in which the file was

opened:

1 - Input only
2 - Output only
4 - Random

16 - Append only
32 - Internal use

128 - Internal use

1 38 DOS file control block

39 2 For sequential files, the number of
sectors read or written. For random

files, contains 1 + the last record
number read or written.

41 1 Number of bytes in sector when read
or written.

42 1 Number of bytes left in input buffer.

43 3 (reserved)

46 1 Device number:

0,1 - Diskette drives A and B
248 - LPT3

249 - LPT2

250 - COM2

251 - COMl

252 - CASl

253 - LPTl

254 - SCRN

255 - KYBD

1-6

47 1 Device width.

48 1 Position in buffer for PRINT #.

49 1 Internal use during LOAD and
SAVE. Not used for data files.

50 1 Output position used during tab
expansion.

51 128 Physical data buffer. Used to
transfer data between DOS and

BASIC. Use this offset to examine

data in sequential I/O mode.

179 2 Variable length record size. Default
is 128. Set by length parameter on
OPEN statement.

181 2 Current physical record number.

183 2 Current logical record munber.

185 1 (reserved)

186 2 Diskette files only. Position for
PRINT #, INPUT #, and WRITE #.

188 n Actual FIELD data buffer. Size n is
determined by the /S: option on the
BASIC command. Use this offset to

examine file data in random mode.

1-7

Keyboard Buffer

Characters typed on the keyboard are saved in the
keyboard buffer until they are processed. Up to 15
characters can be held in the buffer; if you try to type
more than 15 characters, the computer beeps.

INKEY$ will read only one character from the
keyboard buffer even if there are several characters
pending there. INPUT$ can be used to read multiple
characters; however, if the requested niunber of
characters are not already present in the buffer, BASIC
will wait until enough characters are typed.

The system keyboard buffer may be cleared by the
following lines of code:

DEF SEG=0: POKE 1050, PEEK(1052)

This technique could be useful, for example, to clear the
buffer before you ask the user to "press any key."

The Second Cartridge

Cartridge BASIC allows you to run BASIC programs
from a second cartridge. The PCjr Technical Reference
manual provides information on how to prepare a
BASIC program for placement in a second cartridge.

1-8

Tips and Techniques

Often there are several different ways you can code
something in BASIC and still get the same function.
This section contains some general hints for coding to
improve program performance.

GENERAL

• Combine statements where convenient to take

advantage of the 255 character statement length.
For example;

Do:

100 FOR 1=1 TO 10: READ A(I): NEXT I

Instead of:

100 FOR 1=1 TO 10
110 READ A(l)
120 NEXT I

Avoid repetitive evaluation of expressions. If you do
the same calculation in several statements, you can
evaluate the expression once and save the result in a
variable for use in later statements. For example:

Do: Instead of:

300 X=C*3+D 310 A=C*3+D+Y
310 A=X+Y 320 B=C*3+D+Z
320 B=X+Z

However, assigning a constant to a variable is
faster than assigning the value of another variable to|
the variable.

1-9

Use simple arithmetic. In general, addition is
performed faster than multiplication, and
multiplication is faster than division or
exponentiation.

Consider these examples:

Do: Instead of:

250 B=A*.5 250 B=A/2
500 B=A+A 500 B=A*2

650 B=A*A*A 650 B=Aa3

750 B%=A%\4 750 B%=INT(A%/4)

Use buUt-in functions. Use the built-in system
functions where possible; they execute faster than
the same capability written in BASIC.

Use remarks sparingly. It takes a small amount of
time for BASIC to identify a remark. Whenever
possible, use the single quote (') to place remarks at
the end of the Mne rather than using a separate
statement. This improves performance and saves
storage by eliminating the need for a line number.
For example:

Do:

10 FOR 1=1 TO 10
20 A{I)=30 ' initialize A
30 NEXT I

Instead of:

10 FOR 1=1 TO 10

15 ' initialize A
20 A{I)=30
30 NEXT I

Just a note about PCjr BASIC— When BASIC
wants to branch to a particular line number, it
doesn't know exactly where in memory that Une is.

I-IO

Therefore BASIC has to search through the hue
numbers in the program, starting at the beginning,
to find the hne it's looking for.

In some other BASICs, this search must be
performed each time the branch occurs in the
program. In PCjr BASIC, the search is only
performed once, and thereafter the branch is direct.
So placing frequently-used subroutines at the
beginning of the program will not make your
program run faster.

LOGIC CONTROL

• Use the capabilities of the IF statement. By using
AND and OR and the ELSE clause, you can often
avoid the need for more IF statements and

additional code in the program. For example:

Do:

200 IF A=B AND C=D THEN Z=12 ELSE Z=B

Instead of:

200 IF A=B THEN GOTO 210
205 GOTO 215
210 IF C=D THEN 225
215 Z=B

220 GOTO 230
225 Z=12

230 ...

• Order IF statements so the most frequently
occurring condition is tested first. This avoids
having to make extra tests. For example, suppose
you have a data entry file for customer orders which |
consists of different record types and many
individual transactions.

I-ll

A typical record group looks like this:

Type code Record type

A Header

B Customer name and address

C Transaction

C Transaction

C Transaction

D Trailer

Do:

100 IF TYPE$="C" THEN 3000
110 IF TYPE$="A" THEN 1000
120 IF TYPE$="B" THEN 2000
130 IF TYPE$="D" THEN 4000

Instead of:

100 IF TYPE$="A" THEN 1000
110 IF TYPE$="B" THEN 2000
120 IF TYPE$="C" THEN 3000
130 IF TYPE$="D" THEN 4000

If you had 100 groups, with 10 transactions per
group, moving the test to the beginning of the list
results in 1800 fewer IF statements being executed.

1-12

Another example of ordering IF statements in a
cascade so less tests need to be performed:

Do:

200 IF A<>1 THEN 250
210 IF B=1 THEN X=0
210 IF B=2 THEN X=1
210 IF B=3 THEN X=2
240 GOTO 280
250 IF B=1 THEN X=3
260 IF B=2 THEN X=4
270 IF B=3 THEN X=5
280 ...

Instead of:

200 IF A=1 AND B=1 THEN X=0
200 IF A=1 AND B=2 THEN X=1
200 IF A=1 AND B=3 THEN X=2
230 IF A<>1 AND 8=1 THEN X=3
230 IF A<>1 AND B=2 THEN X=4
230 IF A<>1 AND B=3 THEN X=5

LOOPS

• Use integer counters on FOR—NEXT loops when
possible. Integer arithmetic is performed faster than
single- and double-precision arithmetic.

• Omit the variable on the NEXT statement where

possible. If you include the variable, BASIC takes a
Uttle time to check to see that it is correct. It may |
be necessary to include the variable on the NEXT
statement if you are branching out of nested loops.
Refer to "FOR and NEXT Statements" in Chapter
4 for more information.

• Use FOR-NEXT loops instead of using the IF,
GOTO combination of statements.

1-13

For example:

Do: Instead of:

200 FOR 1=1 TO 10 200 1=1

210 ...

290 1=1+1
300 NEXT I 300 IF I<=10 THEN 210

Remove unnecessary code from loops. This includes
statements which don't affect the loop, as well as
nonexecutable statements such as REM and DATA.

For example:

Do:

10 A=B+1
20 FOR X=1 TO 100
30 IF D(X)>A THEN D(X)=A
40 NEXT X

Instead of:

10 FOR X=1 TO 100
20 A=B+1
30 IF D(X)>A THEN D(X)=A
40 NEXT X

In the preceding example, it is not necessary to
calculate the value of A each time through the loop,
because the loop never changes the value of A.

1-14

The next example shows a nonexecutable statement.

Do: Instead of:

200 DATA 5, 12, 1943 200 FOR 1=1 TO 100
210 FOR 1=1 TO 100 210 DATA 5, 12, 1943

300 NEXT I 300 NEXT I

1-15

Notes

1-16

Appendix J. Glossary

This part of the book explains many of the technical
terms you may run across while programming in
BASIC.

absolute coordinate form. In graphics, specifying the
location of a point with respect to the origin of the
coordinate system.

access mode. A technique used to get a specific logical
record from, or put a logical record into, a file.

accuracy. The quality of being free from error. On a
machine this is actually measured, and refers to the size
of the error between the actual number and its value as

. stored in the machine.

active page. The current video page that BASIC writes
to or reads from. It may be different from the page
whose information is being displayed.

adapter. A mechanism for attaching parts.

address. The location of a register, a particular part of
memory, or some other data source or destination. Or,
to refer to a device or a data item by its address.

addressable pomt. In computer graphics, any point in a
display space that can be addressed. Such points are
finite in number and form a discrete grid over the
display space.

a^oridun. A finite set of well-defined rules for the
solution of a problem in a finite number of steps.

allocate. To assign a resource, such as a diskette file or
a part of memory, to a specific task.

J-1

alphabetic character. A letter of the alphabet.

alphameric or alphanumeric. Pertaining to a character
set that contains letters and digits.

application program. A program written by or for you
which applies to your work. For example, a payroll
application program.

argument. A value that is passed from a calling program
to a function.

arithmetic overflow. Same as overflow.

array. An arrangement of elements in one or more
dimensions.

ASCn. American National Standard Code for

Information Interchange. The standard code used for
exchanging information among data processing systems
and associated equipment. The ASCII set consists of
control characters and graphic characters.

asynchronous. Without regular time relationship;
unpredictable with respect to the execution of a
program's instructions.

attribute. A numerical value that describes the color of

each point on the screen.

background. The area which siirrounds the subject. In
particular, the part of the display screen surrounding a
character.

backup. Pertaining to a system, device, file, or facility
that can be used in case of a malfunction or loss of

data.

J-2

baud. A unit of signaling speed equal to the number of
discrete conditions or signal events per second.

binary. Pertaining to a condition that has two possible
values or states. Also, refers to the Base 2 numbering
system.

bit. A binary digit.

blank. A part of a data medium in which no characters
are recorded. Also, the space character.

blinkii^. An intentional regular change in the intensity
of a character on the screen.

boolean value. A numeric value that is interpreted as
"true" (if it is not zero) or "false" (if it is zero).

bootstrap. An existing version, perhaps a primitive
version, of a computer program that is used to establish
another version of the program. Can be thought of as a
program which loads itself.

bps. Bits per second.

bubble sort A technique for sorting a list of items into
sequence. Pairs of items are examined, and exchanged
if they are out of sequence. This process is repeated
until the list is sorted.

buffer. An area of storage which is used to compensate
for a difference in rate of flow of data, or time of
occmrence of events, when transferring data from one
device to another. Usually refers to an area reserved
for I/O operations, into which data is read or from
which data is written.

bug. An error in a program.

byte. The representation of a character in binary.
Eight bits.

J-3

call. To bring a computer program, a routine, or a
subroutine into effect, usually by specifying the entry
conditions and jumping to an entry point.

carriage return character (CR). A character that causes
the print or display position to move to the first position
on the same line.

channel. A path along which signals can be sent, for
example, a data channel or an output chaimel.

character. A letter, digit, or other symbol that is used
as part of the organization, control, or representation of
data. A connected sequence of characters is called a
character string.

clipping. See line clipping.

clock. A device that generates periodic signals used for
synchronization. Each signal is called a clock pulse or
clock tick.

code. To represent data or a computer program in a
symbolic form that can be accepted by a computer; to
write a routine. Also, loosely, one or more computer
programs, or part of a program.

conunent. A statement used to document a program.
Comments include information that may be helpful in
running the program or reviewing the output listing.

communication. The transmission and reception of data.

complement. An "opposite." In particular, a nrunber
that can be derived from a given number by subtracting
it from another given munber.

compression. Arranging data so it takes up a minimal
amount of space.

J-4

concatenation. The operation that joins two strings
together in the order specified, forming a single string
with a length equal to the sum of the lengths of the two
strings.

constant. A fked value or data item.

control character. A character whose occurrence in a

particular context starts, modifies, or stops a control
operation. A control operation is an action that affects
the recording, processing, transmission, or
interpretation of data; for example: carriage return,
font change, or end of transmission.

coordinates. Numbers which identify a location on the
display.

current directory. The default directory for each drive
on your system. This is the directory that BASIC will
search if you enter a filename without telling BASIC
which directory the file is in.

cursor. A movable marker used to indicate a position
on the display.

debug. To find and eliminate mistakes in a program.

default. A value or option that is assumed when none is
specified.

delimiter. A character that groups or separates words
or values in a line of input.

diagnostic. Pertaining to the detection and isolation of a|
malfunction or mistake.

directory. A table of identifiers and references to the
corresponding items of data. For example, the
directory for a diskette contains the names of files on

J-5

the diskette (identifiers), along with information that
tells DOS where to find the file on the diskette. (See
also "tree-structured directories.")

disabled. A state that prevents the occurrence of
certain types of interruptions.

DOS. Disk Operating System. In this book, refers only
to the IBM Personal Computer Disk Operating System.

double-precisaon. Describes storage of a numerical
value in 8 bytes of memory. Used for obtaining
increased accuracy of residts in mathmatical
calculation.

dummy. Having the appearance of a specified thing but
not having the capacity to function as such. For
example, a diunmy argument to a function.

duplex. In data communication, pertaining to a
simultaneous two-way independent transmission in
both directions. Same as full duplex.

dynamic. Occurring at the time of execution.

echo. To reflect received data to the sender. For

example, keys pressed on the keyboard are usually
echoed as cWacters displayed on the screen.

edit. To enter, modify, or delete data.

element. A member of a set; in particular, an item in an
array.

enabled. A state of the processing iinit that allows
certain types of interruptions.

end of file (EOF). A "marker" immediately following
the last record of a file, signaling the end of that file.

J-6

event. An occurrence or happening; in PCjr BASIC,
refers particularly to the events tested by COM(n),
KEY(n), PEN, PLAY(n), and STRIG(n).

execute. To perform an instruction or a computer
program.

extent. A continuous space on a diskette, occupied or
reserved for a particular fUe.

fault. An accidental condition that causes a device to

fail to perform in a required manner.

field. In a record, a specific area used for a particular
category of data.

file. A set of related records treated as a unit.

fixed-length. Referring to something in which the
length does not change. For example, random files
have fixed-length records; that is, each record has the
same length as all the other records in the file.

flag. Any of various types of indicators used for
identification, for example, a character that signals the
occurrence of some condition.

floppy disk. A diskette.

I

folding. A technique for converting data to a desired
form when it doesn't start out in that form. For

example, lowercase letters may be folded to uppercase.

font. A family or assortment of characters of a
particular size and style.

foreground. The part of the display area that is the
character itself.

format. The particular arrangement or layout of data
on a data medium, such as the screen or a diskette.

J-7

form feed (FF). A character that causes the print or
display position to move to the next page.

function. A procedure which returns a value depending
on the value of one or more independent variables in a
specified way. More generally, the specific pmpose of
a thing, or its characteristic action.

function key. One of the ten keys labeled F1 through
FIO on the top of the keyboard.

garbage collection. Synonym for housecleaning.

graphic. A sjrmbol produced by a process such as
handwriting, printing, or drawing.

half duplex. In data communication, pertaining to an
alternate, one way at a time, independent transmission.

hard copy. A printed copy of machine output in a
visually readable form.

header record. A record containing common, constant,
or identifying information for a group of records that
follows.

hertz (Hz). A unit of frequency equal to one cycle per
second.

hierarchy. A structure having several levels, arranged in
a tree-like form. "Hierarchy of operations" refers to
the relative priority assigned to arithmetic or logical
operations which must be performed.

host. The primary or controlling computer in a multiple
computer installation.

housecleaning. When BASIC compresses string space '
by collecting all its useful data and frees up unused
areas of memory that were once used for strings.

J-8

implicit declaration. The establishment of a dimension
for an array without it having been explicitly declared in
a DIM statement.

increment. A value used to alter a counter.

initialize. To set counters, switches, addresses, or
contents of memory to zero or other starting values at
the beginning of, or at prescribed points in, the
operation of a computer routine.

instruction. In a programming language, any meaningful
expression that specifies one operation and its
operands, if any.

integer. One of the numbers 0, &plusmin.l,
&plusmin.2, &plusmin.3,...

int^rity. Preservation of data for its intended purpose;
data integrity exists as long as accidental or malicious
destruction, alteration, or loss of data are prevented.

interface. A shared boimdary.

interpret. To translate and execute each source
language statement of a computer program before
translating and executing the next statement.

interrupt. To stop a process in such a way that it can be
resumed.

invoke. To activate a procedure at one of its entry
points.

joystick. A lever that can pivot in all directions and is
used as a locator device.

justify. To align characters horizontally or vertically to
fit the positioning constraints of a required format.

J-9

K. When referring to memory capacity, two to the
tenth power or 1024 in decimal notation.

keyword. One of the predefined words of a
programming language; a reserved word.

leading. The first part of something. For example, you
might refer to leading zeroes or leading blanks in a
character string.

light pen. A light sensitive device that is used to select a
location on the display by pointing it at the screen.

line. When referring to text on a screen or printer, one
or more characters output before a retium to the first
print or display position. When referring to input, a
string of characters accepted by the system as a single
block of input; for example, all characters entered
before you press the Enter key. In graphics, a series of
points ̂ awn on the screen to form a straight line. In
data communications, any physical medimn, such as a
wire or microwave beam, that is used to transmit data.

line clipping. A process in which points referenced
outside of a coordinate range are invisible to the
viewing area. Any image crossing the viewing area
(Ijing partially within and partially without) is cut off
or "clipped" at the viewing area boundaries so that only
points in range appear.

line feed (LF). A character that causes the print or
display position to move to the corresponding position
on the next line.

literal. An explicit representation of a value, especially
a string value; a constant.

location. Any place in which data may be stored.

J-10

loop. A set of instructions that may be executed
repeatedly while a certain condition is true.

M. Mega; one million. When referring to memory, two
to the twentieth power; 1,048,576 in decimal notation.

macblne infinity. The largest number that can be
represented in a computer's internal format.

mantissa. For a number expressed in floating point
notation, the numeral that is not the exponent.

mappii^. The translation of coordinate values between
the world coordinate system, as defined by the
WINDOW statement, and the physical coordinate
system, as defined by the VIEW statement.

mask. A pattern of characters that controls the
retention or elimination of another pattern of
characters.

matrix. An array with two or more dimensions.

matrix printer. A printer in which each character is
represented by a pattern of dots.

menu. A list of available operations. You select which
operation you want from the list.

minifloppy. A 5-1/4 inch diskette.

misring operand. Required data left out of an
instruction causing the instruction to be
non-executable.

nest. To incorporate a structure of some kind into
another structure of the same kind. For example, you
can nest loops within other loops, or call subroutines
from other subroutines.

j-ii

notation. A set of symbols, and the rules for their use,
for the representation of data.

null. Empty, having no meaning. In particular, a string
with no characters in it.

octal. Pertaining to a Base 8 munber system.

offset. The number of units from a starting point (in a
record, control block, or memory) to some other point.
For example, in BASIC the actual address of a memory
location is given as an offset in bytes from the location
defined by the DEF SEG statement.

on-condition. An occurrence that could cause a

program interruption. It may be the detection of an
unexpected error, or of an occurrence that is expected,
but at an unpredictable time.

operand. Data in an instruction that must be operated
upon when the instruction is executed.

operating system. Software that controls the execution
of programs; often used to refer to DOS.

operation. A well-defined action that, when applied to
any permissible combination of known entities,
produces a new entity.

overflow. When the result of an operation exceeds the
capacity of the intended unit of storage.

overlay. To use the same areas of memory for different
parts of a computer program at different times.

overwrite. To record into an area of storage so as to
destroy the data that was previously stored there.

pad. To fill a block with dummy data, usually zeros or
blanks.

J-12

page. Part of the screen buffer that can be displayed
and/or written on independently.

paint tiling. Method of painting inside a bounded area
with a tile-like design.

palette. A range of colors

panning. The process of using a window with
coordinates larger than the image to be displayed. This
causes a "pan out" until the image can be nothing but a
spot on the screen.

parameter. A name in a procedure that is used to refer
to an argument passed to that procedure.

parity check. A technique for testing transmitted data.
Typically, a binary digit is appended to a group of
binary digits to make the sum of all the digits either
always even (even parity) or always odd (odd parity).

path. A specified direction used to find a particular file.
Used with directories and any command or statement
that accepts a file specification.

physical coordmate system. The logical limits of the
screen. (See VIEW and WINDOW statements in
Chapter 4.)

pixeL A point or location on a display screen that is
used to form an image on the screen. Also, the bits
which contain the information for that point.

port. An access point for data entry or exit.

poation. In a string, each location that may be occupied)
by a character and that may be identified by a munber.

precision. A measure of the ability to distinguish
between nearly equal values.

J-13

prompt. A question the computer asks when it needs
information from you.

protect. To restrict access to or use of all, or part of, a
data processing system.

queue. A line or list of items waiting for service; the
first item that went in the queue is the first item to be
serviced.

random access memory. Storage, in which you can read
and write to any desired location. Sometimes called
direct access storage.

range. The set of values that a quantity or function may
take.

raster scan. A technique of generating a display image
by a line-by-line sweep across the entire display screen.
This is the way pictures are created on a television
screen.

read-only. A type of access to data that allows it to be
read but not modified.

record. A collection of related information, treated as a
unit. For example, in stock control, each invoice might
be one record.

recursive. Pertaining to a process in which each step
uses the results of earlier steps, such as when a fimction
calls itself.

relative coordinates. In graphics, values that identify the
location of a point by specifjring displacements from
some other point.

reserved word. A word that is defined in BASIC for a

special purpose, and that you cannot use as a variable
name.

J-14

resolution. In computer graphics, a measure of the
sharpness of an image, expressed as the number of dots
per square inch discernible in that area.

reverse image. Highlighting a character field or cursor
by reversing its color with its background.

root directory. The directory that is created on each
disk or diskette when you FORMAT it. The "base" or
"main" directory.

routine. Part of a program, or a sequence of
instructions called by a program, that may have some
general or frequent use.

row. A horizontal arrangement of characters or other
expressions.

scalar. A value or variable that is not an array.

scale. To change the representation of a quantity,
expressing it in other units, so that its range is brought
within a specified range.

waling. In graphics, the process of changing the size of
your image by changing the size of your viewport. (See
"VIEW Statement" in Chapter 4.)

wan. To examine sequentially, part by part. See raster
scan.

scrolL To move all or part of the screen material up or
down, left or right to allow new information to apprear.

segment. A particular 64K-byte area of memory.

■seqnnntial access. An access mode in which records are
retrieved in the same order in which they were written.
Each successive access to the file refers to the next
record in the file.

J-15

angle-precision. Describes a method of storing a
numerical value in only 4 bjrtes of memory.

stack. A method of temporarily storing data so that the
last item stored is the first item to be processed.

statement. A meaningful expression that may describe
or specify operations and is complete in the context of
the BASIC programming language.

stop bit. A signal following a character or block that
prepares the receiving device to receive the next
character or block.

storage. A device, or part of a device, that can retain
data. Memory.

string. A sequence of characters.

sub-directory. Any directory contained in the root
directory list or within another sub-directory list.

subscript. A munber that identifies the position of an
element in an array.

syntax. The rules governing the structure of a language.

syntax error. An incorrect instruction resulting from:
misspelling, missing or faulty punctuation, a missing or
incorrect character.

table. An arrangement of data in rows and columns.

target. In an assignment statement, the variable whose
value is being set.

telecommunication. Synonym for data communication.

terminal. A device, usually equipped with a keyboard
and display, capable of sending and receiving
information.

J-l<>

tile painting. See paint tiling.

to^e. Pertaining to anything having two stable states;
to switch back and forth between the two states.

trailii^. Located at the end of a string or niunber. For
example, the number 1000 has three trailing zeros.

trap. A set of conditions that describe an event to be
intercepted and the action to be taken after the
interception.

tree-structured directory. A group of related files and
directories on the same disk or diskette organized in a
hierarchical structure, as in a "family tree."

truncate. To remove the ending elements from a string.

two's complement. A form for representing negative
numbers in the binary number system.

typematic key. A key that repeats as long as you hold it
down.

update. To modify, usually a master file, with current
iMormation.

variable. A quantity that can assume any of a given set
of values.

variable-lei^ record. A record having a length
independent of the length of other records in the file.

vector. In graphics, a directed line segment. More
generally, an ordered set of numbers, and so, a
one-dimensional array.

viewport. In graphics, a defined subset or smaller area
of the viewing surface.

J-17

visual page. The current video page that BASIC
displays on the screen

window. In graphics, a defined area in the world
coordinate system.

world coordinate system. A coordinate system not
bounded by any limits—^unlimited "space" in graphics.

wraparound. The technique for displaying items whose
coordinates lie outside the display area.

write. To record data in a storage device or on a data
medium.

zooming. The process of using a window with
coordinates smaller than the entire image, causing a
portion of the image te be enlarged in the viewing area.

J-18

Appendix K. Keyboard Diagram and
Scan Codes

'S|2 I I

r

!0
:bi !0

0

101
:ei

iBtp

.0'
:Er^ "

~ O

2 io '01
5

3 B "III!!!
lllllln

u I — \mja
lA I H (0
iiil_J|l- ii""ii

K-1

Keyboard Scan Codes for 62-key
Keyboard

Key
position

Scan code

in hex

Key
position

Scan code

in hex

1 01 32 IF

2 02 33 20

3 03 34 21

4 04 35 22

5 05 36 23

6 06 37 24

7 07 38 25

8 08 39 26

9 09 40 27

10 OA 41 28

11 OB 42 48

12 OC 43 2A

13 OD 44 2C

14 OE 45 2D

15 54 46 2E

16 OF 47 2F

17 10 48 30

18 11 49 31

K-2

Key
position

Scan code

in hex

Key
petition

Scan code

In hex

19 12 50 32

20 13 51 33

21 14 52 34

22 15 53 35

23 16 54 36

24 17 55 4B

25 18 56 4D

26 19 57 38

27 lA 58 39

28 IB 59 3A

29 IC 60 52

30 ID 61 53

31 IE 62 50

K-3

Notes

K-4

Index

^ Special Characters

+ 4-288

& 4-287

! 3-16,4-286
$ 3-15
$$ 4-289
♦♦ 4-288

**$ 4-289
- 4-288

, 4-289
% 3-16

?Redo from start 4-147

3-16, 4-287

AND 3-30

append 4-233, B-7
arctangent 4-27
arithmetic operators 3-25
arrays 3-16,4-96,4-108,
4-247

ASC Function 4-26

ASCn codes 4-26,4-46,
Appendix G
ASCn format 4-325

aspect ratio 4-51
assembly language subroutines

See machine language
subroutines

assignment statement 4-167
Asynchronous
Communications Port 2-43

ATN Function 4-27

AUTO Command 3-3,4-28
automatic line numbers 4-28

A: 3-45

ABS Function 4-25

absolute form for specifying
coordinates 3-56

absolirte value 4-25

accuracy 3-12
adapters
adding characters 2-31
adding program lines 2-34
addition 3-26

alphabetic characters 3-4
Alt 2-11

Alt-Ctrl-Del 2-13

Alt-keywords 2-12
Alternate mode 2-11

B

B: 3-45

background 3-50,4-63
Backspace 2-10,2-25,2-31
BASIC command line 2-50

BASIC versions 1-3

BASIC, starting 2-3
BASIC'S Data Segment 4-88
BEEP Statement 4-30

beeping from the computer 1-8

Index-1

binary to hexadecimal
conversion table H-2

blanks 3-6, D-7
blinking characters 4-65
BLOAD Command 4-32

BLOAD Statement C-5

block size 2-53

Boolean operations 3-30
border screen 3-50,4-63
branching 4-136, 4-217
Break 2-26

Break function 2-15

bringing up BASIC 2-3
BSAVE Command 4-36

buffer

communications 2-52,
4-241

keyboard 1-8
reading the 4-143,
4-151

random file 2-52,4-129,
4-194, 4-297

screen 3-51,4-35,4-37
built-in functions

See functions

CALL C-11

CALL Statement 4-38

cancelling a line 2-32
capital letters 2-8
Caps Lock 2-8
Cartridge BASIC 1-6
Cassette BASIC 1-5

cassette I/O B-1
cassette motor 4-205

CASl: 3-45,4-180
CDBL Function 4-40

CHAIN Statement 4-41,4-73
change current directory 4-44
changing BASIC program 2-33
changing characters 2-29
changing line numbers 2-36
changing lines anywhere on the
screen 2-35

changing program lines 2-34
character set 3-4, Appendix G
CHDIR Command 4-44

CHR$ G-1
CHR$ Function 4-46
CINT Function 4-48

CIRCLE Statement 4-49
CLEAR Command 4-53

clear screen 4-61

clearing memory 2-35
clearing the keyboard
buffer 1-8

clipping 4-396
clock 3-57,4-338
CLOSE Statement 4-59
CLS Statement 4-61

COLOR 4-63

in graphics modes 3-54,
4-68

in text mode 3-50, 4-65
COLOR Statement 4-63
COM(n) Statement 4-71
COMM program 2-43
command level 2-29, 2-39
commands 4-6

comments 3-4,4-309
COMMON Statement 4-41,
4-73

communications 4-240,
Appendix F

buffer size 2-52
trapping 4-71,4-212

communications services

Dow Jones/News 2-46
others 2-46

Index-2

THE SOURCE 2-46

comparisons
numeric 3-28

string 3-28
complement, logical 3-30
complement, two's 3-32, 3-33

" computed
GOSUB/GOTO 4-217
COMl: 3-45

COM2: 3-45

concatenation 3-37

conjunction 3-30
constants 3-9

CONT Command 4-74

control block, file 1-6
Control mode 2-10

converting
character to ASCII

code 4-26

degrees to radians 4-76
from number to

string 4-350
from numbers for random

files 4-203

from numeric to

octal 4-211

hexadecimal 4-138, H-1
numbers from random

fUes 4-79

one numeric precision to
another 3-20

radians to degrees 4-27
string to numeric 4-374

converting programs to PCjr
BASIC Appendix D

coordinates 3-55

physical 4-393
world 4-393

copy display 2-16
correcting current line 2-29
COS Function 4-76

cosine 4-76

create a directory 4-201
CSNG Function 4-77

CSRLIN Variable 4-78

Ctrl 2-10

current directory 3-44
cursor 2-17

cursor control keys 2-17
Cursor Down key 2-18
Cmsor Left key 2-19
cursor position 4-78,4-184,
4-281

Cursor Right key 2-19
Cursor Up key 2-18
CVI, CVS, CVD
Functions 4-79, B-11

D

Data Segment 4-88
DATA Statement 4-81,4-307
DATES Variable and
Statement 4-83

DEBUG C-8

decisions 4-139

declaring arrays 3-16,4-96
declaring variable t3rpes 3-15,
3-16,4-90
DEF FN Statement 4-85

DEF SEG Statement 4-88

DEF USR Statement 4-92

default directory 3-44
DEFtype (-INT, -SNG, -DBL,
-STR) 3-16,4-90
DEFlype Statements 4-90
Del key 2-25
DELETE Command 3-3,4-94
deleting a file 4-163
deleting a program 2-35

Index-3

deleting arrays 4-108
deleting characters 2-30
deleting program lines 2-35,
4-94

delimiting reserved words 3-6
descriptor, string 1-5
device name 3-40, 3-44
Device Timeout 4-193, A-7
DIM Statement 4-96

dimensioning arrays 3-16,
4-96

DBR. (DOS Command) 4-118
direct mode 2-39,4-215
directories 3-43

directory 4-44
directory tjrpes 3-43
disjunction 3-30
diskette I/O Appendix B
display 3-48,4-35
display pages 3-51,4-331
display program lines 4-176
display screen, using 3-48
division 3-26

division by zero A-9
double precision 3-12,4-40
Dow Jones/News service 2-46
DRAW Statement 4-98

DS (BASIC'S Data
Segment) 4-88

duplicating a program
- line 2-36

E

Echo print fimction 2-16
EDIT Command 3-3,4-105
editor 2-17

editor keys 2-17
Backspace 2-25

Ctrl-End 2-23

Ctrl-Home 2-20

Cursor Down 2-18

Cursor Left 2-19

Cursor Right 2-19
Cursor Up 2-18
Del 2-25

End 2-23

Esc 2-26

Fn/Break 2-26
Home 2-20

Ins 2-24

Next Word 2-21

Previous Word 2-22

Tab 2-27

ELSE 4-139

End function 2-23

End key 2-23
endoffUe 4-107, B-7
END Statement 4-106

ending BASIC 4-357
Enter key 2-9
entering BASIC program 2-33
entering data 2-17
EOF B-7

EOF Function 4-107
equivalence 3-30
EQV 3-30
ERASE (DOS
command) 4-163
ERASE Statement 4-108

erasing a file 4-163
erasing a program 2-35
erasing arrays 4-108
erasing characters 2-30
erasing part of a line 2-32
erasing program lines 2-35,
4-94

erasing variables 4-53
ERR and ERL

Variables 4-110

Index-4

error codes 4-110,4-112,
Appendix A

error Une 4-110

error messages Appendix A
ERROR Statement 4-112

error trapping 4-110,4-112,
4-215,4-314
Esckey 2-26
event trapping

COM(n) (communications
activity) 4-71,4-212
KEY(n) 4-161,4-219
ONPLAY(n) 4-225
ON TIMER 4-231

PEN 4-223,4-264
STRIG(n) (joystick
button) 4-228,4-353

exchanging variables 4-356
exclusive or 3-30

executable statements 3-3
executing a program 4-323
EXPFimction 4-114

exponential function 4-114
exponentiation 3-26
expressions

numeric 3-25

string 3-37
extended ASCn codes G-6

extension, filename 3-46

false 3-27,3-30
FIELD Statement 4-115

file control block 1-6

file specification 3-40
filename 3-40, 3-46
filename extension 3-46

files 3-39, Appendix B, D-1
control block 1-6

file number 3-40

maximum nmnber 2-51

naming 3-40
opening 3-39,4-233
position of 4-182
size 4-187

FILES Command 4-118

FIX Function 4-121

fixed point 3-9
fixed-length strings 4-194
floatingpoint 3-10
floor function 4-154

flushing the keyboard
buffer 1-8

Fn 2-14

Fn/B 2-15
Fn/Break 2-15,2-26
Fn/Echo 2-16
Fn/End 2-23
Fn/Pause 2-15
Fn/PrtSc 2-16
Fn/Q 2-15
folding, line 2-25
for 1-13
FOR and NEXT

Statements 4-122

foreground 3-50,4-63
format notation iv

formatting 4-286
formatting math output 3-23
FRE Function 4-127

free space 2-52,4-53, 4-127
frequency table 4-341
function keys 2-14
Function mode 2-14

fimctions 3-34, 3-38,4-5,
4-19,1-IO

user-defined 4-85

Index-5

how to format output 3-23

garbage collection 4-127
GET (files) B-10
GET Statement (Files) 4-129
GET Statement

(Graphics) 4-131
glissando 4-342
GOSUB and RETURN

Statements 4-134

GOSUB Statement 4-217
GOTO Statement 4-136,
4-217

graphics 3-48, D-2
graphics modes 3-52,4-330
graphics statements

CIRCLE 4-49

COLOR 4-68

DRAW 4-98

GET 4-131

LINE 4-169

PAINT 4-250

POINT function 4-277

PSET and PRESET 4-295
PUT 4-299

VIEW 4-380

WINDOW 4-393

H

hard copy of screen 2-16
HEX$ Function 4-138
hexadecimal 3-11,4-138, H-1
hierarchy of operations 3-35
high resolution 3-54,4-330
high-intensity characters 4-65
hold 2-15

housecleaning 4-127

I/O statements 4-14,
Appendix B

IF D-2,I-11
IF Statement 4-139

IMP 3-30

implication 3-30
implicit declaration of
arrays 3-18

index (position in
string) 4-153

indirect mode 2-39
initializing BASIC 2-3
INKEY$ G-6
INKEY$ Variable 4-143
INP 4-145

INP Function 4-145

INPUT # Statement 4-149

input and output 3-39
input file mode 4-233, B-5
INPUT Statement 4-146
INPUTS F-3
INPUTS Fimction 4-151
Ins key 2-24
insert mode 2-24

inserting characters 2-31
INSTR Function 4-153

INT Function 4-154

integer 3-9, 3-12
converting to 4-48,4-121,
4-154

integer division 3-26
interrupting program
execution 2-15

intrinsic functions

Index-6

See functions

joystick 3-58, 4-346
joystick button 4-228, 4-351,
4-353

jumping 4-136, 4-217

K

KEY Statement 4-155

KEY(n) Statement 4-161
keyboard 2-6

buffer

See buffer, keyboard
input 4-143,4-146,4-151,
4-173

keyboard diagram and scan
codes K-1

Keyboard, FRANCE E-2
Keyboard, GERMANY E-3
Keyboard, ITALY E-5
Keyboard, SPAIN E-4
Keyboard, United
Kingdom E-1
KILL B-3

KILL Command 4-163

KYBD: 3-45

last point referenced 3-56
LEFTS Function 4-165
left-justify 4-194
LEN Function 4-166

length of file 4-187
length of string 4-127,4-166
LET Statement 4-167

light pen 3-57, 4-223, 4-264
line clipping 4-396
line feed 2-29,4-235, D-3
LINE INPUT#

Statement 4-174

LINE INPUT Statement 4-173

LINE Statement 4-169

lines

BASIC program 3-3
drawing in graphics 4-169
folding 2-25
line numbers 2-40, 3-3,
4-28,4-310
onscreen 3-49

LIST Command 3-3,4-176
list program lines 4-178
listing files

on cassette 4-180

on diskette 4-118

LLIST Command 4-178

LOAD B-2

LOAD Command 4-179
loading binary data 4-32
LOC Function 4-182

LOCATE Statement 4-184

LOF Function 4-187

LOG Function 4-189

logarithm 4-189
logicalline 2-29
logical operators 3-30, D-3
loops 4-122, 4-387,1-13
low resolution 3-53

Index-7

LPOS Function 4-191

LPRINT and LPRINT USING

Statements 4-192

LPTl: 3-45,4-178,4-191,
4-192

LPT2: 3-45

LPT3: 3-45

LSET and RSET

Statements 4-194

M

machine language
subroutines 4-38,4-92,
4-373, Appendix C
math output, formatting 3-23
maxblocksize 2-53

medium resolution 3-54,4-330
memory image 4-36
memory map 1-2
MERGE B-3

MERGE Command 4-41,
4-196

messages Appendix A
MID$ D-6
MODS Function and
Statement 4-198

MKDIR Command 4-201
MKIS, MKS$, MKD$
Functions 4-203, B-9
MOD 3-26

modulo arithmetic 3-26
MOTOR Statement 4-205

multiple statements on a
line 3-3

multiplication 3-26
music 3-57,4-267

N

NAME Command 4-206

naming files 3-40
negation 3-26
network service 2-43

NEW Command 4-208

NEXT

See FOR

NEXT Statement 4-122

Next Word 2-21

NOISE Statement 4-209

nonexecutable statements 3-3
NOT 3-30

number of notes in

buffer 4-273

numeric characters 3-4

muneric comparisons 3-28
numeric constants 3-9

numeric expressions 3-25
numeric functions 3-34,4-19
numeric variables 3-15

o

OCT$ Function 4-211
octal 3-11,4-211
Ok prompt 2-39
ON COM(n) Statement 4-212
ON ERROR Statement 4-215
ON JCEY(n) Statement 4-219
ON PEN Statement 4-223

ON PLAY(n)
Statement 4-225

Index-8

ONSTRIG(n)
Statement 4-228

ON TIMER Statement 4-231

ON-GOSUB and ON-GOTO

Statements 4-217

OPEN (me) B-4,B-9
OPEN "COM... F-7
OPEN "COM...

Statement 4-240

OPEN Statement 4-233

opening paths 4-233
operators

arithmetic 3-25

concatenation 3-37

functions 3-34, 3-38
logical 3-30
numeric 3-25

relational 3-27

string 3-37
OPTION BASE

Statement 4-247

options on BASIC command
line 2-50

OR 3-30

or, exclusive 3-30
order of execution 3-35

OUT Statement 4-248

output file mode 4-233, B-4
output, formatting 3-23
overflow A-14

overlay 4-41
overscan 3-50

paddles 3-58
PAINT Statement 4-250

paint tiling 4-252
palette 3-54,4-68

PALETTE Statement 4-257

PALETTE USING

Statement 4-259

panning 4-396
parentheses 3-35
paths 4-44
paths, opening 4-233
patterns 4-252
pause 2-15
Pause function 2-15

PCOPY Statement 4-262

PEEK D-5

PEEK Function 4-263

PEN Statement and

Function 4-264

performance hints 1-9
physical coordinates 4-393
PLAY Statement 4-267

PLAY(n) Function 4-273
PMAP Function 4-275

POINT Fxmction 4-277

POKE D-5

POKE Statement 4-280, C-4
POS Function 4-281

position in string 4-153
position of file 4-182
positioning the cursor 4-184
precedence 3-35
precision 3-12,4-90
PRESET Statement 4-295

Previous Word 2-22

PRINT # and PRINT # USING

Statements 4-292

print formatting 4-286
print screen fimction 2-16
PRINT Statement 4-282

PRINT USING

Statement 4-286

printing 4-192
program editor 2-17
protected files 4-325, B-3
PrtSc 2-16

Index-9

PSET and PRESET

Statements 4-295

PUT(mes) B-9
PUT Statement (Files) 4-297
PUT Statement

(Graphics) 4-299

quick reference A-19

R

random files 4-115,4-129,
4-233, B-8
random numbers 4-304,4-321
RANDOMIZE

Statement 4-304
READ Statement 4-81,4-307
record length

maximum 2-52

setting 4-233
redirection of standard input
and output 2-55

?Redo from start 4-147

related publications vi
relational operators 3-27
relative form for specifying
coordinates 3-56

REM Statement 4-309

remarks 3-4,4-309
remove a directory 4-318
RENAME (DOS
command) 4-206
renaming files 4-206, B-3

RENUM Command 4-41,
4-110, 4-310

repeating a string 4-355
replacing program lines 2-34
requirements

See system requirements
reserved words 3-6, 3-15
RESET Command 4-312

RESTORE Statement 4-313

resume execution 4-74

RESUME Statement 4-314

RETURN Statement 4-134,
4-316

RIGHTS Function 4-317
right-justify 4-194
RMDIR Command 4-318

RND Function 4-321

root directory 3-43
rounding 3-20, D-5
rounding to an integer 4-48
RSET Statement 4-194
RS232

See communications

RUN B-3

RUN Command 4-323

running a program 2-50
COMM 2-43

on another diskette 2-47

SAMPLES 2-41

SAMPLES program 2-41
SAVE B-2

SAVE Command 4-325

saving binary data 4-36
scan codes K-1

screen 3-49

shifting 4-248

Index-10

use of 3-48

SCREEN Function 4-328

SCREEN Statement 4-330

SCRN: 3-45

scrolling 3-50
seeding random number
generator 4-304
segment of storage 4-88
sequential files 4-233, B-4
Series/1,
telecommunications 2-46

SGN Function 4-336

shift keys 2-8
shifting screen image 4-248
sign of a number 4-336
SIN Function 4-337

sine 4-337

single precision 3-12
single-precision 4-77
soft keys 2-14,4-155
SOUND Statement 4-338

sounds 3-57,4-30,4-267,
4-338

space 4-393
SPACES Function 4-343
spaces 3-6,4-283, D-7
SPC 4-344

SPCFimction 4-344

special characters 3-5
specification of files 3-40
specifying coordinates 3-55
specifying parameters 2-51
SQR Function 4-345
square root 4-345
stack space 4-53
standard input 2-50
standard output 2-51
starting BASIC 2-3
statements 4-9

I/O 4-14

non-I/0 4-9
stdin 2-50

stdout 2-51

STEP 3-56,4-122
STICK Function 4-346

STOP Statement 4-348

STR$ Function 4-350
STRIG Statement and

Function 4-351

STRIG(n) Statement 4-353
string comparisons 3-28
string constants 3-9
string descriptor 1-5
string expressions 3-37
string functions 3-38,4-23,
D-6

string space 2-52,4-53,4-127
string variables 3-15
STRINGS Function 4-355
structuring directories 3-43
sub-directories 3-43

subroutines 4-134,4-217,1-IO
subroutines, machine
language 4-38, 4-92,4-373,
Appendix C

subscripts 3-18,4-96,4-247
substring 4-165,4-198,4-317
subtraction 3-26

SWAP Statement 4-356

switch 2-51

syntax diagrams iv
syntax errors 2-38
SYSTEM Command 4-357

system functions
See functions

system requirements
Cassette 1-5

System Reset 2-13

Index-11

TAB Function 4-358

Tab key 2-27
TAN Function 4-359

tangent 4-359
technical information I-l

techniques, formatting
output 3-23

telecommunications

See communications

tempo table 4-341
TERM Statement 4-360

terminating BASIC 4-357
text mode 3-49,4-330
THE SOURCE service 2-46
THEN 4-139

tile painting 4-252
TIME$ Variable and
Statement 4-368

TIMER Variable 4-370

tips 1-9
trace 4-371

tree-structured

directories 3-43
changing 4-44
creating 4-201
removing 4-318

trigonometric functions
arctangent 4-27
cosine 4-76

sine 4-337

tangent 4-359
TRON and TROFF

Commands 4-371

true 3-27,3-30
truncation 4-121,4-154
truncation of program
lines 2-33

two's complement 3-32, 3-33
type declaration
characters 3-16

types of directories 3-43
typewriter keys 2-7

u

imderflow A-14

uppercase shift 2-8
uppershift 2-8
user workspace 2-52,4-53,
4-127

user-defined functions 4-85

using a program 2-40
using the screen 3-48
USR C-15

USR Function 4-92,4-373

VAL Function 4-374

variables 3-14

names 3-14

storage of 1-4
VARPTR Function 4-375
VARPTR$ Function 4-378
versions 1-3

VIEW Statement 4-380

visual page
See display pages

Index-12

w

WATT Statement 4-385 XOR 3-30

WEND Statement 4-387

WHn.E and WEND

Statements 4-387

WIDTH Statement 4-389 7
WINDOW Statement 4-393 ^
workspace 2-52, 4-53, 4-127
world coordinates 4-393

WRITE# 4-399

WRITE # Statement 4-399

WRITE Statement 4-398

zooming 4-396

Index-13

D

n

Personal Computer PQ>
Hardware Reference Library

Reader's Comment Form

BASIC 1502284

Your comments assist us in improving the usefulness of
our publication; they are an important part of the input
used for revisions.

IBM may use and distribute any of the information you
supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course,
continue to use the information you supply.

Please do not use this form for technical questions
regarding the IBM Personal Computer or programs for
the IBM Personal Computer, or for requests for
additional publications; this only delays the response.
Instead, direct your inquiries or request to your
authorized IBM Personal Computer dealer.

Comments:

NO POSTAGE

NECESSARY
IF MAILEO

IN THE
UNITEO STATES

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 321 BOCA RATON. FLORIDA 33432

POSTAGE WILL BE PAID BY ADDRESSEE

IBM PERSONAL COMPUTER

SALES & SERVICE

P.O. BOX 1328-0

BOCA RATON, FLORIDA 33432

3jag p|Od

edei a|d9;s lou op asBey adBi

Personal Computer PCyr
Hardware Reference Library

Reader's Comment Form

BASIC 1502284

Your comments assist us in improving the usefulness of
our publication; they are an important part of the input
used for revisions.

IBM may use and distribute any of the information you
supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course,
continue to use the information you supply.

Please do not use this form for technical questions
regarding the IBM Personal Computer or programs for
the IBM Personal Computer, or for requests for
additional publications; this only delays the response.
Instead, direct your inquiries or request to your
authorized IBM Personal Computer dealer.

Comments:

NO POSTAGE
NECESSARY
IF MAILED
IN THE

UNITED STATES

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 321 BOCA RATON, FLORIDA 33432

POSTAGE WILL BE PAID BY ADDRESSEE

IBM PERSONAL COMPUTER

SALES & SERVICE

P.O. BOX 1328-C

BOCA RATON, FLORIDA 33432

0J8Lj p|0:J

adei aidBjs lou op 0SB0|d 0dBl

Personal Computer PQ>
Hardware Reference Library

Reader's Comment Form

BASIC 1502284

Your comments assist us in improving the usefulness of
our publication; they are an important part of the input
used for revisions.

IBM may use and distribute any of the information you
supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course,
continue to use the information you supply.

Please do not use this form for technical questions
regarding the IBM Personal Computer or programs for
the IBM Personal Computer, or for requests for
additional publications; this only delays the response.
Instead, direct your inquiries or request to your
authorized IBM Personal Computer dealer.

Comments:

NO POSTAGE

NECESSARY
IF MAILED
IN THE

UNITED STATES

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 321 BOCA RATON, FLORIDA 33432

POSTAGE WILL BE PAID BY ADDRESSEE

IBM PERSONAL COMPUTER

SALES & SERVICE

P.O. BOX 1328-0

BOCA RATON, FLORIDA 33432

3J3l| PjOd

adei a|d9;s lou op eseeid adex

Personal Computer PQ>
Hardware Reference Library

Reader's Comment Form

BASIC 1502284

Your comments assist us in improving the usefulness of
our publication; they are an important part of the input
used for revisions.

IBM may use and distribute any of the information you
supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course,
continue to use the information you supply.

Please do not use this form for technical questions
regarding the IBM Personal Computer or programs for
the IBM Personal Computer, or for requests for
additional publications; this only delays the response.
Instead, direct your inquiries or request to your
authorized IBM Personal Computer dealer.

Comments:

NO POSTAGE
NECESSARY
IF MAILED
IN THE

UNITED STATES

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 321 BOCA RATON, FLORIDA 33432

POSTAGE WILL BE PAID BY ADDRESSEE

IBM PERSONAL COMPUTER

SALES & SERVICE

P.O. BOX 1328-C

BOCA RATON, FLORIDA 33432

0jan p|oj

adei aidajs lou op aseaid adei

Personal Computer PQ>
Hardware Reference Library

Reader's Comment Form

BASIC 1502284

Your comments assist us in improving the usefulness of
our publication; they are an important part of the input
used for revisions.

IBM may use and distribute any of the information you
supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course,
continue to use the information you supply.

Please do not use this form for technical questions
regarding the IBM Personal Computer or programs for
the IBM Personal Computer, or for requests for
additional publications; this only delays the response.
Instead, direct your inquiries or request to your
authorized IBM Personal Computer dealer.

Comments:

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 321 BOCA RATON. FLORIDA 33432

POSTAGE WILL BE PAID BY ADDRESSEE

IBM PERSONAL COMPUTER

SALES & SERVICE

P.O. BOX 1328-0

BOCA RATON, FLORIDA 33432

NO POSTAGE
NECESSARY
IF MAILED
IN THE

UNITED STATES

0jeL| P|OJ

0dBl aidBJS JOU op 0SB0|d 0dBl

International Business Machines Corporation

P.O. Box 1328-W

Boca Raton, Florida 33432

1502284

Printed in United States of America

