
PCgraphics
handbook

The

© 2003 by CRC Press LLC

CRC PR ESS
Boca Raton London New York Washington, D.C.

PCgraphics
handbook

Julio Sanchez & Maria P. Canton
Minnesota State University

The

© 2003 by CRC Press LLC

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with
permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish
reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials
or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior
permission in writing from the publisher.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new works,
or for resale. Specific permission must be obtained in writing from CRC Press LLC for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

Trademark Notice:

Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation, without intent to infringe.

Visit the CRC Press Web site at www.crcpress.com

© 2003 by CRC Press LLC

No claim to original U.S. Government works
International Standard Book Number 0-8493-1678-2

Printed in the United States of America 1 2 3 4 5 6 7 8 9 0
Printed on acid-free paper

Library of Congress Cataloging-in-Publication Data

Catalog record is available from the Library of Congress

1678 disclaimer Page 1 Wednesday, January 15, 2003 11:07 AM

© 2003 by CRC Press LLC

Preface

This book is about graphics programming on the Personal Computer. As the title indi-
cates, the book's emphasis is on programming, rather than on theory. The main pur-
pose is to assist program designers, systems and applications programmers, and
implementation specialists in the development of graphics software for the PC.

PC graphics began in 1982 with the introduction of the IBM Color Graphics
Adapter. In 20 or so years the technology has gone from simple, rather primitive de-
vices, sometimes plagued with interference problems and visually disturbing de-
fects, to sophisticated multi-processor environments capable of realistic 3D
rendering and life-like animation. A machine that 20 years ago was hardly capable of
displaying bar charts and simple business graphics now competes with the most
powerful and sophisticated graphics workstations. During this evolution many tech-
nologies that originally showed great promise have disappeared, while a few others
seem to hang on past the most optimistic expectations. Programming has gone from
rather crude and primitive routines for rendering simple geometrical objects to
modeling, rendering, and animating solid objects at runtime in a realistic manner.

What Is in the Book

In the complex graphics environment of the PC, covering the fundamentals of some
technologies requires one or more full-sized volumes. This is the case with systems
such as VGA, SuperVGA, XGA, DirectX, Direct 3D, and OpenGL. Thus, in defining the
contents of this book our first task was to identify which systems and platforms are
still relevant to the programmer. Our second task was to compress the coverage of the
selected systems so that the entire PC graphics context would fit in a single volume.

The topic selection process entailed many difficult decisions: how much graphics
theory should be in the book? Is DOS graphics still a viable field? Which portions of
Direct3D are most important to the "average" programmer? Should OpenGL be in -
cluded? In some cases the complexity and specialized application of a graphics
technology determined our decision. For example, Direct3D immediate mode pro-
gramming was excluded because of its difficulty and specialized application. Other
platforms such as OpenGL are technologically evolved but not part of the PC main -
stream. Our decisions led to the following structure:

• Part I of the book is an overview of PC graphics and a description of the theories that
support the material covered.

© 2003 by CRC Press LLC

• Part II is devoted to DOS graphics. In this part we discuss the VGA, XGA, and SuperVGA
systems. DOS bitmapped graphics are also in this part.

• Part III is about Windows API graphics. Since Windows is a graphics environment the
topics covered include an overview of general Windows programming. In Part III
bitmapped graphics is revisited in the Windows platform.

• Part IV covers some portions of DirectX. In addition to a description of the DirectX plat-
form itself and its relation to the COM, we cover DirectX and Direct3D retained mode.
Direct3D immediate mode is excluded for the reasons previously mentioned.

Programming Environment
The principal programming environment is C++, but some primitive functions are
coded in 80x86 Assembly Language. The high performance requirements of graphics
applications sometimes mandate Assembly Language. Microsoft's Visual C++ Version
6.0 and MASM version 6.14 were used in developing the book.

We approach Windows programming at its most basic level, that is, using the Win-
dows Application Programming Interface (API). We do not use the Microsoft Foun-
dation Class Library (MFC) or other wrapper functions. It is our opinion that
graphics programs cannot afford the overhead associated with higher-level devel-
opment tools. Furthermore, DirectX provides no special support for MFC.

Although we do not use the wrapper functions we do use tools that are part of the
Visual C++ development package. These include resource editors for creating
menus, dialog boxes, icons, bitmaps, and other standard program components.

The Book's Software
The software for the book is furnished on-line at www.crcpress.com. The software
package includes all the sample programs and projects developed in the text as well as
several graphics libraries.

© 2003 by CRC Press LLC

Table of Contents

Preface

Part I - Graphics Fundamentals

Chapter 1 - PC Graphics Overview
1.1 History and Evolution

1.1.1 The Cathode-Ray Tube
1.2 Short History of PC Video

1.2.1 Monochrome Display Adapter
1.2.2 Hercules Graphics Card
1.2.3 Color Graphics Adapter
1.2.4 Enhanced Graphics Adapter

1.3 PS/2 Video Systems
1.3.1 Video Graphics Array
1.3.2 8514/A Display Adapter
1.3.3 Extended Graphics Array

1.4 SuperVGA
1.4.1 SuperVGA Architecture
1.4.2 Bank-Switched Memory
1.4.3 256-Color Extensions

1.5 Graphics Coprocessors and Accelerators
1.5.1 The TMS340 Coprocessor
1.5.2 Image Properties

Brightness and Contrast
Color
Resolution
Aspect Ratio

1.6 Graphics Applications
1.6.1 Computer Games
1.6.2 Graphics in Science, Engineering, and Technology
1.6.3 Art and Design
1.6.4 Business
1.6.5 Simulations
1.6.6 Virtual Reality
1.6.7 Artificial Life
1.6.8 Fractal Graphics

1.7 State-of-the-Art in PC Graphics
1.7.1 Graphics Boards

© 2003 by CRC Press LLC

1.7.2 Graphics Coprocessors
1.7.3 CPU On-Board Facilities

1.8 3D Application Programming Interfaces
1.8.1 OpenGL and DirectX

Chapter 2 - Polygonal Modeling
2.1 Vector and Raster Data
2.2 Coordinate Systems

2.2.1 Modeling Geometrical Objects
2.3 Modeling with Polygons

2.3.1 The Triangle
2.3.2 Polygonal Approximations
2.3.3 Edges
2.3.4 Meshes

Chapter 3 - Image Transformations
3.1 Matrix-Based Representations

3.1.1 Image Transformation Mathematics
3.2 Matrix Arithmetic

3.2.1 Scalar-by-Matrix Operations
3.2.2 Matrix Addition and Subtraction
3.2.3 Matrix Multiplication

3.3 Geometrical Transformations
3.3.1 Translation Transformation
3.3.2 Scaling Transformation
3.3.3 Rotation Transformation
3.3.4 Homogeneous Coordinates
3.3.5 Concatenation

3.4 3D Transformations
3.4.1 3D Translation
3.4.2 3D Scaling
3.4.3 3D Rotation
3.4.4 Rotation about an Arbitrary Axis

Chapter 4 - Programming Matrix Transformations
4.1 Numeric Data in Matrix Form

4.1.1 Matrices in C and C++
4.1.2 Finding Matrix Entries

4.2 Array Processing
4.2.1 Vectors and Scalars

Vector-by-Scalar Operations in C and C++
Low-Level Vector-by-Scalar Operations
Matrix-by-Scalar Operations

4.2.2 Matrix-by-Matrix Operations
Matrix Addition
Matrix Multiplication

Chapter 5 - Projections and Rendering

© 2003 by CRC Press LLC

5.1 Perspective
5.1.1 Projective Geometry
5.1.2 Parallel Projections
5.1.3 Perspective Projections

One-Point Perspective
Two-Point Perspective
Three-Point Perspective
The Perspective Projection as a Transformation

5.2 The Rendering Pipeline
5.2.1 Local Space
5.2.2 World Space
5.2.3 Eye Space

Backface Elimination or Culling
5.2.4 Screen Space
5.2.5 Other Pipeline Models

Chapter 6 - Lighting and Shading
6.1 Lighting

6.1.1 Illumination Models
6.1.2 Reflection

Diffuse Reflection
Specular Reflection
Phong's Model

6.2 Shading
6.2.1 Flat Shading
6.2.2 Interpolative Shading

Gouraud Shading
Phong Shading

6.2.3 Ray Tracing
6.3 Other Rendering Algorithms

6.3.1 Scan-Line Operations
Hidden Surface Removal
Shadow Projections

6.3.2 Z-Buffer Algorithm
6.3.3 Textures

Part II - DOS Graphics

Chapter 7 - VGA Fundamentals
7.1 The VGA Standard

7.1.1 Advantages and Limitations
7.1.2 VGA Modes

7.2 VGA Components
7.2.1 Video Memory

Alphanumeric Modes
Graphics Modes

7.3 VGA Registers
7.3.1 The General Registers
7.3.2 The CRT Controller
7.3.3 The Sequencer

© 2003 by CRC Press LLC

7.3.4 The Graphics Controller
7.3.5 The Attribute Controller

7.4 The Digital-to-Analog Converter (DAC)
7.4.1 The DAC Pixel Address Register
7.4.2 The DAC State Register
7.4.3 The DAC Pixel Data Register

Chapter 8 - VGA Device Drivers
8.1 Levels of VGA Programming

8.1.1 Device Drivers and Primitive Routines
8.2 Developing the VGA Device Drivers

8.2.1 VGA Mode 18 Write Pixel Routine
Fine Grain Address Calculations
Setting the Pixel
Coarse Grain Address Calculations
Setting the Tile

8.2.2 VGA Mode 18 Read Pixel Routine
8.2.3 VGA Mode 19 Write Pixel Routine

Address Calculations
Setting the Pixel

8.2.4 VGA Mode 19 Read Pixel Routine
8.3 Color Manipulations

8.3.1 256-Color Mode
Shades of Gray
Summing to Gray Shades

8.3.2 16-Color Modes
Color Animation

8.3.3 VGA1 Library Functions
ES_TO_VIDEO (Assembly Language only)
ES_TO_APA (Assembly Language only)
PIXEL_ADD_18 (Assembly Language only)
WRITE_PIX_18 (Assembly Language only)
TILE_ADD_18 (Assembly Language only)
WRITE_TILE_18 (Assembly Language only)
READ_PIX_18 (Assembly Language only)
TWO_BIT_IRGB
GRAY_256
SUM_TO_GRAY
SAVE_DAC
RESTORE_DAC
PIXEL_ADD_19 (Assembly Language only)
TILE_ADD_19 (Assembly Language only)
FREEZE_DAC
THAW_DAC

Chapter 9 - VGA Core Primitives
9.1 Classification of VGA Primitives
9.2 VGA Primitives for Set-Up, Control, and Query

9.2.1 Selecting the VGA Write Mode
Writing Data in the 256-Color Modes

9.2.2 Selecting the Read Mode

© 2003 by CRC Press LLC

9.2.3 Selecting Logical Operation
XOR Operations in Animation Routines

9.2.4 System Status Operations
9.2.5 Vertical Retrace Timing

9.3 VGA Text Display Primitives
9.3.1 BIOS Text Display Functions

Text Block Display
BIOS Character Sets

9.3.2 A Character Generator
Moving a BIOS Font to RAM
Display Type
Using a PCL Font

9.4 Bit-Block and Fill Primitives
9.4.1 Mode 18 Bitmap Primitives
9.4.2 Mode 19 Bitmap Primitive

Fill Primitives
9.5 Primitive Routines in the VGA1 and VGA2 Modules

9.5.1 Primitive Routines in the VGA1 Module
SET_MODE
GET_MODE
TIME_VRC
SET_WRITE_MODE
SET_WRITE_256
SET_READ_MODE
LOGICAL_MODE
READ_MAPS_18

9.5.2 Primitive Routines in the VGA2 Module
GRAPHIC_TEXT
FINE_TEXT
MULTI_TEXT

FINE_TEXTHP
READ_HPFONT
FONT_TO_RAM
MONO_MAP_18
COLOR_MAP_18
COLOR_MAP_19
CLS_18
CLS_19
TILE_FILL_18
TILE_FILL_19

Chapter 10 - VGA Geometrical Primitives
10.1 Geometrical Graphics Objects

10.1.1 Pixel-Path Calculations
10.1.2 Graphical Coprocessors

The 80x87 as a Graphical Coprocessor
Emulating the 80x87

10.2 Plotting a Straight Line
10.2.1 Insuring Pixel Adjacency
10.2.2 Calculating Straight Lines Coordinates

Bresenham's Algorithm
An Alternative to Bresenham

© 2003 by CRC Press LLC

A Line by its Slope
Displaying the Straight Line

10.3 Plotting Conic Curves
10.3.1 The Circle
10.3.2 The Ellipse
10.3.3 The Parabola
10.3.4 The Hyperbola
10.3.5 Displaying the Conic Curve

10.4 Geometrical Operations
10.4.1 Screen Normalization of Coordinates
10.4.2 Performing the Transformations

Translation
Scaling
Rotation
Clipping

10.5 Region Fills
10.5.1 Screen Painting
10.5.2 Geometrical Fills

10.6 Primitive Routines in the VGA3 Module
BRESENHAM
LINE BY SLOPE
CIRCLE
ELLIPSE
PARABOLA
HYPERBOLA
QUAD_I
QUAD_II
QUAD_III
QUAD_IV
DO_4_QUADS
ROTATE_ON
ROTATE_OFF
CLIP_ON
CLIP_OFF
INIT_X87
REGION_FILL

Chapter 11 - XGA and 8514/A Adapter Interface
11.1 8514/A and XGA
11.2 Adapter Interface Software

11.2.1 Software Installation
11.2.2 XGA Multi-Display Systems
11.2.3 Operating Modes
11.2.4 The XGA and 8514/A Palette
11.2.5 Alphanumeric Support

Font File Structure
11.3 Communicating with the AI

11.3.1 Interfacing with the AI
C Language Support
AI Entry Points
Obtaining the AI Address
Using the AI Call Mechanism

© 2003 by CRC Press LLC

AI Initialization Operations
11.3.2 AI Data Conventions

11.4 AI Concepts
11.4.1 Pixel Attributes

Mixes
Color Compares
Bit Plane Masking

11.4.2 Scissoring
11.4.3 Absolute and Current Screen Positions
11.4.4 Polymarkers
11.4.5 Line Widths and Types
11.4.6 Bit Block Operations

BitBLT Copy
BitBLT Write
BitBLT Read

11.5 Details of AI Programming
11.5.1 Initialization and Control Functions
11.5.2 Setting the Color Palette
11.5.3 Geometrical Functions

Drawing Straight Lines
Rectangular Fill
Area Fill

11.5.4 Raster Operations
Polymarkers
BitBLT

11.5.5 Character Fonts
11.5.6 Displaying Text

Character String Operations
Alphanumeric Operations

Chapter 12 - XGA Hardware Programming
12.1 XGA Hardware Programming

12.1.1 XGA Programming Levels
12.2 XGA Features and Architecture

12.2.1 The XGA Graphics Coprocessor
12.2.2 VRAM Memory

Video Memory Apertures
Data Ordering Schemes

12.2.3 The XGA Display Controller
12.3 Initializing the XGA System

12.3.1 Locating the XGA Hardware
12.3.2 Setting the XGA Mode
12.3.3 Loading the XGA Palette

12.4 Processor Access to XGA Video Memory
12.4.1 Setting Screen Pixels
12.4.2 Reading Screen Pixels
12.4.3 Programming the XGA Direct Color Mode

The Direct Color Palette
Pixel Operations in Direct Color Mode

12.5 Programming the XGA Graphics Coprocessor
12.5.1 Initializing the Coprocessor

Obtain the Coprocessor Base Address

© 2003 by CRC Press LLC

Obtain the Video Memory Address
Select Access Mode

12.5.2 Coprocessor Operations
Synchronizing Coprocessor Access
General Purpose Maps
The Mask Map
Pixel Attributes
Pixel Masking and Color Compare Operations
Mixes
Pixel Operations

12.5.3 PixBlt Operations
Rectangular Fill PixBlt
System Memory to VRAM PixBlt

12.5.4 Line Drawing Operations
Reduction to the First Octant
Calculating the Bresenham Terms

12.6 The XGA Sprite
12.6.1 The Sprite Image

Encoding of Sprite Colors and Attributes
Loading the Sprite Image

12.6.2 Displaying the Sprite
12.7 Using the XGA Library

12.7.1 Procedures in the XGA1.ASM Module
OPEN_AI
CLOSE_AI
AI_FONT
AI_COLOR
AI_CLS
AI_TEXT
AI_PALETTE
AI_COMMAND

12.7.2 Procedures in the XGA2.ASM Module
XGA_MODE
INIT_XGA
XGA_PIXEL_2
XGA_CLS_2
XGA_OFF
XGA_ON
XGA_PALETTE
DC_PALETTE
INIT_COP
COP_RECT_2
COP_SYSVID_1
COP_SYSVID_8
COP_LINE_2
SPRITE_IMAGE
SPRITE_AT
SPRITE_OFF

Chapter 13 - SuperVGA Programming
13.1 Introducing the SuperVGA Chipsets

13.1.1 SuperVGA Memory Architecture

© 2003 by CRC Press LLC

16 Color Extensions
Memory Banks
256 Color Extensions
Pixel Addressing

13.2 The VESA SuperVGA Standard
13.2.1 VESA SuperVGA Modes
13.2.2 Memory Windows

13.3 The VESA BIOS
13.3.1 VESA BIOS Services

Sub-service 0 - System Information
Sub-service 1 - Mode Information
Sub-service 2 - Set Video Mode
Sub-service 3 - Get Video Mode
Sub-service 4 - Save/Restore Video State
Sub-service 5 - Switch Bank
Sub-service 6 - Set/Get Logical Scan Line
Sub-service 7 - Set/Get Display Start
Sub-service 8 - Set/Get DAC Palette Control

13.4 Programming the SuperVGA System
13.4.1 Address Calculations
13.3.2 Bank Switching Operations
13.4.3 Setting and Reading a Pixel
13.4.4 VGA Code Compatibility

13.5 Using the SuperVGA Library
13.5.1 Procedures in the SVGA.ASM Module

SVGA_MODE
VESA_105
SVGA_PIX_105
SVGA_CLS_105
SVGA_READ_105

Chapter 14 - DOS Animation
14.1 Graphics and Animation

14.1.1 Physiology of Animation
14.1.2 PC Animation
14.1.3 Software Support for Animation Routines

14.2 Interactive Animation
14.2.1 Programming the Mouse
14.2.2 The Microsoft Mouse Interface
14.2.3 Checking Mouse Software Installation
14.2.4 Sub-services of Interrupt 33H

Sub-service 0 - Initialize Mouse
Sub-service 5 - Check Button Press Status
Sub-service 11 - Read Motion Counters
Sub-service 12 - Set Interrupt Routine

14.3 Image Animation
14.3.1 Image Mapping and Panning

Video and Image Buffers
Viewport and Windows
Panning

14.3.2 Geometrical Transformations
14.4 Imaging Techniques

© 2003 by CRC Press LLC

14.4.1 Retention
14.4.2 Interference
14.4.3 XOR Operations

Programming the Function Select Bits
14.4.4 Time-Pulse Animation

Looping Techniques
The System Timer
Interference Problems

14.4.5 The Vertical Retrace Interrupt
VGA Vertical Retrace Interrupt
XGA Screen Blanking Interrupt

Chapter 15 - DOS Bitmapped Graphics
15.1 Image File Encoding

15.1.1 Raw Image Data
15.1.2 Bitmaps in Monochrome and Color
15.1.3 Image Data Compression

Run-length Encoding
Facsimile Compression Methods
LZW Compression

15.1.4 Encoders and Decoders
15.2 The Graphics Interchange Format (GIF)

15.2.1 GIF Sources
15.2.2 The GIF File Structure

Header
Logical Screen Descriptor
Global Color Table
Image Descriptor
Local Color Table
Compressed Image Data
Trailer
GIF89a Extensions

15.2.3 GIF Implementation of LZW Compression
LZW Concepts
The General LZW Algorithm
The GIF Implementation
LZW Code Size
The GIF Image File
GIF LZW Encoding
GIF LZW Decoding

15.3 The Tag Image File Format (TIFF)
15.3.1 The TIFF File Structure

The TIFF Header
The TIFF Image File Directory (IFD)

15.3.2 TIFF Tags for Bilevel Images
OldSubFileType (tag code 00FFH)
NewSubFileType (00FEH)
ImageWidth (tag code 0100H)
ImageLength (tag code 0101H)
BitsPerSample (tag code 0102H)
Compression (tag code 0103H)
PhotometricInterpretation (tag code 0106H)

© 2003 by CRC Press LLC

Threshholding (tag code 0107H)
StripsOffset (tag code 0111H)
SamplesPerPixel (tag code 0115H)
RowsPerStrip (tag code 0116H)
StripByteCounts (tag code 0117H)
XResolution (tag code 011AH)
YResolution (tag code 011BH)
PlanarConfiguration (tag code 011CH)
ResolutionUnit (tag code 128H)

15.3.3 Locating TIFF Image Data
15.3.4 Processing TIFF Image Data

TIFF PackBits Compression
15.3.5 TIFF Software Samples

15.4 The Hewlett-Packard Bitmapped Fonts
15.4.1 PCL Character Encoding

Font Descriptor
Character Descriptor
The PCL Bitmap

15.4.2 PCL Bitmap Support Software

Part III - Windows API Graphics

Chapter 16 - Graphics Programming in Windows
16.1 Windows at the API Level

16.1.1 The Program Project
Creating a Project

16.2 Elements of a Windows Program
16.2.1 WinMain()

Parameters
16.2.2 Data Variables
16.2.3 WNDCLASSEX Structure
16.2.4 Registering the Windows Class
16.2.5 Creating the Window
16.2.6 Displaying the Window
16.2.7 The Message Loop

16.3 The Window Procedure
16.3.1 Windows Procedure Parameters
16.3.2 Windows Procedure Variables
16.3.3 Message Processing

WM_CREATE Message Processing
WM_PAINT Message Processing
WM_DESTROY Message Processing

16.3.4 The Default Windows Procedure
16.4 The WinHello Program

16.4.1 Modifying the Program Caption
16.4.2 Displaying Text in the Client Area
16.4.3 Creating a Program Resource
16.4.4 Creating the Icon Bitmap

16.5 WinHello Program Listing

© 2003 by CRC Press LLC

Chapter 17 - Text Graphics
17.1 Text in Windows

17.1.1 The Client Area
17.2 Device and Display Contexts

17.2.1 The Display Context
17.2.2 Display Context Types
17.2.3 Window Display Context

17.3 Mapping Modes
17.3.1 Screen and Client Area
17.3.2 Viewport and Window

17.4 Programming Text Operations
17.4.1 Typefaces and Fonts
17.4.2 Text Formatting
17.4.3 Paragraph Formatting
17.4.4 The DrawText() Function

17.5 Text Graphics
17.5.1 Selecting a Font
17.5.2 Drawing with Text

Chapter 18 - Keyboard and Mouse Programming
18.1 Keyboard Input

18.1.1 Input Focus
18.1.2 Keystroke Processing
18.1.3 Determining the Key State
18.1.4 Character Code Processing
18.1.4 Keyboard Demonstration Program

18.2 The Caret
18.2.1 Caret Processing
18.2.2 Caret Demonstration Program

18.3 Mouse Programming
18.3.1 Mouse Messages
18.3.2 Cursor Location
18.3.3 Double-Click Processing
18.3.4 Capturing the Mouse
18.3.5 The Cursor

18.4 Mouse and Cursor Demonstration Program

Chapter 19 - Child Windows and Controls
19.1 Window Styles

19.1.1 Child Windows
19.1.2 Child Windows Demonstration Program
19.1.3 Basic Controls
19.1.4 Communicating with Controls
19.1.5 Controls Demonstration Program

19.2 Menus
19.2.1 Creating a Menu
19.2.2 Menu Item Processing
19.2.3 Shortcut Keys
19.2.4 Pop-Up Menus
19.2.5 The Menu Demonstration Program

© 2003 by CRC Press LLC

19.3 Dialog Boxes
19.3.1 Modal and Modeless
19.3.2 The Message Box
19.3.3 Creating a Modal Dialog Box
19.3.4 Common Dialog Boxes
19.3.5 The Dialog Box Demonstration Program

19.4 Common Controls
19.4.1 Common Controls Message Processing
19.4.2 Toolbars and ToolTips
19.4.3 Creating a Toolbar
19.4.4 Standard Toolbar Buttons
19.4.5 Combo Box in a Toolbar
19.4.6 ToolTip Support

Chapter 20 - Pixels, Lines, and Curves
20.1 Drawing in a Window

20.1.1 The Redraw Responsibility
20.1.2 The Invalid Rectangle
20.1.3 Screen Updates On-Demand
20.1.4 Intercepting the WM_PAINT Message

20.2 Graphics Device Interface
20.2.1 Device Context Attributes
20.2.2 DC Info Demonstration Program
20.2.3 Color in the Device Context

20.3 Graphic Objects and GDI Attributes
20.3.1 Pens
20.3.2 Brushes
20.3.3 Foreground Mix Mode
20.3.4 Background Modes
20.3.5 Current Pen Position
20.3.6 Arc Direction

20.4 Pixels, Lines, and Curves
20.4.1 Pixel Operations
20.4.2 Drawing with LineTo()
20.4.3 Drawing with PolylineTo()
20.4.4 Drawing with Polyline()
20.4.5 Drawing with PolyPolyline()
20.4.6 Drawing with Arc()
20.4.7 Drawing with ArcTo()
20.4.8 Drawing with AngleArc()
20.4.9 Drawing with PolyBezier()
20.4.10 Drawing with PolyBezierTo()
20.4.11 Drawing with PolyDraw()
20.4.12 Pixel and Line Demonstration Program

Chapter 21 - Drawing Figures, Regions, and Paths
21.1 Closed Figures

21.1.1 Area of a Closed Figure
21.1.2 Brush Origin
21.1.3 Object Selection Macros
21.1.4 Polygon Fill Mode

© 2003 by CRC Press LLC

21.1.5 Creating Custom Brushes
21.2 Drawing Closed Figures

21.2.1 Drawing with Rectangle()
21.2.2 Drawing with RoundRect()
21.2.3 Drawing with Ellipse()
21.2.4 Drawing with Chord()
21.2.5 Drawing with Pie()
21.2.6 Drawing with Polygon()
21.2.7 Drawing with PolyPolygon()

21.3 Operations on Rectangles
21.3.1 Drawing with FillRect()
21.3.2 Drawing with FrameRect()
21.3.3 Drawing with DrawFocusRect()
21.3.4 Auxiliary Operations on Rectangles
21.3.5 Updating the Rectangle() Function

21.4 Regions
21.4.1 Creating Regions
21.4.2 Combining Regions
21.4.3 Filling and Painting Regions
21.4.4 Region Manipulations
21.4.5 Obtaining Region Data

21.5 Clipping Operations
21.5.1 Creating or Modifying a Clipping Region
21.5.2 Clipping Region Information

21.6 Paths
21.6.1 Creating, Deleting, and Converting Paths
21.6.2 Path-Rendering Operations
21.6.3 Path Manipulations
21.6.4 Obtaining Path Information

21.7 Filled Figures Demo Program

Chapter 22 - Windows Bitmapped Graphics
22.1 Raster and Vector Graphics

22.1.1 The Bitmap
22.1.2 Image Processing
22.1.3 Bitblt Operations

22.2 Bitmap Constructs
22.2.1 Windows Bitmap Formats
22.2.2 Windows Bitmap Structures
22.2.3 The Bitmap as a Resource

22.3 Bitmap Programming Fundamentals
22.3.1 Creating the Memory DC
22.3.2 Selecting the Bitmap
22.3.3 Obtaining Bitmap Dimensions
22.3.4 Blitting the Bitmap
22.3.5 A Bitmap Display Function

22.4 Bitmap Manipulations
22.4.1 Hard-Coding a Monochrome Bitmap
22.4.2 Bitmaps in Heap Memory
22.4.3 Operations on Blank Bitmaps
22.4.4 Creating a DIB Section

© 2003 by CRC Press LLC

22.4.5 Creating a Pattern Brush
22.5 Bitmap Transformations

22.5.1 Pattern Brush Transfer
22.5.2 Bitmap Stretching and Compressing

22.6 Bitmap Demonstration Program

Part IV - DirectX Graphics

Chapter 23 - Introducing DirectX
23.1 Why DirectX?

23.1.1 From the Game SDK to DirectX 8.1
23.1.2 2D and 3D Graphics in DirectX
23.1.3 Obtaining the DirectX SDK

23.2 DirectX 8.1 Components
23.3 New Features in DirectX 8

23.3.1 Installing the DirectX SDK
23.3.2 Compiler Support
23.3.3 Accessing DirectX Programs and Utilities

23.4 Testing the Installation

Chapter 24 - DirectX and COM
24.1 Object Orientation and C++ Indirection

24.1.1 Indirection Fundamentals
24.1.2 Pointers to Pointers
24.1.3 Pointers to Functions
24.1.4 Polymorphism and Virtual Functions
24.1.5 Pure Virtual Functions

Abstract Classes
24.2 COM in DirectX Programming

24.2.1 COM Fundamentals
Defining COM

24.2.2 COM Concepts in DirectX
The COM Object
The COM Interface
The GUID
The HRESULT Structure

24.2.3 The IUnknown Interface
Using QueryInterface()

24.3 Creating and Accessing the COM Object
24.3.1 Creating the COM Object
24.3.2 Using COM Objects

The COM Object's Lifetime
Manipulating the Reference Count

Chapter 25 - Introducing DirectDraw
25.1 2D Graphics and DirectDraw

25.1.1 DirectDraw Features
25.1.2 Advantages and Drawbacks

© 2003 by CRC Press LLC

25.2 Basic Concepts for DirectDraw Graphics
25.2.1 Device-Independent Bitmaps
25.2.2 Drawing Surfaces
25.2.3 Blitting
25.2.4 Page Flipping and Back Buffers
25.2.5 Bounding Rectangles

25.3 DirectDraw Architecture
25.3.1 DirectDraw Interfaces
25.4.1 DirectDraw Objects
25.4.2 Hardware Abstraction Layer (HAL)
25.4.3 Hardware Emulation Layer (HEL)
25.4.4 DirectDraw and GDI

25.5 DirectDraw Programming Essentials
25.5.1 Cooperative Levels
25.5.2 Display Modes

Palletized and Nonpalletized Modes
25.5.3 Surfaces
25.5.4 Palettes
25.5.5 Clipping

Chapter 26 - Setting Up DirectDraw
26.1 Set-up Operations

26.1.1 DirectDraw Header File
26.1.2 DirectDraw Libraries

26.2 Creating the DirectDraw Object
26.2.1 Obtaining the Interface Version
26.2.2 Interface Version Strategies
26.2.3 Setting the Cooperative Level
26.2.4 Hardware Capabilities
26.2.5 Display Modes

26.3 The DD Info Project

Chapter 27 - DirectDraw Exclusive Mode
27.1 WinMain() for DirectDraw

27.1.1 Filling the WNDCLASSEX Structure
27.1.2 Registering the Window Class
27.1.3 Creating the Window
27.1.4 Defining the Window Show State
27.1.5 Creating a Message Loop

27.2 DirectDraw Initialization
27.2.1 Obtaining the Interface Pointer
27.2.2 Checking Mode Availability
27.2.3 Setting Cooperative Level and Mode
27.2.4 Creating the Surfaces
27.2.5 Using Windows GDI Functions

27.3 The DD Exclusive Mode Template

Chapter 28 - Access to Video Memory
28.1 Direct Access Programming

28.1.1 Memory-Mapped Video

© 2003 by CRC Press LLC

Hi-Color Modes
True-Color Modes

28.1.2 Locking the Surface
28.1.3 Obtaining Surface Data

28.2 In-Line Assembly Language
28.2.1 The _asm Keyword
28.2.2 Coding Restrictions
28.2.3 Assembly Language Functions

28.3 Multi-Language Programming
28.3.1 Stand-Alone Assembler Modules

C++/Assembler Interface Functions
MASM Module Format
C++ Module Format

28.3.2 Matrix Ops Project
28.4 Direct Access Primitives

28.4.1 Pixel Address Calculations
28.4.2 Defining the Primary Surface
28.4.3 Releasing the Surface
28.4.4 Pixel-Level Primitives

Filling a Rectangular Area
Box-Drawing

28.5 Raster Operations
28.5.1 XOR Animation
28.5.2 XORing a Bitmap

28.6 Direct Access Project

Chapter 29 - Blitting
29.1 Surface Programming

29.1.1 The DirectDraw Surface Concept
29.1.2 Surface Types
29.1.3 Enumerating Surfaces
29.1.4 Restoring Surfaces
29.1.5 Surface Operations
29.1.6 Transparency and Color Keys
29.1.7 Selecting and Setting the Color Key

The DDCOLORKEY Structure
29.1.8 Hardware Color Keys

29.2 The Blit
29.2.1 BltFast()
29.2.2 Blt()

29.3 Blit-Time Transformations
29.3.1 Color Fill Blit
29.3.2 Blit Scaling
29.3.3 Blit Mirroring
29.3.4 Raster Operations

29.4 Blit-Rendering Operations
29.4.1 Loading the Bitmap
29.4.2 Obtaining Bitmap Information
29.4.3 Moving a Bitmap to a Surface
29.4.4 Displaying the Bitmap

29.5 DD Bitmap Blit Project

© 2003 by CRC Press LLC

Chapter 30 - DirectDraw Bitmap Rendering
30.1 Bitmap Manipulations

30.1.1 Loading the Bitmap
30.1.2 Obtaining Bitmap Information
30.1.3 Moving a Bitmap onto a Surface
30.1.4 Displaying the Bitmap

30.2 Developing a Windowed Application
30.2.1 Windowed Mode Initialization
30.2.2 Clipping the Primary Surface

30.3 Rendering in Windowed Mode
30.3.1 Rendering by Clipping
30.3.2 Blit-Time Cropping

Chapter 31- DirectDraw Animation
31.1 Animating in Real-Time

31.1.1 The Animator's Predicament
31.2 Timed Pulse Animation

31.2.1 The Tick Counting Method
31.2.2 System Timer Intercept

31.3 Sprites
31.3.2 Creating Sprites
31.3.3 Sprite Rendering

31.4 Page Flipping
31.4.1 Flipping Surface Initialization
31.4.2 The Flip() Function
31.4.3 Multiple Buffering

31.5 Animation Programming
31.5.1 Background Animation
31.5.2 Panning Animation
31.5.3 Zoom Animation
31.5.4 Animated Sprites

31.6 Fine-Tuning the Animation
31.6.1 High-Resolution Timers
31.6.2 Dirty Rectangles
31.6.3 Dynamic Color Keys

31.7 Measuring Performance

Chapter 32 - Direct3D Fundamentals
32.1 3D Graphics in DirectX

32.1.1 Origin of Direct3D
32.1.2 Direct3D Implementations
32.1.3 Retained Mode
32.1.4 Immediate Mode
32.1.5 Hardware Abstraction Layer
32.1.6 DirectDraw
32.1.7 OpenGL
32.1.8 Direct3D and COM

32.2 Direct3D Rendering
32.2.1 Transformation Module
32.2.2 Lighting Module

© 2003 by CRC Press LLC

32.2.3 Rasterization Module
32.3 Retained Mode Programming

32.3.1 Frames
Meshes
Mesh Groups
Faces

32.3.2 Shading Modes
Interpolation of Triangle Attributes

32.3.3 Z-Buffers
32.3.4 Lights

Ambient Light
Directional Light
Parallel Pint Light
Point Light
Spotlight

32.3.5 Textures
Decals
Texture colors
Mipmaps
Texture Filters and Blends
Texture Transparency
Wraps

32.3.6 Materials
32.3.7 User Visuals
32.3.8 Viewports

Viewing Frustum
Transformations
Picking

32.3.9 Animations and Animations Sets
32.3.10 Quaternions

32.4 Direct3D File Formats
34.4.1 Description
34.4.2 File Format Architecture

Reserved Words
Header
Comments
Templates
Data
Retained mode templates

Chapter 33 - Direct3D Programming
33.1 Initializing the Software Interface

33.1.1 The IUnknown Interface
33.1.2 Direct3DRM Object
33.1.3 Calling QueryInterface()

Creating the DirectDraw Clipper
33.1.4 The Clip List
33.1.5 InitD3D() Function

33.2 Building the Objects
33.2.1 Creating the Objects

Creating the Device
33.2.2 CreateObjects() Function

© 2003 by CRC Press LLC

33.3 Master Scene Concepts
33.3.1 The Camera Frame
33.3.2 The Viewport

33.4 Master Scene Components
33.4.1 The Meshbuilder Object
33.4.2 Adding a Mesh to a Frame
33.4.3 Setting the Camera Position
33.4.4 Creating and Positioning the Light Frame
33.4.5 Creating and Setting the Lights
33.4.6 Creating a Material
33.4.7 Setting the Mesh Color
33.4.8 Clean-Up Operations
33.4.9 Calling BuildScene()

33.5 Rendering Operations
33.5.1 Clearing the Viewport
32.5.2 Rendering to the Viewport
33.5.3 Updating the Screen
33.5.4 RenderScene() Function

33.6 Sample Project 3DRM InWin Demo1
33.6.1 Windowed Retained Mode Coding Template

Appendix A - Windows Structures

Appendix B - Ternary Raster Operation Codes

Bibliography

© 2003 by CRC Press LLC

List of Tables

Table 1-1 Specifications of PC System Buses
Table 7-1 VGA Video Modes
Table 7-2 VGA Register Groups
Table 7-3 VGA CRT Controller Register
Table 7-4 The VGA Sequencer Registers
Table 7-5 The VGA Graphics Controller Registers
Table 7-6 The VGA Attribute Controller Registers
Table 7-7 Default Setting of VGA Palette Registers
Table 7-8 VGA Video Digital-to-Analog Converter Addresses
Table 8-1 Shades of Green in VGA 256-Color Mode (default values)
Table 8-2 DAC Register Setting for Double-Bit IRGB Encoding
Table 8-3 Pattern for DAC Register Settings in Double-Bit IRGB Encoding
Table 8-4 16 Shades of the Color Magenta Using Double-Bit IRGB Code
Table 8-5 Pattern for DAC Register Setting for 64 Shades of Gray
Table 8-6 BIOS Settings for DAC Registers in Mode Number 18
Table 9-1 VGA BIOS Character Sets
Table 10-1 Transformation of Normalized Coordinates by Quadrant in VGA
Table 11-1 Module and Directory Names for the Adapter Interface Software
Table 11-2 XGA and 8514/A Advanced Function Modes
Table 11-3 Default Setting of LUT Registers in XGA and 8514/A
Table 11-4 IBM Code Pages
Table 11-5 Adapter Interface Font File Header
Table 11-6 Adapter Interface Character Set Header
Table 11-7 8514/A and XGA Adapter Interface Services
Table 11-7 8514/A and XGA Adapter Interface Services (continued)
Table 11-8 XGA Adapter Interface Services
Table 11-9 Structure of the Adapter Interface Parameter Block
Table 11-10 Task State Buffer Data after Initialization
Table 11-11 XGA and 8514/A Font Files and Text Resolution
Table 12-1 Pixel to Memory Mapping in XGA Systems
Table 12-2 Data Storage According to the Intel and Motorola Conventions
Table 12-3 XGA Modes
Table 12-4 XGA Display Controller Register Initialization Settings
Table 12-5 Palette Values for XGA Direct Color Mode
Table 12-6 XGA Graphic Coprocessor Register Map
Table 12-7 Destination Color Compare Conditions
Table 12-8 Logical and Arithmetic Mixes
Table 12-9 Action of the Direction Octant Bits During PixBlt
Table 12-10 Sprite-Related Registers in the Display Controller
Table 12-11 Sprite Image Bit Codes
Table 13-1 VESA BIOS Modes

© 2003 by CRC Press LLC

Table 13-2 VESA BIOS Sub-services to BIOS INT 10H
Table 15-1 LZW Compression Example
Table 15-2 GIF LZW Compression Example
Table 15-3 GIF LZW Compression Data Processing
Table 15-4 LZW Decompression Example
Table 15-5 TIFF Version 6.0 Field Type Codes
Table 15-6 Hexadecimal and ASCII Dump of the HP PCL Font File TR140RPN.UPS
Table 15-7 PCL Bitmap Font Descriptor Field
Table 15-8 PCL Bitmap Character Descriptor Header
Table 16-1 WinMain() Display Mode Parameters
Table 16-2 Summary of Window Class Styles
Table 16-3 Common Windows Standard System Colors
Table 16-4 Most Commonly Used Windows Extended Styles
Table 16-5 Window Styles
Table 16-6 Symbolic Constant in DrawText() Function
Table 17-1 Windows Fixed-Size Mapping Modes
Table 17-2 TEXTMETRIC structure
Table 17-3 String Formatting Constants in DrawText()
Table 17-4 Character Weight Constants
Table 17-5 Predefined Constants for Output Precision
Table 17-6 Predefined Constants for Clipping Precision
Table 17-7 Predefined Constants for Output Precision
Table 17-8 Pitch and Family Predefined Constants
Table 18-1 Bit and Bit Fields in the lParam of a Keystroke Message
Table 18-2 Virtual-Key Codes
Table 18-3 Virtual-Keys Used in GetKeyState()
Table 18-4 Frequently Used Client Area Mouse Messages
Table 18-5 Virtual Key Constants for Client Area Mouse Messages
Table 19-1 Predefined Control Classes
Table 19-1 Predefined Control Classes (continued)
Table 19-2 Prefix for Predefined Window Classes
Table 19-3 Notification Codes for Buttons
Table 19-4 Notification Codes for Three-State Controls
Table 19-5 User Scroll Request Constants
Table 19-6 Often Used Message Box Bit Flags
Table 19-7 Original Set of Common Controls
Table 19-8 Common Control Notification Codes
Table 19-9 Toolbar and Toolbar Button Style Flags
Table 19-10 Toolbar States
Table 19-11 Toolbar Common Control Styles
Table 20-1 Information Returned by GetDeviceCaps()
Table 20-2 Values Defined for the ExtCreatePen() iStyle Parameter
Table 20-3 Constants in the LOGBRUSH Structure Members
Table 20-4 Mix Modes in SetROP2()
Table 20-5 Line-Drawing Functions
Table 20-6 Nodes and Control Points for the PolyBezier() Function
Table 20-7 Nodes and Control Points for the PolyBezierTo() Function
Table 20-8 Constants for PolyDraw() Point Specifiers
Table 21-1 LOGBRUSH Structure Members
Table 21-2 Windows Functions for Drawing Closed Figures
Table 21-3 Windows Functions Related to Rectangular Areas
Table 21-4 Windows System Colors
Table 21-5 Rectangle-Related Functions

© 2003 by CRC Press LLC

Table 21-6 Region-Related GDI Functions
Table 21-7 Region Combination Modes
Table 21-8 Region Type Return Values
Table 21-9 Windows Clipping Functions
Table 21-10 Clipping Modes
Table 21-11 Path-Defining Functions in Windows NT
Table 21-12 Path-Defining Functions in Windows 95 and Later
Table 21-13 Path-Related Functions
Table 21-14 Constants for the GetPath() Vertex Types
Table 22-1 Bitmap-Related Structures
Table 22-2 Symbolic Names for Raster Operations
Table 22-3 Win-32 Commonly Used Memory Allocation Flags
Table 22-4 Windows Stretching Modes
Table 23-1 DirectX 8.1 CD ROM Directory Layout
Table 24-1 HRESULT Frequently Used Error Codes
Table 26-1 Cooperative Level Symbolic Constants
Table 26-2 Device Capabilities in the GetCaps() Function
Table 28-1 Flags the IDirectDrawSurface7::Lock Function
Table 29-1 Surface-Related Functions in DirectDraw
Table 29-2 Flags in the EnumSurfaces() Function
Table 29-3 Constants Used in SetColorKey() Function
Table 29-4 Color Key Capabilities in dwCKeyCaps Member of DDCAPS Structure
Table 29-5 Type of Transfer Constants in BltFast()
Table 29-6 Flags for the Blt() Function
Table 29-7 Scaling Flags for the Blt() Function
Table 29-8 Mirroring Flags for the Blt() Function
Table 29-9 Predefined Constants in LoadImage() Function
Table 31-1 Flipping-Related DirectDraw Functions
Table 31-2 DirectDraw Flip() Function Flags
Table 31-3 Event-Type Constants in TimeSetEvent() Function
Table 32-1 DirectX File Header
Table 32-2 Primitive Data Types for the .x File Format
Table 33-1 Interface-Specific Error Values Returned by Queryinterface()
Table 33-2 Flags in the D3DRMLOADOPTIONS Type
Table 33-3 Enumerator Constants in D3DRMLIGHTTYPE

© 2003 by CRC Press LLC

List of Illustrations

Figure 1-1 Vector-Refresh Display
Figure 1-2 A Raster-Scan System
Figure 1-3 A Memory-Mapped System
Figure 1-4 Memory Mapping and Attributes in the MDA Adapter
Figure 1-5 Memory-to-Pixel Mapping in the CGA Color Alpha Modes
Figure 1-6 Architecture of a VGA/8514A Video System
Figure 1-7 XGA Component Diagram
Figure 1-8 Byte-to-Pixel Video Memory Mapping Scheme
Figure 1-9 SuperVGA Banked-Switched Memory
Figure 1-10 CRT with a 4:3 Aspect Ratio
Figure 2-1 Raster and Vector Representation of a Graphics Object
Figure 2-2 Translating an Object by Coordinate Arithmetic
Figure 2-3 Cartesian Coordinates
Figure 2-4 3D Cartesian Coordinates
Figure 2-5 Left- and Right-Handed Coordinates
Figure 2-6 3D Representation of a Rectangular Solid
Figure 2-7 3D Coordinate Planes
Figure 2-8 Valid and Invalid Polygons
Figure 2-9 Regular Polygons
Figure 2-10 Concave and Convex Polygons
Figure 2-11 Coplanar and Non-Coplanar Polygons
Figure 2-12 Polygonal Approximation of a Circle
Figure 2-13 Polygonal Approximation of a Cylinder
Figure 2-14 Polygon Edge
Figure 2-15 Edge Representation of Polygons
Figure 2-16 Polygon Mesh Representation and Rendering of a Teacup
Figure 3-1 Point Representation of the Stars In the Constellation Ursa Minor
Figure 3-2 Translation of a Straight Line
Figure 3-3 A Translation Transformation
Figure 3-4 Scaling Transformation
Figure 3-5 Symmetrical Scaling (Zooming)
Figure 3-6 Rotation of a Point
Figure 3-7 Rotation Transformation
Figure 3-8 Order of Transformations
Figure 3-9 3D Representation of a Cube.
Figure 3-10 Translation Transformation of a Cube
Figure 3-11 Scaling Transformation of a Cube
Figure 3-12 Scaling Transformation of an Object Not at the Origin
Figure 3-13 Fixed-Point Scaling Transformation
Figure 3-14 Rotation in 3D Space
Figure 3-15 Positive, x-axis Rotation of a Cube

© 2003 by CRC Press LLC

Figure 3-16 Rotation About an Arbitrary Axis
Figure 5-1 Common Projections
Figure 5-2 Projection Elements
Figure 5-3 Perspective and Parallel Projections
Figure 5-4 A Circle Projected as an Ellipse
Figure 5-5 Parallel, Orthographic, Multiview Projection
Figure 5-6 Isometric, Dimetric, and Trimetric Projections
Figure 5-7 Lack of Realism In Isometric Projection
Figure 5-8 One-Point Perspective Projection of a Cube
Figure 5-9 One-Point Projection of a Mechanical Component
Figure 5-10 Tunnel Projection of a Cube
Figure 5-11 Two-Point Perspective of a Cube
Figure 5-12 Three-Point Perspective of a Cube
Figure 5-13 Perspective Projection of Point P
Figure 5-14 Calculating x and y Coordinates of Point P
Figure 5-15 Waterfall Model of the Rendering Pipeline
Figure 5-16 Local Space Coordinates of a Cube with Vertex at the Origin
Figure 5-17 World Space Transformation of the Cube In Figure 5-16
Figure 5-18 Culling of a Polyhedron
Figure 5-19 Line-of-Sight and Surface Vectors in Culling
Figure 5-20 Eye Space Transformation of the Cube In Figure 5-17
Figure 5-21 Screen Space Transformation of the Cube in Figure 5-20
Figure 6-1 Lighting Enhances Realism
Figure 6-2 Direct and Indirect Lighting
Figure 6-3 Point and Extended Light Sources
Figure 6-4 Angle of Incidence in Reflected Light
Figure 6-5 Diffuse Reflection
Figure 6-6 Specular Reflection
Figure 6-7 Values of n in Phong Model of Specular Reflection
Figure 6-8 Flat Shading
Figure 6-9 Intensity Interpolation in Gouraud Shading
Figure 6-10 Highlight Rendering Error in Gouraud Shading

Figure 6-11 Rendering a Reflected Image by Ray Tracing
Figure 6-12 Scan-Line Algorithm for Hidden Surface Removal
Figure 6-13 Scan-Line Algorithm for Shadow Projection
Figure 6-14 Shadow Rendering of Multiple Objects
Figure 6-15 Z-Buffer Algorithm Processing
Figure 7-1 Symmetrical and Asymmetrical Pixel Density
Figure 7-2 VGA System Components
Figure 7-3 Attribute Byte Bitmap in VGA Systems
Figure 7-4 Video Memory Mapping in VGA Mode 18
Figure 7-5 Video Memory Mapping in VGA Mode 19
Figure 7-6 VGA/EGA Miscellaneous Output Register
Figure 7-7 VGA Input Status Register
Figure 7-8 Cursor Size Registers of the VGA CRT Controller
Figure 7-9 Cursor Location Registers of the VGA CRT Controller
Figure 7-10 Cursor Scan Lines in VGA Systems
Figure 7-11 Video Start Address Register of the VGA CRT Controller
Figure 7-12 Preset Row Scan Register of the VGA CRT Controller
Figure 7-13 Map Mask Register of the VGA Sequencer
Figure 7-14 Character Map Select Register of the VGA Sequencer
Figure 7-15 Memory Mode Register of the VGA Sequencer
Figure 7-16 Write Mode 0 Set/Reset Register of the VGA Graphics Controller

© 2003 by CRC Press LLC

Figure 7-17 Enable Set/Reset Register of the VGA Graphics Controller
Figure 7-18 Color Compare Register of the VGA Graphics Controller
Figure 7-19 Color Don't Care Register of the VGA Graphics Controller
Figure 7-20 Data Rotate Register of the VGA Graphics Controller
Figure 7-21 Read Map Select Register of the VGA Graphics Controller
Figure 7-22 Select Graphics Mode Register of the VGA Graphics Controller
Figure 7-23 Miscellaneous Register of the VGA Graphics Controller
Figure 7-24 Bit Mask Register of the VGA Graphics Controller
Figure 7-25 Attribute Address and Palette Address Registers of the VGA
Figure 7-26 Palette Register of the VGA Attribute Controller
Figure 7-27 Attribute Mode Control Register of the VGA Attribute Controller
Figure 7-28 Overscan Color Register of the VGA Attribute Controller
Figure 7-29 Color Plane Enable Register of the VGA Attribute Controller
Figure 7-30 Horizontal Pixel Panning Register of the VGA Attribute Controller
Figure 7-31 Color Select Register of the VGA Attribute Controller
Figure 7-32 Pixel Address Register of the VGA DAC
Figure 7-33 State Register of the VGA DAC
Figure 8-1 Color Maps in VGA Mode 18
Figure 8-2 Bit-to-Pixel Mapping Example in VGA Mode 18
Figure 8-3 Color Mapping in VGA Mode 19
Figure 8-4 Byte-to-Pixel Mapping Example in VGA Mode 19
Figure 8-5 Default Color Register Setting in VGA Mode 19
Figure 8-6 Double-Bit Mapping for 256-Color Mode
Figure 8-7 DAC Color Register Bitmap
Figure 8-8 DAC Register Selection Modes
Figure 9-1 Pixel Image and Bitmap of a Graphics Object
Figure 10-1 Pixel Plots for Straight Lines
Figure 10-2 Non-Adjacent Pixel Plot of a Straight Line
Figure 10-3 Plot and Formula for a Circle
Figure 10-4 Plot and Formula for Ellipse
Figure 10-5 Plot and Formula for Parabola
Figure 10-6 Plot and Formula for Hyperbola
Figure 10-7 Normalization of Coordinates in VGA Mode 18
Figure 10-8 Rotation Transformation of a Polygon
Figure 10-9 Clipping Transformation of an Ellipse
Figure 10-10 Geometrical Interpretation of a Region Fills
Figure 10-11 Region Fill Flowchart
Figure 11-1 8514/A Component Diagram
Figure 11-2 XGA Component Diagram
Figure 11-3 Bit Planes in XGA and 8514/A High-Resolution Modes
Figure 11-4 XGA/8514/A Bit-to-Color Mapping
Figure 11-5 Bitmap of XGA and 8514/A Color Registers
Figure 11-6 Bitmap of the Short Stroke Vector Command
Figure 11-7 XGA System Coordinate Range and Viewport
Figure 12-1 XGA Data in POS Registers
Figure 12-2 Block Structure in XGA 64K Aperture
Figure 12-3 Bitmapping in XGA Direct Color Mode
Figure 12-4 Physical Address of Video Memory Bitmap
Figure 12-5 Pixel Map Origin and Dimensions
Figure 12-6 Mask Map Scissoring Operations
Figure 12-7 Mask Map x and y Offset
Figure 12-8 Determining the Pixel Attribute
Figure 12-9 Pixel Operations Register Bitmap

© 2003 by CRC Press LLC

Figure 12-10 Octant Numbering in the Cartesian Plane
Figure 12-11 XGA Sprite Buffer
Figure 12-12 Visible Sprite Image Control
Figure 12-13 Bit-to-Pixel Mapping of Sprite Image
Figure 13-1 Memory Banks to Video Mapping
Figure 13-2 VESA Mode Bitmap
Figure 13-3 VESA Window Types
Figure 13-4 VESA Mode Attribute Bitmap
Figure 13-5 Window Attributes Bitmap
Figure 13-6 VESA BIOS Machine State Bitmap
Figure 14-1 Mouse Interrupt Call Mask
Figure 14-2 Elements in Panning Animation
Figure 14-3 Animation by Scaling and Rotation
Figure 14-4 XGA Interrupt Enable Register Bitmap
Figure 14-5 XGA Interrupt Status Register Bitmap
Figure 15-1 Raw Image Data for a Monochrome Bitmap
Figure 15-2 Monochrome Overlays to Form a Color Image
Figure 15-3 Elements of the GIF Data Stream
Figure 15-4 GIF Header
Figure 15-5 GIF Logical Screen Descriptor
Figure 15-6 GIF Global Color Table Block
Figure 15-7 GIF Image Descriptor
Figure 15-8 GIF Image Data Blocks
Figure 15-9 GIF Trailer
Figure 15-10 Sample Image for GIF LZW Compression
Figure 15-11 GIF LCW Compression Flowchart
Figure 15-12 TIFF File Header
Figure 15-13 TIFF Image File Directory (IFD)
Figure 15-14 TIFF Directory Entry
Figure 15-15 TIFF PackBits Decompression
Figure 15-16 PCL Bitmap Character Cell
Figure 15-17 PCL Character Dimensions
Figure 15-18 Character Dot Drawing and Bitmap
Figure 16-1 Using the New Command in Developer Studio File Menu
Figure 16-2 Creating a New Source File In Developer Studio
Figure 16-3 Inserting an Existing Source File Into a Project
Figure 16-4 Developer Studio Project Workspace, Editor, and Output Panes
Figure 16-5 The Hello Windows Project and Source File
Figure 16-6 Developer Studio Insert Resource Dialog Screen and Toolbar
Figure 16-7 Creating An Icon Resource with Developer Studio Icon Editor
Figure 16-8 Screen Snapshot of the WinHello Program
Figure 17-1 The Device Context, Application, GDI, and Device Driver
Figure 17-2 Viewport and Window Coordinates
Figure 17-3 Courier, Times Roman, and Helvetica Typefaces.
Figure 17-4 Windows Non-TrueType Fonts
Figure 17-5 Vertical Character Dimensions in the TEXTMETRIC Structure
Figure 17-6 Processing Operations for Multiple Text Lines
Figure 17-7 Two Screen Snapshots of the TEX1_DEMO Program
Figure 17-8 Screen Snapshot of the TEXTDEM3 Program
Figure 18-1 KBR_DEMO Program Screen
Figure 18-2 CAR_DEMO Program Screen
Figure 18-3 Windows Built-In Cursors
Figure 18-4 MOU_DEMO Program Screen

© 2003 by CRC Press LLC

Figure 19-1 CHI_DEMO Program Screen
Figure 19-2 Buttons, List Box, Combo Box, and Scroll Bar Controls
Figure 19-3 CON_DEMO Program Screen
Figure 19-4 Common Menu Elements
Figure 19-5 Developer Studio Menu Editor
Figure 19-6 Developer Studio Insertion of a Shortcut Key Code
Figure 19-7 Developer Studio Accelerator Editor
Figure 19-8 Simple Message Box
Figure 19-9 Developer Studio Dialog Editor
Figure 19-10 Color Selection Common Dialog Box
Figure 19-11 Toolbar
Figure 19-12 ”Toolbar.bmp" Button Identification Codes
Figure 19-13 Developer Studio Toolbar Editor
Figure 19-14 TB1_DEMO Program Screen
Figure 19-15 Developer Studio Resource Table Editor
Figure 20-1 Screen Snapshots of the DC Info Program
Figure 20-2 COLORREF Bitmap
Figure 20-3 Pen Syles, End Caps, and Joins
Figure 20-4 Brush Hatch Patterns
Figure 20-5 The Arc Drawing Direction
Figure 20-6 Coordinates of Two Polylines in the Sample Code
Figure 20-7 Coordinates of an Elliptical Arc in Sample Code
Figure 20-8 AngleArc() Function Elements
Figure 20-9 The Bezier Spline
Figure 20-10 Divide-and-Conquer Method of Creating a Bezier Curve
Figure 20-11 Elements of the Cubic Bezier
Figure 20-12 Approximate Result of the PolyDraw() Code Sample
Figure 21-1 Brush Hatch Patterns
Figure 21-2 Effects of the Polygon Fill Modes
Figure 21-3 Figure Definition in the Rectangle() Function
Figure 21-4 Definition Parameters for the RoundRect() Function
Figure 21-5 Figure Definition in the Ellipse() Function
Figure 21-6 Figure Definition in the Chord() Function
Figure 21-7 Figure Definition in the Arc() Function
Figure 21-8 Figure Produced by the Polygon Program
Figure 21-9 Rectangle Drawn with DrawFocusRect()
Figure 21-10 Effect of the OffsetRect() Function
Figure 21-11 Effect of the InflateRect() Function
Figure 21-12 Effect of the IntersectRect() Function
Figure 21-13 Effect of the UnionRect() Function
Figure 21-14 Cases in the SubtractRect() Function
Figure 21-15 Regions Resulting from CombineRgn() Modes
Figure 21-16 Region Border Drawn with FrameRgn()
Figure 21-17 Effect of OffsetRgn() on Region Fill
Figure 21-18 Results of Clipping
Figure 21-19 Figure Closing Differences
Figure 21-20 Miter Length, Line Width, and Miter Limit
Figure 21-21 Effect of the SetMiterLimit() Function
Figure 22-1 One Bit Per Pixel Image and Bitmap
Figure 22-2 Two Bits Per Pixel Image and Bitmap
Figure 22-3 Binary and Unary Operations on Bit Blocks
Figure 22-4 Hard-Coded, Monochrome Bitmap
Figure 22-5 Memory Image of Conventional and DIB Section Bitmaps

© 2003 by CRC Press LLC

Figure 22-6 Screen Snapshot Showing a DIB Section Bitmap Manipulation
Figure 22-7 Horizontal and Vertical Bitmap Inversion with StretchBlt()
Figure 23-1 DirectX 8.1 Installation Main Screen
Figure 23-2 DirectX 8.1 Custom Installation Screen
Figure 23-3 DirectX 8.1 Retail or Debug Runtime Selector
Figure 23-4 Navigating to the DirectX 8.1 Programs and Utilities
Figure 23-5 DirectX 8.1 Documentation Utility
Figure 23-6 DirectX Properties Dialog Box
Figure 23-7 DirectX Diagnostic Utility
Figure 23-8 DirectX Diagnostic Utility Display Test
Figure 23-9 Testing DirectDraw Functionality
Figure 24-1 Abstract Class Structure
Figure 24-2 The Virtual Function Table (vtable)
Figure 24-3 Monolithic and Component-Based Applications
Figure 24-4 HRESULT Bitmap
Figure 25-1 DirectDraw Bounding Rectangle
Figure 25-2 DirectDraw Object Types
Figure 25-3 Relations between Windows Graphics Components
Figure 25-4 Visualization of Primary and Overlay Surfaces
Figure 25-5 Video Memory Mapping Variations
Figure 25-6 Palette-Based Pixel Attribute Mapping
Figure 25-7 Clipping a Bitmap at Display Time
Figure 25-8 Clipper Consisting of Two Rectangular Areas
Figure 26-1 Directories Tab (Include Files) in the Options Dialog Box
Figure 26-2 Directories Tab (Library files) in the Options Dialog Box
Figure 26-3 Link Tab in Developer Studio Project Settings Dialog Box
Figure 28-1 Pixel Mapping in Real-Color Modes
Figure 28-2 Pixel Mapping in True-Color Modes
Figure 28-3 Pixel Offset Calculation
Figure 28-4 Visualizing the XOR Operation
Figure 29-1 DirectDraw Surface Types
Figure 29-2 The DirectDraw Blit.
Figure 29-3 The BltFast() Function
Figure 29-4 The Blt() Function
Figure 29-5 Bit-Time Mirroring Transformations
Figure 30-1 Using a Clipper to Establish the Surface's Valid Blit Area.
Figure 30-2 Multiple Clipping Rectangles
Figure 30-3 Comparing the Two Versions of the DD Bitmap In Window Program
Figure 30-4 Locating the Blt() Destination Rectangle
Figure 31-1 Stick Figure Animation
Figure 31-2 Animation Image Set
Figure 31-3 The Sprite Image Set for the DD Sprite Animation Program
Figure 31-4 Partitioning the Sprite Image Set
Figure 31-5 Sprite Animation by Page Flipping
Figure 31-6 Flipping Chain with Two Back Buffers
Figure 31-7 Surface Update Time and Frame Rate
Figure 31-8 Dirty Rectangles in Animation
Figure 32-1 Windows Graphics Architecture
Figure 32-2 DirectX Graphics Architecture
Figure 32-3 Direct3D Rendering Modules
Figure 32-4 Frame Hierarchy in a Scene
Figure 32-5 Quadrilateral and Triangular Meshes
Figure 32-6 Front Face of a Triangular Polygon

© 2003 by CRC Press LLC

Figure 32-7 Vertex Normals and Face Normals in a Pyramid
Figure 32-8 Error in Gouraud Rendering
Figure 32-9 Rendering Overlapping Triangles
Figure 32-10 Calculating the Vertex Normals
Figure 32-11 Umbra and Penumbra in Spotlight Illumination
Figure 32-12 Mipmap Structure
Figure 32-13 Example of a DirectDraw Mipmap
Figure 32-14 The Viewing Frustum
Figure 32-15 Viewport Parameters
Figure 32-16 Vector/Scalar Interpretation of the Quaternion
Figure 32-17 In-Between Frames in Animation
Figure 32-18 Aircraft Dynamic Angles
Figure 33-1 Changing the Camera Position along the z-axis

© 2003 by CRC Press LLC

Part I

Graphics Fundamentals

© 2003 by CRC Press LLC

Chapter 1

PC Graphics Overview

Topics:
• History and evolution of PC graphics

• Technologies

• Applications

• Development platforms

• The state-of-the-art

This first chapter is a brief historical summary of the evolution of PC graphics, a short
list of graphics-related technologies and fields of application, and an overview of the
state-of-the-art. A historical review is necessary in order to understand current PC
graphics technologies. What the PC is today as a graphical machine is the result of a
complex series of changes, often influenced by concerns of backward compatibility
and by commercial issues. A review of graphics hardware technologies is also neces-
sary because the graphics programmer usually works close to the metal. The hard-
ware intimacy requires a clear understanding the how a binary value, stored in a
memory cell, is converted into a screen pixel. The chapter also includes a description
of some of the most important applications of computer graphics and concludes with a
presentation of the graphics technologies and development platforms for the PC.

1.1 History and Evolution
The state-of-the-art computer is a graphics machine. It is typically equipped with a
high-resolution display, a graphics card or integral video system with 3D capabilities,
and a processor and operating system that support a sophisticated graphical user in-
terface. This has not always been the case. In the beginning computers were
text-based. Their principal application was processing text data. The typical source of
input was a typewriter-like machine called a teletype terminal or TTY. Output was pro-
vided by a line printer that operated by means of a mechanical arrangement of small
pins that noisily produced an approximate rendering of the alphabetic characters. It
was not until the 1960s that cathode-ray tube technology (CRT) found its way from televi-

sion into computers. We start at this technological point.

© 2003 by CRC Press LLC

1.1.1 The Cathode-Ray Tube
The CRT display consists of a glass tube whose interior is coated with a specially for-
mulated phosphor. When the phosphor-coated surface is struck by an electron beam it
becomes fluorescent.. In computer applications CRT displays are classified into three
groups: storage tube, vector refresh, and raster-scan.

The storage tube CRT can be used both as a display and as a storage device, since
the phosphor image remains visible for up to 1 hour. To erase the image the tube is
flooded with a voltage that turns the phosphor back to its dark state. One limitation
is that specific screen areas cannot be individually erased. This determines that in
order to make a small change in a displayed image, the entire CRT surface must be
redrawn. Furthermore, the storage tube technology display has no color capabilities
and contrast is low. This explains why storage tube displays have seldom been used
in computers, and never in microcomputers.

Computers were not the first machines to use the cathode-ray tubes for graphic
display. The oscilloscope, a common laboratory apparatus, performs operations on
an input signal in order to display the graph of the electric or electronic wave on a
fluorescent screen

The vector-refresh display, on the other hand, uses a short-persistence phosphor
whose coating must be reactivated by the electron beam. This reactivation, called
the refresh, takes place at a rate of 30 to 50 times per second. The vector-refresh
system also requires a display file and a display controller. The display file is a mem-
ory area that holds the data and instructions for drawing the objects to be displayed.
The display controller reads this information from the display file and transforms it
into digital commands and data which are sent to the CRT. Figure 1-1 shows the fun-
damental elements of a vector refresh display system.

Figure 1-1 Vector-Refresh Display

x-axis
deflection

coils

display
file

electron
gun

y-axis
deflection

coils

DISPLAY CONTROLLER
electron
beam

phosphor
coating

© 2003 by CRC Press LLC

The disadvantages of the vector-refresh CRT are its high cost and limited color
capabilities. Vector refresh display technology has not been used in the PC.

During the 1960s Conrac Corporation developed a computer image processing
technology, known as raster-scan graphics. Their approach took advantage of the
methods of image rendering and refreshing used in television receivers. In a ras-
ter-scan display the electron beam follows a horizontal line-by-line path, starting at
the top-left corner of the CRT surface. The scanning cycle takes place 50 to 70 times
per second. At the start of each horizontal line the controller turns on the electron
beam. The beam is turned off during the horizontal and vertical retrace cycles. The
scanning path is shown in Figure 1-2.

Figure 1-2 A Raster-Scan System

The raster-scan display surface is divided into a grid of individual dots, called
pixels. The term pixel was derived from the words picture and elements. In the
memory-mapped implementation of raster-scan technology, an area of RAM is de-
voted to recording the state of each individual screen pixel. The simplest
color-coding scheme consists of using a single bit to represent either a white or a
black pixel. Conventionally, if the memory bit is set, the display scanner renders the
corresponding pixel as white. If the memory bit is cleared, the pixel is left dark. The
area of memory reserved for the screen display is usually called the frame buffer or
the video buffer. Figure 1-3, on the following page, shows the elements of a mem-
ory-mapped video system.

Implementing color pixels requires a more elaborate scheme. In color systems
the CRT is equipped with one electron gun for each color that is used to activate the
pixels. Usually there are three color-sensitive electron guns: one for red, one for
green, and one for blue. Data for each of the three colors must be stored separately.
One approach is to have a separate memory map for each color. A more common so-
lution is to devote bit fields or storage units to each color. For example, if one mem-
ory byte is used to encode the pixel’s color attributes, three bits can be assigned to
encode the red color, two bits to encode the green color, and three bits for the blue
color. One possible mapping of colors to pixels is shown in Color Figure 1.

image
scanning

horizontal
retrace

vertical
retrace

© 2003 by CRC Press LLC

Figure 1-3 A Memory-Mapped System

In Color Figure 1 one memory byte has been divided into three separate bit fields.
Each bit field encodes the color values that are used to render a single screen pixel.
The individual bits are conventionally labeled with the letters R, G, and B, according
to the color they represent. Since eight combinations can be encoded in a three-bit
field, the blue and red color components can each have eight levels of intensity. In
this example we have used a two-bit field to encode the green color; therefore it can
only be rendered in four levels of intensity. The total number of combinations that
can be encoded in 8 bits is 256, which is also the number of different color values
that can be represented in one memory byte. The color code is transmitted by the
display controller hardware to a Digital-to-Analog converter (DAC), which, in turn,
transmits the color video signals to the CRT.

In the PC all video systems are raster-scan and memory mapped. The advantages
of a raster-scan display are low cost, color capability, and easy programmability.
One major disadvantage is the grainy physical structure of the display surface that
results from the individual screen dots. Among other aberrations, the dot pattern
causes lines that are not vertical, horizontal, or at exactly 45 degrees to exhibit a
staircase effect. Raster-scan systems also have limitations in rendering animation.
Two factors contribute to this problem: first, all the screen pixels within a rectangu-
lar area must be updated with each image change. Second, in order to ensure
smoothness, the successive images that create the illusion of motion must be
flashed on the screen at a fast rate. These constraints place a large processing load
on the microprocessor and the display system hardware.

1.2 Short History of PC Video
The original IBM Personal Computer was offered in 1981 equipped with either a Mono-

chrome Display Adapter (MDA), or a graphics system named the Color/Graphics

Monitor Adapter (CGA). The rationale for having two different display systems was
that users who intended to use the PC for text operations would prefer a machine
equipped with the MDA video system, while those requiring graphics would like one
equipped with the CGA card. But, in reality, the CGA graphics system provided only
the most simple and unsophisticated graphics. The card was also plagued with inter-
ference problems which created a screen disturbance called “snow.” However, the

VIDEO MEMORY

Video
controller

Video
display

© 2003 by CRC Press LLC

fact that the original IBM Personal Computer was furnished with an optional graphics
system signaled that the industry considered video graphics as an essential part of
microcomputing.

During the past 20 years PC video hardware has been furnished in an assortment
of on-board systems, plug-in cards, monitors, and options manufactured and mar-
keted by many companies. In the following sections we briefly discuss better known
PC video systems. Systems that were short lived or that gained little popularity, such
as the PCJr, the IBM Professional Graphics Controller, the Multicolor Graphics Ar-

ray, and the IBM Image Adapter A, are not mentioned.

1.2.1 Monochrome Display Adapter
The original alphanumeric display card designed and distributed by IBM for the Per-
sonal Computer was sold as the Monochrome Display and Printer Adapter since it in-
cluded a parallel printer port. The MDA could display the entire range of alphanumeric
and graphic characters in the IBM character set, but did not provide pixel-level graph-
ics functions. The MDA was compatible with the IBM PC, PC XT, and PC AT, and some
of the earlier models of the PS/2 line. It could not be used in the PCjr, the PC Convert-
ible, or in the microchannel PS/2 machines. The card required a special monochrome
monitor of long-persistence (P39) phosphor. These monitors, which produced very
pleasant text, were available with either green or amber screens. The video hardware
was based on the Motorola 6845 CRT controller. The system contained 4K of on-board
video memory, mapped to physical address B0000H.

The MDA was designed as a pure alphanumeric display: the programmer could
not access the individual screen pixels. Video memory is mapped as a grid of charac-
ter and attribute bytes. The character codes occupy the even-numbered bytes in
adapter memory, and the display attributes the odd-numbered bytes. This special
storage and display scheme was conceived to save memory space and to simplify
programming. Figure 1-4 shows the cell structure of the MDA video memory space
and the bitmap for the attribute cells.

Figure 1-4 Memory Mapping and Attributes in the MDA Adapter

� � � � � � � � ATTRIBUTE BITMAP
CHARACTER COLOR
foreground/background
000 000 = nondisplay
000 111 = normal
111 000 = reverse video
000 001 = underline

1 = high intensity
0 = normal intensity

1 = blinking
0 = not blinking

MDA Video Memory

	
 	
 	

	
 	
 	

���������

���������

B0000H

B0F9FH

LEGEND:
c = character cell
a = attribute cell

© 2003 by CRC Press LLC

1.2.2 Hercules Graphics Card
An aftermaket version of the MDA, developed and marketed by Hercules Computer
Technologies, was called the Hercules Graphics Card (HGC). HGA emulates the
monochrome functions of the MDA, but can also operate in a graphics mode. Like the
MDA, the HGC includes a parallel printer port. Because of its graphics capabilities, the
Hercules card was often preferred over the IBM version. In the HGA the display buffer
consists of 64K of video memory. In alphanumeric mode the system sees only the 4K
required for text mode number 7. However, when the HGC is in the graphics mode, the
64K are partitioned as two 32K graphics pages located at physical addresses B0000H
to B7FFFH and B8000H to BFFFFH. Graphic applications can select which page is dis-
played.

1.2.3 Color Graphics Adapter
The Color Graphics Adapter (CGA), released early in 1982, was the first color and
graphics card for the PC. The CGA operates in seven modes which include mono-
chrome and color graphics. Mode number 0 is a 40 columns by 25 rows monochrome
alphanumeric mode. In Mode 0 text characters are displayed in 16 shades of grey.
Characters are double width and 40 can be fitted on a screen line. Graphics mode num-
ber 6 provides the highest resolution, 640 horizontal by 200 vertical pixels.

One notable difference between the CGA and the MDA is the lower quality text
characters of the color card. In a raster-scan display the visual quality of the text
characters is related to the size of the respective character cells. In the MDA each
character is displayed in a box of 9-by-14 screen pixels. In the CGA the character
box is of 8-by-8 pixels. The resulting graininess of the CGA text characters was so
disturbing that many users considered the card unsuitable for text operations.

The CGA was designed so that it could be used with a standard television set;
however, it performed best when connected to an RGB color monitor. Timing and
control signals were furnished by a Motorola 6845 CRT controller, identical to the
one used in the MDA. The CGA contains 16K of memory, which is four times the
memory in the MDA. This makes it possible for the CGA to simultaneously hold data
for four full screens of alphanumeric text. The CGA video buffer is located at physi-
cal address B8000H. The 16K memory space in the adapter is logically divided into
four 1K areas, each of which holds up to 2000 characters with their respective attrib-
utes. The memory-to-pixel mapping in the CGA is shown in Figure 1-5.

Video memory in the CGA text modes consists of consecutive character and at-
tribute bytes, as in the MDA. The mapping of the attribute bits in the black and white
alphanumeric modes is identical to the one used in the MDA, but in color alphanu-
meric modes the attribute bits are mapped differently.

The CGA suffers from a form of screen interference, popularly called snow. This
irritating effect results from CGA’s use of RAM chips (called dynamic RAMs) which
are considerably slower than the static RAMs used in the MDA card. In a CGA sys-
tem, if the CPU reads or writes to the video buffer while it is being refreshed by the
CRT Controller, a visible screen disturbance takes place. The solution is to synchro-
nize screen updates with the vertical retrace signal generated by the 6845 controller.

© 2003 by CRC Press LLC

This is possible during a short time interval, called the vertical retrace cycle. Since
the duration of the vertical retrace is barely sufficient to set a few pixels, rendering
is considerably slowed down by this synchronization requirement. Furthermore,
during screen scroll operations the display functions must be turned off while the
buffer is updated. This causes a disturbing screen flicker.

Figure 1-5 Memory-to-Pixel Mapping in the CGA Color Alpha Modes

1.2.4 Enhanced Graphics Adapter

The Enhanced Graphics Adapter (EGA) was introduced by IBM in 1984 as an alterna-
tive to the much maligned CGA card. The EGA could emulate most of the functions and
all the display modes of both the CGA and the MDA. At the same time, EGA had a
greater character definition in the alphanumeric modes than the CGA, higher resolu-
tion in the graphics modes, and was not plagued with the snow and flicker problems.
EGA can drive an Enhanced Color Display with a maximum graphics resolution of
640-by-350 pixels.

EGA introduced four new graphics modes, sometimes called the enhanced graph-

ics modes. These modes are numbered 13 through 16. The highest graphics resolu-
tion is obtained in the modes numbers 15 and 16, which displayed 640-by-350 pixels.
The EGA used a custom video controller chip with different port and register assign-
ments than those of the Motorola 6845 controller used in the MDA and CGA cards.
The result is that programs that access the MDA and CGA 6845 video controller di-
rectly do not work on the EGA. EGA was furnished with optional on-board RAM in
blocks of 64K. In the minimum configuration the card had 64K of video memory, and
256K in the maximum one.

� � � � � � � �

r g b I R G B

ATTRIBUTE BITMAP

FOREGROUND COLOR
0000 = black 0001 = blue
0010 = green 0011 = cyan
0100 = red 0101 = magenta
0110 = brown 0111 = light gray
1000 = dark gray 1001 = light blue

BACKGROUND COLOR
000 = black 001 = blue
010 = green 011 = cyan
100 = red 101 = magenta
110 = brown 111 = light gray

1 = blinking
0 = not blinking

1010 = light green 1011 = light cyan
1100 = light red 1101 = light magenta
1110 = yellow 1111 = white

COLOR CODES
I = intensity

R(r) = red
G(g) = green
B(b) = blue

© 2003 by CRC Press LLC

EGA systems had several serious limitation. In the first place, EGA supported
write operations to most of its internal registers, but not read operations. This made
it virtually impossible for software to detect and preserve the state of the adapter,
which in turn, made EGA unsuitable for memory resident applications or for
multitasking or multiprogramming environments. Another limitation of the EGA is
related to its unequal definitions in the vertical and horizontal planes; this problem
is also present in the HGC and the CGA cards. In an EGA, equipped with a typical
monitor, the vertical resolution in graphic modes 15 and l6 is approximately 54 pix-
els per inch and the horizontal resolution approximately 75 pixels per inch. This
gives a ratio of vertical to horizontal definition of approximately 3:4. Although not
as bad as the 2:3 ratio of the HGC, the disproportion still determines that a pixel pat-
tern geometrically representing a square is displayed on the screen as a rectangle
and the pattern of a circle is displayed as an ellipse. The geometrical aberration
complicates pixel path calculations, which must take this disproportion into ac-
count and make the necessary adjustments.

1.3 PS/2 Video Systems
The PS/2 line of microcomputers was released by IBM in 1987. It introduced several
new features, including a new system bus and board connectors, named the
microchannel architecture, a 3.5-inch diskette drive with 1.44 megabytes of storage,
and an optional multitasking operating system named OS/2, which is now virtually de-
funct. Machines of the PS/2 line came equipped with one of two new video graphics
systems, while a third one was available as an option.

The new video standards for the PS/2 line were the Multicolor Graphics Array

(MCGA), the Video Graphics Array (VGA), and the 8514/A Display Adapter. The
most notable improvement of the video hardware in the PS/2 systems was that IBM
changed the display driver technology from digital to analog. The one drawback was
that the monitors of the PC line were incompatible with the PS/2 computers, and
vice versa. The main advantage of analog display technology is a much larger color
selection. Another important improvement is their symmetrical resolution, that is,
the screen resolution is the same in the vertical as in the horizontal planes. Symmet-
rical resolution simplifies programming by eliminating geometrical aberrations dur-
ing pixel plotting operations. The aspect ratio of the PS/2 monitors is 4:3, and the
best resolution is 640-by-480 pixels.

1.3.1 Video Graphics Array

Video Graphics Array (VGA) is the standard video display system for the IBM Personal
System/2 computers models 50, 50z, 60, 70, and 80. IBM first furnished VGA on the sys-
tem board. VGA comes with 256K of video memory, which can be divided into four 64K
areas, called the video maps or bit planes. The system supports all the display modes
of the MDA, CGA, and the EGA cards of the PC family. In addition, VGA introduced
graphics mode number 18, with 640-by-480 pixel resolution in 16 colors. The effective
resolution of the text modes is 720 by 400. In order to display text in a graphics mode,
three text fonts with different box sizes could be loaded from BIOS into the adapter.
VGA soon became available as an adapter card for non-IBM machines. The video tech-
nology introduced with VGA continues to be the PC video standard to this day.

© 2003 by CRC Press LLC

1.3.2 8514/A Display Adapter
The 8514/A Display Adapter is a high-resolution graphics system designed for the PS/2
line. The tchnology was developed in the United Kingdom, at the IBM Hursley Labora-
tories. The 8514/A system comprises not only the display adapter, but also the 8514
Color Display and an optional Memory Expansion Kit. The original 8514/A is compati-
ble only with PS/2 computers that use the microchannel bus. It is not compatible with
machines of the PC line, with the PS/2 models 25 and 30, or with non-IBM computers
that do not use the microchannel architecture. Other companies developed versions
of 8514/A which can be used in machines based on the ISA or EISA bus architecture.

The 8514/A Display Adapter consists of two sandwiched boards designed to be in-
serted into the special microchannel slot that has the auxiliary video extension. The
standard version comes with 512K of video memory. The memory space is divided
into four maps of 128K each. In the standard configuration 8514/A displays in 16 col-
ors, however, by installing the optional Memory Expansion Kit, video memory is in-
creased to 1 megabyte. The 1 megabyte space is divided into eight maps, extending
to 256 the number of available colors. The system is capable of four new graphic
modes not available in VGA. IBM named them the advanced function modes. One of
the new modes has 640-by-480 pixel definition, and the remaining three modes have
1024-by-768 pixels. 8514/A does not directly support the conventional alphanumeric
or graphics modes of the other video standards, since it executes only in the ad-
vanced function modes. In a typical system VGA automatically takes over when a
standard mode is set. The image is routed to the 8514/A monitor when an advanced
function mode is enabled. An interesting feature of the 8514/A adapter is that a sys-
tem containing it can operate with two monitors. In this case the usual setup is to
connect the 8514 color display to the 8514/A adapter and a standard monitor to the
VGA. Figure 1-6 shows the architecture of a VGA/8514A system.

Figure 1-6 Architecture of a VGA/8514A Video System

VGA
controller

VGA

8514/A

EPROM

VGA
bit planes

8514/A
bit planes

Mode
switch

8514/A
controller

VGA
DAC

8514/A
DAC

VGA
monitor

8514/A
monitor

© 2003 by CRC Press LLC

A feature of 8514/A, which presaged things to come, is that it contains a dedicated
graphics chip that performs as a graphics coprocessor. Unlike previous systems, in
8514/A the system microprocessor cannot access video memory; instead this func-
tion is left to the graphic coprocessor. The greatest advantage of this setup is that it
improves performance by offloading the graphics functions from the CPU. The
8514/A can be programmed through a high-level graphics function package called
the Adapter Interface, or AI. There are a total of 59 drawing primitives in the AI, ac-
cessible through a software interrupt.

Approximately 2 years after the introduction of 8514/A, IBM unveiled another
high-performance, high-priced graphics board, designated the Image Adapter/A.
The Image Adapter/A is compatible with the 8514/A at the Adapter Interface level
but not at the register level. Image Adapter/A was short-lived due to its high price
tag, as well as to the fact that shortly thereafter IBM released its new XGA technol-
ogy.

1.3.3 Extended Graphics Array
In September 1990, IBM disclosed preliminary information on a new graphics stan-
dard designated the Extended Graphics Array, or XGA. Like its predecessor the
8514-A, XGA hardware was developed in the UK. Two XGA configurations were imple-
mented: an adapter card and a motherboard version. In 1992, IBM released a
non-interlaced version of the XGA designated as XGA-2 or XGA-NI (non-interlaced).
The XGA adapter is compatible with PS/2 microchannel machines equipped with the
80386 or 486 CPU. The system is integrated in the motherboard of the IBM Models 90
XP 486, in the Model 57 SLC, and furnished as an adapter board in the Model 95 XP 486.
In 1992, Radius Incorporated released the Radius XGA-2 Color Graphics Card for
computers using the ISA or EISA bus. Other companies developed versions of the XGA
system for microchannel and non-microchannel computers. XGA is still found today
in some laptop computers. Figure 1-7 is a component diagram of the XGA system.

Figure 1-7 XGA Component Diagram

Graphics coprocessor

Sprite controller

Attribute controller

Adapter ROM

Video
RAM

System Bus

Color look-up table
and DAC

Serializer

Memory and
CRT controller

XGA
monitor

© 2003 by CRC Press LLC

1.4 SuperVGA
The general characteristic of SuperVGA boards, as the name implies, is that they ex-
ceed the VGA standard in definition, color range, or both. The term SuperVGA is usu-
ally applied to enhancements to the VGA standard developed by independent
manufacturers and vendors. A typical SuperVGA card is capable of executing, not only
the standard VGA modes, but at least one additional mode with higher definition or
greater color range than VGA. These modes are usually called the SuperVGA En-

hanced Modes.

In the beginning, the uncontrolled proliferation of SuperVGA hardware led to
compatibility problems. Lack of standardization and production controls led to a sit-
uation in which the features of a card by one manufacturer were often incompatible
with those of a card produced by another company. This situation often led to the
following problem: an application designed to take advantage of the enhancements
in a particular SuperVGA system would not execute correctly in another systems.
An attempt to solve this lack of standardization resulted in several manufacturers
of SuperVGA boards forming the Video Electronics Standards Association (VESA).
In October 1989, VESA made public its first SuperVGA standard. This standard de-
fined several enhanced video modes and implemented a BIOS extension designed to
provide a few fundamental video services in a hardware-compatible fashion.

1.4.1 SuperVGA Architecture
In VGA systems the video memory space extends from A0000H to BFFFFH. The 64K
area starting at segment base A000H is devoted to graphics, while the 64K area starting
at segment base B000H is devoted to alphanumeric modes. This makes a total of 128K
memory space reserved for video operations. But the fact that systems could be set up
with two monitors, one in an alphanumeric mode and the other one in a color mode, ac-
tually limited the graphics video space to 64K.

Not much video data can be stored in a 64K. For example, if each screen pixel is
encoded in one memory byte, then the maximum screen data that can be stored in
65,536 bytes corresponds to a square screen with 256 pixels on each side. Thus, a
VGA system in 640-by-480 pixels resolution, using one data byte per pixel, requires
307,200 bytes for storing a single screen. Consider that in the Intel segmented archi-
tecture of the original PCs each segment consisted of a 64K space. In this case ad-
dressing 307,200 pixels requires making five segment changes.

VGA designers were able to compress video data by implementing a latching
scheme that resulted in a semi-planar architecture. For example, in VGA mode num-
ber 18, with a resolution of 640-by-480 pixels, each pixel can be displayed in 16 dif-
ferent colors. To encode 16 color combinations requires a 4-bit field, and a total
memory space of 153,600 bytes. However, the latching mechanism allows mapping
each of the four color attributes to the same base address, all apearing to be located
in a common 64K address space.

When the VGA was first released, engineers noticed that some VGA modes con-
tained surplus memory. For example, in modes with 640-by-480 pixels resolution the
video data stored in each map takes up 38,400 bytes of the available 64K. This leaves

© 2003 by CRC Press LLC

27,136 unused bytes. The original idea of enhancing the VGA system was based on
using this surplus memory to store video data. It is possible to have an 800-by-600
pixel display divided into four maps of 60,000 bytes each, and yet not exceed the 64K
space allowed for each color map, nor the total 265K furnished with the VGA sys-
tem. To graphics systems designers, a resolution of 800 by 600 pixels, in 16 colors,
appeared as a natural extension to VGA mode number 18. This new mode, later des-
ignated as mode 6AH by the VESA SuperVGA standard, could be programmed in a
similar manner as VGA mode number 18. The enhancement, which could be
achieved with minor changes in the VGA hardware, provided a 36 percent increase
in the display area.

1.4.2 Bank-Switched Memory
The memory structure for VGA 256-color mode number 19 is based, not on a
bitmapped multiplane scheme, but in a much simpler format that maps a single mem-
ory byte to each screen pixel. This scheme is shown in Figure 1-8.

Figure 1-8 Byte-to-Pixel Video Memory Mapping Scheme

In byte-to-pixel mapping 256 color combinations can be directly encoded into a
data byte, which correspond to the 256 DAC registers of the VGA hardware. The
method is straightforward and uncomplicated; however, if the entire video space is
to be contained in 64K, the maximum resolution is limited to 65,536 pixels. This
means that a rectangular screen of 320-by-200 pixels nearly fills the allotted 64K.

In a segment architecture machine, if the resolution of a 256-color mode is to ex-
ceed 65,536 pixels it is necessary to find other ways of mapping video memory into
64K of system RAM. The mechanism adopted by the SuperVGA designers is based on
a technique known as bank switching. In bank-switched systems the video display
hardware maps several 64K-blocks of RAM to different locations in video memory.
In the PC addressing of the multi-segment space is by means of a hardware mecha-
nism that selects which video memory area is currently located at the system’s aper-
ture. In the SuperVGA implementation the system aperture is usually placed at
segment base A000H. The entire process is reminiscent of memory page switching
proposed in the LIM (Lotus/Intel/Microsoft) Extended Memory scheme. Figure 1-8
shows mapping of several memory banks to the video space and the map selection
mechanism for CPU addressing.

� � � � � � � � � � � � � � � �

byte boundary byte boundary

VIDEO MEMORY

© 2003 by CRC Press LLC

Figure 1-9 SuperVGA Banked-Switched Memory

In the context of video system architecture, the term aperture is often used to de-
note the CPU window into the system’s memory space. For example, if the address-
able area of video memory starts at physical address A0000H and extends to
AFFFFH, we say that the CPU has a 64K aperture into video memory (10000H =
64K). In Figure 1-10 we see that the bank selector determines which area of video
memory is mapped to the processor’s aperture. This determines the video display
area that can be updated by the processor. In other words, in the memory banking
scheme the processor cannot access the entire video memory at once. In the case of
Figure 1-10, the graphics hardware has to perform five bank switches in order to up-
date the entire screen.

1.4.3 256-Color Extensions

The SuperVGA alternative for increasing definition beyond the VGA limit is based on
the banking mechanism shown in Figure 1-8. This scheme, in which a memory byte en-
codes the 256 color combinations for each screen pixel, does away with the program-
ming complications that result from mapping pixel colors to bit fields, as in the
high-resolution VGA modes previously mentioned. At the same time, bank switching
introduces some new complexities of its own, one of which is the requirement of a
bank selection device. In summary, the SuperVGA approach to extending video mem-
ory on the PC has no precedent in CGA, EGA, or VGA systems. It is not interleaved nor
does it require memory planes or pixel masking. Although it is similar to VGA mode
number 19 regarding color encoding, VGA mode number 19 does not use bank switch-
ing.

1.5 Graphics Coprocessors and Accelerators
A group of video systems based on dedicated graphics chips is perhaps the one most
difficult to characterize and delimit. They can be roughly described as those systems
in which graphics performance is enhanced by means of specialized graphics hard-
ware that operates independently from the CPU. The enormous variations in the
functionalities and design of graphics accelerators and coprocessors makes it impos-
sible to list the specific features of these systems. Here we mention a few systems of
historical interest in the evolution of PC graphics.

bank
selectorVIDEO AREA MAPPED

TO BANK 1

VIDEO AREA MAPPED
TO BANK 0

VIDEO AREA MAPPED
TO BANK 2

VIDEO AREA MAPPED
TO BANK 3

VIDEO AREA MAPPED
TO BANK 4

MEMORY
BANKS

(bank 1 selected)

A0000H

AFFFFH

© 2003 by CRC Press LLC

1.5.1 The TMS340 Coprocessor

One of the first full-featured dedicated graphics coprocessors used in the PC was the
TMS 340 graphics coprocessor developed by Texas Instruments. The chip was intro-
duced in 1986 and an upgrade, labeled TMS 34020, in 1990. The project was not a com-
mercial success and in 1993 Texas Instruments started discouraging the development
of new products based on the TMS340 chips. However, from 1988 to 1993 these
coprocessors were incorporated into many video products, including several
high-end video adapters, some of which were capable of a resolution of 1280-by-1024
pixels in more than 16 million colors. These products, now called true color or 24-bit
color cards, furnished photographic-quality images. The image quality of
coprocessor-based systems was often sufficient for image editing, prepress, desktop
publishing, CAD, and other high-end graphics applications.

Not all coprocessor-based graphics systems marketed at the time used the TMS
340. For example, the Radius Multiview 24 card contained three 8514/A-compatible
chips, while the RasterOps Paintboard PC card was based on the S3. But it is safe to
state that the TMS 340 and its descendants dominated the true-color field at the
time; of ten true color cards reviewed in the January 1993 edition of Windows Maga-

zine, seven were based on the TMS 340.

The TMS 340 was optimized for graphics processing in a 32-bit environment. The
technology had its predecessors in the TI’s 320 line of digital signal processing
chips. The following are the distinguishing features of the TMS340 architecture:

1. The instruction set includes both graphics and general-purpose instructions. This
made the TMS340 a credible stand-alone processor.

2. The internal data path is 32-bits wide and so are the arithmetic registers. The physical
address range is 128 megabytes.

3. Pixel size is programmable at 1, 2, 4, 8, 16, or 32 bits.

4. Raster operations includes 16 boolean and 6 arithmetic options.

5. The chip contains 30 general purpose 32-bit registers. This is approximately four times
as many registers as in an Intel 80386.

6. The 512-byte instruction cache allows the CPU to place a considerable number of in-
structions in the TMS340 queue while continuing to execute in parallel.

7. The coprocessor contains dedicated graphics instructions to draw single pixels and
lines, and to perform twodimensional pixels array operations, such as pixBlts, area
fills, and block transfers, as well as several auxiliary graphics functions.

The limited commercial success of the TMS 340-based systems is probably due to
the slow development of graphics applications that took advantage of the chip’s ca-
pabilities. Systems based on the TM 340 sold from $500 to well over $1000 and they
had little commercial software support. The most important consequence of this
technology was demonstrating that the PC was capable of high-quality,
high-performance graphics.

© 2003 by CRC Press LLC

1.5.2 Image Properties

An image is a surrogate of reality. Its main purpose it to convey visual information to the viewer.
In computer technology the graphics image is usually a dot pattern displayed on a CRT monitor.
Some of the characteristics of the computer image can be scientifically measured or at least
evaluated objectively. But the human element in the perception of the graphic image introduces
factors that are not easily measured. For example, aesthetic considerations can help us decide
whether a certain graphic image “looks better” than another one, yet another image can give us
an eyestrain headache that cancels its technological virtues.

Brightness and Contrast

Luminance is defined as the light intensity per unit area reflected or emitted by a surface. The
human eye perceives objects by detecting differences in levels of luminance and color. In-
creasing the brightness of an object also increases the acuity with which it is perceived. How-
ever, it has been found that the visibility or legibility of an image is more dependent on contrast
than on its absolute color or brightness.

The visual acuity of an average observer sustains an arc of approximately 1 minute.
Therefore, the average observer can resolve an object that measures 5 one-thousands of an
inch across when the image is displayed on a CRT and viewed at a distance of 18 inches.
However, visual acuity falls rapidly with decreased luminance levels and with reduced con-
trast. This explains why ambient light, reflected off the surface of a CRT, decreases legibility.

A peculiarity of human vision is the decreasing ability of the eye to perceive luminance
differences or contrasts as the absolute brightness increases. This explains why the absolute
luminance values between object and background are less important to visual perception
than their relative luminance, or contrast.

Color

Approximately three-fourths of the light-perceiving cells in the human eye are color-blind,
which determines that luminance and contrast are more important to visual perception than
color. Nevertheless, color is generally considered a valuable enhancement to the graphics im-
age. The opinion is probably related to the popular judgment that color photography, cinema-
tography, and television are to be preferred over the black-and-white versions.

Resolution

The quality of a raster-scan CRT is determined by the total number of separately addressable
pixels contained per unit area. This ratio, called the resolution, is usually expressed in pix-
els-per-inch. For example, a CRT with 8-inch rows containing a total of 640 pixels per row has a
horizontal resolution of 80 pixels per inch, while a CRT measuring 6 inches vertically and con-
taining a total of 480 pixels per column has a vertical resolution of 80 pixels per inch.

Aspect Ratio

The aspect ratio of a CRT display is the relation between the horizontal and vertical dimensions
of the image area. For example, a viewing surface measuring 8 inches horizontally and 6 inches
vertically, is said to have a 4:3 aspect ratio. An 8t inch by 6 inch viewing surface has a 1:1 aspect
ratio. Figure 1-10, on the following page, shows a CRT with a 4:3 aspect ratio.

© 2003 by CRC Press LLC

Figure 1-10 CRT with a 4:3 Aspect Ratio

1.6 Graphics Applications
Applications of computer graphics in general, and of 3D graphics in particular, appear
to be limitless. The range of possible applications seems to relate more to economics
and to technology than to intrinsic factors. It is difficult to find a sphere of computing
that does not profit from graphics in one way or another. This is true of both applica-
tions and operating systems. In today’s technology, graphics is the reality of comput-
ing. In PC programming graphics are no longer an option, but a standard feature that
cannot be ignored.

1.6.1 Computer Games

Since the introduction of Pac Man in the mid 1980s, computer games have played an
important role in personal entertainment. More recently we have seen an increase in
popularity of dedicated computer-controlled systems and user-interaction devices,
such as those developed by Nintendo and Sega. In the past 3 or 4 years, computer
games have gone through a remarkable revival. The availability of more powerful
graphics systems and of faster processors, as well as the ingenuity and talent of the de-
velopers, have brought about the increase in the popularity of this field. Computer
games are one of the leading sellers in today’s software marketplace, with sales sup-
ported by an extensive subculture of passionate followers. Electronic games are al-
ways at the cutting edge of computer graphics and animation. A game succeeds or fails
according to its performance. It is in this field where the graphics envelope is pushed
to the extreme. 3D graphics technologies relate very closely to computer games. In
fact, it can be said that computer games have driven graphics technology.

1.6.2 Graphics in Science, Engineering, and Technology

Engineering encompasses many disciplines, including architecture, and mechanical,
civil, and electrical, and many others. Virtually every field of engineering finds appli-
cation for computer graphics and most can use 3D representations. The most gener-
ally applicable technology is computer-aided design (CAD), sometimes called

8

6

© 2003 by CRC Press LLC

computer-aided drafting. CAD systems have replaced the drafting board and the
T-square in the design of components for civil, electrical, mechanical, and electronic
systems. A few years ago, a CAD system required a mainframe or minicomputer with
high-resolution displays and other dedicated hardware. Similar capabilities can be
had today with off-the-shelf PC hardware and software. Most CAD packages now in-
clude 3D rendering capabilities.

These systems do much more than generate conventional engineering drawings.
Libraries of standard objects and shapes can be stored and reused. For example, a
CAD program used in mechanical engineering can store nut and bolt designs, which
can be re-sized and used as needed. The same applies to other frequently used com-
ponents and standard shapes. Color adds a visual dimension to computer-generated
engineering drawings, a feature that is usually considered too costly and difficult to
implement manually. Plotters and printers rapidly and efficiently generate
high-quality hardcopy of drawings. 3D CAD systems store and manipulate solid
views of graphics objects, which facilitates the production of perspective views and
projections. Wire-frame and solid modeling techniques allow the visualization of
real-world objects and contours. CAD systems can also have expertise in a particu-
lar field. This knowledge can be used to check the correctness and integrity of a de-
sign.

In architecture and civil engineering, graphics systems find many applications.
Architects use 3D modeling for displaying the interior and exterior of buildings. A
graphics technique known as ray tracing allows the creation of solid models that
show lighting, shading, and mirroring effects.

Computer graphics are used to predict and model system behavior. Simulation
techniques allow creating virtual representations of practically any engineered sys-
tem, be it mechanical, electrical, or chemical. Mathematical equations are used to
manipulate 3D representations and to predict behavior over a period of simulated

time. Graphics images, usually color-coded and often in 3D, are used to display
movement, and to show stress points or other dynamic features which, without this
technique, would have been left to the imagination.

Geographic Information Systems (GIS) computer graphics to represent, manipu-
late, and store geographic, cartographic, and other social data for the analysis of
phenomena where geographical location is an important factor. Usually, the amount
of data manipulated in a GIS is much larger than can be handled manually. Much of
this data is graphics imagery in the form of maps and charts. GIS systems display
their results graphically. They find application in land use and land management, ag-
riculture, forestry, wildlife management, archeology, and geology. Programmable
satellites and instruments allow obtaining multiple images that can later be used in
producing 3D images.

Remote sensing refers to collecting data at a distance, usually through satellites
and other spacecraft. Most natural resource mapping done today is by this technol-
ogy. As the resolution of remotely-sensed imagery increases, and their cost de-
creases, many more practical uses will be found for this technology.

© 2003 by CRC Press LLC

Automation and robotics also find extensive use for computer graphics. Com-
puter Numerical Control (CNC) and Computer Assisted Manufacturing (CAM) sys-
tems are usually implemented in a computer graphics environment. State-of-the-art
programs in this field display images in 3D.

1.6.3 Art and Design
Many artists use computer graphics as a development and experimental platform, and
some as a final medium. It is hotly debated whether computer-generated images can
be considered fine art, but there is no doubt that graphics technology is one of the
most powerful tools for commercial graphics and for product design. As CAD systems
have replaced the drafting board, draw and paint programs have replaced the artist’s
sketch pad. The commercial artist uses a drawing program to produce any desired ef-
fect with great ease and speed, and to experiment and fine tune the design. Com-
puter-generated images can be stretched, scaled, rotated, filled with colors, skewed,
mirrored, re-sized, extruded, contoured, and manipulated in many other ways. Photo
editing applications allow scanning and transforming bitmapped images, which can
later be vectorized and loaded into the drawing program or incorporated into the de-
sign as bitmaps.

Digital composition and typesetting is another specialty field in which computer
graphics has achieved great commercial success. Dedicated typesetting systems and
desktop publishing programs allow the creation of originals for publication, from a
brochure or a newsletter to a complete book. The traditional typesetting method
was based on “mechanicals” on which the compositor glued strips of text and im-
ages to form pages. The pages were later photographed and the printing plates man-
ufactured from the resulting negatives. Today, composition is done electronically.
Text and images are merged in digital form. The resulting page can be transferred
into a digital typesetter or used to produce the printing plates directly. The entire
process is based on computer graphics.

1.6.4 Business
In recent years a data explosion has taken place. In most fields more data is being gen-
erated than there are people to process it. Imagine a day in the near future in which 15
remote sensing satellites orbit the earth, each one of them transmitting an image every
15 minutes, of an area that covers 150 square miles. The resulting acquisition rate of an
image per minute is likely to create processing and storage problems, but perhaps the
greatest challenge will be to find ways of using this information. How many experts
will be required just to look at these images? Recently there have been just two or
three remote sensing satellites acquiring earth images and it is estimated that no more
than 10 percent of these images have ever been analyzed. Along this same line, busi-
nesses are discovering that they accumulate and store more data than can be used.
Data mining and data warehousing are techniques developed to find some useful
nugget of information in these enormous repositories of raw data.

Digital methods of data and image processing, together with computer graphics,
provide our only hope of ever catching up with this mountain of unprocessed data. A
business graph is used to compress and make available a large amount of informa-
tion, in a form that can be used in the decision-making process. Computers are re-

© 2003 by CRC Press LLC

quired to sort and manipulate the data and to generate these graphs. The field of
image processing is providing methods for operating on image data. Technologies
are being developed to allow computers to “look at” imagery and obtain useful infor-
mation. If we cannot dedicate a sufficient number of human experts to look at a
daily heap of satellite imagery, perhaps we will be able to train computers for this
task.

Computer-based command and control systems are used in the distribution and
management of electricity, water, and gas, in the scheduling of railways and aircraft,
and in military applications. These systems are based on automated data processing
and on graphics representations. At the factory level they are sometimes called pro-

cess controls. In both small and large systems, graphics displays are required to help
operators and experts visualize the enormous amount of information that must be
considered in the decision-making process. For example, the pilot of a modern-day
commercial aircraft can obtain, at a glance, considerable information about the air-
plane and its components as they are depicted graphically on a video display. This
same information was much more difficult to grasp and mentally process when it
originated in a dozen or more analog instruments.

Computer graphics also serve to enhance the presentation of statistical data for
business. Graphics data rendering and computer animation serve to make the pre-
sentation more interesting; for example, the evolution of a product from raw materi-
als to finished form, the growth of a real estate development from a few houses to a
small city, or the graphic depiction of a statistical trend. Business graphics serve to
make more convincing presentations of products or services offered to a client, as a
training tool for company personnel, or as an alternative representation of statisti-
cal data. In sales computer graphics techniques can make a company’s product or
service more interesting, adding much to an otherwise dull and boring description
of properties and features.

1.6.5 Simulations
Both natural and man-made objects can be represented in computer graphics. The op-
tical planetarium is used to teach astronomy in an environment that does not require
costly instruments and that is independent of the weather and other conditions. One
such type of computer-assisted device, sometimes called a simulator, finds practical
and economic use in experimentation and instruction. Simulators are discussed later
in this book, in the context of animation programming.

1.6.6 Virtual Reality
Technological developments have made possible a new level of user interaction with a
computing machine, called virtual reality. Virtual reality creates a digital universe in
which the user is immersed. This topic is also discussed in relation to computer anima-
tion.

1.6.7 Artificial Life
Artificial life, or ALife, has evolved around the computer modeling of biosystems. It
is based on biology, robotics, and artificial intelligence. The results are digital entities
that resemble self-reproducing and self-organizing biological life forms.

© 2003 by CRC Press LLC

1.6.8 Fractal Graphics
Natural surfaces are highly irregular. For this reason, many natural objects cannot be
represented by means of polygons or smooth curves. However, it is possible to repre-
sent some types of natural objects by means of a mathematical entity called a fractal.
The word fractal was derived from fractional dimensions.

1.7 State-of-the-Art in PC Graphics
During the first half of the nineties, PC graphics were mostly DOS-based. The versions
of Windows and OS/2 operating systems available lacked performance and gave pro-
grammers few options and little control outside of the few and limited graphics ser-
vices offered at the system level. Several major graphics applications were developed
and successfully marketed during this period, including professional quality CAD,
draw and paint, and digital typesetting programs for the PC. But it was not until the in-
troduction of 32-bit Windows, and especially after the release of Windows 95, that PC
graphics took off as a mainstream force.

The hegemony of Windows 95 and its successors greatly contributed to the cur-
rent graphics prosperity. At the end of the decade, DOS has all but disappeared from
the PC scene and graphics applications for the DOS environment have ceased to be
commercially viable. By providing graphics hardware transparency Windows has
made possible the proliferation of graphics coprocessors, adapters, and systems
with many dissimilar functions and fields of application. At the same time, the cost
of high-end graphics systems has diminished considerably.

From the software side three major forces struggle for domination of PC graph-
ics: DirectX, OpenGL, and several proprietary game development packages, of
which Glide is perhaps the best known.

1.7.1 Graphics Boards
PC graphics boards available at this time can be roughly classified by their functional-
ity into 2D and 3D accelerators, and by their interface into Peripheral Component In-

terconnect (PCI) and Accelerated Graphics Port (AGP) systems. The 16-bit Industry

Standard Architecture (ISA) expansion bus is in the process of being phased out and
few new graphics cards are being made for it. Table 1-1 compares the currently avail-
able PC system buses.

Table 1-1

Specifications of PC System Buses

BUS WIDTH CLOCK SPEED DATA RATE

ISA 16 bits 8 MHz (varies)
PCI 32 bits 33 MHz 132 MBps
AGP 1X 32 bits 66 MHz 264 MBps
AGP 2X 32 bits 133 MHz 528 MBps
AGP 4X 32 bits 266 MHz 1024 MBps

The PCI bus is present in many old-style Pentium motherboards and graphics
cards continue to be made for this interface. It allows full bus mastering and sup-

© 2003 by CRC Press LLC

ports data transfer rates in burst of up to 132MBps. Some PCI buses that use older
Pentium 75 to 150 run at 25 or 30MHz, but the vast majority operate at 33MHz. The
66MHz PCI is seen in specialized systems.

The AGP port is dedicated for graphics applications and quadruples PCI perfor-
mance. AGP technology is based on Intel’s 440LX and 440BX chipsets used in
Pentium II and Pentium III motherboards and on the 440 EX chipset designed for the
Intel Celeron processors. The AGP port interface is defined in Intel’s AGP4x proto-
col. A draft version of the AGP8x Interface Specification is currently in the public
review stage. This new standard provides a system-level attach point for graphics
controllers and doubles the bandwidth. At the same time it remains compatible with
connectors and interfaces defined in AGP4x.

The great advantage of AGP over its predecessors is that it provides the graphics
coprocessors with a high bandwidth access system memory. This allows applica-
tions to store graphics data in system RAM. 3D graphics applications use this addi-
tional memory by means of a process called direct memory execute (DIME) or AGP

texturing to store additional image data and to enhance rendering realism. How-
ever, since AGP systems do not require that graphics cards support texturing, this
feature cannot be taken for granted in all AGP boards. In fact, few graphics pro-
grams to date actually take advantage of this feature.

1.7.2 Graphics Coprocessors
While presently it is easy to pick AGP as the best available graphics bus for the PC, se-
lecting a graphics coprocessor is much more complicated. Several among half a dozen
graphics chips share the foreground at this time. Among them are the Voodoo line
from 3Dfx (Voodoo2 and Voodoo Banshee), Nvidia’s RIVA and GeForce processors,
MGA-G200, and S3 Savage 3D chips. All of these chips are used in top-line boards in
PCI and AGP forms. Other well known graphics chips are 3D Labs Permedia, S3’s
Virge, Matrox’s MGA-64, and Intel’s i740. Recently Nvidia announced their new
GeForce3 graphics processing unit with a 7.63GB/sec memory bandwith and other
state-of-the-art features. Several graphics cards and on-the-motherboard graphics
systems that use the GeForce3 chip are currently under development. Hercules Com-
puter Technologies 3DProphet III is one of the graphics cards that uses Nvidia’s
GeForce3.

1.7.3 CPU On-Board Facilities
Graphics, especially 3D graphics, is a calculation-intensive environment. The calculations
are usually simple and can be performed in integer math, but many operations are required
to perform even a simple transformation. Graphics coprocessors often rely on the main
CPU for performing this basic arithmetic. For this reason, graphics-rendering performance
is, in part, determined by the CPU’s mathematical throughput. Currently the mathematical
calculating engines are the math unit and the Multimedia Extension (MMX). The register
size of the math unit and the MMX were expanded in the Pentium 4 CPU.

In the older Intel processors the math unit (originally called the 8087 mathematical
coprocessor) was either an optional attachment or an optional feature. For example, you
could purchase a 486 CPU with or without a built-in math unit. The versions with the

© 2003 by CRC Press LLC

math unit were designated with the letters DX and those without it as SX. With the
Pentium the math unit hardware became part of every CPU and the programmer need
not be concerned about its presence. The math unit is a fast and efficient numerical cal-
culator that finds many uses in graphics programming. Since 486-based machines can be
considered obsolete at this time, our code can safely assume the presence of the Intel
math unit and take advantage of its potential.

In 1997, Intel introduced a version of their Pentium processor that contained 57 new
instructions and eight additional registers designed to support the mathematical calcula-
tions required in 3D graphics and multimedia applications. This additional unit was
named the Multimedia Extension or MMX. The Pentium II and later processors all in-
clude MMX. MMX is based on a the Single Instruction Multiple Data (SIMD) technology,
an implementation of parallel processing; it has a single instruction operating on multiple
data elements. In the MMX the multiple data is stored in integer arrays of 64 bits. The 64
bits can divided into 8 bytes, four packed words, two doublewords, or a single quadword.
The instruction set includes arithmetic operations (add, subtract, and multiply), compari-
sons, conversions, logical operations (AND, NOT, OR, and XOR), shifts, and data trans-
fers. The result is a parallel, simple, and fast calculating engine quite suitable for graphics
processing, especially in 3D.

1.8 3D Application Programming Interfaces
The selection of a PC graphics environment for our application is further complicated by
the presence of specialized application programming interfaces (APIs) furnished by the
various chip manufacturers. For example, 3Dfx furnishes the Glide API for their line of
graphics coprocessors. In recent years Glide-based games and simulations have been popu-
lar within the 3D gaming community. An application designed to take full advantage of the
capabilities of the 3Dfx accelerators is often coded using Glide. However, other graphics
coprocessors cannot run the resulting code, which makes the boards incompatible with the
software developed using Glide. Furthermore, Glide and Direct3D are mutually exclusive.
When a Glide application is running, Direct3D programs cannot start and vice versa.

1.8.1 OpenGL and DirectX

One 3D graphics programming interface that has attained considerable support is OpenGL,

developed by Silicon Graphics International (SGI). OpenGL, which stands for Open Graph-
ics Language, originated in graphics workstations and is now part of many system plat-
forms, including Windows 95, 98, and NT, DEC’s AXP, OpenVMS, and X Windows. This led
some to believe that OpenGL will be the 3D graphics standard of the future. In 1999
Microsoft and SGI joined in a venture that was, reportedly, to integrate OpenGL and
DirectX. The project, code named Fahrenheit, was later cancelled.

At this time the mainstream of 3D graphics programming continues to use Microsoft’s
DirectX. The main advantage offered by this package is portability and universal avail-
ability on the PC. DirectX functionality is part of Windows 95, 98, and NT and Microsoft
provides, free of charge, a complete development package that includes a tutorial, sup-
port code, and sample programs. Furthermore, developers are given license to provide
DirectX runtime code with their products with automatic installation that can be made
transparent to the user.

© 2003 by CRC Press LLC

Chapter 2

Polygonal Modeling

Topics:
• Vector and raster images

• Coordinate systems

• Polygonal representations

• Triangles and meshes

This chapter is about how graphics objects are represented and stored in a database.
The starting point of computer graphics is the representation of graphical objects. The
polygon is the primitive geometrical used in graphically representing objects. The
face of a newborn baby, the surface of a glass vase, or a World War II tank can all be
modeled using hard-sided polygons. Here we discuss the principles of polygonal rep-
resentations and modeling.

2.1 Vector and Raster Data
Computer images are classified into two general types: those defined as a pixel map
and those defined as one or more vector commands. In the first case we refer to raster

graphics and in the second case to vector graphics. Figure 2-1, on the following page,
shows two images of a cross, first defined as a bitmap, and then as a set of vector com-
mands.

The left-side image of Figure 2-1 shows the attribute of each pixel encoded in a
bitmap. The simplest scheme consists of using a 0-bit to represent a white pixel and
a 1-bit to represent a black pixel. Vector commands, on the other hand, refer to the
geometrical elements in the image. The vector commands in Figure 2-1 define the
image in terms of two intersecting straight lines. Each command contains the start
and end points of the corresponding line in a Cartesian coordinate plane that repre-
sents the system’s video display.

An image composed exclusively of geometrical elements, such as a line drawing
of a building, or a machine part, can usually be defined by vector commands. On the
other hand, a naturalistic representation of a landscape may best be done with a

© 2003 by CRC Press LLC

bitmap. Each method of image encoding, raster- or vector-based, has its advantages
and drawbacks. One fact often claimed in favor of vector representation is the re-
sulting memory savings. For example, in a video surface of 600-by-400 screen dots,
the bitmap for representing two intersecting straight lines encodes the individual
states of 240,000 pixels. If the encoding is in a two-color form, as in Figure 2-1, then
1 memory byte is required for each 8 screen pixels, requiring a 30,000-byte memory
area for the entire image. This same image can be encoded in two vector commands
that define the start and end points of each line. By the same token, to describe in
vector commands a screen image of Leonardo’s Mona Lisa would be more compli-
cated and memory consuming than a bitmap.

Figure 2-1 Raster and Vector Representation of a Graphics Object

In the 3D graphics rasterized images are mostly used as textures and back-
grounds. 3D rendering is based on transformations that require graphics objects de-
fined by their coordinate points. Software operates mathematically on these points
to transform the encoded images. For example, a geometrically defined object can
be moved to another screen location by adding a constant to each of its coordinate
points. In Figure 2-2 the rectangle with its lower left-most vertex at coordinates x =

1, y = 2, is translated to the position x = 12, y = 8, by adding 11 units to its x coordinate and

6 units to its y coordinate.

Figure 2-2 Translating an Object by Coordinate Arithmetic

0
1
2
3
4
5
6
7

7
6
5
4
3
2
1
0

7 6 5 4 3 2 1 0

0 1 2 3 4 5 6 7
IMAGE IN BITMAP:
08H, 08H, 08H, 0FFH
08H, 08H, 08H, 08H

IMAGE IN VECTOR COMMANDS:
line from x0, y4 to x7, y4
line from x4, y0 to x4, y7

y

x

y

x

�

� ��

�

© 2003 by CRC Press LLC

In Chapter 3 we explore geometrical image transformations in greater detail.

2.2 Coordinate Systems
The French mathematician René Descartes (1596-1650) developed a two-dimensional
grid that is often used for representing geometrical objects. In Descartes’s system the
plane is divided by two intersecting lines, known as the abscissa and the ordinate

axis. Conventionally, the abscissa is labeled with the letter x and the ordinate with the
letter y. When the axes are perpendicular, the coordinate system is said to be rectan-

gular; otherwise, it is said to be oblique. The origin is the point of intersection of the
abscissa and the ordinate axes. A point at the origin has coordinates (0,0). Coordi-
nates in the Cartesian system are expressed in parenthesis, the first element corre-
sponds to the x axis and the second one to the y axis. Therefore a point at (2,7) is
located at coordinates x = 2, y = 7. Figure 2-3 shows the rectangular cartesian plane.

Figure 2-3 Cartesian Coordinates

In Figure 2-3 we observe that a point on the x-axis has coordinates (x, 0) and a
point on the y-axis has coordinates (0, y). The origin is defined as the point with co-
ordinates (0, 0). The axes divide the plane into four quadrants, usually labeled coun-
terclockwise with Roman numerals I to IV. In the first quadrant x and y have positive
values. In the second quadrant x is negative and y is positive. In the third quadrant
both x and y are negative. In the fourth quadrant x is positive and y is negative.

The Cartesian coordinates plane can be extended to three-dimensional space by
adding another axis, usually labeled z. A point in space is defined by a triplet that ex-
presses its x, y, and z coordinates. Here again, a point at the origin has coordinates
(0, 0, 0), while a point located on the any of the three axes has zero coordinates on
the other two. In a rectangular coordinate system the axes are perpendicular. Each
pair of axes determines a coordinate plane: the xy-plane, the xz-plane, and the
yz-plane. The three planes are mutually perpendicular. A point in the xy-plane has
coordinates (x, y, 0), a point in the xz-plane has coordinates (x,0,z), and so on. By
the same token, a point not located on any particular plane has non-zero coordi-
nates for all three axes. Figure 2-4 shows the Cartesian 3D coordinates.

+y

-y

+x-x

origin
(0, 0)

quadrant I
(+x, +y)

quadrant II
(-x, +y)

quadrant III
(-x, -y)

quadrant IV
(+x, -y)

© 2003 by CRC Press LLC

http://www.itknowledgebase.net/books/1232/1678_FM.pdf

Figure 2-4 3D Cartesian Coordinates

The labeling of the axes in 3D space is conventional, although the most common
scheme is to preserve the conventional labeling of the x and y axis in 2D space, and
to add the z axis in the viewer’s direction, as in Figure 2-4. However, adopting the
axis labeling style in which positive x points to the right, and positive y points up-
ward, still leaves undefined the positive direction of the z axis. For example, we
could represent positive z-axis values in the direction of the viewer or in the oppo-
site one. The case in which the positive values of the z-axis are in the direction of
the viewer is called a right-handed coordinate system. The one in which the positive
values of the z-axis are away from the viewer is called a left-handed system. This
last system is consistent with the notion of a video system in which image depth is
thought to be inside the CRT. Left- and right-handed systems are shown in Figure 2-5

Figure 2-5 Left- and Right-Handed Coordinates

+y

+x

+z

origin
(0, 0, 0)

+y +y

+x +x

+z

+z

left-handed right-handed

© 2003 by CRC Press LLC

You can remember if a system is left- or right-handed by visualizing which hand
needs to be curled over the z-axis so that the thumb points in the positive direction.
In a left-handed system the left hand with the fingers curled on the z-axis has the
thumb pointing away from the viewer. In a right-handed system the thumb points to-
ward the viewer. This is shown in Figure 2-5.

3D modeling schemes do not always use the same axes labeling system. In some
the z-axis is represented horizontally, the y-axis in the direction of the viewer, and
the x-axis is represented vertically. In any case, the right- and left-handedness of a
system is determined by observing the axis that lays in the viewer’s direction, inde-
pendently of its labeling. Image data can be easily ported between different axes’ la-
beling styles by applying a rotation transformation, described later in this chapter.
In Figure 2-6 we have used a 3D Cartesian coordinate system to model a rectangular
solid with dimensions x = 5, y = 4, z = 3.

Figure 2-6 3D Representation of a Rectangular Solid

The table of coordinates, on the right side of the illustration, shows the location
of each vertex. Because the illustration is a 2D rendering of a 3D object, it is not pos-
sible to use a physical scale to determine coordinate values from the drawing. For
example, vertices p1 and p4 have identical x and y coordinates; however, they ap-
pear at different locations on the flat surface of the drawing. In other words, the im-
age data stores the coordinates points of each vertex; how these points are rendered
on a 2D surface depends on the viewing system adopted, also called the projection
transformation. Viewing systems and projections are discussed in Chapter 3.

An alternative visualization of the 3D Cartesian coordinate system is based on
planes. In this model each axes pair determines a coordinate plane. Thus, we can re-
fer to the xy-plane, the xz-plane, and the yz-plane. Like axes, the coordinate planes
are mutually perpendicular. This means that the z coordinate of a point p is the
value of the intersection of the z-axis with a plane through p that is parallel to the
yx-plane. If the planes intersect the origin, then a point in the xy-plane has zero
value for the z coordinate, a point in the yz-plane has zero value for the x coordi-
nate, and a point in the xz-plane has zero for the y coordinate. Figure 2-7 shows the
three planes of the 3D Cartesian coordinate system.

+y

+x

+z

p1 p2

p3p4

p5 p6

p8 p7

Coordinates of points
x y z

p1.. 0 0 0
p2.. 5 0 0
p3.. 5 0 3
p4.. 0 0 3
p5.. 0 4 0
p6.. 5 4 0
p7.. 5 4 3
p8.. 0 4 3

© 2003 by CRC Press LLC

Figure 2-7 3D Coordinate Planes

We have transferred to Figure 2-7 points p6 and p7 of Figure 2-6. Point p6 is lo-
cated on xy-plane 1, and point p7 in xy-plane 2. The plane labeled xy-plane 2 can be
visualized as the result of sliding xy-plane 1 along the z-axis to the position z = 3.
This explains why the x and y coordinates of points p6 and p7 are the same.

2.2.1 Modeling Geometrical Objects
Much of 3D graphics programming relates to representing, storing, manipulating, and
rendering vector-coded geometrical objects. In this sense, the problem of representa-
tion precedes all others. Many representational forms are in use; most are related to a
particular rendering algorithms associated with a graphics platform or development
package. In addition, representational forms determine data structures, processing
cost, final appearance, and editing ease. The following are the most frequently used:

1. Polygonal representations are based on reducing the object to a set of polygonal sur-
faces. This approach is the most popular one due to its simplicity and ease of render-
ing.

2. Objects can also be represented as bicubic parameteric patch nets. A patch net is a set
of curvilinear polygons that approximate the object being modeled. Although more
difficult to implement than polygonal representations, objects represented by
parameteric patches are more fluid; this explains their popularity for developing CAD
applications.

3. Constructive solid geometry (CSG) modeling is based on representing complex object
by means of simpler, more elementary ones, such as cylinders, boxes, and spheres.
This representation finds use in manufacturing-related applications.

4. Space subdivision techniques consider the whole object space and define each point
accordingly. The best known application of space subdivision technique is ray tracing.
With ray tracing processing is considerably simplified by avoiding brute force opera-
tions on the entire object space.

y

x

z

xy-plane 1
(for z = 0)

xy-plane 2
(for z = 3)

xz
-p

la
ne

yz
-p

la
ne

z

p6

p7

© 2003 by CRC Press LLC

We concentrate out attention on polygonal modeling, with occasional reference
to parameteric patches.

2.3 Modeling with Polygons
A simple polygon is a 2D figure formed by more than two connected and
non-intersecting line segments. The connection points for the line segments are called
the vertices of the polygon and the line segments are called the sides. The fundamental
requirements that the line segments be connected and non-intersecting eliminates
from the polygon category certain geometrical figures, as shown in Figure 2-8.

Figure 2-8 Valid and Invalid Polygons

Polygons are named according to their number of sides or vertices. A triangle,
which is the simplest possible polygon, has three vertices. A quadrilateral has four, a
pentagon has five, and so on. A polygon is said to be equilateral if all its sides are
equal, and equiangular if all its angles are equal. A regular polygon is both equilat-
eral and equiangular. Figure 2-9 shows several regular polygons.

Figure 2-9 Regular Polygons

Polygons can be convex or concave. In a convex polygon the extension of any of
its sides does not cut across the interior of the figure. We can also describe a convex
polygon as one in which the extensions of the lines that form the sides never meet
another side. Figure 2-10 shows a convex and a concave polygon.

Figure 2-10 Concave and Convex Polygons

triangle quadrilateral pentagon hexagon octagon

valid polygons

side

vertex

invalid polygons

concaveconvex

© 2003 by CRC Press LLC

Specific software packages often impose additional restrictions on polygon valid-
ity in order to simplify the rendering and processing algorithms. For example,
OpenGL requires that polygons be concave and that they be drawn without lifting
the pen. In OpenGL, a polygon that contains a non-contiguous boundary is consid-
ered invalid.

2.3.1 The Triangle
Of all the polygons, the one most used in 3D graphics is the triangle. Not only is it the
simplest of the polygons, but all the points in the surface of a triangular polygon must
lie on the same plane. In other polygons this may or may not be the case. In other
words, the figure defined by three vertices must always be a plane, but four or more
vertices can describe a figure with more than one plane. When all the points on the fig-
ure are located on the same surface, the figure is said to be coplanar. Figure 2-11 shows
coplanar and non-coplanar polygons.

Figure 2-11 Coplanar and Non-Coplanar Polygons

The coplanar property of triangular polygons simplifies rendering. In addition,
triangles are always convex figures. For this reason 3D software such as Microsoft’s
Direct3D, rely heavily on triangular polygons.

2.3.2 Polygonal Approximations
Solid objects with curved surfaces can be approximately represented by combining
several polygonal faces. For example, a circle can be approximated by means of a
polygon. The more vertices in the polygon, the better the approximation. Figure 2-12
shows the polygonal approximation of a circle. The first polygon has 8 vertices, while
the second one has 16.

Figure 2-12 Polygonal Approximation of a Circle

non-coplanar
polygon

coplanar
polygon

© 2003 by CRC Press LLC

A solid object, such as a cylinder, can be approximately represented by means of
several polygonal surfaces. Here again, the greater the number of polygons, the
more accurate the approximation. Figure 2-13 shows the polygonal approximation
of a cylinder.

Figure 2-13 Polygonal Approximation of a Cylinder

2.3.3 Edges
When objects are represented by polygonal approximations, often two polygons share
a common side. This connection between vertex locations that define a boundary is
called an edge. Edge representations of polygons simplify the database by avoiding re-
dundancy. This is particularly useful if an object shares a large number of edges. Fig-
ure 2-14 shows a figure represented by two adjacent triangular polygons that share a
common edge.

Figure 2-14 Polygon Edge

In an edge representation the gray triangle in Figure 2-14 is defined in terms of its
three vertices, labeled p1, p2, and p3. The white triangle is defined in terms of its
edge and point p4. Thus, points p2 and p3 appear but once in the database.
Edge-based image databases provide a list of edges rather than of vertex locations.
Figure 2-15 shows an object consisting of rectangular polygons.

p1

p2

edge

© 2003 by CRC Press LLC

Figure 2-15 Edge Representation of Polygons

In Figure 2-15 each vertical panel consists of 6 triangles, for a total of 30 triangles.
If each triangle were defined by its three vertices, the image database would require
90 vertices. Alternatively, the image could be defined in terms of sides and edges.
There are 16 external sides which are not shared, and 32 internal sides, which are
edges. Therefore, the edge-based representation could be done by defining 48 edges.
The rendering system keeps track of which edges have already been drawn, avoid-
ing duplication, processing overheads, and facilitating transparency.

2.3.4 Meshes
In 3D graphics an object can be represented as a polygon mesh. Each polygon in the
mesh constitutes a facet. Facets are used to approximate curved surfaces; the more
facets the better the approximation. Polygon-based modeling is straightforward and
polygon meshes are quite suitable for using shading algorithms. In the simplest form a
polygon mesh is encoded by means of the x, y, and z coordinates of each vertex. Alter-
natively, polygons can be represented by their edges, as previously described. In ei-
ther case, each polygon is an independent entity that can be rendered as a unit. Figure
2-16 shows the polygon mesh representation of a teacup and the rendered image.

Figure 2-16 Polygon Mesh Representation and Rendering of a Teacup

© 2003 by CRC Press LLC

Chapter 3

Image Transformations

Topics:
• Matrix arithmetic

• 2D transformations and homogeneous coordinates

• 3D transformations

Computer graphics rely heavily on geometrical transformations for generating and an-
imating 2D and 3D imagery. In this chapter we introduce the essential transformation:
translation, rotation, and scaling. The geometrical transformations are first presented
in the context of 2D imagery, and later extended to 3D.

3.1 Matrix-Based Representations
In Chapter 2 we discussed vector images and how graphics objects are modeled by
means of polygons and polygons meshes. Here we see how the coordinate points that
define a polygon-based image can be manipulated in order to transform the image it-
self. Suppose an arrow indicating a northerly direction, which is defined by the coordi-
nates of its start and end points. By rotating the end point 45 degree clockwise we can
make the arrow point in a north-easterly direction. In general, if an image is defined as
a series of points in the Cartesian plane, then the image can be rotated by a mathemati-
cal operation on the coordinates of each point. If the image is defined as one or more
straight lines or simple polygons, then the transformation applied to the primitive im-
age elements is also a transformation of the image itself.

Image transformations are simplified by storing the coordinates of each image
point in a rectangular array. The mathematical notion of a matrix as a rectangular ar-
ray of values turns out to be quite suitable for storing the coordinates of image
points. Once the coordinates of each point that defines the image are stored in a ma-
trix, we can use standard operations of linear algebra to perform geometrical trans-
formations on the image. Figure 3-1 shows the approximate location of seven stars
of the constellation Ursa Minor, also known as the Little Dipper. The individual stars
are labeled with the letters a through g. The star labeled a corresponds to Polaris
(the Pole star).

© 2003 by CRC Press LLC

http://www.itknowledgebase.net/books/1232/1678_FM.pdf

Figure 3-1 Point Representation of the Stars In the Constellation Ursa Minor

The coordinates of each star of the Little Dipper, in Figure 3-1, can be represented
in tabular form, as follows:

Star x y
a 0 0
b -1 11
c 1 8
d 0 12
e 2 5
f 3 9
g 1 2

The coordinate matrix is a sets of x,y coordinate pairs. 3D representations re-
quire an additional z coordinate that stores the depth of each point. 3D matrix repre-
sentations are discussed later in this chapter.

3.1.1 Image Transformation Mathematics
An image can be changed into another one by performing mathematical operations on
its coordinate points. Figure 3-2 shows the translation of a line from coordinates (2,2)
and (10,14) to coordinates (10,2) and (18,14).

Figure 3-2 Translation of a Straight Line

a

e

f

g

c

d
b

y

x

10, 14 18, 14

2, 2 10, 2

© 2003 by CRC Press LLC

Notice that in Figure 3-2 translation is performed by adding 8 to the start and end
x coordinates of the original line. This operation on the x-axis coordinates results in
a horizontal translation of the line. A vertical translation requires manipulating the y

coordinate. To translate the line both horizontally and vertically we operate on both
coordinate axes simultaneously.

3.2 Matrix Arithmetic
Matrices are used in many fields of mathematics. In linear algebra matrices can hold
the coefficients of linear equations. Once an equation is represented in matrix form, it
can be manipulated (and often solved) by performing operations on the matrix rows
and columns. Here we are interested only in matrix operations that perform geometri-
cal image transformations. The most primitive of these, translation, rotation, and scal-
ing, are common in graphics and animation programming. Other transformations are
reflection (mirroring) and shearing.

We define a matrix as a rectangular array usually containing a set of numeric val-
ues. It is customary to represent a matrix by means of a capital letter. For example,
the following matrix, designated by the letter A, has three rows and two columns.

The size of a matrix is determined by its number of rows and columns. It is com-
mon to state matrix size as a product, for example, matrix A, above, is a 3-by-2 ma-
trix.

3.2.1 Scalar-by-Matrix Operations
A single numerical quantity is called a scalar. Scalar-by-matrix operations are the sim-
plest procedures of matrix arithmetic. The following example shows the multiplica-
tion of matrix A by the scalar 3.

If a scalar is represented by the variable s, the product matrix sA is the result of
multiplying each element in the matrix A by the scalar s. In the same manner, scalar
addition and subtraction are performed by adding or subtracting the scalar quantity
to each matrix element.

3.2.2 Matrix Addition and Subtraction
Matrix addition and subtraction are performed by adding or subtracting each element
in a matrix to the corresponding element of another matrix of equal size. In the follow-
ing example, matrix C is the algebraic sum of each element in matrices A and B.

10 22

3 4

7 1

A

 
 =  
  

30 66

3 9 12

21 3

A

 
 =  
  

© 2003 by CRC Press LLC

The fundamental restriction of matrix addition and subtraction is that both matri-
ces must be of equal size, that is, they must have the same number of rows and of
columns. Matrices of different sizes cannot be added or subtracted.

3.2.3 Matrix Multiplication
Matrix addition and subtraction intuitively correspond to conventional addition and
subtraction. The elements of the two matrices are added or subtracted, one-to-one, to
obtain the result. The fact that both matrices must be of the same size makes the opera-
tions easy to visualize. Matrix multiplication, on the other hand, is not the multiplica-
tion of the corresponding elements of two matrices, but a unique sum-of-products
operation. In matrix multiplication the elements of a row in the multiplicand matrix
are multiplied by the elements in a column of the multiplier matrix. These resulting
products are then added to obtain the final result. The process is best explained by de-
scribing the individual steps. Consider the following matrices:

From the definition of matrix multiplication we deduce that if the columns of the
first matrix are multiplied by the rows of the second matrix, then each row of the
multiplier must have the same number of elements as each column of the multipli-
cand. Notice that the matrices A and B, in the preceding example, meet this require-
ment. However, observe that product B x A is not possible, since matrix B has three
elements per row and matrix A has only two elements in each column. For this rea-
son the matrix operation A x B is possible but B x A is undefined. The row by col-
umn operation in A x B is performed as follows.

First row of A Columns of B Products Sum

2 4 1 2 3 6

3 11 2 2 5 13

1 5 1 3 0 2

1 1 0 0 1 1

A B C+ =

     
     
     + =
  − −   
     − −     

1 3 5

2 1 0

5 10 2

1 2 3

11 5 4

A

B

 =  
 
 
 =  
  

1 3 5 5 1 11 5 3 55 63

1 3 5 10 2 5 10 6 25 41

1 3 5 2 3 4 2 9 20 31

     
     × = =     
          

© 2003 by CRC Press LLC

Second row of A Columns of B Products Sum

The products matrix has the same number of columns as the multiplicand matrix
and the same number of rows as the multiplier matrix. In the previous example, the
products matrix C has the same number of rows as A and the same number of col-
umns as B. In other words, C is a 2 x 3 matrix. The elements obtained by the above
operations appear in matrix C in the following manner:

Recall that in relation to matrices A and B in the previous examples, the opera-
tion A x B is possible but B x A is undefined. This fact is often described by saying
that matrix multiplication is not commutative. For this reason, the product of two
matrices can be different if the matrices are taken in different order. In fact, in re-
gards to non-square matrices, if the matrix product A x B is defined, then the prod-
uct B x A is undefined.

On the other hand, matrix multiplication is associative. This means that the prod-
uct of three or more matrices is equal independently of the order in which they are
multiplied. For example, in relation to three matrices, A, B, and C, we can state that
(A x B) x C equals A x (B x C). In the coming sections you will often find use for the
associative and non-commutative properties of matrix multiplication.

3.3 Geometrical Transformations

A geometrical transformation can be viewed as the conversion of one image onto an-
other one by performing mathematical operations on its coordinate points. Geometri-
cal transformations are simplified by storing the image coordinates in matrix form. In
the following sections, we discuss the most common transformations: translation,
scaling, and rotation. The transformations are first described in terms of matrix addi-
tion and multiplication, and later standardized so that they can all be expressed in
terms only of matrix multiplication.

3.3.1 Translation Transformation

A translation transformation is the movement of a graphical object to a new location
by adding a constant value to each coordinate point. The operation requires that the
same constant be added to all the coordinates in each plane, but a different constant
can be used for each plane. For example, a translation transformation takes place if
the constant 5 is added to all x coordinates and the constant 2 to all y coordinates of an
object represented in a two-dimensional plane.

2 1 0 5 1 11 10 1 0 11

2 1 0 10 2 5 20 2 0 22

2 1 0 2 3 4 4 3 0 7

     
     × = =     
          

63 41 31

11 22 7
C

 =  
 

© 2003 by CRC Press LLC

In Figure 3-3 we see the graph and the coordinates matrix for seven stars in the
Constellation Ursa Minor. A translation transformation is performed by adding 5 to
the x coordinate of each star and 2 to the y coordinate. The bottom part of Figure
3-3 shows the translated image and the new coordinates.

Figure 3-3 A Translation Transformation

In terms of matrices, the translation transformation can be viewed as the opera-
tion:

where A is the matrix holding the original coordinates, B is the transformation matrix
holding the values to be added to each coordinate plane, and C is the matrix of the
transformed coordinated. Regarding the images in Figure 3-3 the matrix operation is
as follows:

a

e

f

g

c

d

b

a

e

f

g

c

d

b

original
coordinates:

star x y
a 0 0
b -1 11
c 1 8
d 0 12
e 2 5
f 3 9
g 1 2

translated
coordinates
(x+5, y+2):

star x y
a 5 2
b 4 13
c 6 10
d 5 14
e 7 7
f 8 11
g 6 4

A B C+ =

0 0 5 2 5 2

1 11 5 2 4 13

1 8 5 2 6 10

0 12 5 2 5 14

2 5 5 2 7 7

3 9 5 2 8 11

1 2 5 2 6 4

     
     −     
     
     + =     
     
     
     
          

© 2003 by CRC Press LLC

Notice that the transformation matrix holds the constants to be added to the x

and y coordinates. Since, by definition of the translation transformation, the same
value must be added to all the elements of a coordinate plane, it is evident that the
columns of the transformation matrix always hold the same numerical value.

3.3.2 Scaling Transformation
To scale is to apply a multiplying factor to the linear dimension of an object. A scaling

transformation is the conversion of a graphical object into another one by multiply-
ing each coordinate point that defines the object. The operation requires that all the
coordinates in each plane be multiplied by the scaling factor, although the scaling fac-
tors can be different for each plane. For example, a scaling transformation takes place
when all the x coordinates of an object represented in a two-dimensional plane are
multiplied by 2 and all the y coordinates of this same object are multiplied by 3. In this
case the scaling transformation is said to by asymmetrical.

In comparing the definition of the scaling transformation to that of the transla-
tion transformation we notice that translation is performed by adding a constant
value to the coordinates in each plane, while scaling requires multiplying these co-
ordinates by a factor. The scaling transformation can be represented in matrix form
by taking advantage of the properties of matrix multiplication. Figure 3-4 shows a
scaling transformation that converts a square into a rectangle.

Figure 3-4 Scaling Transformation

The coordinates of the square in Figure 3-4 can be stored in a 4-by-2 matrix, as fol-
lows:

y

x
2

2

6

4

0 0

2 0

2 2

0 2

 
 
 
 
 
 

© 2003 by CRC Press LLC

In this case the transformation matrix holds the factors that must be multiplied
by the x and y coordinates of each point in order to perform the scaling transforma-
tion. Using the term Sx to represent the scaling factor for the x coordinates, and the
term Sy to represent the scaling factor for the y coordinates, the scaling transforma-
tion matrix is as follows:.

The transformation of Figure 3-4, which converts the square into a rectangle, is
expressed in matrix transformation as follows:

The intermediate steps in the matrix multiplication operation can be obtained fol-
lowing the rules of matrix multiplication described previously.

Figure 3-5 shows the scaling transformation of the graph of the constellation Ursa
Minor. In this case, in order to produce a symmetrical scaling, the multiplying factor
is the same for both axes. A symmetrical scaling operation is sometimes referred to
as a zoom.

Figure 3-5 Symmetrical Scaling (Zooming)

3.3.3 Rotation Transformation

A rotation transformation is the conversion of a graphical object into another one by
moving all coordinate points that define the original object, by the same angular value,
along circular arcs with a common center. The angular value is called the angle of rota-

0

0

Sx

Sy

 
 
 

0 0 0 0

2 0 2 0 4 0

2 2 0 3 4 6

0 2 0 6

   
       × =     
   
   

© 2003 by CRC Press LLC

tion and the fixed point that is common to all the arcs is the center of rotation. Notice
that some geometrical figures are unchanged by specific rotations. For example, a cir-
cle is unchanged by a rotation about its center, and a square is unchanged if rotated by
an angle that is a multiple of 90 degrees. In the case of a square the intersection point of
both diagonals is the center of rotation.

The mathematical interpretation of the rotation is based on elementary trigonom-
etry. Figure 3-6 shows the counterclockwise rotation of points located on the coor-
dinate axes, at unit distances from the center of rotation.

Figure 3-6 Rotation of a Point

The left side drawing of Figure 3-6 shows the counterclockwise rotation of point
p1, with coordinates (1,0), through an angle r. The coordinates of the rotated point
(pr1) can be determined by solving the triangle with vertices at O, p1 and pr1, as fol-
lows:

The coordinates of the rotated point pr2, shown on the right side drawing in Fig-
ure 3-6, can be determined by solving the triangle with vertices at O, p2 and pr2.

The coordinates of the rotated points can now be expressed as follows.

coordinates of pr1 = (cos r, sin r)

coordinates of pr2 = (–sin r, cos r)

1

1

p1
x

y

pr1

1
1

p2

x

y

pr2

r
r

cos , cos
1

sin , sin
1

x
r x r

y
r y r

= =

= =

sin , sin
1

cos , cos
1

x
r x r

y
r y r

−= = −

= =

© 2003 by CRC Press LLC

From these equations we can derive a transformation matrix, which, through ma-
trix multiplication, yields the new coordinates for the counterclockwise rotation
through an angle A

We are now ready to perform a rotation transformation through matrix multipli-
cation. Figure 3-7 shows the clockwise rotation of the stars in the constellation Ursa
Minor, through an angle of 60 degrees, with center of rotation at the origin of the co-
ordinate axes.

Figure 3-7 Rotation Transformation

Suppose that the coordinates of the four vertices of a polygon are stored in a
4-by-2 matrix as follows:

The transformation matrix for clockwise rotation through an angle r is as follows:

Evaluating this matrix for 60 degrees gives the following trigonometric functions.

cos sin

sin cos

r r

r r

 
 − 

60 o

10 2

12 0

14 2

12 4

 
 
 
 
 
 

cos sin

sin cos

r r

r r

 
 − 

0.5 0.867

0.867 0.5

 
 − 

© 2003 by CRC Press LLC

Now the rotation can now be expressed as a product of two matrices, one with
the coordinates of the polygon points and the other one with the trigonometric func-
tions, as follows:

The resulting matrix contains the coordinates of the points rotated through and
angle of 60 degrees. The intermediate steps in the matrix multiplication operation
are obtained following the rules of matrix multiplication described earlier in this
chapter.

3.3.4 Homogeneous Coordinates
Expressing translation, scaling, and rotation mathematically, in terms of matrix oper-
ations, allows simplifying graphical transformations. However, as previously de-
scribed rotation and scaling are expressed in terms of matrix multiplication, while
translation is expressed as matrix addition. It would simplify processing if all three ba-
sic transformations could be expressed in terms of the same mathematical operation.
Fortunately, it is possible to represent the translation transformation as matrix multi-
plication. The scheme requires adding a dummy parameter to the coordinates matri-
ces and expanding the transformation matrices to 3-by-3 elements.

If the dummy parameter, usually labeled w, is not to change the point’s coordi-
nates it must meet the following condition:

It follows that 1 is the only value that can be assigned to w . Using the terms Tx

and Ty to represent the horizontal and vertical units of a translation, a transforma-
tion matrix for the translation operation can be expressed as follows:

We test these results by performing a translation of 8 units in the horizontal direc-
tion (Tx = 8) and 0 units in the vertical direction (Ty = 0) of the point located at co-
ordinates (5,2). In this case matrix operations are as follows:

10 2 3.87 9.87

12 0 0.5 0.867 6 10.4

14 2 0.867 0.5 5.27 13.4

12 4 2.53 12.4

   
       × =   −   
   
   

x x w

y y w

= ×
= ×

1 0 0

0 1 0

1Tx Ty

 
 
 
  

[] []
1 0 0

5 2 1 0 1 0 12 2 1

8 0 1

 
 × = 
  

© 2003 by CRC Press LLC

This shows the point at x = 5, y = 2 translated 8 units to the right, with destination
coordinates of x = 13, y = 2. Observe that the w parameter, set to 1 in the original
matrix, remains the same in the final matrix. For this reason, in actual processing
the additional parameter can be ignored.

3.3.5 Concatenation
In order to take full advantage of the system of homogeneous coordinates you must
express all transformations in terms of 3-by-3 matrices. As you have already seen, the
translation transformation in homogeneous coordinates is expressed in the following
matrix:

The scaling transformation matrix is as follows:

where Sx and Sy are the scaling factors for the x and y axes. The transformation matrix
for a counterclockwise rotation through an angle r can be expressed in homogeneous
coordinates as follows:

Notice that the rotation transformation assumes that the center of rotation is at
the origin of the coordinate system.

Matrix multiplication is associative. This means that the product of three or more
matrices is equal, no matter which two matrices are multiplied first. By virtue of this
property, we are now able to express a complex transformation by combining sev-
eral basic transformations. This process is generally known as matrix concatena-

tion.

For example, in Figure 3-7 the image of the constellation Ursa Minor is rotated
counterclockwise 60 degrees about the origin. But it is possible to perform this
transformation using any arbitrary point in the coordinate system as a pivot point.
For instance, to rotate the polygon about any arbitrary point pa, the following se-
quence of transformations is executed:

1. Translate the polygon so that point pa is at the coordinate origin.

2. Rotate the polygon.

1 0 0

0 1 0

1Tx Ty

 
 
 
  

0 0

0 0

0 0 1

Sx

Sy

 
 
 
  

cos sin 0

sin cos 0

0 0 1

r r

r r

 
 − 
  

© 2003 by CRC Press LLC

3. Translate the polygon so that point pa returns to its original position.

In matrix form the sequence of transformations can be expressed as the following
product:

Performing the indicated multiplication yields the matrix for a counterclockwise
rotation, through angle r, about point pa, with coordinates (Tx,Ty).

While matrix multiplication is associative, it is not commutative. Therefore, the
order in which the operations are performed can affect the results. A fact that con-
firms the validity of the matrix representation of graphic transformations is that,
graphically, the results of performing transformations in different sequences can
also yield different results. For example, the image resulting from a certain rotation,
followed by a translation transformation, may not be identical to the one resulting
from performing the translation first and then the rotation.

Figure 3-8 shows a case in which the order of the transformations determines a
difference in the final object.

Figure 3-8 Order of Transformations

3.4 3D Transformations

Two-dimensional objects are defined by their coordinate pairs in 2D space. By extend-
ing this model we can represent a three-dimensional object by means of a set of coordi-
nate triples in 3D space. Adding a z-axis that encodes the depth component of each
image point produces a three-dimensional coordinate plane. The coordinates that de-
fine each image point in 3D space are a triplet of x, y, and z values. Because the
three-dimensional model is an extension of the two-dimensional one, we can apply
geometrical transformations in a similar manner as we did with two-dimensional ob-
jects. Figure 3-9 shows a cube in 3D space.

1 0 0 cos sin 0 1 0 0

0 1 0 sin cos 0 0 1 0

1 0 0 1 1

r r

r r

Tx Ty Tx Ty

     
     × − ×     
− −          

1 1 2

3

2 3

© 2003 by CRC Press LLC

Figure 3-9 3D Representation of a Cube.

In Figure 3-9 the cube is defined by means of the coordinate triplets of each of its
eight points, represented in the figure by the labeled black dots. In tabular form the
coordinates of each point are defined as follows:

X Y Z
P1 0 0 2
P2 4 0 2
P3 4 2 2
P4 0 2 2
P5 0 0 0
P6 4 0 0
P7 4 2 0
P8 0 2 0

Point p5, which is at the origin, has values of zero for all three coordinates. Point
p1 is located 2 units along the z-axis, therefore its coordinates are x = 0, y = 0, z = 2.
Notice that if we were to disregard the z-axis coordinates, then the two planes
formed by points p1, p2, p3, and p4 and points p5, p6, p7, and p8 would have identi-
cal values for the x and y axis. This is consistent with the notion of a cube as a solid
formed by two rectangles residing in 3D space.

3.4.1 3D Translation
In 2D representations a translation transformation is performed by adding a constant
value to each coordinate point that defines the object. This continues to be true when
the point’s coordinates are contained in three planes. In this case the transformation
constant is applied to each plane to determine the new position of each image point.
Figure 3-10 shows the translation of a cube defined in 3D space by adding 2 units to the
x axis coordinates, 6 units to the y axis, and -2 units to the z axis.

y

x

z

p1

p8 p7

p5 p6

p2

p3p4

© 2003 by CRC Press LLC

Figure 3-10 Translation Transformation of a Cube

If the coordinate points of the eight vertices of the cube in Figure 3-10 were repre-
sented in a 3-by-8 matrix (designated as matrix A) and the transformation constants
in a second 8-by-3 matrix (designated as matrix B) then we could perform the trans-
lation transformation by means of matrix addition and store the transformed coordi-
nates in a results matrix (designated as matrix C. The matrix operation C = A + B
operation would be as follows:

Here again, we can express the geometric transformation in terms of homoge-
neous coordinates. The translation transformation matrix for 3D space would be as
follows:

y

x

z
p1

p1’

Translation
constants:
x = x + 2
y = y + 6
z = z - 2

4 0 2 2 6 2 6 6 0

4 2 2 2 6 2 6 8 0

0 2 2 2 6 2 2 8 0

0 0 0 2 6 2 2 6 2

4 0 0 2 6 2 6 6 2

4 2 0 2 6 2 6 8 2

0 2 0 2 6 2 2 8 2

−     
     −     
     −
     + =− −     
     − −
     − −     
     − −     

1 0 0 0

0 1 0 0

0 0 1 0

1Tx Ty Tz

 
 
 
 
 
 

© 2003 by CRC Press LLC

The parameters Tx, Ty, and Tz represent the translation constants for each axis.
As in the case of a 2D transformation, the new coordinates are determined by adding
the corresponding constant to each coordinate point of the figure to be translated. If
x’, y’, and z’ are the translated coordinates of the point at x, y, and z, the translation
transformation takes place as follows:

As in the case of 2D geometrical transformations, the transformed results are ob-
tained by matrix multiplication using the matrix with the object’s coordinate points
as one product matrix, and the homogenous translation transformation matrix as
the other one.

3.4.2 3D Scaling
A scaling transformation consists of applying a multiplying factor to each coordinate
point that defines the object. A scaling transformation in 3D space is consistent with
the scaling in 2D space. The only difference is that in 3D space the scaling factor is ap-
plied to each of three planes, instead of the two planes of 2D space. Here again the scal-
ing factors can be different for each plane. If this is the case, the resulting
transformation is described as an asymmetrical scaling. When the scaling factor is the
same for all three axes, the scaling is described as symmetrical or uniform. Figure 3-11
shows the uniform scaling of a cube by applying a scaling factor of 2 to the coordinates
of each figure vertex.

Figure 3-11 Scaling Transformation of a Cube

'

'

'

x x Tx

y y Ty

z z Tz

= +
= +
= +

y

z

y

x x

z

© 2003 by CRC Press LLC

The homogeneous matrix for a 3D scaling transformation is as follows:

The parameters Sx, Sy, and Sz represent the scaling factors for each axis. As in
the case of a 2D transformation, the new coordinates are determined by multiplying
the corresponding scaling factor with each coordinate point of the figure to be
scaled. If x’, y’, and z’ are the scaled coordinates of the point at x, y, and z, the scal-
ing transformation takes place as follows:

In homogeneous terms, the transformed results are obtained by matrix multipli-
cation using the matrix with the object’s coordinate points as one product matrix,
and the homogeneous scaling transformation matrix as the other one.

When the object to be scaled is not located at the origin of the coordinates axis, a
scaling transformation will also result in a translation of the object to another loca-
tion. This effect is shown in Figure 3-12.

Figure 3-12 Scaling Transformation of an Object Not at the Origin

0 0 0

0 0 0

0 0 0

0 0 0 1

Sx

Sy

Sz

 
 
 
 
 
 

'

'

'

x x Sx

y y Sy

z z Sz

= ×
= ×
= ×

y

x

z

p1

p1’

© 2003 by CRC Press LLC

Assuming that point p1 in Figure 3-12 located at coordinates x = 2, y = 2, z = –2,
and that a uniform scaling of 3 units is applied, then the coordinates of translated
point p1’ are as follows:

x y z
p1 2 2 -2
p1’....... 6 6 -12

The result is that not only is the cube tripled in size, it is also moved to a new po-
sition in the coordinates plane. In order to scale an image with respect to a fixed po-
sition it is necessary to first translate it to the origin, then apply the scaling factor,
and finally to translate it back to its original location. The necessary manipulations
are shown in Figure 3-13.

Figure 3-13 Fixed-Point Scaling Transformation

In terms of matrix operations a fixed-point scaling transformation consists of ap-
plying a translation transformation to move the point to the origin, then the scaling
transformation, followed by another translation to return the point to its original lo-
cation. If we represent the fixed position of the point as x

f, y
f, z

f, then the translation
to the origin is represented by the transformation:

y

x

z
INITIAL
FIGURE TRANSLATE

TO ORIGIN

SCALE RE-TRANSLATE TO
INITIAL LOCATION

(), ,f f fT x y z− − −

© 2003 by CRC Press LLC

The transformation to return the point to its original location is:

Therefore, the fixed-point scaling consists of:

and the homogeneous matrix is:

where S is the scaling matrix and T the transformation matrix.

3.4.3 3D Rotation
Although 3D translation and scaling transformations are described as simple exten-
sions of the corresponding 2D operations, the 3D rotation transformation is more
complex that its 2D counterpart. The additional complications arise from the fact that
in 3D space, rotation can take place in reference to any one of the three axes. There-
fore an object can be rotated about the x, y, or z axes, as shown in Figure 3-14.

Figure 3-14 Rotation in 3D Space

(), ,f f fT x y z

(), , (, ,) (, ,)f f f f f fT x y z S Sx Sy Sz T x y z− − − × ×

y

z

x

0 0 0

0 0 0

0 0 0

(1) (1) (1) 1� � �

Sx

Sy

Sz

Sx x Sy y Sz z

 
 
 
 
 − − − 

© 2003 by CRC Press LLC

In defining 2D rotation we adopted the convention that positive rotations pro-
duce a clockwise movement about the coordinate axes, when looking in the direc-
tion of the axis, towards the origin, as shown by the elliptical arrows in Figure 3-14.
Figure 3-15 shows the positive, x-axis rotation of a cube.

Figure 3-15 Positive, x-axis Rotation of a Cube

A rotation transformation leaves unchanged the coordinate values along the axis
of rotation. For example, the x coordinates of the rotated cube in Figure 3-15 are the
same as those of the figure at the top of the illustration. By the same token, rotating
an object along the z-axis changes its y and x coordinates while the z-coordinates
remain the same. Therefore, the 2D rotation transformation equations can be ex-
tended to a 3D rotation along the z-axis, as follows:

Here again, r is the angle of rotation.

By performing a cyclic permutation of the coordinate parameters we can obtain
the transformation matrices for rotations along the x and y axis. In homogeneous
coordinates they are as follows:

y

z

x

x

cos sin 0 0

sin cos 0 0

0 0 1 0

0 0 0 1

r r

r r

 
 − 
 
 
 

© 2003 by CRC Press LLC

3.4.4 Rotation about an Arbitrary Axis
You often need to rotate an object about an axis parallel to the coordinate axis but dif-
ferent from the one in which the object is placed. In the case of the 2D fixed-point scal-
ing transformation shown in Figure 3-13, we performed a translation transformation
to reposition the object in the coordinates planes, then performed the scaling transfor-
mation, and concluded by re-translating the object to its initial location. Similarly, we
can rotate a 3D object about an arbitrary axis by first translating it to the required posi-
tion on the coordinate plane, then performing the rotation, and finally relocating the
object at its original position. For example, suppose we wanted to rotate a cube, lo-
cated somewhere on the coordinate plane, along its own x axis. In this case we may
need to relocate the object so that the desired axis of rotation lies along the x-axis of
the plane. Once in this position, we can perform the rotation applying the rotation
transformation matrix for the x axis. After the rotation, the object is repositioned to its
original location. The sequence of operations is shown in Figure 3-16.

Figure 3-16 Rotation About an Arbitrary Axis

1 0 0 0

0 cos sin 0

0 sin cos 0

0 0 0 1

r r

r r

 
 
 

− 
 
 

cos 0 sin 0

0 1 0 0

sin 0 cos 0

0 0 0 1

r r

r r

− 
 
 
 
 
 

A

B

C

D

y
y

z z

x x

y
y

z z
x x

INITIAL
FIGURE

TRANSLATE TO
ROTATION AXIS

ROTATE

RE-TRANSLATE TO
INITIAL LOCATION

© 2003 by CRC Press LLC

In this case it is possible to see one of the advantages of homogeneous coordi-
nates. Instead of performing three different transformations, we can combine,
through concatenation, the three matrices necessary for the entire transformation
into a single one that performs the two translations and the rotation. Matrix concat-
enation was covered earlier in this chapter.

© 2003 by CRC Press LLC

Chapter 4

Programming Matrix Transformations

Topics:
• Graphics data in matrix form

• Creating and storing matrix data

• Processing array elements

• Vector-by-scalar operations

• Matrix-by-matrix operations

The representation and manipulation of image data in matrix form is one of the most
powerful tools of graphics programming in general, and of 3D graphics in particular. In
this chapter we develop the logic necessary for performing matrix-based operations.
Matrix-level processing operations are often used in 3D graphics programming.

4.1 Numeric Data in Matrix Form
In Chapter 3 you saw that a matrix can be visualized as a rectangular pattern of rows
and columns containing numeric data. In graphics programming the data in the matrix
is image related, most often consisting of the coordinate values, in 2D or 3D space, for
the vertices of a polygon. In general terms, a matrix element is called an entry.

Matrix data is stored in computer memory as a series of ordered numeric items.
Each numeric entry in the matrix takes up memory space according to the storage
format. For example, if matrix data is stored as binary floating-point numbers in the
FPU formats, each entry takes up the following space:

Single precision real 4 bytes,

Double precision real 8 bytes,

Extended precision real .. 10 bytes.

Integer matrices will vary from one high-level language to another one and even
in different implementations of the same language. Microsoft Visual C++ in 32-bit
versions of Windows uses the following data ranges for the integers types:

© 2003 by CRC Press LLC

char, unsigned char 1 byte
short, unsigned short 2 bytes
long, unsigned long 4 bytes

The most common data format for matrix entries is the array. If the storage con-
vention is based on having elements in the same matrix row stored consecutively in
memory, then the matrix is in row-major order. However, if consecutive entries are
items in the same matrix column then the matrix is in column-major order. C, C++,
and Pascal assume row-major order, while BASIC and FORTRAN use column-major
order.

4.1.1 Matrices in C and C++
In C and C++ a matrix can is usually defined as a multi-dimensional array. Like many
other high-level languages, C++ implements multi-dimensional arrays as arrays of ar-
rays. For example:

double matX[4][4] = {
{2.1, 3.0, -1.0, 4.3}, // Array 1
{1.3, 0.0, 2.0, -3.2}, // Array 2
{1.2, 12.7, -4.0, 7.0}, // Array 3
{3.0, 1.0, -1.0, 1.22}, // Array 4
};

The array matX[][] is two dimensional. In fact, it actually consists of four
one-dimensional arrays. In C and C++ when a multi-dimensional array is passed as
an argument to a function, the called code must be made aware of its dimensions so
that it can access its elements with multiple subscripts. In the case of a
two-dimensional array the function must know the number of dimensions and the
number of columns in the array argument. The number of rows is not necessary
since the array is already allocated in memory. The short program shows the defini-
tion of a 4-by-4 two-dimensional array and how this array is passed to a function that
fills it.

#include <iostream.h>
#define ROWS 4
#define COLS 4

int main()
{

// Define a 4-by-4 matrix
int matrx[ROWS][COLS];

// Call function to fill matrix
FillMatrix(matrx);
// Display matrix

for(i = 0; i < ROWS; i++)
for(k = 0; k < COLS; k++)

cout << matrx[i][k] << “\n”;
return 0;
}

void FillMatrix(int matx[][COLS])
{
// Fill a matrix of type int
// On entry:

© 2003 by CRC Press LLC

// matx[][] is caller’s matrix
// Constants ROWS and COLS define the array dimensions
int entry;

for(int i = 0;i < ROWS; i++)
{

cout << “Enter row ” << i << “\n”;

for(int j = 0; j < COLS; j++)
{

cout << “element ” << i << “ ” << j << “: ”;
cin >> entry;
matx[i][j] = entry;

}
}

}

In the preceding program the function FillMatrix() is made aware that the array
passed as an argument is two-dimensional, and that each row consists of four col-
umns. This is the information that the code requires for accessing the array with
double subscript notation. The major limitation of this approach is that the function
FillMatrix() requires the array size to be defined in constants. C/C++ produce an er-
ror if we attempt to define the matrix dimensions using variables. For this reason
the function FillMatrix(), as coded in the preceding sample, does not work for filling
a two-dimensional 5-by-5 array or, in fact, of any size other than the one for which it
was originally coded. Even more complications arise if we attempt to use a template
function in relation to multi-dimensional arrays.

An alternative approach for implementing matrices in C or C++ code is to define
the data as a one-dimensional array and let the software handle the partitioning into
columns and rows. In this manner we can avoid the drawbacks of passing
mult i -d imensional arrays as arguments to funct ions . In addi t ion, with
one-dimensional arrays it is easy to use templates in order to create generic func-
tions that operate on arrays of different data types. The following demonstration
program implements a matrix fill using one-dimensional arrays and template func-
tions.

#include <iostream.h>

int main()
{

int rows = 4;
int cols = 4;

// Matrix is defined as a 2D array
matrx[16];

// FillMatrix()
FillMatrix(matrx, rows, cols);

// Display matrix

for(x = 0; x < rows; x++)
for(y = 0; y < cols; y++)

cout << mat2[(x * cols) + y] << “\n”;

© 2003 by CRC Press LLC

cout << “\n\n”;

return 0;

}

template <class A>

void FillMatrix(A *matx, int rows, int cols)

{

// Fill a matrix of type int

// On entry:

// *mat is caller’s matrix

// parameter rows is nomber of rows in matrix

// parameter cols is number of columns in matrix

A entry;

for(int i = 0;i < rows; i++)

{

cout << “Enter row ” << i << “\n”;

for(int j = 0; j < cols; j++)

{

cout << “element ” << i << “ ” << j << “: ”;

cin >> entry;

matx[(i * cols) + j] = entry;

}

}

}

Notice, in the preceding code, that the matrix is defined as a one-dimensional ar-
ray and that the function FillMatrix() receives the number of rows and columns as
parameters. Also that the FillMatrix() function is implemented as a template, which
means that it can be used to fill a two-dimensional matrix of any size and data type.

In manipulating matrices the programmer is usually concerned with the following
elements:

1. The number of rows in the matrix

2. The number of columns in the matrix

3. The memory space (number of bytes) occupied by each matrix entry

The number of rows and columns determines the dimension of the matrix. It is
customary to represent matrix dimensions using the variable M for the number of
rows and the variable N for the number of columns. The storage format of the en-
tries determines the memory space occupied by each matrix entry, therefore, the
number of bytes that must be skipped in order to index from entry to entry. In this
sense the size of each entry is sometimes referred to as the horizontal skip factor.
The number of entries in each matrix row must be used by the program in order to
index to successive entries in the same column. This value is called the vertical skip

factor. Low-level implementations must use the skip factors to access different ma-
trix entries, as shown later in this chapter. High-level languages (C++ included) ac-
cess matrix entries using the indices, and usually ignore the byte size of each
element.

© 2003 by CRC Press LLC

4.1.2 Finding Matrix Entries
You have seen that each matrix entry is identified by its row and column coordinates.
In this context the variable i is often used to designate the entry along a matrix row and
the variable j to designate the entry along a matrix column. Thus, any entry in the ma-
trix can be identified by its ij coordinates. The individual matrix is usually designated
with an upper case letter. We say that Matrix A is composed of M rows and N columns.
The number of entries in the matrix (E) is:

If each entry takes up s bytes of memory, the matrix memory space (S) can be ex-
pressed as follows:

The following diagram shows a 5-by-4 matrix.

C O L U M N S
0 1 2 3 4
| | | | |

R 0 ——- X X X X X
O 1 ——- X X ij X X
W 2 ——- X X X X X
S 3 ——- X X X X X

M = 5 (total rows)
N = 4 (total columns)
i = 1 (row address of entry ij)
j = 2 (column address of entry ij)

Notice that matrix dimensions are stated as the number of rows and columns.
This, the dimension of the previous matrix is 4 by 5. However, the location within
the rows and columns is zero-based. This scheme is consistent with array
dimensioning and addressing in C and C++.

Linear systems software often has to access an individual matrix entry located at
the ith row and the jth column. In high-level programming the language itself figures
out the horizontal and vertical skip factors. Therefore locating a matrix entry is a
simple matter of multiplying the row number by the number of columns in the ma-
trix, then adding the offset within the row. If i designates the row, j the column, and
cols is the number of columns in each row, then the offset within a matrix imple-
mented in a one-dimensional array is given by the statement:

value = (M[(i*cols) + j);

were M is the matrix and value is a variable of the same type as the matrix. The follow-
ing C++ template function returns the matrix element at row i, column j.

template <class A>
A Locateij(A *matx, int i, int j, int cols)
{
// Locate and return matrix entry at row i, column j
// On entry:

E M N= ×

S M N s= × ×

© 2003 by CRC Press LLC

// *mat is caller’s matrix
// i = row number
// j = column number
// cols = number of matrix columns
return (matx[(i * cols) + j]);

}

4.2 Array Processing
In the terminology of matrix mathematics, a vector is a matrix in which one of the ele-
ments is of the first order. In this sense you can refer to a matrix whose N dimension is
1 as a column vector. A row vector is a matrix whose M dimension is 1. In fact, a row
vector is a matrix consisting of a single row, and a column vector a matrix consisting of
a single column. Although, strictly speaking, a vector can be considered a
one-dimensional matrix, the term matrix is more often associated with a rectangular
array. Note that this use of the word vector is not related to the geometrical concept of
a directed segment in two-dimensional or three-dimensional space, or with the physi-
cal connotation of a value specified in terms of magnitude and direction.

In order to represent individual, undirected quantities, matrix mathematics bor-
rows from analytical geometry the notion of a scalar. We say that an individual con-
stant or variable is a scalar quantity, while multi-element structures are either
vectors or matrices.

Programs that perform mathematical operations on vectors and matrices are
sometimes called array processors. In this case the word array refers to any
multi-element structure, whether it be a matrix or a vector. Many array operations
require simple arithmetic on the individual entries of the array, for example, adding,
subtracting, multiplying or dividing all the entries of an array by a scalar, or finding
the square root, powers, logarithmic, or trigonometric function of the individual en-
tries. A second type of array operations refer to arithmetic between two
multi-element structures, for example, the addition and multiplication of matrices,
the calculation of vector products, and matrix inversion. Some matrix arithmetic op-
erations obey rules that differ from those used in scalar operations. Finally, some ar-
ray operations are oriented towards simplifying and solving systems of linear
equations, for example, interchanging rows, multiplying a row by a scalar, and add-
ing a multiple of one row to another row. Here we concentrate on array processing
operations that are commonly used in graphics programming.

4.2.1 Vectors and Scalars
The word vector is used to refer to the rows and columns of a two-dimensional matrix.
In this sense vector operations are those that affect the entries in a row or column, and
matrix operations are those that affect all the entries in the rectangular array. Vectors
constitute one-dimensional arrays of values, while matrices are a two-dimensional ar-
ray. We occasionally refer to the entries in a matrix row as a row vector and the entries
in a matrix column as a column vector.

Vector-by-Scalar Operations in C and C++
Graphics applications must occasionally perform operations on the individual ele-
ments of matrix rows and columns. According to the terminology presented previ-

© 2003 by CRC Press LLC

ously, these can be designated as row and column vector operations. The functions
listed in this section perform multiplication, addition, division, and subtraction of a
row vector by a scalar and multiplication of a column vector by a scalar. The imple-
mentation is based on storing matrix data in one-dimensional arrays, with rows and
columns handled by code. The functions are coded as templates so that they can be
used with any compatible data type.

//**
// functions for vector arithmetic
//**
//
template <class A>
void RowMulScalar(A *matx, int i, int cols, A scalar)
{
// Multiply a matrix row times a scalar
// On entry:
// *mat is caller’s matrix
// i is number of the row
// cols is number of columns in the matrix
// scalar is the value to multiply
// On exit:
// elements in matrix row i are multiplied by scalar
int rowStart = i * cols;

for(int j = 0;j < cols ;j++)
matx[rowStart + j] *= scalar;

}

template <class A>
void RowPlusScalar(A *matx, int i, int cols, A scalar)
{
// Add a scalar to a matrix row
// On entry:
// *mat is caller’s matrix
// i is number of the row
// cols is number of columns in the matrix
// scalar is the value to be added
// On exit:
// Scalar is added to all elements in matrix row i
int rowStart = i * cols;

for(int j = 0;j < cols ;j++)
matx[rowStart + j] += scalar;

}

template <class A>
void RowMinusScalar(A *matx, int i, int cols, A scalar)
{
// Subtract a scalar from each element in a matrix row
// On entry:
// *mat is caller’s matrix
// i is number of the row
// cols is number of columns in the matrix
// scalar is the value to be added
// On exit:
// Scalar is subtracted from all elements in matrix row i
int rowStart = i * cols;

for(int j = 0;j < cols ;j++)

© 2003 by CRC Press LLC

matx[rowStart + j] -= scalar;
}

template <class A>
void RowDivScalar(A *matx, int i, int cols, A scalar)
{
// Divide all elements in a matrix row by a scalar
// On entry:
// *mat is caller’s matrix
// i is number of the row
// cols is number of columns in the matrix
// scalar is the value
// On exit:
// All elements in matrix row i are divided by the
// scalar
int rowStart = i * cols;

for(int j = 0;j < cols ;j++)
matx[rowStart + j] /= scalar;

}

template <class A>
void ColMulScalar(A *matx, int j, int rows, int cols, A scalar)
{
// Multiply a matrix column times a scalar
// On entry:
// *mat is caller’s matrix
// j is column number
// rows is the number of rows in the matrix
// cols is number of columns in the matrix
// scalar is the value to multiply
// On exit:
// elements in matrix column j are multiplied by scalar

for(int i = 0;i < rows ;i++)
{

matx[(cols * i) + j] *= scalar;

}
}

Since column-level operations are not as common in array processing as row op-
erations, we have provided a single example, which is the ColMulScalar() function.
The programmer should be able to use it to develop any other column operations
that may be required.

Low-Level Vector-by-Scalar Operations
Array processing are computationally intensive operations. Coding them in high-level
languages is convenient and easy, but sacrifices control, performance, and possibly
precision. C++ programmers can use a more efficient approach by developing the fun-
damental processing functions in low-level code. A C++ stub function can provide
easy access to these low-level primitives.

In the code that follows, the low-level procedure receives the address of the first
matrix entry, as well as the row and column parameters required for the operation.
For example, to perform a row-level operation the low-level routine must know the
address of the matrix, the number of elements in each column and the number of the

© 2003 by CRC Press LLC

desired row. In addition, the low-level routine must have available the horizontal
skip factor. Using this information code can visit each matrix entry and perform the
required operation. The code is as follows:

;***
; low-level procedures for vector arithmetic
;***
;

.CODE
_ROW_TIMES_SCALAR PROC USES esi edi ebx ebp
; Procedure to multiply a matrix row vector by a scalar
; On entry:
; ST(0) = scalar multiplier
; ESI —> matrix containing the row vector
; EAX = number of row vector (0 based)
; ECX = number of columns in matrix
; EDX = horizontal skip factor
; On exit:
; entries of row vector multiplied by ST(0)

; Formula for offset of start of vector is
; offset = [((i-1) * N * s)]
; AL holds 0-based number of the desired row vector
; CL holds the number of entries per row (N)
; DL holds skip factor

MOV AH,0 ; Clear high-order byte
MUL CL ; AX = AL * CL

; Second multiplication assumes that product will be less than
; 65535. This assumption is reasonable since the matrix space
; assigned is 400 s

PUSH DX ; Save before multiply
MOV DH,0 ; Clear high-order byte
MUL DX ; AX = AX * DL
POP DX ; Restore DX
ADD ESI,EAX ; Add offset to pointer
MOV DH,0 ; Clear high-order byte

; At this point:
; ESI —> first entry in the matrix row
; ST(0) holds scalar multiplier
; ECX = number of entries in row
; EDX = byte length of each matrix entry
ENTRIES:

CALL FETCH_ENTRY
FMUL ST,ST(1) ; Multiply by ST(1)
CALL STORE_ENTRY
ADD ESI,EDX ; Index to next entry
LOOP ENTRIES
RET

_ROW_TIMES_SCALAR ENDP
;**

_ROW_PLUS_SCALAR PROC USES esi edi ebx ebp
; Procedure to add a scalar to a matrix row
; On entry:
; ST(0) = scalar multiplier
; ESI —> matrix containing the row vector
; EAX = number of row vector (0 based)
; ECX = number of columns in matrix
; EDX = horizontal skip factor
; On exit:

© 2003 by CRC Press LLC

; entries of row vector multiplied by ST(0)
;
; Formula for offset of start of vector is
; offset = [((i-1) * N * s)]
; AL holds 0-based number of the desired row vector
; CL holds the number of entries per row (N)
; DL holds skip factor (8 for double precision)

MOV AH,0 ; Clear high-order byte
MUL CL ; AX = AL * CL

; Second multiplication assumes that product will be less than
; 65535. This assumption is reasonable since the matrix space
; assigned is 400 s

PUSH DX ; Save before multiply
MOV DH,0 ; Clear high-order byte
MUL DX ; AX = AX * DL
POP DX ; Restore DX
ADD ESI,EAX ; Add offset to pointer
MOV DH,0 ; Clear high-order byte

; At this point:
; ESI —> first entry in the matrix row
; ST(0) holds scalar multiplier
; ECX = number of entries in row
; EDX = byte length of each matrix entry
ENTRIES_A:

CALL FETCH_ENTRY
FADD ST,ST(1) ; Add scalar
CALL STORE_ENTRY
ADD ESI,EDX ; Index to next entry
LOOP ENTRIES_A
RET

_ROW_PLUS_SCALAR ENDP
;**
;
_ROW_DIV_SCALAR PROC
; Procedure to divide a matrix row vector by a scalar
; On entry:
; ST(0) = scalar divisor
; ESI —> matrix containing the row vector
; EAX = number of row vector (0 based)
; ECX = number of columns in matrix
; EDX = horizontal skip factor

; On exit:
; Entries of row vector divided by ST(0)
; ST(0) is preserved
; Algorithm:
; Division is performed by obtaining the reciprocal of
; the divisor and using the multiplication routine
; | ST(0) | ST(1) | ST(2)

; divisor | ? | ?
FLD ST(0) ; divisor | divisor | ?
FLD1 ; 1 | divisor | divisor
FDIV ST,ST(1); 1/divisor | 1 | divisor
FSTP ST(1) ; 1/divisor | divisor | ?
CALL _ROW_TIMES_SCALAR
FSTP ST(0) ; divisor | ? | ?
CLD
RET

_ROW_DIV_SCALAR ENDP
;***

© 2003 by CRC Press LLC

;
_ROW_MINUS_SCALAR PROC
; Procedure to subtract a scalar from the entries in a matrix
; row
; On entry:
; ST(0) = scalar to subtract
; ESI —> matrix containing the row vector
; EAX = number of row vector (0 based)
; ECX = number of columns in matrix
; EDX = horizontal skip factor
; On exit:
; Scalar subtracted from entries of the row vector
; Algorithm:
; Subtraction is performed by changing the sign of the
; subtrahend and using the addition routine
; | ST(0) | ST(1) | ST(2)
; | # | ?

FCHS ; -# | ?
CALL _ROW_PLUS_SCALAR
FCHS ; # | ?
CLD
RET

_ROW_MINUS_SCALAR ENDP

Note that in the preceding routines scalar subtraction is performed by changing
the sign of the scalar addend, while division is accomplished by multiplying by the
reciprocal of the divisor. Also notice that sign inversion of a row vector can be ob-
tained by using –1 as a scalar multiplier. The row operations procedures listed previ-
ously receive the horizontal skip factor in the EDX register. The core procedures
_ROW_TIMES_SCALAR and _ROW_PLUS_SCALAR then call the auxiliary proce-
dures FETCH_ENTRY and STORE_ENTRY to access and store the matrix entries.
FETCH_ENTRY and STORE_ENTRY determine the type of data access required ac-
cording to the value in the EDX register. If the value in EDX is 4, then the data is en-
coded in single precision format. If the value is 8 then the data is in double
precision. If the value is 10, then the data is in extended precision. This mechanism
allows creating low-level code that can be used with any of the three floating-point
types in ANSI/IEEE 754. The C++ interface routines, which are coded as template
functions, use the sizeof operator on a matrix entry to determine the data type
passed by the caller.

Visual C++ Version 6, in Win32 operating systems, defines the size of int, long, un-
signed long, and float data types as 4 bytes. Therefore it is not possible to use the
size of a data variable to determine if an argument is of integer or float type. For this
reason the interface routines listed in this section can only be used with float-type
arguments. Attempting to pass integer matrices or scalars will result in undetected
computational errors. The C++ interface functions to the low-level row-operation
procedures are as follows:

//**
// C++ interface functions to vector arithmetic primitives
//**
template <class A>
void RowTimesScalarLL(A *matx, int i, int cols, A scalar)
{
// Multiply a matrix row times a scalar using low-level code

© 2003 by CRC Press LLC

// in the Un32_13 module
// On entry:
// On entry:
// *mat is caller’s matrix (floating point type)
// i is number of the row
// cols is number of columns in the matrix
// scalar is the value to add (floating point type)
// Routine expects:
// ST(0) holds scalar
// ESI —> matrix
// EAX = row vector number
// ECX = number of columns in matrix
// EDX = horizontal skip factor
// On exit:
// elements in matrix row i are multiplied by scalar
int eSize = sizeof(matx[0]);

_asm
{

MOV ECX,cols // Columns to ECX
MOV EAX,i // Row number to EAX
MOV ESI,matx // Address to ESI
FLD scalar // Scalar to ST(0)
MOV EDX,eSize // Horizontal skip
CALL ROW_TIMES_SCALAR

}
return;
}

template <class A>
void RowPlusScalarLL(A *matx, int i, int cols, A scalar)
{
// Multiply a matrix row times a scalar using low-level code
// in the Un32_13 module
// On entry:
// *mat is caller’s matrix (floating point type)
// i is number of the row
// cols is number of columns in the matrix
// scalar is the value to add (floating point type)
// Routine expects:
// ST(0) holds scalar
// ESI —> matrix
// EAX = row vector number
// ECX = number of columns in matrix
// EDX = horizontal skip factor
// On exit:
// elements in matrix row i are multiplied by scalar
int eSize = sizeof(matx[0]);

_asm
{

MOV ECX,cols // Columns to ECX
MOV EAX,i // Row number to EAX
MOV ESI,matx // Address to ESI
FLD scalar // Scalar to ST(0)
MOV EDX,eSize // Horizontal skip
CALL ROW_PLUS_SCALAR

}

© 2003 by CRC Press LLC

return;
}

template <class A>
void RowDivScalarLL(A *matx, int i, int cols, A scalar)
{
// Divide a matrix row by a scalar using low-level code
// in the Un32_13 module
// On entry:
// *mat is caller’s matrix (float type)
// i is number of the row
// cols is number of columns in the matrix
// scalar is the value to add (float type)
// Routine expects:
// ST(0) holds scalar
// ESI —> matrix
// EAX = row vector number
// ECX = number of columns in matrix
// EDX = horizontal skip factor
// On exit:
// elements in matrix row i are multiplied by scalar
int eSize = sizeof(matx[0]);
_asm
{

MOV ECX,cols // Columns to ECX
MOV EAX,i // Row number to EAX
MOV ESI,matx // Address to ESI
FLD scalar // Scalar to ST(0)
MOV EDX,eSize // Horizontal skip
CALL ROW_DIV_SCALAR

}
return;
}

template <class A>
void RowMinusScalarLL(A *matx, int i, int cols, A scalar)
{
// Subtract a scalar from a matrix row using low-level code
// in the Un32_13 module
// On entry:
// *mat is caller’s matrix (float type)
// i is number of the row
// cols is number of columns in the matrix
// scalar is the value to add (float type)
// Routine expects:
// ST(0) holds scalar
// ESI —> matrix
// EAX = row vector number
// ECX = number of columns in matrix
// EDX = horizontal skip factor
// On exit:
// elements in matrix row i are multiplicd by scalar
int eSize = sizeof(matx[0]);
_asm
{

MOV ECX,cols // Columns to ECX
MOV EAX,i // Row number to EAX
MOV ESI,matx // Address to ESI

© 2003 by CRC Press LLC

FLD scalar // Scalar to ST(0)
MOV EDX,eSize // Horizontal skip
CALL ROW_MINUS_SCALAR

}
return;
}

Matrix-by-Scalar Operations
Often we need to perform scalar operations on all entries in a matrix. In graphics pro-
gramming the more useful operations are scalar multiplication, division, addition, and
subtraction, in that order. In this section we present code to perform these ma-
trix-by-scalar multiplications. Here again, because matrix-by-scalar manipulations
are computationally intensive, we develop the routines in low-level code and provide
C++ interface functions to the assembly language procedures. The low-level code is as
follows:

.CODE
_MAT_TIMES_SCALAR PROC USES esi edi ebx ebp
; Procedure to multiply a matrix by a scalar
; On entry:
; ST(0) = scalar multiplier
; ESI —> matrix containing the row vector
; EAX = number of rows
; ECX = number of columns
; EDX = horizontal skip factor
; On exit:
; entries of matrix multiplied by ST(0)
; Total number of entries is M * N

MOV AH,0 ; Clear high-order byte
MUL CL ; AX = AL * CL
MOV ECX,EAX ; Make counter in CX

; At this point:
; ESI —> first entry in the matrix
; ST(0) holds scalar multiplier
; ECX = number of entries in matrix
; EDX = byte length of each matrix entry (4, 8, or 10 bytes)
MAT_MUL:

CALL FETCH_ENTRY
FMUL ST,ST(1) ; Multiply by ST(1)
CALL STORE_ENTRY
ADD ESI,EDX ; Index to next entry
LOOP MAT_MUL
CLD
RET

_MAT_TIMES_SCALAR ENDP
The C++ interface function is named MatTimesScalarLL(). The code is as
follows:
template <class A>
void MatTimesScalarLL(A *matx, int rows, int cols, A scalar)
{
// Multiply a matrix times a scalar using low-level code
// in the Un32_13 module
// On entry:
// *mat is caller’s matrix (type double)
// rows is number of the rows in matrix
// cols is number of columns in the matrix
// scalar is the value to multiply (floating point type)
// Routine expects:

© 2003 by CRC Press LLC

// ST(0) holds scalar
// ESI —> matrix
// EAX = row vector number
// ECX = number of columns in matrix
// EDX = horizontal skip factor
// On exit:
// elements in matrix are multiplied by scalar
int eSize = sizeof(matx[0]);

_asm
{

MOV ECX,cols // Columns to ECX
MOV EAX,rows // Rows to EAX
MOV ESI,matx // Address to ESI
FLD scalar // Scalar to ST(0)
MOV EDX,eSize // Horizontal skip
CALL MAT_TIMES_SCALAR

}
return;
}

4.2.2 Matrix-by-Matrix Operations
Two matrix-by-matrix operations are defined in linear algebra: matrix addition and
multiplication. Matrix addition is the process of adding the corresponding entries of
two matrices. As you saw in Chapter 3, matrix addition is defined only if the matrices
are of the same size. The addition process in the case C = A + B consists of locating
each corresponding entry in matrices A and B and storing their sum in matrix C.

Matrix multiplication, on the other hand, is rather counter-intuitive. Instead of
multiplying the corresponding elements of two matrices, matrix multiplication con-
sists of multiplying each of the entries in a row of matrix A, by each of the corre-
sponding entries in a column of matrix B, and adding these products to obtain an
entry of matrix C. For example

The entries in the product matrix C are obtained as follows:

First row of matrix C

C11 = (A11*B11)+(A12*B21)+(A13*B31)
C12 = (A11*B12)+(A12*B22)+(A13*B32)
C13 = (A11*B13)+(A12*B23)+(A13*B33)
C14 = (A11*B14)+(A12*B24)+(A13*B34)

Second row of matrix C

C21 = (A21*B11)+(A22*B21)+(A23*B31)
C22 = (A21*B12)+(A22*B22)+(A23*B32)
C23 = (A21*B13)+(A22*B23)+(A23*B33)
C24 = (A21*B14)+(A22*B24)+(A23*B34)

Matrix multiplication requires a series of products, which are obtained using as
factors the entries in the rows of the first matrix and the entries in the columns of
the second matrix. Therefore, matrix multiplication is defined only if the number of

© 2003 by CRC Press LLC

colunms of the first matrix is equal to the number of rows in the second matrix. This
relationship can be visualized as follows:

matrix A matrix B
R C r c

|______ = ________|

where R, C represents the rows and columns of the first matrix, and r, c represents the
rows and columns of the second matrix. By the same token, the product matrix (C) will
have as many rows as the first matrix (A) and as many columns as the second matrix
(B). In the previous example, since matrix A is a 2-by-3 matrix, and matrix B is a 3-by-4
matrix, matrix C will be a 2-by-4 matrix.

Since matrix addition and multiplication are computationally intensive opera-
tions we implement them in low-level code and provide C++ interface routines.

Matrix Addition
The following low-level procedure performs matrix addition. The procedure requires
that both matrices be of the same dimension, that is, that they have the same number of
columns and rows.

.486
.MODEL flat
.DATA

;**|
; Data for this matrix addition and multiplication |
;**|
ELEMENT_CNT DW 0 ; Storage for total number of

; entries in matrix C
;
MAT_A_ROWS DB 0 ; Rows in matrix A
MAT_A_COLS DB 0 ; Columns in matrix A
MAT_B_ROWS DB 0 ; Rows in matrix B
MAT_B_COLS DB 0 ; Columns in matrix B
MAT_C_ROWS DB 0 ; Rows in matrix C
MAT_C_COLS DB 0 ; Columns in matrix C
SKIP_FACTOR DD 0 ; Element size
;
; Control variables for matrix multiplication
PROD_COUNT DB 0 ; Number of product in each

; multiplication iteration
WORK_PRODS DB 0 ; Working count for number of

; products
WORK_ROWS DB 0 ; Number of rows in matrices A

; and C
WORK_COLS DB 0 ; Number of columns in matrices B

; and C
.CODE

;**********************************
; matrix addition
;**********************************
_ADD_MATRICES PROC USES esi edi ebx ebp
; Procedure to add all the corresponding entries of two matrices
; of the same size, as follows:
;
; A= B= C=(A+B)
; A11 A12 A13 B11 B12 B13 A11+B11 A12+B12 A13+B13

© 2003 by CRC Press LLC

; A21 A22 A23 B21 B22 B23
; A31 A32 A33 B31 B32 B33 A33+B33
;
; On entry:
; ESI —> first matrix (A)
; EDI —> second matrix (B)
; EBX —> storage area for addition matrix (C)
; Code assumes that matrix C is correctly
; dimensioned
; EAX = number of rows in matrix
; ECX = number of columns in matrix
; EDX = horizontal skip factor
;
; On exit:
; AX = 0 if matrices are the same size, then matrix C
; contains sum of A + B
;
; AX = 1 if matrices are of different size and the matrix
; sum is undefined
;
; Note: matrix addition is defined only regarding two matrices of
; the same size. Matrices must be of type float and of the
; same format
;
;***************************|
; test for equal size |
;***************************|

CMP AX,CX ; Test for matrices of equal size
JE GOOD_SIZE ; Go if same size

;***************************|
; DATA ERROR |
;***************************|
; At this point matrices cannot be added

MOV AX,1 ; Error code
CLD

RET
;***************************|
; store matrix parameters |
;***************************|
; Calculate number of entries by multiplying matrix rows times
; matrix columns
GOOD_SIZE:

PUSH EDX ; Save register
MUL CX ; Rows times columns
MOV ELEMENT_CNT,AX ; Store number of entries
POP EDX

; At this point:
; ESI —> first matrix (A)
; EDI —> second matrix (B)
; EBX —> storage area for addition matrix (A+B)
;***************************|
; perform matrix addition |
;***************************|
A_PLUS_B:
; ESI —> matrix entry in matrix A
; EDX = entry size (4, 8, or 10 bytes)

CALL FETCH_ENTRY ; ST(0) now holds entry of A
; Fetch entry in matrix B

XCHG ESI,EDI ; ESI —> matrix B entry
CALL FETCH_ENTRY ; ST(0) = matrix B entry

© 2003 by CRC Press LLC

; ST(1) = matrix A entry
XCHG ESI,EDI ; Reset pointer

; Add entries
FADD ; ST(0) | ST(1) | ST(2)

; eA + eB | ------- |
XCHG EBX,ESI ; ESI —> matrix C entry

; Store sum
CALL STORE_ENTRY ; Store sum in matrix C and pop

; stack
XCHG EBX,ESI ; Restore pointers

; Update entries counter
DEC ELEMENT_CNT ; Counter for matrix s
JNZ NEXT_MAT_ELE ; Continue if not end of matrix

;***************************|
; end of matrix addition |
;***************************|

MOV AX,0 ; No error flag
CLD

RET
;***************************|
; index matrix pointers |
;***************************|
; Add entry size to each matrix pointer
NEXT_MAT_ELE:

ADD ESI,EDX ; Add size to pointer
ADD EDI,EDX
ADD EBX,EDX
JMP A_PLUS_B

;
_ADD_MATRICES ENDP

The C++ interface function to the _ADD_MATRICES procedure is as follows:

template <class A>
void AddMatrices(A *matA, A *matB, A *matC, int rows, int cols)
{
// Perform matrix addition: C = A + B using low-level code in the
// Un32_13 module
// On entry:
// *matA and *matB are matrices to be added
// *matC is matrix for sums
// rows is number of the rows in matrices
// cols is number of columns in the matrices
// Requires:
// All three matrices must be of the same dimensions
// All three matrices must be of the same floating
// point data type
// Routine expects:
// ESI —> first matrix (A)
// EDI —> second matrix (B)
// EBX —> storage area for addition matrix (C)
// EAX = number of rows in matrices
// ECX = number of columns in matrices
// EDX = horizontal skip factor
// On exit:
// returns matC[] = matA[] + matB[]

int eSize = sizeof(matA[0]);

_asm

© 2003 by CRC Press LLC

{

MOV ECX,cols // Columns to ECX
MOV EAX,rows // Rows to EAX
MOV ESI,matA // Address to ESI
MOV EDI,matB
MOV EBX,matC
MOV EDX,eSize // Horizontal skip
CALL ADD_MATRICES

}
return;
}

Matrix Multiplication
The following low-level procedure performs matrix multiplication. The procedure re-
quires that the number of columns in the first matrix be the same as the number of
rows in the second matrix. The matrix for results must be capable of storing a number
of elements equal to the product of the number of rows of the first matrix by the num-
ber of columns of the second matrix. The data variables for the _MUL_MATRICES pro-
cedure were defined in the _ADD_MATRICES procedure, listed previously.

.CODE
;**
; matrix multiplication
;**
_MUL_MATRICES PROC USES esi edi ebx ebp
; Procedure to multiply two matrices (A and B) for which a matrix
; product (A * B) is defined. Matrix multiplication requires that
; the number of columns in matrix A be equal to the number of
; rows in matrix B, as follows:
;
; A B
; R C r c
; |______ = ______|
;
; Example:
;
; A=(2 by 3) B=(3 by 4)
; A11 A12 A13 B11 B12 B13 B14
; A21 A22 A23 B21 B22 B23 B24
; B31 B32 B33 B34
;
; The product matrix (C) will have 2 rows and 4 columns
; C=(2 by 4)
; C11 C12 C13 C14
; C21 C22 C23 C24
;
; In this case the product matrix is obtained as follows:
; C11 = (A11*B11)+(A12*B21)+(A13*B31)
; C12 = (A11*B12)+(A12*B22)+(A13*B32)
; C13 = (A11*B13)+(A12*B23)+(A13*B33)
; C14 = (A11*B14)+(A12*B24)+(A13*B34)
;
; C21 = (A21*B11)+(A22*B21)+(A23*B31)
; C22 = (A21*B12)+(A22*B22)+(A23*B32)
; C23 = (A21*B13)+(A22*B23)+(A23*B33)
; C24 = (A21*B14)+(A22*B24)+(A23*B34)
;

© 2003 by CRC Press LLC

; On entry:
; ESI —> first matrix (A)
; EDI —> second matrix (B)
; EBX —> storage area for products matrix (C)
; AH = rows in matrix A
; AL = columns in matrix A
; CH = rows in matrix B
; CL = columns in matrix B
; EDX = number of bytes per entry
; Assumes:
; Matrix C is dimensioned as follows:
; Columns of C = columns of B
; Rows of C = rows of A
; On exit:
; Matrix C is the products matrix

; Note: the entries of matrices A, B, and C must be of type float
; and of the same data format
;
; Store number of product in each multiplication iteration

MOV PROD_COUNT,AL
; At this point:
; AH = rows in matrix A
; AL = columns in matrix A
; CH = rows in matrix B
; CL = columns in matrix B
; Store matrix dimensions

MOV MAT_A_ROWS,AH
MOV MAT_A_COLS,AL
MOV MAT_B_ROWS,CH
MOV MAT_B_COLS,CL

; Store skip factor
MOV SKIP_FACTOR,EDX

; Calculate total entries in matrix C
; Columns in C = columns in B
; Rows in C = rows in A

MOV MAT_C_COLS,CL
MOV MAT_C_ROWS,AH

; Calculate number of products
MOV AH,0 ; Clear high byte of product
MUL CL ; Rows times columns
MOV ELEMENT_CNT,AX ; Store count

; At this point:
; ESI —> first matrix (A)
; EDI —> second matrix (B)
; EBX —> storage area for products matrix (A*B)

MOV START_BMAT,EDI ; Storage for pointer
;***************************|
; initialize row and column |
; counters |
;***************************|
; Set up work counter for number of rows in matrix C
; This counter will be used in determining the end of the
; matrix multiplication operation

MOV AL,MAT_C_ROWS ; Rows in matrix C
MOV WORK_ROWS,AL ; To working counter

; Reset counter for number of columns in matrix C
; This counter will be used in resetting the matrix pointers at
; the end of each row in the products matrix

MOV AL,MAT_C_COLS ; Columns in matrix C

© 2003 by CRC Press LLC

MOV WORK_COLS,AL ; To working counter
;***************************|
; perform multiplication |
;***************************|
NEW_PRODUCT:
; Save pointers to matrices A and B

PUSH ESI ; Pointer to A
PUSH EDI ; Pointer to B

; Load 0 as first entry in sum of products
FLDZ

; ST(0) | ST(1) | ST(2)
; | 0 | ? | ? |
; Store number of products in work counter

MOV AL,PROD_COUNT ; Get count
MOV WORK_PRODS,AL ; Store in work counter

A_TIMES_B:
; Fetch entry in current row of matrix A

MOV EDX,SKIP_FACTOR ; size to DL
; ESI —> matrix entry in current row of matrix A

CALL FETCH_ENTRY ; ST(0) now holds entry of A
XCHG ESI,EDI ; ESI —> matrix B
CALL FETCH_ENTRY ; ST(0) = matrix B

; ST(1) = matrix A
XCHG ESI,EDI ; Reset pointer

; Multiply s
; ST(0) | ST(1) | ST(2)

FMULP ST(1),ST ; eA * eB |previous | ------ |
; | sum | ------ |

FADD ; p sum | ------ |
; Test for last entry in product column

DEC WORK_PRODS ; Is this last product
JZ NEXT_PRODUCT ; Go if at end of products column

;***************************|
; next product |
;***************************|
; Index to next column of matrix A

ADD ESI,SKIP_FACTOR ; Add size to pointer
; Index to next row in the same column in matrix B

MOV EAX,EDX ; Horizontal skip factor to AL
MUL MAT_B_COLS ; Times number of columns

ADD EDI,EAX ; Add to pointer
JMP A_TIMES_B ; Continue in same product column

;***************************|
; store product |
;***************************|
NEXT_PRODUCT:
; Restore pointers to start of current A row and B column

POP EDI ; B matrix pointer
POP ESI ; A matrix pointer

; At this point ST(0) has sum of products
; Store this sum as entry in products matrix (by DS:BX)

XCHG EBX,ESI ; ESI —> matrix C
; Store sum

MOV EDX,SKIP_FACTOR ; size to DL
CALL STORE_ENTRY ; Store sum in matrix C and pop

; stack
XCHG EBX,ESI ; Restore pointers

; Index to next entry in matrix C
ADD EBX,SKIP_FACTOR ; Add size to pointer

;***************************|

© 2003 by CRC Press LLC

; test for last column in |
; matrix C |
;***************************|
; WORK_COLS keeps count of current column in matrix C

DEC WORK_COLS ; Is this the last column in C
JE NEW_C_ROW ; Go if last row

; Index to next column in matrix B
ADD EDI,SKIP_FACTOR ; Add size to pointer
JMP NEW_PRODUCT

;***************************|
; index to new row |
;***************************|
; First test for end of processing
NEW_C_ROW:

DEC WORK_ROWS ; Row counter in matrix C
JNE NEXT_C_ROW ; Go if not last row of C

;***************************|
; end of matrix |
; multiplication |
;***************************|

JMP MULT_M_EXIT

;***************************|
; next row of matrix C |
;***************************|
; At the start of every new row in the products matrix, the
; matrix B pointer must be reset to the start of matrix B
; and the matrix A pointer to the start entry of the next
; row of matrix A
NEXT_C_ROW:

MOV EDI,START_BMAT ; EDI —> start of B
MOV AH,0 ; Clear high byte of adder

; Pointer for matrix A
MOV EAX,SKIP_FACTOR ; Entry size of A
MUL MAT_A_COLS ; Size times columns
ADD ESI,EAX ; ESI —> next row of A

; Reset counter for number of columns in matrix C
MOV AL,MAT_C_COLS ; Columns in matrix C
MOV WORK_COLS,AL ; To working counter
JMP NEW_PRODUCT ; Continue processing

;***********************|
; EXIT |
;***********************|
MULT_M_EXIT:

CLD
RET

_MUL_MATRICES ENDP

The C++ interface function to the _MUL_MATRICES procedure is as follows:

template <class A>
bool MulMatrices(A *matA, A *matB, A *matC,

int rowsA, int colsA,
int rowsB, int colsB)

{
// Perform matrix addition: C = A + B using low-level code in the
// Un32_13 module
// On entry:
// *matA and *matB are matrices to be added

© 2003 by CRC Press LLC

// *matC is matrix for sums
// rowsA is number of the rows in matrix A
// colsA is number of columns in the matrix A
// rowsB is number of the rows in matrix B
// colsB is number of columns in the matrix B
// Requires:
// All three matrices must be of the same dimensions
// All three matrices must be of the same float
// data type
// Asumes:
// Matrix C dimensions are the product of the
// columns of matrix B times the rows or matrix A
// Routine expects:
// ESI —> first matrix (A)
// EDI —> second matrix (B)
// EBX —> storage area for addition matrix (C)
// AH = number of rows in matrix A
// AL = number of columns in matrix A
// CH = number of rows in matrix B
// CL = number of columns in matrix B
// EDX = horizontal skip factor
// On exit:
// returns true if matC[] = matA[] * matB[]
// returns false if columns of matA[] not = rows
// of matB[]. If so, matC[] is undefined

int eSize = sizeof(matA[0]);

// Test for valid matrix sizes:
// columns of matA[] = rows of matB[]
if(colsA != rowsB)

return false;

_asm
{

MOV AH,BYTE PTR rowsA
MOV AL,BYTE PTR colsA
MOV CH,BYTE PTR rowsB
MOV CL,BYTE PTR colsB
MOV ESI,matA // Address to registers
MOV EDI,matB
MOV EBX,matC
MOV EDX,eSize // Horizontal skip
CALL MUL_MATRICES

}
return true;
}

© 2003 by CRC Press LLC

Chapter 5

Projections and Rendering

Topics:
• Perspective

• Projections

• The rendering pipeline

In order to view manipulate and view a graphics object we must find ways of stor-
ing it a computer-compatible way. In order to store an image, we must find a ways of
defining and digitizing it. Considering that the state-of-the-art in computer displays
is two-dimensional, the solid image must also be transformed so that it is rendered
on a flat surface. The task can be broken down into three separate chores: repre-
senting, encoding, and rendering. Representing and encoding graphics images were
discussed in previous chapters. Here we are concerned with rendering.

5.1 Perspective
The computer screen is a flat surface. When image data is stored in the computer it is in
the form of a data structure consisting of coordinate points. You have seen in Chapters
3 and 4 how a matrix containing these image coordinate points can be translated,
scaled, and rotated by means of geometrical transformations. But a data structure of
image points cannot be displayed directly onto a flat computer screen. In the same
way that an engineer must use a rendering scheme in order to represent a solid object
onto the surface of the drawing paper, the programmer must find a way of converting a
data structure of coordinates into an image on the computer monitor. You can say that
both, the engineer and the programmer, have a rendering problem. Various ap-
proaches to rendering give rise to several types of projections. Figure 5-1, on the fol-
lowing page, shows the more common type of projections.

5.1.1 Projective Geometry

Projective geometry is the field of mathematics that studies the transformations of ob-
jects during projections. The following imaginary elements participate in every pro-
jection:

© 2003 by CRC Press LLC

Figure 5-1 Common Projections

1. The observer's eye, also called the view point or center of projection.

2. The object being viewed.

3. The plane or planes of projection.

4. The visual rays that determine the line of sight, called the projectors.

Figure 5-2 shows these elements.

PROJECTIONS

Parallel

Aerial Orthographic

Multiview

Perspective

Linear

One-point

Isometric

Cabinet

Front
elevation

Side
elevation

Top
elevation

Two-point

Dimetric

Cavalier

Three-point

Trimetric

Clinographic

Oblique

Axonometric

© 2003 by CRC Press LLC

Figure 5-2 Projection Elements

Geometrically, the projection of a point on a plane is the point of intersection, on
the plane of projection, of a line that extends from the object's point to the center of
projection. This line is called the projector. Alternatively you can say that the pro-
jection of a point is the intersection between the point's projector and the plane of
projection. The definition can be further refined by requiring that the center of pro-
jection not be located in the object nor in the plane of projection. This constraint
makes this type of projection a central projection.

The location of the center of projection in relation to the object and the plane of
projection determines the two main types of projections. When the center of projec-
tion is at a measurable distance from the plane of projection it is called a perspec-
tive projection. When the center of projection is located at infinity, the projection is
called a parallel projection. Figure 5-3 shows perspective and parallel projections.

Figure 5-3 Perspective and Parallel Projections

plane of projection

projectors
object

center of

projection

center of

projection

center of projection

at inifinity

PERSPECTIVE
PROJECTION

PARALLEL
PROJECTION

© 2003 by CRC Press LLC

In central projections the geometrical elements in the object plane are trans-
formed into similar ones in the plane of projection. A line is projected as a line, a tri-
angle as a triangle, and a polygon as a polygon. However, other object properties
may not be preserved. For example, the length of line segments, the angular values,
and the congruence of polygons can be different in the object and the projected im-
age. Furthermore, geometrical elements that are conic sections (circle, ellipse, pa-
rabola, and hyperbola) retain the conic section property, but not necessarily their
type. A circle can be projected as an ellipse, an ellipse as a parabola, and so on. Fig-
ure 5-4 shows the perspective projection of a circle as a ellipse.

Figure 5-4 A Circle Projected as an Ellipse

5.1.2 Parallel Projections

Parallel projections find extensive use in drafting, engineering drawings, and archi-
tecture. They are divided into two types: oblique and orthographic. The orthographic
or right-angle projection, which is the simplest of all, assumes that the planes or pro-
jection coincide with the coordinates axis. In this case the projectors are normal (per-
pendicular) to the plane of projection. In the oblique projection the projectors are not
normal to the plane of projection.

A type of parallel projection, called a multiview projection, is often used in tech-
nical drawings. The images that result from a multiview projection are planar and
true-to-scale. Therefore, the engineer or draft person can take measurements di-
rectly from a multiview projection. Figure 5-5 shows a multiview projection of an
engineered object.

In Figure 5-5 the front, side, and top views are called the regular views. There are
three additional views not shown in the illustration, called the bottom, right-side,
and rear views. These are drawn whenever it is necessary to show details not visible
in the regular views. The Cartesian interpretation of the front view is the ortho-
graphic projection of the object onto the xy-plane, the side view is the projection
onto the yz-plane, and the top view is the projection onto the xz-plane. Sometimes
these views are called the front-elevation, side-elevation, and top- or plan-elevation.
While each multiview projection shows a single side of the object, it is often conve-
nient to show the object pictorially. The drawing on the left-side of Figure 5-5 shows
several sides of the object in a single view, thus rendering a pictorial view of the ob-
ject.

center of

projection

© 2003 by CRC Press LLC

Figure 5-5 Parallel, Orthographic, Multiview Projection

Orthographic-axonometric projections are pictorial projections often used in
technical applications. The term axonometric originates in the greek word "axon"
(axis) and "metrik" (measurement). It relates to the measurements of the axes used
in the projection. Notice in Figure 5-1 that the axonometric projections are further
classified into isometric, dimetric, and trimetric. Isometric means "equal measure,"
which means that the object axes make equal angles with the plane of projection. In
the dimetric projection two of the three object axes make equal angles with the
plane of projection. In the trimetric, all three axes angles are different. Figure 5-6
shows the isometric, dimetric, and trimetric projections of a cube.

Figure 5-6 Isometric, Dimetric, and Trimetric Projections

x

TOP

VIEW

SIDE

VIEW

FRONT

VIEW

DRAWING SHOWING 3 REGULAR VIEWS

y

z

ISOMETRIC

a = b = c

OX =OY = OZ

TRIMETRIC

a = b = c

OX =OY = OZ

DIMETRIC

c = b

OX =OY

a a ab b b

c c c

O O O

Z
Z

Z
X

X X

Y Y Y

© 2003 by CRC Press LLC

5.1.3 Perspective Projections
Orthographic projections have features that make them useful in technical applica-
tions. For example, multiview projections provide dimensional information to the
technician, engineer, and the architect. Axonometric projections, shown in Figure 5-6,
can be mechanically generated from multiview drawings. In general, the main feature
of the parallel projections is their information value.

One objection to the parallel projections is their lack of realism. Figure 5-7 shows
two isometric cubes, labeled A and B, at different distances from the observer. How-
ever, both objects have projected images of the same size. This is not a realistic rep-
resentation since cube B, farther away from the observer, should appear smaller
than cube A.

Figure 5-7 Lack of Realism In Isometric Projection

Perspective projection attempts to improve the realism of the image by providing
depth cues that enhance relative positions, distances, and diminishing size. One of
the most important depth cues is the relative size of the object at different distances
from the viewing point. This effect can be achieved by means of perspective projec-
tions. The perspective projection depends on a vanishing point that is used to deter-
mine the object's relative size. Three types of perspective projections are in use,
according to the number of vanishing points. They are named one-point, two-point,
and three-point perspectives.

The number of vanishing points is determined by the positioning of the object in
relation to the plane of projection. If a cube is placed so its front face is parallel to
the plane of projection, then one set of edges converges to a single vanishing point.
If the same cube is positioned so that one set of parallel edges is vertical, and the
other two are not, then each of the two non-vertical edges has a vanishing point.
Finally, if the cube is placed so that none of its principal edges are parallel to the
plane of projection, then there are three vanishing points.

z

y

x

A

B

© 2003 by CRC Press LLC

Perspective projections have some unique characteristics. In a parallel projection
we take a three-dimensional object and produce a two-dimensional image. In a per-
spective projection we start with a three-dimensional object and produce another
three-dimensional object which is modified in order to enhance its depth cues. This
makes this type of projection a transformation, much like the rotation, translation,
and scaling transformations discussed in Chapter 3. However, unlike rotation, trans-
lation, and scaling, a perspective transformation distorts the shape of the object
transformed. After a perspective transformation, forms that were originally circles
may turn into ellipses, parallelograms into trapezoids, and so forth. It is these distor-
tions that reinforce our depth perception.

One-Point Perspective
The simplest perspective projection is based on a single vanishing point. In this pro-
jection, also called single-point perspective, the object is placed so that one of its sur-
faces is parallel to the plane of projection. Figure 5-8 shows a one-point perspective of
a cube.

Figure 5-8 One-Point Perspective Projection of a Cube

One point perspective projections are simple to produce and find many practical
uses in engineering, architecture, and in computer graphics. One of the features of
the one-point perspective is that if an object has cylindrical or circular forms, and
these are placed parallel to the plane of projection, then the forms are represented
as circles or circular arcs in the perspective. This can be an advantage, considering
that circles and circular arcs are easier to draw than ellipses or other conics. Figure
5-9, on the following page, is a one-point projection of a mechanical part that con-
tains cylindrical and circular forms.

vanishing

pointhorizon

© 2003 by CRC Press LLC

Figure 5-9 One-Point Projection of a Mechanical Component

A special form of the one-point perspective projection takes place when the van-
ishing point is placed centrally within the figure. This type of projection is called a
tunnel perspective or tunnel projection. Because of the particular positioning of the
object in the coordinate axes, the depth cues in a tunnel projection are not very ob-
vious. Figure 5-10 shows the tunnel projection of a cube.

Figure 5-10 Tunnel Projection of a Cube

Two-Point Perspective
The depth cues in a linear perspective of a multi-faced object can be improved by rotat-
ing the object so that two of its surfaces have vanishing points. In the case of a cube
this is achieved if the object is rotated along its y-axis, so that lines along that axis re-
main parallel to the viewing plane, but those along the two other axes have vanishing
points. Figure 5-11 shows a two-point perspective of a cube.

Figure 5-11 Two-Point Perspective of a Cube

vanishing

point

vanishing

point

vanishing

point

© 2003 by CRC Press LLC

Two-point perspective projections are realistic and easy to render. For these rea-
sons they are frequently used in 3D graphics.

Three-Point Perspective
A three-point perspective is achieved by positioning the object so that none of its axes
are parallel to the plane of projection. Although the visual depth cues in a three-point
perspective are stronger than in the two-point perspective, the resulting geometrical
deformations are sometimes disturbing to the viewer. Figure 5-12 is a three-point per-
spective projection of a cube.

Figure 5-12 Three-Point Perspective of a Cube

The Perspective Projection as a Transformation

The data structure that defines the vertices of a three-dimensional object can be
changed into another one that contains enhanced depth cues by performing a mathe-
matical transformation. In other words, a perspective projection can be accomplished
by means of a transformation. In calculating the projection transformation it is conve-
nient to define a 4-by- 4 matrix so the transformation is compatible with the ones used
for rotation, translation, and scaling, as described in Chapter 3. In this manner we can
use matrix concatenation to create matrices that simultaneously perform one or more
geometrical transformations, as well as a perspective projection.

x-axis

vanishing

point
z-axis

vanishing

point

y-axis

vanishing

point

© 2003 by CRC Press LLC

The simplest approach for deriving the matrix for a perspective projection is to
assume that the projection plane is normal to the z-axis and located at z = d. Figure
5-13 shows the variables for this case.

Figure 5-13 Perspective Projection of Point P

In Figure 5-13 point Pp represents the perspective projection of point P. According
to the predefined constraints for this projection, we already know that the z coordi-
nate of point Pp is d. To determine the formulas for calculating the x and y coordi-
nates we can take views along either axes, and solve the resulting triangles, as
shown in Figure 5-14.

Figure 5-14 Calculating x and y Coordinates of Point P

x

y

z

Projection

plane

P(x, y, z)

P (x , y , d)p p p

d

xp

yp

x

y

z

z

Projection

plane

Projection

plane

VIEW ALONG THE Y AXIS

VIEW ALONG THE X AXIS

P(x, y, z)

P(x, y, z)

d

d

© 2003 by CRC Press LLC

Since the gray triangles in Figure 5-14 are similar, we can establish the ratios:

and

Solving for xp and yp produces the equations:

Since the distance d is a scaling factor in both equations, the division by z has the
effect of reducing the size of more distant objects. In this case the value of z can be
positive or negative, but not zero, since z = 0 defines a parallel projection. These
equations can be expressed in matrix form, as follows:

5.2 The Rendering Pipeline
A common interpretation of the rendering process is to consider it as a series of trans-
formations that take the object from the coordinate system in which it is encoded, into
the coordinate system of the display surface. This process, sometimes referred to as
the rendering pipeline, is described as a series of spaces through which the object mi-
grates in its route from database to screen. A waterfall model of the rendering pipeline
is shown in Figure 5-15.

Figure 5-15 Waterfall Model of the Rendering Pipeline

�
x x

d z
=

�
y y

d z
=

,
/ /

� �

x y
x y

z d z d
= =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 1/ 0d

 
 
 
 
 
 

Local
space

World
space

Eye
space

Screen
space

World space

transformation
View

transformation

Screen

transformation

© 2003 by CRC Press LLC

5.2.1 Local Space
Objects are usually easier to model if they are conveniently positioned in the coordi-
nate plane. For example, when we place the bottom-left vertex of a cube at the origin
of the coordinate system, the coordinates are all positive values, as in Figure 5-16.

Figure 5-16 Local Space Coordinates of a Cube with Vertex at the Origin

The so-called local space coordinates system facilitates numerical representation
and transformations. When objects are modeled by means of polygons, the database
usually includes not only the object coordinates points, but the normals to the poly-
gon vertices and the normal to the polygon itself. This information is necessary in
order to perform many of the rendering transformations.

5.2.2 World Space
The coordinate system of the scene is called the world space, or world coordinate sys-
tem. Objects modeled in local space usually have to be transformed into world space
at the time they are placed in a scene. For example, a particular scene may require a
cube placed so that its left-bottom vertex is at coordinates x = 2, y = 3, z = 0. The pro-
cess requires applying a translation transformation to the cube as it was originally de-
fined in local space. Furthermore, lighting conditions are usually defined in world
space. Once the light sources are specified and located, then shading and other render-
ing transformations can be applied to the polygons so as to determine how the object
appears under the current illumination. Surface attributes of the object, such as tex-
ture and color, may affect the shading process. Figure 5-17 shows the world space
transformation of a cube under unspecified illumination conditions and with unde-
fined texture and color attributes.

5.2.3 Eye Space
Note in Figure 5-17 that the image is now in world space, and that some shading of the
polygonal surfaces has taken place; however, the rendering is still far from complete.
The first defect that is immediately evident is the lack of perspective. The second one
is that all of the cube's surfaces are still visible. The eye space, or camera coordinate
system, introduces the necessary transformations to improve rendering to any de-
sired degree. Perspective transformations requires knowledge of the camera position

+y

+x

+z

p1 p2

p3p4

p5 p6

P8 p7

Local space coordinates

x y z

p1.. 0 0 0

p2.. 5 0 0

p3.. 5 0 3

p4.. 0 0 3

p5.. 0 4 0

p6.. 5 4 0

p7.. 5 4 3

p8.. 0 4 3

© 2003 by CRC Press LLC

and the projection plane. The second of these is not known until we reach the screen
space phase in the rendering pipeline, therefore, it must be postponed until we reach
this stage.

Figure 5-17 World Space Transformation of the Cube In Figure 5-16

The notions of eye and camera positions can be taken as equivalent, although the
word "camera" is more often used in 3D graphics. The camera can be positioned any-
where in the world space and pointed in any direction. Once the camera position is
determined, it is possible to eliminate those elements of the scene that are not visi-
ble. In the context of polygonal modeling this process is generically called backface
elimination.

Backface Elimination or Culling

One of the most important rendering problems that must be solved at this stage of the
pipeline is the elimination of the polygonal faces that are not visible from the eye posi-
tion. In the simplest case, entire polygons that are not visible are removed at this time.
This operation is known as culling. When dealing with a single convex object, as is a
cube, culling alone solves the backface elimination problem. However, if there are
multiple objects in a scene, where one object may partially obscure another one, or in
the case of concave objects, then a more general backface elimination algorithm is re-
quired.

+y

+y

+x

+x

light

+z

+z

p1 p2

p3p4

p5 p6

P8 p7

World space coordinates

x y z

p1.. 2 3 0

p2.. 7 3 0

p3.. 7 3 3

p4.. 2 3 3

p5.. 2 7 0

p6.. 7 7 0

p7.. 7 7 3

p8.. 2 7 3

© 2003 by CRC Press LLC

A solid object composed of polygonal surfaces that completely enclose its vol-
ume is called a polyhedron. In 3D graphics a polyhedron is usually defined so that
the normals to its polygonal surfaces point away from its center. In this case, the
polygons whose normals point away from the eye or camera can be assumed to be
blocked by other, closer polygons, and are thus invisible. Figure 5-18 shows a cube
with rods normal to each of its six polygonal surfaces. Solid arrows indicate sur-
faces whose normals point in the direction of the viewer. Dotted arrows indicate
surfaces whose normals point away from the viewer and can, therefore, be elimi-
nated.

Figure 5-18 Culling of a Polyhedron

A single mathematical test can be used to determine if a polygonal face is visible.
The geometric normal to the polygonal face is compared with a vector from the
polygon to the camera or eye position. This is called the line-of-sight vector. If the
resulting angle is greater than 90 degrees, then the polygonal surface faces away
from the camera and can be culled. Figure 5-19 shows the use of polygonal surface
and line-of-sight vectors in culling.

Figure 5-19 Line-of-Sight and Surface Vectors in Culling

View point

<90
o

<90
o

>90
o

© 2003 by CRC Press LLC

Once the position of the camera is determined in the scene, it is possible to per-
form the backface elimination. Figure 5-20 shows the cube of Figure 5-17 after this
operation.

Figure 5-20 Eye Space Transformation of the Cube In Figure 5-17

5.2.4 Screen Space
The image, as it exists at this point of the rendering pipeline, is a numerical representa-
tion of the object. Previous illustrations, such as Figure 5-20, should not be taken liter-
ally, since the image has not yet been displayed. The last step of the rendering pipeline
is the transformation onto screen space.

Changing the positioning of the camera is equivalent to rotating the object in the
coordinate space. Either operation determines the type of perspective transforma-
tion: one-point, two-point, or three-point. In relation to Figure 5-17, if we position
the camera so that it is normal to the face of the cube defined by points p1, p2, p6,
and p5, then the result is a one-point perspective. If we position the camera so that
the vertical edges of the cube remain parallel to the viewer, then the result is a
two-point perspective. Similarly, we can reposition the object for a three-point per-
spective. In addition, the perspective transformation requires determining the dis-
tance to the plane of projection, which is known at the screen space stage of the
rendering pipeline.

Screen space is defined in terms of the viewport. The final transformation in the
rendering pipeline consists of eliminating those elements of the eye space that fall
outside the boundaries of the screen space. This transformation is known as clip-
ping. The perspective and clipping transformations are applied as the image reaches
the last stage of the rendering pipeline. Figure 5-21, on the following page, shows
the results of this stage.

5.2.5 Other Pipeline Models
The rendering pipeline model described thus far is not the only one in use. In fact,
practically every 3D graphics package or development environment describes its own
version of the rendering pipeline. For example, the model used in Microsoft's Direct

+y

+x

light

+z

© 2003 by CRC Press LLC

3D is based on a transformation sequence that starts with polygon vertices being fed
into a transformations pipeline. The pipeline performs world, view, projection, and
clipping transformations before data is sent to the rasterizer for display. These other
versions of the rendering pipeline are discussed in the context of the particular sys-
tems to which they refer.

Figure 5-21 Screen Space Transformation of the Cube in Figure 5-20

Eye-space

Clipping

rectangle

Screen space

© 2003 by CRC Press LLC

Chapter 6

Lighting and Shading

Topics:
• Illumination models

• Reflection and shading

• Ray tracing

• Light rendering techniques

Objects are made visible by light. Our visual perception of an object is determined by
the form and quality of the illumination. Lighting defines or influences color, texture,
brightness, contrast, and even the mood of a scene. This chapter is an introduction to
lights and shadows in 3D graphics and how lighting effects are rendered on the screen.

6.1 Lighting
To a great degree the realism of a three-dimensional object is determined by its light-
ing. Some solid objects are virtually impossible to represent without lighting effects.
For example, a billiard ball could not be convincingly rendered as a flat disk. Figure
6-1 shows the enhanced realism that results from lighting effects on a solid object.

Figure 6-1 Lighting Enhances Realism

© 2003 by CRC Press LLC

Lighting and rendering lighted objects is one of the most computationally expen-
sive operations of 3D graphics. At this state of the technology you often have to con-
sider not the ideal lighting effects on a scene but the minimum acceptable levels of
lighting that will produce a satisfactory rendering. What is the "acceptable level" de-
pends on the application. An interactive program that executes in real-time, such as
a flight simulator or a computer game, usually places stringent limitations on light-
ing. For the PC animation programmer it often comes down to a tradeoff between
the smoothness of the animation and the quality of the scene lighting. On the other
hand, when developing applications that are not as sensitive to execution speed, or
that need not execute in real-time, such as a paint program, we are able grant a
greater time slice to lighting operations.

Two models are usually mentioned in the context of lighting: the reflection model
and the illumination model. The reflection model describes the interaction of light
within a surface. The illumination model refers to the nature of light and its inten-
sity distribution. Both are important in developing light-rendering algorithms.

6.1.1 Illumination Models
At this point we are concerned with the light source and its characteristics; textures
are considered later in this chapter. The intensity and distribution of light on the sur-
face of an object is determined by the characteristics of the light itself, as well as by the
texture of the object. A polished glass ball shows different lighting under the same illu-
mination than a velvet-covered one.

The simplest illumination model is one in which each polygon that forms the ob-
ject is displayed in a single shade of its own color. The result is a flat, monochro-
matic rendering in which self-luminous objects are visible by their silhouette only.
One exception is if the individual polygons that form the object are assigned differ-
ent colors or shades. The circular disk on the left-side of Figure 6-1 is an example of
rendering without lighting effects.

There are two types of illumination — direct and indirect — which in turn, relate
to two basic types of light sources — light-emitting and light reflecting. The illumi-
nation that an object receives from a light-emitting source is direct. The illumination
received from a light-reflecting source is indirect. Consider a polished sphere in a
room illuminated by a single light bulb. If no other opaque object is placed between
the light bulb and the sphere, most of the light that falls on the sphere is direct. Indi-
rect light, proceeding from reflection of other objects, may also take part in illumi-
nating the sphere. If an opaque object is placed between the light bulb and the
sphere, the sphere will be illuminated indirectly, which means, by reflected light
only. Figure 6-2 shows a polished sphere illuminated by direct and indirect lighting,
and by a combination of both.

Light sources also differ by their size. A small light source, such as the sun, is con-
sidered a point source. A rather extensive light source, such as a battery of fluores-
cent light, is considered an extended source. Reflected light is usually an extended
source. Here again, the lighting effect of a point or extended source is modified by
the object's texture. Figure 6-3 shows a polished sphere illuminated by a point and
an extended source.

© 2003 by CRC Press LLC

Figure 6-2 Direct and Indirect Lighting

6.1.2 Reflection
Except in the case of fluorescent objects, most of the lighting effects result from re-
flection. Ambient illumination is light that has been scattered to such a degree that it is
no longer possible to determine its direction. Back lighting produces ambient illumi-
nation, as is the case in the right-hand sphere in Figure 6-3. Ambient light and matte
surfaces produce diffuse reflection. Point sources and polished surfaces produce
specular reflection. Variations in the light source and surface textures give rise to vir-
tually unlimited variations between pure diffuse and pure specular reflection.

Figure 6-3 Point and Extended Light Sources

BOTH DIRECT AND
INDIRECT LIGHTING

INDIRECT LIGHTING ONLY DIRECT LIGHTING ONLY

POINT SOURCE EXTENDED SOURCE

© 2003 by CRC Press LLC

Diffuse Reflection
Ambient light produces a uniform illumination on the object's surface. If a surface is
exposed to ambient light alone, then the intensity of reflection at any point on the sur-
face is expressed by the formula

where I is the intensity of illumination and k is the ambient reflection coefficient, or re-
flectivity, of the surface. Notice that this coefficient is a property of the surface mate-
rial. In calculations, k is assigned a constant value in the range 0 to 1. Highly reflective
surfaces have values near 1. With high reflectivities light has nearly the same effects as
incident light. Surfaces that absorb most of the light have a reflectivity near 0.

The second element in determining diffuse reflection is the angle of illumination,
or angle of incidence. A surface perpendicular to the direction of incident light re-
flects more light than a surface at an angle to the incident light. The calculation of
diffuse reflection can be made according to Lambert's cosine law, which states that,
for a point source, the intensity of reflected light is proportional to the cosine of the
angle of incidence. Figure 6-4 shows this effect.

Figure 6-4 Angle of Incidence in Reflected Light

Diffuse reflection obeys Lambert's cosine law. Lambertian reflection is associ-
ated with matte, dull surfaces such as rubber, chalk, and cloth. The degree of diffu-
sion depends on the material and the illumination. Given the same texture and
lighting conditions, diffuse reflection is determined solely by the angle of incidence.
In addition, the type of the light source and atmospheric attenuation can influence
the degree of diffusion. The spheres in Figure 6-5 show various degrees of diffuse il-
lumination.

Figure 6-5 Diffuse Reflection

I Ik=

Point
source

Reflective
surfaces

© 2003 by CRC Press LLC

Figure 6-6 Specular Reflection

Specular Reflection
Specular reflection is observed in shiny or polished surfaces. Illuminating a polished
sphere, such as a glass ball, with a bright white light, produces a highlight of the same
color as the incident light. Specular reflection is also influenced by the angle of inci-
dence. In a perfect reflector the angle of incidence, which is the inclination of the light
source to the surface normal, is the same as the angle of reflection. Figure 6-6 shows
the angles in specular reflection.

In Figure 6-6 you can notice that in specular reflection the angle of incidence (f)
is the same as the angle of reflection. In a perfect reflector specular reflection is vis-
ible only when the observer is located at the angle of reflection, in other words,
when µ = 0. Objects that are not perfect reflectors exhibit some degree of specular
reflection over a range of viewing positions located about the angle of reflection.
Polished surfaces have a narrow reflection angle while dull surfaces have a wider
one.

Phong's Model
In 1975 Phong Bui-Toung described a model for non-perfect reflectors. The Phong
model, which is widely used in 3D graphics, assumes that specular reflectance is great
in the direction of the reflection angle, and decreases as the viewing angle increases.
The Phong model sets the intensity of reflection according to the function

where n is called the material's specular reflection exponent. For a perfect reflector, n
is infinite and the falloff is instant. In the Phong model normal values of n range from
one to several hundreds, depending on the surface material. The shaded areas in Fig-
ure 6-7 show Phong reflection for a shiny and a dull surface. The larger the value of n,
the faster the falloff and the smaller the angle at which specular reflection is visible. A
polished surface is associated with a large value for n, while a dull surface has a small
n.

Light
source

Surface
normal

View
angle

Reflection
angle

α
φ φ

cos�I = ∞

© 2003 by CRC Press LLC

Figure 6-7 Values of n in Phong Model of Specular Reflection

The Phong model enjoys considerable popularity because of its simplicity, and
because it provides sufficient realism for many applications. It also has some impor-
tant drawbacks:

1. All light sources are assumed to be points.

2. Light sources and viewers are assumed to be at infinity.

3. Diffuse and specular reflections are modeled as local components.

4. The decrease of reflection is empirically determined around the reflection vector.

5. Regardless of the color of the surface all highlights are rendered white.

Resulting from these limitations, the following observations have been made re-
garding the Phong model:

1. The Phong model does not render plastics and other colored solids very well. This re-
sults from the white color or all highlights.

2. The Phong model does not generate shadows. This makes objects in a scene to appear
to float in midair.

3. Object concavities are often rendered incorrectly. This is results in specular highlights
in concave areas that should not have them.

Light
source

Light
source

SHINY SURFACE (large n)

DULL SURFACE (small n)

Surface
normal

Surface
normal

φ

φ

φ

φ

© 2003 by CRC Press LLC

6.2 Shading
Shading refers to the application of a reflection model over the surface of an object.
Since graphics objects are often represented by polygons, a brute force shading
method can be based on calculating the normal to each polygon surface, and then ap-
plying an illumination model, such as Phong, to that point.

6.2.1 Flat Shading
The simplest shading algorithm, called flat shading, consists of using an illumination
model to determine the corresponding intensity value for the incident light, then
shade the entire polygon according to this value. Flat shading is also known as con-
stant shading or constant intensity shading. Its main advantage is that it is easy it im-
plement. Flat shading produces satisfactory results under the following conditions:

1. The subject is illuminated by ambient light and there are no surface textures or shad-
ows.

2. In the case of curved objects, when the surface changes gradually and the light source
and viewer are far from the surface.

3. In general, when there are large numbers of plane surfaces.

Figure 6-8 shows three cases of flat shading of a conical surface. The more poly-
gons, the better the rendering.

Figure 6-8 Flat Shading

6.2.2 Interpolative Shading

The major limitation of flat shading is that each polygon is rendered in a single color.
Very often the only way of improving the rendering is by increasing the number of poly-
gons, as shown in Figure 6-8. An alternative scheme is based on using more than one
shade in each polygon, which is accomplished by interpolating the values calculated
for the vertices to the polygon's interior points. This type of manipulation, called
interpolative or incremental shading, under some circumstances is capable of produc-
ing a more satisfactory shade rendering with a smaller number of polygons. Two incre-
mental shading methods, called Gouraud and Phong shading, are almost ubiquitous in
3D rendering software.

36 POLYGONS18 POLYGONS 72 POLYGONS

© 2003 by CRC Press LLC

Figure 6-9 Intensity Interpolation in Gouraud Shading

Gouraud Shading
This shading algorithm was first described by H. Gouraud in 1971. It is also called
bilinear intensity interpolation. Gouraud shading is easier to understand in the con-
text of the scan-line algorithm used in hidden surface removal, discussed later in this
chapter. For now, assume that each pixel is examined according to its horizontal
(scan-line) placement, usually left to right. Figure 6-9 shows a triangular polygon with
vertices at A, B, and C.

The intensity value at each of these vertices is based on the reflection model. As
scan-line processing proceeds, the intensity of pixel p1 is determined by interpolat-
ing the intensities at vertices A and B, according to the formula

In the example of Figure 6-9, the intensity of p1 is closer to the intensity of vertex
A than that of vertex B. The intensity of p2 is determined similarly, by interpolating

the intensities of vertices A and C. Once the boundary intensities for the scan line
are determined, any pixel along the scan line is calculated by interpolating, accord-
ing to the following formula

A

p3p1 p2

C

Scan line

RENDERED POLYGON

B

� �

�

� � � �

�

� � � �

y y y y
I

y y y y

− −
= +

− −

2 3 3 1

3 1 2

2 1 2 1

p p p p

p p p

p p p p

x x x x
I I I

x x x x

− −
= +

− −

© 2003 by CRC Press LLC

Figure 6-10 Highlight Rendering Error in Gouraud Shading

The process is continued for each pixel in the polygon, and for each polygon in
the scene. Gouraud shading calculations are usually combined with a scan-line hid-
den surface removal algorithm and performed at the same time.

Gouraud shading also has limitations. One of the most important ones is the loss
of highlights on surfaces and highlights that are displayed with unusual shapes. Fig-
ure 6-10 shows a polygon with an interior highlight. Since Gouraud shading is based
on the intensity of the pixels located at the polygon edges, this highlight is missed.
In this case pixel p3 is rendered by interpolating the values of p1 and p2, which pro-
duces a darker color than the one required.

Another error associated with Gouraud shading is the appearance of bright or
dark streaks, called Mach bands.

Phong Shading

Phong shading is the most popular shading algorithm in use today. This method was
developed by Phong Bui-Toung, the author of the illumination model described previ-
ously. Pong shading, also called normal-vector interpolation, is based on calculating
pixel intensities by means of the approximated normal vector at the point in the poly-
gon. Although more calculation expensive, Phong shading improves the rendering of
bright points and highlights that are misrendered in Gouraud shading.

6.2.3 Ray Tracing
Other shading models find occasional use in 3D graphics. The ones discussed so far
(Phong and Gouraud shading) as well as others of intermediate complexity are not
based on the physics of light, but on the way that light interacts with objects. Although
the notion of light intensity is used in these models, it is not formally defined.
Physically-based methods, although much more expensive computationally, can pro-
duce more accurate rendering. One such method, called ray tracing, is based on back-
tracking the light rays from the center of projection (viewing position) to the light
source.

Ray tracing originated, not in computer graphics, but in geometric optics. In 1637,
René Descartes used ray tracing on a glass ball filled with water to explain rainbow
formation. Around 1980, computer graphics researchers began applying ray tracing

p3p1 p2

© 2003 by CRC Press LLC

techniques in the production of very high-quality images, at a very high processing
cost. Ray tracing is a versatile and powerful rendering tool. It incorporates the pro-
cessing done in reflection, hidden surface removal, and shading operations. When
execution time is not a factor, ray tracing produces better results, better than any
other rendering scheme. This fact has led to the general judgment that ray tracing is
currently the best implementation of an illumination model.

In a simple reflection model only the interaction of a surface with the light source
is considered. For this reason, when a light ray reaches a surface through interac-
tion with another surface, when it is transmitted through a partially transparent ob-
ject, or by a combination of these factors, the rendering fails. Figure 6-11 shows how
ray tracing captures the reflected image of a cube on the surface of a polished
sphere.

Figure 6-11 Rendering a Reflected Image by Ray Tracing

6.3 Other Rendering Algorithms

So far we have discussed rendering algorithms that relate to perspective, culling and
hidden surface removal, illumination, and shading. In this section we look at other ren-
dering methods that complement or support the ones already mentioned. Note that we
have selected a few of the better known schemes; many others are discussed the litera-
ture.

Projection plane

Light
source

© 2003 by CRC Press LLC

6.3.1 Scan-Line Operations
In computer graphics the term scan-line processing or scan-line algorithms refers to a
general processing method whereby each successive pixel is examined row by row,
that is, in scan-line order. You already encountered scan-line processing in Gouraud
shading. Scan-line methods are also used in filling the interior of polygons. In fact,
most rendering engines use some form of scan-line processing. Usually several algo-
rithms are incorporated into a scan-line routine. For example, as each pixel is exam-
ined in the scan-line order, hidden-surface removal, shading, and shadow generation
logic are applied to it in order to determine how it is to be rendered. The result is a con-
siderable saving compared to the time it would take to apply each rendering opera-
tions independently.

Hidden Surface Removal
A scan-line algorithm called the image space method is often used for removing hid-
den surfaces in a scene. This method is actually a variation of polygon filling algo-
rithm. The processing requires that the image database contain the coordinate points
for each polygon vertex. This is usually called the edge table. Figure 6-12 shows two
overlapping triangles whose vertices (A, B, C, D, E, and F) are stored in the edge table.

Figure 6-12 Scan-Line Algorithm for Hidden Surface Removal

The scan-line algorithm for hidden surface removal uses a binary flag to indicate
whether a pixel is inside or outside the surface. Each surface on the scene is given
one such flag. As the left-most boundary of a surface is reached, the flag is turned
on. At the surface's right-most boundary the flag is turned off. When a single surface
flag is on, the surface is rendered at that pixel. Scan line 1 in Figure 6-12 has some
pixels in which the flag is on for triangle ABC. Scan line 2 in Figure 6-12 also poses
no problem, since a single surface has its flag on at one time. In scan line 3 the flag

A

B

D

E

scan line 1

scan line 3

scan line 2
F

C

© 2003 by CRC Press LLC

for triangle ABC is turned on at its left-most boundary. Before the surface's
right-most boundary is reached, the flag for triangle DEF is turned on. When two
flags are on for a given pixel, the processing algorithm examines the database to de-
termine the depth of each surface. The surface with less depth is rendered, and all
the other ones are removed. As the scan line processing crosses the boundary de-
fined by edge BC, the flag for triangle ABC is turned off. From that point on, the flag
for triangle DEF is the only one turned on; therefore, its surface is rendered.

Shadow Projections
Ray tracing can be used to generate shadows; however, other rendering methods can
also be designed to handle of shadows. For example, it is possible to add shadow pro-
cessing to a scan-line routine. To illustrate this point assume an image database with a
list of polygons that may mutually shadow each other. This list, called the shadow
pairs, is constructed by projecting all polygons onto a sphere located at the light
source. Polygon pairs that can interact are the only ones included in the shadow pairs
list. The shadow pairs list saves considerable processing effort by eliminating those
polygons that cannot possibly cast a shadow on each other.

The actual processing is similar to the scan-line algorithm for hidden surface re-
moval. Figure 6-13 shows two polygons, labeled A and B. In this example we assume
a single light source placed so that polygon A casts a shadow on polygon B. The
shadow pairs in the database tell us that polygon B cannot shadow polygon A, but
polygon A can shadow polygon B. For this reason, in scan line 1 polygon A is ren-
dered without further query. In scan line 2 polygon B is shadowed by polygon A.
Therefore, the pixels are modified appropriately. In scan line 3 polygon B is ren-
dered.

Figure 6-13 Scan-Line Algorithm for Shadow Projection

Figure 6-14 shows two renderings of the same scene. The one on the left-side is
done without shadow projection. The one on the right is rendered using a shadow
projection algorithm.

6.3.2 Z-Buffer Algorithm

Developed by Catmull in 1975, the z-buffer or depth buffer algorithm for eliminating
hidden surfaces has become a staple in 3D computer graphics. The reason for its popu-
larity is its simplicity of implementation.

© 2003 by CRC Press LLC

Figure 6-14 Shadow Rendering of Multiple Objects

The algorithm's name relates to the fact that the processing routine stores in a
buffer the z-coordinates for the (x,y) points of all objects in the scene. This is the
z-buffer. A second buffer, sometimes called the refresh buffer, is used to hold the in-
tensities for each pixel. During processing, all positions in the z-buffer are first ini-
tialized to the maximum depth value, and all positions in the refresh buffer to the
background attribute. At each pixel position, each polygon surface in the scene is
examined for its z-coordinate value. If the z coordinate for the surface is less than
the value stored in the z-buffer, then the value in the z-buffer is replaced with the
one corresponding to the surface being examined. At this point the refresh buffer is
also updated with the intensity value for that pixel. If the z value for the surface is
greater than the value in the z-buffer, then the point is not visible and can be ig-
nored.

Figure 6-15 shows the z-buffer algorithm in action. Three surfaces (a square, a cir-
cle, and a triangle) are located at various depths. When the z-buffer is initialized the
pixel shown in the illustration is assigned the depth of the background surface, S0.
The surface for the circle is examined next. Because S2 is at less depth than S0, the
value S2 replaces the value S0 in the z-buffer. Now S2 is the current value in the
z-buffer. Next, the value for the triangular surface S1 is examined. Since S1 has
greater depth than S2 it is ignored. However, when S3 is examined it replaces S2 in
the buffer, since it is at less depth.

Figure 6-15 Z-Buffer Algorithm Processing

+y

+x

S0
background

-z

S1

S2

S3

© 2003 by CRC Press LLC

6.3.3 Textures
The surface composition of an object influences how it reflects light. For this reason,
the reflectivity of a surface must be taken into account when calculating illumination
effects. Textures were completely ignored in early 3D packages. At that time all sur-
faces were assumed to have identical reflection properties. The result were scenes
that appeared unnatural because of their uniformity. Since then, textures have been
steadily gaining popularity.

The simplest and most common implementation of textures is with bitmaps. In
this case the texture refers only to the color pattern of the surface, and not to its de-
gree of smoothness. Texture bitmaps are easy to apply to objects and are rendered
as a surface attribute. In addition, texture blending and light mapping with textures
provide additional enhancements to the rendering. The specifics of texture render-
ing are discussed in the context of 3D graphics programming.

© 2003 by CRC Press LLC

Part II

DOS Graphics

© 2003 by CRC Press LLC

Chapter 7

VGA Fundamentals

Topics:
• The VGA standard

• VGA components

• Alphanumeric modes

• Graphics modes

• VGA programmable components

This chapter describes the VGA video standard and its programmable elements: the
CRT Controller, the Graphics Controller, the Sequencer, the Attribute Controller, and
the Digital-to-Analog converter (DAC). It also describes the VGA memory structure.

7.1 The VGA Standard
In 1987 IBM introduced two video systems to be furnished as standard components for
their PS/2 line. These video systems were named the MCGA (Multi-color Graphics Ar-
ray) and VGA (Video Graphics Array). MCGA, an under-featured version of VGA, was
furnished with the lower-end PS/2 machines Models 25 and 30. VGA was the standard
video system for all other PS/2 microcomputers. Subsequently IBM extended VGA to
its low-end models of the PS/2 line. Later on (August 1990) IBM announced a line of in-
expensive home computers (designated as the PS/1 line) equipped with VGA graphics.
Since the MCGA standard was short lived and not very popular it will not be specifi-
cally considered in this book. However, because MCGA is a sub-version of VGA, its
programming is identical to VGA in those video modes that are common to both sys-
tems.

The VGA standard introduced a change from digital to analog video display driver
technology. The reason for this change is that analog monitors can produce a much
larger color selection than digital ones. This switch in display technology explains
why the monitors of the PC line are incompatible with the VGA standard and vice
versa. VGA graphics also include a digital-to-analog converter, usually called the

© 2003 by CRC Press LLC

DAC, and 256K of video memory. The DAC outputs the red, green, and blue signals
to the analog display. Video memory is divided into four 64K video maps, called the
bit planes. VGA supports all the display modes in MDA, CGA, and EGA (see Table
1-1). In addition, VGA implements several new alphanumeric and graphics modes,
the most notable of which are graphics mode number 18, with 640-by-480 pixel reso-
lution in 16 colors, and graphics mode number 19, with 320-by-200 pixel resolution
in 256 colors. The effective resolution of the VGA text modes is of 720-by-400 pixels.
These text modes can execute in 16 colors or in monochrome. Three different fonts
can be selected in the alphanumeric modes.

Access to the VGA registers and to video memory is through the system micropro-
cessor. The microprocessor read and write operations to the video buffer are auto-
matically synchronized by the VGA with the cathode-ray tube (CRT) controller so as
to eliminate interference. This explains why VGA programs, unlike those written for
the CGA, can access video memory at any time without fear of introducing screen
snow or other unsightly effects.

7.1.1 Advantages and Limitations

The resolution of a graphics system is usually defined as the total number of sepa-
rately addressable elements per unit area. In video display systems the individually ad-
dressable elements are the screen pixels; the resolution is measured in pixels per inch.
For example, the maximum resolution of a VGA system is approximately 80 pixels per
inch, both vertically and horizontally. In VGA this density is determined by a screen
structure of 640 pixels per each 8-inch screen row and 480 vertical pixels per each
6-inch screen column. But not all video systems output a symmetrical pixel density.
For example, the maximum resolution of the EGA standard is the same as that of the
VGA on the horizontal axis (80 pixels per inch) but only of 58 pixels per inch on the ver-
tical axis.

The asymmetrical pixel grid of the EGA and of other less refined video standards
introduces programming complications. For example, in a symmetrical VGA screen
a square figure can be drawn using lines of the same pixel length, but these lines
would produce a rectangle in an asymmetrical system. By the same token, the pixel
pattern of a circle in a symmetrical system will appear as an ellipse in an asymmetri-
cal one, as shown in Figure 7-1.

The major limitations of the VGA system are resolution, color range, and perfor-
mance. VGA density of 80 pixels per inch is a substantial improvement in relation to
its predecessors, the CGA and the EGA, but still not very high when compared to the
600 dots per inch of a typical laser printer, or the 1200 and 2400 dots per inch of a
high-end printer or imagesetter. The low resolution is one reason why VGA screen
images are often not lifelike; bitmaps appear grainy and we can often detect that
geometrical figures consist of straight-line segments. In regards to color range VGA
can display up to 256 simultaneous colors; however, this color range is not available
in the mode with the best resolution. In other words, the VGA programmer must
chose between an 80 pixels per inch resolution in 16 colors (mode number 18) or 40
pixels per inch resolution in 256 colors (mode number 19).

© 2003 by CRC Press LLC

Figure 7-1 Symmetrical and Asymmetrical Pixel Density

But perhaps the greatest limitation of the VGA standard is its performance. The
video display update operations in VGA detract from general system efficiency,
since it is the microprocessor that must execute all video read and write operations.
In the second place, the video functions execute slowly when compared to dedi-
cated graphics work stations. This slowness is particularly noticeable in the graph-
ics modes, in which a full screen redraw can take several seconds. Most animated
programs, which must update portions of the screen at a rapid rate, execute in VGA
with a jolting effect that is unnatural and visually disturbing.

7.1.2 VGA Modes

The original video systems used in IBM microcomputers, such as CGA, MDA, and
EGA, had monitor-specific modes. For example, the CGA turns the color burst off in
modes 0, 2, and 4 and on in modes 1, 3, and 5. Mode number 7 is available in the Mono-
chrome Display Adapter (MDA) and in an Enhanced Graphics Adapter (EGA)
equipped with a monochrome display, but not in the CGA or EGA systems equipped
with color monitors. In the VGA standard, on the other hand, the video modes are inde-
pendent of the monitor. For example, a VGA equipped with any one of the standard di-
rect drive color monitors can execute in monochrome mode number 7. Table 7-1, on
the following page, lists the properties of the VGA video modes.

In Table 7-1 we have used decimal numbers for the video modes. Our rationale is
that video modes are a conventional ordering scheme used in organizing common
hardware and software characteristics of a video system, therefore we can see no
reason for using hexadecimal notation in numbering these modes. Consequently,
throughout the book, we have used decimal numbers for video modes, offset values,
and other forms of sequential orders that do not require binary or hexadecimal nota-
tion.

Asymmetrical Pixel Density (CGA) Symmetrical Pixel Density (VGA)

© 2003 by CRC Press LLC

Table 7-1

VGA Video Modes

MODE COLORS TYPE TEXT TEXT SCREEN BUFFER SCREEN
COLS/ROWS PIXEL BOX PAGES ADDRESS PIXELS

0,1 16 Alpha 40 by 25 8 x 8 8 B8000H 320 by 200
8 x 14* 320 by 350
9 x 16+ 360 by 400

2,3 16 Alpha 80 by 25 8 x 8 8 B8000H 320 by 200
8 x 14* 320 by 350
9 x 16 360 by 400

4,5 4 GRA 40 by 25 8 x 8 1 A0000H 320 by 200

6 2 GRA 80 by 25 8 x 8 1 A0000H 640 by 200

7 Alpha 80 by 28 9 x 14 8 B0000H 720 by 350
9 x 16 720 by 400

13 16 GRA 40 by 25 8 x 8 8 A0000H 320 by 200

14 16 GRA 80 by 25 8 x 8 4 A0000H 640 by 200

15 GRA 80 by 25 8 x 14 2 A0000H 640 by 350

16 16 GRA 80 by 25 8 x 14 2 A0000H 640 by 350

17 2 GRA 80 by 30 8 x 16 1 A0000H 640 by 480

18 16 GRA 80 by 30 8 x 16 1 A0000H 640 by 480

19 256 GRA 40 by 25 8 x 8 1 A0000H 320 by 200

Legend:
Alpha = alphanumeric modes (text)
GRA = graphics modes

* = EGA enhanced modes
+ = VGA enhanced modes

Notice in Table 7-1 that the VGA buffer can start in any one of three possible ad-
dresses: B0000H, B8000H, and A0000H. Address B000H is used only when mode 7 is
enabled, in this case VGA is emulating the Monochrome Display Adapter. In en-
hanced mode number 7 the VGA displays its highest horizontal resolution (720 pix-
els) and uses a 9 x 16 dots text font. However, in this mode the VGA is capable of
text display only. Buffer address A000H is active while VGA is in a graphics mode.
Also note that the video modes number 17 and 18, with 480 pixel rows, were intro-
duced with the VGA and MCGA standards. Therefore they are not available in CGA
and EGA systems. Modes 17 and 18 offer a symmetrical pixel density of 640 by 480
screen dots (see Figure 7-1). Mode number 19 has 256 simultaneous colors; the most
extensive one in the VGA standard, however, its linear resolution, is half of the one
in mode number 18.

7.2 VGA Components
The VGA system is divided into three identifiable components: the VGA chip, video
memory, and a Digital-to-Analog Converter (DAC). Figure 7-2 shows the interconnec-
tions between the elements of the VGA system.

© 2003 by CRC Press LLC

Figure 7-2 VGA System Components

7.2.1 Video Memory
All VGA systems contain the 256K of video memory that is part of the hardware. This
memory is logically arranged in four 64K blocks that form the video maps (labeled
blue, green, red, and intensity in Figure 7-2). The four maps are sometimes referred to
as bit planes 0 to 3.

In EGA systems the display buffer consists of a 64K RAM chip installed in the
card itself. Up to three more 64K blocks of video memory can be optionally added
on the piggyback memory expansion card. The maximum memory supported by
EGA is 256K divided into four 64K blocks.

Alphanumeric Modes

In the alphanumeric modes 0, 1, 2, 3, and 7 (see Table 7-1) the VGA video buffer is struc-
tured to hold character codes and attribute bytes. The organization of the video buffer
in the alphanumeric modes was discussed in Part I of this book. The default functions
of the bits in the attribute byte can be seen in Figures 1.11 and 1.12. However, the VGA
standard allows redefining two of the attribute bits in the color alphanumeric modes:
bit 7 can be redefined to control the background intensity and bit 3 can be redefined to
perform a character-set select operation. Figure 7-3 shows the VGA attribute byte, in-
cluding the two redefinable bits.

CRT
Controller

Graphics
Controller

Sequencer
Attribute

Controller

VGA Chip

Video DAC

Memory Maps

Red

Red

Green

Green

Blue

Blue

Intensity

© 2003 by CRC Press LLC

Figure 7-3 Attribute Byte Bitmap in VGA Systems

The programmer can toggle the functions assigned to bits 3 and 7 of the attribute
byte by means of BIOS service calls or by programming the VGA registers. These op-
erations are performed by the VGA graphics library on that is part of the book’s soft-
ware.

Graphics Modes

One of the problems confronted by the designers of the VGA system was the limited
memory space of an IBM microcomputers under MS DOS. Recall that in VGA mode
number 18 (see Table 7-1) the video screen is composed of 480 rows of 640 pixels per
row, for a total of 307,200 screen pixels. If 8 pixels are encoded per memory byte, each
color map would take up approximately 38K, and the four maps required to encode 16
colors available in this mode would need approximately 154K. The VGA designers
were able to reduce this memory space by using a latching mechanism that maps all
four color maps to the same memory area. Figure 7-4 is a diagram of the video memory
structure in VGA mode number 18.

Figure 7-4 shows how the color of a single screen pixel is stored in four memory
maps, located at the same physical address. Note that the color codes for the first
eight screen pixels are stored in the four maps labeled Intensity, Red, Green, and
Blue. In VGA mode number 18 all four maps are located at address A0000H. The first
screen pixel has the intensity bit and the green bit set, therefore it appears light
green. For the same reason, the second pixel, mapped to the subsequent bits in the
video buffer, will be displayed as light red, since it has the red and the intensity bits
set (see Figure 7-4).

VGA memory mapping changes in the different alphanumeric and graphics
modes. In Figure 7-4 we see that in mode number 18 the color of each screen pixel is
determined by the bit settings in four memory maps. However, in mode number 19,
in which VGA can display 256 colors, each screen pixel is determined by one video
buffer byte. Figure 7-5 shows the memory mapping in VGA mode number 19. In real-
ity VGA uses all four bit planes to store video data in mode number 19, but, to the
programmer, the buffer appears as a linear space starting at address A000H. The
color value assigned to each pixel in the 256-color modes is explained in Chapter 8.

7 6 5 4 3 2 1 0

FOREGROUND BITS
blue component
green component
red component
foreground intensity or
character set select

BACKGROUND BITS
blue component
green component
red component
foreground intensity or blink select

Note: The default setting is bit 7 to the blink function
and bit 3 to the foreground select function

© 2003 by CRC Press LLC

Figure 7-4 Video Memory Mapping in VGA Mode 18

Many VGA graphics modes were created to insure compatibility with previous
video systems. Specifically, VGA graphics modes numbers 4, 5, and 6 are compatible
with modes in the CGA, EGA, and PCjr; modes numbers 13, 14, 15, and 16 are com-
patible with EGA; and graphics mode number 17 (a two-color version of mode num-
ber 18) was created for compatibility with the MCGA standard. This leaves two
proprietary VGA modes: mode number 18 with 640-by-480 pixels in 16 colors, and
mode number 19, with 320-by-200 pixels in 256 colors. It is in these two most power-
ful VGA modes that we will concentrate our attention.

Figure 7-5 Video Memory Mapping in VGA Mode 19

B

L

U

E
G

R

E

E

N

R

E

DI

N

T

E

N

S

I

T

Y

0 0 0 1 1 1 0 1

1 0 1 0 1 0 0 0

0 1 1 1 0 0 1 0

1 1 0 0 0 1 1 1LATCHESG B R I

pixel is light green

0 0 0 0 1 0 0 1pixel is light blue

Video Memory
(64,000 bytes)

© 2003 by CRC Press LLC

7.3 VGA Registers
We have seen that the VGA system includes a chip containing several registers, a mem-
ory space dedicated to video functions, and a digital-to-analog converter (see Figure
7-2). The VGA registers are mapped to the system's address space and accessed by
means of the central processor. The VGA programmable registers (excluding the
DAC) belong to five groups (also shown in Table 7-2):

1. The General registers. This group is sometimes called the external registers due to the
fact that, on the EGA, they were located outside the VLSI chip. The general registers
provide miscellaneous and control functions.

2. The CRT Controller registers. This group of registers controls the timing and synchro-
nization of the video signal. Also the cursor size and position.

3. The Sequencer registers. This group of registers controls data flow into the Attribute
Controller, generates the timing pulses for the dynamic RAMs, and arbitrates memory
accesses between the CPU and the video system. The Map Mask registers in the Se-
quencer allow the protection of entire memory maps.

Table 7-2

VGA Register Groups

EMULATING
REGISTER READ/WRITE MDA CGA EITHER

GENERAL REGISTERS

1. Miscellaneous output Write 03C2H
Read 03CCH

2. Input status 0 Read 03C2H

3. Input status 1 Read 03BAH 03DAH

4. Feature control Write 03BAH 03DAH
Read 03CAH

5. Video Subsystem enable R/W 03C3H

6. DAC state Read 03C7H

CRT CONTROLLER REGISTERS

1. Index R/W 03B4H 03D4H

2. Other CRT Controller R/W 03B5H 03D5H

SEQUENCER REGISTERS

1. Address R/W 03C4H

2. Other R/W 03C5H

GRAPHICS CONTROLLER REGISTERS

1. Address R/W 03CEH

2. Other R/W 03CFH

ATTRIBUTE CONTROLLER REGISTERS

1. Address R/W 03C0H

2. Other Write 03C0H
Read 03C1H

© 2003 by CRC Press LLC

4. The Graphics Controller registers. This group of registers provides an interface be-
tween the system microprocessor, the Attribute Controller, and video memory, while
VGA is in a graphics mode.

5. The Attribute Controller registers. This group of registers determines the characteris-
tics of the character display in the alphanumeric modes and the pixel color in the
graphics modes.

7.3.1 The General Registers
The General registers, called the External registers in EGA, are used primarily in ini-
tialization of the video system and in mode setting. Most applications let the system
software handle the initialization of the video functions controlled by the General reg-
isters. For example, the easiest and most reliable way for setting a video mode is BIOS
service number 0, of interrupt 10H. Figure 7-6 and Figure 7-7 show some programma-
ble elements in the VGA General Register group.

Figure 7-6 VGA/EGA Miscellaneous Output Register

Note that bit number 7 of Input Status Register 0, at port 3C2H (see Figure 7-7 on
the following page) is used in determining the start of the vertical retrace cycle of
the CRT controller. This operation is sometimes necessary to avoid interference
when updating the video buffer. The procedure named TIME_VRC, in the VGA mod-
ule of the GRAPHSOL library, described in Chapter 3, performs this timing opera-
tion.

7 6 5 4 3 2 1 0 port 3C2H

I/O address select bit
0 = 3BxH (MDA emulation mode)
1 = 3DxH (CGA emulation mode)

RAM enable/disable
0 = video RAM disabled
1 = video RAM enabled

clock select bits
00 = 25.175 MHz clock on VGA

14 MHz clock on EGA
01 = 28.322 MHz clock on VGA

16 MHz clock on EGA
10 = external clock selected
11 = RESERVED

0

page bit for odd/even mode
0 = low 1 = high (diagnostic use)
horizontal sync polarity
vertical sync polarity

© 2003 by CRC Press LLC

Figure 7-7 VGA Input Status Register

7.3.2 The CRT Controller

The VGA CRT Controller register group is the equivalent of the Motorola 6845 CRT
Controller chip of the PC line. When VGA is emulating the MDA, the port address of the
CRT Controller is 3B4H; when it is emulating the CGA then the port address is 3D4H.
These ports are the same as those used by the MDA and the CGA cards. Table 7-3 lists
the registers in the CRT Controller group.

Most registers in the CRT Controller are modified only during mode changes.
Since this operation is frequently performed by means of a BIOS service, most pro-
grams will not access the CRT Controller registers directly. The exception are the
CRT Controller registers related to cursor size and position, which are occasionally
programmed directly. The Cursor Size register is shown in Figure 7-8. and the Cur-
sor Location register in Figure 7-9.

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

0 0 0 0

0 0

INPUT STATUS REGISTER 0
port 3C2H

INPUT STATUS REGISTER 1
port 3BAH in MDA mode
port 3DAH in CGA modes

SWITCH SENSE
1 = switch sense line open
0 = swtich sense line closed

EGA ONLY
feature code bit 0
feature code bit 1

CRT INTERRUPT
1 = vertical retrace interrupt pending
0 = no vertical retrace interrupt

DISPLAY ACCESS
1 = CPU is accessing display
0 = no display access in progress

EGA ONLY
light pen strobe
light pen switch

VERTICAL RETRACE
1 = vertical retrace in progress
0 = no vertical retrace

system diagnostics

note: Input Status register 1 is also used in toggling
the Attribute Controller's internal flip-flop

© 2003 by CRC Press LLC

Table 7-3

VGA CRT Controller Register

PORT OFFSET DESCRIPTION

03x4H Address register

03x5H 0 Total horizontal characters minus 2 (EGA)
Total horizontal characters minus 5 (VGA)

1 Horizontal display end characters minus 1
2 Start horizontal blanking
3 End horizontal blanking
4 Start horizontal retrace pulse
5 End horizontal retrace pulse
6 Total vertical scan lines
7 CRTC overflow
8* Preset row scan
9 Maximum scan line
10* Scan line for cursor start
11* Scan line for cursor end
12* Video buffer start address, high byte
13* Video buffer start address, low byte
14* Cursor location, high byte
15* Cursor location, low byte
16 Vertical retrace start
17 Vertical retrace end
18 Last scan line of vertical display
19 Additional word offset to next logical line
20 Scan line for underline character
21 Scan line to start vertical blanking
22 Scan line to end vertical blanking
23 CRTC mode control
24 Line compare register

Notes: Registers signaled with (*) are described separately
3x4H/3x5H = 3B4H/3B5H when emulating the MDA
3x4H/3x5H = 3D4H/3D5H when emulating the CGA

Figure 7-8 Cursor Size Registers of the VGA CRT Controller

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

CURSOR START REGISTER
offset 10

CURSOR END REGISTER
offset 11

scan row for cursor start

scan row for cursor end

CURSOR ON/OFF CONTROL
1 = cursor off
0 = cursor on

CURSOR SKEW CONTROL
cursor is moved right 0 to 3 positions

0

© 2003 by CRC Press LLC

Figure 7-9 Cursor Location Registers of the VGA CRT Controller

Figure 7-10 graphically shows the cursor scan lines and the default setting in a 8 x
14 pixel text mode (see Table 7-1).

Figure 7-10 Cursor Scan Lines in VGA Systems

A program can change the cursor size in alphanumeric modes using service num-
ber 1 of BIOS interrupt 10H or by programming the CRT Controller cursor register
directly. The use of BIOS service number 10, interrupt 10H, is discussed later in this
chapter. The following code fragment shows a sequence of instructions for program-
ming the CRT Controller cursor size registers. The action performed by the code is
to change the VGA default cursor in a 8-by-14 text mode from scan lines 12 and 13 to
scan lines 1 to 7.

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

CURSOR LOCATION, HIGH BYTE
offset 14

CURSOR LOCATION, LOW BYTE
offset 15

high-order byte of cursor address

low-order byte of cursor address

0
1
2
3
4
5
6
7
8
9

10
11
12
13

scan
lines

default
setting

CURSOR

© 2003 by CRC Press LLC

MOV DX,3B4H ; VGA CRTC address register
; in the MDA emulation modes

MOV AL,10 ; Cursor start register number
OUT DX,AL ; Select this register
MOV DX,3B5H ; CRTC registers
MOV AL,1 ; Start scan line for new cursor
OUT DX,AL ; Set in 6845 register
MOV DX,3B4H ; Address register again
MOV AL,11 ; Cursor end register number
OUT DX,AL ; Select this register
MOV DX,3B5H ; CRTC registers
MOV AL,7 ; End scan line for new cursor
OUT DX,AL ; Set in 6845 register

The cursor location on an alphanumeric mode can also be set using a BIOS ser-
vice or programming the CRT Controller registers directly. BIOS service number 0,
interrupt 10H, allows setting the cursor to any desired column and row address. Al-
ternatively the cursor can be repositioned by setting the contents of the cursor ad-
dress registers on the VGA CRT Controller. The cursor address registers are located
at offset 14 and 15, respectively. The following code fragment will position the cur-
sor at the start of the third screen row. The code assumes an 80 x 25 alphanumeric
mode in the Monochrome Display Adapter. The offset of the second row is calcu-
lated as 80 x 2 = 160 bytes from the start of the adapter RAM. Consequently, the Cur-
sor Address High register must be zeroed and the Cursor Address Low register set to
160.

MOV DX,3B4H ; VGA CRTC address register
; in the MDA emulation mode

MOV AL,14 ; Cursor Address High register
OUT DX,AL ; Select this register
MOV DX,3B5H ; CRTC registers
MOV AL,0 ; Zero high bit of address
OUT DX,AL ; Set in CRTC register
MOV DX,3B4H ; Address register again
MOV AL,15 ; Cursor Address Low register
OUT DX,AL ; Select this register
MOV DX,3B5H ; CRTC programmable registers
MOV AL,160 ; 160 bytes from adapter start
OUT DX,AL ; Set in 6845 register

; Cursor now set at the start of the third screen row

Another group of registers within the CRT Controller that are occasionally pro-
grammed directly are those that determine the start address of the screen window in
the video buffer. This manipulation is sometimes used in scrolling and panning text
and graphics screens. In VGA systems the CRT Controller Start Address High and
Start Address Low registers (offset 0CH and 0DH) locate the screen window within
a byte offset, while the Preset Row Scan register (offset 08H) locates the window at
the closest pixel row. Therefore the Preset Row Scan register is used to determine
the vertical pixel offset of the screen window. The horizontal pixel offset of the
screen window is programmed by changing the value stored in the Horizontal Pixel
Pan register of the Attribute Controller, described later in this chapter. Figure 7-11,
on the following page, shows the Start Address registers of the CRT Controller. Fig-
ure 7-12, on the following page, is a bitmap of the Preset Row Scan register.

© 2003 by CRC Press LLC

Figure 7-11 Video Start Address Register of the VGA CRT Controller

Figure 7-12 Preset Row Scan Register of the VGA CRT Controller

7.3.3 The Sequencer

The VGA Sequencer register group controls memory fetch operations and provides
timing signals for the dynamic RAMs. This allows the microprocessor to access video
memory in cycles inserted between the display memory cycles. Table 7-4 shows the
registers in the VGA Sequencer.

Table 7-4

The VGA Sequencer Registers

PORT OFFSET DESCRIPTION

03C4H Address register

03C5H 0 Synchronous or Asynchronous reset
1 Clocking Mode
2* Map Mask
3* Character Map Select
4* Memory Mode

Note: Registers signaled with an (*) are described separately

The Map Mask register in the Sequencer group allows the protection of any spe-
cific memory map by masking it from the microprocessor and from the Character
Map select register. Figure 7-13 is a bitmap of the Map Mask register.

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

START ADDRESS REGISTER, HIGH BYTE
offset 12

START ADDRESS REGISTER, LOW BYTE
offset 13

high-order byte of start address

low-order byte of start address

7 6 5 4 3 2 1 0 offset 08

start number for first
scanned pixel row
(range 0 to 31)

byte panning control (not used in VGA modes)

RESERVED

© 2003 by CRC Press LLC

Figure 7-13 Map Mask Register of the VGA Sequencer

If VGA is in a color graphic mode, the Map Mask register can be used to select the
color at which one or more pixels are displayed. The color is encoded in the IRGB
format, as shown in Figure 7-13. To program the Map Mask register we must first
load the value 2 into the address register of the Sequencer, at port 3C4H. This value
corresponds with the offset of the Map Mask register (see Table 7-4). After the pixel
or pixels have been set, the Map Mask register should be restored to its default value
(0FH). The following code fragment shows the usual program operations.

; Setting 8 bright-red pixels in VGA mode number 18
; The code assumes that video mode number 18 is selected,
; that ES is set to the video segment base, and that BX points
; to the offset of the first pixel to be set
;***********************|
; select register |
;***********************|

MOV DX,3C4H ; Address register of Sequencer
MOV AL,2 ; Offset of the Map Mask
OUT DX,AL ; Map Mask selected
MOV DX,3C5H ; Data to Map Mask
MOV AL,00001100B ; Intensity and red bits set

; in IRGB encoding
OUT DX,AL ; Map Mask = 0000 IR00

;***********************|
; set pixels |
;***********************|
; Setting the pixels consists of writing a 1 bit in the
; corresponding buffer address.

MOV AL,ES:[BX] ; Dummy read operation
MOV AL,11111111B ; Set all bits
MOV ES:[BX],AL ; Write to video buffer

;***********************|
; restore Map Mask |
;***********************|
; Restore the Map Mask to the default state

MOV DX,3C4H ; Address register of Sequencer
MOV AL,02H ; Offset of the Map Mask
OUT DX,AL ; Map Mask selected
MOV DX,3C5H ; Data to Map Mask
MOV AL,00001111B ; Default IRGB code for Map Mask
OUT DX,AL ; Map mask = 0000 IRGB
.
.
.

7 6 5 4 3 2 1 0

0 0 0 0 I R G B

port 3C5H
offset 2

1 = map 0 enabled (blue plane)
1 = map 1 enbaled (green plane)
1 = map 2 enabled (red plane)
1 = map 3 enabled (intensity plane)

© 2003 by CRC Press LLC

Figure 7-14 Character Map Select Register of the VGA Sequencer

The use of the Character Map Select register of the Sequencer is related to
re-programming of bit 3 of the attribute byte (see Figure 7-3) so that it will serve to
select one of two character sets. Normally the character maps, named A and B, have
the same value and bit 3 of the attribute byte is used to control the bright or normal
display of the character foreground. In this case only one set of 256 characters is
available. However, when the Character Map Select register is programmed so that
character maps A and B have different values, then bit 3 of the attribute byte is used
to toggle between two sets of 256 characters each. The programming operations
necessary for using multiple VGA character sets is described in Chapter 3. Figure
7-14, above, is a bitmap of the Character Map Select register.

Figure 7-15 Memory Mode Register of the VGA Sequencer

7 6 5 4 3 2 1 0

0 0

port 3C5H
offset 3

MAP B SELECT
(attribute bit 3 = 0)
000 = map 0
001 = map 1
.
.
111 = map 7

MAP A SELECT
(attribute bit 3 = 1)
000 = map 0
001 = map 1
.
.
111 = map 7

LOCATION OF MAP TABLES
map No. location

0 1st 8K of map 2
1 3rd 8K of map 2
2 5th 8K of map 2
3 7th 8K of map 2

map No. location
4 2nd 8K of map 2
5 4th 8K of map 2
6 6th 8K of map 2
7 8th 8K of map 2

7 6 5 4 3 2 1 0

0 0 0 0 0

port 3C5H

offset 4

extended memory status
(always 1 in VGA systems)

MEMORY ADDRESSING MODE SELECT
1 = sequential addressing mode
0 = even addresses to maps 0 and 2

odd addresses to maps 1 and 3
ACCESS MODE SELECT
1 = enable bits 0 and 1 of the Character Map

Select register (Figure 2.14)
0 = enable sequential access of all maps

(256-color modes only)

© 2003 by CRC Press LLC

The Memory Mode register of the sequencer is related to the display modes. Most
programs will leave the setting of this register to the BIOS mode select services. Fig-
ure 7-15, on the preceeding page, shows a bitmap of the Memory Mode register.

7.3.4 The Graphics Controller
The registers in the Graphics Controller group serve to interface video memory with
the Attribute Controller and with the system microprocessor. The Graphic Controller
is bypassed in the alphanumeric modes. Table 7-5 lists the registers in the VGA Graph-
ics Controller group. All the registers in the Graphics Controller are of interest to the
graphics applications programmer.

Table 7-5

The VGA Graphics Controller Registers

PORT OFFSET DESCRIPTION

03CEH Address register

03CFH 0 Set/Reset
1 Enable Set/Reset
2 Color compare for read mode 1 operation
3 Data rotate
4 Read operation map select
5 Select graphics mode
6 Miscellaneous operations
7 Read mode 1 color don't care
8 Bit mask

The Set/Reset register of the Graphics Controller may be used to permanently set
or clear a specific bit plane. This operation can be useful if the programmer desires
to write a specific color to the entire screen or to disable a color map. The Set/Reset
register, shown in Figure 7-16, affects only write mode 0 operations. The use of the
Set/Reset register requires the use of the Enable Set/Reset register. Enable Set/Re-
set determines which of the maps is accessed by the Set/Reset register. This mecha-
nism provides a double-level control over the four maps. The Enable Set/Reset
register is shown in Figure 7-17, on the following page.

Figure 7-16 Write Mode 0 Set/Reset Register of the VGA Graphics Controller

7 6 5 4 3 2 1 0

0 0 0 0 I R G B

port 3CFH

offset 0

1 = reset map 0 (blue plane)
1 = reset map 1 (green plane)
1 = reset map 2 (red plane)
1 = reset map 3 (intensity plane)

© 2003 by CRC Press LLC

Figure 7-17 Enable Set/Reset Register of the VGA Graphics Controller

The Color Compare register of the Graphics Controller group, shown in Figure
7-18, is used during read mode 1 operations to test for the presence of memory bits
that match one or more color maps. For example, if a program sets bit 0 (blue) and
bit 3 (intensity) of the Color Compare register, a subsequent memory read operation
will show a 1-value for those pixels whose intensity and blue maps are set, while all
other combinations will be reported with a zero value. One or more bit planes can
be excluded from the compare by clearing (value equal zero) the corresponding bit
in the Color Don't Care register. For example, if the intensity bit is zero in the Color
Don't Care register, a color compare operation for the blue bitmap will be positive
for all pixels in blue or bright blue color. The Color Don't Care register is shown in
Figure 7-19.

Figure 7-18 Color Compare Register of the VGA Graphics Controller

Figure 7-19 Color Don't Care Register of the VGA Graphics Controller

7 6 5 4 3 2 1 0

0 0 0 0 I R G B

port 3CFH

offset 1

1 = enable map 0 (blue plane)
1 = enable map 1 (green plane)
1 = enable map 2 (red plane)
1 = enable map 3 (intensity plane)

Note: when set/reset is enabled for a map (bit = 0) it is
written with the microprocessor data

7 6 5 4 3 2 1 0

0 0 0 0 I R G B

port 3CFH

offset 2

COLOR COMPARE FUNCTION
1 = enable map 0 (blue plane)
1 = enable map 1 (green plane)
1 = enable map 2 (red plane)
1 = enable map 3 (intensity plane)

7 6 5 4 3 2 1 0

0 0 0 0 I R G B

port 3CFH

offset 7

COLOR DON'T CARE FUNCTION
1 = do not compare map 0 (blue plane)
1 = do not compare map 1 (green plane)
1 = do not compare map 2 (red plane)
1 = do not compare map 3 (intensity plane)

© 2003 by CRC Press LLC

Figure 7-20 Data Rotate Register of the VGA Graphics Controller

The Data Rotate register of the Graphics Controller determines how data is com-
bined with data latched in the system microprocessor registers. The possible logical
operations are AND, OR, and XOR. If bits 3 and 4 are reset, data is unmodified. A
second function of this register is to right-rotate data from 0 to 7 places. This func-
tion is controlled by bits 0 to 2. The Data Rotate register is shown in Figure 7-20,
above.

We have seen that VGA video memory in the graphics modes is based on encoding
the color of a single pixel into several memory maps. The Read Map Select register,
in Figure 7-21, is used to determine which map is read by the system microproces-
sor.

Figure 7-21 Read Map Select Register of the VGA Graphics Controller

The following code fragment shows the use of the Read Operation Map Select
register.

; Code to read the contents of the 4 color maps in VGA mode 18
; Code assumes that read mode 0 has been previously set
; On entry:
; ES = A000H
; BX = byte offset into video map
; On exit:
; CL = byte stored in intensity map
; CH = byte stored in red map

7 6 5 4 3 2 1 0

0 0 0

port 3CFH

offset 3

ROTATE COUNT
counter (range 0 to 7) of the
positions to rotate CPU data
during memory write operations

LOGICAL OPERATION SELECT
00 = data unmodified
01 = data ANDed
10 = data ORed
11 = data XORed

7 6 5 4 3 2 1 0

0 0 0 0 0 0

port 3CFH

offset 4

SELECT MAP OPERATION
00 = select map 0
01 = select map 1
10 = select map 2
11 = select map 3

© 2003 by CRC Press LLC

; DL = byte stored in green map

; DH = byte stored in blue map

;

; Set counter and map selector

MOV CX,4 ; Counter for 4 maps to read

MOV DI,0 ; Map selector code

READ_IRGB:

; Select map from which to read

MOV DX,3CEH ; Graphic Controller Address

; register

MOV AL,4 ; Read Operation Map Select

OUT DX,AL ; register

;

INC DX ; Graphic controller at 3CFH

MOV AX,DI ; AL = map selector code (in DI)

OUT DX,AL ; IRGB color map selected

; Read 8 bits from selected map

MOV AL,ES:[BX] ; Get byte from bit plane

PUSH AX ; Store it in the stack

INC DI ; Bump selector to next map

LOOP READ_IRGB ; Execute loop 4 times

; 4 maps are stored in stack

; Retrieve maps into exit registers

POP AX ; B map byte in AL

MOV DH,AL ; Move B map byte to DH

POP AX ; G map byte in AL

MOV DL,AL ; Move G map byte to DL

POP AX ; R map byte in AL

MOV CH,AL ; Move R map byte to CH

POP AX ; I map byte in AL

MOV CL,AL ; Move I map byte to CL

.

.

.

VGA systems allow several ways for performing memory read and write opera-
tions, usually known as the read and write modes. The Select Graphics Mode regis-
ter of the Graphics Controller group allows the programmer to select which of two
read and four write modes is presently active. The Select Graphics Mode register is
shown in Figure 7-22, on the following page.

The four VGA write modes can be described as follows:

• Write mode 0 is the default write mode. In this write mode, the Map Mask register of the
Sequencer group, the Bit Mask register of the Graphics Controller group, and the CPU
are used to set the screen pixel to a desired color.

• In write mode 1 the contents of the latch registers are first loaded by performing a read
operation, then copied directly onto the color maps by performing a write operation.
This mode is often used in moving areas of memory.

• Write mode 2, a simplified version of write mode 0, also allows setting an individual
pixel to any desired color. However, in write mode 2 the color code is contained in the
CPU byte.

© 2003 by CRC Press LLC

Figure 7-22 Select Graphics Mode Register of the VGA Graphics Controller

• In write mode 3 the byte in the CPU is ANDed with the contents of the Bit Mask register
of the Graphic Controller.

The write mode is selected by setting bits 0 and 1 of the Graphic Controller's
Graphic Mode register. It is a good programming practice to preserve the remaining
bits in this register when modifying bits 0 and 1. This is performed by reading the
Graphic Mode register, altering the write mode bits, and then re-setting the register
without changing the remaining bits. The following code fragment sets a write mode
in a VGA system. The remaining bits in the Select Graphics Mode register are pre-
served.

; Set the Graphics Controller's Select Graphic Mode register

; to the write mode in the AH register

MOV DX,3CEH ; Graphic Controller Address

; register

MOV AL,5 ; Offset of the Mode register

OUT DX,AL ; Select this register

INC DX ; Point to Data register

IN AL,DX ; Read register contents

AND AL,11111100B ; Clear bits 0 and 1

OR AL,AH ; Set mode in AL low bits

MOV DX,3CEH ; Address register

MOV AL,5 ; Offset of the Mode Register

OUT DX,AL ; Select again

INC DX ; Point to Data register

OUT DX,AL ; Output to Mode Register

; Note: the Select Mode register is read-only in EGA systems

; therefore this code will not work correctly

7 6 5 4 3 2 1 0

0 0

port 3CFH

offset 5

WRITE MODE SELECT
00 = select write mode 0
01 = select write mode 1
10 = select write mode 2
11 = select write mode 3READ TYPE

0 = read data from Read Map Select register
1 = compara results with maps in the Color

Compare register
SELECT ODD/EVEN MODE
1 = odd/even mode (CGA)
0 = normal mode

SHIFT MODE SELECT
1 = shift mode for CGA modes 4 and 5
0 = normal shift mode

VGA 256-COLOR MODE SELECT
1 = enable 256-color mode
0 = bit 5 controls loading of Shift register

© 2003 by CRC Press LLC

Note that bit 6 of the Graphics Mode Register must be set for 256-color modes and
cleared for the remaining ones. The SET_WRITE_256 procedure in the VGA module
of the VGA graphics library (see Chapter 3) sets write mode 0 and the 256-color bit
so that VGA mode number 19, in 256 colors, operates correctly.

Once a write mode is selected the program can access video memory to set the
desired screen pixels, as in the following code fragment:

; Write mode 2 pixel setting routine
; On entry:
; ES = A000H
; BX = byte offset into the video buffer
; AL = pixel color in IRGB format
; AH = bit pattern to set (mask)
;
; Note: this procedure does not reset the default read or write
; modes or the contents of the Bit Mask register.
; The code assumes that write mode 2 has been set previously

PUSH AX ; Color byte
PUSH AX ; Twice

;**********************|
; set bit mask |
;**********************|
; Set Bit Mask register according to value in AH

MOV DX,3CEH ; Graphic controller address
MOV AL,8 ; Offset = 8
OUT DX,AL ; Select Bit Mask register
INC DX ; To 3CFH
POP AX ; Color code once from stack
MOV AL,AH ; Bit pattern
OUT DX,AL ; Load bit mask

;**********************|
; write color |
;**********************|

MOV AL,ES:[BX] ; Dummy read to load latch
; registers

POP AX ; Restore color code
MOV ES:[BX],AL ; Write the pixel with the

; color code in AL
.
.
.

The VGA also provides two read modes. In read mode 0, which is the default read
mode, the CPU is loaded with the contents of one of the color maps. In read mode 1,
the contents of the maps are compared with a predetermined value before being
loaded into the CPU. The active read mode depends on the setting of bit 3 of the
Graphic Mode Select register in the Graphics Controller (see Figure 7-22).

The Miscellaneous register of the Graphics Controller, in Figure 7-23, is used in
conjunction with the Select Graphics Modes register to enable specific graphics
function. Bits 2 and 3 of the Miscellaneous register control the mapping of the video
buffer in the system's memory space. The normal mapping of each mode can be seen
in the buffer address column of Table 7-1. The manipulation of the Miscellaneous
register is usually left to the BIOS mode change service.

© 2003 by CRC Press LLC

Figure 7-23 Miscellaneous Register of the VGA Graphics Controller

All read and write operations performed by the VGA take place at a byte level.
However, in certain graphics modes, such as mode number 18, video data is stored
at a bit level in four color maps. In this case, the code must mask out the undesired
color maps in order to determine the state of an individual screen pixel or to set a
pixel to a certain color. In 80x86 Assembly Language the TEST instruction provides
a convenient way for determining an individual screen pixel following a read opera-
tion. The Bit Mask register of the Graphics Controller, in Figure 7-24, permits setting
individual pixels while in write modes 0 and 2.

Figure 7-24 Bit Mask Register of the VGA Graphics Controller

In the execution of write operations while in VGA mode number 18, the bit mask
for setting and individual screen pixel can be found from a look-up table or by
right-shifting a unitary bit pattern (10000000B). The following code fragment calcu-
lates the offset into the video buffer and the bit mask required for writing an individ-
ual pixel using VGA write modes 0 or 2.

; Mask and offset computation from x and y pixel coordinates

; Code is for VGA mode number 18 (640 by 480 pixels)

; On entry:

; CX = x coordinate of pixel (range 0 to 639)

; DX = y coordinate of pixel (range 0 to 479)

; On exit:

; BX = byte offset into video buffer

7 6 5 4 3 2 1 0

0 0 0 0

port 3CFH

offset 6

GRAPHICS MODE SELECT
1 = graphics mode
0 = alphanumeric mode

ODD/EVEN CHAINING MODE SELECT
1 = chain odd maps after even maps
0 = normal map chaining

MEMORY MAP SELECT
00 = 128K bytes at A0000H
01 = 64K bytes at A0000H
10 = 32K bytes at B0000H
11 = 32K bytes at B8000H

7 6 5 4 3 2 1 0
port 3CFH

offset 8

MASK ACTION
1 = bit protected from change
0 = bit can be changed during

write mode 0 and 2 operations

© 2003 by CRC Press LLC

; AH = bit mask for the write operation using

; write modes 0 or 2

;

;**********************|

; calculate address |

;**********************|

PUSH AX ; Save accumulator

PUSH CX ; Save x coordinate

MOV AX,DX ; y coordinate to AX

MOV CX,80 ; Multiplier (80 bytes per row)

MUL CX ; AX = y times 80

MOV BX,AX ; Free AX and hold in BX

POP AX ; x coordinate from stack

; Prepare for division

MOV CL,8 ; Load divisor

DIV CL ; AX / CL = quotient in AL and

; remainder in AH

; Add in quotient

MOV CL,AH ; Save remainder in CL

MOV AH,0 ; Clear high byte

ADD BX,AX ; Offset into buffer to BX

POP AX ; Restore AX

; Compute bit mask from remainder

MOV AH,10000000B ; Unitary mask for 0 remainder

SHR AH,CL ; Shift right CL times

; The byte offset (in BX) and the pixel mask (in AH) can now

; be used to set the individual screen pixel

.

.

.

7.3.5 The Attribute Controller
The Attribute Controller receives color data from the Graphics Controller and formats
it for the video display hardware. Input to the Attribute Controller, which is in the form
of attribute data in the alphanumeric modes and in the form of serialized bit plane data
in the graphics modes, is converted into 8-bit digital color output to the DAC. Blinking,
underlining, and cursor display logic are also controlled by this register. In VGA sys-
tems the output of the Attribute Controller goes directly to the video DAC and the CRT.
Table 7-6 shows the registers in the Attribute Controller group.

Table 7-6

The VGA Attribute Controller Registers

PORT OFFSET DESCRIPTION

03C0H Attribute Address and Palette Address register

03C1H Read operations

03C0H 0 to 15 Palette registers
16 Attribute mode control
17 Screen border color control (overscan)
18 Color plane enable
19 Horizontal pixel panning
20 Color select

© 2003 by CRC Press LLC

Register addressing in the Attribute Controller group is performed differently
than with the other VGA registers. This is due to the fact that the Attribute Control-
ler does not have a dedicated bit to control the selection of its internal address and
data registers, but uses an internal flip-flop to toggle the address and data functions.
This explains why the Index and the Data registers of the Attribute Controller are
both mapped to port 3C0H (see Table 7-6). Figure 7-25 shows the Attribute and Pal-
ette Address registers in the VGA Attribute Controller.

Figure 7-25 Attribute Address and Palette Address Registers of the VGA
Attribute Controller

Programming the Attribute Controller requires accessing Input Status Register 1
of the General Register (see Figure 7-7) in order to clear the flip-flop. The address of
the Status Register 1 is 3BAH in monochrome modes and 3DAH in color modes. The
complete sequence of operations for writing data to the Attribute Controller is as
follows:

1. Issue an IN instruction to address 3BAH (in color modes) or to address 3DAH (in
monochrome modes) to clear the flip-flop and select the address function of the At-
tribute Controller.

2. Disable interrupts.

3. Issue an OUT instruction to the address register, at port 3C0H, with the number of the
desired data register.

4. Issue another OUT instruction to this same port to load a value into the Data register.

5. Enable interrupts.

The 16 Palette registers of the Attribute Controller, at offsets 0 to 15, determine
how the 16 color values in the IRGB bit planes are displayed. The default values for
the Palette registers is shown in Table 7-7. The colors of the default palette can be
seen by running the program named PALETTE which is part of the book’s software
package.

7 6 5 4 3 2 1 0

0 0

port 3C0H

ATTRIBUTE ADDRESS
0 to 15 = Palette register offset
16 to 20 = Attribute register offset

PALETTE ADDRESS SOURCE
1 = enable display (normal setting)
0 = load Palette registers

© 2003 by CRC Press LLC

Table 7-7

Default Setting of VGA Palette Registers

REGISTER VALUE BITS 0-5 COLOR
OFFSET R G B R G B

0 0 0 0 0 0 0 0 Black

1 1 0 0 0 0 0 1 Blue

2 2 0 0 0 0 1 0 Green

3 3 0 0 0 0 1 1 Cyan

4 4 0 0 0 1 0 0 Red

5 5 0 0 0 1 0 1 Magenta

6 20 0 1 0 1 0 0 Brown

7 7 0 0 0 1 1 1 White

8 56 1 1 1 0 0 0 Dark grey

9 57 1 1 1 0 0 1 Light blue

10 58 1 1 1 0 1 0 Light green

11 59 1 1 1 0 1 1 Light cyan

12 60 1 1 1 1 0 0 Light red

13 61 1 1 1 1 0 1 Light magenta

14 62 1 1 1 1 1 0 Yellow

15 63 1 1 1 1 1 1 Intensified white

In VGA systems each Palette register consists of 6 bits that allow 64 color combi-
nations in each register. The bits labeled "RGBRGB" in Table 7-7 correspond to the
primary and secondary values for red, green, and blue colors. Since each color is
represented by 2 bits, each one can have four possible levels of saturation; for exam-
ple, the levels of saturation for the color red are:

Saturation rgbRGB Interpretation
0 000000 no red
1 100000 low red
2 000100 red
3 100100 high red

The Palette registers can be changed by means of BIOS service number 16, inter-
rupt 10H, or by programming the Attribute Controller registers directly. Note that
the setting of the Palette registers does not affect the color output in 256-color mode
number 19, in which case the 8-bit color values in video memory are transmitted di-
rectly to the DAC. Figure 7-26, on the following page, is a bitmap of the Palette regis-
ter of the Attribute Controller.

The Attribute Mode Control register of the Attribute Controller serves to select
the characteristics associated with the video mode. Bit 0 selects whether the display
is in an alphanumeric or in a graphics mode. Bit 1 determines if VGA operates in a
monochrome or color emulation. Bit 2 is related to the handling of the ninth screen
dot while displaying the graphics characters in the range C0H to DFH. If this bit is
set, the graphics characters in this range generate unbroken horizontal lines. This

© 2003 by CRC Press LLC

feature refers to the MDA emulation mode only, since other character fonts do not
have the ninth dot. BIOS sets this bit automatically in the modes that require it. The
function of the bit fields of the Attribute Mode Control register can be seen in Figure
7-27.

Figure 7-26 Palette Register of the VGA Attribute Controller

Figure 7-27 Attribute Mode Control Register of the VGA Attribute Controller

7 6 5 4 3 2 1 0

0 0 r g b R G B

port 3C0H for read operations

port 3C1H for write operations

offset 0 to 15

COLOR ATTRIBUTES
primary blue
primary green
primary red
secondary blue
secondary green
secondary red

7 6 5 4 3 2 1 0

0

port 3C0H for read operations

port 3C1H for write operations

offset 16

ALPHANUMERIC/GRAPHICS SELECT
1 = graphics modes
0 = alphanumeric modes

MONOCHROME/COLOR EMULATION SELECT
1 = monochrome modes emulation
0 = color modes emulation

9TH. DOT HANDLING ENABLE FOR
ALPHANUMERIC-GRAPHICS CHARACTERS
1 = 9th dot is same a 8th dot
0 = 9th dot is same as background

BLINK/BACKGROUND INTENSITY SELECT
1 = blink function
0 = background intensity function

PIXEL PANNING
1 = pixel panning register = 0 after line compare
0 = pixel panning ignores line compare

PIXEL WIDTH (256-COLOR MODE)
1 = 256 color mode (number 19)
0 = all other modes

PALETTE SELECT
1 = bits 4 and 5 of Palette register replaced with bits

bits 0 and 1 of Color Select register
0 = Palette register unmodified

© 2003 by CRC Press LLC

Bit 5 of the Attribute Mode Control register in the Attribute Controller group re-
lates to independently panning the screen sections during split-screen operation.
Split-screen programming is discussed in Chapter 3. Bit 6 of the Attribute Mode Con-
trol register is set to 1 during operation in mode number 19 (256-colors) and cleared
for all other modes. Finally, bit 7 of the Attribute Mode Control register determines
the source for the bits labeled r and g (numbers 4 and 5) in the Palette register. If bit
7 is set the r and g bits in the Palette register are replaced by bits 0 and 1 of the Color
Select register. If bit 7 is reset then all Palette register bits are sent to the DAC.

In some alphanumeric and graphics modes the VGA display area is surrounded by
a colored band. The width of this band is the same as the width of a single character
(8 pixels) in the 80-column modes. The color of this border area is determined by
the Overscan Color register of the Attribute Controller. Normally the screen border
is not noticeable, due to the fact that the default border color is black. The border
color is not available in the 40-columns alphanumeric modes or in the graphics
modes with 320 pixel rows, except for VGA graphics mode number 19. The bitmap
of the Overscan register is shown in Figure 7-28.

Figure 7-28 Overscan Color Register of the VGA Attribute Controller

The Color Plane Enable register allows excluding one or more bit planes from the
color generation process. The main purpose of this function is to provide compati-
bility with EGA systems equipped with less than 256K of memory. Bits 4 and 5 of this
register are used in system diagnostics. The bitmap of the Color Plane Enable regis-
ter of the Attribute Controller group is shown in Figure 7-29.

Figure 7-29 Color Plane Enable Register of the VGA Attribute Controller

7 6 5 4 3 2 1 0

0 0 0 0 I R G B

blue element
green element
red element
intensity element

port 3C0H for read operations

port 3C1H for write operations

offset 17

7 6 5 4 3 2 1 0

I R G B0 0

COLOR PLANE ENABLE
blue plane
green plane
red plane
intensity plane

port 3C0H for read operations

port 3C1H for write operations

offset 18

VIDEO STATUS MUX
(used for diagnostics)

© 2003 by CRC Press LLC

The Horizontal Pixel Panning register of the Attribute Controller is used to shift
video data horizontally to the left, pixel by pixel. This register is shown in Figure
7-30. This feature is available in the alphanumeric and graphics modes. The number
of pixels that can be shifted is determined by the display mode. In the VGA 256-color
graphics mode the maximum number of allowed pixels is three. In alphanumeric
modes 0, 1, 2, 3, and 7, the maximum is eight pixels. In all other modes the maximum
is seven pixels. The Horizontal Pixel Panning register can be programmed in con-
junction with the Video Buffer Start Address registers of the CRT Controller (see
Figure 7-11) to implement smooth horizontal screen scrolling in alphanumeric and
in graphics modes. These manipulations are described in Chapter 8.

Figure 7-30 Horizontal Pixel Panning Register of the VGA Attribute Controller

The Color Select register of the Attribute Controller provides additional color se-
lection flexibility to the VGA system, as well as a way for rapidly switching between
sets of displayed colors. When bit 7 of the Attribute Mode Control register is clear
(see Figure 7-27) the 8-bit color value sent to the DAC is formed by the 6 bits from
the Palette registers and bits 2 and 3 of the Color Select register (see Figure 7-27). If
bit 7 of the Attribute Mode Control register is set, then the 8-bit color value is
formed with the lower four bits of the Palette register and the 4 bits of the Color Se-
lect register. Since these bits affect all Palette registers simultaneously, the program
can rapidly change all colors displayed by changing the value in the Color Select reg-
ister. The Color Select register is not used in the 256-color graphics mode number
19. The Color Select Register bitmap is shown in Figure 7-31.

Figure 7-31 Color Select Register of the VGA Attribute Controller

7 6 5 4 3 2 1 0

0 0 0 0

number of pixels to left-shift
video data

port 3C0H for read operations

port 3C1H for write operations

offset 19

7 6 5 4 3 2 1 0

0 0 0 0

replacement bits for Palette bits
4 and 5 if Attribute Mode Control
register bit 7 is set (Figure 2.27)

port 3C0H for read operations

port 3C1H for write operations

offset 20

bits 6 and 7 of 8-bit color value sent
to DAC (except in 256-color mode)

© 2003 by CRC Press LLC

7.4 The Digital-to-Analog Converter (DAC)
The Digital-to-Analog Converter, or DAC, provides a set of 256 color registers, some-
times called the color look-up table, as well as three color drivers for an analog dis-
play. The DAC register set permits displaying 256 color combinations from a total of
262,144 possible colors. Table 7-8 shows the DAC registers.

Table 7-8

VGA Video Digital-to-Analog Converter Addresses

REGISTER OPERATIONS ADDRESS

Pixel address (read mode) WRITE ONLY 03C7H

Pixel address (write mode) READ/WRITE 03C8H

DAC State READ ONLY 03C7H

Pixel Data READ/WRITE 03C9H

Pixel Mask READ/WRITE 03C6H

Note: applications must not write to the Pixel Mask register
to avoid destroying the color lookup table

Each of the DAC's 256 registers uses 6 data bits to encode the value of the pri-
mary colors red, green, and blue. The use of 6 bits per color makes each DAC regis-
ter 18 bits wide. It is the possible combinations of 18 bits that allow 262,144 DAC
colors. Note that the VGA color registers in the DAC duplicate the color control of-
fered by the Palette registers of the Attribute Controller. In fact, the VGA Palette
registers are provided for compatibility with the EGA card, which does not contain
DAC registers. When compatibility with the EGA is not an issue, VGA programming
can be simplified by ignoring the Palette registers and making all color manipula-
tions in the DAC. Furthermore, the Palette registers are disabled when VGA is in the
256-color mode number 19, since mode number 19 has no EGA equivalent.

7.4.1 The DAC Pixel Address Register
The DAC Pixel Address register holds the number (often called the address) of one of
the 256 DAC registers. Read operations to the Pixel Address register are performed to
port 3C7H and write operations to port 3C8H (see Table 7-8). A write operation
changes the 18-bit color stored in the register (in Red/Green/Blue format). A read op-
eration is used to obtain the RGB value currently stored in the DAC register. Figure
7-32 is a bitmap of the DAC Pixel Address register.

Figure 7-32 Pixel Address Register of the VGA DAC

7 6 5 4 3 2 1 0

DAC register number

port 3C7H for read operations

port 3C8H for write operations

© 2003 by CRC Press LLC

7.4.2 The DAC State Register
The DAC State register encodes whether the DAC is in read or write mode. A mode
change takes place when the Pixel Address register is accessed: if the Pixel Address
register is set at port 3C7H (see Figure 7-32) then the DAC goes into a read mode; if it is
set at port 3C8H then the DAC goes into a write mode. The DAC State register is shown
in Figure 7-33. Notice that although the Pixel Address register for read operations and
the DAC State register are both mapped to port 3C7H there is no occasion for conflict,
since the DAC State register is read only and the Pixel Address register for read opera-
tions is write only (see Table 7-8).

Figure 7-33 State Register of the VGA DAC

7.4.3 The DAC Pixel Data Register

The Pixel Data register in the DAC is used to hold three 6-bit data items representing a
color value in RGB format. The Pixel Data register can be read after the program has
selected the corresponding DAC register at the Pixel Address read operation port
3C7H. The Pixel Data register can be written after the program has selected the corre-
sponding DAC register at the Pixel Address write operation port 3C8H (see Table 7-8).
The current read or write state of the DAC can be determined by examining the DAC
State register.

Once the DAC is in a particular mode (read or write), an application can continue
accessing the color registers by performing a sequence of three operations, one for
each RGB value. The read sequence consists of selecting the desired DAC register in
the Pixel Address register at the read operations port (3C7H) then performing three
consecutive IN instructions. The first one will load the 6-bit red value stored in the
DAC register, the second one will load the green value, and the third one the blue
value. The write sequence takes place in a similar fashion. This mode of operation
allows rapid access to the three data items stored in each DAC register as well as to
consecutive DAC registers. Because each entry in the DAC registers is 6 bits wide,
the write operation is performed using the least significant 6 bits of each byte. The
order of operations for the WRITE function are as follows:

1. Select the starting DAC color register number by means of a write operation to the
Pixel Address write mode register at port 3C8H.

2. Disable interrupts.

3. Write the 18-bit color code in RGB encoding. The write sequence consists of 3 bytes
consecutively output to the pixel data register. Only the six low-order bits in each byte
are meaningful.

7 6 5 4 3 2 1 0

00 = DAC is in read mode
11 = DAC is in write mode

port 3C7H (read only)

© 2003 by CRC Press LLC

4. The DAC transfers the contents of the Pixel Data register to the DAC register number
stored at the Pixel Address register.

5. The Pixel Address register increments automatically to point to the subsequent DAC
register. Therefore, if more than one color is to be changed, the sequence of operations
can be repeated from step number 3.

6. Re-enable interrupts.

Read or write operations to the video DAC must be spaced 240 nanoseconds
apart. Assembly language code can meet this timing requirement by inserting a short
JMP instruction between successive IN or OUT opcodes. The instruction can be
conveniently coded in this manner:

JMP SHORT $+2 ; I/O delay

© 2003 by CRC Press LLC

Chapter 8

VGA Device Drivers

Topics:
• VGA programming levels

• Developing VGA device driver routines

• Video memory address calculations

• Setting pixels and tiles

• Reading pixel values

• Color manipulations

This chapter describes the various levels at which the VGA system can be programmed
and establishes the difference between device driver and graphics primitive routines.
Section 8.2 and following refer to the design and coding of device drivers for calculat-
ing pixel address at the fine- and course-grain levels and for reading and writing pixels
and pixel tiles. Section 8.3 and following discuss color operations in 16- and 256-color
modes.

8.1 Levels of VGA Programming
Because the VGA system provides all the video functions in an IBM microcomputer,
any display programming operations on these machines must inevitably access the
VGA hardware or its memory space. However, at the higher levels of VGA program-
ming many of the programming details are hidden by the interface software. For exam-
ple, a programmer working in Microsoft QuickBASIC has available a collection of
program functions that allows drawing lines, boxes, circles, and ellipses, changing
palette colors, performing fill operations, and even executing some primitive anima-
tion. Therefore the QuickBASIC programmer can perform all of the above-mentioned
graphics functions while ignoring the complications of VGA registers, video memory
mapping, and DAC output.

The programming levels in an IBM microcomputer equipped with VGA video are
as follows:

© 2003 by CRC Press LLC

1. VGA services provided by the operating system. This includes the video services in
BIOS, MS DOS, OS/2, WINDOWS, or other operating system programs or graphical en-
vironments.

2. VGA services provided by high-level languages and by programming libraries that ex-
tend the functions of high-level languages.

3. General purpose VGA libraries that can be used directly or interfaced with one or more
high-level languages. The VGA graphics library furnished with this book belongs to
this category.

4. Low-level routines, usually coded in 80x86 Assembly Language, that access the VGA or
DAC registers or the memory space reserved for video functions.

Observe that this list refers exclusively to the VGA system. Other graphics stan-
dards, such as 8514A, XGA, and SuperVGA, include high-level functions that are fur-
nished as a programming interface with the hardware. However, the VGA standard
does not furnish higher level programming facilities. In this chapter we discuss the
lowest level of VGA programming, principally at the adapter hardware level (num-
ber 4 in the previous list). These lowest level services are often called device driver
routines. The VGA services in the BIOS are also mentioned occasionally. The reader
wishing a greater detail in the programming descriptions should refer to the code
listings (files with the extension .ASM) that are contained in the book's libraries,
which describe the VGA services in the BIOS. In Chapter 9 we extend the discussion
of VGA programming to higher level routines, usually called graphics primitives.
The VGA services in high-level languages, in operating systems, or in graphical envi-
ronments, such as WINDOWS and OS/2, are not discussed in the book.

8.1.1 Device Drivers and Primitive Routines
The term device driver is often used to denote the most elementary software elements
that serve to isolate the operating system, or the high- and low-level programs, from
the peculiarities of hardware devices and peripherals. It was the UNIX operating sys-
tem that introduced the concept of an installable device driver. In UNIX a device driver
is described as a software element that can be attached to the UNIX kernel at any time.
The concept of a device driver was perpetuated by MS DOS (starting with version 2.0)
and by OS/2.

A second level of graphics routines, usually more elaborate than the device driv-
ers, is called the graphics primitives. For example, to draw a circular arc on the
graphics screen of a VGA system we need to perform programming operations at
two different levels. The higher level operation consists of calculating the x and y
coordinates of the points that lay along the arc to be drawn. The second, and more
elementary operation, is to set to a desired color the screen pixels that lay along this
arc. In this case we can say that the coordinate calculations for the arc are per-
formed in a routine called a graphics primitive, while the setting of the individual
screen pixels is left to a VGA device driver.

Strictly speaking it is possible to reduce the device driver for a VGA graphic sys-
tem to two routines: one to set to a predetermined color the screen pixel located at
certain coordinates, and another one to read the color of a screen pixel. With the
support of this simple, two-function driver, it is possible to develop VGA primitives

© 2003 by CRC Press LLC

to perform all the graphic functions of which the device is capable. Nevertheless, a
system based on minimal drivers performs very poorly. For instance, a routine to fill
a screen area with a certain color would have to make as many calls to the driver as
there are pixels in the area to be filled. In practice, it is better to develop device driv-
ers that perform more than minimum functions. Therefore, in addition to the pixel
read and write services, it is convenient to include in the device driver category
other elementary routines such as those that perform address calculations, read and
write data in multi-pixel units, and manipulate the color settings at the system level.

In IBM microcomputers, under MS DOS, the VGA graphics hardware is accessed
by device drivers that are not installed as part of the operating system. Several inter-
face mechanisms are possible for these drivers. One option is to link the graphics
device driver to a software interrupt. Once this driver is loaded and its vector initial-
ized, applications can access its services by means of the INT instruction. But this
type of operation, while very convenient and efficient, requires that the driver be in-
stalled as a terminate-and-stay-resident program (TSR), therefore reducing the
memory available to applications. An alternative way of making the services of
graphics device drivers accessible to applications is to include the drivers in one or
more graphics libraries. The library routines requested in the code, which are ac-
cessed by high- and low-level programs at link time, are incorporated into the pro-
gram's run file. Because of its simplicity this is the approach selected for the
graphics routines provided with this book. Chapter 9 is devoted to developing the
primitive routines necessary in VGA programming.

8.2 Developing the VGA Device Drivers
The VGA system can be considered as a different device in each operational mode. In
fact, many VGA modes exist for no other reason than to provide compatibility with
other devices. Therefore, the device drivers for VGA mode number 18, with 640-by-480
pixels in 16 colors, are unrelated and incompatible with VGA mode number 19, with
320-by-200 pixels in 256 colors. Since these two modes (numbers 18 and 19) provide
the most powerful graphics functions in the VGA standard, and considering that com-
patibility with previous adapters is no longer a major consideration, the drivers devel-
oped for this book apply to VGA modes number 18 and 19 only.

8.2.1 VGA Mode 18 Write Pixel Routine

In VGA mode number 18 each screen pixel is mapped to four memory maps, each map
encoding the colors red, green, and blue, as well as the intensity component, as shown
in Figure 8-1, on the following page.

To set a screen pixel in VGA mode number 18 the program must access individual
bits located in four color maps. In Figure 8-1 the screen pixel displayed corresponds
to the first bit in each of the four maps. But, due to the fact that the 80x86 instruc-
tion set does not contain operations for accessing individual bits, read and write op-
erations in 80x86 Assembly Language must take place at the byte level.
Consequently, to access the individual screen pixels while in VGA mode number 18
the program has to resort to bit masking. Figure 8-2 illustrates bit-to-pixel mapping
in VGA mode number 18.

© 2003 by CRC Press LLC

Figure 8-1 Color Maps in VGA Mode 18

Notice in Figure 8-2 that the eleventh screen pixel (pointed at by the arrow) cor-
responds to the eleventh bit in the memory map. This eleventh bit is located in the
second byte.

Figure 8-2 Bit-to-Pixel Mapping Example in VGA Mode 18

B

L

U

E
G

R

E

E

N

R

E

DI

N

T

E

N

S

I

T

Y

1 0 0 1 1 1 0 1

0 0 1 0 1 0 0 0

0 1 1 1 0 0 1 0

0 1 0 0 0 1 1 1

DAC

R G B

0 0 1 1 0 0 1 0 0 0 1 1 0 1 1 0

byte boundary byte boundary

VIDEO MEMORY (bits)

VIDEO DISPLAY (pixels)

© 2003 by CRC Press LLC

VGA write operations can take place in four different write modes, labeled 0 to 3.
Also that the write mode is selected by means of bits 0 and 1 of the Select Graphics
Mode register of the Graphics Controller group (see Figure 2-22). The VGA behaves
as a different device in each write mode. Therefore the device driver for a pixel
write operation in mode number 18 must be write-mode specific.

Each VGA write mode has its strong points but, perhaps, write mode 2 is the most
direct and useful one. In write mode 2 the individual pixel within a video buffer byte
is selected by entering an appropriate mask in the Bit Mask register of the Graphics
Controller group. This bit mask must contain a 1 bit for the pixel or pixels to be ac-
cessed and a 0 bit for those to be ignored. For example, the bit mask 00100000B can
be used to select the pixel shown in Figure 8-2.

Fine Grain Address Calculations
In the case of Figure 8-2 the code must take into account that the 11 pixel is located in
the second buffer byte. In VGA mode number 18 programming this is usually accom-
plished by using a word-size variable, or an 80x86 machine register, as an offset
pointer. Since the VGA video buffer in a graphics mode always starts at physical ad-
dress A0000H, the ES register can be set to the corresponding segment base. The As-
sembly Language code to set the ES:BX register pair as a pointer to the second screen
byte would be as follows:

; Code fragment to set the 11th screen pixel while in VGA mode
; number 18, write mode 2

MOV AX,0A000H ; Segment base for video buffer
MOV ES,AX ; To ES register

; ES --> base of VGA video buffer
MOV BX,1 ; Offset of byte 2 to BX

; At this point ES:BX can be used to access the second byte in the
; video buffer

.

.

.

In practice a VGA mode number 18 device driver should include a routine to cal-
culate the pixel's byte offset and bit mask from its screen coordinates. The actual
calculations are based on the geometry of the video buffer in this mode, which cor-
responds to 80 bytes per screen row (640 pixels) and a total of 480 rows. The follow-
ing code fragment shows the necessary calculations.

; Address computation from x and y pixel coordinates
; On entry:
; CX = x coordinate of pixel (range 0 to 639)
; DX = y coordinate of pixel (range 0 to 479)
; On exit:
; BX = byte offset into video buffer
; AH = bit mask for the write VGA write modes 0 or 2
; AL is preserved
; Save all entry registers

PUSH CX
PUSH DX

;***********************|
; calculate address |
;***********************|

© 2003 by CRC Press LLC

PUSH AX ; Save accumulator
PUSH CX ; Save x coordinate
MOV AX,DX ; y coordinate to AX
MOV CX,80 ; Multiplier (80 bytes per row)
MUL CX ; AX = y times 80
MOV BX,AX ; Free AX and hold in BX
POP AX ; x coordinate from stack

; Prepare for division
MOV CL,8 ; Divisor
DIV CL ; AX / CL = quotient in AL and

; remainder in AH
; Add in quotient

MOV CL,AH ; Save remainder in CL
MOV AH,0 ; Clear high byte
ADD BX,AX ; Offset into buffer to BX
POP AX ; Restore AX

;***********************|
; calculate bit mask |
;***********************|
; The remainder (in CL) is used to shift a unitary mask

MOV AH,10000000B ; Unit mask for 0 remainder
SHR AH,CL ; Shift right CL times

; Restore registers
POP DX
POP CX

.

.

.

This address calculation routine is similar to the PIXEL_ADD_18 device driver in
the VGA1 module of the graphics library furnished with this book. This library ser-
vice is discussed in Section 3.3.

Setting the Pixel
Once the bit mask and byte offset into the buffer have been determined, the individual
screen pixel can be set in VGA mode number 18, write mode 2. This is accomplished in
two steps: first the program sets the mask in the Bit Mask register of the Graphics Con-
troller group, then it performs a memory write operation to the address in ES:BX. The
following code fragment shows both operations.

; VGA mode number 18 device driver for writing an individual
; pixel to the graphics screen
;
; On entry:
; ES:BX = byte offset into the video buffer
; AL = pixel color in IRGB format
; AH = bit pattern to set (mask)
;
; This routine assumes VGA mode 18 and write mode 2
;

PUSH DX ; Save outer loop counter
PUSH AX ; Color byte
PUSH AX ; Twice

;***********************|
; first step |
; set bit mask |
;***********************|
; Set Bit Mask Register according to mask in AH

© 2003 by CRC Press LLC

MOV DX,3CEH ; Graphic controller latch
MOV AL,8
OUT DX,AL ; Select data register 8
INC DX ; To 3CFH
POP AX ; AX once from stack
MOV AL,AH ; Bit pattern
OUT DX,AL ; Load bit mask

;***********************|
; second step: |
; write IRGB color |
;***********************|
; Write color code to memory maps

MOV AL,ES:[BX] ; Dummy read to load latch
; registers

POP AX ; Restore color code
MOV ES:[BX],AL ; Write the pixel with the

; color code in AL
POP DX ; Restore outer loop counter

.

.

.

The above code is similar to the one in the WRITE_PIX_18 device driver listed in
the VGA1 module of the graphics l ibrary furnished with this book. The
WRITE_PIX_18 routine is discussed in Section 3.3.

Coarse Grain Address Calculations
The finest possible degree of control over a video display device is obtained at the
screen pixel level. However, it is often convenient to access video display device in
units of several pixels. For example, when VGA mode number 18 text display opera-
tions are performed by means of the BIOS character display services, these take place
on a screen divided into 80 character columns and 30 character rows (see Table 2-2).
This means that each character column is 8 pixels wide (640/80 = 8) and each row is 16
pixels high (480/30 = 16). In addition, graphics software can often benefit from opera-
tions that take place at coarser-than-pixel levels. For instance, to draw a horizontal
line from screen border to screen border, in mode number 18, requires 640 bit-level op-
erations, but only 80 byte-level operations. Consequently, routines that read or write
pixels in groups achieve substantially better performance than those that read or
write the pixels individually.

When referring to VGA mode 18 routines that write to the video display at a byte
level we use the term coarse grain, while those that output at the pixel we labeled
fine grain. In order to give the coarse-grain routine a symmetrical pixel pattern, we
have used 8-bit pixel groups both on the horizontal and on the vertical scale. For
lack of a better word we refer to these 8-by-8 pixel units as screen tiles, or simply
tiles. Coarse-grain operations, in mode number 18, see the video display as 80 col-
umns and 60 rows of screen tiles, for a total of 4800 tiles. In this manner the pro-
grammer can envision the VGA screen in mode number 18 as consisting of
640-by-480 pixels (fine-grain visualization) or as consisting of 80-by-60 screen tiles
of 8-by-8 pixels (coarse-grain visualization). Furthermore, the coarse-grain visual-
ization can easily be adapted to text display operations on an 80-by-30 screen by
grouping the 60 tile rows into pairs. The following code fragment calculates the
coarse-grain offset into the video buffer from the vertical and horizontal tile count.

© 2003 by CRC Press LLC

; On entry:
; CH = horizontal tile number (range 0 to 79) = x coordinate
; CL = vertical tile number (range 0 to 59) = y coordinate
;
; Compute coarse-grain address (in BX) as follows:
; BX = (CL * 640) + CH
;
; On exit:
; BX = tile offset into video buffer
; CX is destroyed
;

PUSH AX ; Save accumulator
PUSH DX ; For word multiply
PUSH CX ; To save CH for addition
MOV AX,CX ; Copy CX in AX

; AL = CL
MOV AH,0 ; Clear high byte
MOV CX,640 ; Multiplier
MUL CX ; AX * CX results in AX

; The multiplier (640) is the product of 80 tiles columns
; times 8 vertical pixels in each tile row

POP CX ; Restore CH
POP DX ; and DX
MOV CL,CH ; Prepare to add in CH
MOV CH,0
ADD AX,CX ; Add
MOV BX,AX ; Move sum to BX
POP AX ; Restore accumulator
.
.
.

The above code is similar to the one in the TILE_ADD_18 device driver listed in
the VGA1 module of the graphics library furnished with this book.

Setting the Tile
Once the tile address has been determined, the individual tile (8-by-8 pixel groups) can
be set by placing an all-ones mask in the Bit Mask register of the Graphics Controller
group, and then performing write operations to 8 successive pixel rows. The following
code fragment shows the setting of a screen tile.

; Set Bit Mask Register to all one bits
MOV DX,3CEH ; Graphic controller latch
MOV AL,8
OUT DX,AL ; Select data register 8
INC DX ; To 3CFH
MOV AL,0FFH ; Bit pattern of all ones

+ OUT DX,AL ; Load bit mask
; Set counter for 8 pixel rows

MOV CX,8 ; Counter initialized
POP AX ; Restore color code

;**********************|
; set 8 pixels |
;**********************|
SET_EIGHT:

MOV AH,ES:[BX] ; Dummy read to load latch
; registers

MOV ES:[BX],AL ; Write the pixel with the
; color code in AL

© 2003 by CRC Press LLC

ADD BX,80 ; Index to next row
LOOP SET_EIGHT

; Tile is set

The above code is similar to the one in the WRITE_TILE_18 device driver listed in
the VGA1 module of the graphics l ibrary furnished with this book. The
WRITE_TILE_18 routine is discussed in Section 3.3.

8.2.2 VGA Mode 18 Read Pixel Routine
A program attempting to determine the state of the 11 pixel in Figure 8-2 would read
the second memory byte and mask out all other bits. The mask, in this case, would
have the value 00100000B. We have seen that video memory in VGA mode number 18 is
divided into four memory maps, labeled I, R, G, and B for the intensity, red, green, and
blue components, respectively, and that all four maps are located at the same address.
For this reason, in order to read the color code for an individual pixel, the program
must successively select each of the four memory maps. This is done through the Read
Operation Map Select register of the Graphics Controller (see Figure 2-21). In other
words, to determine the color of a single pixel in VGA mode number 18 it is necessary
to perform four separate read operations, one for each of the IRGB maps.

As in the write operation, the code to read a screen pixel must calculate the ad-
dress of the video buffer byte in which the bit is located and the bit mask for isolat-
ing it. This can be done by means of the code listed in Section 3.1.1 or by using the
PIXEL_ADD_18 device driver in the VGA1 module of the graphics library furnished
with the book (see Section 3.3). The following code fragment reads a screen pixel
and returns the IRGB color value in the CL register.

; On entry:
; ES:BX = byte offset into the video buffer
; AH = bit pattern for mask
;
; On exit:
; CL = 4 low bits hold pixel color in IRGB format
; CH = 0
;
; The code assumes that read mode 0 is set
;
; Move bit mask to CH

MOV CH,AH ; CH = bit mask for pixel
;***********************|
; set-up read loop |
;***********************|

MOV AH,3 ; Counter for 4 color maps
MOV CL,0 ; Clear register for pixel color

; return
;***********************|
; execute 4 read cycles |
;***********************|
; AH has number for current IRGB map (range 0 to 3)
READ_MAPS:
; Select map from which to read

MOV DX,3CEH ; Graphic Controller Address
; register

MOV AL,4 ; Read Map Select register
OUT DX,AL ; Activate

© 2003 by CRC Press LLC

INC DX ; Graphic Controller = 3CFH

MOV AL,AH ; AL = color map number

OUT DX,AL ; IRGB color map selected

;***********************|

; read one byte |

;***********************|

; Read 8 bits from selected map

MOV AL,ES:[BX] ; Get byte from bit plane

;***********************|

; shift return register |

;***********************|

; Previous color code is in bit 0. The shift operation will free

; the low order bit and move previous bit codes to higher positions

SHL CL,1

;**********************|

; mask out pixels |

;**********************|

AND AL,CH ; Pixel mask in CH

JZ NO_PIX_SET ; Jump if no pixel in map

; Pixel was set in bitmap

OR CL,00000001B ; Set bit 0 in pixel color

; return register

NO_PIX_SET:

DEC AH ; Bump counter to next map

JNZ READ_MAPS ; Continue if not last map

; 4 low bits in CL hold pixel color in IRGB format

MOV CH,0 ; Clear CH

.

.

.

The above code is similar to the one in the READ_PIX_18 device driver listed in
the VGA1 module of the graphics library furnished with this book.

8.2.3 VGA Mode 19 Write Pixel Routine

VGA programmers use mode number 19 when screen color range is more important
than definition. In mode number 19 the VGA video display consists of 200 pixel rows of
320 pixels each. Each pixel, which can be in one of 256 colors, is determined by 1 byte
in the video buffer. This scheme can be seen in Figure 8-3.

The fact that each screen pixel in mode number 19 is mapped to a video buffer
byte simplifies programming by eliminating the need for a bit mask. The VGA video
buffer in mode number 19 consists of 64,000 bytes. This number is the total pixel
count obtained by multiplying the number of pixels per row by the number of screen
rows (320 * 200 = 64,000). Although the 64,000 buffer bytes are distributed in the 4
bit planes, the VGA hardware makes it appear to the programmer as if they resided
in a continuous memory area. In this manner, the top-left screen pixel is mapped to
the byte at physical address A0000H, the next pixel on the top screen row is mapped
to buffer address A0001H, and so forth. This byte-to-pixel mapping scheme can be
seen in Figure 8-4.

© 2003 by CRC Press LLC

Figure 8-3 Color Mapping in VGA Mode 19

Figure 8-4 Byte-to-Pixel Mapping Example in VGA Mode 19

Address Calculations
Address calculations in mode number 19 are simpler than those in mode number 18.
All that is necessary to obtain the offset of a pixel into the video buffer is to multiply its
row address by the number of buffer bytes per pixel row (320) and then add the pixel
column. The processing is shown in the following code fragment

; Address computation for VGA mode number 19
; On entry:
; CX = x coordinate of pixel (range 0 to 319)
; DX = y coordinate of pixel (range 0 to 199)

1 0 0 1 1 1 0 1DAC

R G B

VIDEO BUFFER

8-bit value is DAC register number

0 0 1 1 0 0 1 0 0 0 1 1 0 1 1 0

byte boundary byte boundary

VIDEO MEMORY (bytes)

VIDEO DISPLAY (pixels)

© 2003 by CRC Press LLC

; On exit:
; BX = offset into video buffer
;

PUSH CX ; Save x coordinate
MOV AX,DX ; y coordinate to AX
MOV CX,320 ; Multiplier is 320 bytes per row
MUL CX ; AX = y times 320
MOV BX,AX ; Free AX and hold in BX
POP AX ; x coordinate from stack
ADD BX,AX ; Add in column value

he above code is similar to the one in the WRITE_PIX_19 device driver listed in
the VGA1 module of the graphics library furnished with this book.

Setting the Pixel

Once the segment and the offset registers are loaded, the program can set an individ-
ual screen pixel by means of a simple MOV instruction, as in the following code frag-
ment:

; Write one pixel in VGA mode number 19 (256 colors)
; Code assumes that write mode 0 for 256 colors is selected
; Register setup:
; ES = A000H (video buffer segment base)
; BX = offset into the video buffer (range 0 to 64000)
; AL = 8-bit color code
;

MOV ES:[BX],AL ; Write pixel

8.2.4 VGA Mode 19 Read Pixel Routine
We have seen that in VGA mode number 19 each screen pixel is mapped to a single
video buffer byte. There are 64,000 bytes in the video buffer, which is the same as the
total number of screen pixels obtained by multiplying the number of pixels per row by
the number of screen rows (320 * 200 = 64,000). The mapping scheme in VGA mode
number 19 can be seen in Figure 8-4. The address calculations for mode number 19
were shown in Section 3.1.3. The actual read operation is performed by means of a
MOV instruction, as in the following code fragment

; Read one pixel in VGA mode number 19 (256 colors)
; Code assumes that read mode 0 is selected
; Register setup:
; ES = A000H (video buffer segment base)
; BX = offset into the video buffer (range 0 to 64000)
;

MOV AL,BYTE PTR ES:[BX] ; Read pixel
; AL now holds the 8-bit color code

8.3 Color Manipulations
The theory of additive color reproduction is based on the fact that light in the primary
colors (red, green, and blue) can be used to generate all the colors of the spectrum.
Red, green, and blue are called the primary colors. Technically, it is possible to create
white light by blending just two colors. The color that must be blended with a primary
color to form white is called the complement of the primary color, or the complemen-
tary color. Color Figure 2 shows the primary and the complementary colors. The com-

© 2003 by CRC Press LLC

plementary colors can also be described as white light minus a primary color. For
example, white light without red, not-red, gives a shade of blue-green known as cyan;
not-green gives a mixture of red and blue called magenta; and not-blue gives yellow,
which is a mixture of red and green light. Video display technology is usually designed
on additive color blending. Subtractive methods are based on dyes that absorb the un-
desirable, complementary colors. A cyan-colored filter, for example, absorbs the
green and blue components of white light. Subtractive mixing is used in color photog-
raphy and color printing.

In describing a color we use three characteristics that can be precisely deter-
mined: its hue, its intensity, and its saturation. A method of color measurement
based on hue, intensity, and saturations (sometimes called the HIS) was developed
for color television. The hue can be defined as the color of a color. Physically the
hue can be measured by the color's dominant wavelength. The intensity of a color is
its brightness. This brightness is measured in units of luminance or nits. The satura-
tion of a color is its purity. If the color contains no white diluent it is said to be fully
saturated.

8.3.1 256-Color Mode
While address mapping in VGA mode number 19 is simpler than in mode number 18,
the pixel color encoding is considerably more complicated. This is so not only because
there is a more extensive color range in mode number 19 than in mode number 18 (16
versus 256 colors) but also because the default encoding scheme is not very straight-
forward. This default scheme is determined by the setting of the 256 color registers in
the DAC. The start-up value stored in these registers by the BIOS initialization code is
designed to provide compatibility with the CGA and EGA systems. Figure 8-5 shows
the default setting of the DAC Color registers in VGA mode number 19. The demonstra-
tion program named MODE19, furnished in the book's software, is an on screen dis-
play of the default setting of the DAC registers in the VGA mode number 19.

Figure 8-5 Default Color Register Setting in VGA Mode 19

00H 0FH16 colors in IRGB values

10H 1FH16 shades of gray

HIGH INTENSITY GROUP

72 colors in 3 saturation groups
20H-37H = high saturation

38H-4FH = moderate saturation
50H-67H = low saturation

MEDIUM INTENSITY GROUP

72 colors in 3 saturation groups
68H-7FH = high saturation

80H-97H = moderate saturation
98H-AFH = low saturation

LOW INTENSITY GROUP

72 colors in 3 saturation groups
B0H-C7H = high saturation

C8H-DFH = moderate saturation
E0H-F7H = low saturation

20H

67H

68H

AFH
B0H

F7H

F8H
FFH

BLACK

© 2003 by CRC Press LLC

In Figure 8-5 the first group of default colors (range 00H to 0FH) corresponds to
those in the 16-color modes. In other words, if only the 4 low-order bits of the 8-bit
color code are programmed, the resulting colors in the 256-color mode are the same
as those in the 16-color modes. The second group of default colors (range 10H to
1FH) corresponds to 16 shades of gray. The following group of colors (range 20H to
67H) consists of 72 colors divided into 3 sub-groups, each one representing a differ-
ent level of color saturation. Each of the saturation sub-groups consists of 24 colors
in a circular pattern of blue-red-green hues. Another 72-color group is used for me-
dium intensity colors and a third one for low intensity colors.

But the programmer of VGA in 256-color mode is by no means restricted to the de-
fault values installed by the BIOS in the DAC Color registers. In fact, we can readily
see that this default grouping is not convenient for many applications. Because the
default tones of red, green, or blue are not mapped to adjacent bits or to manageable
fields. For example, using the default setting of the DAC Color registers, the various
shades of the color green are obtained with the values shown in Table 8-1.

Table 8-1

Shades of Green in VGA 256-Color Mode (default values)

VALUE/RANGE INTENSITY SATURATION

02H 00000010B medium high

0AH 00001010B high high

2EH to 00101110B to high high
34H 00110100B

46H to 01000110B to high moderate
4CH 01001100B

5EH to 01011110B to high low
64H 01100100B

76H to 01110110B to medium high
7CH 01111100B

8EH to 10001110B to medium moderate
94H 10010100B

A6H to 10100110B to medium low
ACH 10101100B

BEH to 10111110B to low high
C4H 11000100B

D6H to 11010110B to low moderate
DCH 11011100B

EEH to 11101110B to low low
F4H 11110100B

A more rational 256-color scheme can be based on assigning 2 bits to each of the
components of the familiar IRGB encoding. Figure 8-6 shows the bitmapping for this
IRGB double-bit encoding.

© 2003 by CRC Press LLC

Figure 8-6 Double-Bit Mapping for 256-Color Mode

To enable the double-bit encoding in Figure 8-6 it is necessary to change the de-
fault setting of the DAC Color registers. The DAC Color registers consist of 18 bits, 6
bits for each color (red, green, and blue). The bitmap of the DAC Color registers is
shown in Figure 8-7.

Figure 8-7 DAC Color Register Bitmap

To design an 8-bit encoding in a four-element (IRGB) format we have assigned 2
bits to each color and to the intensity component (see Figure 8-6). In this manner,
the 2-bit values for red, green, and blue, allow four tones. Since each tone can be in
four brightness levels, one for each intensity bit setting, each pure hue would have
16 saturations. In order to achieve a double-bit IRGB encoding by reprogramming
the DAC Color registers (see Figure 8-7), we assign eight values to each DAC Color
register, as shown in Table 8-2.

Table 8-2

DAC Register Setting for Double-Bit IRGB Encoding

NUMBER 6BIT VALUE INTENSITY COLOR

0 9 OFF dark

1 18 OFF .

2 27 OFF .

3 36 OFF .

4 45 ON .

5 54 ON .

6 63 ON bright

The first 4 bit settings in Table 8-2 correspond to the color tones controlled by the
red, green, and blue bits when the intensity bits have a value of 00B. The last three
6-bit values correspond to the three additional levels of intensity. This means that,
excluding the intensity bit, the three DAC Color registers will have 64 possible com-
binations. Table 8-3 shows the pattern of register settings for the double-bit IRGB
format.

5 4 3 2 1 0 5 4 3 2 1 0 5 4 3 2 1 0

RED GREEN BLUE

7 6 5 4 3 2 1 0

BLUE
GREEN
RED
INTENSITY

© 2003 by CRC Press LLC

Table 8-3

Pattern for DAC Register Settings in Double-Bit IRGB Encoding

I = 00 I = 01 I = 10 I = 11

No. R G B No. R G B No. R G B No. R G B

0 9 9 9 64 9 9 18 128 9 9 27 192 9 9 36

1 9 9 18 65 9 9 27 129 9 9 36 193 9 9 45

2 9 9 27 66 9 9 36 130 9 9 45 194 9 9 54

3 9 9 36 67 9 9 45 131 9 9 54 195 9 9 63

4 9 9 9 68 9 18 18 132 9 27 18 196 9 36 18

5 9 18 9 69 9 27 18 133 9 36 27 197 9 45 36

. . . .

. . . .

63 36 36 36 127 45 45 45 191 54 54 54 255 63 63 63

Notice in Table 8-3 that a value of 9 in the red, green, and blue color registers cor-
responds with the color black. It has been found that the colors generated by the
low range of the DAC scale are less noticeable than those on the high range. By
equating the value 9 to the color black we enhance the visible color range on a stan-
dard VGA, although in some CRTs this setting could appear as a very dark gray. The
procedure named TWO_BIT_IRGB in the VGA1 module of the graphics library
changes the default setting of the DAC Color registers to the values in Table 8-3. The
procedure is described in Section 3.3. The program named IRGB256, furnished as
part of the book's software package, shows the double-bit IRGB colors. This color
pattern is displayed by the IRGB256 program.

We have seen that a double-bit IRGB setting for the DAC registers simplifies pro-
gramming in the VGA 256-color mode when compared to the default setting shown
in Figure 8-5. Once the DAC registers are set for the double-bit IRGB encoding the
programmer can choose any one color by setting the corresponding bits in the video
buffer byte mapped to the pixel. For example, the bit combinations in Table 8-4 can
be used to display 16 pure tones of the complementary color named magenta
(not-green). Notice that the purity of the hue is insured by the zero value in the
green DAC register.

Table 8-4

16 Shades of the Color Magenta Using Double-Bit IRGB Code

NUMBER I R G B TONE

0 00 01 00 01 darkest magenta
1 00 10 00 10 .
2 00 01 00 01 .
3 00 11 00 11 .
4 01 01 00 01 .
. . .
. . .

15 11 11 00 11 brightest magenta

© 2003 by CRC Press LLC

But no single color encoding is ideal for all purposes. Often the programmer pre-
fers to enhance certain portions of the color range at the expense of other portions.
For example, in displaying a mountain landscape it might be preferable to extend
shades of blue and green at the expense of the red. On the other hand, a volcanic ex-
plosion may require more shades of red than of green and blue. The programmer can
manipulate the displayed range by choosing which set of 256 colors, from a possible
total of 262,143, are installed in the DAC Color registers.

Shades of Gray

The color gray is defined as equal intensities of the primary colors, red, green, and
blue. In the DAC Color registers any setting in which the three values are equal gener-
ates a shade of gray. For example, the value 20, 20, 20 for red, green, and blue, respec-
tively, produce a 31 percent gray shade, while a value of 32, 32, 32 produce a 50 percent
gray shade. Since the gray shades require that all three colors have the same value, and
considering that each color register can hold 64 values, there are 64 possible shades of
gray in the VGA 256-color modes. The actual setting of the VGA registers will go from 0,
0, 0, to 63, 63, 63, for red, green, and blue.

A graphics program operating in VGA 256-color mode can simultaneously use the
full range of 64 gray shades, as well as 192 additional colors. This requires repro-
gramming the DAC Color registers. If a program were to execute in shades of gray
only, then the low order 6-bits of the color encoding can be used to select the gray
shades. The range would extend from a value of 0, for black, to a value of 63 for the
brightest white. The setting of the DAC Color registers for a 64-step gray scale is
shown in Table 8-5.

Table 8-5

Pattern for DAC Register Setting for 64 Shades of Gray

NO. R G B NO. R G B NO. R G B NO. R G B

0 0 0 0 64 0 0 0 128 0 0 0 192 0 0 0

1 1 1 1 65 1 1 1 129 1 1 1 193 1 1 1

2 2 2 2 66 2 2 2 130 2 2 2 194 2 2 2

3 3 3 3 67 3 3 3 131 3 3 3 195 3 3 3

. . . .

. . . .

63 63 63 63 127 63 63 63 191 54 54 54 255 63 63 63

Notice in Table 8-5 that the gray settings are repeated four times. The effect of
this repeated pattern is that the high-order bits of the color code are ignored. In
other words, all possible color values will generate a gray shade, and the excess of
63 (00111111B) has no visible effect. The device driver named GRAY_256 in the
VGA1 module of the graphics library changes the default setting of the DAC Color
registers to the values in Table 8-5. The GRAY_256 procedure is described in detail
in the discussion of the VGA1 module later in the chapter. The program named

© 2003 by CRC Press LLC

GRAY256, furnished as part of the book’s software, shows the setting of the DAC
registers for 64 gray shades, repeated four times.

Summing to Gray Shades

A program can read the red, green, and blue values installed in a DAC Color register
and find an equivalent gray shade with which to replace it. If this action is performed
simultaneously on all 256 DAC Color registers the result will be to convert a displayed
color image to monochrome. Considering that the human eye is more sensitive to cer-
tain regions of the spectrum, this conversion is usually based on assigning different
weights to the red, green, and blue components. In any case, this relative color weight
is used to determine the gray shade, on a scale of 0 to 63. However, as mentioned in the
previous paragraph, the resulting gray scale setting must have equal proportions of
the red, green, and blue elements.

BIOS Service number 16, of interrupt 10H, contains sub-service number 27, which
sums all color values in the DAC registers to gray shades. The BIOS code uses a
weighted sum based on the following values:

red = 30%

green = 59%

blue = 11%

total = 100%

The BIOS service does not preserve the original values found in the DAC regis-
ters. The primitive routine named SUM_TO_GRAY in the VGA1 module of the graph-
ics library can be used to perform a gray scale sum based on the action of the above
mentioned BIOS service (see Section 3.3).

The IBM BIOS performs several automatic operations on the VGA DAC Color reg-
isters. For example, during a mode change call (BIOS service number 0, interrupt
10H) the BIOS loads all 256 DAC Color registers with the default values. If the mode
change is to a monochrome mode then a sum-to-gray operation is performed. The
programmer can prevent this automatic loading of the DAC registers. BIOS service
number 18, sub-service number 49, of interrupt 10H, enables and disables the de-
fault pallet loading during mode changes. Sub-service number 51 of service number
18 enables and disables the sum-to-gray function. The FREEZE_DAC and
THAW_DAC device drivers in the VGA1 module of the graphics library provide a
means for preventing and enabling default palette loading during BIOS mode
changes. These procedures are described in Section 3.3.

8.3.2 16-Color Modes

In Table 2-2 we saw that VGA color modes can be in 2, 4, 16, and 256 colors. Since the
two- and four-color modes are provided for compatibility with now mostly obsolete
standards, they are of little interest to today's VGA programmer. The same can be said
of the lower resolution graphics modes. This elimination leaves us with the 16-color
text modes number 0 to 4 and graphics mode number 18. In the following discussion
we will refer exclusively to the 16-color range in VGA graphics mode number 18.

© 2003 by CRC Press LLC

Video memory mapping in mode number 18 can be seen in Figure 8-2; however,
this illustration does not show how the color is obtained. Refer to Figure 2-4 to visu-
alize how the pixel color in mode number 18 is determined by the values stored in
four maps, usually named intensity, red, green, and blue. But this four-bit IRGB en-
coding is, in reality, the number of 1 of 16 palette registers located in the Attribute
Controller group (see Section 2.2.5). Furthermore, the value stored in the Palette
register is also an address into the corresponding DAC Color register. This
dual-level color indirect addressing scheme was developed in order to provide VGA
compatibility with the CGA and the EGA cards. The matter is further complicated by
the fact that the DAC Color register number (an 8-bit value in the range 0 to 255) can
be stored differently. If the Palette Select bit of the Attribute Mode Control register
is clear, then the DAC Color register number is stored in the6 bits of the Palette reg-
ister and in bits 2 and 3 of the Color Select register. While if the Palette Select bit is
set, then the DAC Color register number is stored in the four low-order bits of the
Palette register and in the four low-order bits of the Color Select register. The two
addressing modes are shown in Figure 8-8.

Figure 8-8 DAC Register Selection Modes

Notice in Figure 8-8 that when the Palette Select bit is set, bits 4 and 5 of the DAC
register address are determined by bits 0 and 1 of the Color Select register, and not
by bits 4 and 5 of the Palette register. This means that a program operating in this ad-
dressing mode will have to manipulate bits 4 and 5 of the desired DAC register num-
ber so that they are determined by bits 0 and 1 of the Color Select register, while bits
6 and 7 of the address are determined by bits 3 and 2 of the Color Select register.

Perhaps the simplest and most straightforward color option for VGA mode num-
ber 18 would be to set the Palette Select bit and to clear bits 0 to 3 of the Color Se-
lect register. In this manner the Palette and Color Select registers become
transparent to the software, since the DAC register number is now determined by

16 Palette
Registers

5 4 3 2 1 0

7 6 5 4 3 2 1 0

Color Select
Register

256 DAC
Registers

RED

GREEN

BLUE

DAC register addressing when
Palette Select bit = 1
DAC register addressing when
Palette Select bit = 0

0
1
2
3
4
5
6
7

© 2003 by CRC Press LLC

the four low bits of the Palette register, which, in turn, match the IRGB value in the
bit planes. Nevertheless, this color setup would be incompatible with the one in the
CGA and EGA standards, which are based on the value stored in the 16 Palette regis-
ters. The method followed by the BIOS, which is designed to achieved compatibility
with the Palette registers of the CGA and EGA cards, is based on a customized set of
values for the DAC Color registers which are loaded during mode 18 initialization.
This set, which includes values for the first 64 DAC Color registers only, can be seen
in Table 8-6.

Table 8-6

BIOS Settings for DAC Registers in Mode Number 18

NO. R G B NO. R G B NO. R G B NO. R G B

0 0 0 0 16 0 21 0 32 21 0 0 48 21 21 0

1 0 0 42 17 0 21 42 33 21 0 42 49 21 21 42

2 0 42 0 18 0 63 0 34 21 42 0 50 21 63 0

3 0 42 42 19 0 63 42 35 21 42 42 51 21 63 42

4 42 0 0 20 42 21 0 36 63 0 0 52 63 21 0

5 42 0 42 21 42 21 42 37 63 0 42 53 63 21 42

6 42 42 0 22 42 63 0 38 63 42 0 54 63 63 0

7 42 42 42 23 42 63 42 39 63 42 42 55 63 63 42

8 0 0 21 24 0 21 21 40 21 0 21 56 21 21 21

9 0 0 63 25 0 21 63 41 21 0 63 57 21 21 63

10 0 42 21 26 0 63 21 42 21 42 21 58 21 63 21

11 0 42 63 27 0 63 63 43 21 42 63 59 21 63 63

12 42 0 21 28 42 21 21 44 63 0 21 60 63 21 21

13 42 0 63 29 42 21 63 45 63 0 63 61 63 21 63

14 42 42 21 30 42 63 21 46 63 42 21 62 63 63 21

15 42 42 63 31 42 63 63 47 63 42 63 63 63 63 63

We can corroborate the mapping of Palette and DAC registers in VGA mode num-
ber 18 by referring to Table 8-6. For example, the encoding for light red in Palette
Register number 16 is 00111100B, which is 60 decimal. Recalling that the value in
the VGA Palette register is interpreted as an index into the DAC Color register table,
we can refer to Table 8-6 and observe that the setting of DAC register number 60 is
63, 21, 21 for the red, green, and blue elements, respectively. This setting corre-
sponds to the color light red. In summary, the Palette register (in this case number
12) holds an encoding in rgbRGB format, that is also an index to the DAC Color table
(in this case the rgbRGB value is equal to 60). It is the DAC Color register that holds
the 18-bit RGB encoding that drives the analog color display.

Color Animation

An interesting programming technique for VGA systems is to use the bits in the Color
Select register to change some or all of the displayed colors. For example, if the Pal-

© 2003 by CRC Press LLC

ette Select bit of the Attribute Mode Control register is clear, then bits 2 and 3 of the
Color Select register provide 2 high-order bits of the DAC register number (see Figure
8-8). Since two bits can encode four combinations (00, 01, 10, and 11), a program can
change the value of bits 2 and 3 of the Color Select register to index into four separate
areas of the DAC, each one containing 64 different color registers. By the same token,
if the Palette Select bit is set, then the 4 low-order bits in the Color Select register can
be used to choose one of 16 DAC areas, each one containing 16 color registers. The ar-
eas of the DAC determined through the Color Select register are sometimes referred to
as color pages. Some interesting animation effects can be achieved by rapidly shifting
these color pages. For example, a program can simulate an explosion by shifting the
pixel colors to tints of red, orange, and yellow.

BIOS service number 16, sub-service number 19, provides a means for setting the
paging mode to 4 color pages of 64 registers or to 16 color pages of 16 registers each,
and also for selecting an individual color page within the DAC. In this kind of pro-
gramming it is important to remember that the BIOS initialization routines for mode
number 18 set color values for the first 64 DAC registers only. It is up to the software
to initialize the color values in the DAC registers as necessary.

8.3.3 VGA1 Library Functions

The following are generic descriptions of the device driver routines contained in the
VGA1 module of the GRAPHSOL library that is part of the book’s software. The values
passed and returned by the individual functions are listed in the order in which they
are referenced in the code. The following listing is in the order in which the routines
appear in the library source files.

ES_TO_VIDEO (Assembly Language only)

Set the ES segment register to the base address of the video buffer while in an alphanu-
meric mode.

Receives:

Nothing

Returns:

ES set to video buffer segment for alpha mode

Action:

Video buffer can now be addressed in the form:

ES:xx

ES_TO_APA (Assembly Language only)

Set the ES segment register to the base address of the video buffer while in a graphics
mode. VGA graphics buffer is at A000H

Receives:

Nothing

Returns:

ES set to video buffer segment for graphics mode

Action:

Video buffer can now be addressed in the form:

ES:xx

© 2003 by CRC Press LLC

PIXEL_ADD_18 (Assembly Language only)

Calculate buffer offset from pixel coordinates while in VGA mode number 18.

Receives:
1. Word integer of x-axis pixel coordinate

Range is 0 to 639
2. Word integer of y-axis pixel coordinate

Range is 0 to 479
Returns:

1. Word integer of offset into video buffer
2. Byte integer of pixel mask for write mode 0

or 2
Action:

Prepare for pixel read and write operations in VGA
mode number 18.

WRITE_PIX_18 (Assembly Language only)

Set (write) an individual screen pixel while in VGA mode number 18, write mode 2.

Receives:
1. Logical address of pixel in video buffer.
2. Byte integer of pixel color in IRGB form
3. Pixel mask for write mode 2

Returns:
Nothing

Action:
Pixel is set to one of 16 colors.

TILE_ADD_18 (Assembly Language only)

Calculate the coarse-grain address of an 8-by-8 pixel block (tile) while in VGA mode
number 18.

Receives:

1. Byte integer of x-axis tile coordinate
Range is 0 to 79

2. Byte integer of y-axis tile coordinate
Range is 0 to 59

Returns:
1. Word integer of offset into video buffer

Action:
Prepare for tile write operation.

WRITE_TILE_18 (Assembly Language only)

Set (write) a screen tile (8-by-8 pixel block) while in VGA mode number 18, write mode
2.

Receives:
1. Logical address of tile in video buffer
2. Byte integer of tile color in IRGB form

Returns:
Nothing

Action:
Tile is set to one of 16 colors.

© 2003 by CRC Press LLC

READ_PIX_18 (Assembly Language only)
Read the color code of a screen pixel in VGA mode number 18, read mode 0.

Receives:
1. Logical address of pixel in video buffer
2. Pixel mask for write mode 2

Returns:
1. Byte integer of pixel's IRGB color code

Action:
Pixel is read in read mode 0.

TWO_BIT_IRGB
Initialize DAC registers for VGA mode number 19 (256-colors) for the double bit IRGB
format shown in Figure 3-6.

Receives:
Nothing

Returns:
Nothing

Action:
DAC registers in the pattern shown in Table 3-3.

GRAY_256
Initialize DAC registers for VGA mode number 19 in 64 shades of gray, repeated four
times.

Receives:
Nothing

Returns:
Nothing

Action:
DAC registers in the pattern shown in Table 8-5.

SUM_TO_GRAY
Perform sum-to-gray function by means of BIOS service number 16, sub-service num-
ber 27, of interrupt 10H. Previous contents of DAC registers are not preserved.

Receives:
Nothing

Returns:
Nothing

Action:
All DAC registers are converted to equivalent gray
shades.

SAVE_DAC
Save current color codes in all DAC registers. Values are stored in RAM.

Receives:
Nothing

Returns:
Nothing

Action:
The color codes in all DAC registers are stored in
RAM.

© 2003 by CRC Press LLC

RESTORE_DAC
The DAC registers are restored to the color values saved by the SAVE_DAC procedure.

Receives:
Nothing

Returns:
Nothing

Action:
The color codes in all DAC registers are restored
from the values saved in RAM by SAVE_DAC.

PIXEL_ADD_19 (Assembly Language only)
Calculate buffer offset from pixel coordinates while in VGA mode number 19.

Receives:
1. Word integer of x-axis pixel coordinate

Range is 0 to 319
2. Word integer of y-axis pixel coordinate

Range is 0 to 199
Returns:

1. Word integer of offset into video buffer
Action:

Prepare for pixel read and write operations in
mode number 19.

TILE_ADD_19 (Assembly Language only)
Calculate the coarse-grain address of an 8-by-8 pixel block (tile) while in VGA mode
number 19.

Receives:
1. Byte integer of x axis tile coordinate

Range is 0 to 39
2. Byte integer of y axis tile coordinate

Range is 0 to 25
Returns:

1. Word integer of offset into video buffer
Action:

Prepare for tile write operation.

FREEZE_DAC
Disable changes to the Palette and DAC registers during BIOS mode changes.

Receives:
Nothing

Returns:
Nothing

Action:
The color codes in the Palette and DAC registers
are preserved during BIOS mode changes.

THAW_DAC
Enable changes to the Palette and DAC registers during BIOS mode changes.

Receives:
Nothing

Returns:

© 2003 by CRC Press LLC

Nothing

Action:

The color codes in the Palette and DAC registers

are replaced by the default values during BIOS

mode changes.

© 2003 by CRC Press LLC

Chapter 9

VGA Core Primitives

Topics:
• VGA primitives for video system setup

• VGA text display primitives

• VGA image display primitives

• VGA bit-map primitives

• VGA area fill primitives

9.1 Classification of VGA Primitives
Chapter 8 discussed the development of the most elementary and fundamental rou-
tines used in graphics programming, called the device drivers. A second level of graph-
ics routines, usually providing higher-level functions than device drivers, are the
graphics primitives. VGA primitive routines can be arbitrarily classified into the fol-
lowing fields:

1. Set-up, inquiry, and control primitives. This group of functions includes video
mode-setting, read and write mode selection, initialization of palette and border color,
inquiry of active video parameters, and other preparatory and initialization functions.

2. Text primitive routines. This group includes the selection of fonts and character attrib-
utes and the display of text characters in graphics modes.

3. Bit-block and area fill primitive routines. This group includes routines to manipulate
bitmapped images in video or RAM memory.

4. Raster graphics primitive routines. This group includes object-oriented routines to
draw the most common geometrical figures, to fill screen areas with colors or attrib-
utes, and to transform figures stored in the video buffer or in data files.

The primitive routines in the GRAPHSOL VGA library furnished with this book
are organized in the listed fields. In the present chapter we will discuss the primitive
routines in the first three groups. Because of their complexity, Chapter 10 is devoted
to VGA raster graphics.

© 2003 by CRC Press LLC

9.2 VGA Primitives for Set-Up, Control, and Query
The VGA graphics programmer must perform operations that are preparatory, con-
trolling, or inquisitory. For example, an application using VGA graphics could start its
execution by setting the desired video mode and the read and write modes, initializing
a segment register to the base address of the video buffer, and installing a set of color
values in the pallet and border color registers. These preparations could also require
investigating the present state of the video system in order to restore it at the conclu-
sion of the application.

Many VGA preparatory and initialization operations can be performed by means
of services in the BIOS interrupt 10H. For example, a graphics program that uses a
standard video mode will usually let the BIOS handle the complications of
initializing the VGA registers that control display characteristics. Since mode set-
ting usually takes place once or twice during the execution of an application, the
slowness usually associated with BIOS services can be disregarded for this purpose.
The same applies to many other initialization and set-up operations, which can be
conveniently executed through the BIOS, and which seldom appear in the code.
Such is the case with operations to set and read the Palette, Overscan, and DAC
Color registers, to select the color paging mode, to sum DAC output to gray shades,
and to obtain VGA system data.

On the other hand, some initialization operations are conspicuously missing from
the services offered by BIOS interrupt 10H. For example, there are no BIOS services
to set the VGA read and write modes. This is particularly noticeable when operating
in mode number 19 (256 colors) which requires setting bit 6 of the Graphics Control-
ler Graphics Mode Register (see Figure 2-22). Furthermore, other BIOS graphics ser-
vices, such as those to set and read an individual screen pixel, perform so poorly
that they are practically useless.

In summary, while most applications can benefit from BIOS VGA initialization
and setup services, very few graphics programs could execute satisfactorily if they
were limited to these BIOS services.

9.2.1 Selecting the VGA Write Mode
To make the VGA more useful and flexible its designers implemented several ways in
which to write data to the video display. These are known as the write modes. VGA al-
lows four different write modes, which are selected by means of bits 0 and 1 of the
Graphics Mode register of the Graphics Controller (see Figure 2-22). The fundamental
functions of the various write modes are as follows:

Write mode 0 is the default mode. In write mode 0 the CPU, Map Mask register of
the Sequencer (Figure 2-13), and the Bit Mask register of the Graphics Controller
(Figure 2-24) are used to set a screen pixel to any desired color. Other VGA registers
are also used for specific effects. For example, the Data Rotate register of the
Graphics Controller (Figure 2-20) has two fields which are significant during write
mode 0 operations. The data rotate field (bits 0 to 3) determines how many positions
to rotate the CPU data to the right before performing the write operation. The logi-
cal operation select field (bits 3 and 4) determines how the data stored in video

© 2003 by CRC Press LLC

memory is logically combined with the CPU data. The options are to write the CPU
data unmodified or to AND, OR, or XOR it with the latched data.

In write mode 1 the contents of the latch registers, previously loaded by a read
operation, are copied directly onto the color maps. Write mode 1, which is perhaps
the simplest one, is often used in moving one area of video memory into another
one. This write mode is particularly useful when the software takes advantage of the
unused portions of video RAM. The location and amount of this unused memory var-
ies in the different video modes. For example, in VGA graphics mode 18 the total
pixel count is 38,400 pixels (640 pixels per row times 480 rows). Since the video
buffer maps are 64K bytes, in each map there are 27,135 unused buffer bytes avail-
able to the programmer. This space can be used for storing images or data. On the
other hand, video mode number 19 consists of one byte per pixel and there are 320
by 200 screen pixels, totaling 64,000 bytes. Since the readily addressable area of the
video buffer is limited to 65,536 bytes, the programmer has available only 1,536
bytes for image manipulations.

Write mode 2 is a simplified version of write mode 0. Like mode 0, it allows set-
ting an individual pixel to any desired color. However, in write mode 2 the data ro-
tate function (Data Rotate register) and the set-reset function (Set/Reset register)
are not available. One advantage of write mode 2 over write mode 0 is its higher exe-
cution speed. Another difference between these write modes is that in write mode 2
the pixel color is determined by the contents of the CPU, and not by the setting of
the Map Mask register or the Enable Set-Reset and Set-Reset registers. This charac-
teristic simplifies coding and is one of the factors that determines the better perfor-
mance of write mode 2. The WRITE_PIX_18 device driver routine developed in
Chapter 7 uses write mode 2.

In write mode 3 the Data Rotate register of the Graphics Controller (Figure 2-20)
operates in the same manner as in write mode 0. The CPU data is ANDed with the
Bit Mask register. The resulting bit pattern performs the same function as the Bit
Mask register in write modes 0 and 2. The Set/Reset register also performs the same
function as in write mode 0. However, the Enable Set/Reset register is not used.
Therefore, the pixel color can be determined by programming either the Set/Reset
register or the Map Mask register. The Map Mask register can also be programmed
to selectively enable or disable the individual maps.

An application can use several read and write modes without fear of interference
or conflict, since a change in the read or write mode does not affect the displayed
image. On the other hand, a change in the video mode will normally clear the screen
and reset all VGA registers. The code for changing the write mode, which is quite
simple and straightforward, is shown in the following fragment:

; Set the Graphics Controller's Graphic Mode Register to the
; write mode in the AL register

PUSH AX ; Save mode
MOV DX,3CEH ; Graphic Controller Address

; register
MOV AL,5 ; Offset of the Mode register
OUT DX,AL ; Select this register
INC DX ; Point to Data register

© 2003 by CRC Press LLC

POP AX ; Recover mode in AL
OUT DX,AL ; Selected

The VGA graphics programmer must be aware that certain BIOS services reset
the write mode. For example, BIOS service number 9, of interrupt 10H, often used to
display text messages in an APA mode, sets write mode number 0 every time it exe-
cutes. For this reason graphics software must often reset the write mode after exe-
cuting a BIOS service. The procedure named SET_WRITE_MODE in the VGA1
module of the GRAPHSOL library sets the video mode in a similar manner as the
previous fragment. In addition, SET_WRITE_MODE resets the Bit Mask register to
its default value.

Writing Data in the 256-Color Modes
Writing a pixel in VGA mode number 19 (256 colors) requires that bit 6 of the Graphics
Controller Graphics Mode register be set. Therefore a set write mode routine for VGA
256-color mode operation takes this into account. The following code fragment shows
the required processing.

; Set the Graphics Controller's Graphic Mode Register to the
; write mode in the AL register, for 256 colors

PUSH AX ; Save mode
MOV DX,3CEH ; Graphic Controller Address

; register
MOV AL,5 ; Offset of the Mode register
OUT DX,AL ; Select this register
INC DX ; Point to Data register
POP AX ; Recover mode in AL

; Set bit 6 to enable 256 colors
OR AL,01000000B ; Mask for bit 6
OUT DX,AL ; Selected

The procedure named SET_WRITE_256 in the VGA1 module of the GRAPHSOL li-
brary sets the video mode in a similar manner as the previous fragment. In addition,
SET_WRITE_256 resets the Bit Mask register to its default value.

9.2.2 Selecting the Read Mode
The VGA standard provides two different read modes. Read Mode 0, which is the de-
fault, loads the CPU with the contents of one of the bitmaps. In mode number 18 we
conventionally designate the color maps with the letters I, R, G, and B, to represent the
intensity, red, green, and blue elements. In this mode, which map is read into the CPU
depends on the current setting of bits 0 and 1 of the Read Operation Map Select regis-
ter of the Graphics Controller (see Figure 2-21). Sometimes we say that the selected
read map is latched onto the CPU. In order to read the contents of all four maps, the
program must execute four read operations to the same video buffer address; this
latching is usually preceded by code to set the Read Operations Map Select register.

Read Mode 0 is useful in obtaining the contents of one or more video maps, while
Read Mode 1 is more convenient when the programmer wishes to test for the pres-
ence of pixels that are set to a specific color or color pattern. In Read Mode 1 the
contents of all four maps are compared with a predetermined mask. This mask must
have been stored beforehand in the Color Compare register of the Graphics Control-
ler (see Figure 7-18). For example, to test for the presence of bright blue pixels, the

© 2003 by CRC Press LLC

IRGB bit pattern 1001B is stored in the Color Compare register. Thereafter, a read
operation appears to execute four successive logical ANDs with this mask. If a bit in
any of the four maps matches the bit mask in the Color Compare register, it will be
set in the CPU; otherwise it will be clear.

The read mode is determined by bit 3 of the Select Graphics Mode register of the
Graphics Controller (see Figure 7-22). The code to set the read mode is shown in the
following fragment:

; Set the Graphics Controller Graphic Mode Select register to read
; mode 0 or 1, according to the value in AL

CMP AL,1 ; If entry value is not 1
JNE OK_BIT3 ; read mode 0 is forced
MOV AL,08H ; 00001000B to set bit 3

OK_BIT3:
PUSH AX ; Save mode
MOV DX,3CEH ; Graphic controller address

; register
MOV AL,5 ; Offset of the mode register
OUT DX,AL ; Select this register
INC DX ; Point to data register
POP AX ; Recover mode in AL
OUT DX,AL ; Selected

The procedure named SET_READ_MODE in the VGA1 module of the GRAPHSOL
library sets the read mode in a similar manner as the previous fragment. The proce-
dure named READ_MAPS_18, also in the VGA1 module, reads the contents of all
four maps while in mode number 18 and returns the result in machine registers. This
operation is performed by successively selecting the I, R, G, and B maps by means of
the Read Map Select register of the Graphics Controller.

9.2.3 Selecting Logical Operation
In Chapter 7 you saw that the Data Rotate register of the Graphics Controller deter-
mines how data is combined with data latched in the system microprocessor registers.
The programmer can select the AND, OR, and XOR logical operations by changing the
value of bits 3 and 4 .

Although all three logical operation modes find occasional use in VGA graphics
programming, the XOR mode is particularly useful. In animation routines the XOR
mode provides a convenient way of drawing and erasing a screen object. The advan-
tages of the XOR method are simpler and faster execution, and an easier way for re-
storing the original screen image. This is a convenient programming technique when
more than one moving object can coincide on the same screen position.

One disadvantage of the XOR method is that the object's color depends on the
color of the background over which it is displayed. If a graphics object is moved
over different backgrounds, its color will change. The reader can observe that the
cross-hair symbol of the MATCH program appears in different colors when overlaid
over the running boar than when over the gray background. In this case the effect is
not objectionable, but in other applications it could make the XOR technique unsuit-
able.

© 2003 by CRC Press LLC

The programmer should note that some BIOS services set the Data Rotate regis-
ter of the Graphics Controller to the normal mode. For example, if BIOS service
number 9 of interrupt 10H is used to display text messages in a graphics application,
when execution returns the logical mode is set to normal operation. Therefore, a
program that uses the XOR, AND, or OR logical modes must reset the Data Rotate
register after using this BIOS service.

XOR Operations in Animation Routines
The illusion of movement of a screen object is often produced by means of geometrical
transformations. The simple transformations are named translation, rotation, and
scaling. Complex transformations consist of combining two or more of simple trans-
formations; for instance, a screen object moves across the screen while becoming pro-
gressively larger. The combined transformations generate the feeling that a
three-dimensional object is diagonally approximating the viewer.

Geometrical transformations are usually performed by replacing the previous im-
age of the object with a new image. In lateral translation an object appears to move
across the screen by progressively redrawing it at slightly different horizontal coor-
dinates. The boar symbol in the MATCH program is translated in this manner. Note
that the graphics software must not only draw a series of consecutive images, but
also erase the previous images from the screen. Otherwise, the animated object
leaves a visible track of illuminated screen pixels. Although this effect could be oc-
casionally desirable, frequently this is not the case. Also note that erasing the screen
object is at least as time consuming as drawing it, since each pixel in the object must
be changed to its previous state.

Erasing and redrawing of the screen object can be performed in several ways.
One method is to save that portion of the screen image that is to be replaced by the
object. The object can then be erased by redisplaying the original image. This
method adds an additional burden to the graphics routine, which must also read and
store every screen pixel that will be occupied by the object, but in many situations it
is the only satisfactory solution. We have mentioned that another method of erasing
the screen image is based on performing a logical XOR operation. The effect of the
XOR is that a bit in the result is set if both operands contain opposite values. Conse-
quently, XORing the same value twice restores the original contents, as in the fol-
lowing example:

10000001B
XOR 10110011B

00110010B

XOR 10110011B

10000001B

An application that has set the Data Rotate register to the XOR mode can succes-
sively display and erase a screen object by XORing its bitmap. The effect can be
used to animate the screen object by progressively changing its screen coordinates.
The MATCH program, which is furnished on the book's software package as an illus-
tration of VGA programming techniques, uses the XOR mode to display and erase

© 2003 by CRC Press LLC

two animated objects: one represents the outline of a running boar target and the
other one the cross-hair of a rifle scope. The procedure named XOR_XHAIR in the
MATCHD.ASM source file and the procedures XOR_RBOAR and XOR_LBOAR in the
MATCHC.ASM source file, perform the draw/erase operations. Both procedures as-
sume that the logical mode for XOR operation has been previously set.

9.2.4 System Status Operations

In contrast with its predecessors (EGA and CGA) all VGA registers that hold relevant
system data can be read by the processor. This allows a program to investigate the
video status by performing a read operation to the relevant register. In addition, BIOS
service number 27 and number 28 provide means for obtaining VGA data and for sav-
ing and restoring the video state.

A function that is conspicuously missing in the BIOS is one to save the setting in
the 256 VGA DAC color registers. For this reason, a program that uses BIOS
sum-to-gray-shades function (service number 16, sub-service 27, of interrupt 10H)
has no way of restoring the original DAC colors. The procedure named SAVE_DAC,
in the VGA1 module of the GRAPHSOL library, provides a way for saving the state of
the DAC registers. The procedure RESTORE_DAC can be used to restore the DAC
register setting saved with SAVE_DAC.

9.2.5 Vertical Retrace Timing

Raster scan displays operate by projecting an electron beam on each horizontal row of
screen pixels. Pixel scanning proceeds, row by row, from the top left screen corner to
the bottom right. To avoid visible interference, the electron beam is turned off during
the period in which the gun is re-aimed back to the start of the next pixel row (horizon-
tal retrace). The beam is also turned off while it is re-aimed from the last pixel on the
bottom right corner of the screen to the first pixel at the top left corner (vertical re-
trace). Because of the distance and directions involved, the vertical retrace period
takes much longer than the horizontal retrace one.

In the CGA card it was the programmer's responsibility to time each access to the
video buffer with the vertical retrace cycle of the CRT controller. Otherwise the re-
sult would be a visible interference, usually called snow. The VGA was designed to
avoid this form of interference when using conventional display programming meth-
ods. However, animation techniques, which must flash consecutive screen images at
a rapid rate, are not free from interference. Therefore, in this case the program must
time the buffer accesses with the vertical retrace cycle of the CRT controller.

This timing requirement introduces an additional burden on animated graphics
software. For example, the screen refresh periods in VGA graphics modes take
place at an approximate rate of 70 times per second. An animated program that
flashes images on the screen at a minimum rate of 20 per second must take into ac-
count that each display operation has to be timed with a vertical retrace cycle that
takes place 70 times per second. This synchronization delay must be added to the
processing time in order to maintain an interference-free image-flashing rate.

© 2003 by CRC Press LLC

The start of the vertical retrace cycle can be determined by reading bit 7 of the
VGA Input Status register 0 in the General register group. This bit is set if a vertical
retrace is in progress. But in order to maximize the interference-free time available
during a vertical retrace, the code must wait for the start of a vertical retrace cycle.
This requires first waiting for a vertical retrace cycle to end, if one is in progress,
and then detecting the start of a new cycle. The programming is shown in the follow-
ing code fragment:

; Test for start of the vertical retrace cycle
; Bit 7 of the Input Status register 0 is set if a vertical cycle
; is in progress

MOV DX,3C2H ; Input status register 0
; In VGA color modes

VRC_CLEAR:
IN AL,DX ; Read byte at port
JMP SHORT $+2 ; I/O delay
TEST AL,10000000B ; Is bit 7 set?
JNZ VRC_CLEAR ; Wait until bit clear

; At this point the vertical retrace ended. Wait for it to
; restart
VRC_START:

IN AL,DX ; Read byte at port
JMP SHORT $+2 ; I/O delay
TEST AL,10000000B ; Is bit 7 set?
JZ VRC_START ; Wait until bit set

; Vertical retrace has now started

The procedure named TIME_VRC, in the VGA1 module of the GRAPHLIB library,
detects the start of the CRT vertical retrace cycle so that video access operations
can be synchronized.

9.3 VGA Text Display Primitives
Very few graphics applications execute without some form of text display. If the text
display functions in an application take place in separate screens from the graphics
operations, the programmer has the convenient option of selecting a text mode and ei-
ther using text output keywords in a high-level language or one of the text display
functions available in the BIOS. However, if a graphics program must combine text
and graphics on the same screen, the text display functions available to the program-
mer are more limited.

9.3.1 BIOS Text Display Functions
In any mode, alphanumeric or graphics, BIOS service number 9, INT 10H, can be used
to display a character at the current cursor position. Note that this is the only BIOS
character display service that can be used in a graphics mode, but that several other
services can be used in alphanumeric modes. Service number 2, INT 10H, to set the
cursor position, can also be used in conjunction with service number 9. Note that there
is no physical cursor in VGA graphics modes, and that the action of service number 2,
interrupt 10H, is simply to fix a position for the text display operation that will follow.
This invisible cursor is sometimes called a virtual cursor. The procedure named
SET_CURSOR, in the ALFA modules of the GRAPHSOL library, uses service number 2,
interrupt 10H, to set the cursor. Once the virtual cursor is positioned at the desired

© 2003 by CRC Press LLC

screen location, the program can display characters on the graphics screen by means
of service number 9, interrupt 10H.

Text Block Display
But VGA programs that have frequent need to display text while in a graphics mode of-
ten need a more convenient method than setting a virtual cursor and calling BIOS ser-
vice number 9. One option is a routine capable of displaying any number of text lines,
starting at any screen position, and using any desired color available in the active
mode. A convenient way of storing the display parameters for the text message is in a
header block preceding the message itself. The GRAPHIC_TEXT procedure in the
VGA2 module of the GRAPHSOL library displays a text message with embedded pa-
rameters. In this case the first byte in the header encodes the screen row at which the
message is to be displayed, the second byte encodes the screen column, and the third
one the color code. Since the procedure operates in any text of graphics mode, the
range and encodings for these parameters depend on the active mode.

BIOS Character Sets
The BIOS stores several sets of text characters encoded in bitmap form (see Figure
1-10). VGA systems contain three complete character fonts and two supplemental
fonts. The characteristics of these fonts are shown in Table 9-1.

Table 9-1

VGA BIOS Character Sets

CHARACTER BOX SIZE MODE

8 by 8 0, 1, 2, 3, 4, 5, 13,
14, and 19

8 by 14 0, 1, 2, 3, 15, and 16

8 by 16 17, and 18

9 by 14* 7

9 by 16* 0, 1, and 7

Legend:
* = supplemental sets

The supplemental character sets (Table 9-1) do not contain all of the 256 charac-
ter maps of the full sets, but only those character maps that are different in the 9-bit
wide fonts. In the process of loading a 9-bit character set the BIOS first loads the
corresponding set of 8-bit character maps and then overwrites the ones that need
correction and that appear in the supplemental set. This mechanism is usually trans-
parent to the programmer, who sees a full set of 9 by 14 or 9 by 16 characters.

9.3.2 A Character Generator
VGA graphics programs can perform simple character display operations by means of
the BIOS functions, but for many purposes these functions are too limiting. Perhaps
the most obvious limitation of character display by means of BIOS services is that the
text characters must conform to a grid of columns and rows determined by the active
character font and video mode. For example, a graphics program executing in mode
number 18 uses BIOS service number 9, interrupt 10H, to display screen text using the

© 2003 by CRC Press LLC

8 by 16 character font. This program will be constrained to a text screen composed of
80 character columns by 30 rows and will not be able to locate text outside this imagi-
nary grid.

Moving a BIOS Font to RAM
A program can obtain considerable control in text display functions by operating its
own character generator, in other words, by manipulating the text character maps as if
they were a regular bitmap. The process can often be simplified by using existing char-
acter maps. In VGA systems the most easily available character maps are the BIOS
character sets (see Table 9-1). The software can gain the necessary information re-
garding the location of any one of the BIOS character maps by means of service num-
ber 17, sub-service number 48, of interrupt 10H. Once the address of the character
table is known, the code can move all or part of this table to its own address space,
where it becomes readily accessible. The procedure named FONT_TO_RAM in the
VGA2 module of the GRAPHSOL library can be used to load any one of the three full
VGA character sets into a buffer furnished by the caller.

In loading a BIOS character font to RAM memory so that the font can be used
with the display procedures in the GRAPHSOL library the caller must precede the
font storage area with two data bytes that encode the font's dimensions. For exam-
ple, the storage area for the BIOS 8 by 8 font can be formatted as follows:

;**********************|
; storage for BIOS |
; symmetrical font |
;**********************|
; RAM storage for symmetrical font table from BIOS character maps
; Each font table is preceded by two bytes that determine its
; dimensions, as follows:
; Byte at font table minus 1 = number of pixel rows
; Byte at font table minus 2 = number of horizontal bytes
;
; 1 x 8 built in ROM font

DB 1 ; bitmap x dimension, in bytes
DB 8 ; bitmap y dimension, in bytes

FONT_1X8 DB 2048 DUP (00H)

Note that 2,048 bytes are reserved for the 8 by 8 BIOS font, which contains 256
character maps of 8 bytes each (256 * 8 = 2048). By the same token, the 1-by-16 char-
acter font would require 4,096 bytes of storage.

Once the BIOS font table is resident in the caller's memory space it can be treated
as a collection of bitmaps, one for each character in the set. In this manner the pro-
grammer is able to control, at the pixel level, the screen position of each character.
Consequently, the spacing between characters, which is necessary in line justifica-
tion, also comes under software control. Also the spacing between text lines and
even the display of text messages at screen angles becomes possible.

The VGA2 module of the GRAPHSOL library contains three display procedures
for displaying text messages using a BIOS character set resident in the program's
memory space. The procedure named COARSE_TEXT provides a control similar to
the one that can be obtained using BIOS service number 9, interrupt 10H, that is,

© 2003 by CRC Press LLC

text is displayed at column and row locations. Its operation is also similar to the
GRAPHIC_TEXT procedure previously described. The procedure named
FINE_TEXT allows the display of a single text line starting at any desired pixel loca-
tion and using any desired spacing between characters on the horizontal and the
vertical axes. This means that if the vertical spacing byte is set to zero in the text
header block all the characters will be displayed on a straight line in the horizontal
plane. However, by assigning a positive or negative value to this parameter, the pro-
grammer using this procedure can display a text message skewed at any screen an-
gle. Finally, the procedure named MULTI_TEXT in the VGA2 module of the
GRAPHSOL library makes possible the display of a text message consisting of multi-
ple lines, starting at any desired pixel location. When using the MULTI_TEXT proce-
dure the programmer has two header parameters to control character and row
spacing, but the skewing option is not available.

The program named TEXTDEMO, furnished in the book's software package, con-
tains a demonstration of the use of the text display procedures contained in the
VGA2 library.

Display Type
The use of character generator software and BIOS character tables, as described in
the previous paragraphs, considerably expands the programmer's control over text
display on the VGA graphics modes. However, the BIOS character sets consist of rela-
tively small symbols. Many graphics applications require larger characters (some-
times called display type) for use in logos, titles, headings, or other special effects.
Since the largest character sets available in BIOS are the 8 by 16 and 9 by 16 fonts, the
programmer is left to his or her own resources in this matter.

The programmer has many ways of creating or obtaining display type screen
fonts. These include the use of scalable character sets, the design of customized
screen font tables, the adaptation of printer fonts to screen display, the enlargement
of existing screen fonts, and even the artistic design of special letters and logos.
Which method is suitable depends on programming needs and availability of re-
sources. Ideally, the display programmer would have available scalable text fonts in
many different typefaces and styles. In fact, some sophisticated graphics programs
and programming environments furnish screen versions of the Postscript language,
which comes close to achieving this optimum level of text display control.

In the development of text-intensive applications, such as desktop publishing and
graphics design software, the programmer should aim at the most sophisticated lev-
els of text display technology. On the other hand, this absolute control over text dis-
play operations is often not necessary. In the MATCH program, which is provided in
the book's software package as a demonstration of VGA programming techniques,
we can see the use of two methods for creating display type. The first method was
used for the program logo; in this case a large rendering of the word "Match" was
created in the AutoCAD program, then output to a pen plotter, scanned, edited, and
saved as a disk file image in TIFF format. The second method was to use a
Hewlett-Packard style printer font (also called a PCL format) as a screen display
type. The text in the first MATCH screen: "GRAPHICS SOLUTIONS - VGA Demo
Press any Key to Start Match" is displayed using a PCL printer font. We have used a

© 2003 by CRC Press LLC

PCL font in the programming demonstrations because they provide acceptable dis-
play quality and are often available to the programmer.

Using a PCL Font

One noticeable difference between the BIOS screen fonts and the printer fonts in PCL
format is that the former have a symmetrical pattern for all the text characters, that is,
all character maps occupy the same memory space. For example, in a BIOS 8 by 16 font
each character map takes up 16 bytes of storage. In this case the software can reach
any character map by adding a multiple of 16 to the address that marks the start of the
font table. In other words, the offset of any desired character map is the product of its
ASCII code by the number of bytes in each character map.

However, the optimization methods followed in the creation of PCL printer fonts
determine that all character maps are not of identical size. Therefore, in a typical
PCL font the character map for the letter "M" is larger than the character map for the
letter "i". This characteristic complicates the problem of finding the start of a de-
sired character map in the font table and in obtaining its specific horizontal and ver-
tical dimensions. The procedure named INDEX_HP in the VGA2 module of the
GRAPHSOL library is an auxiliary routine to find the offset and the character dimen-
sions of any character in a PCL font. The details of the PCL encoding can be found in
the source code of the INDEX_HP procedure which is located in the VGA2.ASM
module in the book's software package.

The use of a PCL font in screen display operation requires loading the font's char-
acter maps into the program's address space. This operation is similar to loading a
BIOS font as performed by the FONT_TO_RAM procedure. One difference is that
the BIOS font resides in system memory while the PCL font is stored in a disk file.
The procedure READ_HPFONT in the VGA2 module loads a printer font in PCL for-
mat into a RAM buffer provided by the caller. In this case the caller must provide a
pointer to a buffer that holds an ASCIIZ string with the filename of the PCL disk file
as well as a pointer to another buffer that will hold the loaded character set. Note
that an ASCIIZ string is an MS DOS structure that holds a pathname followed by a
zero byte. An example of the necessary structures and operations for loading a PCL
font can be found in the TEXTDEMO program contained in the book's software.

Once the PCL font is resident in the program's memory space, its characters can
be conveniently displayed on the screen by means of a character generator routine.
The FINE_TEXTHP procedure in the VGA2 module of the GRAPHSOL library is a
character generator routine for use with PCL format character maps. This routine
provides, for PCL fonts, the text control features provided by the FINE_TEXT pro-
cedure for BIOS character maps.

Note that PCL font sizes are scaled to the standard density of a Hewlett-Packard
laser printer, which is of 300 dots per inch. Since the pixel density in mode number
18 is 75 pixels per inch, the displayed characters appear four times larger than
printed ones. In other words, an 8-point PCL font will be displayed as 32-point char-
acters.

© 2003 by CRC Press LLC

9.4 Bit-Block and Fill Primitives
Computer graphics images are roughly classified into two types: bitmapped and ob-
ject-oriented. A bitmap is a data structure that serves to encode image elements into
memory units. The character maps discussed in the previous section are bitmaps. In
VGA systems the structure of a bitmap depends on the video mode. For example, in
mode number 18, in which each screen pixel can be in one of sixteen colors (IRGB for-
mat) a full bitmap requires four bits per pixel. Figure 3-1 shows how the screen pixels
(in mode number 18) are mapped to the VGA memory planes. However, a RAM bitmap
for a mode 18 graphics image does not necessarily have to encode data in all four color
planes. For example, a monochrome image can be encoded in a single map, while its
color code is stored in a separate variable.

9.4.1 Mode 18 Bitmap Primitives
The most convenient bitmap format depends on the characteristic of the image, the
video hardware, and the computer system. In the present section we discuss the VGA
primitive routines to display the images encoded in bitmaps that have been custom-
ized for a specific VGA mode.

Figure 9-1 is a bitmap of the running boar target using in the MATCH demonstra-
tion program furnished in the book's software package. Also in Figure 9-1 is the
bitmap that encodes in one-bits the screen pixels that are set in the running boar im-
age. Because the bitmap is on a bit-to-pixel ratio it is quite suited to VGA mode num-
ber 18.

Figure 9-1 Pixel Image and Bitmap of a Graphics Object

A VGA mode number 18 graphics routine to display a bitmapped image as the one
shown in Figure 9-1 will need to know the screen coordinates at which the image is
to be displayed, the dimensions of the bitmap, and the color code for the total im-

1. 1FH 80H 0FH FFH F0H 00H
2. 00H 43H F0H 81H 0EH 00H
3. 00H 3CH 01H 3CH 81H 00H
4. 00H 40H 02H 42H 40H C0H
5. 00H 40H 04H 99H 20H 30H
6. 00H 80H 05H 24H A0H 0CH
7. 00H 80H 05H 5AH A0H 03H
8. 00H 80H 05H 5AH A0H 01H
9. 07H 00H 05H 24H A0H 1EH
10. 08H 00H 04H 99H 20H 60H
11. 08H 00H 02H 42H 47H 80H
12. 10H 00H 01H 3CH 88H 00H
13. 28H 00H 00H 81H 07H 80H
14. 5FH C1H F0H 3FH 00H 40H
15. FCH 3EH 0FH FCH 00H B0H
16. 14H 00H 00H 02H 61H 60H
17. 24H 00H 00H 01H 99H 00H
18. 78H 00H 00H 00H 06H 80H
19. 00H 00H 00H 00H 01H C0H

© 2003 by CRC Press LLC

age, or for each pixel or group of pixels. Two procedures in the VGA2 library can be
used to display a bit map in mode number 18. The procedure MONO_MAP_18 dis-
plays an image in single color while the procedure COLOR_MAP_18 can be used to
display an image in which each pixel is encoded in a different color. In the
MONO_MAP_18 procedure the color is stored in a single IRGB byte that is used to
display all pixels in the map.

In the COLOR_MAP_18 procedure the color is passed as a pointer to an array of
color codes stored in a byte-per-pixel table. This scheme, although simple and fast,
is not the most memory-efficient one, since in mode number 18 the 4-bit color code
can be represented in one nibble (4 bits). However, the masking and indexing opera-
tions required in a nibble-per-pixel encoding would considerably slow down execu-
tion. An alternative and quite feasible bitmap scheme for VGA mode number 18 can
be based on the video system's color map structure (see 1). In this design the image
is stored in four RAM bitmaps, each map representing an element in the IRGB for-
mat. While this encoding requires less than half the storage than the one used by the
COLOR_MAP_18 procedure, it requires almost four times more space than a single
monochrome code, as the one in the MONO_MAP_18 procedure. Another advantage
of the design adopted in the bitmap display procedures in the VGA2 module is that
either routine (MONO_MAP_18 and COLOR_MAP_18) can be used with the same
image map by changing the color table pointer.

9.4.2 Mode 19 Bitmap Primitive
We have seen that in mode number 19 each screen pixel is mapped to a memory byte
which encodes its color. The procedure named COLOR_MAP_19, in the VGA2 module
of the GRAPHSOL library, displays a bitmap in VGA mode number 19. The code as-
sumes that the bitmap is preceded by a header that holds the screen coordinates for
the graphics image and the dimensions of the pixel map. Following this header is the
byte-to-pixel map of the graphics image.

Fill Primitives

Primitives to perform fill operations are used to clear or initialize the screen, to set a
geometrical area to a color or pattern, or to fill a closed boundary figure. The VGA2
module of the GRAPHSOL library contains fill routines to clear the video screen and to
initialize a rectangular pixel area. Geometrical fill routines are developed in Chapter
10.

9.5 Primitive Routines in the VGA1 and VGA2 Modules
The library module named VGA1 of the GRAPHSOL library that is part of the book's
software contains the VGA device drivers routines as well as the setup, inquiry, and
control primitives mentioned in the present chapter. The VGA2 module contains the
text display primitives and the bitmap display and rectangular fill primitives.

9.5.1 Primitive Routines in the VGA1 Module
The following are generic descriptions of the setup, inquiry, and control primitive

routines contained in the VGA1 libraries. The values passed and returned by the in-
dividual functions are listed in the order in which they are referenced in the code.

© 2003 by CRC Press LLC

SET_MODE
Sets the BIOS video display mode using service number 0 of interrupt 10H.

Receives:
1. Byte integer of desired video mode

Returns:
Nothing

Action:
New video mode is enabled.
Screen is cleared.

GET_MODE
Obtains the current BIOS video mode using service number 15 of interrupt 10H.

Receives:
Nothing

Returns:
1. Byte integer of number of character columns

Valid values are 40 and 80
2. Byte integer of active video mode
3. Byte integer of active display page

TIME_VRC
Test for start of the vertical retrace cycle of the VGA CRT controller.

Receives:
Nothing

Returns:
Nothing

Action:
Execution returns to caller at start of vertical
retrace cycle

SET_WRITE_MODE
Set the Graphics Controller Write Mode register in VGA less-than-256-color modes.

Receives:
1. Byte integer of desired write mode

Returns:
Nothing

SET_WRITE_256
Set the Graphics Controller Write Mode register in VGA 256-color mode.

Receives:
1. Byte integer of desired write mode

Returns:
Nothing

SET_READ_MODE
Set the Graphics Controller Mode Select register to read mode 0 or 1.

Receives:
1. Byte integer of desired read mode

Returns:
Nothing

© 2003 by CRC Press LLC

LOGICAL_MODE
Set the Graphics Controller Data Rotate register to XOR, OR, AND, or NORMAL mode.

Receives:
1. Byte integer encoding desired logical mode

Returns:
Nothing

READ_MAPS_18
Read contents of four color maps in VGA mode number 18.

Receives:
1. Logical address of video buffer byte to read

Returns:
1. Byte integer of intensity map
2. Byte integer of red map
3. Byte integer of green map
4. Byte integer of blue map

Action:
Routine assumes that read mode 0 is active

Assumes:
ES --> video buffer base address

9.5.2 Primitive Routines in the VGA2 Module
The following are generic descriptions of the text display, bitmap display, and rectan-
gular fill primitives contained in the VGA2 libraries. The values passed and returned
by the individual functions are listed in the order in which they are referenced in the
code. The following listing is in the order in which the routines appear in the library
source files.

GRAPHIC_TEXT
Display a formatted text message using BIOS service number 9, interrupt 10H. This
procedure can be used in VGA modes number 18 and 19.

Receives:
1. Offset pointer to message text (DS assumed)

Returns:
Nothing

Message format:
OFFSET STORAGE UNIT CONTENTS

0 Byte integer Screen row for start of display
1 Byte integer Screen column for start of display
2 Byte integer Color code

Control codes:
CODE ACTION
00H End of message
FFH End of text line

FINE_TEXT
Display a single-line text message using a RAM font table in which all bitmaps have the
same dimensions (symmetrical font). Display position is defined at a pixel boundary.
Mode number 18 only.

Receives:
1. Offset pointer to message text (DS assumed)
2. Offset pointer to RAM font table (DS assumed)

© 2003 by CRC Press LLC

Returns:
Nothing

Message format:
OFFSET STORAGE UNIT CONTENTS

0 Word integer Pixel row for start of display
2 Word integer Pixel column for start of display
4 Word integer Character spacing on x axis
6 Word integer Character spacing on y axis
8 Byte integer Color code in IRGB format

Control codes:
CODE ACTION
00H End of message

Assumes:
ES --> video buffer base address

MULTI_TEXT
Display a multiple-line text message using a RAM font table in which all bitmaps have
the same dimensions (symmetrical font). Display position is defined at a pixel bound-
ary. Mode number 18 only.

Receives:
1. Offset pointer to message text (DS assumed)
2. Offset pointer to RAM font table (DS assumed)

Returns:
Nothing

Message format:
OFFSET STORAGE UNIT CONTENTS

0 Word integer Pixel row for start of display
2 Word integer Pixel column for start of display
4 Word integer Character spacing (x axis)
6 Word integer Line spacing (y axis)
8 Byte integer Color code in IRGB format

Control codes:
CODE ACTION
00H End of message
FFH End of text line

Assumes:
ES --> video buffer base address

FINE_TEXTHP
Display a single-line text message using a RAM font table in PCL format (asymmetrical
font). Display position is defined at a pixel boundary. Mode number 18 only.

Receives:
1. Offset pointer to message text (DS assumed)
2. Offset pointer to RAM font table (DS assumed)

Returns:
Nothing

Message format:
OFFSET STORAGE UNIT CONTENTS

0 Word integer Pixel row for start of display
2 Word integer Pixel column for start of display
4 Word integer Character spacing on x axis
6 Word integer Character spacing on y axis
8 Byte integer Color code in IRGB format

Control codes:
CODE ACTION
00H End of message

Assumes:

© 2003 by CRC Press LLC

ES --> video buffer base address

READ_HPFONT
Read into RAM a PCL format printer font stored in a disk file

Receives:
1. Offset pointer to ASCIIZ filename for PCL soft

font located in current path (DS assumed)
2. Offset pointer to RAM storage area (DS assumed)

Returns:
Carry clear if no error
Carry set if file not found or disk error

FONT_TO_RAM
Read a BIOS character map into RAM

Receives:
1. Byte integer encoding BIOS font desired

8 = 8 by 8 font
14 = 8 by 14 font
16 = 8 by 16 font

2. Offset pointer to RAM storage area (DS assumed)
Returns:

Nothing

MONO_MAP_18
Display a single-color, bitmapped image stored in the caller's memory space, while in
VGA mode 18.

Receives:
1. Offset pointer to bitmap (DS assumed)
2. Offset pointer to color code (DS assumed)

Returns:
Nothing

Bitmap format:
OFFSET STORAGE UNIT CONTENTS

0 Word integer Pixel row for start of display
2 Word integer Pixel column for start of display
4 Byte integer Number of rows in bitmap
5 Byte integer Bytes per row in bitmap
6 Start of bitmapped image

Assumes:
ES --> video buffer base address

COLOR_MAP_18
Display a multi-color, bitmapped image stored in the caller's memory space, while in
VGA mode 18.

Receives:
1. Offset pointer to bitmap (DS assumed)
2. Offset pointer to color table (DS assumed)

Returns:
Nothing

Bitmap format:
OFFSET STORAGE UNIT CONTENTS

0 Word integer Pixel row for start of display
2 Word integer Pixel column for start of display
4 Byte integer Number of rows in bitmap
5 Byte integer Bytes per row in bitmap

© 2003 by CRC Press LLC

6 Start of bitmapped image
Color table format:
One color byte per image pixel
Assumes:

ES --> video buffer base address

COLOR_MAP_19
Display a multi-color, byte-mapped image stored in the caller's memory space, while
in VGA mode 19. One byte encodes each image pixel for display in 256 color mode.

Receives:
1. Offset pointer to header data of color byte map

(DS assumed)
Returns:

Nothing
Bitmap format:
OFFSET STORAGE UNIT CONTENTS

0 Word integer Pixel row for start of display
2 Word integer Pixel column for start of display
4 Byte integer Number of rows in bitmap
5 Byte integer Bytes per row in bitmap
6 Start of color byte-mapped image

Color table format:
One color byte per image pixel
Assumes:

ES --> video buffer base address

CLS_18
Clear screen using IRGB color code while in VGA mode number 18.

Receives:
1. Byte integer of IRGB color code

Returns:
Nothing

Action:
Entire 640 by 480 pixel screen area is initialized
to the color passed by the caller.

CLS_19
Clear screen using IRGB color code while in VGA mode number 19. Encoding depends
on setting of DAC registers.

Receives:
1. Byte integer of IRGB color code

Returns:
Nothing

Action:
Entire 320 by 200 pixel screen area is initialized
to the color passed by the caller.

TILE_FILL_18
Initialize a rectangular screen area, at the tile level, to a passed color code while in
mode 18.

Receives:
1. Byte integer of x axis start tile
2. Byte integer of y axis start tile
3. Byte integer of horizontal tiles in rectangle

© 2003 by CRC Press LLC

4. Byte integer of vertical tiles in rectangle
5. Byte integer of color code in IRGB format

Returns:
Nothing

Assumes:
ES --> video buffer base address

TILE_FILL_19

Initialize a rectangular screen area, at the tile level, to a passed color code while in
mode 19.

Receives:
1. Byte integer of x axis start tile
2. Byte integer of y axis start tile
3. Byte integer of horizontal tiles in rectangle
4. Byte integer of vertical tiles in rectangle
5. Byte integer of color code (format depends

on DAC color register settings)
Returns:

Nothing
Assumes:

ES --> video buffer base address

© 2003 by CRC Press LLC

Chapter 10

VGA Geometrical Primitives

Topics:
• Geometrical graphics objects

• Plotting straight lines

• Plotting the conic curves

• Normalization and transformations

• Region fills

This chapter describes vector graphics in relation to the calculation and display of
geometrical figures that can be expressed in a mathematical formula. Geometrical
primitives are developed for calculating and displaying straight lines, circles, ellipses,
parabolas, and hyperbolas, and also for performing rotation and clipping transforma-
tions and for filling the inside of a geometrical figure.

10.1 Geometrical Graphics Objects
Bitmapped graphics are used to encode and display pictorial objects, such as the run-
ning boar target in Figure 9-1. However, graphics applications often also deal with geo-
metrical objects, that is, graphical objects that can be represented by means of
algebraic equations; such is the case with straight lines, parallelograms, circles, ellip-
ses, and other geometrical figures. The terms vector graphics, raster graphics, and ob-
ject-oriented graphics are often used, somewhat imprecisely, when referring to
computer graphics operations on geometrical objects.

In VGA graphics any image, including geometrical objects, can be encoded in a
bitmap and displayed using the bitmap routines developed in Chapter 3. However,
objects that can be represented mathematically can be treated by the graphics soft-
ware in mathematical form. For example, it is often more compact and convenient
to encode a screen circle by means of the coordinates of its origin and the magni-
tude of its radius than by representing all its adjacent points in a bitmap. The same
applies to other geometrical figures, even to complex figures if they can be broken
down into individual geometric elements.

© 2003 by CRC Press LLC

10.1.1 Pixel-Path Calculations
In previous chapters we saw that the VGA graphics screen appears to the programmer
as a two-dimensional pixel grid. Geometrical images on VGA can be visualized as
points in this two-axes coordinate system, equated to x and y axes of the Cartesian
plane. In dealing with geometrical figures the graphics programmer can use the equa-
tion of the particular curve to determine the pixel path that will represent it on the
video screen or other device. In the VGA video display this process involves the calcu-
lation of the pixel addresses that lie along the path of the desired curve.

In high-level language graphics the software can use the language's mathematical
functions. However, mathematical operations in high-level languages are generally
considered too slow for screen graphics processing. Since performance is so impor-
tant in video graphics programming, the preferred method of geometrical pixel plot-
ting is usually the fastest one. In IBM microcomputers this often means low-level
mathematics.

10.1.2 Graphical Coprocessors
One approach to performing the required pixel path calculations in the manipulation
of geometrical images is the use of graphical coprocessor hardware. Several such
chips have been implemented in silicon. For example, the XGA video graphics system,
discussed in Chapter 6, contains a graphical coprocessor chip that assists in perform-
ing block fills, line drawings, logical mixing, masking, scissoring, and other graphics
functions. Unfortunately, the VGA system does not contain a graphical coprocessor
chip.

The 80x87 as a Graphical Coprocessor

Since no graphical coprocessor is included in VGA systems the programmer is often
forced to use the central processor to perform geometrical and other calculations nec-
essary in graphics software. But 80x86 mathematics are slow, cumbersome, and lim-
ited. However, most IBM microcomputers can be equipped with an optional
mathematical coprocessor chip of the Intel 80x87 family. The power of the math
coprocessor can be a valuable asset in performing the pixel path calculation required
in the drawing of geometrical figures. For example, suppose that a graphics program
that must plot a circular arc with a radius of z pixels, start coordinates at x1, y1 and end
coordinates at x2, y2. One approach to this pixel-plotting problem is to calculate the
set of x and y coordinates, starting at point x1, y1, and ending at x2, y2. The computa-
tions can be based on the Pythagorean expression

y = r – x

where x and y are the Cartesian coordinates of the point and r is the radius of the circle.
The software can assign consecutive values to the x variable, starting at x1, and calcu-
late the corresponding values of the y variable that lie along the arc's path. The pixels
can be immediately plotted on the video display or the coordinates can be stored in a
memory table and displayed later.

It is in performing such calculations that the mathematical coprocessor can be of
considerable assistance. One advantage is that many mathematical operations are

© 2003 by CRC Press LLC

directly available, for example, the FSQRT instruction can be used to calculate the
square root of a number. On the other hand, the main processor is capable only of
integer arithmetic. Therefore the calculation of powers, roots, exponential, and trig-
onometric functions on the 80x86 must be implemented in software. A second and
perhaps more important factor is the speed at which the calculations are performed
with the coprocessor, estimated at 30 to 50 times faster than with the CPU. Conve-
nience and speed make the 80x87 a powerful programming tool for VGA geometrical
graphics.

By limiting the calculations to integer values, the VGA programmer can simplify
pixel plotting using the 80x87. We have seen that in VGA mode number 18 the y coor-
dinate of a screen point can be represented by an integer in the range 0 to 479, and
the x coordinate, an integer in the range 0 to 639. Since the 80x87 word integer for-
mat is a 16-bit value, with an identical numerical range as a main processor register,
a graphical program can transfer integer data from processor to coprocessor, and
vice versa. These manipulations are illustrated in the examples contained in the
VGA3 module of the GRAPHSOL library. The details of programming the 80x87
coprocessor, which is beyond the scope of this book, can be found in several titles
listed in the Bibliography.

Emulating the 80x87
One practical consideration is that the 80x87 mathematical coprocessor is an optional
device in IBM microcomputers; the exceptions are the machines equipped with the
486 chip, in which coprocessor functions are built-in. This optional nature of the
coprocessor determines that applications that assume the presence of this chip will
not execute in machines not equipped with an 80x87. This could create a serious prob-
lem for graphics code that relies on the coprocessor for performing pixel plotting cal-
culations. Fortunately there is a solution to this problem: a software emulation of the
coprocessor.

An 80x87 emulator is a program that simulates, in software, the operations per-
formed by the 80x87 chip. Once the emulator software is installed, machines not
equipped with an 80x87 are able to execute 80x87 instructions, although at a sub-
stantial performance penalty. Ideally, a program that uses 80x87 code could test for
the presence of an 80x87 hardware component; if one is found, the chip is used in
the calculations, if not, its operation is simulated by an emulator program. In reality
this ideal solution is possible only in machines that are equipped with the 80286 or
80386 CPU. The reason is that in 8086 and 8088 machines not equipped with an 8087
chip the presence of a coprocessor instruction hangs up the system in a wait forever
loop.

This problem was solved in the design of the 80286 CPU by means of 2 bits in the
Machine Status Word register. These bits, named Math Present (MP) and Emulate
(EM), allow encoding the presence, absence, or availability of the 80287 component.
If the EM bit is set, then the execution of a coprocessor opcode will automatically
generate an interrupt 7 exception. In this case a handler vectored at this interrupt
can select an emulated version of the opcode, and the machine will not hang up. A
similar mechanism is used in the 80386 CPU, but not in the 8086 or the 8088 proces-
sors.

© 2003 by CRC Press LLC

Therefore, 8086/8088 software that alternatively uses the real 8087 if one is pres-
ent or the emulator if no chip is installed in the system must contain both real and
emulated code. In this case a routine can be devised to test for the presence of the
hardware component; if one is found, execution is directed to routines that use real
8087 code, if no 8087 is detected, the emulator software is initialized and execution
is directed to routines that contain calls to the emulator package. Since this method
works in any IBM microcomputer, it is the one adopted in the GRAPHSOL graphics
library furnished with this book. The test for the presence of the 80x87 chip, the in-
stallation of the emulator software, and the setting of the code selection switch is
performed in the INIT_X87 procedure in the VGA3 module of the GRAPHSOL li-
brary, which also contains the routines that use 80x87 hardware instructions. The
emulated code for the geometrical calculation routines is found in the VGA3_EM
module of the aforementioned library.

Over the years emulator programs have been made available by Intel,
Ingenierburo Franke, and other sources.

10.2 Plotting a Straight Line
Geometrical figures can be drawn on the video display by mathematical pixel plotting
when the pattern of screen pixels lies along a path that can be expressed in a mathe-
matical equation. In this case the graphical software calculates successive coordinate
pairs and sets the pixels that lie along the curve's path. We have mentioned that the
80x87 mathematical coprocessor is a valuable tool for performing these calculations
rapidly and precisely. Figure 10-1 shows a pixel representation of three straight lines.

Figure 10-1 Pixel Plots for Straight Lines

In Figure 10-1 we see that horizontal and vertical lines are displayed on the
screen by setting adjacent pixels. A line at a 45 degree angle can also be rendered ac-
curately by diagonally adjacent pixels, although pixel to pixel distance will be
greater in a diagonal line than in a horizontal or vertical one. But the pixel plot of a
straight line that is not in one of these three cases cannot be exactly represented on
a symmetrical grid, whether it be a pixel grid, or a quadrille drawing paper. Figure
10-2 shows the staircase effect that results from displaying an angled straight line on
a symmetrical grid.

© 2003 by CRC Press LLC

Figure 10-2 Non-Adjacent Pixel Plot of a Straight Line

Notice that the black-colored pixels in Figure 10-2 represent the coordinates that
result from calculating successive unit increments along the vertical axis. If only the
black colored dots were used to represent the straight line in Figure 10-2, the graph
would be discontinuous and the representation not very accurate. An extreme case
of this discontinuity would be a straight line at such a small angle that it would be
defined by two isolated pixels, one at each screen border. In conclusion, if no cor-
rective measures are used, the screen drawing of a line or curve by simple computa-
tion of pixel coordinates can produce unsatisfactory results. The non-adjacency
problem can be corrected by filling in the intermediate pixels. This correction is
shown in gray-colored pixels in Figure 10-2.

10.2.1 Insuring Pixel Adjacency

Notice that the pixel plotting routines in the VGA3 module of the GRAPHSOL library
store in memory the coordinate pairs found during the calculations phase, rather than
immediately setting the screen pixels. Due to this mode of operation, the program
must establish the necessary structures for holding the data. The following code frag-
ment shows several storage assignations used in the routines contained in the VGA3
module.

; Scratch-pad for temporary data

THIS_X DW 0 ; Normalized coordinate of x

THIS_Y DW 0 ; Normalized coordinate of y

LAST_Y DW 0 ; Internal control for

; noncontinuous y-axis points

; Buffers for storing 1K of x and y coordinates of the first

; quadrant and a counter for the number of points computed

Y_BUFFER DB 2048 DUP (00H)

X_BUFFER DB 2048 DUP (00H)

POINTS_CNT DW 0 ; Number of entries in buffers

Programmers have devised many computational strategies for generating the co-
ordinate pairs to plot geometrical curves. Consider, at this point, that the straight
line is geometrically defined as a curve. One of the processing operations performed
by pixel-plotting routines is to fill in the spaces left empty by the mathematical com-
putations (see Figure 10-1), thus insuring that the screen pixels representing the
curve are adjacent to each other. The following code fragment corrects nonadjacent
plots generated by any pixel-plotting primitive that calculates y as a function of x.
The routine also assumes that x is assigned consecutive values by decrementing or
incrementing the previous x value by one.

© 2003 by CRC Press LLC

;***********************|
; Test for adjacent |
; y coordinates |
;***********************|
; On entry:
; CS:SI --> buffer holding x coordinates of curve
; CS:DI --> buffer holding y coordinates of curve
; Adjacency correction is required if the previous y coordinate
; is not adjacent (one less) to the present y coordinate. Code
; assumes that the data variables are located in the code segment

MOV DX,CS:THIS_Y
MOV CX,CS:THIS_X

TEST_ADJACENT:
; Is this y < last y minus 1

MOV BX,CS:LAST_Y
DEC BX ; Last y minus 1
CMP DX,BX ; Compare to this y
JL FILL_IN_PIXEL

; Is this y > last y plus 1
MOV BX,CS:LAST_Y
INC BX ; Last y plus 1
CMP DX,BX ; Compare to this y
JG FILL_IN_PIXEL
JMP STORE_PIX_XYS

;***********************|
; correct non-adjacency |
;***********************|
; BX = last y coordinate minus 1
FILL_IN_PIXEL:

MOV CS:[SI],BX ; Store y coordinate adjacent
; to previous point

MOV CS:[DI],CX ; Store this x coordinate
ADD SI,2 ; Bump pointers
ADD DI,2
INC CS:POINTS_CNT ; Bump points counter
MOV CS:LAST_Y,BX ; Update to this point
JMP TEST_ADJACENT

;***********************|
; store coordinates |
;***********************|
STORE_PIX_XYS:

MOV CS:[SI],DX ; Store normalized
; y coordinate

MOV CS:[DI],CX ; Store normalized x
; coordinate

; Bump both buffer pointers
ADD SI,2
ADD DI,2
INC CS:POINTS_CNT ; Bump points counter
MOV CS:LAST_Y,DX ; Update LAST_Y variable
.
.
.

The auxiliary procedure named ADJACENT in the VGA3 module of the
GRAPHSOL library uses similar logic as the above fragment.

© 2003 by CRC Press LLC

10.2.2 Calculating Straight Lines Coordinates
A straight line in the Cartesian plane can be defined in several ways. One common
mathematical expression consists of defining the line by means of the coordinates of
its two end points. In this manner we can refer to a line with start coordinates at x1, y1
and end coordinates at x2, y2. An alternative way of defining a straight line is by means
of the coordinates of its start point, its angle, and one of its end point coordinates. In
this manner we can refer to a straight line from x1, y1, with a slope of 60 degrees, to a
point at x2. Both expressions are useful to the graphics programmer.

Bresenham's Algorithm
One of the original algorithms for plotting a straight line between two points was de-
veloped by J. E. Bresenham and first published in the IBM Systems Journal in 1965.
Bresenham's method consists of obtaining two pixel coordinates for the next y value
and then selecting the one that lies closer to the path of an ideal straight line. The fol-
lowing code fragment shows the plotting of a straight line in VGA mode number 18 us-
ing Bresenham's method.

; Routine to draw a straight line with starting coordinates
; stored at CS:ORIGIN_X and CS:ORIGIN_Y and end coordinates at
; CS:END_X and CS:END_Y
;
; Set unit increments for pixel-to-pixel operation

MOV CX,1
MOV DX,1

; Determine negative or positive slope from difference between
; the y and x coordinates of the start and end points of the line
; This difference is also the length of the line

MOV DI,CS:END_Y
SUB DI,CS:ORIGIN_Y ; Length
JGE POS_VERTICAL ; Vertical length is positive
NEG DX ; DX = -1 in 2's complement form
NEG DI ; Make distance positive

POS_VERTICAL:
MOV CS:INCR_FOR_Y,DX ; Increments on the y-axis will

; be positive or negative
; Calculate horizontal distance

MOV SI,CS:END_X
SUB SI,CS:ORIGIN_X
JGE POS_HORZ ; Horizontal length is positive
NEG CX ; CX = -1 in 2's complement form
NEG SI ; Distance has to be positive

POS_HORZ:
MOV CS:INCR_FOR_X,CX ; Increments on the x axis can

; also be positive or negative
; Compare the horizontal and vertical lengths of the line to
; determine if the straight segments will be horizontal (if
; this length is greater) or vertical (otherwise)

CMP SI,DI ; SI = horizontal length
; DI = vertical length

JGE HORZ_SEGMENTS
; Vertical length is greater, straight segments are vertical

MOV CX,0 ; No horizontal segments
XCHG SI,DI ; Invert lengths
JMP SET_CONTROLS

HORZ_SEGMENTS:
MOV DX,0 ; No vertical segments

© 2003 by CRC Press LLC

SET_CONTROLS:
MOV CS:STRT_HSEGS,CX ; Will be 1 or 0
MOV CS:STRT_VSEGS,DX ; Also 1 or 0

; Calculate adjustment factor
MOV AX,DI ; Smaller direction component
ADD AX,AX ; Double the shorter distance
MOV CS:STRT_TOTAL,AX ; Straight component total

; pixels
SUB AX,SI ; Subtract larger direction

; component
MOV BX,AX ; General component counter
SUB AX,SI ; Calculate
MOV CS:DIAG_TOTAL,AX ; Diagonal component total

; pixels
; Prepare to draw line

MOV CX,CS:ORIGIN_X
MOV DX,CS:ORIGIN_Y

; SI = the length of the line along the longer axis
INC SI
MOV AL,CS:LINE_COLOR ; Color code for line

;*********************|
; draw line points |
;*********************|
LINE_POINTS:

DEC SI ; Counter for total pixels
JNZ PIX_DRAW
JMP END_OF_LINE ; Line is finished

;*********************|
; display pixel |
;*********************|
PIX_DRAW:

CALL PIXEL_WRITE_18 ; Routine to set pixel in mode 18
CMP X,0 ; If BX < 0 then straight segment

; diagonal segment otherwise
JGE DIAGONAL

; Draw straight line segments
ADD CX,CS:STRT_HSEGS ; Increment CX if horizontal
ADD DX,CS:STRT_VSEGS ; Increment DX if vertical
ADD BX,CS:STRT_TOTAL ; Counter plus adjustment
JMP LINE_POINTS

; Draw diagonal segment
DIAGONAL:

ADD CX,CS:INCR_FOR_X ; X direction
ADD DX,CS:INCR_FOR_Y ; Y direction
ADD BX,CS:DIAG_TOTAL ; Adjust counter
JMP LINE_POINTS

END_OF_LINE:
.
.
.

The procedure named BRESENHAM in the VGA3 module of the GRAPHSOL li-
brary is based on this algorithm.

An Alternative to Bresenham
A program can use the 80x87 code to calculate the coordinates of a line defined by
means of its end points. In a machine equipped with the coprocessor hardware this
method performs better than the Bresenham routine listed above. On the other hand,

© 2003 by CRC Press LLC

if the 80x87 code is to be emulated in software, then Bresenham's algorithm executes
faster. The 80x87 calculations can be based on the differential equation for the slope of
a straight line:

if
Dy/Dx = constant
then
Dy/Dx = (y2 - y1) / (x2 - x1)
therefore, the slope of the line is expressed:
m = Dy/Dx

The actual calculations are as follows:

; Memory variables stored in the code segment:
; CS:X1 = x coordinate of leftmost point
; CS:Y1 = y coordinate of leftmost point
; CS:X2 = x coordinate of second point
; CS:Y2 = y coordinate of second point
; During computations:
; x coordinate CS:THIS_X Word
; y coordinate CS:THIS_Y Word
; On exit:
; CS:BUFFER_X holds the set of x coordinates for the line
; CS:BUFFER_Y holds the set of y coordinates
; CS:POINTS_CNT is a counter for the number of x,y pairs
; stored in BUFFER_X and BUFFER_Y
;*********************|
; preparations |
;*********************|
; Set registers and variables to coordinates

LEA SI,CS:Y_BUFFER ; y buffer pointer
LEA DI,CS:X_BUFFER ; x buffer pointer
MOV CS:LAST_Y,0 ; First iteration
MOV CS:POINTS_CNT,0 ; Reset points counter

;
; Calculate Dy/Dx (slope m)
; | ST(0) | ST(1) | ST(2) |

FILD CS:X1 ; x1 |
FILD CS:X2 ; x2 | x1 |
FSUB ST,ST(1) ; x2 - x1 | x1 |
FSTP ST(1) ; x2 - x1 | empty |

; Store in variable for the normalized x coordinate of
; start point

FIST CS:THIS_X
FILD CS:Y1 ; y1 | x2 - x1 |
FILD CS:Y2 ; y2 | y1 | x2 - x1 |
FSUB ST,ST(1) ; y2 - y1 | y1 | x2 - x1 |
FSTP ST(1) ; y2 - y1 | x2 - x1 | empty |
FDIV ST,ST(1) ; Dy/Dx | x2 - x1 |
FSTP ST(1) ; Dy/Dx | empty |

;*********************|
; y coordinate |
; calculations |
;*********************|
Y_POINT:

FILD CS:THIS_X ; x | Dy/Dx | |
; Solve y = x * Dy/Dx

FMUL ST,ST(1) ; x*Dy/Dx | Dy/Dx |
; Store in variable for normalized y coordinate of this point

FISTP CS:THIS_Y ; Dy/Dx | empty |

© 2003 by CRC Press LLC

;*********************|
; test for adjacent |
; y values |
;*********************|

CALL ADJACENT ; Adjacency procedure
;*********************|
; test for last pixel |
;*********************|

CMP CS:THIS_X,0 ; x = 0 must be calculated
JE EXIT_POINTS
DEC CS:THIS_X
JMP Y_POINT

; Adjust 80x87 stack pointer
EXIT_POINTS:

FSTP ST(0)
.
.
.

A Line by its Slope
We saw, in the previous example, that a straight line can be defined by its slope. The
mathematical expression for this line, called the point-slope form, in which the y coor-
dinate is a function of the x coordinate can be expressed in the following equation:

y = mx

where x and y are the coordinate pairs and m is the slope. The slope is the difference
between the y coordinates divided by the difference between the x coordinates of any
two points in the line, expressed as follows:

m = (y2 – y1) / (x2 – x1).

Notice that y2 - y1 can have a positive or negative value, therefore m can be posi-
tive or negative. The following code fragment calculates the y coordinates for suc-
cessive x coordinates using the point-slope equation for a straight line. The
calculations, which use 80x87 code, assume that a real or emulated 80x87
coprocessor is available.

; Routine to plot and store the pixel coordinates of a straight
; line of slope s, located in the fourth quadrant
; The slope is in degrees and must be in the range 0 < s > 90
;
; On entry:
; CS:X1 = x coordinate of origin
; CS:Y1 = y coordinate of origin
; CS:X2 = x coordinate of end point
; CS:SLOPE = slope in degrees
; During computations:
; X coordinate CS:THIS_X word
; Y coordinate CS:THIS_Y word
;
; Formula:
; y = x Tan s
;*********************|
; preparations |
;*********************|

© 2003 by CRC Press LLC

; Set registers and variables to coordinates

LEA SI,CS:Y_BUFFER ; y buffer pointer

LEA DI,CS:X_BUFFER ; x buffer pointer

MOV CS:LAST_Y,0 ; First iteration

MOV CS:POINTS_CNT,0 ; Reset points counter

; Calculate the normalized x coordinate for the rightmost point

; | ST(0) | ST(1) | ST(2) |

FILD CS:X1 ; x1 |

FILD CS:X2 ; x2 | x1 |

FSUB ST,ST(1) ; x2 - x1 | x1 |

FSTP ST(1) ; x2 - x1 | empty |

; Store in variable for the normalized x coordinate of

; rightmost point

FIST THIS_X

FSTP ST(0) ; empty |

; Obtain and store tangent of slope

; | ST(0) | ST(1) | ST(2) |

FILD CS:SLOPE ; s(deg) |

CALL DEG_2_RADS ; s(rads) |

CALL TANGENT ; tan s |

Y_BY_SLOPE:

; | tan s |

FILD CS:THIS_X ; x | tan s |

FMUL ST,ST(1) ; y | tan s |

; Store in variable for normalized y coordinate of this point

FISTP CS:THIS_Y ; tan s |

;*********************|

; test for adjacent |

; y values |

;*********************|

CALL ADJACENT ; Adjacency test procedure

;*********************|

; test for last pixel |

;*********************|

CMP CS:THIS_X,0 ; x = 0 must be calculated

JE EXIT_SLOPE

DEC CS:THIS_X

JMP Y_BY_SLOPE

; Adjust 8087 stack registers

EXIT_SLOPE:

FSTP ST(0)

.

.

.

Notice that the graphic primitives named BRESENHAM and LINE_BY_SLOPE, in
the VGA3 module of the GRAPHSOL library, share several code segment variables.
Also that the procedure named ADJACENT is called by the LINE_BY_SLOPE primi-
tive to correct nonadjacent pixel conditions that can arise during the plotting calcu-
lations. The VGA3 module includes a local procedure, named TANGENT, that
performs the calculations for the tangent function required in the line-by-slope for-
mula. Since the calculations performed by the TANGENT procedure use the radian
measure of the angle, the auxiliary procedure named DEG_2_RADS in the VGA3
module is used to convert from degrees to radian.

© 2003 by CRC Press LLC

Displaying the Straight Line
The LINE_BY_SLOPE procedure in the VGA3 module of the GRAPHSOL library is

limited to calculating and storing the pixel coordinates of the straight line defined
by the caller. This mode of operation makes the routine more device independent
and also makes possible certain manipulations of the stored data. However, most
applications will, sooner or later, need to draw the line on the screen. The following
code fragment shows the necessary operations.

; Display coordinates stored in CS:X_BUFFER and CS:Y_BUFFER
; Total number of coordinates is stored in CS:POINTS_CNT
; Setup pointers and counter

LEA SI,CS:Y_BUFFER ; y coordinates
LEA DI,CS:X_BUFFER ; x coordinates
MOV CX,CS:POINTS_CNT
MOV CS:OPS_CNT,CX ; Operational counter

DISP_1:
MOV CX,CS:X1 ; x coordinate of origin
MOV DX,CS:Y1 ; y coordinate of origin

; Add stored values to origin
ADD CX,WORD PTR CS:[DI]
SUB DX,WORD PTR CS:[SI]

; CS:CX = x coordinate, CS:DX = y coordinate of point
PUSH AX ; Save color code
CALL PIXEL_ADD_18 ; Procedures in VGA1 module
CALL WRITE_PIX_18
POP AX ; Restore color code
ADD CS:SI,2 ; Bump coordinates pointers
ADD CS:DI,2
DEC CS:OPS_CNT ; Operation points counter
JNZ DISP_1
.
.
.

The procedure named DISPLAY_LINE in the VGA3 module of the GRAPHSOL li-
b r a r y c a n b e u s e d t o d i s p l a y a s t r a i g h t l i n e p l o t t e d b y m e a n s o f t h e
LINE_BY_POINTS procedure. Notice that the procedure named BRESENHAM dis-
plays the pixels as the coordinates are calculated.

10.3 Plotting Conic Curves
By intersecting a right circular cone at different planes it is possible to generate sev-
eral geometrical curves. These curves, or conic sections, are the circle, the ellipse, the
parabola, and the hyperbola. A VGA graphics program can plot the coordinates of the
conic curves employing similar methods as the ones developed for plotting straight
lines (see Section 10.2).

10.3.1 The Circle
A circle in the Cartesian plane can be described by the coordinates of its origin, and by
its radius. As far as the calculation of the coordinate points only the radius parameter
is necessary, although the origin coordinates is required to position the circle in the
viewport. To calculate the pixel coordinates of a circle described by its radius we can
use the Pythagorean formula, which allows us to obtain the corresponding values of y
for each x. The curve and formula can be seen in Figure 10-3.

© 2003 by CRC Press LLC

Figure 10-3 Plot and Formula for a Circle

The following code fragment shows the calculations necessary for plotting the
coordinates of a circular arc in the fourth quadrant. The calculations are performed
by means of the 80x87 mathematical coprocessor.

; Routine to plot and store the pixel coordinates of a circular
; arc in the fourth quadrant
;
; On entry:
; Radius: CS:R word
;
; During computations:
; x coordinate ... CS:THIS_X word
; y coordinate ... CS:THIS_Y word
;*********************|
; preparations |
;*********************|
; Reset counters and controls

MOV CS:THIS_X,0 ; Start values for x
MOV CS:LAST_Y,0 ; and LAST_Y

; Buffer pointers:
; SI --> Y values buffer
; DI --> X values buffer

LEA SI,CS:Y_BUFFER
LEA DI,CS:X_BUFFER
MOV CS:POINTS_CNT,0 ; Reset counter

;*********************|
; calculate y values |
;*********************|
CIRCLE_Y:
; | ST(0) | ST(1) |

FILD CS:THIS_X ; x |
FMUL ST,ST(0) ; x^2 |
FILD CS:R ; r | x^2
FMUL ST,ST(0) ; r^2 | x^2
FSUB ST,ST(1) ; r^2 - x^2 | x^2
FSQRT ;Rt(r^2-x^2)| x^2
FISTP CS:THIS_Y ; x^2 |
FSTP ST(0) ; EMPTY |

; Test adjacency condition
CALL ADJACENT ; Library procedure
INC CS:THIS_X ; x increments in a circle's

r � �y r x= −

© 2003 by CRC Press LLC

; fourth quadrant
CMP CS:THIS_Y,0 ; Test for end of execution
JNE CIRCLE_Y

; At this point all coordinates have been plotted
.
.
.

The procedure named CIRCLE in the VGA3 module of the GRAPHSOL library can
be used to plot the coordinates of a circular arc in the fourth quadrant. The code
used by this procedure is similar to the one in the preceding listing.

10.3.2 The Ellipse
An ellipse in the Cartesian plane can be described by the coordinates of its origin, and
by its major and minor semi-axes. As far as the calculation of the coordinate points
only the axes parameters are necessary, although the origin coordinates will be re-
quired to position the ellipse in the viewport. The curve and formula can be seen in
Figure 10-4.

Figure 10-4 Plot and Formula for Ellipse

In Figure 10-4, the variable M represents the major semi-axis of the ellipse and the
variable m, the minor semi-axis. The following code fragment shows the calcula-
tions necessary for plotting the coordinates of an elliptical curve in the fourth quad-
rant.

; Routine to plot and store the pixel coordinates of an
; elliptical curve in the fourth quadrant
;
; On entry:
; x semi-axis (M) CS:X_AXIS word
; y semi-axis (m) CS:Y_AXIS word
;
; During computations:
; x coordinate ... CS:THIS_X word
; y coordinate ... CS:THIS_Y word
;
; Variables:
; CS:m = minor axis (X_AXIS or Y_AXIS variables)
; CS:M = major axis (X_AXIS or Y_AXIS variables)
;
;*********************|

x axis

y
axis

�

�

�
1

x
y m

M

 
= − 

 

© 2003 by CRC Press LLC

; preparations |

;*********************|

; Reset counters and controls

MOV CS:THIS_X,0 ; Start value for x

MOV CS:LAST_Y,0 ; and for LAST_Y

;

; Buffer pointers:

; SI --> Y values buffer

; DI --> X values buffer

LEA SI,CS:Y_BUFFER

LEA DI,CS:X_BUFFER

MOV CS:POINTS_CNT,0 ; Reset counter

;

ELLIPSE_Y:

; Calculate primitive coordinate of y

; First solve x^2 / M^2

; | ST(0) | ST(1) |

FILD CS:X_AXIS ; M |

FMUL ST,ST(0) ; M^2 |

FILD CS:THIS_X ; x | M^2 |

FMUL ST,ST(0) ; x^2 | M^2 |

FDIV ST,ST(1) ; x^2/M^2 | M^2 |

; Solve 1 - (x^2 / M^2)

FLD1 ; 1 | x^2/M^2 | ? |

FSUB ST,ST(1) ;1-(x^2/M^2) | x^2/M^2 | ? |

; Solve m^2 * [1-(x^2/M^2)]

FILD CS:Y_AXIS ; m |1-(x^2/M^2)| ? | ? |

FMUL ST,ST(0) ; m^2 |1-(x^2/M^2)| ? | ? |

FMUL ST,ST(1) ;m^2 * [1-(x^2/M^2)]| ? | ? | ? |

; Find square root

FSQRT ; y | ? | ? | ? |

FISTP CS:THIS_Y ; Store y in memory

; Adjust stack

FSTP ST(0) ; ? | ? |

FSTP ST(0) ; ? |

FSTP ST(0) ; Stack is empty

; Insure pixel adjacency condition

CALL ADJACENT ; Library procedure

INC CS:THIS_X ; x increments in a clockwise plot

; of the first quadrant

CMP CS:THIS_Y,0 ; Test for end of processing

JNE ELLIPSE_Y

; At this point all coordinates have been plotted

.

.

.

The procedure named ELLIPSE in the VGA3 module of the GRAPHSOL library
can be used to plot the coordinates of an elliptical curve in the fourth quadrant. The
code used by this procedure is similar to the one in the preceding listings.

10.3.3 The Parabola
A parabola in the Cartesian plane can be described by the coordinates of its ori-

gin and by its focus. The curve and formula can be seen in Figure 10-5.

© 2003 by CRC Press LLC

Figure 10-5 Plot and Formula for Parabola

In order to plot and store the coordinates of a parabolic curve two input parame-
ters are required: the focus of the parabola and the start value for the x coordinate.
Notice that no initial x value is required in the circle and the ellipse plotting rou-
tines, while the routines for plotting a parabola and a hyperbola both require an ini-
tial value for the x coordinate. The reason for this difference is that the circle and
the ellipse are closed curves, therefore their fourth quadrant plot extends from axis
to axis. On the other hand, the parabola and the hyperbola are open curves, there-
fore a start value for the x coordinate is required to define the curve. The following
code fragment shows the calculations necessary for plotting the coordinates of a
parabolic curve in the fourth quadrant.

; Routine to plot and store the pixel coordinates of a parabolic curve
; in the fourth quadrant
;
; On entry:
; focus of parabola CS:FOCUS word
; start x coordinate CS:X_START word
;
; During computations:
; x coordinate CS:THIS_X word
; y coordinate CS:THIS_Y word
; Formula:
; y = SQR. ROOT (4ax)
; Y_ABS = SQR. ROOT (4 * FOCUS * X_ABS)
;
;*********************|
; preparations |
;*********************|
; Reset counters and controls

MOV AX,CS:X_START ; Start value for X
MOV CS:THIS_X,AX
MOV CS:LAST_Y,0 ; Reset LAST_Y

; Buffer pointers:
; SI --> Y values buffer
; DI --> X values buffer

LEA SI,CS:Y_BUFFER
LEA DI,CS:X_BUFFER
MOV CS:POINTS_CNT,0 ; Reset counter

PARA_Y:
; Calculate primitive coordinate of y
; y = SQR. ROOT (4ax)

focus

x start

4y ax=

© 2003 by CRC Press LLC

; THIS_Y = SQR. ROOT (4 * FOCUS * THIS_X)
; | ST(0) | ST(1) | | |

FILD CS:THIS_X ; x |
FILD CS:FOCUS ; a | x |
FMUL ST,ST(1) ; ax | ? |
FLD1 ; 1 | ax | ? |
FADD ST,ST(0) ; 2 | ax | ? |
FADD ST,ST(0) ; 4 | ax | ? |
FMUL ST,ST(1) ; 4ax | ? | ? |
FSQRT ; y | ? | ? |
FISTP CS:THIS_Y ; Store y in memory

; Adjust stack
FSTP ST(0) ; ? |
FSTP ST(0) ; Stack is empty

; Insure pixel adjacency conditions
CALL ADJACENT ; Library procedure
DEC CS:THIS_X
CMP CS:THIS_Y,0 ; Test for end of processing
JNE PARA_Y

; At this point all coordinates have been plotted
.
.
.

The procedure named PARABOLA in the VGA3 module of the GRAPHSOL library
can be used to plot the coordinates of a parabolic curve in the fourth quadrant. The
code used by this procedure is similar to the one in the preceding listings.

10.3.4 The Hyperbola
A hyperbola in the Cartesian plane can be described by its focus, vertex, and by the co-
ordinates of its start point. The curve and formula can be seen in Figure 10-6.

Figure 10-6 Plot and Formula for Hyperbola

In order to plot and store the coordinates of a hyperbolic curve the routine re-
quires the focus and vertex parameters, as well as the start value for the x coordi-
nate. The following code fragment shows the calculations necessary for plotting the
coordinates of a hyperbolic curve in the fourth quadrant.

; Routine to plot and store the pixel coordinates of a hyperbolic

; curve in the fourth quadrant

;

focus

x start

vertex

� �

� �

c a
y

a x a

−=
−

© 2003 by CRC Press LLC

; On entry:
; focus of hyperbola CS:FOCUS word
; vertex of hyperbola CS:VERTEX word
; start x coordinate CS:X_START word
;
; During computations:
; X coordinate CS:THIS_X word
; Y coordinate CS:THIS_Y word
;
; Scratch-pad variables:
; Numerator radix CS:B_PARAM word
; Vertex squared CS:VERTEX2 word
;
;*********************|
; preparations |
;*********************|
; Reset counters and controls

MOV AX,CS:X_START ; Start value for X
MOV CS:THIS_X,AX
MOV CS:LAST_Y,0 ; Reset LAST_Y

; Buffer pointers:
; SI --> Y values buffer
; DI --> X values buffer

LEA SI,CS:Y_BUFFER
LEA DI,CS:X_BUFFER
MOV CS:POINTS_CNT,0 ; Reset counter

; Compute numerator radical from VERTEX and FOCUS
; Solve: B_PARAM = SQR. ROOT (FOCUS^2 - VERTEX^2)
; | ST(0) | ST(1) | | |

FILD CS:VERTEX ; a |
FMUL ST,ST(0) ; a^2 |
FILD CS:FOCUS ; c | a^2 |
FMUL ST,ST(0) ; c^2 | a^2 |
FSUB ST,ST(1) ; c^2 - a^2 | a^2 |
FSQRT ; b | a^2 |

; Store b
FISTP CS:B_PARAM ; a^2 |

; Store VERTEX^2 for calculations
FISTP CS:VERTEX2 ; Stack is empty

HYPER_Y:
; Calculate primitive coordinate of y
; y = b / a * SQR ROOT (x^2 - a^2)
; or:
; Y_ABS = B_PARAM / VERTEX * SQR ROOT (X_ABS^2 - VERTEX2)
; | ST(0) | ST(1) | | |

FILD CS:VERTEX2 ; a^2 |
FILD CS:THIS_X ; x | a^2 |
FMUL ST,ST(0) ; x^2 | a^2 |
FSUB ST,ST(1) ; x^2-a^2 | ? |
FSQRT ; SR(x^2-a^2)| ? |
FILD CS:B_PARAM ; b | # | ? |
FILD CS:VERTEX ; a | b | # | ? |
FDIV ST(1),ST ; b | b/a | # | ? |
FSTP ST(0) ; b/a | # | ? |
FMUL ST,ST(1) ; y | ? | ? |
FISTP CS:THIS_Y ; Store y in memory

; Adjust stack
FSTP ST(0) ; ? |
FSTP ST(0) ; Stack is empty

; Insure pixel adjacency condition

© 2003 by CRC Press LLC

CALL ADJACENT ; Library procedure
DEC CS:THIS_X
CMP CS:LAST_Y,0 ; Test for end of processing
JNE HYPER_Y

; At this point all coordinates have been plotted
.
.
.

The procedure named HYPERBOLA in the VGA3 module of the GRAPHSOL li-
brary can be used to plot the coordinates of a hyperbolic curve in the fourth quad-
rant. The code used by this procedure is similar to the one in the preceding listings.

10.3.5 Displaying the Conic Curve
The procedure DISPLAY_LINE, developed previously, outputs to the CRT display, in
VGA mode number 18, the pixel patterns stored by the line plotting routine. The
DISPLAY_LINE procedure assigns a positive value to all the coordinates stored in
X_BUFFER and Y_BUFFER. This determines that the displayed curve is always lo-
cated in the fourth quadrant.

Notice that the routines for plotting and storing the coordinates of the four conic
curves (circle, ellipse, parabola, and hyperbola), described in the previous sections,
assume that the curve is located in the fourth Cartesian quadrant. In other words,
the plotted curves are normalized to the signs of x and y in this quadrant. However,
at display time, it is possible to change the sign of the coordinates so that the curve
can be located in any one of the four quadrants.

The VGA3 module of the GRAPHSOL library, furnished with the book, includes
four procedures to display the conic curves in any one of the four quadrants. These
primitives are named QUAD_I, QUAD_II, QUAD_III, and QUAD_IV. The procedure
named DO_4_QUADS can be used to display the curve in all four Cartesian quad-
rants.

10.4 Geometrical Operations
The design of program structures to be used in storing graphics image data is one of
the most challenging tasks of designing a graphic system or application. The details of
the storage format depend on several factors:

1. The programming language or languages that manipulate the stored data.

2. The available storage resources.

3. The transformations applied to the stored images.

In the manipulation of graphical data it is usually preferable to design independ-
ent procedures to interface with the data structures. An advantage of this approach
is that the routines that perform the graphics transformations are isolated from the
complexities of the storage scheme. Principles of memory economy usually advise
that each data item be encoded in the most compact format that allows representing
the full range of allowed values. Also that a data structure should not be of a prede-
termined size, but that its size be dynamically determined according to the number
of parameters to be stored.

© 2003 by CRC Press LLC

In implementing these rules the more elaborate graphics systems or applications
create a hierarchy of image files, display files, and image segments of varying de-
grees of complexity. The entire structure is designed to facilitate image transforma-
tion by manipulating the stored data. For example:

1. An image can be mirrored to the other Cartesian quadrants by changing the sign of its
coordinates.

2. An image can be translated (moved) by performing signed addition on its coordinates.

3. An image can be rotated by moving its coordinates along a circular arc. The rotation
formulas are obtained from elementary trigonometry.

4. An image can be scaled by multiplying its coordinates by a scaling factor.

5. An image can be clipped by eliminating all the points that fall outside a certain bound-
ary.

At the lowest level, the ideal storage structure for image coordinates is in a ma-
trix form. A matrix is a mathematical concept in which a set of values is arranged in
a rectangular array. Each value in the array is called an element of the matrix. In the
context of graphics programming, matrices are used to hold the coordinate points of
graphical figures. This form of storing graphical data allows the use of the laws of
linear algebra to perform geometrical transformations by performing mathematical
operations on the matrix.

In the VGA3 module we have used a very simple storage scheme in which the im-
age coordinate points are placed in two rectangular matrices: X_BUFFER holds the
x coordinates and Y_BUFFER the y coordinates. Although each matrix is stored lin-
early, the programmer can visualize it as a two-dimensional array by screen columns
and rows. The geometrical routines operate on normalized coordinates. In other
words, the code calculates the pixel pattern for a line or a conic curve independ-
ently of the screen position at which the curve is displayed. In this manner, once the
basic coordinates for a given curve have been calculated and stored, the software
can display as many curves as necessary in any screen position. Furthermore, since
the conic curves are symmetrical in all four quadrants, only the coordinates of one
quadrant need to be calculated. The images in the other quadrants are obtained by
operating on the stored data.

10.4.1 Screen Normalization of Coordinates

To further simplify calculations for VGA mode number 18, the origin of the coordinate
system is relocated on the Cartesian plane so that the screen map of 640 by 480 pixels
lies entirely in one quadrant. Also, the values of the y coordinate are made to grow
downward, as in the conventional representation of the video screen. This concept is
shown in Figure 10-7.

The use of only positive values for representing the x and y coordinate points sim-
plifies image calculations and manipulations.

© 2003 by CRC Press LLC

Figure 10-7 Normalization of Coordinates in VGA Mode 18

10.4.2 Performing the Transformations
The routines named QUAD_I, QUAD_II, QUAD_III, and QUAD_IV, in the VGA3 module
of the GRAPHSOL library, display at any desired screen position the pixel coordinate
pairs stored in X_BUFFER and Y_BUFFER. Since the coordinates are stored in
screen-normalized form (see Section 10.4.1), the display routines must make the cor-
responding sign correction at the time of translating the image map to the specific
screen position. For example, to display an image in the first quadrant the QUAD_I
routine adds the pixel column at which the image is to be displayed to each of the coor-
dinates in the matrix named X_BUFFER, and subtracts the pixel row from each coor-
dinate in Y_BUFFER. Table 10-1 shows the operations performed on the
screen-normalized coordinate pairs according to the quadrant.

Table 10-1

Transformation of Normalized Coordinates by Quadrant in VGA

QUAADRANT I QUADRANT II QUADRANT III QUADRANT IV

x y x y x y x y
+ – + – + – + –

Translation
Translation is the movement of a graphical object to a new location by adding a con-
stant value to each coordinate point. The operation requires that a constant be added
to all the coordinates, but the constants can be different for each plane. In other
words, a two-dimensional graphical object can be translated to any desired screen po-
sition by adding or subtracting values from the set of x and y coordinates that define
the object. Notice that display routines QUAD_I, QUAD_II, QUAD_III, and QUAD_IV
in fact perform an image translation from the screen top left corner to the screen posi-
tion requested by the caller. The VGA3 module also contains a routine named
DO_4_QUADS that displays an image in all four Cartesian quadrants.

Scaling
In graphical terms, to scale an image is to apply a multiplying factor to its linear dimen-
sions. Thus, a scaling transformation is the conversion of a graphical object into an-

x = 639
y = 479

origin
x = 0
y = 0

© 2003 by CRC Press LLC

other one by multiplying each coordinate point that defines the object. The operation
requires that all the coordinates in each plane be multiplied by the same scaling factor,
although the scaling factors can be different for each plane. For example, a
three-to-four scaling transformation takes place when the x coordinates of a
two-dimensional object are multiplied by a factor of two and the y coordinates are
multiplied by a factor of four.

The fundamental problem of scaling a pixel map is that the resulting image can be
discontinuous. This determines that it is often easier for the software to calculate
the parameters that define the image, rather than to scale those of an existing one.
For this reason we have not provided a scaling routine in the VGA3 library.

Rotation
Rotation is the conversion of a graphical object into another one by moving, by the
same angular value, all coordinate points that define the original object along circular
arcs with a common center. The angular value is called the angle of rotation, and the
fixed point common to all the arcs is called the center of rotation. Some geometrical
figures are unchanged by some rotations. For example, a circle is unchanged by a rota-
tion about its center, and a square is unchanged if it is rotated by an angle that is a mul-
tiple of 90 degrees and using the intersection point of both diagonals as a center of
rotation.

To perform a rotation transformation each coordinate that defines the object is
moved along a circular arc. The effect of a 30 degree counterclockwise rotation of a
polygon can be seen in Figure 10-8.

Figure 10-8 Rotation Transformation of a Polygon

The rotation formulas, which can be derived using elementary trigonometry, are:

x' = x cos @ - y sin @

y' = y cos @ + x sin @

where x',y' are the rotated coordinates of the point x,y and @ is the angle of rotation in
clockwise direction. Since the rotation calculations require the sine and cosine func-
tions, the VGA3 module includes the procedures SINE and COSINE that calculate

300

© 2003 by CRC Press LLC

these trigonometric functions. Notice that the calculations performed by the SINE
and COSINE procedures use the radian measure of the angle. The auxiliary procedure
named DEG_2_RADS, in the VGA3 module, perform the conversion from degrees to
radians. Rotation is performed by the procedures named ROTATE_ON and
ROTATE_OFF. The actual rotation calculations are performed by the local procedure
named ROTATE.

Clipping
The graphical concept of clipping is related to that of a clipping window. In general, a
graphics window can be defined as a rectangular area that delimits the computer
screen, also called the viewport. Clipping a graphical object is excluding the parts of
this object that lie outside a defined clipping window. Figure 10-9 shows the clipping
transformation of an ellipse.

Figure 10-9 Clipping Transformation of an Ellipse

In Figure 10-9 the dotted portion of the ellipse, which lies outside of the clipping
window, is eliminated from the final image, while the part shown in a continuous
line is preserved. In the VGA3 library clipping is performed by the procedures
named CLIP_ON and CLIP_OFF. The actual clipping calculations are done by the lo-
cal procedure named CLIP.

Notice that in the VGA3 module the actual translation, rotation, and clipping
transformations are done at display time, with no change to the stored image. In this
manner, a program to display the clipped ellipse in Figure 10-9 would first call the
ELLIPSE procedure, which calculates and stores the coordinates of the curve to
screen-normalized parameters. Then the program calls the CLIP_ON procedure and
defines the clipping window. Finally the DO_4_QUADS routine can be used to trans-
late the ellipse to the actual screen position and display those portions of the curve
that lie inside the clipping rectangle. If a rotation transformation is to be used, it
must be executed before the clipping takes place.

Clipping transformations can also be used to make sure that the coordinate
points of a geometrical image are within the physical limits of the graphics device.
For example, an application working in VGA mode number 18, with a screen defini-

viewport

clipping
window

© 2003 by CRC Press LLC

tion of 640 pixel columns by 480 pixel rows, can set the clipping rectangle to the di-
mensions of this viewport to make sure that the display routines do not exceed the
physical screen area. In this manner the clipping routine serves as an error trap for
the display function.

10.5 Region Fills
The graphics routines described in the previous sections of this chapter were de-
signed to display the outline of a geometrical figure in the form of a continuous pixel
line. But often a graphics application needs to display geometrical images filled with a
uniform color or with a monochrome pattern. If the geometrical figure delimits a
closed screen area, it is possible to use a fill operation to set all the pixels within the
enclosed area to a specific color or pattern. This enclosed area is sometimes called a
region.

10.5.1 Screen Painting

The name screen painting is usually given to routines that perform a general region fill
in which all closed screen areas are colored with the value of its border pixels. The
border pixels serve as a boundary for the fill operation. The logic of many screen paint-
ing routines is based on alternating between a searching and a coloring mode. One
variation is to define a background color and then to scan the entire screen, pixel by
pixel, searching for pixels that do not match the background. These non-matching pix-
els are said to define a boundary. When a boundary pixel is encountered, the searching
mode is changed to the coloring mode, and each successive pixel is changed to the
color of the boundary pixel. When another boundary pixel is encountered, the mode is
toggled back to searching.

In screen painting algorithms the scanning usually starts at the top-left screen
corner. The mode is changed to searching at the start of each new pixel row. The al-
gorithms must take into account conditions that require special handling, for exam-
ple, how to proceed if there is a single boundary pixel on a scan line, several
adjoining boundary pixels, an odd number of boundaries, or if a vertex is encoun-
tered.

10.5.2 Geometrical Fills

The geometrical fill is a special case of the fill algorithms that is suited to filling closed
geometrical figures with a given color or pattern. The geometrical fill is different from
a general painting case in that in the geometrical fill the caller must define a pixel loca-
tion inside the figure. The simplest case is based on the following assumptions:

1. That the starting location, sometimes called the seed point, is inside a closed-boundary
figure within the viewport.

2. That there are no other figures or lines within the boundary of the figure to be filled.

3. That all consecutive points within the same horizontal line are adjacent.

Figure 10-10 shows two classes of geometrical shapes in regards to a region fill
operation.

© 2003 by CRC Press LLC

Figure 10-10 Geometrical Interpretation of a Region Fills

The geometrical shapes in Figure 10-10a meet the constraints defined above,
while the polygon in Figure 10-10b does not. In Figure 10-10-b, consecutive points p1
and p2, located on the same horizontal line, are not adjacent. The simplest fill algo-
rithm, based on a line-by-line scan for a single boundary pixel, works only with geo-
metric figures similar to those in Figure 10-10-a. The logic requires a preliminary
search for the figure's low and high points. This precursory operation simplifies the
actual fill by insuring that the scan does not exceed the figure's boundaries at any
time, therefore avoiding the tests for vertices and for external boundaries. Figure
10-11 is a flowchart of a region fill algorithm for a figure that meets the three con-
straints mentioned above.

Figure 10-11 Region Fill Flowchart

p1 p2

Figure 10.10 a Figure 10.10 b

1. Find and store high x, y limit
2. Find and store low y limit
3. Set first scan line to high x,y

scan at
y low limit

?

END
OF

FILL

YES

NO

move to line's left limit

is pix
a boundary

?

next scan line
YES

NO

fill pixel

index right to next pixel

START

© 2003 by CRC Press LLC

The procedure named REGION_FILL in the VGA3 module of the GRAPHSOL li-
brary furnished with this book performs a region fill operation on geometrical
shapes of the type shown in Figure 10-10a. The logic of this routine is based on the
flowchart in Figure 10-11.

An algorithm like the one illustrated in the flowchart of Figure 10-11 is sometimes
classified as a line-adjacency iteration. In VGA mode number 18 the performance of
the line-adjacency method can be considerably improved by pre-scanning a group of
8 horizontal pixels for a boundary. If no boundary is found, all 8 pixels are set at
once. Pixel-by-pixel scanning takes place only if the pre-scan detects a boundary
pixel.

An alternative algorithm for a region fill operation consists of scanning the pixels
that form the outside border of the figure and storing their x, y coordinates in a data
structure. After the border of the figure is defined, the code scans the interior of the
figure for holes. Once the exterior boundary and the holes are known, the fill opera-
tion can be reduced to displaying line segments that go from one exterior boundary
to another, or from an exterior boundary to a hole boundary. This algorithm, some-
times called a border fill method, is relatively efficient and can be used to fill more
complex shapes than those in Figure 10-10a.

10.6 Primitive Routines in the VGA3 Module
The library module named VGA3 of the GRAPHSOL library, furnished with the book's
software package, contains several VGA mode 18 geometric primitives. The following
are generic descriptions of the geometrical primitive routines contained in the VGA3
libraries. The values passed and returned by the individual functions are listed in the
order in which they are referenced in the code. The following listing is in the order in
which the routines appear in the library source files.

BRESENHAM
Draw a straight line using Bresenham's algorithm

Receives:
1. Byte integer of color of line
2. Word integer of start point of x coordinate
3. Word integer of start point of y coordinate
4. Word integer of end point of x coordinate
5. Word integer of end point of y coordinate

Returns:
Nothing

Action:
Straight line is displayed

LINE BY SLOPE
Plot and store the pixel coordinates of a straight line of slope s, located in the fourth
quadrant. The slope must be in the range 0 < s > 90 degrees.

Receives:
1. Word integer of start point of x coordinate
2. Word integer of start point of y coordinate
3. Word integer of end point of x coordinate
4. Word integer of slope

© 2003 by CRC Press LLC

Returns:
Nothing

Action:
Straight line is calculated and stored

CIRCLE
Plot and store the pixel coordinates of a circular arc in the fourth quadrant.

Receives:
1. Word integer of radius of circle

Returns:
Nothing

Action:
Circular arc is calculated and stored

ELLIPSE
Plot and store the pixel coordinates of an ellipse in the fourth quadrant.

Receives:
1. Word integer of x semi-axis of ellipse
2. Word integer of y semi-axis of ellipse

Returns:
Nothing

Action:
Elliptical arc is calculated and stored

PARABOLA
Plot and store the pixel coordinates of a parabola in the fourth quadrant.

Receives:
1. Word integer of x focus of parabola
2. Word integer of start x coordinate

Returns:
Nothing

Action:
Parabolic arc is calculated and stored

HYPERBOLA
Plot and store the pixel coordinates of a hyperbola in the fourth quadrant.

Receives:
1. Word integer of x focus of hyperbola
2. Word integer of vertex of hyperbola
3. Word integer of start x coordinate

Returns:
Nothing

Action:
Hyperbolic arc is calculated and stored

QUAD_I
Display a geometrical curve in the first quadrant, while in VGA mode number 18, using
its stored coordinates.

Receives:
1. Byte integer of IRGB color code
2. Word integer of x coordinate of origin
3. Word integer of y coordinate of origin

Returns:
Nothing

© 2003 by CRC Press LLC

Action:
Curve is displayed

QUAD_II
Display a geometrical curve in the second quadrant, while in VGA mode number 18, us-
ing its stored coordinates.

Receives:
1. Byte integer of IRGB color code
2. Word integer of x coordinate of origin
3. Word integer of y coordinate of origin

Returns:
Nothing

Action:
Curve is displayed

QUAD_III
Display a geometrical curve in the third quadrant, while in VGA mode number 18, using
its stored coordinates.

Receives:
1. Byte integer of IRGB color code
2. Word integer of x coordinate of origin
3. Word integer of y coordinate of origin

Returns:
Nothing

Action:
Curve is displayed

QUAD_IV
Display a geometrical curve in the fourth quadrant, while in VGA mode number 18, us-
ing its stored coordinates.

Receives:
1. Byte integer of IRGB color code
2. Word integer of x coordinate of origin
3. Word integer of y coordinate of origin

Returns:
Nothing

Action:
Curve is displayed

DO_4_QUADS
Display all four quadrants by calling the procedures QUAD_I, QUAD_II, QUAD_III,
and QUAD_IV.

Receives:
Nothing

Returns:
Nothing

Action:
Curve is displayed in all four quadrants

ROTATE_ON
Activate the rotate operation during display.

Receives:
1. Word integer of clockwise angle of rotation

© 2003 by CRC Press LLC

in the range 0 to 90 degrees
Returns:

Nothing
Action:

Rotation angle is stored and rotation is enabled during
display operations

ROTATE_OFF
De-activate the rotate operation during display.

Receives:
Nothing

Returns:
Nothing

Action:
Rotation is disabled during display operations

CLIP_ON
Activate clipping operation during display.

Receives:
1. Word integer of left corner of clipping window
2. Word integer of top corner of clipping window
3. Word integer of right corner of clipping window
4. Word integer of bottom corner of clipping window

Returns:
Nothing

Action:
Clipping values are stored and clipping is enabled during
display operations

CLIP_OFF
De-activate clipping during display.

Receives:
Nothing

Returns:
Nothing

Action:
Clipping is disabled during display operations

INIT_X87
Initialize 80x87 hardware or emulator and set rounding control to even.

Receives:
Nothing

Returns:
Nothing

Action:
If 80x87 hardware is detected an internal switch is set
so that the coprocessor will be used during geometrical
calculations. Otherwise the switch will direct execution to
emulated code. In both cases the control word is set to round
to even numbers.

REGION_FILL
Fill a closed geometrical surface, with no internal holes, composed of unbroken hori-
zontal lines. Uses VGA mode number 18.

© 2003 by CRC Press LLC

Receives:
1. Byte integer of IRGB color code
2. Word integer of x coordinate of seed point
3. Word integer of y coordinate of seed point

Returns:
Nothing

Action:
Figure is filled

© 2003 by CRC Press LLC

Chapter 11

XGA and 8514/A Adapter Interface

Topics:
• XGA and 8514/A Adapter Interface

• The Adapter Interface software

• AI Communications and concepts

• AI programming fundamentals

Describes the XGA and 8514/A video systems and their architecture. Also of program-
ming XGA and 8514/A by means of the IBM Adapter Interface (AI) software package.
The chapter includes programming examples in assembly language.

11.1 8514/A and XGA
In 1987 IBM introduced a high-end video graphics system intended for applications
that demand high-quality graphics, such as CAD, desktop publishing, graphical user
interfaces to operating systems, image editing, and graphics art software. The best
graphics mode available in a fully equipped 8514/A system is of 1,024 by 768 pixels in
256 colors. Compared to VGA mode number 18 (640 by 480 pixels in 16 colors) this
8514/A graphics mode offers 2.5 times the number of screen pixels and 16 times as
many colors. The major features of the 8514/A standard are the following:

1. 8514/A is furnished as an add-on card for PS/2 Micro Channel microcomputers with
VGA systems on the motherboard. The 8514/A board is installed in a slot with a special
connector that allows a VGA signal to pass through.

2. Memory architecture follows a planar scheme similar to the one used by the CGA,
EGA, and VGA systems. The card is furnished in two versions, one with 512K of
on-board VRAM and another one with 1,024K. The maximum resolution of 1,024 by 768
pixels in 256 colors is available only in the board equipped with 1,024K of video RAM.

3. 8514/A is furnished with three character fonts. The character sizes are of 12 by 20, 8 by
14, and 7 by 15 pixels for the 1,024 by 768 resolution mode. The 8-by-14 pixel character
size is the only one available in the 640-by-480 pixel mode (see Table 11-11 later in this

© 2003 by CRC Press LLC

chapter). The character fonts are stored as disk files in the diskette supplied with the
adapter.

4. The adapter contains ROM code that is used by the BIOS Power-on Self Test (POST) to
initialize the hardware, but no BIOS programmer services are included.

5. Programming the 8514/A adapter is by means of an Adapter Interface (AI) software.
The software is in the form of a TSR program. The TSR installation routine is an exe-
cutable program named HDILOAD.EXE.

6. The 8514/A AI contains services to control the adapter hardware, to draw lines, rectan-
gles, and small bitmaps (markers), to fill enclosed figures, to manipulate the color pal-
ette, to perform bit block transfers (bitBLTs), to change the current drawing position,
line type, width, and display color, to select among 16 logical and 14 arithmetic mix
modes, and to display text strings and individual characters.

7. The color palette consists of 262,144 possible colors of which 256 can be displayed si-
multaneously. The gray scale is of 64 shades.

The internal architecture of the 8514/A consists of three central components: a
drawing engine, a display processor, and the on-board video RAM. In addition, the
board contains a color look-up table (LUT), a digital-to-analog converter (DAC), and
associated registers, as well as a small amount of initialization code in ROM. Figure
11-1 is a diagram of the components in the 8514/A system.

Figure 11-1 8514/A Component Diagram

222 Chapter Eleven

Display processor

Drawing engine

CRT controller

ROM

Video RAM

PC bus

Color look-up table
and DAC

© 2003 by CRC Press LLC

The 8514/A adapter, in spite of the substantial improvements that it brought to PC
video graphics, enjoyed only limited success. The following limitations of the
8514/A adapter have been noted:

1. 8514/A requires a Micro Channel bus. This makes the card unusable in many
IBM-compatible computers.

2. The AI interface offers limited graphics services, for example, no curve drawing func-
tions are available, nor are there direct services for reading or setting an individual
screen pixel.

3. Video memory operations must take place through a single transfer register. The ab-
sence of DMA slows down image transfer procedures.

4. 8514/A requires the presence of a VGA system on the motherboard. This duplication of
video systems often constitutes an unnecessary expense.

5. Register information regarding the 8514/A was published by IBM only after consider-
able pressure from software developers. For several years there was no other way for
programming the system than using the AI services.

6. 8514/A supports only interlaced displays. This determines that applications that gener-
ate single-pixel horizontal lines (such as CAD programs) are afflicted with flicker. No-
tice that some clone 8514/A cards offer non-interlaced display.

7. IBM documentation for programming 8514/A refers almost exclusively to C language.
Programmers working in assembler or in high-level languages other than C were left to
their own resources.

In September 1990 IBM disclosed preliminary information on a new graphics
standard designated as the Extended Graphics Array, or XGA. Two configurations of
the XGA standard have since been implemented: as an adapter card and as part of
the motherboard. The XGA adapter is compatible with PS/2 Micro Channel ma-
chines equipped with the 80386 or 486 CPU. The XGA system is integrated in the
motherboard of the IBM Model 95 XP 486. Figure 11-2, on the following page, is a di-
agram of the XGA system.

Several features of the XGA system are similar to those of the 8514/A:

1. The maximum resolution is of 1,024 by 768 pixels in 256 colors.

2. The XGA system is compatible with the 8514/A Adapter Interface software.

3. The display driver is interlaced at 1,024 by 768 pixel resolution.

4. The XGA digital-to-analog converter (DAC) and color look-up table (LUT) operate
identically to those in the 8414/A. This means that palette operations are compatible in
both systems.

5. The adapter version of XGA is furnished with either 512K or 1,204K of on-board video
RAM.

However, there are several differences between the two systems, such as:

XGA and 8514/A Adapter Interface 223

© 2003 by CRC Press LLC

Figure 11-2 XGA Component Diagram

1. The XGA is compatible with the VGA standard at the register level. This makes possi-
ble the use of XGA in the motherboard while still maintaining VGA compatibility. This
is the way in which it is implemented in the IBM Model 95 XP 486 microcomputer.

2. XGA includes two display modes that do not exist in 8514/A: a 132-column text mode,
and a direct color graphics mode with 640-by-480 pixel resolution in 64K colors. Notice
that this graphics mode is available only in cards with 1,024K video RAM installed.

3. XGA requires a machine equipped with a 80386 or 486 CPU while 8514/A can run in ma-
chines with the 80286 chip.

4. XGA implements a three-dimensional, user-definable drawing space, called a bitmap.
XGA bitmaps can reside anywhere in the system's memory space. The application can
define a bitmap in the program's data space and the XGA uses this area directly for
drawing, reading, and writing operations.

5. XGA is equipped with a hardware controlled cursor, called the sprite. It maximum size
is 64 by 64 pixels and it can be positioned anywhere on the screen without affecting the
image stored in video memory.

6. The XGA Adapter Interface is implemented as a .SYS device driver while the driver for
the 8514/A is in the form of a TST program. The module name for the XGA driver is
XGAAIDOS.SYS. The XGA AI adds 17 new services to those available in 8514/A.

7. The XGA was designed taking into consideration the problems of managing the video
image in a multitasking environment. Therefore it contains facilities for saving and re-
storing the state of the video hardware at any time.

224 Chapter Eleven

Graphics coprocessor

Sprite controller

Attribute controller

Adapter ROM

Video RAM

Micro Channel bus

Color look-up table
and DAC

Serializer

Memory and
CRT controller

© 2003 by CRC Press LLC

8. The XGA hardware can act as a bus master and access system memory directly. This
bus-mastering capability frees the CPU for other tasks while the XGA processor is ma-
nipulating memory.

9. IBM has provided register-level documentation for the XGA system. This will facilitate
cloning and development of high-performance software.

Some of the objections raised for the 8514/A still apply to the XGA, for instance,
the Micro Channel requirement, the limitations of the AI services, and the interlaced
display technology. On the other hand, the XGA offers several major improvements
in relation to the 8514/A.

11.2 Adapter Interface Software
The Adapter Interface (AI) is a software package furnished with 8514/A and XGA sys-
tems that provides a series of low-level services to the graphics programmer. In the
8514/A the AI software is in the form of a Terminate and Stay Resident (TSR) program
while in the XGA the AI is a .SYS driver. The respective module and directory names
are shown in Table 11-1.

Table 11-1

Module and Directory Names for the Adapter Interface Software

8514/A XGA
FORM PATHNAME FORM PATHNAME

TSR HDIPCDOS\HDILOAD.EXE .SYS XGAPCDOS\XGAAIDOS.SYS

The AI was originally documented by IBM in the IBM Personal System/2 Display
Adapter 8514/A Technical Reference (document number S68X-2248-0) published in
April 1987. IBM has also published a document named the IBM Personal System/2
Display Adapter 8514/A Adapter Interface Programmer's Guide (document number
00F8952). This product includes a diskette containing a demo program, a collection
of font files, and several programmer utilities. The corresponding IBM document for
XGA AI is called the IBM Personal System/2 XGA Adapter Interface Technical Refer-
ence (document number S-15F-2154-0). All of the above documents are available
from IBM Technical Directory (1-800-426-7282). Other IBM documents regarding
XGA hardware are mentioned in Chapter 7.

11.2.1 Software Installation

The AI driver software must be installed in the machine before its services become
available to the system. In the case of the 8514/A the AI driver is in the form of a TSR
program, while in the XGA it is furnished as a .SYS file. Installation instructions for the
AI software are part of the adapter package. In the case of the XGA AI several versions
of the AI are furnished by IBM: one for MS-DOS, another one for Windows, and a third
one for the OS/2 operating system.

In the MS-DOS environment the installation routine, for either the 8514/A or XGA,
creates a dedicated directory (see Table 11-1), selects the appropriate driver soft-
ware, and optionally includes an automatic setup line. In the 8514/A the automatic
setup line is added to the user's AUTOEXEC.BAT file and in the XGA to the

XGA and 8514/A Adapter Interface 225

© 2003 by CRC Press LLC

CONFIG.SYS file. This insures that the driver software is made resident every time
the system is booted.

The 8514/A installation process makes the AI functions available, but does not au-
tomatically switch video functions to the 8514/A display system. Notice that, since
8514/A does not include VGA, a typical 8514/A configuration is a machine with two
display adapters, one attached to the motherboard VGA and the other one to the
8514/A card. With the XGA, which includes VGA functions, it is possible to configure
a machine with a single display attached either to a motherboard XGA or to an
adapter version of the XGA. Alternatively, the adapter version of the XGA can be
configured with two or more displays. For example, a machine with VGA on the
motherboard can be furnished with an XGA card and monitor. In this case, the XGA
resembles the typical 8514/A arrangement described above.

11.2.2 XGA Multi-Display Systems

If and when XGA becomes the video standard for IBM microcomputers a typical ma-
chine will probably be equipped with a single display attached to XGA hardware on the
motherboard. This is already the case in the IBM Model 95 XP 486 microcomputer.
However, most present day implementations of XGA consist of PS/2 machines, origi-
nally equipped with VGA on the motherboard, and which have been supplemented
with an XGA adapter card. Since XGA includes VGA, this upgrade version can be con-
figured with a single monitor attached to the XGA video output connector. An alterna-
tive setup uses two monitors: one attached to the VGA connector on the motherboard
and one to the XGA card.

A multi-display XGA system setup offers some interesting possibilities, for exam-
ple, in graphics applications it s possible for the XGA to display the graphics image
while the VGA on the motherboard is used in interactive debugging operations. XGA
systems can have up to six adapters operating simultaneously, although in most ma-
chines the number of possible XGA adapters is limited by the number of available
slots. This is not the case with 8514/A, which cannot have more than two displays
per system.

The possibility of multi-display XGA systems creates new potentials in applica-
tions and systems programming. For example, by manipulating the XGA address de-
coding mechanism an application can display different data on multiple XGA
screens. In this manner it is possible to conceive an XGA multitasking program with
several display systems. One feasible setup is to use the first monitor to show out-
put of a word processing program, the second monitor a database, and the third one
a spreadsheet. The user could switch rapidly between applications while the data
displayed remains on each screen. Another sample use of a multi-display system is
an airport software package that would show arrival schedules on one screen, and
departures on another one, while a third monitor is attached to the reservations
desk. Finally, in a graphics applications environment, we can envision a desktop
publishing system in which the central monitor would display the typesetting soft-
ware, the monitor on one side would be attached to a graphics illustration program,
and the one on the other side to a text editor.

226 Chapter Eleven

© 2003 by CRC Press LLC

11.2.3 Operating Modes
Both 8514/A and XGA systems can operate in one of two modes: the VGA mode or the
advanced functions mode. The operating mode is selected by the software. In the VGA
mode the graphics system is a full-featured VGA (see Table 2-2). The advanced func-
tion mode refers to the Adapter Interface software. Table 11-2 shows the characteris-
tics of the display modes available in the AI.

Table 11-2

XGA and 8514/A Advanced Function Modes

LOW RESOLUTION MODE HIGH RESOLUTION MODE

RAM installed 512K 1,024K
Interlaced NO YES
pixel columns 640 1,024
pixel rows 480 768
number of colors 16 256
Palette 256K 256K

11.2.4 The XGA and 8514/A Palette
8514/A and XGA video memory is organized in bit planes. Each bit plane encodes the
color for a rectangular array of 1,024 by 1,024 pixels. In practice, since the highest
available resolution is of 1,024 by 768 pixels, there are 256 unused bits in each plane.
This unassigned area is used by AI software as a scratchpad during area fills and in
marker manipulations, as well as for storing bitmaps for the character sets. When the
graphics system is in the low resolution mode video memory consists of eight 1,024 by
512 bit planes. However, the 8 bit planes are divided into two separate groups of 4 bit
planes each. These 2 bit planes can be simultaneously addressed. In low resolution
mode the color range is limited to 16 simultaneous colors. In the high resolution mode
(see Table 11-2) video memory consists of 8 bit planes of 1,024 by 1,024 pixels. In this
mode the number of simultaneous colors is 256. Figure 11-3 shows the bit-plane map-
ping in XGA and 8514/A high resolution modes.

Figure 11-3 Bit Planes in XGA and 8514/A High-Resolution Modes

XGA and 8514/A Adapter Interface 227

DAC

R G B VIDEO MEMORY

(8 bit planes

of 1,024 bits)

Color look-up
table (LUT)

© 2003 by CRC Press LLC

Color selection is performed by means of a color look-up table (LUT) associated
with the DAC. The selection mechanism is similar to the one used in VGA mode
number 19, described previously. This means that the 8-bit color code stored in XGA
and 8514/A video memory serves as an index into the color look-up table (see Figure
11-3). For example, the color value 12 in video memory selects LUT register number
12, which in the default setting stores the encoding for bright red. The default set-
ting of the LUT registers can be seen in Table 11-3.

Table 11-3

Default Setting of LUT Registers in XGA and 8514/A

REGISTER 6-BIT COLOR (HEX VALUE)
NUMBER R G B COLOR

0 00 00 00 Black
1 00 00 2A Dark blue
2 00 2A 00 Dark green
3 00 2A 2A Dark cyan
4 2A 00 00 Dark red
5 2A 00 2A Dark magenta
6 2A 15 00 Brown
7 2A 2A 2A Gray
8 15 15 15 Dark gray
9 15 15 3F Light blue

10 15 3F 15 Light green
11 15 3F 3F Light cyan
12 3F 15 15 Light red
13 3F 15 3F Light magenta
14 3F 3F 15 Yellow
15 3F 3F 3F Bright white

16 to 31 00 00 2A Dark blue
32 to 47 00 2A 00 Dark green
48 to 63 00 2A 2A Dark cyan
64 to 79 2A 00 00 Dark red
80 to 95 2A 00 2A Dark magenta
96 to 111 2A 15 00 Brown
112 to 127 2A 2A 2A Gray
128 to 143 15 15 15 Dark gray
144 to 159 15 15 3F Light blue
160 to 175 15 3F 15 Light green
176 to 191 15 3F 3F Light cyan
192 to 207 3F 15 15 Light red
208 to 223 3F 15 3F Light magenta
224 to 239 3F 3F 15 Yellow
240 to 255 3F 3F 3F Bright white

XGALUT program, provided in the book's software package, displays the color in
the XGA palette. The colors displayed by the program match those in Table 11-3. No-
tice that the default setting for the XGA and 8514/A LUT registers represent only 16
color values, which correspond to registers 0 to 15 in Table 11-3. The default colors
encoded in LUT registers 16 to 255 are but a repetition, in groups of 15 registers, of
the encodings in the first 16 LUT registers. Consequently, software products that in-
tend to use the full color range of XGA and 8514/A systems must reset the LUT regis-
ters.

228 Chapter Eleven

© 2003 by CRC Press LLC

In the documentation for Display Adapter 8514/A IBM recommends an 8-bit color
coding scheme in which 4 bits are assigned to the green color and 2 bits to the red
and blue colors respectively. This scheme is related to the physiology of the human
eye, which is more sensitive to the green area of the spectrum than to the red or blue
areas. One possible mapping, which conforms with the XGA direct color mode, is to
devote bits 0 and 1 to the blue range, bits 2 to 5 to the green range, and bits 6 and 7 to
the red range. This bitmapping is shown in Figure 11-4.

Figure 11-4 XGA/8514/A Bit-to-Color Mapping

An alternative mapping scheme can be based on assigning 2 bits to the intensity,
red, green, and blue elements, respectively. A similar double-bit IRGB encoding was
developed in Section 8.3.1 and in Table 8-3 for VGA 256-color mode number 19. The
XGA and 8514/A color registers (color look-up table) consist of 18 bits, 6 bits for
each color (red, green, and blue). The bitmap of the LUT registers is shown in Figure
11-5.

Figure 11-5 Bitmap of XGA and 8514/A Color Registers

Notice that the XGA bitmap for the LUT register uses the six high-order bits while
the VGA bitmap uses the 6 low-order bits (see Figure 3.7). As a result of this differ-
ence the values for a VGA palette must be shifted left 2 bits (multiplied by 4) in or-
der to convert them to the XGA bit range.

11.2.5 Alphanumeric Support
The XGA and 8514/A Adapter Interface provides services for the display of text strings
and of individual characters. The string-oriented services are designated as text func-
tions in the AI documentation while the character-oriented services are called alpha-
numeric functions. The AI text and character display services are necessary since
BIOS and DOS functions for displaying text do not operate on the XGA and the 8514/A
video systems.

Both text and alphanumeric functions in the AI require the use of character fonts,
several of which are part of the XGA and 8514/A software package. These character
fonts are stored in disk files located in the adapter's support diskette. During instal-
lation the font files are moved to a special directory in the user's hard disk drive.
The 8514/A adapter is furnished with three standard fonts while there are four stan-

XGA and 8514/A Adapter Interface 229

7 6 5 4 3 2 1 0

BLUE

GREEN

RED

7 6 5 4 3 2 7 6 5 4 3 2 7 6 5 4 3 2

RED GREEN BLUE

© 2003 by CRC Press LLC

dard fonts in the XGA diskette. In addition, the XGA diskette contains four supple-
mentary fonts that have been optimized for XGA hardware. Finally, the diskette
furnished with the IBM Personal System/2 Display Adapter 8514/A Adapter Interface
Programmer's Guide (see Section 6.1) contains 22 additional fonts, which are also
compatible with the XGA system.

Fonts for the AI software can be in three different formats: short stroke vector,
single-plane bitmaps, and multiplane bitmaps. The fonts furnished with 8514/A are
of short stroke vector type. The supplementary fonts furnished with the XGA dis-
kette are in single-plane bitmap format. The fonts furnished with the 8514/A Pro-
grammer's Guide diskette are also in the single-plane bitmap format. Multiplane
bitmapped fonts, although documented in the Display Adapter 8514/A Technical Ref-
erence, have not been furnished by IBM for either 8514/A or XGA systems. In the
XGA diskette it is possible to identify the fonts in short stroke vector format by the
extension .SSV, while the single-plane bitmap fonts have the extension .IMG. How-
ever, the 8514/A short stroke vector fonts have the extension .FNT. An additional
complication is that the XGA installation routine changes the extension .SSV for
.FNT. For these reasons it is not always possible to identify the font format by
means of the extension to the filename.

Font File Structure

All font files compatible with the AI software must conform to a specific format and
structure. Each of the standard fonts supplied in the Adapter Interface diskette con-
tains five different character sets, named code pages in the IBM documentation. The
code page codes and corresponding alphabets can be seen in Table 11-4.

Table 11-4

IBM Code Pages

CODE DESIGNATION

437 US/English alphabet
850 Multilingual alphabet
860 Portuguese alphabet
863 Canadian/French alphabet
865 Nordic alphabet

At the start of each font file is a font file header that contains general information
about the number of code pages, the default code pages, and the offset of each char-
acter set within the disk file. The font file header can be seen in Table 11-5.

Each code page (character set) in a font file is preceded by a header block that
contains the necessary data for displaying the encoded characters. The character
set header is called the character set definition block in IBM documentation. The
offset of the character set headers can be obtained from the corresponding entry in
the font file header (see Table 11-5). In this manner, a program can locate the header
block for the first code page (US/English alphabet) by adding the word value at off-
set 10 of the font file header (see Table 11-5) to the offset of the start of the disk file.

230 Chapter Eleven

© 2003 by CRC Press LLC

Table 11-5

Adapter Interface Font File Header

OFFSET UNIT CONTENTS

0 word Number of code pages in the font file
2 word Number of the default code page (range 0 to 4)
4 word Number of alternate default code page (range 0 to 4)
6 doubleword 4-character id string for the first code page ('437'0)

10 word Offset within the disk file of the first code page
12 doubleword 4-character id string for the second code page ('850'0)
16 word Offset within the disk file of the second code page
18 doubleword 4-character id string for the third code page ('860'0)
22 word Offset within the disk file of the third code page
24 doubleword 4-character id string for the fourth code page ('863'0)
28 word Offset within the disk file of the fourth code page
30 doubleword 4-character id string for the fifth code page ('865'0)
34 word Offset within the disk file of the fifth code page

Table 11-6, on the following page, shows the data encoded in the character set
header. Notice that the byte at offset 1 of the character set header encodes the im-
age format as bitmapped (value 0) or as short stroke vector type (value 1). If the im-
age is in bitmapped format, then bit 14 of the word at offset 12 determines if the
image is single or multiplane. The byte at offset 7 of the character set header mea-
sures the number of horizontal pixels in the character cell while the byte at offset 8
measures its vertical dimension. The cell size, which is stored at the word at offset
10, represents the number of bytes used in storing each character encoded in bitmap
format. This value is obtained by multiplying the pixel width (offset 7) by the pixel
height (offset 8) and dividing the product by 8.

The index table, which can be located by means of the address stored at offset 14
of the character set header, contains the offset of the character definitions for each
individual character. For single-plane fonts the start location of the character defini-
tion table can be found from the address stored at offset 24. Therefore, a program
can locate the bitmap for a particular character by adding its offset in the table, ob-
tained from the index table, to the offset of the start of the character definition ta-
ble. The code for first and last characters, at offsets 22 and 23 of the character set
header, serves to delimit the character range of the font. For example, if a font does
not start with character code 1, the value at offset 22 in the character set header
must be used to scale the character codes into the index table.

Multiplane fonts consist of three monochrome images, whose bitmaps can be lo-
cated by means of the addresses stored at offsets 24, 30, and 36 of the character set
header (see Table 11-6). To the present date, multiplane image fonts have not been
furnished by IBM. Single-plane image fonts are encoded in a single bitmap, which is
located at the address stored at offset 24 of the character set header (see Table
11-6). The character's image is encoded in a bit-to-pixel scheme. The character's
foreground and background colors are determined by means of foreground color
and background color settings described later in this chapter.

XGA and 8514/A Adapter Interface 231

© 2003 by CRC Press LLC

Table 11-6

Adapter Interface Character Set Header

OFFSET UNIT CONTENTS

0 byte Reserved
1 byte Image formated as follows:

0 = single or multiplane image
3 = short stroke vector image

26 Reserved
7 byte Pixel width of character cell
8 byte Pixel height of character cell
9 byte Reserved

10-11 word Cell size (in bytes per character)
12-13 word Character image format:

Bit 14:
0 = single plane image
1 = multiplane image

Bit 13:
0 = not proportionally spaced
1 = proportionally spaced

All other bits are reserved (0)
14-17 doubleword Offset:segment of index table
18-21 doubleword Offset:segment of porportional spacing table
22 byte Code for first character
23 byte Code for last character
24-27 doubleword Offset:segment of first characterdefinition table

(all font types)
28-29 Reserved
30-33 doubleword Offset:segment of second character definition

table (multiplane fonts)
34-35 Reserved
36-39 doubleword Offset:segment of third character definition

table (multiplane fonts)

The location of the character definition table for short stroke vector fonts is the
same as for single stroke, bitmapped fonts. However, short stroke vector characters
are encoded in the form of drawing orders, each of which is represented in a 1-byte
command. The character drawings are made up of a series of straight lines (vectors)
that can be no longer than 15 pixels. Each vector must be drawn at an angle that is a
multiple of 45 degrees. Therefore the lines must be either vertical, horizontal, or di-
agonal. Figure 11-6 shows the bitmap of the short stroke vector commands.

The vector direction field, marked with the letters d in Figure 11-6, determines
the direction and angle of each vector. The reference point is at the origin of the Car-
tesian plane and the angle is measured in a counterclockwise direction. In this man-
ner the value 010 corresponds with a vector drawn in the vertical direction,
downward from the start point. The field marked with the letter m in Figure 11-6 de-
termines if the vector is a draw or move operation. We have used the plotter termi-
nology of pen up and pen down to illustrate this function. If a vector is defined as a
pen up vector the current position is changed but no drawing takes place. If the m
bit is set (pen down), then the vector command draws a line on the video screen.
The length of the vector is determined by the 4 bits in the field marked with the let-
ters l in Figure 11-6. A 0000 value in this field is interpreted as no operation. The

232 Chapter Eleven

© 2003 by CRC Press LLC

maximum length of a vector corresponds with the field value of 1111, which is equiv-
alent to 15 pixels. The current drawing position is moved one pixel further than the
value encoded in the l field.

Figure 11-6 Bitmap of the Short Stroke Vector Command

11.3 Communicating with the AI

The Adapter Interface software was conceived as a layer of software services for
initializing, configuring, and programming the 8514/A graphics system. XGA is fur-
nished with a compatible set of services, which are a superset of those furnished for
8514/A. In both cases, 8514/A and XGA, the programming interface documentation as-
sumes that programming is in C language. Access methods from other languages have
not been described to this date. One difference between the AI software, as furnished
for 8514/A and XGA, is that the former is a Terminate and Stay Resident (TSR) program
while the latter is an MS-DOS device driver of the .SYS file type.

The AI installation selects one of two versions of the software according to the
amount of memory in the graphics system. Once installed, the address of the AI han-
dler is stored at interrupt vector 7FH. The AI services are accessed by means of an
INT 7FH instruction or by a far call to the address of the service routine.

11.3.1 Interfacing with the AI

Before an application can start using the AI services it must first certify that the soft-
ware is correctly installed and obtain the address of the service routine. Since inter-
rupt 7FH has been documented as a reserved vector in IBM literature, the application
can assume, with relative certainty, that the value stored at this vector is zero if no AI
has been installed. However, this assumption risks that a non-conforming program
has improperly used the vector for its own purposes. In which case the vector could
store a non-zero value, while no AI is present.

XGA and 8514/A Adapter Interface 233

7 6 5 4 3 2 1 0

LENGTH OF VECTOR (in pixels)
0000 = no operation
range is 1 to 15 pixels

PEN UP / PEN DOWN CONTROL
1 = pen down (draw)
0 = pen up (move)

VECTOR DIRECTION (counter clockwise)
000 = 0 degrees 001 = 45 degrees
010 = 90 degrees 011 = 135 degrees
100 = 180 degrees 101 = 225 degrees
110 = 270 degrees 111 = 315 degrees

d d d m l l l l

© 2003 by CRC Press LLC

The documented access mechanism for the AI services is by means of a far call. It
appears that the AI is preceded by a jump table to each of its service routines and
that each address in the jump table is a 4-byte far pointer. Therefore the calling pro-
gram must multiply the AI service request by four to obtain the offset in the jump ta-
ble. This jump table offset is placed in the SI register, the offset element of the
address of the AI service routine is in BX, and its segment in ES. Once these regis-
ters are set up, the far call to a particular AI service can be performed by means of
the instruction

CALL DWORD PTR ES:[BX+SI]

Notice that the offset element of the address is determined by the sum of the
pointer register (BX) and the offset of the service routine in the jump table (SI).

C Language Support

Two support files and a demonstration program for the AI are included in both the
8514/A and the XGA diskettes furnished with the adapters. The C language header files
are named AFIDATA.H and IBMAFI.H. In addition, the assembly language source file
named CALLAFI.ASM contains three public procedures for initializing and calling the
AI. The object file CALLAFI.OBJ must be linked with the application's C language
modules in order to access the AI. The header files and the object module
CALLAFI.OBJ provide a convenient interface with the AI for C language applications.

AI Entry Points

We saw that an application accesses the AI services by means of a jump table of service
numbers. The C language support software provided with XGA and 8514/A contains an
ordered list of the code names of the services and their associated entry points. In this
manner an application coded in C language need only reference the service name and
the support software will calculate the routine's entry point from the furnished table.
Table 11-7 lists the service routine code names and entry point numbers for the AI ser-
vices available in both 8514/A and XGA systems.

Table 11-7

8514/A and XGA Adapter Interface Services

NAME ENTRY POINT NUMBER DESCRIPTION

HLINE 0 Draw line
HCLINE 1 Draw line at current point
HRLINE 2 Draw line from start point
HCRLINE 3 Draw line from start point
HSCP 4 Set current point
HBAR 5 Begin area for fill operation
HEAR 6 End area for fill operation
HSCOL 7 Set current color
HSOPEN 8 Open adapter for AI operations
HSMX 9 Set mix
HSBCOL 10 Set background color

(continues)
Table 11-7

8514/A and XGA Adapter Interface Services (continued)

234 Chapter Eleven

© 2003 by CRC Press LLC

NAME ENTRY POINT NUMBER DESCRIPTION

HSLT 11 Set line type
HSLW 12 Set line width
HEGS 13 Erase graphics screen
HSGQ 14 Set graphics quality
HSCMP 15 Set color compare register
HINT 16 Synchronize with vertical retrace
HSPATTO 17 Set pattern reference
HSPATT 18 Set pattern shape
HLDPAL 19 Load palette
HSHS 20 Set scissor
HBBW 21 Write bit block image data
HCBBW 22 Write bit block at current point
HBBR 23 Read bit block
HBBCHN 24 Chain bit block data
HBBC 25 Copy bit block
HSCOORD 26 Set coordinate type
HQCOORD 27 Query coordinate type
HSMODE 28 Set adapter mode
HQMODE 29 Query adapter mode
HQMODES 30 Query adapter modes
HQDPS 31 Query drawing process state
HRECT 32 Fill rectangle
HSBP 33 Set bit plane controls
HCLOSE 34 Close adapter
HESC 35 Escape (terminate processing)
HXLATE 36 Assign multiplane color tables
HSCS 37 Select character set
HCHST 38 Display character string
HCCHSET 39 Display string at current point
ABLOCKMFI 40 Display character block (MFI mode)
ABLOCKCGA 41 Display character block (CGA mode)
AERASE 42 Erase character rectangle
ASCROLL 43 Scroll character rectangle
ACURSOR 44 Set current cursor position
ASCUR 45 Set cursor shape
ASFONT 46 Select character set
AXLATE 47 Assign color index
HINIT 48 Initialize adapter state
HSYNC 49 Synchronize adapter with task
HMRK 50 Display marker
HCMRK 51 Display marker at current point
HSMARK 52 Set marker shape
HSLPC 53 Save linepattern count
HRLPC 54 Restore saved linepattern count
HQCP 55 Query current point
HQDFPAL 56 Query default palette
HSPAL 57 Save palette
HRPAL 58 Restore pallete
HSAFP 59 Set area fill plane
ASCELL 60 Set cell size

The XGA adapter contains 18 additional AI services that are not available in
8514/A. These XGA proprietary services are listed in Table 11-8.

Table 11-8

XGA Adapter Interface Services

XGA and 8514/A Adapter Interface 235

© 2003 by CRC Press LLC

NAME ENTRY POINT NUMBER DESCRIPTION

ASGO 61 Set alpha grid origin
HDLINE 62 Disjoint line at point
---------- 63
HPEL 64 Write pixel string
HRPEL 65 Read pixel string
HPSTEP 66 Plot and step
HCPSTEP 67 Plot and step at current position
HRSTEP 68 Read and step
HSBMAP 69 Set bitmap attributes
HQBMAP 70 Query bitmap attributes
HBMC 71 Bitmap copy
HSDW 72 Set display window
HSPRITE 73 Sprite at given position
HSSPRITE 74 Set sprite shape
HRWVEC 75 Read/write vector
----------- 76
----------- 77
HSFPAL 78 Save full palette
HRFPAL 79 Restore full palette
HQDEVICE 80 Query device specific (no action)

Obtaining the AI Address
The following procedure can be used to test the AI initialization and, if the service soft-
ware is installed, to acquire the address of the AI service routines.

AI_VECTOR PROC FAR
; Procedure to obtain the address of the XGA and 8514/A Adapter
; Interface. This procedure must be called before calls are made
; to the Adapter Interface services
;
; On entry:
; nothing
; On exit:
; carry set if no AI installed
; carry clear if AI present
; CX => segment of AI link table
; DX => offset of AI link table
;
;**********************|
; get vector 7FH |
;**********************|
; Use MS DOS service number 53, interrupt 21H, to obtain the
; vector for the XGA and 8514-A AI interrupt (7FH)

MOV AH,53 ; MS DOS service number
MOV AL,7FH ; AI interrupt
INT 21H ; MS DOS interrupt

; ES => segment of interrupt handler
; BX => offset of handler
;**********************|
; test for no AI |
;**********************|
; The code assumes that the vector at INT 7FH will be 0000:0000
; if the AI is not initialized

MOV AX,ES ; Segment to AX
OR AX,BX ; OR segment and offset
JNZ OK_AI ; Go if address not 0000:0000

;**********************|

236 Chapter Eleven

© 2003 by CRC Press LLC

; ERROR - no AI |
;**********************|
NO_AI:

STC ; Error return
RET

;**********************|
; get AI address |
;**********************|
; Service number 0105H, interrupt 7FH, returns the address of the
; XGA/8514-A entry point
OK_AI:

MOV AX,0105H ; Service request number
INT 7FH ; in XGA AI interrupt
JNC OK_AI ; Go if no error code returned
JMP NO_AI ; Take error exit

; At this point CX:DX holds the address of the XGA and 8514/A
; Adapter Interface handler (in segment:offset form)

CLC ; No error
RET

AI_VECTOR ENDP

Typically, the application calling the AI_VECTOR procedure will store the ad-
dress of the service routine in its own data space. For example, a doubleword stor-
age can be reserved for the logical address of the service routine, in this manner:

AI_ADD DD 0 ; Doubleword storage for address
; of Adapter Interface services

After a call to the AI_VECTOR procedure the code can proceed as follows:

;**********************|
; get AI address |
;**********************|
; The procedure AI_VECTOR obtains the segment:offset address of
; the AI handler

CALL AI_VECTOR ; Local procedure
JNC OK_VECTOR ; Go if no carry

;
; If execution reaches this point there is no valid AI installed
; and an error exit should take place

.

.

.
OK_VECTOR:
; Store segment and offset of AI handler

MOV WORD PTR AI_ADD,DX ; Store offset of address
MOV WORD PTR AI_ADD+2,CX ; and segment

; AI entry point is now stored in a DS variable

Using the AI Call Mechanism
Once the application has stored the address of the AI service routine in a data variable,
it can access any of its services. The access mechanism requires the entry point num-
ber (see Table 11-7 and 6.8) for the desired service as well as a pointer to a parameter
block containing the data received and passed by the service routine. Notice that a few
AI services do not require or return user data and, in these cases, the parameter block
is a dummy value. The following procedure, named AI_SERVICE, performs the arith-
metic operations required to obtain the offset of the desired routine in the AI jump ta-

XGA and 8514/A Adapter Interface 237

© 2003 by CRC Press LLC

ble, sets up the registers for the far call to the service routine, and performs some
housekeeping operations.

AI_SERVICE PROC NEAR
; Procedure to access the services in the XGA and 8514/A Adapter
; Interface software
;
; On entry:
; AX = service number
; DS:BX = address of parameter block
;

PUSH BP ; Save base pointer
MOV BP,SP ; Set BP to stack

; Push address of caller's parameter block
PUSH DS
PUSH BX ; the offset

; Multiply by 4 to form offset as required by AI
SHL AX,1 ; AX times 2
SHL AX,1 ; again
MOV SI,AX ; Offset to SI
LES BX,AI_ADD ; Entry block address (ES:BX)
CALL DWORD PTR ES:[BX+SI] ; Call AI service
POP BP ; Restore caller's BP
RET

AI_SERVICE ENDP

The parameter block passed by the caller to the AI service is a data structure
whose size and contents vary in each service. One common element in all parameter
blocks is that the first byte serves to determine the size of the block. In this manner
the word at offset 0 of the parameter block indicates the byte size of the remainder
of the block. Table 11-9 shows the structure of the AI parameter block.

Table 11-9

Structure of the Adapter Interface Parameter Block

OFFSET DATA SIZE CONTENTS

0 word Byte length of parameter block
2 byte, word, First data item
. doubleword,
. or string

length 2 Last data item

AI Initialization Operations
Before the general AI services can be used by an application the adapter must be ini-
tialized by presetting it to a known state. Two AI services, named HOPEN and HINIT,
are provided for this purpose. The HOPEN service (entry point number 8 in Table 11-7)
presets the adapter's control flags and selects an extended function mode. If the
adapter is successfully opened, the AI call clears a field in the parameter block. A
non-zero value in this field indicates that a hardware mismatch is detected. The fol-
lowing code fragment shows the data segment setup of the parameter block of the
HOPEN service as well as a call to this AI service.

DATA SEGMENT
.
.

238 Chapter Eleven

© 2003 by CRC Press LLC

.
HOPEN_DATA DW 3 ; Length of data block
INIT_FLAGS DB 0 ; 7 6 5 4 3 2 1 0 <= flags

; | | ___________
; | | |_______ Reserved
; | |_ Do not load default
; palette
; |___ Do not clear bit planes

AF_MODE DB 0 ; Advanced function mode
; No. Pixels Text
; 00 1024x768 85x38
; 01 640x480 80x34
; 02 1024x768 128x54
; 03 1024x768 146x51

RET_STATUS DB 0 ; Status returned by AI call
; 0 if initialization successful
; Not 0 if initialization failed

.

.

.
DATA ENDS

CODE SEGMENT
.
.

;**********************|
; initialize AI |
;**********************|
; Call HOPEN service (enable adapter)

MOV INIT_FLAGS,0 ; Set initialization flags
; to clear memory and load

; default palette
MOV AF_MODE,0 ; Set 1024x768 mode number 0
MOV AX,8 ; Code number for this service
LEA BX,HOPEN_DATA ; Pointer to parameter block
CALL AI_SERVICE ; Procedure to perform AI call

; The RET_STATUS field is filled by the service call
; This field is not zero if an error was detected

CMP RET_STATUS,0 ; Not zero if open error
JE OK_OPEN ; Go if no error

; At this point an error was detected during HOPEN function
.
.
.

; At this point adapter was successfully opened
OK_OPEN:

.

.

.
CODE ENDS

Once the adapter has been successfully opened the program must inform the AI
of the location (in the application's memory space) of a special task state buffer.
The main purpose of the task state buffer is to assist multitasking by providing a re-
cord of the adapter's state for each concurrent task. When a task is restored to the
foreground, the task state buffer provides to the AI software all the necessary infor-
mation for restoring the adapter to its previous state. Although DOS programs have
absolute control of the machine's hardware, they must also allocate a task state

XGA and 8514/A Adapter Interface 239

© 2003 by CRC Press LLC

buffer before beginning AI operations. Table 11-10 lists the data items stored in the
task state buffer as well as their initial settings.

Table 11-10

Task State Buffer Data after Initialization

ITEM VALUE

Current point Coordinates 0,0
Foreground color White (all bits are 1)
Background color Black (all bits are 0)
Foreground mix Destination = source (overpaint mode)
Background mix Leave alone
Comparison color Not initialized
Comparison logic False
Line type Solid
User line Not initialized
Line width 1 pixel
Line pattern Position not initialized
Saved line pattern Position not initialized
Area pattern Solid
Pattern origin Coordinates 0,0
Text control Block pointer not initialized
Marker shape Not intialized
Scissors Clipping to full screen
Graphics quality High precision
Plane mask All planes enabled
Color index table 8 entries set linearly (0 to 7)
Alphanumeric cursor Top left of screen (0,0)
Cursor definition Invisible
Translate table 16 values for foreground and background
Character set Not selected

In order to allocate space for the task state buffer an application must know its
size, but the length of the task state buffer is not hard-coded in the adapter's soft-
ware. However, an application can use the HQDPS function (listed in Table 11-7 and
described later in the chapter) in order to determine the memory space required for
this data structure. Once the size of the task state buffer is known, the code can dy-
namically allocate sufficient memory for it. An alternative, although not as elegant,
method is to assume that the task state buffer for DOS is 360 bytes and allocate this
amount of space. In fact, the task state buffer for XGA systems is 341 bytes, so as-
signing 360 bytes leaves a 19-byte safety margin.

Space for the task state buffer is allocated and its values initialized by means of
the HINIT adapter function. The call requires the segment address of the task state
buffer, while it assumes that the buffer is at offset 0000 in this segment. This charac-
teristic of the HINIT service suggests that the task state buffer be placed in a sepa-
rate segment. This assignation has the added advantage of not using the
application's data space for this purpose. In DOS the assignment of buffer space and
the HINIT call can be performed as in the following code fragment

;**
; segment for task state data
;**
TASK_STATE SEGMENT

240 Chapter Eleven

© 2003 by CRC Press LLC

;**********************|
; AI state buffer |
;**********************|
STATE_BUF DB 360 DUP (00H)
;
TASK_STATE ENDS

;**
; data segment
;**
DATA SEGMENT

.

.

.
;
HINIT_DATA DW 2 ; Length of data block
BUF_SEG DW 0 ; Segment of task state buffer

.

.

.
DATA ENDS

;**
; code segment
;**
CODE SEGMENT

.

.

.

; Call HINIT (Initialize adapter state)
MOV AX,TASK_STATE ; Segment for task state buffer
MOV BUF_SEG,AX ; Store segment in parameter

; block
MOV AX,48 ; Code number for this service
LEA BX,HINIT_DATA ; Pointer to data block
CALL AI_SERVICE ; Procedure to perform AI call

; No information is returned by HINIT. Software must assume that
; task state buffer was successfully allocated and initialized

.

.

.

The program named AI_DEMO.ASM, furnished in the book's software package, is
a demonstration of some elementary AI functions. The code performs AI initializa-
tion and setup following a method similar to the one described in the present sec-
tion. The source file named AI_INIT.ASM is an initialization template that performs
the conventional AI operations usually required to start programming XGA or
8514/A systems. The programmer can use AI_INIT.ASM as a coding template for pro-
grams that use AI operations.

11.3.2 AI Data Conventions
Many Adapter Interface functions operate on data passed by the caller while some
functions return information. In the previous section we discussed (see Table 11-9)
the structure of the parameter block whose address is passed to the AI by the calling
program. The calling program uses this parameter block to transfer data to and from
the AI. However, notice that not all AI functions operate on data items. Some functions

XGA and 8514/A Adapter Interface 241

© 2003 by CRC Press LLC

(such as HEGS and HCLOSE) require no parameters and return no data to the calling
program.

The data items operated on by the AI can be classified into three general groups:
numeric data, screen data, and address data.

8514/A numeric data is defined in three integer formats: byte, word, and
doubleword. The IBM XGA documentation adds quadword to this list. Byte ordering
of numeric data is according to the Intel convention; that is, the least significant
byte is located at the lowest numbered memory address. Usually, the programmer
need not be concerned with this matter since the assembler or compiler will handle
multi-byte ordering automatically. Bit numbering is also in the conventional format,
that is the least-significant-bit is assigned the number 0.

Screen data refers to coordinates and to dimensions. Absolute coordinates are
stored in a word field, in two's complement binary format. Relative coordinates are
stored in byte fields, also in two's complement binary form. Screen dimensions are
defined in the Cartesian plane: the x coordinate represents the horizontal value and
the y coordinate the vertical value. The origin is located at the top-left screen cor-
ner. In the 8514/A the valid coordinate range is from -512 to +1535 in the x and y
planes, respectively, while in XGA it is from -2048 to +6145 for both Cartesian coor-
dinates. The viewport (video buffer) is in one of two modes in both systems: in low
resolution mode the x coordinate is in the range 0 to 639 and the y coordinate in the
range 0 to 479. In high-resolution mode the x coordinate is in the range 0 to 1023 and
the y coordinate in the range 0 to 767. The image buffer and viewports for XGA sys-
tems are shown in Figure 11-7.

Figure 11-7 XGA System Coordinate Range and Viewport

Address data is in conventional Intel logical address format, that is, in seg-
ment:offset form. If offset and segment are stored separately in word-size data
items, the offset element precedes the segment element, as in the following parame-
ter block for the HSCS (select character set) command:

HSCS_DATA DW 4 ; Length of data block

242 Chapter Eleven

XGA adapter coordinate rangex = -2048
y = -2048

x = +6143
y = +6143

XGA high resolution
viewport

x = 0
y = 0

x = 1023
y = 767

© 2003 by CRC Press LLC

FONT_OFF DW 0 ; Offset of loaded font
FONT_SEG DW 0 ; Segment of loaded font

Address data does not always require a logical address. For example, in the pa-
rameter block for the HINIT function call only the segment element of the address is
required, as shown in the following code fragment:

HINIT_DATA DW 2 ; Length of data block
BUF_SEG DW 0 ; Segment of task state buffer

11.4 AI Concepts
Before venturing into the details of AI programming it is convenient to gain familiarity
with some graphics concepts often mentioned in the adapter's literature. Most of
these concepts are taken from the general terminology of computer graphics, al-
though, in a few cases, IBM documentation varies from the more generally accepted
terms.

11.4.1 Pixel Attributes
A pixel's color is primarily determined by the value stored in the memory maps

and by the setting of the LUT registers, as shown in Figure 11-3 and discussed in sec-
tion 11.2.4. By means of the AI services an application can access the color value
stored in the bit planes through the HSCOL (set current color) and HSBCOL (set
background color) commands. Generally, a 1-bit in a draw order is displayed using
the current foreground color while a 0-bit is displayed using the current background
color. In text operations the background color refers to the rectangular pixel block
on which text characters are drawn, while the foreground color refers to the text
characters themselves.

Mixes
XGA and 8514/A system provide a second level of control over pixel display by means
of a mechanism called mixes. Mixes are logical or mathematical operations performed
between a new color value and the one already stored in display memory. The mix
mode is selected independently for the foreground and background colors.

Color Compares
The color compare mechanism in the XGA and 8514/A AI provides a means by which
the programmer can exclude specific bit planes from graphics operations. Compari-
s on log ic a l lows ope ra t i o n s o f equa l - to , l ess - than , g rea ter- than ,
greater-than-or-equal-to, and less-than-or-equal-to. When the comparison evaluates to
TRUE the bit plane data is unmodified. When the comparison evaluates to FALSE,
then the active mix operation is allowed to take place. The color compare function is
selected by means of the HSCMP (set color compare register). Notice that the color
compare function is not active during the AI alphanumeric services.

Bit Plane Masking
In addition to the controls offered by foreground and background colors, mix mode,
and the color compare setting, an application can use masking to selectively enable
and disable individual bit planes. The bit plane masking function allows separate con-
trol for graphics and alphanumeric operations. The masking function takes place be-

XGA and 8514/A Adapter Interface 243

© 2003 by CRC Press LLC

fore compares and mixes are applied; therefore the mask can be used to exclude
compare and mix operations. Bit plane masking is performed by means of the HSBP
(set bit plane control) function.

11.4.2 Scissoring
The AI software provides a function by which an application can limit graphics opera-
tions to a rectangular area within the viewport. This function, called scissoring in the
IBM documentation, is useful in developing programs that use screen windows, since
it inhibits operations outside a predefined screen rectangle. During adapter
initializing the scissoring rectangle is set to the size of the viewport, but an application
can redefine it by means of the HSHS (set scissor) function.

11.4.3 Absolute and Current Screen Positions
Several AI graphics and text functions are based on absolute screen locations. For ex-
ample, the HLINE function (see Section 11.5.2) can be used to draw one or more
straight lines starting at a given screen coordinate point. On the other hand, other AI
graphics and text functions operate from a current screen position which is main-
tained by the adapter. For example, the HCLINE function can be used to draw one or
more straight line segments starting at the current position. In this function the cur-
rent screen position is automatically updated to the end point of the last line segment.
The current screen position can be set by means of the HSCP (set current position)
function, described in Section 11.5.2.

11.4.4 Polymarkers
A marker, in the context of the XGA and 8514/A AI programming, is a bitmapped object
that can be as large as 255 by 255 pixels. The AI software allows displaying one or more
markers at the predefined absolute coordinates or at the current display position.
Since more than one marker can be displayed by the same command, the AI function
should be classified as a polymarker operation.

The marker image is a rectangular, unpadded bitmap. If defined as a monochrome
marker it is displayed using the current foreground color and according to the se-
lected mix. If the marker is defined as a multicolor one, it is displayed using a color
table supplied by the caller.

In 8514/A the multicolor table consists of a 1-byte color code for each bit in the
marker bitmap. In XGA the program can select a color table in byte-per-pixel mode
(compatible with 8514/A) or in packed format. In the packed format the mapping of
the color table depends on the system's resolution. For example, if the pixel color is
determined by 4 video memory bits, then the color table consists of a series of
packed, 4-bit color codes. Notice that the packed format is not supported in the
8514/A.

The current marker is defined by means of the HSMARK (set marker shape) func-
tion. One or more markers are displayed at absolute screen positions by means of
the HMRK (display marker) function. The HCMRK (marker at current point) func-
tion is used to display one or more markers at the current position. These functions
are described in Section 11.5.4.

244 Chapter Eleven

© 2003 by CRC Press LLC

11.4.5 Line Widths and Types
The XGA and 8514/A AI allow selecting the line width and type to be used in line draw-
ing operations. Line width options are of one or three pixels. Three-pixel-wide lines
are drawn as three separate lines, one pixel apart. There are eight built-in line types in
the AI software: dotted, short dashed, dash-dot, double dot, long dashed,
dash-double-dot, solid, and invisible lines. In addition, the XGA AI offers a second
dotted line type not available in 8514/A. An application can also define its own custom-
ized line type.

Each line type consists of a repeating pattern of dots and dashes. While drawing a
non-continuous line, the AI software keeps track of the current position in the line
pattern. Although most line drawing functions reset the pattern counter at the start
of a line, an application can override this mode of operation by saving and restoring
the current position in the line pattern. The AI function named HSLPC (save line pat-
tern count) and HRLPC (restore line pattern count) are used for this purpose. These
functions are particularly useful when a non-continuous line must straddle a scissor
boundary.

The line type selection option in the AI simplifies considerably the development
of drafting and computer-assisted design software. On the other hand, the line width
selection option is often considered too limited to be of practical use. Line width se-
lection is performed by means of the HSLW (select line width) function while line
type is chosen by the HSLT (select line type) function.

11.4.6 Bit Block Operations
Graphics programs often operate on rectangular blocks of bitmapped data called bit
blocks. The manipulations of these blocks are called bit block transfers; the expres-
sion is often shortened to bitBLTS (pronounced bit blits). BitBLT operations often re-
fer to a source block, a destination block, and to the logical operation to be performed
in combining them into a result block. In the AI the logical operation is selected by
means of the mix (see Section 11.4.1).

BitBLTs are one of the most powerful graphics tools in the AI. The bit block trans-
fer operations can take place from the application's memory space to video memory,
from video memory to the application's memory space, and from video memory to
video memory. When the bitmapped image stored by the applications is transferred
to the adapter's video memory we speak of a bitBLT write. When the data stored in
the adapter's video RAM is moved to the application's memory we speak of a bitBLT
read. Operations by which data are moved within the application's video space are
called a bitBLT copy.

BitBLTs operate on a rectangular area. They proceed from the top-left corner of
the rectangle, left-to-right and top-to-bottom. Due to this mode of operations they
are sometimes called raster functions.

BitBLT Copy

An AI bitBLT copy operation produces a second screen image based on the pixel data
stored in a screen rectangle defined by the caller. The second image is displayed ac-

XGA and 8514/A Adapter Interface 245

© 2003 by CRC Press LLC

cording to the current mix and comparison and clipped according to the scissoring. If
the two images overlap, the AI correctly places the new image overlapping the existing
one. The copy operation can be performed in one of two modes. In the single-plane
mode the application selects a single image plane which is copied by the AI service. In
the multiplane mode the entire image is copied to the new position.

The AI function for performing a bitBLT copy operation is named HBBC (bitBLT
copy). In this function the caller must provide a parameter block containing the de-
sired mode (single-plane or multiplane), the dimensions of the bitBLT rectangle, the
selected bit plane if the single-plane mode is active, and the coordinates of the
source and destination areas.

BitBLT Write

An application can display a bitmapped image stored in its own memory space by per-
forming a bitBLT write operation. The screen image is displayed according to the cur-
rent mix and comparison values and is clipped according to the scissoring. In XGA and
8514/A systems the write operation can take place in one of two modes. If the mono-
chrome mode is selected, the image bitmap is displayed using the current foreground
color for the 1-bits and the current background color for the 0-bits. In this case the
bitmap is assumed to be encoded in a 1-bit per pixel format.

If the color mode is selected then the AI assumes that the image is encoded in a
byte-per-pixel format. In other words, the caller provides an image map in which
each screen pixel is represented by the color code stored in 1 data byte. The actual
color displayed depends on the present setting of the LUT registers and the number
of active bit planes. In addition to the monochrome and color modes, the XGA AI of-
fers an additional packed bits mode. In the packed mode the number of bits per
pixel depends on the current display mode. For example, if the adapter is in a 4-bit
plane display mode, then the AI assumes that the caller's image data is encoded in a
one-nibble-per-pixel format. The packed mode is not available in 8514/A systems.

Three different AI functions are related to bitBLT write operations. The function
named HBBW (bitBLT write) is used to transfer image data to a screen location
specified by the caller. HCBBW (bitBLT write at current position) transfers the im-
age data to the current position. Both of these functions are of preparatory nature.
The actual display of the bit block requires the use of an AI service named HBBCHN
(bitBLT chain). This command includes the address of the bitmap in the applica-
tion's memory space as well as its dimensions. The use of HBBW, HCBBW, and
HBBCHN commands is illustrated in Section 11.5.4.

BitBLT Read

An application can also use the AI bitBLT services to move a video image to its own
memory space. In this type of operation, called a bitBLT read, the application defines
the coordinates of a screen rectangle, as well as the location, in its application's mem-
ory space, of a buffer for storing the video data. The AI then makes a copy of the screen
image in the application's RAM. The size of the image rectangle can be as small as a sin-
gle pixel or as large as the entire screen.

246 Chapter Eleven

© 2003 by CRC Press LLC

As is the case in the bitBLT write operation, XGA and 8514/A systems allow
bitBLT reads in one of two modes. If the monochrome mode is selected, the image
is read from the bit plane specified by the caller. In this case the application must
provide a storage space of one bit per screen pixel. If the color mode is selected the
AI will read all 8 bit planes and store a byte-per-pixel color code in the buffer pro-
vided by the caller. In addition to the monochrome and color modes, the XGA AI of-
fers an additional packed bits mode, similar to the one described for the bitBLT
write operation. The packed mode is not available in 8514/A systems.

Two AI functions are related to bitBLT read operations. The function named
HBBR (bitBLT read) is used to transfer video image data to a buffer supplied by the
caller. This AI function is of preparatory nature. The actual storage of bit block data
requires the use of the HBBCHN (bitBLT chain) AI service. The HBBCHN command
provides the address of the storage buffer in the application's memory space as well
as its dimensions.

11.5 Details of AI Programming
In the present section we offer examples of AI programming. The examples are pre-
sented in the form of assembly language code fragments with the corresponding com-
ments and explanations. We have mentioned that the IBM AI documentation uses C
language almost exclusively. In our examples we have selected assembly language in-
stead in order to provide an alternative programming medium, and also because we
feel that examples in assembly language provide clearer illustration of data structure
and of the machine hardware operations than do examples in high level languages.
Once a reader understands the fundamental programming elements in an AI function,
this knowledge can be easily applied in using the function from any particular pro-
gramming language.

We remind the reader that the documentation published by IBM for XGA and
8514/A (see Section 11.2) contains descriptions, examples, and utility programs that
are practically indispensable to the AI programmer. The book by Ritcher and Smith,
titled Graphics Programming for the 8514/A (see Bibliography) will also be useful.
In addition, the programs named AI_DEMO and AI_LUT included in the software
furnished with this book include demonstration of AI programming examples.

11.5.1 Initialization and Control Functions
The fundamental initialization operations for the AI as well as the access mechanism
for using the AI commands were described in Section 11.3. The following code frag-
ment shows the typical sequence of AI commands that an application would execute
in order to establish communications with the adapter software. In this example we
assume that the access mechanism is by the procedure named AI_SERVICE described
in Section 11.3.1. The code is virtually identical to the one in the AI_INIT.ASM template
furnished in the book's software package.

;**
; stack segment
;**
STACK SEGMENT stack

XGA and 8514/A Adapter Interface 247

© 2003 by CRC Press LLC

DB 0400H DUP ('?') ; Default stack is 1K
;
STACK ENDS
;
;**
; segment for task state data
;**
TASK SEGMENT
;**********************|
; AI state buffer |
;**********************|
STATE_BUF DB 360 DUP (00H)
;
TASK ENDS
;
;**
; data segment
;**
DATA SEGMENT
;**********************|
; AI list address |
;**********************|
AI_ADD DD 0 ; Doubleword storage for address

; of Adapter Interface services
;
;
HQDPS_DATA DW 6 ; Length of data block
BUF_SIZE DW 0 ; Buffer size
STK_SIZE DW 0 ; Stack usage, in bytes
PAL_SIZE DW 0 ; Palette buffer size, in bytes
;
HOPEN_DATA DW 3 ; Length of data block
INIT_FLAGS DB 0 ; 7 6 5 4 3 2 1 0 <= flags

; | | ___________
; | | |_______ Reserved
; | |_ Do not load palette
; |___ Do not clear bit planes

AF_MODE DB 0 ; Advanced function mode
; No. Pixels Text
; 00 1024x768 85x38
; 01 640x480 80x34
; 02 1024x768 128x54
; 03 1024x768 146x51

RET_FLAGS DB 0 ; Status
; 0 if initialization successful
; Not 0 if initialization failed

;
HINIT_DATA DW 2 ; Length of data block
BUF_SEG DW 0 ; Segment of AI buffer
HCLOSE_DATA DW 0 ; Length field is zero for HCLOSE
HEGS_DATA DW 0 ; Length field is zero for HEGS
DUMMY DW 0 ; Dummy data area

.

.

.
DATA ENDS

;**
; code segment
;**

248 Chapter Eleven

© 2003 by CRC Press LLC

;
CODE SEGMENT

ASSUME CS:CODE
;
START:
; Establish data and extra segment addressability

MOV AX,DATA ; Address of DATA to AX
MOV DS,AX ; and to DS
ASSUME DS:DATA ; Assume from here on

;**********************|
; get adapter address |
;**********************|
; The local procedure AI_VECTOR obtains the segment:offset
; address of the adapter handler

CALL AI_VECTOR ; Local procedure
JNC OK_VECTOR ; Go if no carry

;**********************|
; error exit |
;**********************|
AI_ERROR:
; HEGS (erase graphics screen)

MOV AX,13 ; Code number for this service
LEA BX,HEGS_DATA ; Pointer to dummy data block
CALL AI_SERVICE

;**********************|
; exit to DOS |
;**********************|
DOS_EXIT:

MOV AH,4CH ; DOS service request code
MOV AL,0 ; No error code returned
INT 21H ; TO DOS

;**********************|
; AI installed |
;**********************|
OK_VECTOR:
; Store segment and offset of AI handler

MOV WORD PTR AI_ADD,DX ; Store offset of address
MOV WORD PTR AI_ADD+2,CX ; and segment

; Entry point for AI services is now stored in a DS variable
;**********************|
; initialize AI |
;**********************|
; Call HQDPS service (query drawing process state)

MOV AX,31 ; Code number for this service
LEA BX,HQDPS_DATA ; Pointer to data block
CALL AI_SERVICE

; The following information is stored by the query drawing
; process command
; 1. size of task state buffer
; 2. stack usage, in bytes
; 3. size of palette buffer
; This information may later be required by the application
;
; Call HOPEN service (enable adapter)

MOV INIT_FLAGS,0 ; Set initialization flags
; to clear memory and load
; default palette

MOV AF_MODE,0 ; Set 1024x768 mode number 0
MOV AX,8 ; Code number for this service
LEA BX,HOPEN_DATA ; Pointer to data block

XGA and 8514/A Adapter Interface 249

© 2003 by CRC Press LLC

CALL AI_SERVICE
; The HOPEN command returns system information in the RET_FLAGS
; field of the parameter block.

MOV AL,RET_FLAGS ; Not zero if open error
CMP AL,0 ; Test for no error
JZ OK_OPEN ; Go if no error
JMP AI_ERROR ; Error exit

;
; Call HINIT (Initialize adapter state)
OK_OPEN:

MOV AX,TASK ; Segment for task state
MOV BUF_SEG,AX ; Store segment of adapter state

; buffer
MOV AX,48 ; Code number for this service
LEA BX,HINIT_DATA ; Pointer to data block
CALL AI_SERVICE

; At this point the AI is initialized and ready for use
;**
; application's code
;***

.

.

.
;**
; procedures
;***
AI_VECTOR PROC NEAR
; Procedure to obtain the address vector to the XGA/8514/A
; AI. This procedure must be called before calls are made
; to the Adapter Interface services (by means of the AI_SERVICE
; procedure)
;
; On entry:
; nothing
; On exit:
; carry set if no AI installed
; carry clear if AI present
; CX => segment of AI link table
; DX => offset of AI link table
;
;**********************|
; get vector 7FH |
;**********************|
; Use MS DOS service number 53, interrupt 21H, to obtain the
; vector for the XGA/8514-A AI interrupt (7FH)

MOV AH,53 ; MS DOS service number
MOV AL,7FH ; AI interrupt
INT 21H ; MS DOS interrupt

; ES => segment of interrupt handler
; BX => offset of handler

MOV AX,ES ; Segment to AX
OR AX,BX ; OR segment and offset
JNZ OK_AI ; Go if address not 0000:0000

;**********************|
; ERROR - no AI |
;**********************|
NO_AI:

STC ; Error return
RET

;**********************|

250 Chapter Eleven

© 2003 by CRC Press LLC

; get AI address |
;**********************|
; Service number 0105H, interrupt 7FH, returns the address of the
; XGA and 8514/A jump table
OK_AI:

MOV AX,0105H ; Service request number
INT 7FH ; in XGA AI interrupt
JC NO_AI ; Go if error code returned

; At this point CX:DX holds the address of the XGA/8514-A entry
; point (in segment:offset form)

CLC ; No error code
RET

AI_VECTOR ENDP
;**
;
AI_SERVICE PROC NEAR
; Procedure to access the services in the XGA and 8514/A Adapter
; Interface
;
; On entry:
; AX = service number
; DS:BX = address of parameter block
;

PUSH BP ; Save base pointer
MOV BP,SP ; Set BP to stack

; Push address of caller's parameter block
PUSH DS
PUSH BX ; the offset

; Multiply by 4 to form offset as required by AI
SHL AX,1 ; AX time 2
SHL AX,1 ; again
MOV SI,AX ; Offset to SI
LES BX,AI_ADD ; Entry block address (ES:BX)
CALL DWORD PTR ES:[BX][SI] ; Call AI service
POP BP ; Restore caller's BP
RET

AI_SERVICE ENDP
;**
CODE ENDS

END START

11.5.2 Setting the Color Palette
The structure of the XGA and 8514/A color look-up table (LUT) and the digi-
tal-to-analog converter is discussed in Section 11.2.4. The actual manipulation of the
XGA and 8514/A DAC registers is by means of three palette commands: HSPAL (save
palette), HLDPAL (load palette registers), and HRPAL (restore palette). The following
code fragment shows the use of the AI palette commands.

;**
; data segment
;**
DATA SEGMENT

.

.

.
;**********************|
; palette data |
;**********************|

XGA and 8514/A Adapter Interface 251

© 2003 by CRC Press LLC

; Data area for HLDPAL (load palette) function
HLDPAL_DATA DW 10 ; Length of data block
LOAD_CODE DB 0 ; Palette code

; 0 = load user pallete
; 1 = load default pallete

DB 0 ; Reserved
DW 0 ; Number of first entry
DW 256 ; Number of entries to load

PAL_OFF DW 0 ; Offset of user palette
PAL_SEG DW 0 ; Segment of user palette
;
; Data area for HSPAL (save palette data)
; and HRPAL (restore palette)
HSPAL_DATA DW 769 ; Length of palette

DW 769 DUP (00H) ; Storage for palette
;
; Double-bit IRGB palette in the following format
; 7 6 5 4 3 2 1 0 <= Bits
; | | | | | | | |
; | | | | | | |_|_______ Blue
; | | | | |_|___________ Green
; | | |_|_______________ Red
; |_|___________________ Intensity

;
; First group of 64 registers
; Notice that the DAC color registers are in the order
; Red-Blue-Green
; | R B G R B G |
IRGB_SHADES DB 000,000,000,000,036,072,036,000 ; 1

DB 036,108,036,000,036,144,036,000 ; 3
DB 036,036,072,000,036,072,072,000 ; 5
DB 036,108,072,000,036,144,072,000 ; 7
DB 036,036,108,000,036,072,108,000 ; 9
DB 036,108,108,000,036,144,108,000 ; 11
DB 036,036,144,000,036,072,144,000 ; 13
DB 036,108,144,000,036,144,144,000 ; 15
DB 072,036,036,000,072,072,036,000 ; 17
DB 072,108,036,000,072,144,036,000 ; 19
DB 072,036,072,000,072,072,072,000 ; 21
DB 072,108,072,000,072,144,072,000 ; 23
DB 072,036,108,000,072,072,108,000 ; 25
DB 072,108,108,000,072,144,108,000 ; 27
DB 072,036,144,000,072,072,144,000 ; 29
DB 072,108,144,000,072,144,144,000 ; 31
DB 108,036,036,000,108,071,036,000 ; 33
DB 108,108,036,000,108,144,036,000 ; 35
DB 108,036,072,000,108,072,072,000 ; 37
DB 108,108,072,000,108,144,072,000 ; 39
DB 108,036,108,000,108,072,108,000 ; 41
DB 108,108,108,000,108,144,108,000 ; 43
DB 036,036,144,000,108,072,144,000 ; 45
DB 108,108,144,000,108,144,144,000 ; 47
DB 144,036,036,000,144,072,036,000 ; 49
DB 144,108,036,000,144,144,036,000 ; 51
DB 144,036,072,000,144,072,072,000 ; 53
DB 144,108,072,000,144,144,072,000 ; 55
DB 144,036,108,000,144,072,108,000 ; 57
DB 144,108,108,000,144,144,108,000 ; 59
DB 144,036,144,000,144,072,144,000 ; 61

252 Chapter Eleven

© 2003 by CRC Press LLC

DB 144,108,144,000,144,144,144,000 ; 63
; Second register group

DB 072,072,072,000,072,108,072,000 ; 1
DB 072,144,072,000,072,180,072,000 ; 3
DB 072,072,108,000,072,108,108,000 ; 5
DB 072,144,108,000,072,180,108,000 ; 7
DB 072,072,144,000,072,108,144,000 ; 9
DB 072,144,144,000,072,180,144,000 ; 11
DB 072,072,180,000,072,108,180,000 ; 13
DB 072,144,180,000,072,180,180,000 ; 15
DB 108,072,072,000,108,108,072,000 ; 17
DB 108,144,072,000,108,180,072,000 ; 19
DB 108,072,108,000,108,108,108,000 ; 21
DB 108,144,108,000,108,180,108,000 ; 23
DB 108,072,144,000,108,108,144,000 ; 25
DB 108,144,144,000,108,180,144,000 ; 27
DB 108,072,180,000,108,108,180,000 ; 29
DB 108,144,180,000,108,180,180,000 ; 31
DB 144,072,072,000,144,108,072,000 ; 33
DB 144,144,072,000,144,180,072,000 ; 35
DB 144,072,108,000,144,108,108,000 ; 37
DB 144,144,108,000,144,180,108,000 ; 39
DB 144,072,144,000,144,108,144,000 ; 41
DB 144,144,144,000,144,180,144,000 ; 43
DB 072,072,180,000,144,108,180,000 ; 45
DB 144,144,180,000,144,180,180,000 ; 47
DB 180,072,072,000,180,108,072,000 ; 49
DB 180,144,072,000,180,180,072,000 ; 51
DB 180,072,108,000,180,108,108,000 ; 53
DB 180,144,108,000,180,180,108,000 ; 55
DB 180,072,144,000,180,108,144,000 ; 57
DB 180,144,144,000,180,180,144,000 ; 59
DB 180,072,180,000,180,108,180,000 ; 61
DB 180,144,180,000,180,180,180,000 ; 63

; Third register group
DB 108,108,108,000,108,144,108,000 ; 1
DB 108,180,108,000,108,216,108,000 ; 3
DB 108,108,144,000,108,144,144,000 ; 5
DB 108,180,144,000,108,216,144,000 ; 7
DB 108,108,180,000,108,144,180,000 ; 9
DB 108,180,180,000,108,216,180,000 ; 11
DB 108,108,216,000,108,144,216,000 ; 13
DB 108,180,216,000,108,216,216,000 ; 15
DB 144,108,108,000,144,144,108,000 ; 17
DB 144,180,108,000,144,216,108,000 ; 19
DB 144,108,144,000,144,144,144,000 ; 21
DB 144,180,144,000,144,216,144,000 ; 23
DB 144,108,180,000,144,144,180,000 ; 25
DB 144,180,180,000,144,216,180,000 ; 27
DB 144,108,216,000,144,144,216,000 ; 29
DB 144,180,216,000,144,216,216,000 ; 31
DB 180,108,108,000,180,144,108,000 ; 33
DB 180,180,108,000,180,216,108,000 ; 35
DB 180,108,144,000,180,144,144,000 ; 37
DB 180,180,144,000,180,216,144,000 ; 39
DB 180,108,180,000,180,144,180,000 ; 41
DB 180,180,180,000,180,216,180,000 ; 43
DB 108,108,216,000,180,144,216,000 ; 45
DB 180,180,216,000,180,216,216,000 ; 47
DB 216,108,108,000,216,144,108,000 ; 49

XGA and 8514/A Adapter Interface 253

© 2003 by CRC Press LLC

DB 216,180,108,000,216,216,108,000 ; 51
DB 216,108,144,000,216,144,144,000 ; 53
DB 216,180,144,000,216,216,144,000 ; 55
DB 216,108,180,000,216,144,180,000 ; 57
DB 216,180,180,000,216,216,180,000 ; 59
DB 216,108,216,000,216,144,216,000 ; 61
DB 216,180,216,000,216,216,216,000 ; 63

; Fourth register group
DB 144,144,144,000,144,180,144,000 ; 1
DB 144,216,144,000,144,252,144,000 ; 3
DB 144,144,180,000,144,180,180,000 ; 5
DB 144,216,180,000,144,252,180,000 ; 7
DB 144,144,216,000,144,180,216,000 ; 9
DB 144,216,216,000,144,252,216,000 ; 11
DB 144,144,252,000,144,180,252,000 ; 13
DB 144,216,252,000,144,252,252,000 ; 15
DB 180,144,144,000,180,180,144,000 ; 17
DB 180,216,144,000,180,252,144,000 ; 19
DB 180,144,180,000,180,180,180,000 ; 21
DB 180,216,180,000,180,252,180,000 ; 23
DB 180,144,216,000,180,180,216,000 ; 25
DB 180,216,216,000,180,252,216,000 ; 27
DB 180,144,252,000,180,180,252,000 ; 29
DB 180,216,252,000,180,252,252,000 ; 31
DB 216,144,144,000,216,180,144,000 ; 33
DB 216,215,144,000,216,252,144,000 ; 35
DB 216,144,180,000,216,180,180,000 ; 37
DB 216,216,180,000,216,252,180,000 ; 39
DB 216,144,216,000,216,180,216,000 ; 41
DB 216,216,216,000,216,252,216,000 ; 43
DB 144,144,252,000,216,180,252,000 ; 45
DB 216,216,252,000,216,252,252,000 ; 47
DB 252,144,144,000,252,180,144,000 ; 49
DB 252,216,144,000,252,252,144,000 ; 51
DB 252,144,180,000,252,180,180,000 ; 53
DB 252,216,180,000,252,252,180,000 ; 55
DB 252,144,216,000,252,180,216,000 ; 57
DB 252,216,216,000,252,252,216,000 ; 59
DB 252,144,252,000,252,180,252,000 ; 61
DB 252,216,252,000,252,252,252,000 ; 63

; Gray shades palette. Notice that the pattern in the first 64
; registers is repeated 3 times
GRAY_SHADES DB 000,000,000,000,004,004,004,000 ; 1

DB 008,008,008,000,012,012,012,000 ; 3
DB 016,016,016,000,020,020,020,000 ; 5
DB 024,024,024,000,028,028,028,000 ; 7
DB 032,032,032,000,036,036,036,000 ; 9
DB 040,040,040,000,044,044,044,000 ; 11
DB 048,048,048,000,052,052,052,000 ; 13
DB 056,056,056,000,060,060,060,000 ; 15
DB 064,064,064,000,068,068,068,000 ; 17
DB 072,072,072,000,076,076,076,000 ; 19
DB 080,080,080,000,084,084,084,000 ; 21
DB 088,088,088,000,092,092,092,000 ; 23
DB 096,096,096,000,100,100,100,000 ; 25
DB 104,104,104,000,108,108,108,000 ; 27
DB 112,112,112,000,116,116,116,000 ; 29
DB 120,120,120,000,124,124,124,000 ; 31
DB 128,128,128,000,132,132,132,000 ; 33

254 Chapter Eleven

© 2003 by CRC Press LLC

DB 136,136,136,000,140,140,140,000 ; 35
DB 144,144,144,000,148,148,148,000 ; 37
DB 152,152,152,000,156,156,156,000 ; 39
DB 160,160,160,000,164,164,164,000 ; 41
DB 168,168,168,000,172,172,172,000 ; 43
DB 176,176,176,000,180,180,180,000 ; 45
DB 184,184,184,000,188,188,188,000 ; 47
DB 192,192,192,000,196,196,196,000 ; 49
DB 200,200,200,000,204,204,204,000 ; 51
DB 208,208,208,000,212,212,212,000 ; 53
DB 216,216,216,000,220,220,220,000 ; 55
DB 224,224,224,000,228,228,228,000 ; 57
DB 232,232,232,000,236,236,236,000 ; 59
DB 240,240,240,000,244,244,244,000 ; 61
DB 248,248,248,000,252,252,252,000 ; 63

;
DB 000,000,000,000,004,004,004,000 ; 1
DB 008,008,008,000,012,012,012,000 ; 3
DB 016,016,016,000,020,020,020,000 ; 5
DB 024,024,024,000,028,028,028,000 ; 7
DB 032,032,032,000,036,036,036,000 ; 9
DB 040,040,040,000,044,044,044,000 ; 11
DB 048,048,048,000,052,052,052,000 ; 13
DB 056,056,056,000,060,060,060,000 ; 15
DB 064,064,064,000,068,068,068,000 ; 17
DB 072,072,072,000,076,076,076,000 ; 19
DB 080,080,080,000,084,084,084,000 ; 21
DB 088,088,088,000,092,092,092,000 ; 23
DB 096,096,096,000,100,100,100,000 ; 25
DB 104,104,104,000,108,108,108,000 ; 27
DB 112,112,112,000,116,116,116,000 ; 29
DB 120,120,120,000,124,124,124,000 ; 31
DB 128,128,128,000,132,132,132,000 ; 33
DB 136,136,136,000,140,140,140,000 ; 35
DB 144,144,144,000,148,148,148,000 ; 37
DB 152,152,152,000,156,156,156,000 ; 39
DB 160,160,160,000,164,164,164,000 ; 41
DB 168,168,168,000,172,172,172,000 ; 43
DB 176,176,176,000,180,180,180,000 ; 45
DB 184,184,184,000,188,188,188,000 ; 47
DB 192,192,192,000,196,196,196,000 ; 49
DB 200,200,200,000,204,204,204,000 ; 51
DB 208,208,208,000,212,212,212,000 ; 53
DB 216,216,216,000,220,220,220,000 ; 55
DB 224,224,224,000,228,228,228,000 ; 57
DB 232,232,232,000,236,236,236,000 ; 59
DB 240,240,240,000,244,244,244,000 ; 61
DB 248,248,248,000,252,252,252,000 ; 63

;
DB 000,000,000,000,004,004,004,000 ; 1
DB 008,008,008,000,012,012,012,000 ; 3
DB 016,016,016,000,020,020,020,000 ; 5
DB 024,024,024,000,028,028,028,000 ; 7
DB 032,032,032,000,036,036,036,000 ; 9
DB 040,040,040,000,044,044,044,000 ; 11
DB 048,048,048,000,052,052,052,000 ; 13
DB 056,056,056,000,060,060,060,000 ; 15
DB 064,064,064,000,068,068,068,000 ; 17
DB 072,072,072,000,076,076,076,000 ; 19
DB 080,080,080,000,084,084,084,000 ; 21

XGA and 8514/A Adapter Interface 255

© 2003 by CRC Press LLC

DB 088,088,088,000,092,092,092,000 ; 23
DB 096,096,096,000,100,100,100,000 ; 25
DB 104,104,104,000,108,108,108,000 ; 27
DB 112,112,112,000,116,116,116,000 ; 29
DB 120,120,120,000,124,124,124,000 ; 31
DB 128,128,128,000,132,132,132,000 ; 33
DB 136,136,136,000,140,140,140,000 ; 35
DB 144,144,144,000,148,148,148,000 ; 37
DB 152,152,152,000,156,156,156,000 ; 39
DB 160,160,160,000,164,164,164,000 ; 41
DB 168,168,168,000,172,172,172,000 ; 43
DB 176,176,176,000,180,180,180,000 ; 45
DB 184,184,184,000,188,188,188,000 ; 47
DB 192,192,192,000,196,196,196,000 ; 49
DB 200,200,200,000,204,204,204,000 ; 51
DB 208,208,208,000,212,212,212,000 ; 53
DB 216,216,216,000,220,220,220,000 ; 55
DB 224,224,224,000,228,228,228,000 ; 57
DB 232,232,232,000,236,236,236,000 ; 59
DB 240,240,240,000,244,244,244,000 ; 61
DB 248,248,248,000,252,252,252,000 ; 63

;
DB 000,000,000,000,004,004,004,000 ; 1
DB 008,008,008,000,012,012,012,000 ; 3
DB 016,016,016,000,020,020,020,000 ; 5
DB 024,024,024,000,028,028,028,000 ; 7
DB 032,032,032,000,036,036,036,000 ; 9
DB 040,040,040,000,044,044,044,000 ; 11
DB 048,048,048,000,052,052,052,000 ; 13
DB 056,056,056,000,060,060,060,000 ; 15
DB 064,064,064,000,068,068,068,000 ; 17
DB 072,072,072,000,076,076,076,000 ; 19
DB 080,080,080,000,084,084,084,000 ; 21
DB 088,088,088,000,092,092,092,000 ; 23
DB 096,096,096,000,100,100,100,000 ; 25
DB 104,104,104,000,108,108,108,000 ; 27
DB 112,112,112,000,116,116,116,000 ; 29
DB 120,120,120,000,124,124,124,000 ; 31
DB 128,128,128,000,132,132,132,000 ; 33
DB 136,136,136,000,140,140,140,000 ; 35
DB 144,144,144,000,148,148,148,000 ; 37
DB 152,152,152,000,156,156,156,000 ; 39
DB 160,160,160,000,164,164,164,000 ; 41
DB 168,168,168,000,172,172,172,000 ; 43
DB 176,176,176,000,180,180,180,000 ; 45
DB 184,184,184,000,188,188,188,000 ; 47
DB 192,192,192,000,196,196,196,000 ; 49
DB 200,200,200,000,204,204,204,000 ; 51
DB 208,208,208,000,212,212,212,000 ; 53
DB 216,216,216,000,220,220,220,000 ; 55
DB 224,224,224,000,228,228,228,000 ; 57
DB 232,232,232,000,236,236,236,000 ; 59
DB 240,240,240,000,244,244,244,000 ; 61
DB 248,248,248,000,252,252,252,000 ; 63

;
DATA ENDS

;***
; code segment
;***

256 Chapter Eleven

© 2003 by CRC Press LLC

;
CODE SEGMENT

ASSUME CS:CODE
.
.
.

; Call HSPAL to save current palette
MOV AX,57 ; Code number for this service
LEA BX,HSPAL_DATA ; Pointer to data block
CALL AI_SERVICE
.
.
.

; Initialize DAC registers for 256-color mode in the following
; format:
; 7 6 5 4 3 2 1 0 <= bits
; |_| |_| |_| |_|
; I R G B
;**********************|
; set LUT registers |
;**********************|
; Set address of color table in HLDPAL data area

PUSH DS ; DS to stack
POP PAL_SEG ; Store segment in variable
LEA SI,IRGB_SHADES ; Pointer to offset of address
MOV PAL_OFF,SI ; Store offset

; Call HLDPAL to set palette registers
MOV AX,19 ; Code number for this service
LEA BX,HLDPAL_DATA ; Pointer to data block
CALL AI_SERVICE
.
.
.

; Initialize DAC registers for 64 gray shades, repeated 4 times
;**********************|
; set LUT registers |
;**********************|
; Set address of color table in HLDPAL data area

PUSH DS ; DS to stack
POP PAL_SEG ; Store segment in variable
LEA SI,GRAY_SHADES ; Pointer to offset of address
MOV PAL_OFF,SI ; Store offset

; Call HLDPAL to set palette registers
MOV AX,19 ; Code number for this service
LEA BX,HLDPAL_DATA ; Pointer to data block
CALL AI_SERVICE
.
.
.

; Call HRPAL to restore original palette
MOV AX,58 ; Code number for this service
LEA BX,HSPAL_DATA ; Pointer to saved palette data
CALL AI_SERVICE

; Notice that the same data area in which the palette was saved
; is used during the restore operation

.

.

.
CODE ENDS

XGA and 8514/A Adapter Interface 257

© 2003 by CRC Press LLC

In addition to the three palette commands mentioned above, the AI contains a
function named HQDFPAL (query default palette) that reports the default setting of
the first 16 palette registers. HQDFPAL appears to be of little practical use, since the
setting of all palette registers can be obtained by means of the HSPAL (save palette)
function, and the default settings of the first 16 registers is usually known before-
hand (see Table 11-3).

11.5.3 Geometrical Functions
Drawing operations on the XGA and 8514/A Adapter Interface are limited to straight
line segments. The other geometrical functions are rectangular fill area fill operations.

Drawing Straight Lines
The AI documentation classifies the line drawing commands into three types: vertex,
offset, and disjoint lines. All three line types are of the polyline category, since several
line segments can be drawn with the same command. In all AI line drawing commands
the characteristics of the line depend on the selected line type and width, as well as on
the active color mix and comparison. The color of the line and its background is deter-
mined by the setting of the foreground and background colors.

HLINE (polyline at given position) and HCLINE (polyline at current position) are
vertex-type commands. Both commands require a parameter block that encodes a
set of coordinate points. The draw operation connects these coordinate points by
means of straight line segments.

HRLINE (relative polyline at given position) and HCRLINE (relative polyline at
current position) are offset-type commands. In HRLINE the start point of the
polyline is the coordinate of a screen point. In the HCRLINE command the polyline
starts at the current point. The remaining points in the polyline are described as off-
sets from the start point or the from the previous end point. The offsets are encoded
as a 1-byte signed integer for the x coordinate and another one for the y coordinate.
Since each offset is encoded in 1 byte, its range is limited to -128 to +127 pixels.

The disjoint line command is named HDLINE. This function is part of the XGA ex-
tended set, therefore, it is not available in 8514/A systems. In HDLINE the polyline is
described by two coordinate points for each line segment; one marks the start of the
line and the next one its end point. Since each line is described independently, the
line segments that form the polyline can be disconnected from each other.

The following code fragment shows drawing a four-segment polyline using the
HLINE command.

;**
; data segment
;**
DATA SEGMENT

.

.

.
; HLINE (polyline at given position)
HLINE_DATA DW 18 ; Length of data block

DW 500 ; x coordinate of first point

258 Chapter Eleven

© 2003 by CRC Press LLC

DW 300 ; y coordinate of first point
DW 600 ; next x coordinate
DW 300 ; next y coordinate
DW 600 ; x
DW 350 ; y
DW 700 ; x
DW 350 ; y
DW 700 ; x
DW 200 ; y

.

.

.
DATA ENDS
;**
; code segment
;**
;
CODE SEGMENT

ASSUME CS:CODE
.
.

;**********************|
; draw polyline |
;**********************|
POLYGON:
; Call HSCOL (set color)

MOV FORE_COL,00001001B ; Bright blue
MOV AX,7 ; Code number for this service
LEA BX,HSCOL_DATA ; Pointer to data block
CALL AI_SERVICE

; Use the HLINE (polyline at given position) to draw a polyline
MOV AX,0 ; Code number for this service
LEA BX,HLINE_DATA ; Pointer to data block
CALL AI_SERVICE
.
.
.

CODE ENDS

Rectangular Fill
The AI provides a service named HRECT (fill rectangle) which can be used to fill a
rectangular area using the current foreground color and mix as well as an optional fill
pattern defined by the caller. The optional pattern, which can be monochrome or
color, is enabled by means of the HSPATT (set pattern shape) command. The rectangu-
lar fill operation can be conveniently used to clear a window within the viewport, or
even the entire display. Notice that the HEGS (erase graphics screen) command can
also be used to clear the entire display area. HEGS is independent of colors and mixes
but is limited by the scissors and enabled planes.

The following code fragment shows the use of a rectangular fill operation in an
XGA or 8514/A system.

;**
; data segment
;**
DATA SEGMENT

.

XGA and 8514/A Adapter Interface 259

© 2003 by CRC Press LLC

.

.
; Data block for rectangle draw
HRECT_DATA DW 8 ; Length of data block
RECT_X DW 0 ; x coordinate of top-left corner
RECT_Y DW 0 ; y coordinate of top-left corner
RECT_WIDTH DW 0 ; Width (1 to 1024)
RECT_HIGH DW 0 ; Height (1 to 768)

.

.

.
DATA ENDS

;**
; code segment
;**
;
CODE SEGMENT

ASSUME CS:CODE
.
.
.

; Fill a rectangular area using HRECT
MOV RECT_X,100 ; x origin
MOV RECT_Y,50 ; y origin
MOV RECT_WIDTH,500 ; Width, in pixels
MOV RECT_HIGH,200 ; Height, in pixels
MOV AX,32 ; Code number for this service
LEA BX,HRECT_DATA ; Pointer to data block
CALL AI_SERVICE
.
.
.

CODE ENDS

Area Fill
An application using the AI services can define a closed area before it is drawn and
then fill its enclosed boundary with a solid color or a pattern. The HBAR (begin area
definition) command is used to mark the start of the draw or move commands that will
delimit the area to be filled. If the figure defined after the HBAR command is not prop-
erly closed, that is, if its start and end points do not coincide, it is closed automatically
by the AI software. The actual fill operation is performed by means of the HEAR (end
area definition) command. A control byte in the HEAR parameter area allows select-
ing one of three operations modes: fill area, suspend area definition, or abort. The con-
trol setting to suspend the area definition has the effect of leaving the presently
defined area in an internal AI buffer until another HBAR or HEAR command is exe-
cuted. Area fill operations take place using the current foreground color, as well as the
pattern and mix.

The following code fragment shows the definition, drawing, and filling of a poly-
gon.

;**
; data segment
;**
DATA SEGMENT

260 Chapter Eleven

© 2003 by CRC Press LLC

.

.

.
; Data for connected straight line segments to form a 7-segment
; polygon
HCLINE_DATA DW 26 ; Length of data block

; for 14 coordinate points
X1 DW 562 ; x coordinate of first end point
Y1 DW 384 ; y coordinate of first end point
X2 DW 700 ; Second pair of x,y coordinates
Y2 DW 500
X3 DW 520 ; Third pair of x,y coordinates
Y3 DW 550
X4 DW 400 ; Fourth pair of x,y coordinates
Y4 DW 500
X5 DW 450 ; Fifth pair of x,y coordinates
Y4 DW 384
X6 DW 530 ; Sixth pair of x,y coordinates
Y6 DW 450
X7 DW 512 ; Last pair of x,y coordinates
Y7 DW 384 ; are on screen center

.

.

.
DATA ENDS

;**
; code segment
;**
;
CODE SEGMENT

ASSUME CS:CODE
.
.
.

; Call HSCP (set current coordinate position)
; Coordinates are set at the center of the screen on 1024 by 768
; pixels modes

MOV NEW_X,512 ; Middle of screen column
MOV NEW_Y,384 ; Middle of screen row
MOV AX,4 ; Code number for this service
LEA BX,HSCP_DATA ; Pointer to data block
CALL AI_SERVICE

; Call HBAR to begin fill area
MOV AX,5 ; Code number for this service
LEA BX,DUMMY ; Pointer to data block
CALL AI_SERVICE

; Call HCLINE (draw line at current coordinate position)
; Coordinates of the line's start point were set by the HSCP
; service. Coordinates of polygon points already in data block

MOV AX,1 ; Code number for this service
LEA BX,HCLINE_DATA ; Pointer to data block
CALL AI_SERVICE

; Call HEAR to fill area
MOV AX,6 ; Code number for this service
LEA BX,HEAR_DATA ; Pointer to data block
CALL AI_SERVICE
.
.
.

XGA and 8514/A Adapter Interface 261

© 2003 by CRC Press LLC

CODE ENDS

11.5.4 Raster Operations
The XGA and 8514/A AI supports two types of raster operations: polymarker display
and bitBLTs. These functions were described in Sections 11.4.4 and 11.4.6 respec-
tively. In addition, the extended XGA AI services provide a means for manipulating on
and off screen bitmaps. The bitmap functions are not available in 8514/A systems.

Polymarkers
Polymarkers are useful in displaying one or more copies of a bitmapped object. A typi-
cal use is in the animated display of one or more mouse-controlled screen objects. The
following code fragment shows the display of two copies of a marker symbol.

;**
; data segment
;**
DATA SEGMENT

.

.

.
; Data area for HSMARK (define marker symbol)
HSMARK_DATA DW 14 ; Length of data block
MARK_WIDE DB 8 ; Pixel width of marker symbol
MARK_HIGH DB 16 ; Pixel height of marker
MARK_TYPE DB 0 ; 7 6 5 4 3 2 1 0 <= BITS

; | |_|_|_|_|_|_|_ reserved (0)
; |____________ 0 = monochrome
; 1 = multicolor

DB 0 ; Reserved
MARK_SIZE DW 16 ; Number of bytes in marker image

; size = ((width * height)+7)/8
MARK_OFF DW 0 ; Offset of marker image map
MARK_SEG DW 0 ; Segment of marker image map
M_COLOR_OFF DW 0 ; Offset of color image map
M_COLOR_SEG DW 0 ; Segment of color image map
;
; Bitmap for marker image
; Marker image is a vertical arrow symbol
MARK_MAP DB 00100100B ; 1

DB 00111100B ; 2
DB 00111100B ; 3
DB 00111100B ; 4
DB 00011000B ; 5
DB 00011000B ; 6
DB 00011000B ; 7
DB 00011000B ; 8
DB 00011000B ; 9
DB 00011000B ; 10
DB 00011000B ; 11
DB 11111111B ; 12
DB 01111110B ; 13
DB 00111100B ; 14
DB 00011000B ; 15
DB 00011000B ; 16

;
; Marker display command
HMRK_DATA DW 8 ; Length of data block

262 Chapter Eleven

© 2003 by CRC Press LLC

MARKER_X0 DW 40 ; x coordinate of first marker

MARKER_Y0 DW 500 ; y coordinate of first marker

MARKER_X1 DW 55 ; x coordinate of second marker

MARKER_Y1 DW 500 ; y coordinate of second marker

.

.

.

DATA ENDS

;**

; code segment

;**

;

CODE SEGMENT

ASSUME CS:CODE

.

.

.

;**********************|

; marker display |

;**********************|

; Display monochrome marker (down arrow) stored at MARK_MAP

; First use HSMARK to define the marker bitmap

; Set address marker bitmap in control block variables

PUSH DS ; Data segment

POP MARK_SEG ; Store in variable

LEA SI,MARK_MAP ; Offset of marker bitmap

MOV MARK_OFF,SI ; Store offset of bitmap

; Call HSMARK

MOV AX,52 ; Code number for this service

LEA BX,HSMARK_DATA ; Pointer to data block

CALL AI_SERVICE

; Call HMRK (display markers)

MOV AX,50 ; Code number for this service

LEA BX,HMRK_DATA ; Pointer to data block

CALL AI_SERVICE

.

.

.

CODE ENDS

BitBLT

BitBLT operations in the AI allow read, write, and copy functions, as described in Sec-
tion 11.4.6. Except for the polymarker function, bitBLT provides the only way in which
an 8514/A application can read, write, or copy a bi map. The following code fragment
shows two bitBLT operations, first, a bitmapped image of a running boar target, resi-
dent in RAM, is displayed using a bitBLT write operation. Second, the displayed image
is copied to another screen position.

XGA and 8514/A Adapter Interface 263

© 2003 by CRC Press LLC

;**
; data segment
;**
DATA SEGMENT

.

.

.
; Data for bitBLT write operation
HBBW_DATA DW 10 ; Length of data block
WR_FORMAT DW 0 ; Format

; 0000H = across the planes
; 0008H = through the planes

WR_WIDTH DW 48 ; Block's pixel width
WR_HEIGHT DW 19 ; Pixel rows in block
DEST_X DW 100 ; x coordinate for display
DEST_Y DW 500 ; y coordinate for display
;
; Data for bitBLT chain image operation
HBBCHN_DATA DW 6 ; Length of data block
BBLOK_OFF DW 0 ; Offset of image map
BBLOK_SEG DW 0 ; Segment of image map
BBLOK_SIZE DW 114 ; Byte size of image buffer
;
; Data block for bit block copy
HBBC_DATA DW 16 ; Length of data block
BLT_FORMAT DW 8 ; Format

; 0000H = across the planes
; 0008H = through the planes

BLT_WIDTH DW 60 ; Block's pixel width
BLT_HEGHT DW 20 ; Pixel rows in block
PLANE_NUM DB 0 ; Bit plane for across plane

; mode
DB 0 ; Reserved value

SOURCE_X DW 20 ; x coordinate of source image
SOURCE_Y DW 490 ; y coordinate of source
DESTIN_X DW 200 ; x coordinate of destination
DESTIN_Y DW 500 ; y coordinate of destination
;
;****************************|
; bitmapped image in RAM |
;****************************|
; Bitmap for a running boar target
; Bitmap dimensions are 6 bytes (48 pixels) by 19 rows
BOAR_MAP DB 01FH,080H,00FH,0FFH,0F0H,000H ; 1

DB 000H,043H,0F0H,081H,00EH,000H ; 2
DB 000H,03CH,001H,03CH,081H,000H ; 3
DB 000H,040H,002H,042H,040H,0C0H ; 4
DB 000H,040H,004H,099H,020H,030H ; 5
DB 000H,080H,005H,024H,0A0H,00CH ; 6
DB 000H,080H,005H,05AH,0A0H,003H ; 7
DB 000H,080H,005H,05AH,0A0H,001H ; 8
DB 007H,000H,005H,024H,0A0H,01EH ; 9
DB 008H,000H,004H,099H,020H,060H ; 10
DB 008H,000H,002H,042H,047H,080H ; 11
DB 010H,000H,001H,03CH,088H,000H ; 12
DB 028H,000H,000H,081H,007H,080H ; 13
DB 05FH,0C1H,0F0H,03FH,000H,040H ; 14
DB 0FCH,03EH,00FH,0FCH,000H,0B0H ; 15
DB 014H,000H,000H,002H,061H,060H ; 16
DB 024H,000H,000H,001H,099H,000H ; 17

264 Chapter Eleven

© 2003 by CRC Press LLC

DB 078H,000H,000H,000H,006H,080H ; 18
DB 000H,000H,000H,000H,001H,0C0H ; 19

.

.

.
DATA ENDS

;**
; code segment
;**
;
CODE SEGMENT

ASSUME CS:CODE
.
.
.

;**********************|
; bitBLT operations |
;**********************|
; BitBLT bitmap of boar from memory to video
; Call HBBW (bit block write)

MOV AX,21 ; Code number for this service
LEA BX,HBBW_DATA ; Pointer to data block
CALL AI_SERVICE

; Call HBBCHN to chain bit block
; Set address marker bitmap in control block variables

PUSH DS ; Data segment
POP BBLOK_SEG ; Store in variable
LEA SI,BOAR_MAP ; Offset of marker bitmap
MOV BBLOK_OFF,SI ; Store offset of bitmap

; Call HBBCHN service
MOV AX,24 ; Code number for this service
LEA BX,HBBCHN_DATA ; Pointer to data block
CALL AI_SERVICE

; Re-display boar image using a bit block copy
; Call HBBC (bit block copy)

MOV AX,25 ; Code number for this service
LEA BX,HBBC_DATA ; Pointer to data block
CALL AI_SERVICE
.
.
.

CODE ENDS

11.5.5 Character Fonts
XGA and 8514/A systems are furnished with disk-based character fonts that can

be used in text display operations. Since the BIOS text functions do not operate on
the XGA and 8514/A, the use of disk-based fonts is the simplest option for text dis-
play in the advanced function modes. In the loading of a disk-based font file the ap-
plication is left to its own resources, since the AI provides no command to perform
this operation. In addition to loading the font file into RAM, the application must
also inform the AI of the font's address and select the desired character set. The fol-
lowing code fragment shows the necessary operations for loading a disk-resident
font file into RAM, for initializing the necessary AI parameter blocks, and for select-
ing a character set for text and alphanumeric operations.

XGA and 8514/A Adapter Interface 265

© 2003 by CRC Press LLC

;**
; data segment
;**
DATA SEGMENT

.

.

.
;**********************|
; text operations data |
;**********************|
; Parameter block for HSCS (text select character set)
HSCS_DATA DW 4 ; Length of data block
FONT_OFF DW 0 ; Offset of loaded font
FONT_SEG DW 0 ; Segment of loaded font
;
; Parameter block for ASFONT (alpha select character set)
ASFONT_DATA DW 6 ; Length of data block

DB 0 ; Font number
DB 0 ; Reserved

AFONT_OFF DW 0 ; Offset of loaded font
AFONT_SEG DW 0 ; Segment of loaded font
;
;**********************|
; fonts |
;**********************|
; ASCIIZ filename for XGA 85-by-38 font
F1220_NAME DB 'STAN1220.FNT',00H
FONT_HANDLE DW 0 ; Handle for font file
;
;**********************|
; storage for font |
;**********************|
; Font header area
FONT_BUF DW 0 ; Number of code pages

DW 0 ; Default code page (0 to 4)
DW 0 ; Alternate default (0 to 4)
DD 0 ; 4-byte ID string ('437',0)

PAGE_1_OFFSET DW 0 ; Offset of CSD within file
DD 0 ; 4-byte ID string ('850',0)
DW 0 ; Offset of CSD within file
DD 0 ; 4-byte ID string ('860',0)
DW 0 ; Offset of CSD within file
DD 0 ; 4-byte ID string ('863',0)
DW 0 ; Offset of CSD within file
DD 0 ; 4-byte ID string ('865',0)
DW 0 ; Offset of CSD within file

;
; Character set definition block for first code page

DB 0 ; Reserved
DB 0 ; Font type:

; 0 = multiplane image
; 3 = short vector font

DB 0 ; Reserved
DD 0 ; Reserved

CELL_WIDTH DB 0 ; Pixel width of character cell
CELL_HEIGHT DB 0 ; Pixel height of cell

DB 0 ; Reserved
DW 0 ; Cell size

CSD_FLAGS DW 0 ; Flag bits:
; Bit 14 ... 0 = single-plane

266 Chapter Eleven

© 2003 by CRC Press LLC

; 1 = multiplane
; 13 ... 0 = not prop. space
; 1 = prop. space

IDX_TABLE_O DW 0 ; Offset of index table
IDX_TABLE_S DW 0 ; Segment of index table

DW 0 ; Offset of envelope table
DW 0 ; Segment of envelope table
DB 0 ; Initial code point
DB 0 ; Final code point

CSD_TABLE_O DW 0 ; Offset of character definition
CSD_TABLE_S DW 0 ; Segment of character definition

DB 14250 DUP (00H)
.
.
.

DATA ENDS
;
;**
; code segment
;**
;
CODE SEGMENT

ASSUME CS:CODE
.
.
.

;**********************|
; load font file |
;**********************|
; Before using text display operations one of the four font files
; provided with the adapter must be loaded into RAM

LEA DX,F1220_NAME ; Filename for XGA 12x20 font
LEA DI,FONT_BUF ; Buffer for storing font
CALL XGA_FONT ; Local procedure to load font

; Carry set if error during font load
JNC OK_XGA_FONT ; Go if no error

;**********************|
; font load error |
;**********************|
; At this point the application must provide a handler to take
; care of the error that occurred during the font load operation

.

.

.
;**********************|
; init parameter block |
;**********************|
; The AI is informed of the address of the loaded font by means
; of the HSCS (set character set) function
OK_XGA_FONT:

PUSH DS ; DS to stack
PUSH DS ; twice
POP FONT_SEG ; Store in parameter block

; Alphanumeric display operations require a separate parameter
; block initialization

POP AFONT_SEG ; For alphanumeric operations
; The offset of the font's character set definition block is
; located at byte 10 of the font header

LEA SI,FONT_BUF ; Offset of font buffer
MOV BX,[SI+10] ; Get offset of first code page

XGA and 8514/A Adapter Interface 267

© 2003 by CRC Press LLC

ADD BX,SI ; Add offset to pointer
MOV FONT_OFF,BX ; Store pointer in block
MOV AFONT_OFF,BX ; For alphanumeric operations

;**********************|
; update font pointers |
;**********************|
; Update pointers in character set definition area by adding
; the load address of the font (in SI)

ADD IDX_TABLE_O,SI ; Add to index table offset
ADD CSD_TABLE_O,SI ; and to CSD table offset

; AX still holds the segment address. Store segment portion of
; address

MOV IDX_TABLE_S,AX ; In index table
MOV CSD_TABLE_S,AX ; In character set table

;**********************|
; select character set |
;**********************|
; Call HSCS (set character set) function

MOV AX,37 ; Code number for this service
LEA BX,HSCS_DATA ; Pointer to data block
CALL AI_SERVICE
.
.
.

;**
; procedures
;**
XGA_FONT PROC NEAR
; Read an XGA or 8514-a font file into RAM
; On entry:
; DS:DX --> ASCIIZ filename for font file
; (must be in the current path)
; DS:DI --> RAM buffer for font storage
;
; On exit:
; Carry clear if font read and stored in buffer
; Carry set if file not found or disk error
;
; Open font file using MS-DOS service

PUSH DI ; Save entry pointer
MOV AH,61 ; DOS service request number

; to open file (handle mode)
MOV AL,2 ; Read/write access
INT 21H
POP DI ; Restore pointer

; File opened?
JNC OK_XOPEN ; Go if no error code

;**********************|
; disk open error |
;**********************|
; Open operation failed. Set carry flag and return to caller

STC ; Signal error
RET

;**********************|
; read font into RAM |
;**********************|
OK_XOPEN:

MOV FONT_HANDLE,AX ; Store file handle
NEW_128:

MOV BX,FONT_HANDLE

268 Chapter Eleven

© 2003 by CRC Press LLC

LEA DX,DATA_BUF ; Buffer for data storage
PUSH DI ; Save buffer pointer

; Use MS-DOS service to read 128 bytes
PUSH CX ; Save entry CX
MOV AH,63 ; MS-DOS service request
MOV CX,128 ; Bytes to read
INT 21H
POP CX ; Restore

; 128 bytes read into buffer
POP DI ; Restore buffer pointer
CMP AX,0 ; Test for end of file
JNE MOVE_128 ; Go if not at end of file

;**********************|
; end of file |
;**********************|

MOV BX,FONT_HANDLE ; Handle for font file
; Close file using MS-DOS service

MOV AH,62 ; DOS service request
INT 21H
JMP END_OF_READ

;**********************|
; move sector to |
; font buffer |
;**********************|
; At this point DATA_BUF holds 128 bytes from disk file
; DI --> storage position in the font's buffer
MOVE_128:

MOV CX,128 ; Byte counter
LEA SI,DATA_BUF ; Pointer to data just read

PLACE_128:
MOV AL,[SI] ; Byte from DATA_BUF
MOV [DI],AL ; Into font's buffer
INC SI ; Bump pointers
INC DI
LOOP PLACE_128 ; Continue until all sector read

; At this point the 128 bytes read from the disk file are stored
; in the font's buffer

JMP NEW_128
END_OF_READ:

CLC
RET

XGA_FONT ENDP
.
.
.

CODE ENDS

11.5.6 Displaying Text
Once the preparatory operations described in Section 11.5.5 have been successfully
executed, the application is able to use AI commands to display text characters and
strings. Two types of text display services are available in the AI: string and alphanu-
meric commands.

Character String Operations
The character string commands are HCHST (character string at given position) and
HCCHST (character string at current position). AI string display operations allow po-
sitioning the text characters at a screen pixel boundary. This offers a level of control

XGA and 8514/A Adapter Interface 269

© 2003 by CRC Press LLC

that exceeds the one in BIOS text display services. The following code fragment shows
the display of a character string using HCHST.

;**
; data segment
;**
DATA SEGMENT

.

.

.
HCHST_DATA_1 DW 59 ; Length of data block
PIXEL_COL DW 150 ; Column address for start
PIXEL_ROW DW 20 ; Row address for start

DB 'XGA and 8514/A Adapter Interface'
DB ' bitBLT Operations Demo'

;
;**********************|
; color data |
;**********************|
; Parameter blocks for foreground and background colors
; Foreground color
HSCOL_DATA DW 4 ; Length of data block
FORE_COL DB 0F0H ; 8-bit color code

DB 0 ; Padding for double word
DW 0

; Background color
HSBCOL_DATA DW 4 ; Length of data block
BACK_COL DB 11110000B ; Bright red in 2-bit

; IRGB format
DB 0 ; Padding for double word
DW 0

.

.

.
DATA ENDS
;
;**
; code segment
;**
;
CODE SEGMENT

ASSUME CS:CODE
.
.
.

;**********************|
; select colors |
;**********************|
;
; AI string commands perform text display operations at the pixel
; level. First set foreground color to bright red

MOV FORE_COL,00001100B ; Bright red
MOV AX,7 ; Code number for this service
LEA BX,HSCOL_DATA ; Pointer to data block
CALL AI_SERVICE

; Now set the background color to dark blue
MOV BACK_COL,00000001B ; Dark blue
MOV AX,10 ; Code number for this service
LEA BX,HSBCOL_DATA ; Pointer to data block
CALL AI_SERVICE

270 Chapter Eleven

© 2003 by CRC Press LLC

;**********************|

; display text string |

;**********************|

; Call HCHST (display character string at given position)

MOV AX,38 ; Code number for this service

LEA BX,HCHST_DATA_1 ; Pointer to data block

CALL AI_SERVICE

.

.

.

CODE ENDS

Alphanumeric Operations

Alphanumeric commands in the AI can be easily identified since their names start with
the letter "A". In Section 11.5.5 we saw the use of the ASFONT (alpha select character
set) to inform the adapter of the address of the character map resident in RAM and to
select a character set. The other preparatory operations described in Section 11.5.5
must also be performed in order for an application to use the alphanumeric com-
mands.

One difference between the string display commands and the alphanumeric com-
mands is that the string commands allow positioning of the text characters at the
screen pixel level while the alphanumeric commands use a screen grid of the size of
the character cells. Table 11-11 shows the cell size of the different font files fur-
nished with XGA and 8514/A systems.

Table 11-11

XGA and 8514/A Font Files and Text Resolution

FILE NAME SCREEN SIZE CHARACTER SIZE ALPHA MODE GRID
WIDTH HEIGHT COLUMNS ROWS

STAN1220.FNT 1024 by 768 12 20 85 38
STAN1223.FNT 1024 by 768 12 23 85 33
STAN0814.FNT 640 by 480 8 14 80 34

1024 by 768 8 14 128 54
STAN0715.FNT 1024 by 768 7 15 146 52

On the other hand, the AI alphanumeric commands allow the attributes of each
character to be individually controlled. In addition, alphanumeric commands pro-
vide the control and display of a cursor character. Since the blinking attribute is not
available in XGA and 8514/A systems, this alphanumeric cursor is nothing more than
a static graphics symbol, which must be handled by the application. The grid for cur-
sor operations is also determined by the character size.

There are two alphanumeric display commands in the AI. The command named
ABLOCKMFI (write character block in mainframe interactive mode) is designed to
simulate character display in a mainframe environment. The command
ABLOCKCGF (write character block in CGA mode) is designed to simulate the dis-
play controls in the IBM Color Graphics Adapter. The following code fragment
shows the use of alphanumeric commands in cursor and text display operations.

XGA and 8514/A Adapter Interface 271

© 2003 by CRC Press LLC

;**
; data segment
;**
DATA SEGMENT

.

.

.
; ASCUR (set cursor shape)
ASCUR_DATA DW 3 ; Length of data block

DB 16 ; Cursor start line
DB 19 ; Cursor stop line

CUR_SHAPE DB 00 ; Cursor attribute:
; 00 = normal
; 01 = hidden
; 02 = left arrow
; 03 = right arrow

; ACURSOR (set cursor position)
ACURSOR_DATA DW 2 ; Length of data block
CUR_COLUMN DB 0 ; Cursor column
CUR_ROW DB 0 ; Cursor row
;
; ASFONT (select character set)
ASFONT_DATA DW 6 ; Length of data block

DB 0 ; Font number
DB 0 ; Reserved

AFONT_OFF DW 0 ; Offset of loaded font
AFONT_SEG DW 0 ; Segment of loaded font
;
; ABLOCKCGA (writes a block of characters in CGA emulation mode)
ABLOCKCGA_DATA DW 10 ; Length of data block
COL_START DB 0 ; Start column for display
ROW_START DB 0 ; Start row for display
CHAR_WIDE DB 0 ; Width of block (characters)
CHAR_HIGH DB 0 ; Height of block (characters)
STRING_OFF DW 0 ; Offset of string address
STRING_SEG DW 0 ; Segment of string address
BUF_WIDE DB 85 ; Characters per row displayed
ATTRIBUTE DB 0 ; 7 6 5 4 3 2 1 0 <= BITS

; | | | | | | | |
; | | | | | | |_|__ font (0 to 3)
; | | | | |_|______ reserved
; | | | |________ 1 = transparent
; | | | 0 = opaque
; | | |__________ overstrike
; | |____________ reverse video
; |______________ underscore

;
; __________ background color
; | _____ foreground color
; | |
; String for ABLOCKCGA C |--||--|
STRING_1 DB 'T',00001001B

DB 'h',00001001B
DB 'i',00001001B
DB 's',00001001B
DB ' ',00001001B
DB 'i',00001100B
DB 's',00001100B
DB ' ',00001100B
DB 'a',00001010B

272 Chapter Eleven

© 2003 by CRC Press LLC

DB ' ',00001010B
DB 't',00011100B
DB 'e',00011100B
DB 's',00011100B
DB 't',00011100B

.

.

.
DATA ENDS
;
;**
; code segment
;**
;
CODE SEGMENT

ASSUME CS:CODE
.
.
.

;**********************|
; alphanumeric text |
;**********************|
; AI commands that start with the prefix letter A are used to
; perform alphanumeric operations at the character cell level.
; The alphanumeric commands allow controlling the attribute of
; each individual character displayed.
;**********************|
; cursor operations |
;**********************|
; Display cursor

MOV CUR_COLUMN,30 ; Column number
MOV CUR_ROW,4 ; Row number

;
; Call ASCUR (set cursor shape)

MOV AX,45 ; Code number for this service
LEA BX,ASCUR_DATA ; Pointer to data block
CALL AI_SERVICE

; CAll ACURSOR (set cursor position)
MOV AX,44 ; Code number for this service
LEA BX,ACURSOR_DATA ; Pointer to data block
CALL AI_SERVICE

; Call ASFONT (select font)
; Code assumes that the address of the RAM-resident font has
; been previously set in the parameter block

MOV AX,46 ; Code number for this service
LEA BX,ASFONT_DATA ; Pointer to data block
CALL AI_SERVICE

; Display text message using ABLOCKCGA function
; Set display parameters in control block variables

MOV COL_START,20 ; Start at column 20
MOV ROW_START,30 ; and at row number 30
MOV CHAR_WIDE,14 ; Characters wide
MOV CHAR_HIGH,1 ; Characters high
PUSH DS ; Data segment
POP STRING_SEG ; Store in variable
LEA SI,STRING_1 ; Offset of text string
MOV STRING_OFF,SI ; Store offset of string

; Call ABLOCKCGA
MOV AX,41 ; Code number for this service
LEA BX,ABLOCKCGA_DATA ; Pointer to data block

XGA and 8514/A Adapter Interface 273

© 2003 by CRC Press LLC

CALL AI_SERVICE
.
.
.

CODE ENDS

274 Chapter Eleven

© 2003 by CRC Press LLC

Chapter 12

XGA Hardware Programming

Topics:
• The XGA hardware

• XGA features and architecture

• Initializing the XGA system

• Processor access to XGA video memory

• Programming the XGA graphics coprocessor

• The XGA sprite

• Using the book's XGA library

This chapter describes the XGA architecture and its programmable hardware compo-
nents.and iIllustrates XGA programming by manipulating the video hardware directly
and by accessing video memory. It describes the XGA graphics coprocessor, its capa-
bilities, initialization, and programming, and also the XGA sprite, its hardware ele-
ments, and the programming of sprite operations. The chapter concludes with a listing
of the procedures in the GRAPHSOL library furnished with the book.

12.1 XGA Hardware Programming
Chapter 11 discusses the XGA Adapter Interface software and how it can be used in
programming 8514/A and XGA systems. However, the AI has some limitations. At the
system level the use of AI services would almost certainly be discarded for reasons of
code autonomy. The applications programmer can also find objections to using the AI,
particularly its limited services and its performance penalty. In summary, one or more
of the following reasons will often determine that the programmer uses direct access
to the XGA hardware:

1. The process of loading and initializing the Adapter Interface cannot be conveniently
performed at the program's level.

2. The services provided by the Adapter Interface are insufficient for the program's pur-
pose.

© 2003 by CRC Press LLC

3. The performance of the adapter interface services do not meet the requirements of the
code.

In the case of system programs, device drivers, and other low-level graphics soft-
ware, the decision will often be to not use the AI at all, especially if objection num-
ber one, listed above, is applicable. Then the programmer would take control of the
XGA hardware and proceed with the XGA device as described in Chapters 2 to 5 re-
garding the VGA system. Although, even when assuming control over the hardware,
it is possible that the software developers could benefit from using the character
fonts furnished with the AI.

On the other hand, most graphics applications could be developed either by using
AI services exclusively or in a mixed environment in which the code complements
the AI services with direct hardware programming. For example, an application
could be designed to use the AI services when their control and performance is at an
acceptable level. In this manner, the AI commands described in Chapter 6 can be
useful and convenient in initializing the XGA, setting the color palette, loading font
files into RAM, display-ing text messages, clearing the screen, and closing the
adapter. All of the above are functions in which performance is often not an impor-
tant issue. At the same time, the application may assume direct control of the XGA
hardware in setting individual pixels, drawing lines and geometrical figures, per-
forming bitBlt operations to and from video memory, manipulating graphics mark-
ers, and other functions in which control or performance factors are important.

12.1.1 XGA Programming Levels

Regarding the XGA and system hardware the graphics programmer can operate at four
different levels. The first and highest level is the graphics functions offered by operat-
ing systems and graphics environments. Such is the case in applications that execute
under the Windows and OS/2 operating systems and use the graphics services pro-
vided by the system software. The second level of XGA programming is by means of
the AI services discussed in Chapter 6. The third level is by programming the XGA reg-
isters and the graphics coprocessor. The fourth and lowest level of XGA graphics pro-
gramming is by accessing video memory directly. Graphics programming in high-level
environments such as the Windows and OS/2 operating systems are outside of the sub-
ject matter of this book. XGA programming by means of AI services was discussed in
Chapter 6. The present chapter is devoted to programming the XGA graphics
coprocessor and accessing XGA video memory directly.

These same four levels of programming are possible in 8514/A systems. Since the
8514/A is no longer state-of-the-art we have not included its low-level programming.
Readers interested in programming the 8514/A at the register level should consult
Graphics Programming for the 8514/A by Jake Richter and Bud Smith (see Bibliog-
raphy), as well as the 8514/A documentation available from IBM.

12.2 XGA Features and Architecture
Figure 11.2 shows the elements of the XGA system. The XGA is furnished as an op-
tional adapter card for microchannel computers equipped with the 80386, 80386SX, or
486 processor. The XGA system is integrated in the motherboard of the Model 90 XP

276 Chapter Twelve

© 2003 by CRC Press LLC

486. Sections 6.0 and 6.1 (Chapter 6) describe the evolution of the XGA from the
8514/A adapter, its comparative features as well as its presentation. To the program-
mer the XGA system presents the following interesting features:

1. It includes all VGA modes and is compatible with VGA at the register level. That is, soft-
ware developed for VGA can be expected to run satisfactorily in XGA. One exception
is programs that make use of the VGA video space for other purposes. For example, a
popular VGA enhancement for the Ventura Publisher typesetting program, called Soft
Kicker, will not operate in the VGA modes of an XGA system.

2. XGA includes a 132-column text mode that represents a substantial enhancement to
the 80-column text modes of the VGA. This mode requires an XGA system equipped
with the appropriate video display. At this time no BIOS support is provided for the
132-column mode or for XGA graphics operations.

3. The XGA Extended Graphics modes, or enhanced modes, provide a maximum resolu-
tion of 1,024 by 768 pixels in 256 colors, which can be selected from a palette of 256K
colors. The enhanced modes also provide a 64-by-64 pixels hardware-controlled
graphics object, whose shape is defined by the application. This graphics object,
called the sprite, is usually animated by mouse movements and used to
non-destructively overlay a displayed image. The XGA graphics modes support sys-
tems with multiple video displays.

4. The XGA direct color mode, also called the palette bypass mode, is capable of display-
ing 65,536 colors on a 640-by-480 pixel grid. In this mode the pixel color is encoded in a
16-bit value that is used to set the red, blue, and green electron guns without interven-
tion of the LUT registers.

12.2.1 The XGA Graphics Coprocessor
One characteristic of XGA hardware that differentiates it from VGA and SuperVGA
systems is the presence of a graphics coprocessor chip. Much of the enhanced perfor-
mance of the XGA system is due to this device. The following are the most important
features of the graphics coprocessor:

1. The coprocessor can obtain control of the system bus in order to access video and sys-
tem memory independently of the central processor. This bus-mastering feature al-
lows the coprocessor to perform graphics operations while the main processor is
executing other functions.

2. The graphics coprocessor can directly perform drawing operations. These include
straight lines, filled rectangles, and bit block transfers.

3. The coprocessor provides support for saving its own register contents. This feature is
useful in a multitasking environment.

4. The coprocessor supports several logical and arithmetic mixes including OR, AND,
XOR, NOT, source, destination, add, subtract, average, maximum, and minimum
operands.

5. The coprocessor can manipulate images encoded in 1, 2, 4, or 8 bits per pixel formats.
Pixel maps can be defined as coded in Intel or Motorola data storage formats.

6. The coprocessor can be programmed to generate system inter-rupts. These interrupts
can occur when the coprocessor operation has completed, an access to the

XGA Hardware Programming 277

© 2003 by CRC Press LLC

coprocessor was rejected, a sprite operation completed, or at the end or start of the
screen blanking cycle.

The coprocessor registers are memory-mapped. To an application, programming
the coprocessor consists of reading and storing data into these reserved memory ad-
dresses. In contrast, the XGA main registers are port-mapped and programming con-
sists of reading and writing to these dedicated ports.

The execution of a coprocessor operation consists of the following steps:

1. The system microprocessor reads and writes data to coprocessor registers that must
be initialized for the operations.

2. The coprocessor operation starts when a command is written to its Pixel Operations
register.

3. The coprocessor executes the programmed operation. During this time the system mi-
croprocessor can be performing other tasks. The only possible interference between
processor and coprocessor is when both are accessing the bus simultaneously. In this
case the access takes place according to the established priorities.

4. At the conclusion of the programmed operation the graphics coprocessor informs the
system and becomes idle.

12.2.2 VRAM Memory

Since the XGA is a memory-mapped system the color code for each screen pixel is en-
coded in video RAM. How many units of memory are used to encoded the pixel's color
depends on the adopted format. Possible values are of 1, 2, 4, 8, and 16 bits per pixel.
The number of colors are respective powers of 2, as shown in Table 12-1.

Table 12-1

Pixel to Memory Mapping in XGA Systems

BITS-PER-PIXEL POWER OF 2 NUMBER OF COLORS

1 21 2
2 22 4
4 24 16
8 28 256

16 216 65536

Notice that the 256 and 65,536 color modes are available only in XGA systems
with maximum on-board RAM (1Mb). The total amount of VRAM required depends
on the number of screen pixels and the number of encoded colors. For example, to
store the contents of the entire XGA screen at 1,024-by-768 pixels resolution re-
quires a total of 786,432 memory units. In the 8-bits per pixel format the number of
memory units is of 786,432 bytes (8 bits per byte). However, this same screen can be
stored in 98,304 bytes if each screen pixel is represented in a single memory bit
(786,432 / 8 = 98,304).

278 Chapter Twelve

© 2003 by CRC Press LLC

Therefore the video memory space of an XGA system in 1,024-by-768 pixel mode,
with each pixel encoded in 256 colors, exceeds by far the limit of an 80x86 segment
register (65,536). Therefore an application accessing video memory directly while
executing in 80x86 real mode requires some sort of memory banking mechanism by
which to access a total of 768,432 bytes of VRAM memory. In fact, a minimum of 12
memory banks of 65,536 bytes are required to encode the 768,432 XGA pixels in
1,024-by-768 pixel mode in 256 colors. This banking mechanism is discussed in de-
tail later in Section 12.3

Video Memory Apertures

In general, an XGA system can access video memory by means of three different aper-
tures, described as follows:

1. The largest memory aperture is of a 22-bit space. This range of 4Mb allows addressing
four times the maximum VRAM that can be present in an XGA system. The 4Mb ad-
dress space must be represented in an 80386 or 486 extended register. This is the aper-
ture used by the XGA graphics coprocessor.

2. The second possible aperture into video memory is of 1Mb. Since this is also the maxi-
mum VRAM that can be present in an XGA system, the 1Mb aperture allows addressing
all video memory consecutively by means of an 80386 or 486 extended register.

3. The third possible aperture is of 16 banks of 64K each. This aperture, which is the only
one possible in the MS-DOS environment, requires bank switching to access the maxi-
mum VRAM.

Notice that in a particular display mode not all 16 banks are required to access
the mapped video memory space.

Data Ordering Schemes

XGA memory mapping can be according to the Intel or the Motorola storage conven-
tions. The XGA hardware allows selecting the Intel or Motorola formats for every op-
eration that accesses a pixel map or image stored in system or video memory. In the
Intel conven-tion, also known as the little-endian addressing scheme, the smallest ele-
ment (little end) of a number is stored at the lowest numbered memory location. In the
Motorola convention, known as big-endian addressing, the largest element (big end) is
stored at the lowest numbered memory location. Table 12-2 shows the results of stor-
ing bytes, words, and doublewords according to the Intel and the Motorola conven-
tions.

Table 12-2

Data Storage According to the Intel and Motorola Conventions

DATA STORAGE UNIT INTEL MOTOROLA

00 11 AA FF byte 00|11|AA|FF 00|11|AA|FF
00 11 AA FF word 11 00|FF AA 00 11|AA FF
00 11 AA FF doubleword FF AA 11 00 00 11 AA FF

low => high low => high

XGA Hardware Programming 279

© 2003 by CRC Press LLC

Notice that since the unit of memory storage in IBM microcomputers is 1 byte,
the Intel and Motorola storage schemes are identical in byte-ordered data. Also that
the value of bits within the stored byte is in the conventional format, that is, the low
order bit (bit number 0) is located at the rightmost position.

12.2.3 The XGA Display Controller
Another programmable device of the XGA system is the Display Controller chip. This
IC contains the color look-up table, the CRT Controller, and the hardware registers for
the operation of a special cursor, called the sprite (see Section 12.5). The XGA display
controller registers are a superset of the VGA registers. As in the VGA, these registers
are mapped into the systems I/O space. Therefore they appear to the programmer as
input and output ports.

The base address of the XGA display controller is port 21x0H. The variable x in
the port number depends on the instance of the XGA adapter. Recall that more than
one XGA system can co-exist in a microcomputer. The instance is the number that
corresponds to a particular XGA adapter or motherboard implementation. The user
can change the instance number of an installed XGA adapter by means of the setup
procedures provided by the reference diskette. The default instance value for a sin-
gle XGA adapter card is 6, which determines a base address for the Display Control-
ler of 2160H. Notice that the instance number replaces the variable x in the general
formula.

The programmable registers in the XGA Display Controller are in the range 21x0H
to 21xFH. Here again the variable x represents the instance number. Table 12-3
shows some of the Display Controller registers and the values to which they must be
initialized during mode setting.

The Display Controller registers are divided into two groups: direct access and in-
dexed access registers. The direct access registers are the ten registers in the range
21x0H to 21x9H. The indexed access registers are related to the Index register (port
21xAH) and the data registers (ports 21xBH to 21xFH). The index values are in the
range 04H to 70H but not all values in this range are actually used in XGA. The direct
access registers in the Display Controller are programmed by means of IN or OUT
instructions to the corresponding port; for example, the Memory Access Mode regis-
ter, at 21x9H, can be programmed for 8 bits per pixel and Intel data format as fol-
lows:

; Programming a direct access register of the XGA Display
; Controller group

MOV DX,XGA_REG_BASE ; Register base
ADD DX,9 ; Add offset of Memory Access

; Mode register
MOV AL,00000011B ; Bitmap for Intel format

; and 8 bits per pixel
OUT DX,AL

The above code fragment assumes that the base address of the Display Controller
register groups has been previously determined and is stored in the variable
XGA_REG_BASE. The operations necessary for determining this base address are
shown in Section 12.2.

280 Chapter Twelve

© 2003 by CRC Press LLC

Programming the indexed access registers takes place in two steps: first, the de-
sired register is selected by writing a value to the Index register at port 21xAH; sec-
ond, data is read or written to the register by means of the data registers in the range
21xBH to 21xFH. The following fragment shows writing all one bits (FFH) to the
Palette Mask register at offset 64H of the Index register.

; Programming an indexed access register of the XGA Display
; Controller group

MOV DX,XGA_REG_BASE ; Register base
ADD DX,0AH ; Add offset of Index register
MOV AL,64H ; Select Palette Mask register

; at offset 64H
MOV AH,0FFH ; Data byte to write
OUT DX,AX ; Select and write data

Notice that the 80x86 instruction OUT DX,AX writes the value in AL to the port
number in DX and the value in AH to the port number in DX + 1. The result is that by
using this form of the OUT instructions we can select and access the register with a
single operation.

The following Display Controller registers are particularly interesting to the pro-
grammer:

1. The Interrupt Enable register (located at base address plus 4) is used to unmask the in-
terrupt or interrupt sources that will be used by the software.

2. The Operating Mode register (located at the base address) is usually set to extended
graphics mode.

3. The Aperture Control register (located at base address plus 1) allows enabling the 64K
memory aperture mentioned in Section 12.1.2. as well as selecting the start address of
video memory either at A0000H or at B0000H. Most applications executing under
MS-DOS use A0000H, the VGA start address for dot addressable graphics.

4. The Memory Access Mode register (located at base address plus 9) allows selecting the
number of bits per pixel and the Intel or Motorola data format.

12.3 Initializing the XGA System
The first XGA programming operation usually consists of initializing and enabling the
video system. The simplest initialization method is by means of the AI services de-
scribed in Chapter 6. An application that is to access the XGA exclusively by means of
AI services need do nothing more than use the HOPEN and HINIT functions to initial-
ize the system. However, programs that access the XGA directly must often perform
additional initialization operations. Two possibilities can be considered:

1. Programs can use the AI HINIT and HOPEN services and, in addition, perform other
initialization operations so as to enable the use of AI services and direct access to XGA
hardware simultaneously.

2. A program can rely entirely on its own hardware initialization routines, and not use the
AI HINIT and HOPEN functions.

Which method is adopted depends on the program's characteristics. If the soft-
ware is to use both, AI services and direct access methods, then the HINIT and

XGA Hardware Programming 281

© 2003 by CRC Press LLC

HOPEN functions are necessary. On the other hand, programs that do not use AI ser-
vices can perform the necessary hardware initialization operations. Notice that the
AI is a software black box which manipulates registers and video memory in ways
that are not visible to the application. This creates additional problems for programs
that mix AI services and direct access methods.

The following discussion relates to direct initialization of the XGA system. The
use of the AI HINIT and HOPEN was explained in Chapter 6.

12.3.1 Locating the XGA Hardware
The first initialization task consists of locating the XGA components in the system's
space. The necessary information is found in the PS/2 Programmable Option Select
(POS) registers. Figure 12-1 shows important POS data related to the XGA hardware.

Figure 12-1 XGA Data in POS Registers

The first step in reading the POS registers is determining where these registers
are located. BIOS service number 196, sub-service number 0, of INT 15H, returns the
POS registers base address in the DX register. The following code fragment shows
the required processing.

;**********************|
; get POS address |
;**********************|
; Use service number 196, INT 15H, with AL = 0 to determine base
; address of Programmable Option Select (POS) registers

MOV AX,0C400H ; AH = C4H (service request)
; AL = 0 (sub-service)

INT 15H ; BIOS interrupt
; for microchannel machines only

JNC VALID_POS ; Go if POS address returned
JMP NO_XGA ; Error - not microchannel

282 Chapter Twelve

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

POS register 2

POS register 4

1 = XGA enabled

Instance field (0 to 7)

ROM address field
from 0000 = C0000H to 1111 = DE000H
(increments of 2000H)

1 = 4Mb aperture enabled

Video memory base address

© 2003 by CRC Press LLC

VALID_POS:
MOV XGA_POS,DX ; Save base address of POS

; An XGA system can be located on the motherboard or in one
; of 9 possible slots. Initialize CX = 0 for motherboard XGA
; CX = 1 to 9 for XGA in adapter card

XOR CX,CX ; Start with motherboard
CLI ; Interrupts off
.
.
.

Not all POS values encode XGA data. The valid range for XGA systems is 8FD8H
to 8FDBH. Service number 196, sub-service number 1, of INT 15H can be used to en-
able each one of 9 possible slots for setup. Then the value stored at the POS register
base is read and compared to the valid range. If the value is within the range an XGA
adapter or motherboard implementation has been detected. In this case the POS reg-
isters contain data required for the initialization of the XGA system. The following
code fragment illustrates the required processing.

; Use BIOS service 196, sub-service number 1, to enable slot
; for setup
GET_POS_0:

MOV AH,0C4H ; BIOS service
MOV AL,01H ; Sub-service number
MOV BX,CX ; Slot number to BX
INT 15H

; Slot enabled for setup
MOV DX,XGA_POS ; POS register 0 and 1
IN AX,DX ; Read ID low and high bytes

; Valid range for XGA systems is 8FD8H to 8FDBH
CMP AX,08FD8H ; Test low limit
JAE TEST_HIGH_LIM ; Go if equal or greater

; At this point the POS reports that system is not an XGA
; adapter
NOT_XGA_POS:

INC CX ; CX is options counter
CMP CX,9 ; Done all slots?
JB GET_POS_0 ; Go if not at last slot
JMP NO_XGA ; No XGA exit

TEST_HIGH_LIM:
CMP AX,08FDBH ; Test high limit of range
JA NOT_XGA_POS ; Go if out of range

;**********************|
; XGA found |
;**********************|

CLI ; Disable interrupts
; Test if XGA is in motherboard

CMP CX,0 ; 0 is motherboard value
JNE XGA_CARD ; Go if not on the motherboard

;**********************|
; motherboard XGA |
;**********************|
; Port 94H is used to enable and disable motherboard video

MOV AL,0DFH ; Bit 5 = 0 for video setup
MOV DX,94H ; 94H is system board enable
OUT DX,AL
JMP SHORT GET_POS ; Skip slot setup

;**********************|
; XGA card |

XGA Hardware Programming 283

© 2003 by CRC Press LLC

;**********************|
XGA_CARD:

MOV AX,0C401H ; Place adapter in setup mode
MOV BX,CX ; Slot number to BL
INT 15H

;**********************|
; save POS registers |
;**********************|
GET_POS:

MOV DX,XGA_POS ; Get POS record for the slot id
ADD DX,2 ; POS register at offset 2
IN AL,DX ; Read data byte
MOV POS_2,AL ; and store it
INC DX ; Next POS register
INC DX ; is number 4
IN AL,DX ; Get contents
MOV POS_4,AL ; Store it

; At this point POS registers 2 and 4 have been saved in
; variables
;**********************|
; re-enable video |
;**********************|
; Test for XGA in motherboard

CMP CX,0 ; Treat the motherboard
; differently

JNE XGA_ADAPTER ; Go if not in motherboard
; XGA in motherboard. Set bit 5 in port 94H to re-enable video

MOV AL,0FFH ; All bits set
OUT 094H,AL
JMP SHORT REG_BASE

XGA_ADAPTER:
MOV AX,0C402H ; Enable the slot for normal
MOV BX,CX ; operation
INT 15H
.
.
.

The next step in the XGA initialization is calculating the XGA Display Controller
register base by adding the instance value to the template 21x0H mentioned in Sec-
tion 12.1.3. The following code fragment shows the necessary manipulation of the
instance bits.

;**********************|
; calculate and store |
; XGA register base |
;**********************|
REG_BASE:

STI ; Interrupts on again
MOV AL,POS_2 ; Get value at POS register 2
AND AX,0EH ; Mask out all bits except

; instance
SHL AX,1 ; Multiply instance by 8
SHL AX,1 ; to move to second digit
SHL AX,1 ; position
ADD AX,2100H ; Add instance to base address
MOV XGA_REG_BASE,AX ; Store result in variable

284 Chapter Twelve

© 2003 by CRC Press LLC

12.3.2 Setting the XGA Mode

Once the XGA Display Controller register base has been established the initialization
usually proceeds to set the XGA hard-ware in a pre-established display mode. Al-
though the XGA display modes are unofficial, Table 12-3 shows the ones mentioned in
IBM's documentation.

Table 12-3

XGA Modes

HORIZONTAL VERTICAL
MODE NUMBER TYPE PIXELS PIXELS COLORS

1 132-column text
2 graphics 1024 768 256
3 graphics 1024 768 16
4 graphics 640 480 256
5 direct color 640 480 65536

The fundamental mode setting operation consists of loading most of the Display
Controller registers with pre-established values. These values are listed in the XGA
Video Subsystem section of the IBM Technical Reference Manual for Options and
Adapters, document number 504G-3287-000. This document can be obtained from
IBM Literature Department. Table 12-4 lists the Display Controller registers that
must be initialized during mode setting.

Table 12-4

XGA Display Controller Register Initialization Settings

2 3 4 5 <= MODE

1024 1024 640 640 <= rows
ADDRESS/ 768 768 480 480 <= columns
INDEX REGISTER NAME 256 16 256 65536 <= colors

21x4 Interrupt Enable 00H 00H 00H 00H All interrupts OFF
21x5 Interrupt Status 8FH 8FH 8FH 8FH Reset interrupts
21x0 Operating Mode 04H 04H 04H 04H Graphics modes
21xA Index Register

64 Palette mask 00H 00H 00H 00H Blank display
21x1 Aperture Control 01H 01H 01H 01H 64K at A0000H
21x8 Aperture Index 00H 00H 00H 00H |
21x6 Video Mem. Ctrl. 00H 00H 00H 00H |----- Initial values
21x9 Memory Access Mode03H 02H 03H 04H |
21xA Index Register

50 Display mode 1 01H 01H 01H 01H Prepare for reset
50 Display mode 1 00H 00H 00H 00H Reset CRT
10 x total low 9DH 9DH 63H 63H |------ initial values
11 x total high 00H 00H 00H 00H |
12 x display end low 7FH 7FH 4FH 4FH |
13 x display end high 00H 00H 00H 00H |
14 x blank start low 7FH 7FH 4FH 4FH |
15 x blank start high 00H 00H 00H 00H |
16 x blank start low 9DH 9DH 63H 63H |
17 x blank end high 00H 00H 00H 00H |

(continued)

XGA Hardware Programming 285

© 2003 by CRC Press LLC

Table 12-4

XGA Display Controller Register Initialization Settings (continued)

2 3 4 5 <= MODE

1024 1024 640 640 <= rows
ADDRESS/ 768 768 480 480 <= columns
INDEX REGISTER NAME 256 16 256 65536 <= colors

21xA Index Register | ------ initial values
18 x sync start low 87H 87H 55H 55H |
19 x sync start high 00H 00H 00H 00H |
1A x sync end low 9CH 9CH 61H 61H |
1B x sync end high 00H 00H 00H 00H |
1C x sync position 40H 40H 00H 00H |
1E x sync position 04H 04H 00H 00H |
20 y total low 30H 30H 0CH 0CH |
21 y total high 03H 03H 02H 02H |
22 y display end low FFH FFH DFH DFH |
23 y display end high 02H 02H 01H 1H |
24 y blank start low FFH FFH DFH DFH |
25 y blank start high 02H 02H 01H 01H |
26 y blank start low 30H 30H 0CH 0CH |
27 y blank end high 03H 03H 02H 02H |
28 y sync start low 00H 00H EAH EAH |
29 y sync start high 03H 03H 01H 01H |
2A y sync end 08H 08H ECH ECH |
2C y line comp low FFH FFH FFH FFH |
2D y line comp high FFH FFH FFH FFH |
36 Sprite control 00H 00H 00H 00H |
40 Start address low 00H 00H 00H 00H |
41 Start address med 00H 00H 00H 00H |
42 Start address high 00H 00H 00H 00H |
43 Buffer pitch low 80H 40H 50H A0H |
44 Buffer pitch high 00H 00H 00H 00H |
54 Clock select 1 0DH 0DH 00H 00H |
51 Display mode 2 03H 02H 03H 04H |
70 Clock select 2 00H 00H 00H 00H |
50 Display mode 1 0FH 0FH C7H C7H |

At this point XGA palette registers must be loaded and memory must be cleared

55 Border color 00H 00H 00H 00H |
60 Sprite/Pal low 00H 00H 00H 00H |
61 Sprite/Pal high 00H 00H 00H 00H |
62 Sprite pre low 00H 00H 00H 00H |
63 Sprite pre high 00H 00H 00H 00H |
64 Palette mask FFH FFH FFH FFH Make visible

The registers in Table 12-4 are listed in the order in which they must be set. No-
tice that before the last group of registers are set, the initialization routine must load
the XGA palette and clear all video memory. Failure to do this last operation could
result in the display of random data at the conclusion of the mode setting operation.
The actual coding can be based on data stored in two arrays: one holds the values
for the first group of Display Controller registers and the second one for the group
of registers to be initialized after the palette is loaded and the screen cleared. The
following fragment demonstrates the necessary manipulations.

286 Chapter Twelve

© 2003 by CRC Press LLC

DATA SEGMENT

; Mode number ----|
; 640x480x65536 5 --------------------|
; 640x480x256 4 ---------------| |
; 1024x768x16 3 ----------| | |
; 1024x768x256 2 -----| | | |
; Index ------------| | | | |
; Register ----| | | | | |
; _|__ _|__ _|__ _|__ _|__ _|__
XGA_V1 DB 004H,000H,000H,000H,000H,000H ; Interrupt enable

DB 005H,000H,08FH,08FH,08FH,08FH ; Interrupt status
DB 000H,000H,004H,004H,004H,004H ; Operating mode
.
. (missing values as in Table 12-4)
.
DB 00AH,050H,00FH,00FH,0C7H,0C7H ; Display mode 1
DB 0FFH,0FFH,0FFH,0FFH,0FFH,0FFH ; End of the list

;
XGA_V2 DB 00AH,055H,000H,000H,000H,000H ; Border color

.

. (missing values as in Table 12-4)

.
DB 00AH,064H,0FFH,0FFH,0FFH,0FFH ; Palette mask
DB 0FFH,0FFH,0FFH,0FFH,0FFH,0FFH ; End of the list

;
Variables used by the XGA_MODE procedure

MODE DW 0 ; Mode number
; Previously initialized base address of the XGA Display
; Controller (see Section 12.2.1)
XGA_REG_BASE DW 0 ; Address variable
;
DATA ENDS

CODE SEGMENT
.
.
.

XGA__MODE PROC NEAR
; Procedure to initialize an XGA graphics mode by setting the
; video system registers directly
; On entry:
; AL = mode number (valid range is 2 to 5)
; On exit:
; carry clear if no error
;

MOV AH,0 ; Clear high byte
MOV MODE,AX ; Mode to variable
CMP MODE,6 ; Mode number out of range?
JB TEST_MODE1 ; Go if less than 9
JMP BAD_MODE ; illegal entry value for mode

; Mode 0 = VGA BIOS mode number 3
; Mode 1 = 132 column VGA text mode
; These modes are not valid
TEST_MODE1:

CMP MODE,1 ; 80-column VGA text mode?
JA VALID_MODE ; Go if range is > 1
JMP BAD_MODE ; Error exit for invalid mode

;**********************|
; initialize first |

XGA Hardware Programming 287

© 2003 by CRC Press LLC

; register group |
;**********************|
VALID_MODE:
; The table at XGA_V1 contains the values to be sent to the
; XGA register in order to initialize the corresponding mode

LEA SI,XGA_V1 ; Point to start of values table
MOV BX,MODE ; Use mode as an offset
CALL INIT_REG_BLK ; Local init procedure

;**********************|
; init palette |
;**********************|
; Palette initialization at this point
; Notice that this routine must be mode-specific

.

.

.
;**********************|
; clear video memory |
;**********************|
; Video memory cleared at this point
; Notice that this routine must be mode-specific

.

.

.
;**********************|
; initialize second |
; register group |
;**********************|
; The table at XGA_V2 contains the values to be sent to the
; XGA register in order to initialize the second group of XGA
; registers

LEA SI,XGA_V2 ; Point to start of values table
MOV BX,MODE ; Use mode as an offset
CALL INIT_REG_BLK ; Local init procedure

;
MOV XGA_CURBK,-1 ; Reset the bank counter
MOV AX,MODE ; Remember the mode we're in
MOV XGA_CUR_MODE,AX
MOV AX,1 ; Return ok
RET

BAD_MODE:
MOV AX,0 ; Return failure
RET

XGA_MODE ENDP
;
INIT_REG_BLK PROC NEAR
; Auxiliary procedure for XGA_SET_MODE
; Initialize block of XGA register until FFH is found
; On entry:
; SI --> formatted register data
; BX = display mode
; The value at offset 0 of XGA_V1 is the register number
; The value at offset 1 is the index register number if the
; register is 0AH. The remaining entries is register data for
; each mode
REG_DATA:

MOV DX,XGA_REG_BASE ; XGA register base
MOV AH,0 ; High byte of offset is 0
MOV AL,[SI] ; Low byte of offset

; Register value 0FFH marks the end of the table

288 Chapter Twelve

© 2003 by CRC Press LLC

CMP AL,0FFH ; End of the table?
JE END_OF_BLOCK ; End of register setup
ADD DX,AX ; Add register offset to base
CMP AL,0AH ; Test for an index register
JE INDEXED ; Go if index register

; At this point register is not at offset 0AH, therefore data
; is output directly

MOV AL,[SI+BX] ; Get data value from table
OUT DX,AL ; and send to port
JMP SHORT NEXT_REG ; Continue

INDEXED:
MOV AL,[SI+1] ; Get index register number
MOV AH,[SI+BX] ; Get data byte from table
OUT DX,AX ; Output data to index register

NEXT_REG:
ADD SI,6 ; Index to next register in table
JMP REG_DATA

END_OF_BLOCK:
RET

INIT_REGT_BLK ENDP

An XGA initialization routine can be found in the procedure named INIT_XGA
contained in the XGA2 module of the GRAPHSOL library included in the book's soft-
ware. Because of the complexities in the design of mode-specific palette initializa-
tion and screen clearing routines for all XGA modes, the INIT_XGA procedure does
not perform these operations.

12.3.3 Loading the XGA Palette
Color display in XGA systems is by means of a Color Look-up Table (LUT), a Digi-
tal-to-Analog converter (DAC) and associated hardware. The actual structure is remi-
niscent, although not identical, of the one used in VGA systems. The XGA palette was
described in Section 6.1.4. Bit plane mapping for a 256-color mode can be seen in Fig-
ure 6.3. The XGA color palette registers can be set by means of the HLDPAL AI service
described in Section 6.4.2. In addition, a program can assume control of the XGA pal-
ette hardware and set its values directly.

We saw that XGA palette data consists of red, blue, and green values that are
stored in corresponding registers. The mechanism resembles the one used by the
VGA palette in the 256 color modes. However, the XGA palette is a simpler device
than the one in VGA since no Palette or Color Select registers are used (see Figure
3.8). In other words, the XGA palette consists of 256 registers in which the red, blue,
and green DAC values are stored. A pixel color is nothing more than a palette regis-
ter number; the actual color in which the pixel is displayed depends on the value
stored in the corresponding Palette register.

The XGA palette consists of 256 locations, each location divided into three fields.
The first field corresponds to the red DAC value, the second one to the blue, and the
third field to the green. The XGA allows two update modes: in the 3-value update
mode data is written to the palette registers in groups of three items representing
the red, blue, and green colors. In the 4-value update mode data is written in groups
of four items, the first three represent the red, blue, and green values, and the fourth
item is a padding byte which is ignored by the hardware. The 3-value sequence is
similar to the one used in VGA systems. The 4-value sequence is the one used by the

XGA Hardware Programming 289

© 2003 by CRC Press LLC

AI HLDPAL function. The update mode is selected by means of bit 2 of the Palette
Sequence register. Notice that in the XGA palette the 6 high-order bits are signifi-
cant while in VGA the significant bits are the 6 low ones (see Figure 6.5).

The following code fragment shows the necessary processing for setting the 256
XGA palette registers from an array in RAM.

DATA SEGMENT
;
; Double-bit IRGB palette in the following format
; 7 6 5 4 3 2 1 0 <= Bits
; I I R R G G B B <= Color codes
;
; | R B G R B G | REG
IRGB_SHADES DB 000,000,000,000,036,072,036,000 ; 1

DB 036,108,036,000,036,144,036,000 ; 3
. (missing data as in the code fragment
. in Section 6.4.2)
.
DB 252,144,252,000,252,180,252,000 ; 254
DB 252,216,252,000,252,252,252,000 ; 255

;
; Previously initialized base address of the XGA Display
; Controller (see Section 12.2.1)
XGA_REG_BASE DW 0 ; Address variable

DATA ENDS
;
;
CODE SEGMENT

.

.

.
; Code to set 256 XGA Palette registers
; On entry:
; SI --> 1024-byte color table in RGBx format
; Assumes that XGA system is set in a graphics mode
;

LEA SI,IRGB_SHADES ; Pointer to data array
MOV DX,XGA_REG_BASE ; Base address of XGA Display

; Controller register
; Select Index register at offset 0AH

ADD DX,0AH ; To Index register
; Write 00H (in AH) to Palette Mask register (64H)
; This value is ANDed with display memory. Clearing all bits
; makes the palette invisible during setup

MOV AX,0064H ; make invisible
OUT DX,AX

; Write 00H (in AH) to Border Color register (55H)
MOV AX,0055H ; border color
OUT DX,AX

; Write 00000100B (in AH) to Palette Sequence register (66H) to
; select four-color write mode (RGBx) and to start with the
; Red color code

MOV AX,0466H ; Palette Sequence register
OUT DX,AX

; Write 00H (in AH) to Palette Index register low (60H)
; and high (61H) to select first DAC register

MOV AX,0060H ; Start at palette 0

290 Chapter Twelve

© 2003 by CRC Press LLC

OUT DX,AX
MOV AX,0061H ; Sprite index high
OUT DX,AX

; SI --> table of palette colors
MOV CX,1024 ; Counter for 256 * 4
MOV AX,065H ; Select Data register
OUT DX,AL
INC DX ; Point to first register

; Loop to send 4 blocks of 256 bytes each to port 065H
NEW_PALETTE:

MOV AL,[SI] ; Get byte from table
OUT DX,AL ; Send to port
INC SI ; Bump table pointer
LOOP NEW_PALETTE

;
DEC DX ; Back to Select register

; Write FFH (in AH) to Palette Mask register (64H)
; This value is ANDed with display memory. Setting all bits
; makes the palette visible again

MOV AX,0FF64H ; All bits set
OUT DX,AX ; To make visible

; At this point all Palette registers have been loaded from
; the data array supplied on entry

.

.

.

The procedure named XGA_PALETTE in the XGA2 module of the GRAPHS-OL li-
brary, furnished with the book, can be used to perform palette loading. The code in
this procedure is similar to the one listed above.

12.4 Processor Access to XGA Video Memory
An application can access XGA video memory through the CPU or by means of the
XGA graphics coprocessor. Coprocessor programming is discussed in Section 12.5.
The present discussion relates to accessing the XGA video memory space by means of
the 80386 or 486 Central Processing Unit.

The system processor can access XGA memory to perform write and read opera-
tions. The write operation sets one or more screen pixels to the value stored in a
processor register. The read operation transfers a pixel's value into a processor reg-
ister. In Section 12.1.2 we saw that the XGA system can configure video memory by
means of three possible apertures. The 4Mb aperture is the one used by the graphics
coprocessor. Using this memory aperture will be discussed later in this chapter. The
1Mb memory aperture is typically used in multitasking environments.

MS-DOS applications usually access XGA video memory by means of multiple
memory banks of 64K each. This is called the 64K aperture. Before this aperture is
used the program must make sure that the Aperture Control register (at base ad-
dress plus 1) has been initialized to the value 01H (see Table 12-4). The banks' struc-
ture at this aperture depends on the display mode. At the 1,024 by 768 modes the
64K aperture can be visualized as 12 memory blocks of 64K each. This visualization
is shown in Figure 12-2, on the following page

XGA Hardware Programming 291

© 2003 by CRC Press LLC

Figure 12-2 Block Structure in XGA 64K Aperture

Notice that, when using the 64K aperture, the start address for the video memory
in each bank is selected by means of the Aperture Control register. The valid values
are A0000H and B0000H. The first one coincides with the base address used in VGA
graphics modes. If the start address of A0000H is selected, then each bank extends
from A0000H to B0000H. Which bank is currently selected depends on the setting of
the Aperture Index register, located at base address plus 8 of the XGA Display Con-
troller group. If the base address of the Display Controller group is stored in the
variable XGA_REG_BASE and the bank number in the AL register, then enabling the
bank can be coded as follows:

MOV DX,XGA_REG_BASE ; XGA base register address

ADD DX,08H ; Aperture Index register

OUT DX,AL ; Bank number is in AL

The total number of banks available depends on the display mode selected. We
saw that 12 banks of 65,536 memory units are needed to encode all the pixels in the
1,024 by 768 modes. However, in the 640 by 480 pixel mode each full screen consists
of 307,200 pixels, which require only 5 memory banks of 65,536 units each.

12.4.1 Setting Screen Pixels

In order to set a screen pixel the display logic must take into account whether the base
address of the video buffer for the 64K aperture is located at A000H or at B000H. In ad-
dition, the code must perform the necessary bank switching operation. Processing
performance in this case can be improved by storing the value of the currently se-
lected bank in a memory variable so that bank switching can be bypassed if the pixel is
located in the currently selected bank. The following code fragment writes a data byte

292 Chapter Twelve

Bank 1

Bank 2

Bank 10

Bank 11

© 2003 by CRC Press LLC

to a video memory address. This fragment does not take into account the currently se-
lected bank.

; Write a screen pixel accessing XGA memory directly
; On entry:
; CX = x coordinate of pixel
; DX = y coordinate of pixel
; BL = pixel color in 8-bit format
; Note: code assumes that XGA is in a 1024 by 768 pixel mode
; in 256 colors and that A0000H is the start address for
; the video buffer using the 64K aperture
;
; Set ES to video buffer base address

MOV AX,0A000H ; Base for all graphics modes
MOV ES,AX ; To ES segment
MOV AL,BL ; Color to AL

; Get address in XGA system
CLC ; Clear carry flag
PUSH AX ; Save color value
MOV AX,1024 ; 1024 dots per line
MUL DX ; DX holds line count of address
ADD AX,CX ; Plus this many dots on the line
ADC DX,0 ; Answer in DX:AX

; DL = bank, AX = offset
MOV BX,AX ; Save offset in BX
MOV AX,DX ; Move bank number to AL

;**********************|
; change banks |
;**********************|

MOV DX,XGA_REG_BASE ; XGA base register address
ADD DX,08H ; Aperture index register
OUT DX,AL ; Bank number is in AL
POP AX ; Restore color value

;**********************|
; set the pixel |
;**********************|

MOV ES:[BX],AL ; Write the dot
.
.
.

The procedure named XGA_PIXEL in the XGA2 module of the GRAPHSOL library
sets a screen pixel using processing similar to that shown in the above code sample.
A routine to set the entire screen to a specific color value can be simplified by using
80x86 string move instructions. The following code fragment shows the processing
necessary to clear the entire vide display in an XGA 1,024-by-768 pixel mode.

; Clear video memory using block move
MOV AX,0A000H ; Video memory base address
MOV ES,AX ; To the ES register
MOV BL,0 ; BL is bank counter

; Select bank
NEXT_BANK:

MOV DX,XGA_REG_BASE ; Select Page
ADD DX,08H ; To Aperture Index register
MOV AL,BL ; Bank number
OUT DX,AL ; Select bank in AL

; Write 65536 bytes of 00H in current bank
MOV CX,0FFFFH ; CX is byte counter

XGA Hardware Programming 293

© 2003 by CRC Press LLC

MOV AX,0 ; Attribute to place in VRAM
CLD ; Forward direction
MOV DI,0 ; Start of block
REP STOSB ; Store 65536 bytes

; Bump bank
INC BL
CMP BL,12 ; 12 is past last bank
JNE NEXT_BANK
.
.
.

The procedure named XGA_CLS in the XGA2 module of the GRAPHSOL library
clears the screen using processing similar to the one listed above.

12.4.2 Reading Screen Pixels
A write routine that accesses the video memory space through the Central Processing
Unit can be easily converted to read the value of screen pixels. The conversion con-
sists mainly of changing the write operation for a read operation and in making other
minor register adjustments. The following code fragment can be used to read the value
of a screen pixel into a CPU register.

; Read a screen pixel accessing XGA memory directly
; On entry:
; CX = x coordinate of pixel
; DX = y coordinate of pixel
; On exit:
; BL = pixel color
; Note: code assumes that XGA is in a 1024 by 768 pixel mode
; in 256 colors and that A0000H is the start address for
; the video buffer using the 64K aperture
; Set ES to video buffer base address

MOV AX,0A000H ; Base for all graphics modes
MOV ES,AX ; To ES segment

; Get address in XGA system
CLC ; Clear carry flag
PUSH AX ; Save color value
MOV AX,1024 ; 1024 dots per line
MUL DX ; DX holds line count of address
ADD AX,CX ; Plus this many dots on the line
ADC DX,0 ; Answer in DX:AX

; DL = bank, AX = offset
MOV BX,AX ; Save offset in BX
MOV AX,DX ; Move bank number to AL

;**********************|
; change banks |
;**********************|

MOV DX,XGA_REG_BASE ; XGA base register address
ADD DX,08H ; Aperture Index register
OUT DX,AL ; Bank number is in AL
POP AX ; Restore color value

;**********************|
; read the pixel |
;**********************|

MOV BL,ES:[BX] ; Read pixel in BL
.
.
.

294 Chapter Twelve

© 2003 by CRC Press LLC

12.4.3 Programming the XGA Direct Color Mode
Mode number 4 in Table 12-3 is called the direct color mode. It consists of 640 by 480
pixels in 65,536 colors. Notice that this mode is available in XGA systems equipped
with the full maximum VRAM of 1,024K. The XGA direct color mode presents some
unique characteristics, among them the most extensive color range. In this mode the
pixel color is determined by a 16-bit value, which encodes 65,536 colors that can be
represented. The actual pixel color is generated independently of the setting of the
DAC registers, for which reason the direct color mode has also been referred to as the
palette bypass mode. The color encoding of the 16-bit value for the direct color mode
is shown in Figure 12-3.

Figure 12-3 Bitmapping in XGA Direct Color Mode

Notice that the color bitmap in Figure 12-3 contains 5 bits for the blue and red ele-
ments and 6 bits for the green element. This 5-6-5 configuration allows 64 shades of
green and 32 shades of both blue and red colors. The argument in favor of having
more shades of green than of red and blue is that the human eye is more sensitive to
the green portion of the spectrum.

The Direct Color Palette
Although the DAC registers are bypassed during direct color mode operation, the IBM
documentation states that the DAC registers must be loaded with specific data for op-
erating in the Direct Color mode. Table 12-5 shows the values recommended by IBM.

Notice that bit 7 of the Border Color register (at offset 55H) is used to select be-
tween the first and second group of values to be entered in the direct color palette.
Also that the red and blue components are always zero, while the green component
is incremented by 8 for each successive register. The following code fragment al-
lows setting the Palette registers for the direct color mode.

; Code to set 256 XGA Palette registers for the 65535 color mode
; Note: the values are those recommended by IBM
; Code assumes that XGA system is set in a graphics mode
;

MOV DX,XGA_REG_BASE ; Wait for a retrace
ADD DX,0AH ; To index register

; Write 00H (in AH) to Palette Mask register (64H)
; This value is ANDed with display memory. Clearing all bits
; makes the palette invisible during setup

MOV AX,0064H ; Make invisible
OUT DX,AX

; Write 00H (in AH) to Palette Sequence register (66H) to enable
; three-color write mode (RGB) and to start with the
; R color code

MOV AX,0066H ; Palette sequence register
OUT DX,AX

XGA Hardware Programming 295

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RED (5 bits) GREEN (6 bits) BLUE (5 bits)

© 2003 by CRC Press LLC

Table 12-5

Palette Values for XGA Direct Color Mode

BORDER
LOCATION COLOR BIT 7 RED BLUE GREEN

0 1 0 0 0
1 1 0 0 8
2 1 0 0 16
3 1 0 0 24
.
.

31 1 0 0 256
32 1 0 0 0
33 1 0 0 8

.

.
126 1 0 0 240
127 1 0 0 248

128 0 0 0 0
129 0 0 0 8
130 0 0 0 16
131 0 0 0 24

.

.
159 0 0 0 256
160 0 0 0 0
161 0 0 0 8

.

.
254 0 0 0 240
255 0 0 0 248

; Write 00H (in AH) to Palette Index register low (60H)
; and high (61H) to select first DAC register

MOV AX,0060H ; Start at palette 0
OUT DX,AX
MOV AX,0061H ; Also set the Sprite Index
OUT DX,AX ; High register

;**********************|
; first 128 registers |
;**********************|
; Write 80H (in AH) to Border Color register (55H) to select
; first group of 128 registers

MOV AX,8055H ; Border Color bit 7 set
OUT DX,AX
CALL LOAD_128 ; Local procedure

;**********************|
; second 128 registers |
;**********************|
; Write 00H (in AH) to Border Color register (55H) to select the
; second group of 128 registers

MOV AX,0055H ; Border Color bit 7 clear
OUT DX,AX
CALL LOAD_128 ; Local procedure

; Write FFH (in AH) to Palette Mask register (64H)
; This value is ANDed with display memory. Setting all bits

296 Chapter Twelve

© 2003 by CRC Press LLC

; makes the palette visible again
MOV AX,0FF64H ; All bits set
OUT DX,AX ; To make visible
.
.

;**
LOAD_128 PROC NEAR
; Auxiliary procedure for XGA_DC_PALETTE to load a group of 128
; DAC registers with the recommended values

MOV DX,XGA_REG_BASE ; Base address
ADD DX,0AH ; Index register
MOV AX,0065H ; Select data register
OUT DX,AL
INC DX ; To data register
MOV BX,0 ; BX is value for blue register
MOV CX,128 ; Counter for 128 registers

; Loop to send 3 bytes to 128 registers
DC_128:

MOV AL,0 ; Send red
OUT DX,AL ; Send to port
JMP SHORT $ + 2 ; I/O delay
OUT DX,AL ; Send blue
MOV AL,BL ; Load green value
OUT DX,AL ; Send green
ADD BL,8 ; Bump green value in BL

; Wraps around automatically
LOOP DC_128
DEC DX ; Back to Index register
RET

LOAD_128 ENDP

The procedure named DC_PALETTE in the XGA2 module of the GRAPHSOL li-
brary can be used to set the XGA Palette registers to the direct color mode.

Pixel Operations in Direct Color Mode
The programmer working in the direct color mode has fewer options than in other
XGA modes. In the first place there is no AI support for direct color mode operations.
Another limitation is that the XGA graphics coprocessor (discussed in Section 12.4) is
not operational in the direct color mode. In the direct color mode the actual setting of
screen pixels is performed with a word write operation, as shown in the following
code fragment.

; Word write operation for 16-bit per pixel mode
; AX = 16-bit color code in 5-6-5 format
; BX = offset into video buffer
; ES = video memory segment (A000H or B000H)
;

MOV ES:[BX],AX ; Writes the pixel

In the direct color mode the programmer must take into account that each screen
pixel is mapped to two video buffer bytes. For example, the tenth pixel from the
start of the first screen row is located 20 bytes from the start of the buffer. By the
same token, each pixel is at a word boundary in the video buffer. The display routine
must make the necessary adjustment, as in the following code fragment.

; Display 10 pixels in the brightest red color at the center
; of the first screen row while in XGA direct color mode

XGA Hardware Programming 297

© 2003 by CRC Press LLC

; Assumes:
; 1. ES = video buffer base address (A000H or B000H)
; 2. Direct color palette has been loaded
; 3. Mode number 6 (640 by 480 in 65,536 colors) has been set
; 4. XGA_REG_BASE variable holds base address of XGA Display
; Controller
; First select video bank number 0

MOV DX,XGA_REG_BASE ; Select Page
ADD DX,08H ; To Aperture Index register
MOV AL,0 ; Bank number
OUT DX,AL ; Select bank in AL

; Setup operational variables
MOV CX,10 ; Counter for 10 pixels
MOV AX,0F800H ; All red bits set
MOV DI,640 ; Offset pointer to word number

; 320 on first screen row
; Write 10 bytes of AX into video memory
SET_10_PIXS:

MOV ES:[DI],AX ; Write to memory
ADD DI,2 ; Bump pointer to next word
LOOP SET_10_PIXS
.
.

Notice in the above code fragment that the value initially loaded into the buffer
pointer register (DI) is the word offset of the first pixel to be set. Also that the
pointer is bumped to the next word (ADD DI,2) in each iteration of the loop.

12.5 Programming the XGA Graphics Coprocessor
To a programmer the most important XGA hardware component is the graphics
coprocessor chip. The general features of the XGA graphics coprocessor were dis-
cussed in Section 12.1.1. The present discussion relates to performing graphics opera-
tions by programming the XGA coprocessor. The reader should notice that the XGA
Graphics Coprocessor is a complex and sophisticated IC. In the following sections we
will cover only its programming at the elementary level. A detailed technical descrip-
tion of this device, as well as of the XGA system in general, can be found in the XGA
Video Subsystem section of the IBM Technical Reference Manual for Options and
Adapters, document number 504G-3287-000. This document can be obtained from the
IBM Literature Department.

To the programmer the XGA graphics coprocessor appears as a set of mem-
ory-mapped registers. The area of memory devoted to these registers is called the
coprocessor's address space. Table 12-6 is a map of the coprocessor registers.

The coprocessor registers can be accessed using either the Intel or the Motorola
data formats. Table 12-6 represents the register structure in the Intel format. Most
coprocessor registers are write only. The second column in Table 12-6 shows which
registers can be read by the CPU. Notice that the Current Virtual Address, State A
Length, and State B Length registers are read-only. Software should not write to
these registers. The Page Directory Base Address and the Current Virtual Address
registers (offset plus 0 and plus 4 respectively) are used only in a virtual memory en-
vironment. Real mode programs, such as those executing in MS-DOS, need not ac-
cess these registers.

298 Chapter Twelve

© 2003 by CRC Press LLC

Table 12-6

XGA Graphic Coprocessor Register Map

HEX READ
OFFSET /WRITE +0 +1 +2

0 W Page Directory Base Address
4 R Current Virtual Address
8
C R State A Length State B Length

10 R/W Coprocessor Pixel Map
W Control Index

14 W Pixel Map n Base Pointer
18 W Pixel Map n Width Pixel Map n Height
1C W Pixel Map format
20 R/W Bresenham Error Term
24 W Bresenham K1 Term
28 W Bresenham K2 Term
2C W Direction Steps

.

.
44
48 W Foreground Mix Background Mix Destination Color

Compare Condition
4C W Destination Color Compare Value
50 W Pixel Bit Mask
54 W Carry Chain Mask
58 W Foreground Color
5C W Background Color
60 W Operations Dimemsion 1 Operations Dimension 2
64
68
6C W Map Mask Origin x Offset Map Mask Origin y Offset
70 R/W Source Map x Coordinate Source Map y Coordinate
74 R/W Pattern Map x Coordinate Pattern Map y Coordinate
78 R/W Destination Map x Coordinate Destination Map y Coordinate
7C W Pixel Operations

The XGA coprocessor can access all memory in the system and treats video mem-
ory and system memory in the same fashion. Once the coprocessor is informed of
the VRAM address it uses it to determine if the memory access is local or remote. In
remote accesses the coprocessor obtains direct control of the bus. This capability of
the coprocessor improves XGA performance by allowing the CPU to continue exe-
cuting code while the coprocessor manipulates memory data.

The XGA Graphics Coprocessor is designed to take advantage of the 80386 in-
struction set. Since XGA requires an 80386 CPU, XGA programs can safely use 80386
instructions without fear of hardware incompatibility. Therefore, in the code sam-
ples that follow we have used 80386/486 instructions when programming
coprocessor operations.

12.5.1 Initializing the Coprocessor
The initial action taken by a program that accesses the XGA coprocessor is its initial-
ization. The first two steps in coprocessor initialization consist of calculating and stor-

XGA Hardware Programming 299

© 2003 by CRC Press LLC

ing two data items required in programming this device: the base address of the
coprocessor register space and the physical address of the start of video memory. No-
tice that the video memory address used by the coprocessor corresponds with the 4Mb
aperture mentioned in Section 12.1.2. The data for calculating these addresses is
found in the XGA POS registers (Section 12.2.1 and Figure 12-1). In addition, the ini-
tialization routine should make certain that the appropriate value is stored at the
Memory Access Mode Register of the XGA Display Controller group.

Obtain the Coprocessor Base Address
The coprocessor base address is calculated from the ROM address field in POS regis-
ter 2 (see Figure 12-1) and from the instance field in this same POS register. The
coprocessor address formula is

coprocessor address = (((i * 128) +1C00H) + (R + 2000H) + C000H)

where i is the instance and R is the value in the ROM field of POS register 2. The code
for calculating the coprocessor address is as follows:

DATA SEGMENT

; The following variables are loaded from the XGA POS registers
; as shown in the code sample in Section 12.2.1
POS_2 DW ???? ; POS register 2
POS_2 DW ???? ; POS register 4

DATA ENDS

CODE SEGMENT
.
.
.

; Calculate coprocessor base address
; Code assumes that the POS_2 and POS_4 variables have been
; initialized to the contents of the corresponding POS registers
; Coprocessor base address is calculated as follows:
; ROM address = (ROM field + 2000H) + C0000H
; COP address = (((Instance * 128) + 1C00H) + ROM address)
;
; First calculate ROM address from data in POS register 2

MOV EAX,0 ; Clear EAX
MOV AL,POS_2 ; Get POS register 2
AND EAX,0F0H ; Preserve ROM bits
SHR EAX,4 ; Shift ROM to low nibble
MOV ECX,2000H ; Multiplier
MUL ECX ; EAX * ECX in EAX
ADD EAX,0C0000H ; Add constant
MOV EBX,EAX ; Store ROM address in EBX

; EBX now holds ROM address
; Instance is stored in bits 1-3 of POS register 2

MOV EAX,0 ; Clear EAX
MOV AL,POS_2 ; Get POS register 2
AND EAX,0EH ; Preserve Instance bits
SHR EAX,1 ; Shift right Instance bits
MOV ECX,128 ; Multiplier to ECX
MUL ECX
ADD EAX,1C00H ; Add constant from formula

; Add ROM address

300 Chapter Twelve

© 2003 by CRC Press LLC

ADD EAX,EBX
SHR EAX,4 ; Shift right one nibble to

; to obtain segment value
; Store segment value in GS

MOV GS,AX ; Move segment into GS
;

Notice that the segment value of the coprocessor base address is stored in seg-
ment register GS. This is consistent with the notion of making full use of the 80386
architecture and instruction set.

Obtain the Video Memory Address
The physical address of video memory is a 32-bit value determined from the video
memory base address field in POS register 4 and from the instance field in POS regis-
ter 2 (see Figure 12-1). The address is formed by re-locating the POS data items as
shown in Figure 12-4.

Figure 12-4 Physical Address of Video Memory Bitmap

The required processing for calculating the VRAM physical address is shown in
the following code fragment.

;**********************|

; get VRAM base |

;**********************|

; First get the video memory field in POS register 4

MOV AL,POS_4 ; VRAM field

AND AL,11111110B ; Clear low bit

SHL AX,8 ; Shift to high position

; Now get instance bits in POS register 2

MOV BL,POS_2 ; Instance field

AND BL,00001110B ; Mask out other bits

MOV BH,0 ; Clear high part of BX

SHL BX,5 ; Move instance bits to position

OR AX,BX ; OR with B bits (in AX)

MOV FS,AX ; Store in FS segment

XGA Hardware Programming 301

031

0 bits

instance field
(from POS register 2)

video memory base field
(from POS register 4)

4 Mb of Addressable VRAM21

© 2003 by CRC Press LLC

Notice that the high-order part (16 bits) of the VRAM physical address is now
stored in the FS segment register. The 80386 FS segment is a convenient storage for
this value, which must later be used in coprocessor programming.

Select Access Mode

Coprocessor operation requires that the Memory Access Mode register of the Display
Controller be set to 1, 2, 4, or 8 bits per pixel and to the Intel or Motorola data storage
format. In the PC environment with a fully equipped XGA (1Mb of VRAM) the
coprocessor is typically set to 8 bits per pixel and to match the Intel format of the CPU.
The following code fragment shows selecting the access mode for coprocessor opera-
tion.

; Select Intel order and 8 bits per pixel in the Memory Access
; Mode register (offset + 9)

MOV DX,XGA_REG_BASE ; Register base
ADD DX,9 ; To Mode register
MOV AL,03H ; 7 6 5 4 3 2 1 0 <= bitmap

; | | | | | | | | Bits/pixel
; | | | | | |_|_|__ 000 = 1 bit
; | | | | | 001 = 2 bits
; | | | | | 010 = 4 bits
; | | | | | *011 = 8 bits
; | | | | | 100 = 16 bits
; | | | | | FORMAT:
; | | | | |___ *0 = Intel
; | | | | 1 = Motorola
; |_|_|_|____ RESERVED
; 03H = 00000011B

OUT DX,AL

At this point the coprocessor is ready for use. The procedure INIT_COP in the
XGA2 module of the GRAPHSOL library uses similar processing to initialize the
coprocessor. The programmer must consider that if this initialization code is used,
the software must make sure that the 80386 segment registers FS and GS are pre-
served, since their contents are repeatedly required in setting up the coprocessor
operations.

12.5.2 Coprocessor Operations
The XGA graphics coprocessor can autonomously perform drawing operations in par-
allel with the CPU. The coprocessor can execute in 1, 2, 4, and 8 bits per pixel formats,
but not in the direct color mode described in Section 12.3.3. The execution of a
coprocessor operation requires the following steps:

1. The CPU initializes the coprocessor registers to be used in the operation.

2. Coprocessor operation starts when the CPU writes a command to the Pixel Operations
register.

3. The coprocessor executes the programmed operation. During this time the system mi-
croprocessor can be performing other tasks.

The graphics functions that can be performed by the coprocessor are pixel block
transfer (abbreviated pixBlt), line draw, and draw and step.

302 Chapter Twelve

© 2003 by CRC Press LLC

The programmer can set up the coprocessor so that it generates an interrupt at
the conclusion of its operations. This mechanism can be used in optimizing parallel
processing, in task switching in a multitasking environment, in error recovery, and
in synchronizing coprocessor access. The coprocessor Operation Complete inter-
rupt is enabled by setting bit 7 of the Interrupt Enable register of the Display Con-
troller group. The interrupt source is identified by testing the corresponding bit in
the Interrupt Status register of the Display Controller group (see Figure 9.4 and Fig-
ure 9.5 in Chapter 9). Notice that this is set if an interrupt occurred, regardless of
the setting of the Interrupt Enable register.

Synchronizing Coprocessor Access
Since the coprocessor operates asynchronously regarding the CPU, the central pro-
cessor must wait until the coprocessor has con-cluded its previous operation before
issuing a new command. This can be performed in two ways: by enabling the
Coprocessor Operation Complete interrupt described in the previous paragraph or by
polling the busy bit in the coprocessor Control register. Both methods are quite feasi-
ble, each having its advantages and disadvantages.

An XGA interrupt handler for testing the conclusion of coprocessor operation (or
any other XGA interrupt for that matter) is designed to intercept vector 0AH, which
corresponds with the IRQ2 line of the system's Interrupt Controller. Since this inter-
rupt can be shared, the handler must first make sure that the interrupt was caused
by the coprocessor. This requires testing bit 7 of the Interrupt Status register (at off-
set 05H). If the Coprocessor Operation Complete bit is set, then the code can pro-
ceed with the next coprocessor operation. At this time the code must write 1 to bit
number 7 in order to clear the interrupt condition so that the next interrupt can take
place.

Since polling the busy bit is easier to implement in software this is the method il-
lustrated in the present section. The main objection to polling for hardware not busy
is that it slows down operations since the coprocessor must pause execution to read
its own Control register. This can be partially overcome by designing routines that
includes a delay loop so that so that the coprocessor is not polled constantly. The
following procedure from the XGA2 module of the GRAPHSOL library polls bit 7 of
the coprocessor Control register to test for a not-busy condition. The COP_RDY pro-
cedure is called by the drawing routines in the XGA2 module before emitting a new
coprocessor command. The delay period in the wait loop is an arbitrary value.

COP_RDY PROC NEAR
; Poll bit 7 of coprocessor Control register (offset 11H) to
; determine if coprocessor is busy, if so, wait until ready
; Code assumes that GS segment holds coprocessor base address

PUSH AX ; Save context
PUSH CX

TEST_COP:
MOV AL,GS:[+11H] ; Read control register
TEST AL,10000000B ; Test bit 7
JZ COP_READY ; Go if bit is clear
MOV CX,100 ; Counter for wait loop

; A 100 iteration wait loop is introduced so that the coprocessor
; is not polled constantly, since constant polling would slow
; down execution

XGA Hardware Programming 303

© 2003 by CRC Press LLC

WAIT_100:
NOP ; Delay
NOP
LOOP WAIT_100 ; Wait
JMP TEST_COP ; Test again after wait

COP_READY:
POP CX ; Restore context
POP AX
RET

COP_RDY ENDP

General Purpose Maps
The XGA graphics coprocessor can operate on three general purpose pixel maps, desig-
nated as Map A, Map B, and Map C in the IBM literature. The identification letters A, B,
and C are sometimes generically represented by the variable n, as is the case in the Pixel
Map n Base Pointer designation used in Table 12-6. Notice that, in actual coding, Map n is
either Map A, Map B, or Map C. Pixel maps can be located in system or in video memory.
The maximum size of a map is of 4,096 by 4,096 pixels.

The following coprocessor registers are related to pixel maps:

1. The Pixel Map n Base Pointer register (at offset 14H) contains the map's start address.

2. The Pixel Map n Width register (at offset 18H) determines the horizontal dimension of
the pixel map and the Pixel Map n Height register (at offset 1AH) determines its vertical
dimension. The values loaded into these registers must be one less than the required
size.

3. The Pixel Map Format register (at offset 1CH) determines if the map is in 1, 2, 4, or 8 bits
per pixel and whether it is encoded in Intel or Motorola data format.

4. The Pixel Map Index register (at offset 12H) is used to determine if the mask map is of
type A, B, C, or M. The different mask map types are explained in the following para-
graphs.

The x and y coordinates of a pixel map are based on the same convention used for
the video display, that is, the top-left corner of the pixel map has coordinates x = 0, y
= 0. The value of x increases to the right and the value of y increases downward. The
pixel map coordinate system conventions and dimensions are shown in Figure 12-5.

Figure 12-5 Pixel Map Origin and Dimensions

304 Chapter Twelve

origin
x=0
y=0

x=4096
y=4096

increasing x

increasing y PIXEL MAP

© 2003 by CRC Press LLC

In relation to the coprocessor operation a pixel map can represent a source, a
destination, or a pattern. The following cases represent common bitBlt operations:

1. In displaying a bitmap stored in the applications address space the source map is the
application's data, and the destina-tion map is a location in video memory.

2. In an operation that consists of reading video data into system memory the source is a
VRAM map and the destination a location in the application's memory space.

3. An operation that copies a video image into another screen area has both source and
destination in video memory.

4. The coprocessor can also copy an area of user memory into another one. In this case
both source and destination maps are located in the application's memory space.

The pattern map is used in determining if a pixel is considered a foreground or a
background. A value of 1 indicates a foreground and a value of 0 a background. This
action is shown later in this section.

The Mask Map

The mask map is an additional type of pixel map closely related to the destination map.
The mask map, also called Map M, is used to protect the destination map on a
pixel-by-pixel basis. In contrast with the other general purpose maps, the mask map is
always fixed to a 1 bit per pixel ratio. A 0 bit in the Mask Map (inactive mask) protects
the corresponding destination pixel from update, while a 1 bit allows the pixel's nor-
mal update.

The x and y dimensions of the mask map can be equal or less than the corre-
sponding coordinates in the destination map. If the mask map and destination map
have the same dimensions, then masking is a simple bit to pixel relation. If the mask
map is smaller than the destination map then a scissoring operation is performed. In
this respect the mask map action can be in one of three modes, as follows:

1. Mask Map Disabled. In this mode the Mask Map is ignored.

2. Mask Map Boundary Enabled. In this mode the Mask Map performs an outline scissor-
ing action similar to a rectangular window. The contents of the Mask Map are ignored.

3. Mask Map Enabled. In this mode the mask map's border acts as a scissoring rectangle,
at the same time its contents provide a pixel by pixel masking operation.

The making mode is selected by a 2-bit field in the Pixel Operations register. The
difference between the Mask Map Enabled and the Boundary Enabled modes can be
seen in Figure 12-6, on the following page.

Notice that the action of a mask map in the Boundary Enabled mode is identical
to that of a mask map of all one bits. The difference is that the Boundary Enabled
mask map consumes no memory while a normal mask map can take up as much as
94Kb in 1,024-by-768 pixels resolution.

In addition to the map address the program can define the pixel map's x and y co-
ordinates. These value can be interpreted as offsets within the map. For example, if
the destination pixel map is the video screen, the physical address of VRAM is en-
tered in the Pixel Map n Base Pointer register and the actual position within the

XGA Hardware Programming 305

© 2003 by CRC Press LLC

video display is determined by the x and y coordinates entered in the Destination
Map x Coordinate and Destination Map y Coordinate registers. On the other hand, if
the pixel map is within the application's address space, the offset is usually zero.
This value signals the start of the pixel map as the reference position, however; the
coordinates can be changed to indicate another position within the defined rectan-
gle.

Figure 12-6 Mask Map Scissoring Operations

Coordinate registers for source and pattern pixel maps are available at offset 70H
and 74H (see Table 12-6). However, there are no x and y coordinate registers for the
mask map, because its origin is assumed to coincide with that of the destination
map. Nevertheless, if the mask map is smaller than the destination map it becomes
necessary to locate the mask map within the destination map. This is done by means
of the Mask Map Origin x Offset and the Mask Map Origin y Offset registers at offset
6CH and 6EH respectively. The use of these mask map offset values is shown in Fig-
ure 12-12.

306 Chapter Twelve

DESTINATION MAP

DESTINATION MAP

MASK MAP BOUNDARY ENABLED

MASK MAP

MAP MASK ENABLED

mask = 1

mask = 0

mask
boundary

SOURCE MAP

SOURCE MAP
MASK MAP

© 2003 by CRC Press LLC

Figure 12-7 Mask Map x and y Offset

Pixel Attributes
The coprocessor generates a pixel with specific attributes by combining the source,
pattern, and destination, according to a certain mix mode. The pattern pixel map, if
used, serves as a filter to determine if a bit corresponds to a foreground or a back-
ground pixel. A value of 1 in the pattern pixel map determines that the bit is mapped to
a foreground pixel, a value of 0 determines that the bit is mapped to a background
pixel. If no pattern map is used then the foreground and background sources can be a
specific color or determined by the color encoding stored in a source map. If the fore-
ground source is a specific color, it is stored at the Foreground Color register at offset
58H. The background color is stored at the register at offset 5CH. The elements that
take part in determining a pixel's attributes are shown in Figure 12-8.

Figure 12-8 Determining the Pixel Attribute

XGA Hardware Programming 307

DESTINATION MAP

MASK MAP

x offset

y offset

SOURCE

PATTERN

MIX FOREGROUND
PIXELS

BACKGROUND
PIXELS

pattern
= 1

pattern
= 0

foreground

background

© 2003 by CRC Press LLC

Pixel Masking and Color Compare Operations

In addition, it is possible to protect individual pixels by masking. The Pixel Bit Mask reg-
ister (offset 50H) is used for this purpose. A value of 1 in the Pixel Bit Mask register en-
ables the corresponding pixel for update, while a value of 0 determines that the pixel is
excluded from the update operation. Notice that the Pixel Bit Mask is related to the
adopted format. In an 8-bits per pixel mode, the Pixel Bit Mask has active the 8 low order
bits of the register, while in a 2 bits per pixel mode only the lowest 2 bits are used.

The coprocessor also allows a color compare operation that further inhibits cer-
tain pixel patterns from upgrade. The Destination Color Compare Value register (off-
set 4CH) is used for storing the bitmap to be used in the comparison. As with the Pixel
bitmap register, the number of bits effectively used in the color compare operation
depends on the number of bits per pixel in the adopted format. Several color compare
conditions are allowed. The code for the selected condition is stored in the Destina-
tion Color Compare Condition register (offset 4AH). Table 12-7 lists the condition
codes and the respective action.

Table 12-7

Destination Color Compare Conditions

CODE BINARY CONDITION

0 000 Always true (disable update)

1 001 Destination > color compare value

2 010 Destination = color compare value

3 011 Destination < color compare value

4 100 Always false (enable update)

5 101 Destination > = color compare value

6 110 Destination < > color compare value

7 111 Destination < = color compare value

Mixes

In Figure 12-8 we see that the attribute of the destination pixels depends upon a mix. The
mix is a logical or arithmetic operation used in combining the source and the destina-
tion bitmaps. The mix is selected independently for the foreground and the background
pixels (see Figure 12-8). The foreground mix is entered into the Foreground Mix register
(offset 48H) and the background mix into the Background Mix register (offset 49H). The
actual mix operation is determined by a mix code. The mix codes and action are shown
in Table 12-8.

The word saturate in Table 12-8 means that if the result of an addition or subtrac-
tion operation is greater than 1, the final result is left at 1, while if it is smaller than 0 it
is left at 0.

308 Chapter Twelve

© 2003 by CRC Press LLC

Table 12-8

Logical and Arithmetic Mixes

CODE HEX ACTION

0 00H Zeros
1 01H Source AND destination
2 02H Source AND NOT destination
3 03H Source
4 04H NOT source AND destination
5 05H Destination
6 06H Source XOR destination
7 07H Source OR destination
8 08H NOT source AND NOT destination
9 09H Source XOR NOT destination

10 0AH NOT destination
11 0BH Source OR NOT destination
12 0CH Source NOT destination
13 0DH NOT source OR destination
14 0EH NOT source OR NOT destination
15 0FH Ones
16 10H Maximum
17 11H Minimum
18 12H Add with saturate
19 13H Destination minus source (with saturate)
20 14H Source minus destination (with saturate)
21 15H Average
22 16H |

. . > Reserved
255 FFH |

Pixel Operations

The coprocessor starts executing the programmed operation when data is written to the
Pixel Operations register (offset 7CH). The one exception to this statement is the draw
and step command which is initiated by writing to the Direction Steps register (at offset
2CH). The Pixel Operations register also defines the flow of data during coprocessor op-
erations. Figure 12-9, on the following page, is a bitmap of the Pixel Operations register.

The action performed by each field of the Pixel Operations register is explained
in the discussion of the various coprocessor commands contained in the sections
that follow.

12.5.3 PixBlt Operations

A pixel block transfer operation (pixBlt) consists of moving rectangular memory
block from a source area to a destination area. Both the source and the destination can
be system or video memory. The dimensions of the pixel rectangles are entered into
the Operations Dimension registers; the width into Operations Dimension 1 and the
height into Operation Dimension 2. The pixBlt can be programmed to start at any one
of the four corners of the rectangle. The operation always proceeds in the direction of
the diagonally opposite corner. The direction is entered into the Pixel Operations reg-
ister (at offset 7CH).

XGA Hardware Programming 309

© 2003 by CRC Press LLC

Figure 12-9 Pixel Operations Register Bitmap

Rectangular Fill PixBlt

Perhaps the simplest pixBlt operations is filling a rectangular screen area using the
Foreground Color register as source data. The following code fragment shows the
coprocessor commands necessary to perform this form of pixBlt.

; Use graphics coprocessor to perform a pixBlt on a rectangular
; screen area
; Code assumes XGA 1024 by 768 mode in 256 colors (8 bits per
; pixel)
; At this point:
; CX = x coordinate of top-left corner
; DX = y coordinate of top-left corner
; SI = width of rectangle, in pixels
; DI = height of rectangle, in pixels
; BL = 8-bit color code

310 Chapter Twelve

031
byte 0byte 1byte 2byte 3

DIRECTION OCTANT
00x = DZ
0x0 = DY
x00 = DX

DRAWING MODE
00 = draw all pixels
01 = draw first pixel NULL
10 = draw last pixel NULL
11 = draw area boundary

MASK MAP CONTROL
00 = mask map disabled
01 = mask map boundary enabled
10 = mask map enabled

PATTERN MAP CONTROL
0000 = reserved
0001 = pixel map A
0010 = pixel map B
0011 = pixel map C
1000 = foreground fixed
1001 = generated from source

DESTINATION
0001 = pixel map A
0010 = pixel map B
0011 = pixel map C

SOURCE
0001 = pixel map A
0010 = pixel map B
0011 = pixel map C STEP/OPERATION CONTROL

0010 = draw and step read
0011 = line draw read
0100 = draw and step write
0101 = line draw write
1000 = pixBlt
1001 = inverting pixBlt
1010 = area fill

FOREGROUND SOURCE
00 = foreground color
10 = source pixel map

BACKGROUND SOURCE
00 = background color
10 = source pixel map

© 2003 by CRC Press LLC

; segment register setting:
; GS = Coprocessor base address (Section 12.4.1)
; FS = VRAM base address (Section 12.4.2)
;
;**********************|
; test for not busy |
;**********************|

CALL COP_RDY ; Routine developed in
; Section 12.4.2

; At this point the coprocessor is not busy
;**********************|
; prepare to pixBlt |
;**********************|
; Memo: GS holds the coprocessor base address (see Section 12.4.1)

MOV AL,01H ; Data value for Map A
MOV GS:[+12H],AL ; Write to Pixel Map Index
MOV AX,0H ; Data value for VRAM low
MOV GS:[+14H],AX ; Write to pix map base address

; Memo: FS register holds the high order word of VRAM address.
; (see Section 12.4.2)

MOV AX,FS ; Data for VRAM high
MOV GS:[+16H],AX ; Write to pix map segment

; address
; Code assumes 1024 by 768 pixel mode and Intel format

MOV AX,1023 ; Value for pix map width
MOV GS:[+18H],AX ; Write to Width register
MOV AX,767 ; Value for pix map height
MOV GS:[+20H],AX ; Write to Height register
MOV AL,3 ; Select Intel order and 8 bits

; per pixel
MOV GS:[+1CH],AL ; Write to Format register

;**********************|
; enter pixBlt data |
;**********************|

MOV AL,03H ; Select source mix mode
MOV GS:[+48H],AL ; Write to Mix register

; Write color (in BL) to foreground register
MOV GS:[+58H],BL ; Write to Foreground Color

; register
; Write coordinates of rectangle's start point to coprocessor
; registers

MOV GS:[+78H],CX ; Write to Destination x Address
; register

MOV GS:[+7AH],DX ; Write to Destination y Address
; register

; Store width in Operations Dimension 1 register
MOV GS:[+60H],SI ; Write to Operation Dimension 1

; Store height in Operations Dimension 2 register
MOV GS:[+62H],DI ; Write to Operation Dimension 2

;**********************|
; setup pix operation |
; registers |
;**********************|
; Bitmap of Pixel Operations register for pixBlt operation:
; byte 3 = bbss|pppp
; bb = background source
; 00 = fixed register pixBlt
; ss = foreground source
; 00 = fixed register pixBlt
; pppp = step/operation control

XGA Hardware Programming 311

© 2003 by CRC Press LLC

; 1000 = pixBlt
; BYTE 3 = 00001000B = 08H
; byte 2 = SSSS|DDDD
; SSSS = source
; 0001 = pixel map A
; DDDD = destination
; 0001 = pixel map A
; BYTE 2 = 00010001B = 11H
; byte 1 = PPPP|0000
; PPPP = pattern map control
; 1000 = foreground fixed
; BYTE 1 = 10000000B = 80H
; byte 0 = mm00|0oox
; mm = mask pixel map
; 00 = mask map disabled
; oox = octant bits (x = don't care)
; 00 = start at top left and move
; right and down
; BYTE 0 = 00000000B = 00H
;**********************|
; execute pixBlt |
;**********************|
; Coprocessor operation commences when data is written to the
; Pixel Operations register

MOV EAX,08118000H ; Value from bitmap
MOV GS:[+7CH],EAX ; Write to Pixel Operations

; register

If XGA is initialized to 1,024 by 768 pixels in 256 colors, and if on entry to the
above code fragment the CX register holds 512, the DX register holds 384, the SI reg-
ister holds 100, the DI register holds 80, and BL = 00001100B, then an 100-by-80 pixel
rectangle is drawn with its left-top corner at the center of the screen. If the default
palette is active, the color of the rectangle is bright red.

Notice, in the above example, that the direction octant bits in byte 0 of the Pixel
Operations register (see Figure 12-9) determine the direction in which the pixBlt
takes place. For performing a non-overlapping pixBlt the direction octant bits are
normally set to zero. However, if the source and destination rectangles overlap, the
direction octant bits must be used in order to avoid pixel corruption. Table 12-9
shows the action of the direction octant bits in pixBlt operations. Notice that these
bits are interpreted differently during the coprocessor line draw functions.

Table 12-9

Action of the Direction Octant Bits During PixBlt

VALUE ACTION

00x From top-left to bottom-right

10x From top-right to bottom-left

01x From bottom-left to top-right

11x From bottom-right to top- left

Legend:
x = don't care

312 Chapter Twelve

© 2003 by CRC Press LLC

The procedure named COP_RECT in the XGA2 module of the GRAPHSOL library
can be used to perform a rectangular fill pixBlt operation. Processing and entry pa-
rameters are the same as in the above code fragment.

System Memory to VRAM PixBlt
Another frequent use of the pixBlt operation is to display an image stored in the appli-
cation's memory space. The processing of a system-to-video-memory pixBlt is similar
to the one used in the rectangular fill pixBlt discussed in the preceding paragraphs.
The following code fragment is a memory-to-video pixBlt of an image encoded in 1-bit
per pixel format.

; Use graphics coprocessor to perform a pixBlt operation
; from a source in system memory to a destination in video memory
; Image map is encoded in 1 bit per pixel format
; Code assumes XGA 1024 by 768 mode in 256 colors (8 bits per
; pixel)
; At this point:
; DS:SI = offset of source bitmap in RAM
; CX = source map pixel width
; DX = source map pixel height
; SI = x coordinate of video image
; DI = y coordinate of video image
; BL = 8-bit color code to use in displaying image
;
; Segment register setting:
; GS = Coprocessor base address (Section 12.4.1)
; FS = VRAM base address (Section 12.4.2)
;
;**********************|
; test for not busy |
;**********************|

CALL COP_RDY ; Routine developed in
; Section 12.4.2

; At this point the coprocessor is not busy
;**********************|
; map A is destination |
; (video memory) |
;**********************|

PUSH AX ; Bitmap offset to stack
MOV AL,01H ; Data value for Map A
MOV GS:[+12H],AL ; Write to Pixel Map index
MOV AX,0H ; Data value for VRAM low
MOV GS:[+14H],AX ; Write to pix map base address

; FS register holds the high order word of VRAM address
MOV AX,FS ; Data for VRAM high
MOV GS:[+16H],AX ; Write to pix map segment

; address
; Destination map is 1024 by 768 pixel mode and Intel format

MOV AX,1023 ; Value for pix map width
MOV GS:[+18H],AX ; Write to Width register
MOV AX,767 ; Value for pix map height
MOV GS:[+20H],AX ; Write to Height register

; Bitmap of Pixel Format register:
; 7 6 5 4 3 2 1 0 <= bits
; | | | | | |_|_|______ pixel image size (* = selected value)
; | | | | | 000 = 1 bit per pixel
; | | | | | 001 = 2 bits per pixel
; | | | | | 010 = 4 bits per pixel

XGA Hardware Programming 313

© 2003 by CRC Press LLC

; | | | | | *011 = 8 bits per pixel
; | | | | |_______ format control
; | | | | 1 = Motorola order
; | | | | *0 = Intel order
; |_|_|_|________________________________ RESERVED
;

MOV AL,3 ; Select Intel order and 8 bit
; per pixel

MOV GS:[+1CH],AL ; Write to Format register
;**********************|
; map B is source |
; (system memory) |
;**********************|

MOV AL,02 ; Data value for Map B
MOV GS:[+12H],AL ; Write to Pixel Map index

; AX = offset of source bitmap (in stack)
; DS = segment of source bitmap
; To convert logical address to physical address the segment
; value is shifted left 4 bits and the offset added

MOV EAX,0 ; Clear 32 bits
MOV AX,DS ; Segment to AX
SHL EAX,4 ; Shift segment 4 bits
POP BP ; Offset to BP
ADD AX,BP ; Add offset to segment
MOV GS:[+14H],EAX ; Write to pix map base address

; Dimensions of source map are in CX and DX registers
DEC CX
DEC DX
MOV GS:[+18H],CX ; Write to Width register
MOV GS:[+20H],DX ; Write to Height register

; Bitmap of pixel format register:
; 7 6 5 4 3 2 1 0 <= bits
; | | | | | |_|_|______ pixel image size (* = selected value)
; | | | | | *000 = 1 bit per pixel
; | | | | | 001 = 2 bits per pixel
; | | | | | 010 = 4 bits per pixel
; | | | | | 011 = 8 bits per pixel
; | | | | |_______ format control
; | | | | *1 = Motorola order
; | | | | 0 = Intel order
; |_|_|_|________________________________ RESERVED

MOV AL,08H ; Select Motorola order and 1
; bit per pixel

MOV GS:[+1CH],AL ; Write to Format register
;**********************|
; select mix mode |
;**********************|

MOV AL,03H ; Select source mix mode
MOV GS:[+48H],AL ; Write to Mix register

; Write color (in BL) to foreground register
MOV GS:[+58H],BL ; Write to Foreground Color

; register
; Write coordinates of source and destination
; Source coordinates are 0,0, destination coordinates are in SI
; and DI

MOV AX,0 ; Source coordinates
MOV GS:[+70H],AX ; Write to Source x Address
MOV GS:[+72H],AX ; Write to Source y Address
MOV GS:[+78H],SI ; Write to Destination x Address
MOV GS:[+7AH],DI ; Write to Destination y Address

314 Chapter Twelve

© 2003 by CRC Press LLC

; Store width in Operations Dimension 1 register
MOV GS:[+60H],CX ; Write to Operation Dimension 1

; Store height in Operations Dimension 2 register
MOV GS:[+62H],DX ; Write to Operation Dimension 2

;**********************|
; set up Pix Operation |
; registers |
;**********************|
; Bitmap of Pixel Operations register for pixBlt operation:
; byte 3 = bbss|pppp
; bb = background source
; 00 = background color
; ss = foreground source
; 00 = foreground color
; pppp = function
; 1000 = pixBlt
; BYTE 3 = 00001000B = 08H
; byte 2 = SSSS|DDDD
; SSSS = source pixel map
; 0010 = pixel map B
; DDDD = destination pixel map
; 0001 = pixel map A
; BYTE 2 = 00100001B = 21H
; byte 1 = PPPP|0000
; PPPP = pattern pixel map
; 0010 = pixel map B
; BYTE 1 = 00100000B = 20H
; byte 0 = mm00|0oox (* = values for this operation)
; mm = mask pixel map
; 00 = mask map disabled
; oox = octant bits (x = don't care)
; 00 = start at top left and move
; right and down
; BYTE 0 = 00000000B = 00H
;**********************|
; execute pixBlt |
;**********************|
; Coprocessor operation commences when data is written to the
; Pixel Operations register

MOV EAX,008212000H ; Value from bitmap
MOV GS:[+7CH],EAX ; Write to Pixel Operations

; register

The procedure named COP_SYSVID_1 in the XGA2 module of the GRAPHSOL li-
brary can be used to perform a system memory to VRAM pixBlt operation. Pro-
cessing and entry parameters are the same as in the above code fragment. The
procedure named COP_SYSVID_8, also in the GRAPHSOL library, assumes an 8-bit
per pixel encoding in the source bitmap. This last procedure can be used to display a
memory stored image in 1,024 by 768 pixels in 256 colors.

12.5.4 Line Drawing Operations
The XGA draws a straight line following a method originally described by J.E.
Bresenham (IBM Systems Journal, 1965) and since known as Bresenahm's algorithm.
Bresenham's method is based on the differential equation for the slope of a straight
line, which states that the difference between the y coordinates divided by the differ-
ence between the x coordinates is a constant. This constant, usually called the slope,
is designated by the letter m. The formula is:

XGA Hardware Programming 315

© 2003 by CRC Press LLC

m
Dy

Dx
=

where Dy is the difference between the y values and Dx the difference between the x
values. Therefore y can be expressed as a function of x, as follows:

y = mx

Bresenham's algorithm, as implemented on XGA, requires that all parameters be
normalized to the first octant (octant number 0). Figure 12-10 shows the octant
numbering in the Cartesian plane.

Figure 12-10 Octant Numbering in the Cartesian Plane

Reduction to the First Octant

The octant is selected by the octant field bits in the Pixel Operations register (see Fig-
ure 12-9). The1-bit values designated DX, DY, and DZ have the following meaning:

1. DX encodes the direction of the x values in reference to the line's start point. DX = 0 if x
is in the positive direction and DX = 1 if it is in the negative direction.

2. DY encodes the direction of the y values in reference to the line's start point. DY = 0 if y
is in the positive direction and DY = 1 if it is in the negative direction.

3. DZ encodes the relation between the absolute value of the x and y coordinates. DZ = 0 if
|x| > |y|, and DZ = 1 otherwise.

The following rules allows normalizing any line defined by its start and end points
to the first octant:

1. If the end x coordinate is smaller than the start x coordinate set the DX bit in the Pixel
Operations register.

2. If the end y coordinate is smaller than the start y coordinate set the DY bit in the Pixel
Operations register.

3. If the difference between the y coordinates is greater than or equal to the difference be-
tween the x coordinates set the DZ bit in the Pixel Operations register.

4. After the octant bits DX, DY, and DZ are set according to the above rules, the code can
use the unsigned difference between y coordinates (delta y or Dy) and the unsigned
difference between x coordinates (delta x or Dx) in the remaining calculations.

316 Chapter Twelve

0

12

3

4

5 6

7

first
octant

© 2003 by CRC Press LLC

Calculating the Bresenham Terms
Three coprocessor registers are use to encode values that result from applying
Bresenham's algorithm, these are the Bresenham Error Term register (offset 20H), the
Bresenham K1 Term register (offset 24H), and the Bresenham K2 Term register (offset
28H).

The Bresenham K1 constant is calculated by the formula:

Term K Dy1 2= ×

Recall that Dy is the absolute difference between y coordinates, and Dx the abso-
lute difference between x coordinates. The Bresenham K2 constant is calculated by
the formula:

Term K Dy Dx2 2= × −()

Finally, the Bresenham error term is calculated by the formula:

Term E Dy Dx= × −()2

The Bresenham terms are entered into the corresponding coprocessor registers
(see Table 12-6). The Operation Dimension 1 register (at offset 60H) is loaded with
the value of Dx. The following code fragment shows the necessary processing for
drawing a straight line using the XGA coprocessor.

; Use graphics coprocessor to draw a straight line
; Code assumes XGA 1024 by 768 mode in 256 colors (8 bits per
; pixel)
; At this point:
; CX = x pixel coordinate of line start
; DX = y pixel coordinate of line start
; SI = x pixel coordinate of line end
; DI = y pixel coordinate of line end
; BL = 8-bit color code
; segment register setting:
; GS = Coprocessor base address (Section 12.4.1)
; FS = VRAM base address (Section 12.4.2)
;
;**********************|
; test for not busy |
;**********************|

CALL COP_RDY ; Routine developed in
; Section 12.4.2

; At this point the coprocessor is not busy
;**********************|
; prepare to draw |
;**********************|
; Prime coprocessor registers

MOV AL,01H ; Data value for Map A
MOV GS:[+12H],AL ; Write to pixel map index
MOV AX,0H ; Data value for VRAM low
MOV GS:[+14H],AX ; Write to pix map base address

; FS register holds the high order word of VRAM address. This
; value is calculated by the INIT_COP routine in this module

MOV AX,FS ; Data for VRAM high

XGA Hardware Programming 317

© 2003 by CRC Press LLC

MOV GS:[+16H],AX ; Write to pix map segment
; address

; Code assumes 1024 by 768 pixel mode and Intel format
MOV AX,1023 ; Value for pix map width
MOV GS:[+18H],AX ; Write to Width register
MOV AX,767 ; Value for pix map height
MOV GS:[+20H],AX ; Write to Height register
MOV AL,3 ; Select Intel order and 8 bits

; per pixel
MOV GS:[+1CH],AL ; Write to Format register

;**********************|
; mix, color and |
; coordinates |
;**********************|

MOV AL,03H ; Select source mix mode
MOV GS:[+48H],AL ; Write to Mix register

; Write color (in BL) to Foreground register
MOV GS:[+58H],BL ; Write to Foreground Color

; register
; Write coordinates of line start point to coprocessor registers

MOV GS:[+78H],CX ; Write to Destination x Address
; register

MOV GS:[+7AH],DX ; Write to Destination y Address
; register

;**********************|
; reduce to octant 0 |
;**********************|
; CX = x pixel coordinate of line start
; DX = y pixel coordinate of line start
; SI = x pixel coordinate of line end
; DI = y pixel coordinate of line end
; Octant bits in Pixel Operations register as follows:
; xxxx x210
; |||_______ DZ bit = 0 if |x| > |y|
; ||________ DY bit = 0 if y is positive (DI >= DX)
; |_________ DX bit = 0 if x is positive (SI >= CX)
; BL will hold octant bits

MOV BL,0 ; Clear Octant register
CMP SI,CX ; Test for DX bit
JGE DX_ISOK ; Go if horizontal line

; At this point SI < CX, therefore DX bit must be set
OR BL,00000100B ; DX bit is now set in BL
XCHG SI,CX ; Exchange so that CX > SI

DX_ISOK:
; Now test DX bit condition

CMP DI,DX ; Test for DY bit
JGE DY_ISOK ; Go if horizontal line

; At this point DI < DX, therefore DY bit must be set
OR BL,00000010B ; DY bit is now set in BL
XCHG DI,DX ; Exchange so that DX > DI

; Now test DX bit condition
DY_ISOK:

SUB DI,DX ; Find |y|
XCHG DX,DI ; |y| to DX
SUB SI,CX ; and |x|
XCHG CX,SI ; |x| to CX
CMP CX,DX ; Is |x| > |y|
JG BRZ_TERMS ; Go to leave DZ = 0

; At this point |x| <= |y|, therefore DZ bit must be set
; and |y| must be exchanged with |x|

318 Chapter Twelve

© 2003 by CRC Press LLC

OR BL,00000001B ; Set DZ bit
XCHG CX,DX ; Exchange

;**********************|
; Bresenham terms |
; calculations |
;**********************|
BRZ_TERMS:
; Bresenham terms:
; Term E (error) = (2 * |y|) - |x|
; Term K1 = 2 * |y|
; Term K2 = 2 * (|y| - |x|)
; AT this point CX = |x| and DX = |y|
; First store |x| in Operations Dimensions register

MOV GS:[+60H],CX ; Write to Operation Dimension 1
; register

; Then calculate Term E
PUSH DX ; Save |y|
ADD DX,DX ; 2 * |y|
SUB DX,CX ; - |x|
MOV SI,DX ; Store Term E in SI
POP DX ; Restore |y|
PUSH CX ; and save |x|
MOV CX,DX ; |y| to CX
ADD CX,CX ; Calculate 2 * |y|
MOV DI,CX ; Store Term K1 in DI
POP CX ; Restore |x| from stack
SUB DX,CX ; |y| - |x|
ADD DX,DX ; times 2

; DX = Term K2
MOV GS:[+20H],SI ; Write to Error Term register
MOV GS:[+24H],DI ; Write to K1 register
MOV GS:[+28H],DX ; Write to K2 register

; Bitmap of Pixel Operations register:
; byte 3 = 0000|0101 = line draw write operation
; byte 2 = 0001 = source pixel map is map A
; 0001 = destination pixel map is map A
; byte 1 = 1000|rrrr = special code for foreground and all 1s
; byte 0 = 00 0 = Mask map disabled
; 00 = Drawing mode for all pixels drawn
; OCTANT DATA:
; 0 = DX = 0 for x in positive direction
; 0 = DY = 0 for y in positive direction
; 0 = DZ = 0 for |x| > |y|
;**********************|
; execute operation |
;**********************|

MOV EAX,05118000H ; All bits except octant
; BL holds octant bits

OR AL,BL ; OR-in octant bits
MOV GS:[+7CH],EAX ; Write to Pixel Operations

; register

12.6 The XGA Sprite
Many graphics programs, at both the system and the application level, must manipu-
late some sort of animated screen marker image. A typical example of screen marker
is a mouse-controlled pointer or icon often used to facilitate selecting from option
boxes or menus. Since the marker image overlays the screen, the software has to find
some way of saving and restoring the screen contents as this image is translated over

XGA Hardware Programming 319

© 2003 by CRC Press LLC

the pixel grid. In our discussion of animation techniques (see Chapter 31) we describe
how the XOR operation is used in VGA graphics to display and erase an icon without
affecting the screen contents. In XGA, the operation of a small screen pointer icon is
considerably simplified thanks to a device called the sprite.

The XGA sprite mechanism consists of hardware elements designed to store and
display a small graphics object. The sprite operation is independent of the video dis-
play function. The maximum size of the sprite image is 64 by 64 pixels. This image is
stored in a 32K static RAM chip (which is not part of video memory) called the sprite
buffer. This buffer is used for storing alphanumeric characters when XGA is in a
VGA mode or in its proprietary 132-column text mode. The main advantage of the
XGA sprite is that it does not affect the image currently displayed, therefore the
XGA programmer need not worry about preserving the video image as the sprite is
moved on the screen. This action can be best visualized as a transparent overlay that
is moved over the picture without changing it. Figure 12-11 shows the structure of
the sprite buffer.

Figure 12-11 XGA Sprite Buffer

The XGA registers related to sprite image display and control are located in the
indexed access registers of the Display Controller group (see Section 12.1.3). Table
12-10 lists the location and purpose of the sprite-related registers.

The displayed sprite can be smaller than 64 by 64 pixels. In this case the software
controls which part of the sprite image is displayed by means of the Sprite Horizon-
tal Preset (offset 32H) and Sprite Vertical Preset registers (offset 35H) in the Display
Controller (see Table 12-10). However, the sprite image always extends to the full
64-bit length and width of the sprite buffer. Nevertheless, transparent sprite codes
can be used to locate the sprite image within the pixel rectangle defined by the
64-byte sprite buffer. The elements used in controlling the size of the sprite image
are shown in Figure 12-12.

320 Chapter Twelve

1 2 3

1

2

3

0

© 2003 by CRC Press LLC

Table 12-10

Sprite-Related Registers in the Display Controller

INDEX REGISTER REGISTER NAME
OFFSET

30H Sprite horizontal start, low part
31H Sprite horizontal start, high part
32H Sprite horizontal preset
33H Sprite vertical start, low part
34H Sprite vertical start, high part
35H Sprite vertical preset
36H Sprite control register
38H Sprite color 0, red component
39H Sprite color 0, green component
3AH Sprite color 0, blue component
3BH Sprite color 1, red component
3CH Sprite color 1, green component
3DH Sprite color 1, blue component
60H Sprite/palette index, low part
61H Sprite/palette index, high part
62H Sprite/palette prefetch, low part
63H Sprite/palette prefetch, high part
6AH Sprite data
6BH Sprite prefetch save (RESERVED)

Figure 12-12 Visible Sprite Image Control

12.6.1 The Sprite Image

The sprite image consists of 64 by 64 pixels. Each sprite image pixel can have one of
four attributes. The storage structure is in Intel data format and encoded in 2 bits per
pixel. The bit codes for the sprite image is shown in Table 12-11.

XGA Hardware Programming 321

SPRITE BUFFER

VISIBLE
SPRITE

horizontal
preset

vertical
preset

TRANSPARENT
SPRITE CODES

© 2003 by CRC Press LLC

Table 12-11

Sprite Image Bit Codes

BIT CODE ACTION

00 Pixel displayed in sprite color 0
01 Pixel displayed in sprite color 1
10 Transparent (image pixel is visible)
11 Complement (one's complement of image pixel

is visible)

The location of the sprite image within the viewport is determined by the Sprite
Horizontal Start and Sprite Vertical Start registers (see Table 12-11). Both of these
registers are word-size; however, the valid range of values is limited to 0 to 20,412.
The low-order bit in the Sprite Control register (offset 36H) determines the sprite's
visibility. The sprite is displayed when this bit is set and is invisible if the bit is
cleared.

Encoding of Sprite Colors and Attributes
In Section 12.1 5 we mentioned that the sprite's attributes are coded into a 2-bit field.
The first two codes refer to sprite color attributes, the third code defines a transparent
attribute, and the last one a one's complement operation (see Table 12-10). The sprite
colors 0 and 1 are determined by the setting in two sets of registers in the Display Con-
troller group; registers 38H to 3AH select the red, green, and blue values of sprite color
0, while registers 3BH to 3DH select the same values in sprite color 1. In this manner, if
the first byte in the sprite buffer is encoded with the value 01010101B, then the first 4
bits in the sprite are displayed using the color value for sprite color 1. Figure 12-13
shows how the sprite pixels are mapped to the binary values stored in the sprite buffer.

Figure 12-13 Bit-to-Pixel Mapping of Sprite Image

In summary, the attribute of each sprite pixel corresponds to the 2-bit code stored
in the sprite buffer. Therefore, designing a sprite image is a matter of installing the
red, green, and blue values for each sprite color and then composing a pixel map us-
ing the 2-bit values in Table 12-10. The Sprite Horizontal and Vertical Preset regis-
ters can be used to adjust a sprite image that does not coincide with the top-left
corner of the map stored in the sprite buffer.

322 Chapter Twelve

10100000-00000101 (A0H-05H) CODES:
00 = sprite color 0
01 = sprite color 1
10 = transparent
11 = complement (not used)

sprite pixel color 0
sprite pixel color 1
transparent sprite pixel

© 2003 by CRC Press LLC

Loading the Sprite Image
Once the sprite map has been composed and stored in an application's memory vari-
able, the software must proceed to set the sprite color registers and load the image
into the sprite buffer. The following code fragment assumes that the sprite colors and
bitmap have been placed in a formatted parameter block. From this data the sprite
color values and image are loaded into the corresponding Display Controller registers.

DATA SEGMENT
.
.
.

;**********************|
; sprite data |
;**********************|
; The 64 by 64 pixel sprite is defined at 64 lines of 4
; doublewords per line
;
; First 6 bits of the sprite color are significant
; In this example color number 0 is bright red and color number 1
; is bright white
SPRITE_MAP_0 DB 11111100B ; Red for color 0

DB 0 ; Green for color 0
DB 0 ; Blue for color 0
DB 11111100B ; Red for color 1
DB 11111100B ; Green for color 1
DB 11111100B ; Blue for color 1

; The 64 by 64 pixel sprite is defined as 64 lines of 4
; doublewords per line, encoded as follows:
; 00H = 00 00 00 00 B = 4 pixels in sprite color 0
; 55H = 01 01 01 01 B = 4 pixels in sprite color 1
; AAH = 10 10 10 10 B = 4 transparent pixels
; FFH = 11 11 11 11 B = 4 pixels in one's complement of image
;

DD 256 DUP (0055AAFFH)
DATA ENDS
;
CODE SEGMENT

.

.

.

; Load sprite image and select color registers
; On entry:
; DS:SI --> caller's sprite image formatted as follows:
;
; OFFSET UNIT CONTENTS
; 0 byte 6 low bits are RED for sprite color 0
; 1 byte 6 low bits are GREEN for sprite color 0
; 2 byte 6 low bits are BLUE for sprite color 0
; 3 byte 6 low bits are RED for sprite color 1
; 4 byte 6 low bits are GREEN for sprite color 1
; 5 byte 6 low bits are BLUE for sprite color 1
; 6 16 bytes per 64 rows (1024 bytes) encoding the
; sprite image at 2 bits per pixel
; 1030 end of sprite image
;
; Code assumes that the variable XGA_REG_BASE holds the XGA
; register base address (see Section 12.2.1)

XGA Hardware Programming 323

© 2003 by CRC Press LLC

;**********************|
; set sprite color 0 |
;**********************|
; Load sprite color 0 registers using values in parameter block
; supplied by caller (DS:SI)

MOV DX,XGA_REG_BASE ; Register base
ADD DX,0AH ; To Index register

; Index register 38H is Sprite Color 0, red value
MOV AL,38H ; Sprite register
MOV AH,[SI] ; Data from caller's buffer
INC SI ; Bump pointer to next byte
OUT DX,AX ; Write data

;
MOV DX,XGA_REG_BASE ; Register base
ADD DX,0AH ; To Index register

; Index register 39H is Sprite Color 0, green value
MOV AL,39H ; Sprite register
MOV AH,[SI] ; Data from caller's buffer
INC SI ; Bump pointer to next byte
OUT DX,AX ; Write data

;
MOV DX,XGA_REG_BASE ; Register base
ADD DX,0AH ; To Index register

; Index register 3AH is Sprite Color 0, blue value
MOV AL,3AH ; Sprite register
MOV AH,[SI] ; Data from caller's buffer
INC SI ; Bump pointer to next byte
OUT DX,AX ; Write data

;**********************|
; set sprite color 1 |
;**********************|
; Load sprite color 1 registers to GREEN

MOV DX,XGA_REG_BASE ; Register base
ADD DX,0AH ; To Index register

; Index register 3BH is Sprite Color 1, red value
MOV AL,3BH ; Sprite register
MOV AH,[SI] ; Data from caller's buffer
INC SI ; Bump pointer to next byte
OUT DX,AX ; Write data

;
MOV DX,XGA_REG_BASE ; Register base
ADD DX,0AH ; To index register

; Index register 3CH is Sprite Color 1, green value
MOV AL,3CH ; Sprite register
MOV AH,[SI] ; Data from caller's buffer
INC SI ; Bump pointer to next byte
OUT DX,AX ; Write data

;
MOV DX,XGA_REG_BASE ; Register base
ADD DX,0AH ; To Index register

; Index register 3DH is Sprite Color 1, blue value
MOV AL,3DH ; Sprite register
MOV AH,[SI] ; Data from caller's buffer
INC SI ; Bump pointer to next byte
OUT DX,AX ; Write data

;**********************|
; prepare to load |
; sprite image |
;**********************|
; First set the Sprite Index registers to zero

324 Chapter Twelve

© 2003 by CRC Press LLC

MOV DX,XGA_REG_BASE ; Register base
ADD DX,0AH ; To Index register

; Index register 60H is Sprite/Palette index Low
MOV AX,0060H ; 00 to register at offset 60H
OUT DX,AX ; Write data

; Reset to base
MOV DX,XGA_REG_BASE ; Register base
ADD DX,0AH ; To index register

; Index register 61H is Sprite/Palette index High
MOV AX,0061H ; 00 to register at offset 60H
OUT DX,AX ; Write data

; Select the Sprite Data register at offset 6AH
MOV DX,XGA_REG_BASE ; Register base
ADD DX,0AH ; To Index register
MOV AL,06AH ; Offset of Data register
OUT DX,AL ; Select the Sprite Data register

;**********************|
; load sprite image |
;**********************|
; DS:SI --> buffer area containing the sprite bitmapped image in
; 2 bits per pixel format, as follows:
; 00 = sprite color 0
; 01 = sprite color 1
; 10 = transparent pixel
; 11 = complement pixel

MOV CX,512 ; Word item counter
SPRITE_DATA:

MOV DX,XGA_REG_BASE ; Register base
ADD DX,0CH ; To second Data register
MOV AX,[SI] ; Get data from buffer
OUT DX,AX ; Send to data port
INC SI ; Bump data pointer
INC SI ; to next word
LOOP SPRITE_DATA ; Repeat 512 times

; At this point sprite color and image have been loaded

The procedure named SPRITE_IMAGE in the XGA2 module of the GRAPHSOL li-
brary loads the sprite image and colors using the same processing as in the above
code fragment.

12.6.2 Displaying the Sprite
As mentioned in Section 12.5.1, if the low-order bit of the Sprite Control register is set,
the sprite image is displayed on the video screen. The position at which it is displayed
is determined by the setting of the Sprite Horizontal Start and Vertical Start registers
(see Table 12-11). The following code fragment displays the sprite image at the screen
coordinates supplied by the caller.

; Display sprite image at coordinates furnished by the caller
; as follows:
; BX = x coordinate of sprite location (0 to 1023)
; CX = y coordinate of sprite location (0 to 767)
; Code assumes that the variable XGA_REG_BASE holds the XGA
; register base address (see Section 12.2.1)
;

MOV DX,XGA_REG_BASE ; Register base
ADD DX,0AH ; To Index register

; Index register 30H is Sprite x Start LOW register
MOV AH,BL ; Value to Start register

XGA Hardware Programming 325

© 2003 by CRC Press LLC

MOV AL,30H ; Address of Start x Low
OUT DX,AX ; Write data

;
MOV DX,XGA_REG_BASE ; Register base
ADD DX,0AH ; To Index register

; Index register 31H is Sprite x Start HIGH register
MOV AH,BH ; Value to start register
MOV AL,31H ; Address of Start register
OUT DX,AX ; Write data

; Set Sprite x Preset register to 0
MOV DX,XGA_REG_BASE ; Register base
ADD DX,0AH ; To Index register

; Index register 32H is Sprite x Preset register
MOV AH,00 ; Value to preset register
MOV AL,32H ; Address of Start register
OUT DX,AX ; Write data

; Select y coordinate registers
MOV DX,XGA_REG_BASE ; Register base
ADD DX,0AH ; To Index register

; Index register 33H is Sprite y Start LOW register
MOV AH,CL ; Value to start register
MOV AL,33H ; Address of Start x Low
OUT DX,AX ; Write data

;
MOV DX,XGA_REG_BASE ; Register base
ADD DX,0AH ; To Index register

; Index register 34H is Sprite y Start HIGH register
MOV AH,CH ; Value to Start register
MOV AL,34H ; Address of Start register
OUT DX,AX ; Write data

; Set Sprite y Preset register to 0
MOV DX,XGA_REG_BASE ; Register base
ADD DX,0AH ; To Index register

; Index register 35H is Sprite x Preset register
MOV AH,00 ; Value to preset register
MOV AL,35H ; Address of Start register
OUT DX,AX ; Write data

;**********************|
; display sprite |
;**********************|
; Sprite is displayed by setting bit 0 of the Sprite Control
; register at offset 36H

MOV DX,XGA_REG_BASE ; Register base
ADD DX,0AH ; To Index register

; Sprite control register offset is 36H
MOV AH,01 ; Value to start register
MOV AL,36H ; Address of Start register
OUT DX,AX ; Write data

; At this point the sprite has been displayed

The procedure named SPRITE_AT in the XGA2 module of the GRAPHSOL library
displays the sprite using the same processing as in the above code fragment. To turn
off the sprite the program need only clear the low-order bit in the Sprite Control
Register. This operation is performed by the SPRITE_OFF procedure in the XGA2
module of the GRAPHSOL library.

326 Chapter Twelve

© 2003 by CRC Press LLC

12.7 Using the XGA Library
The GRAPHSOL library furnished in the book’s software package includes two mod-
ules that contain XGA specific routines: XGA1.ASM and XGA2.ASM. XGA1.ASM con-
tains procedures that use the AI services described in Chapter 6. The purpose of this
module is to simplify initializing the XGA system and the AI software as well as to facil-
itate the use of AI text services. The module XGA2.ASM of the XGA library contains
routines that access the XGA registers directly. These procedures serve to initialize
the XGA system, to select the display mode, to set an individual screen pixel using the
1,024 by 768 pixel definition in 256 colors,to perform the display of geometrical fig-
ures, and to load and manipulate the sprite.

In addition to the routines in the GRAPHSOL library, XGA programs can also use
several procedures in the VGA modules of GRAPHSOL.L-IB. The use of the VGA pro-
cedures by an XGA system requires a previous call to the SET_DEVICE routine in
the VGA3 module. For XGA systems this call is made with the AL register holding
the character "X." The call sets a device-specific display switch to the XGA display
routine. This enables the use of several geometrical display routines in the VGA3
module, including the named BRESENHAM, LINE_BY_SLOPE, DISPLAY_LINE,
CIRCLE, ELLIPSE, PARABO-LA, and HYPERBOLA. Also the following procedures in
the VGA2 module: FINE_TEXT, FINE_TEXTHP, and MULTITEXT, as well as the cor-
responding text display support rout ines , such as FONT_TO_RAM and
READ_HPFONT. Information regarding the VGA text display and geometrical rou-
tines can be found in Chapters 4 and 5 as well as in the source files VGA2.ASM and
VGA3.ASM contained in the book's software.

12.7.1 Procedures in the XGA1.ASM Module

OPEN_AI

Initialize Adapter Interface software.

Receives:

Nothing

Returns:

Carry clear if AI initialized

Carry set if error

CLOSE_AI

Erase video and close Adapter Interface.

Receives:

Nothing

Returns:

Nothing

AI_FONT

Read an XGA or 8514/A font file into RAM to enable text display using AI functions.

XGA Hardware Programming 327

© 2003 by CRC Press LLC

Receives:

Far pointer to ASCIIZ filename for font file

(must be in the current path)

Returns:

Carry clear if font read and stored in buffer

Carry set if file not found or disk error

AI_COLOR

Set foreground and background colors for AI services.

Receives:

1. Byte integer of foreground color

2. Byte integer of background color

Returns:

Nothing

Action:

Foreground and background colors selected

AI_CLS

Clear screen using AI service.

Receives:

Nothing

Returns:

Nothing

Action:

Video display is cleared

AI_TEXT

Display a text message on XGA screen using an AI service.

Receives:

1. word integer of x pixel coordinate for message

2. word integer of y pixel coordinate for message

3. byte integer of foreground color

4. byte integer of background color

5. far pointer to text message

Returns:

Nothing

Action:

Text message is displayed

328 Chapter Twelve

© 2003 by CRC Press LLC

AI_PALETTE
Initialize 256 DAC color registers from a 4-byte per color table using an AI service.

Receives:

1. far pointer to 1024 byte table of palette colors

(4 bytes per color encoding)

Returns:

Nothing

Action:

LUT registers are set according to value table furnished by the
caller.

AI_COMMAND
Access the services in the XGA/8514-A Adapter Interface.

Receives:

1. word integer of AI service number

2. far pointer to parameter block

Returns:

Nothing

Action:

AI command is executed.

12.7.2 Procedures in the XGA2.ASM Module

XGA_MODE
Initialize an XGA graphics mode by setting the video system registers directly.

Receives:

1. byte integer of XGA mode number

Assumes:

INIT_XGA has been previously called

Returns:

1. carry clear if no error

2. carry set if invalid mode

Action:

XGA system is set to mode requested by the caller. Valid range is 2
to 5, as follows:

Mode number: Resolution: Colors:

2 1024 by 756 256

3 1024 by 768 16

4 640 by 480 256

XGA Hardware Programming 329

© 2003 by CRC Press LLC

5 640 by 480 65,536

INIT_XGA

Initialize XGA registers and report machine setup.

Receives:

Nothing

Returns:

1. byte integer of machine setup, as follows:

7 6 5 4 3 2 1 0

| | | | | | | |___ 1 = XGA in system

| | | | | | | 0 = no XGA found

| | | | | | |_____ 1 = XGA color monitor

| | | | | | 0 = XGA monochrome monitor

| | | | | |_______ 1 = high resolution (1024 x 768)

| | | | | 0 = no high resolution

| | | | |_________ 1 = RAM = 1Mb

| | | | 0 = RAM = 512Kb

| | | |___________ 1 = dual monitor system

| | | 0 = single monitor system

|_|_|_____________ UNUSED

Action:

XGA system is initialized and setup is tested. This initialization
is required by many other procedures in this module.

XGA_PIXEL_2

Write a screen pixel accessing XGA memory directly while in XGA mode number 2.

Receives:

1. word integer of x coordinate of pixel

2. word integer of y coordinate of pixel

3. byte integer of pixel color in 8-bit format

Assumes:

INIT_XGA has been previously called

Returns:

Nothing

Action:

Pixel is set

330 Chapter Twelve

© 2003 by CRC Press LLC

XGA_CLS_2
Clear video memory while in XGA mode number 2 using block move.

Receives:

Nothing

Assumes:

INIT_XGA has been previously called

Returns:

Nothing

Action:

Direct access version of the AI_CLS procedure in the XGA1.ASM
module.

XGA_OFF
Turn off XGA video by clearing the Palette Mask register.

Receives:

Nothing

Assumes:

INIT_XGA has been previously called

Returns:

Nothing

Action:

XGA display is disabled

XGA_ON
Turn on XGA video by setting the Palette Mask register.

Receives:

Nothing

Assumes:

INIT_XGA has been previously called

Returns:

Nothing

Action:

XGA display is enabled

XGA_PALETTE
Load 256 XGA LUT color registers with data supplied by the caller.

Receives:

1. Far pointer of 1024-byte color table in RGBx format

Assumes:

XGA Hardware Programming 331

© 2003 by CRC Press LLC

INIT_XGA has been previously called

Returns:

Nothing

Action:

LUT registers are initialed to supplied values. Caller's data to be
formatted in red, blue, green, ignored, pattern.

DC_PALETTE
Set 256 XGA palette registers for the direct color mode using values recommended by
IBM.

Receives:

Nothing

Assumes:

INIT_XGA has been previously called

Returns:

Nothing

Action:

XGA palette registers are initialized for mode number 5, in 65,536
colors.

INIT_COP
Initialize XGA coprocessor. This procedure assumes that the procedure INIT_XGA (in
this module) has been previously called and that the POS_x variables have been
loaded.

Receives:

Nothing

Returns:

1. GS = coprocessor base address

2. FS = base address of video memory (VRAM)

Action:

Coprocessor is initialized. GS and FS segment registers are set for
calling the coprocessor commands in this module.

COP_RECT_2
Graphics coprocessor pixBlt operation on a rectangular screen area.

Receives:

1. word integer of x coordinate of top-left corner

2. word integer of y coordinate of top-left corner

3. word integer of rectangle's pixel width

4. word integer of rectangle's pixel height

5. byte integer of 8-bit color code

332 Chapter Twelve

© 2003 by CRC Press LLC

Assumes:

1. Mode number 2 (1024 by 768 pixels in 256 colors)

2. GS and FS segment set by INIT_COP procedure

Returns:

Nothing

Action:

Rectangular pixBlt is performed

COP_SYSVID_1

Graphics coprocessor pixBlt operation from a source in system memory to a destina-
tion in video memory, using an image map encoded in 1-bit per pixel format.

Receives:

1. far pointer to source bitmap in RAM

2. word integer of pixel map width

3. word integer of pixel map height

4. word integer of x coordinate for display

5. word integer of y coordinate for display

6. byte integer of 8-bit color value

Assumes:

1. Mode number 2 (1024 by 768 pixels in 256 colors)

2. GS and FS segment set by INIT_COP procedure

Returns:

Nothing

Action:

PixBlt is performed.

COP_SYSVID_8

Graphics coprocessor pixBlt operation from a source in system memory to a destina-
tion in video memory, using an image map encoded in 8-bit per pixel format.

Receives:

1. far pointer to source bitmap in RAM

2. word integer of pixel map width

3. word integer of pixel map height

4. word integer of x coordinate for display

5. word integer of y coordinate for display

Assumes:

1. Mode number 2 (1024 by 768 pixels in 256 colors)

2. GS and FS segment set by INIT_COP procedure

XGA Hardware Programming 333

© 2003 by CRC Press LLC

Returns:

Nothing

Action:

PixBlt is performed.

COP_LINE_2
Draw a line using XGA graphics coprocessor, while in mode number 2 (1,024 by 768
pixels in 256 colors).

Receives:

1. word integer of x coordinate of line start

2. word integer of y coordinate of line start

3. word integer of x coordinate of line end

4. word integer of y coordinate of line end

5. byte integer of 8-bit color value

Assumes:

1. Mode number 2 (1024 by 768 pixels in 256 colors)

2. GS and FS segment set by INIT_COP procedure

Returns:

Nothing

Action:

Line is drawn.

SPRITE_IMAGE
Load sprite image and install values in Sprite Color registers.

Receives:

1. far pointer to color code and image buffer, formatted

as follows:

OFFSET UNIT CONTENTS

0 byte 6 low bits are RED for sprite color 0

1 byte 6 low bits are GREEN for sprite color 0

2 byte 6 low bits are BLUE for sprite color 0

3 byte 6 low bits are RED for sprite color 1

4 byte 6 low bits are GREEN for sprite color 1

5 byte 6 low bits are BLUE for sprite color 1

6 16 bytes per 64 rows (1024 bytes) encoding the

sprite image at 2 bits per pixel

1030 end of sprite image

Assumes:

334 Chapter Twelve

© 2003 by CRC Press LLC

INIT_XGA has been previously called.

Returns:

Nothing

Action:

Sprite image and colors codes are stored in Display Controller
registers

SPRITE_AT

Display sprite image at coordinates furnished by the caller.

Receives:

1. word integer of x coordinate of sprite location

(range is 0 to 1023)

2. word integer of y coordinate of sprite location

(range is 0 to 768)

Assumes:

INIT_XGA has been previously called.

Returns:

Nothing

Action:

Sprite is displayed at entry coordinates.

SPRITE_OFF

Sprite is turned off by clearing bit 0 of the Sprite Control register.

Receives:

Nothing

Assumes:

INIT_XGA has been previously called.

Returns:

Nothing

Action:

Sprite image is no longer displayed

XGA Hardware Programming 335

© 2003 by CRC Press LLC

Chapter 13

SuperVGA Programming

Topics:
• SuperVGA programming

• Introducing SuperVGA

• The VESA SuperVGA standard

• The VESA BIOS services

• Programming the SuperVGA system

• The book's SuperVGA Library

This chapter describes the SuperVGA video hardware and its architecture, the VESA
SuperVGA standards and the use of the various VESA BIOS Services, also program-
ming the SuperVGA system by accessing the video hardware directly and by the use of
the VESA BIOS services. The chapter concludes with a listing of the procedures in the
SVGA library furnished with the book.

13.1 Introducing the SuperVGA Chipsets
The term SuperVGA refers to enhancements to the standard VGA modes as furnished
in some non-IBM adapters developed for PC compatible computers. The common
characteristic of all SuperVGA boards is the presence of graphics features that exceed
the VGA standard in definition or color range. In other words, a SuperVGA graphics
board is capable of executing, not only the standard VGA modes, but also other modes
that provide higher definition or greater color range than VGA. These are usually
called the SuperVGA Enhanced Modes.

In the late seventies the proliferation of SuperVGA hardware gave rise to many
compatibility problems, due to the fact that the enhanced features of the SuperVGA
cards were not standardized; therefore the SuperVGA enhancements in the card pro-
duced by one manufacturer were incompatible with the enhancements in a card
made by another company. This situation often presented unsurmountable prob-

© 2003 by CRC Press LLC

lems to the graphcs application programmer, who would find that an application de-
signed to take advantage of the graphics enhancements in a SuperVGA card would
not execute correctly in another one.

At the operating system level these incompatibility problems are easier to correct
than at the application level. For example, the manufacturers of SuperVGA boards
often furnish software drivers for Windows and Operating System/2. Once the driver
is installed, the graphics environment in the operating system will be able to use the
enhancements provided by a particular SuperVGA board. By the same token, appli-
cations that perform graphics functions by means of operating system services will
also take advantage of the SuperVGA enhancements.

On the other hand, graphics applications that control the hardware directly
would not be able to take advantage of a system-level driver. Fortunately, some
graphics programs are designed with a flexible video interface. In this case, the ap-
plication software can be more easily adapted to the features of a particular
SuperVGA. This is the case with AutoCad, Ventura Publisher, Wordperfect, Lotus
1-2-3, and other high-end graphics applications for the PC. But, for those applica-
tions in which the video functions are embedded in the code, the adaptation to a
non-standard video mode often implies a major program redesign.

In 1989, in an attempt to solve this lack of standardization, several manufacturers
of SuperVGA boards formed the Video Electronics Standards Association (VESA).
Most of the companies listed at the beginning of this section are now members of
VESA. In October of 1989 VESA released its first SuperVGA standard. The VESA
standard defined several enhanced video modes and implemented a BIOS extension
designed to provide a few fundamental video services in a compatible fashion. Be-
cause of this advantage in compatibility and portability, our treatment of SuperVGA
programming focuses on the use of the VESA BIOS functions.

13.1.1 SuperVGA Memory Architecture
In previous chapters we saw that the IBM microcomputer video systems are memory
mapped. In VGA the video memory space extends from A0000H to BFFFFH. The 64K
space starting at segment base A000H is devoted to graphics and the 64K space start-
ing at segment base B000H is for alphanumeric modes. This means that the total space
reserved for video operations is of 128K. But since some systems are set up with two
monitors, one operating in alphanumeric modes (base address B000H for mono-
chrome systems and B800H for color systems), the actual video space for graphics op-
erations is practically limited to 64K.

Not much video data can be stored in a 64K memory space. For example, if each
screen pixel is encoded in 1 memory byte, then the maximum screen data that can
be stored in 65,536 bytes is 256 square pixels. In Chapter 2 we saw that the VGA
screen in 640 by 480 pixels resolution requires 307,200 bytes, we also show how the
VGA designers were able to compress video data by implementing a latching scheme
and a planar architecture. Consequently, in VGA mode number 18 a pixel is encoded
into a single memory bit, although it can be displayed in 16 different colors. The
latching mechanism (see Figure 2.4) is based on four memory maps of 38,400 bytes
each. All four color maps (red, green, blue, and intensity) start at segment base

338 Chapter Thirteen

© 2003 by CRC Press LLC

A000H. The pixel displayed is determined by the value stored in the Bit Mask regis-
ter of the VGA Graphics Controller group (see Section 2.2.4).

16 Color Extensions

Simple arithmetic shows a memory surplus in many VGA modes. For example, if the
resolution is of 640-by-480 pixels, the video data stored in each map takes up 38,400
bytes of the available 65,536. Therefore there are 27,136 unused bytes in each map. The
original idea of enhancing the VGA system was based on using this surplus memory to
store video data. It is clearly possible to have an 800-by-600 pixel display divided into
four maps of 60,000 bytes each, and yet not exceed the 64K space allowed for each
color map nor the total 265K furnished with the VGA system.

The 800-by-600 pixel resolution in 16 colors appears as a natural extension to
VGA mode number 113. This mode, which was later designated as mode 6AH by the
VESA standards, could be programmed in a similar manner as mode number 113.
This extension, which could be achieved with minor changes in the VGA hardware,
provided a 36 percent increase in the display area.

Another extension to the VGA system is a wider pixel mask register to make pos-
sible more than the 16 colors that can be encoded in a 4-bit field. However, this has
never been implemented in a SuperVGA system due to performance factors and
other hardware considerations.

Memory Banks

In Chapter 7 we saw that the memory structure for VGA 256-color mode number
19 is based not on a the multiplane scheme, but in a much simpler format that maps
a memory byte to each screen pixel (see Figure 2.5). In this manner, 256 color com-
binations can be directly encoded into a data byte, which correspond to the 256 DAC
registers of the VGA hardware. The method is straightforward and uncomplicated;
however, if the entire video space is to be contained in 64K of memory the maximum
resolution would be limited to the 256 square pixels previously mentioned. In other
words, a rectangular screen of 320 by 200 pixels nearly fills the allotted 64K.

Therefore, if the resolution for a 256-color mode were to exceed 256 square pixels
it would be necessary to find other ways of mapping video memory into 64K of sys-
tem RAM. The mechanism adopted by the SuperVGA designers was based on the
well-known technique known as bank switching. In a bank switching scheme the
video display hardware maps several 64K blocks of RAM to different locations in
video memory. Addressing of the multi-segment space is by means of a hardware
mechanism that selects which video memory area is currently located at the sys-
tem's aperture. In the SuperVGA implementation the system aperture is usually lo-
cated at segment base A000H. The entire process is reminiscent of memory page
switching in the LIM (Lotus/Intel/Microsoft) Extended Memory environment. Figure
13-1, on the following page, schematically shows mapping of several memory banks
to the video space and the map selection mechanism for CPU addressing.

SuperVGA Programming 339

© 2003 by CRC Press LLC

Figure 13-1 Memory Banks to Video Mapping

In Chapter 12 we adopted the term aperture from the XGA terminology, which is
used to denote the processor's window into video memory. For example, if the ad-
dressable area of video memory starts at physical address A0000H and extends to
B0000H, we say that the CPU has a 64K aperture into video memory (10000H = 64K).
In SuperVGA documentation the word "granularity" is often used in this context. In
Figure 13-1 we can see that the bank selector determines which area of video mem-
ory is mapped to the processor's aperture. Therefore, the area of the video display
can be updated by the processor. In other words, in the memory banking scheme the
processor cannot access the entire video memory at once. In Figure 13-1 we can see
that we would have to perform 5 bank switches in order to update the entire screen.

256 Color Extensions

The SuperVGA alternative for increasing definition beyond the VGA limit is a banking
mechanism similar to the one shown in Figure 13-1. This scheme, in which a memory
byte encodes the 256 color combinations for each screen pixel, does away with the
pixel masking complications of VGA mode number 113. On the other hand, it intro-
duces the complications of a bank selection device which we already encountered in
XGA programming (see Section 7.1.2). The SuperVGA method has no precedent in
CGA, EGA, or VGA systems since it is not interleaved nor does it require memory
planes or pixel masking. Although it is similar to VGA mode number 19 regarding color
encoding, mode number 19 does not require bank switching.

It should be noted that the neat, rectangular window design shown in Figure 13-1
does not always conform with reality. Several implementations of SuperVGA
multi-color modes use non-rectangular windows that start and end inside a scan
line. This complicates the use of optimizing routines since the software cannot re-
strict its checking for a window boundary to the start and end of scan lines.

Pixel Addressing

The calculations required for setting an individual pixel in the 256 color modes depend
upon the size of the memory banks, the number of pixels per row and of screen rows,

340 Chapter Thirteen

VIDEO DISPLAY MEMORY BANKS

bank
selector

BANK 0

BANK 1

BANK 2

BANK 3

BANK 4

A000H

AFFFH

© 2003 by CRC Press LLC

and the start address of video memory. Although it is quite feasible to design a routine
that performs in different SuperVGA chipsets, the efficiency of such coding would be
necessarily low. The VESA standardization offers a solution to the programming com-
plications brought on by different architectures of the various SuperVGA chipsets. In
reality, since most SuperVGA systems use a 64K bank size and a processor's window
into video memory located at segment base A000H, the variations are reduced to the
bank switching operations.

13.2 The VESA SuperVGA Standard
The Video Electronics Standards Association was founded in 1989 with the intention
of providing a common programming interface for SuperVGA extended modes. In or-
der to achieve this, each manufacturer furnishes a VESA SuperVGA BIOS extension.
The BIOS can be in the adapter ROM or in a TSR routine. Today, most SuperVGA manu-
facturers are members of VESA and provide a VESA BIOS with their products.

The first release of the VESA SuperVGA standard was published on October 1,
1989 (version 1.0). A second release was published on June 2, 1990 (version 1.1).
The present release is dated Sepetember 16, 1998 (version 3.0). The latest version of
the standard supports non-VGA systems, flat memory models, and 32-bit operating
systems and applications.

13.2.1 VESA SuperVGA Modes
The first element of VESA standardization is the definition of standard modes for the
SuperVGA extensions. The VESA mode numbering scheme takes into account that the
VGA modes are in the range 0 to 7FH. This range limitation is due to the fact that the
VGA BIOS mode setting function (service number 0) uses the high-order bit to deter-
mine if video memory is to be cleared. To get around this restriction, the VESA mode
number is a word-size value, which is passed to the VESA BIOS in the BX register. Fig-
ure 13-2 shows the bitmap of the VESA MODE numbers.

Figure 13-2 VESA Mode Bitmap

SuperVGA Programming 341

015 8

VESA mode identification
bit (100H)

Video memory control
1 = clear video
0 = don't clear video
(active during mode set)

© 2003 by CRC Press LLC

Notice that bit number 8 identifies a VESA mode. That is, all VESA modes start at
number 100H. Notice also that bit number 15 is used during mode set operations to
indicate if video memory is to be cleared. Table 13-1 lists the VESA extended modes.

Table 13-1

VESA BIOS Modes

MODE NUMBER TEXT/ RESOLUTION
15 BITS 7 BITS GRAPHICS PIXELS COLUMNS/ROWS COLORS

100H GRAPHICS 640 by 400 256
101H GRAPHICS 640 by 480 256
102H 6AH GRAPHICS 800 by 600 16
103H GRAPHICS 800 by 600 256
104H GRAPHICS 1024 by 768 16
105H GRAPHICS 1024 by 768 256
106H GRAPHICS 1280 by 1024 16
107H GRAPHICS 1280 by 1024 256
108H TEXT 80 by 60
109H TEXT 132 by 25
10AH TEXT 132 by 43
10BH TEXT 132 by 50
10CH TEXT 132 by 60
10DH* GRAPHICS 300 by 200 32K
10EH GRAPHICS 320 by 200 64K
10FH GRAPHICS 320 by 200 16.8Mb
110H GRAPHICS 640 by 480 32K
111H GRAPHICS 640 by 480 64K
112H GRAPHICS 640 by 480 16.8Mb
113H GRAPHICS 800 by 600 32K
114H GRAPHICS 800 by 600 64K
115H GRAPHICS 800 by 600 16.8Mb
116H GRAPHICS 1024 by 768 32K
117H GRAPHICS 1024 by 768 64K
118H GRAPHICS 1024 by 768 16.8Mb
119H GRAPHICS 1280 by 1024 32K
11AH GRAPHICS 1280 by 1024 64K
11BH GRAPHICS 1280 by 1024 16.8Mb

Legend:
* modes after 10DH were introduced in VESA BIOS version 1.2

13.2.2 Memory Windows
The VESA standard accommodates variations in the SuperVGA implementations by
recognizing two different types of hardware windows into video memory. The first and
simpler type consists of a single window which can be read and written by the CPU.
The disadvantage of a read-write window becomes evident when a pixBlt operation
crosses the limit of this window, because, in this case, the software is forced to switch
banks and the CPU to reset the segment register base during the transfer. This double
burden can considerably degrade performance.

A partial solution is to provide separate windows for read and write operations.
One possible option is to have two windows located at the same address: one for
read and the other one for write operations. This scheme, sometimes called dual
overlapping windows, allows selecting both windows simultaneously. Once the

342 Chapter Thirteen

© 2003 by CRC Press LLC

source and destination windows are selected, the data block can be rapidly moved
by means of a REP MOVSB instruction.

A second alternative to the two windows option is to locate the read and write
windows at separate addresses. For example, a SuperVGA chipset can locate the
write window at base address A000H and the read window at base address B000H.
This would extend addressable memory to 128K and considerably simplify pixBlt
operations. The objection to this approach is that a two-monitor system requires the
B000H window for text operations; therefore this configuration would not be possi-
ble. Another solution is to cut the 64K window in half and provide separate 32K win-
dows, one for read and the other one for write operations. The objection in this case
is that normal display operation would require twice as many bank switches. Figure
13-3 is a schematic representation of the three possible windowing options.

Figure 13-3 VESA Window Types

13.3 The VESA BIOS

The VESA BIOS has been designed to perform only those operations that are strictly
necessary to achieve portability and hardware transparency of the SuperVGA system.
The fundamental functions of the VESA BIOS, as used in SuperVGA programming, are
the following:

1. Obtaining SuperVGA and mode information

2. Setting a standard VESA extended mode

3. Performing bank switching operations

The VESA BIOS does not provide graphics primitives. Furthermore, not even
pixel setting and reading operations are included in the standard. Due to this design
the software overhead is kept at a minimum. The actual function implementation of

SuperVGA Programming 343

SINGLE
READ/WRITE

WINDOW

WRITE WINDOW

READ WINDOW

READ WINDOW

WRITE WINDOW

DUAL
OVERLAPPING

WINDOWS

READ/WRITE
WINDOW

DUAL
NONOVERLAPPING

WINDOWS

© 2003 by CRC Press LLC

the functions are left to the chipset manufacturer, who also has the option of fur-
nishing the BIOS in ROM, or as a TSR.

Of the functions provided by the VESA BIOS the bank switching operation is the
most crucial in regards to display system performance. This is because bank switch-
ing is usually included in read and write loops and, therefore, in the program's criti-
cal path of execution. To provide the best possible performance the VESA BIOS
allows access to the bank switching function directly, by means of a far call to the
chipset manufacturer's own entry point to the service routine. This approach simpli-
fies and accelerates access to the actual bank switching code. The result is that dis-
play routines that use VESA BIOS functions can perform bank switching operations
almost as efficiently as routines that access the SuperVGA hardware directly.

13.3.1 VESA BIOS Services
The VESA BIOS is an extension of VGA BIOS video services located at interrupt 10H.
Access to the VESA BIOS is by means of service number 79 (4FH). The sub-function re-
fers to the specific VESA BIOS service. Eight VESA BIOS services have been imple-
mented to date. These are shown in Table 13-2.

Table 13-2

VESA BIOS Sub-services to BIOS INT 10H

SUB-SERVICE DESCRIPTION

00H Return SuperVGA information
01H Return SuperVGA mode information
02H Set SuperVGA mode
03H Return current video mode
04H Save/restore SuperVGA video state
05H Switch banks
06H Set/get logical scan line length
07H Set/get display start

The following code fragment is a general template for accessing the VESA BIOS
sub-services

MOV AH,79 ; VESA BIOS service number
MOV AL,? ; AL holds sub-service number
. ; Other registers are loaded with
. ; the values required by the
. ; sub-service

INT 10H

All VESA BIOS functions return the same error codes: AL = 79 (4FH) if the func-
tion is supported, AH = 0 if the call was successful.

Sub-service 0 - System Information
VESA BIOS sub-service number 0 provides general VESA information. The caller fur-
nishes a pointer to a 256-byte data buffer which is filled by the VESA service. The fol-
lowing code fragment shows the set of variables and the register setup for this service.

DATA SEGMENT
;**********************|
; parameter block |

344 Chapter Thirteen

© 2003 by CRC Press LLC

;**********************|
VESA_BUFFER DB ' ' ; 'VESA' signature
VESA_VERSION DW ? ; Version number
OEM_PTR_OFF DW ? ; OEM string offset pointer
OEM_PTR_SEG DW ? ; OEM string segment pointer
CAPABILITIES DD ? ; Adapter capabilities

; (first implemented in VESA
; BIOS version 1.2)

MODES_PTR_OFF DW ? ; Pointer to modes list, offset
MODES_PTR_SEG DW ? ; Segment for idem
MEM_BLOCKS DW ? ; Count of 64K memory blocks

; (first implemented in VESA
; BIOS version 1.1)

DB 242 DUP (?) ; Remainder of block
;
DATA ENDS
;
;
CODE SEGMENT

.

.

.

; Call VESA BIOS sub-service number 0 to obtain SuperVGA
; information
; Passed by caller:
; DS:DI = pointer to 256-byte data buffer
; Returned by service:
; AX = 004FH if no error
; Data stored in the caller's buffer
;
;**********************|
; setup registers |
;**********************|
; Initialize entry registers

LEA DI,VESA_BUFFER ; Start of data buffer
; VESA BIOS sub-service number 0 uses ES as a segment base

PUSH ES ; Caller's ES
PUSH DS ; CAller's DS
POP ES ; to ES

;**********************|
; get VESA information |
;**********************|

MOV AH,79 ; VESA BIOS service number
MOV AL,0 ; This sub-service
INT 10H ; BIOS video service

; At this point AX must hold 004FH if the call executed
CMP AX,004FH ; Returned code
JE OK_VESA_0 ; Go if valid value

;**********************|
; ERROR exit |
;**********************|
; The programmer should code an error routine at this point
; to handle an invalid call to the VESA BIOS function
BAD_VESA:

.

.

.
OK_VESA_0:
; Test buffer for a valid 'VESA' signature

SuperVGA Programming 345

© 2003 by CRC Press LLC

CMP WORD PTR [DI],'EV' ; First two letters
JE OK_VE ; Go if matched
JMP BAD_VESA ; Exit if not matched

OK_VE:
CMP WORD PTR [DI+2],'AS' ; Last two letters
JNE BAD_VESA ; Go if not matched

; At this point the VESA BIOS call to sub-service number 0
; was successful

.

.

.
CODE ENDS

The call to sub-service number 0 is usually made to determine if there is a VESA
BIOS available, although the sub-service provides other information that could also
be useful. Testing for a valid VESA BIOS is a two step process: first the code tests
for the value 004FH in the AX register. This value corresponds to the standard VESA
error codes mentioned at the beginning of this section. Once this first test is passed,
the code makes certain that the four-character 'VESA' signature is stored at the start
of the buffer. If these tests are satisfactory, execution can continue on the assump-
tion that a valid VESA BIOS is present and that its functions are available to the soft-
ware.

The data segment of the above code fragment shows the most important items re-
turned by sub-service number 0. The field contents are as follows:

• VESA_BUFFER is the label that marks the start of the buffer. At this label the BIOS will
store the word 'VESA' which serves as a string signature that identifies the BIOS.

• VESA_VERSION is a 2-byte field that encodes the current version of the VESA BIOS.
The encoding is in fractional form, for example, the value 3131H corresponds to the
ASCII digits 1,1 and represents version 1.1 of the VESA BIOS. An application can as-
sume upward compatibility in the VESA BIOS.

• OEM_PTR_OFF and OEM_PTR_SEG are two word variables that encode the offset and
segment values of a far pointer to an identification string supplied by the board manu-
facturer. Board-specific routines would use this string to check for compatible hard-
ware.

• The CAPABILITIES label is a 4-byte field designed to hold a code that represents the
general features of the SuperVGA environment. This field was not used until VESA
BIOS version 1.2, released on October 22, 1991. At this time bit number 0 of this field
was enabled to encode adapters with the possibility of storing extended primary color
codes. In VESA BIOS version 1.2, and later, a value of 1 in bit 0 of the CAPABILITIES
field indicates that the DAC registers can be programmed to hold more than 6-bit color
codes. A value of 0 indicates that the DAC register is standard VGA, with 6-bits per pri-
mary color. Changing the bit width of the DAC registers is performed by calling
sub-service number 8, discussed later in this section.

• MODES_PTR_OFF and MODES_PTR_SEG are two word variables that hold the offset
and segment values of a far pointer to a list of implemented SuperVGA modes. Each
mode occupies one word in the list. The code 0FFFFH serves as a list terminator. An ap-
plication can examine the list of modes to make certain that a specific one is available
or to select the best one among possible candidates.

346 Chapter Thirteen

© 2003 by CRC Press LLC

• MEM_BLOCKS field encodes, in a word variable, the number of 64K blocks of memory
installed in the adapter. Notice that this field was first implemented in VESA BIOS ver-
sion 1.1.

Sub-service 1 - Mode Information
VESA BIOS sub-service number 1 provides information about a specific SuperVGA
VESA mode. The caller furnishes a pointer to a 256-byte data buffer, which is filled by
the VESA service, as well as the number of the desired mode. The following code frag-
ment shows a possible set of data variables and register setup for this service.

DATA SEGMENT
;
;**********************|
; first field group |
;**********************|
VESA_INFO DW ? ; Mode attributes, mapped as

; follows:
; ..4 3 2 1 0 <= bits
; | | | | |__ 0 = mode not supported
; | | | | 1 = mode supported
; | | | |____ 0 = no extended mode info
; | | | 1 = extended mode info
; | | |_______0 = no output functions
; | | 1 = output functions
; | |________ 0 = monochrome mode
; | 1 = color mode
; |__________ 0 = text mode
; 1 = graphics mode
; 15..5 = RESERVED

WIN_A_ATTS DB ? ; Window A attributes
WIN_B_ATTS DB ? ; Window B attributes
WIN_GRAIN DW ? ; Window granularity
WIN_SIZE DW ? ; Window size
WIN_A_SEG DW ? ; Segment address for window A
WIN_B_SEG DW ? ; Segment address for window B
BANK_FUN DD ? ; Far pointer to bank switch

; function
BYTES_PER_ROW DW ? ; Bytes per screen row
;**********************|
; second field group |
;**********************|
; Extended mode data. Optional until VESA BIOS version 1.2
X_RES DW ? ; Horizontal resolution
Y_RES DW ? ; Vertical resolution
X_CHAR_SIZE DB ? ; Pixel width of character cell
Y_CHAR_SIZE DB ? ; Pixel height of character cell
BIT_PLANES DB ? ; Number of bit planes
BITS_PER_PIX DB ? ; Bits per pixel in this mode
NUM_OF_BANKS DB ? ; Number of video memory banks
MEM_MODEL DB ? ; Memory model, as follows:

; 00H = text mode
; 01H = CGA graphics
; 02H = Hercules graphics
; 03H = 4-plane architecture
; 04H = Packed pixel architecture
; 05H = 256 color (unchained)
; The following were defined
; in VESA BIOS version 1.2:

SuperVGA Programming 347

© 2003 by CRC Press LLC

; 06H = Direct color
; 07H = YUV color
; 08H - 0FF = not yet defined

BANK_SIZE DB ? ; Kilobytes per bank
PLANES DB ? ; Number of planes:

; 4 in 16 color modes, 1 in 256 color modes
DB 1 ; Reserved for BIOS

;**********************|
; third field group |
;**********************|
; Direct color fields. Defined in VESA BIOS version 1.2
RED_MASK DB ? ; Bit size of red mask
RED_POSITION DB ? ; Red mask LSB position
GREEN_MASK DB ? ; Bit size of green mask
GREEN_POSITION DB ? ; Green mask LSB position
BLUE_MASK DB ? ; Bit size of blue mask
BLUE_POSITION DB ? ; Blue mask LSB position
RSVD_MASK DB ? ; Bit size of reserved mask
RSVD_POSITION DB ? ; Reserved mask LSB position
DC_INFO DB ? ; Attributes of direct color

; modes, as follows:
; bit 0 = color ramp
; 0 = fixed
; 1 = programmable
; bit 1 = Reserved field bits
; 0 = not usable
; 1 = usable

DB 216 DUP (?) ; Remainder of block
DATA ENDS
;
CODE SEGMENT

.

.
;**********************|
; get VESA mode info |
;**********************|
; Passed by caller:
; CX = mode number, as follows:
; GRAPHICS number resolution colors
; 100H 640 by 400 256
; 101H 640 by 480 256
; 102H 800 by 600 16
; 103H 800 by 600 256
; 104H 1024 by 768 16
; 105H 1024 by 768 256
; 106H 1280 by 1224 16
; 107H 1280 by 1224 256
; TEXT 108H 80 by 60
; 109H 132 by 25
; 10AH 132 by 43
; 10BH 132 by 50
; 10CH 132 by 60
; DS:DI = pointer to 256-byte data buffer
; Returned by service:
; AX = 004FH if no error
; Data stored in the caller's buffer
;**********************|
; register setup |
;**********************|
; CX to hold requested mode number

348 Chapter Thirteen

© 2003 by CRC Press LLC

; DS:SI -> information block supplied by service
; Initialize entry registers

LEA DI,VESA_INFO ; Start of data buffer
MOV CX,105H ; Mode requested

; VESA BIOS sub-service number 1 uses ES as a segment base
PUSH ES ; Caller's ES
PUSH DS ; Caller's DS
POP ES ; to ES

;**********************|
; get VESA information |
;**********************|

MOV AH,79 ; VESA BIOS service number
MOV AL,1 ; This sub-service
INT 10H ; BIOS video service

; At this point AX must hold 004FH if the call executed
CMP AX,004FH ; Returned code
JE OK_MODE ; Go if valid value

;**********************|
; ERROR exit |
;**********************|
; The programmer should code an error routine at this point
; to handle the case of an invalid VESA BIOS call

.

.
OK_MODE:
; At this point the VESA BIOS call to sub-service number 1
; was successful. However, the code cannot assume that the
; mode requested is implemented in the system

.

.
CODE ENDS

The call to sub-service number 1 is usually made to determine if the desired mode
is available in the hardware and, if so, to obtain certain fundamental parameters re-
quired by the program. If the call is successful, the code can examine the data at off-
set 0 in the data buffer in order to determine the mode's fundamental attributes.
These mode attributes are shown in Figure 13-4.

Figure 13-4 VESA Mode Attribute Bitmap

SuperVGA Programming 349

015

0 = mode not supported
1 = mode supported

0 = no extended mode information
1 = extended mode information
0 = no output functions
1 = output functions

0 = monochrome mode
1 = color mode

0 = text mode
1 = graphics mode

bits 5 to 15
RESERVED

bit 0

bit 1

bit 2

bit 3

bit 4

© 2003 by CRC Press LLC

The data segment of the above code fragment shows the items returned by
sub-service number 1. The data items are divided into three field groups. The con-
tents of the variables in the first field group are as follows:

WIN_A_ATTS and WIN_B_ATTS are 2 bytes that encode the attributes of the two
possible memory banks, or windows. Figure 13-5 is a bitmap of the window attribute
bytes.

Figure 13-5 Window Attributes Bitmap

The code can inspect the window attribute bits to determine the window types
used in the system (see Figure 13-3).

The WIN_GRAIN word specifies the granularity of each window. The granularity
unit is 1 kilobyte. The value can be used to determine the minimum video memory
boundary for the window.

The WIN_SIZE word specifies the size of the windows in kilobytes. This value can
be used in tailoring bank switching operations to specific hardware configurations
(see Section 13.3.1).

The word labeled WIN_A_SEG holds the segment base address for window A and
the word labeled WIN_B_SEG the base address for window B. The base address in
graphics modes is usually A000H, however, the code should not take this for
granted.

The doubleword labeled BANK_FUN holds a far pointer to the bank shifting func-
tion in the BIOS. An application can shift memory banks using VESA BIOS
sub-service number 5, described later in this section, or by means of a direct call to
the service routine located at the address stored in this variable. The call can be
coded with the instruction:

CALL DWORD PTR BANK_FUN

BYTES_PER_ROW is a word variable that encodes the number of bytes in each
screen logical pixel row. Notice that this value can be larger than the number of pix-
els in a physical scan line.

The variables in the second field group are of optional nature. Bit number 1 of the
mode attribute bitmap (see Figure 13-4) can be read to determine if this part of the

350 Chapter Thirteen

7 6 5 4 3 2 1 0

0 = window not supported
1 = window supported

0 = window not readable
1 = window is readable

0 = window is not writeable
1 = window is writeable

© 2003 by CRC Press LLC

data block is available. The contents of the various fields in the second group are de-
scribed in the data segment of the preceding code fragment.

The direct color fields from the third field group. These fields were first imple-
mented in VESA BIOS version 1.2 to support SuperVGA systems with color capabili-
ties that extended beyond the 256 color modes. The contents of the various fields in
the third group are described in the data segment of the preceding code fragment.
Because, to date, very few SuperVGA adapters support the direct color modes, their
programming is not considered in this book.

Sub-service 2 - Set Video Mode
VESA BIOS sub-service number 2 is used to initialize a video mode supported by the
adapter. The VESA mode number is passed to the sub-service in the BX register. The
high-order bit, which is sometimes called the clear memory flag, is set to request that
video memory not be cleared. The following code fragment shows a call to this VESA
BIOS service.

;**********************|
; set video mode |
;**********************|
; Select mode 105H using VESA BIOS sub-service number 2

MOV BX,105H ; Mode number and high bit = 0
; to request clear video

MOV AH,79 ; VESA BIOS service number
MOV AL,2 ; This sub-service
INT 10H ; BIOS video service

; Test for valid returned value
CMP AX,004FH ; Status for no error
JE MODE_IS_SET ; No error during mode set

;**********************|
; ERROR exit |
;**********************|
; The programmer should code an error routine at this point
; to handle the possibility of a mode setting error

.

.

.
; At this label the mode was set satisfactorily
MODE_IS_SET:

.

.

.

Sub-service 3 - Get Video Mode
VESA BIOS sub-service number 3 is used to obtain the current video mode. The VESA
mode number is returned by the sub-service in the BX register. The following code
fragment shows a call to this VESA BIOS service.

;**********************|
; get video mode |
;**********************|
; VESA BIOS sub-service number 3 to obtain current video mode

MOV AH,79 ; VESA BIOS service number
MOV AL,3 ; This sub-service
INT 10H ; BIOS video service

SuperVGA Programming 351

© 2003 by CRC Press LLC

; Test for valid returned value
CMP AX,004FH ; Status for no error
JE MODE_AVAILABLE ; No error during mode set

;**********************|
; ERROR exit |
;**********************|
; The programmer should code an error routine at this point
; to handle the possibility of a mode reading error

.

.

.
; At this label the mode was read satisfactorily. The BX
; register holds the mode number
MODE_AVAILABLE:

.

.

.

Sub-service 4 - Save/Restore Video State
VESA BIOS sub-service number 4 is used to save and restore the state of the video sys-
tem. This service, which is an extension of BIOS service number 28, is often used in a
multitasking operating system to preserve the task states and by applications that
manage two or more video environments. The sub-service can be requested in three
different modes, passed to the VESA BIOS routine in the DL register.

Mode number 0 (DL = 0) of sub-service number 4 returns the size of the save/re-
store buffer. The 4 low bits of the CX register encode the machine state buffer to be
reported. The bitmap for the various machine states is shown in Figure 13-6.

Figure 13-6 VESA BIOS Machine State Bitmap

The units of buffer size returned by mode number 0, of sub-service number 4, are
64-byte blocks. The block count is found in the BX register.

Mode number 1 (DL = 1), of sub-service number 4, saves the machine video state
requested in the CX register (see Figure 13-6). The caller should provide a pointer to
a buffer sufficiently large to hold the requested state data. The size of the buffer can
be dynamically determined by means of a call using mode number 0, described
above. The pointer to the buffer is passed in ES:BX.

352 Chapter Thirteen

015

video hardware state

video BIOS data state

video DAC state

SuperVGA state

bit 0

bit 1

bit 2

bit 3

bits 4 to 15
RESERVED

© 2003 by CRC Press LLC

Mode number 2 (DL = 2), of sub-service number 4, restores the machine video
state requested in the CX register (see Figure 13-6). The caller should provide a
pointer to the buffer that holds data obtained by means of a call using mode number
1 (see above).

Sub-service 5 - Switch Bank

VESA BIOS sub-service number 5 is used to switch memory banks in those modes that
require it. Software should call sub-service number 1 to determine the size and ad-
dress of the banks before calling this function. Two modes of this sub-service are im-
plemented: one to switch to a desired bank and another one to request the number of
the currently selected bank.

Mode number 0 (BH = 0) is the switch bank command. The BL register is used by
the caller to encode window A (value = 0) or window B (value = 1). The bank num-
ber is passed in the DX register. The following code fragment shows the necessary
processing:

; VESA BIOS sub-service number 5 register setup
MOV BX,0 ; Select bank in window A

; and bank switch function
; BH = 0 to select bank
; BL = 0 to select window A
; DX = bank number

MOV AX,4F05H ; Service and sub-service
INT 10H
.
.
.

Mode number 1 of sub-service (BH = 0) is used to obtain the number of the mem-
ory bank currently selected. The BL register is used by the caller to encode window
A (value = 0) or window B (value = 1). The bank number is reported in the DX regis-
ter.

Earlier in this section we mentioned that an application can also access the bank
switching function in the BIOS by means of a far call to the service routine. The ad-
dress of the service routine is placed in a far pointer variable by the successful exe-
cution of sub-service number 1. For the far call operation the register setup for BH,
BL, and DX is the same as for using sub-service 5. However, in the far call version
AH and AL need not be loaded, no meaningful information is returned, and AX and
DX are destroyed.

Sub-service 6 - Set/Get Logical Scan Line

VESA BIOS sub-service number 6 is used to set or read the length of the logical scan
line. Observe that the logical scan line can be wider than the physical scan line sup-
ported by the video hardware. This sub-service was first implemented in VESA BIOS
version 1.1. For this reason it is not available in the BIOS functions of earlier adapters.

Sub-service 7 - Set/Get Display Start

VESA BIOS sub-service number 7 is used to set or read from the logical page data the
pixel to be displayed in the top left screen corner. The sub-service is useful to applica-

SuperVGA Programming 353

© 2003 by CRC Press LLC

tions that use a logical screen that is larger than the physical display in order to facili-
tate panning and screen scrolling effects. As is the case with sub-service number 6,
this sub-service was first implemented in VESA BIOS version 1.1. For this reason it is
not available in the BIOS functions of many adapters.

Sub-service 8 - Set/Get DAC Palette Control

VESA BIOS sub-service number 8 was designed to facilitate programming of
SuperVGA systems with more than 6-bit fields in the primary color registers of the
DAC. The sub-service contains two modes. Mode number 0 (BL = 0) is used to set a
DAC color register width. The desired width value, in bits, is passed by the caller in the
BH register. Mode number 1 (BL = 1) is used to obtain the current bit width for each pri-
mary color. The bit width is returned in the BH registers. The standard bit width for
VGA systems is 6.

This sub-service was first implemented in version 1.2 of the VESA BIOS, released
in October 22, 1991. Therefore it is not available in adapters with earlier versions of
the VESA BIOS. Another feature introduced in VESA BIOS version 1.2 is the use of
bit 0 of the CAPABILITIES field (see sub-service 0 earlier in this section) to encode
the presence of DAC registers capable of storing color encodings of more than 6
bits. Applications that propose to use sub-service 8 should first test the low-order
bit of the CAPABILITIES field to determine if the feature is implemented in the hard-
ware.

13.4 Programming the SuperVGA System
Programming a particular SuperVGA chipset requires obtaining specific technical
data from the manufacturer. The resulting code has little, if any, portability to other
systems. This approach is used in coding hardware-specific drivers that take full ad-
vantage of the capabilities of the system. An alternative method that insures greater
portability of the code at a small price in performance is the use of the VESA BIOS ser-
vices described starting it Section 13.2.

It is theoretically possible to design a general-purpose graphics routine that oper-
ates in every SuperVGA chipset and display mode. However, this universality can
only be achieved at a substantial price in performance, an element that is usually
critical to graphics software. For this reason the design and coding of mode-specific
graphics routines is generally considered a more efficient approach. By using VESA
BIOS functions it is possible to design mode-specific routines that are compatible
with most SuperVGA systems that support the particular mode.

In the examples that follow we have used VESA BIOS mode number 105H with a
resolution of 1,024 by 768 pixels in 256 colors. We have selected this mode because
it is compatible with modes used in 8514/A and XGA systems, and also because it is
widely available in fully equipped SuperVGA adapters. The reader should be able to
readily convert these routines to other SuperVGA graphics modes.

13.4.1 Address Calculations
Address calculations in a SuperVGA mode depend on the screen dimensions and the
location of the video buffer in the system's memory space. In a mode-specific routine

354 Chapter Thirteen

© 2003 by CRC Press LLC

the number of pixels per row can be entered as a numeric value. In modes that require
more than one memory bank the bank size must also enter into the address calcula-
tions. Most SuperVGA adapters use a bank size of 64K, which can be hard-coded in the
address calculation routine. On the other hand, it is possible to use a memory variable
that stores the number of pixels per row and the bank size parameters in order to de-
sign address calculation routines that will work in more than one mode. In the follow-
ing code fragment we have assumed that the SuperVGA is in VESA mode 105H, with
1,024 pixels per scan line and that the bank size is 64K. The display routines assume
that the base address of the video buffer is A000H.

; Calculate pixel address from the following coordinates:
; CX = x coordinate of pixel
; DX = y coordinate of pixel
; Code assumes:
; 1. SVGA is in a 1,024 by 768 pixel mode in 256 colors
; (mode number 105H)
; 2. Bank size is 64K
; Get address in SVGA memory space

CLC ; Clear carry flag
PUSH AX ; Save color value
MOV AX,1024 ; Pixels per scan line
MUL DX ; DX holds line count of address
ADD AX,CX ; Add pixels in current line
ADC DX,0 ; Answer in DX:AX

; DL = bank, AX = offset
MOV BX,AX ; Offset to BX
.
.
.

At this point BX holds the pixel offset and DX the bank number. Note that the
pixel offset is the offset within the selected bank, and not the offset from the start of
the screen as is often the case in VGA routines.

13.3.2 Bank Switching Operations
In a SuperVGA adapter set to VESA mode number 105H (resolution of 1,024 by 768 pix-
els in 256 colors) the number of video memory banks depends on the bank size. With a
typical bank size of 64K the entire video memory space requires 12 memory banks,
since:

1024 768

65535
12

× =

In order to update the entire video screen the software has to perform 12 bank
switches. This would be the case in performing a clear screen operation. Further-
more, many relatively small screen objects cross one or more bank boundaries. In
fact, in VESA SuperVGA mode 105H any graphics object or window that exceeds 64
pixels in height will necessarily overflow one bank.

For these reasons bank switching operations should be optimized to perform
their function as quickly as possible. The ideal solution would be to embed the hard-
ware bank switching code within the address calculation routine. This is the method
adopted for the XGA pixels display routine listed in Section 7.3.1. However, XGA
software does not have to contend with variations in hardware. We have seen that in

SuperVGA Programming 355

© 2003 by CRC Press LLC

the SuperVGA environment to hard-code the bank switching operation would al-
most certainly make the routine not portable to other devices. An alternative solu-
tion is to perform bank switching by means of VESA BIOS service number 5,
described in Section 13.2.1. The following code fragment shows the code for bank
switching using the VESA BIOS service.

;**********************|

; change banks |

**********************|

; Select video bank using VESA BIOS sub-service number 5

; VESA BIOS sub-service number 5 register setup

; BH = 0 to select bank

; BL = 0 to select window A

; DX = bank number

MOV BX,0 ; Select bank in window A

MOV AX,4F05H ; Service and sub-service

INT 10H

.

.

.

An alternative option that would improve performance of the bank switching op-
eration is by means of a far call to the service routine, as mentioned in Section
13.2.1. The following code fragment shows bank switching using the far call method.
The code assumes that the address of the service routine is stored in a doubleword
variable named BANK_FUN. This address can be obtained by means of VESA BIOS
sub-service number 1 (get mode information) discussed in Section 13.2.1.

;**********************|

; change banks |

; by far call method |

;**********************|

; Select video bank by means of a far call to the bank switching

; routine provided by the chipset manufacturer

; Code assumes that the far address of the service routine is

; stored in a doubleword variable named BANK_FUN

; Register setup for far call method

; BH = 0 to select bank

; BL = 0 to select window A

; DX = bank number

MOV BX,0 ; Select bank in window A

PUSH AX ; Preserve caller's context

PUSH DX

CALL DWORD PTR BANK_FUN

POP DX ; Restore context

POP AX

.

.

.

Observe that to use the far call method the doubleword variable that holds the ad-
dress of the service routine must be reachable at the time of the call. Therefore, if
the variable is in another segment, a segment override byte is required.

356 Chapter Thirteen

© 2003 by CRC Press LLC

13.4.3 Setting and Reading a Pixel
Once the pixel address has been determined and the hardware has been switched to
the corresponding video memory bank, setting the pixel is a simple write operation.
For example, in VESA mode number 105H, once the address calculation routine in
Section 13.3.1 and the bank switching routine in Section 13.3.2 have executed, the
pixel can be set by means of the instruction

MOV BYTE PTR ES:[BX],AL

The code assumes that ES holds the base address of the video buffer, BX the off-
set within the bank, and AL the 8-bit color code. Note that since VESA mode number
105H is not a planar mode, no previous read operation is necessary to enable the
latching mechanism (see Section 3.1.1).

Reading a pixel in a SuperVGA mode is usually based on the same address and
bank switching operations as those required for setting a pixel. The actual read in-
struction is in the form

MOV AL,BYTE PTR ES:[BX]

The SVGA_PIX_105 procedure in the SVGA module of the GRAPHSOL library per-
forms a pixel write operation while in SuperVGA mode number 105H. The procedure
named SVGA_READ_105 can be used to read a screen pixel in this same mode.

13.4.4 VGA Code Compatibility
The SuperVGA enhanced graphics mode presents three basic differences in relation to
VGA modes: multiple banks, non-planar architecture, and greater resolution. Once
these factors are taken into account by the SuperVGA specific graphics read and write
routines, many VGA calculations can be used directly in SuperVGA graphics. In the fol-
lowing section we describe the use, from SuperVGA modes, of several VGA routines in
the VGA modules of the GRAPHSOL library. These include the VGA routines devel-
oped in Chapter 3 to access the LUT registers in the DAC, since most SuperVGA sys-
tems use the same color look-up table and DAC as VGA.

13.5 Using the SuperVGA Library
The GRAPHSOL library furnished with this book includes the module named SVGA
which contains SuperVGA graphics routines. Many of these procedures were de-
signed as mode-specific in order to optimize performance. The procedures in the
SVGA module serve to initialize the SuperVGA system, to establish the presence of a
VESA SuperVGA BIOS, to select a VESA mode number 105H, and to set and read indi-
vidual screen pixels while in mode 105H.

In addition to the routines in the SVGA library, SuperVGA programs use several
procedures in the VGA modules of GRAPHSOL.LIB. The use of the VGA procedures
by a SuperVGA system requires a previous call to the SET_DEVICE routine in the
VGA3 module. For SuperVGA systems this call is made with the AL register holding
the ASCII character "S." The call sets a device-specific display switch to the VESA
SuperVGA pixel display routine in the SVGA module. By enabling the SuperVGA dis-
play routine (named SVGA_PIX_105) the code makes possible the use of the

SuperVGA Programming 357

© 2003 by CRC Press LLC

g e o m e t - r i c a l p r o c e d u r e s i n t h e V G A 3 m o d u l e n a m e d B R E S E N H A M ,
LINE_BY_SLOPE, DISPLAY_LINE, CIRCLE, ELLIPSE, PARABOLA, and
HYPERBOLA, and also the use of the text display procedures in the VGA2 module
named FINE_TEXT, FINE_TEXTHP, and MULTITEXT, as well as the corresponding
text display support routines FONT_TO_RAM and READ_HPFONT. Information re-
garding the VGA text display and geometrical routines can be found in Chapters 4
and 5 as well as in the source files VGA2.ASM and VGA3.ASM contained in the
book's software.

Since most SuperVGA systems use the VGA LUT and DAC registers in the same
architecture as VGA mode number 19, a SuperVGA program can use the color regis-
ter procedures for VGA mode number 19 that appear in the VGA1 module of the
GRAPHSOL library. These procedures are named TWO_BIT_IRGB, GRAY_256,
SUM_TO_GRAY, SAVE_DAC, and RESTORE_DAC. The source file and program
named SVGADEMO furnished in the diskette demonstrates the use of the SuperVGA
library services in the SVGA module and the use of the compatible VGA services in
the VGA modules of GRAPHSOL.LIB.

13.5.1 Procedures in the SVGA.ASM Module

SVGA_MODE
Call VESA BIOS sub-service number 0 to obtain SuperVGA and VESA information and
sub-service number 1 to obtain mode-specific information.

Receives:
1. word integer of VESA SuperVGA graphics mode number

as follows:
number resolution colors

GRAPHICS 100H 640 by 400 256
MODES 101H 640 by 480 256

102H 800 by 600 16
103H 800 by 600 256
104H 1024 by 768 16
105H 1024 by 768 256
106H 1280 by 1224 16
107H 1280 by 1224 256

TEXT 108H 80 by 60
MODES 109H 132 by 25

10AH 132 by 43
10BH 132 by 50
10CH 132 by 60

DIRECT COLOR 10DH 300 by 200 32K
MODES 10EH 320 by 200 64K

10FH 320 by 200 16.8Mb
110H 640 by 480 32K
111H 640 by 480 64K
112H 640 by 480 16.8Mb
113H 800 by 600 32K
114H 800 by 600 64K
115H 800 by 600 16.8Mb
116H 1024 by 768 32K
117H 1024 by 768 64K
118H 1024 by 768 16.8Mb
119H 1280 by 1024 32K
11AH 1280 by 1024 64K

358 Chapter Thirteen

© 2003 by CRC Press LLC

11BH 1280 by 1024 16.8Mb

Returns:
1. carry clear if no error, then

ES:SI --> VESA_BUFFER, formatted as follows:
VESA_BUFFER DB ' ' ; VESA signature
VESA_VERSION DW ? ; Version number
OEM_PTR_OFF DW ? ; OEM string offset pointer
OEM_PTR_SEG DW ? ; OEM string segment pointer
CAPABILITIES DD ? ; System capabilities
MODES_PTR_OFF DW ? ; Pointer to modes list, offset
MODES_PTR_SEG DW ? ; Segment for idem
MEM_BLOCKS DW ? ; Count of 64K memory blocks

; (Only in June 2, 1990 revision)
DB 242 DUP (0H)

ES:DI --> VESA_INFO, formatted as follows:
VESA_INFO DW ? ; Mode attribute bits

; ..4 3 2 1 0 <= bits
; | | | | |__ 0 = mode not supported
; | | | | 1 = mode supported
; | | | |____ 0 = no extended mode info
; | | | 1 = extended mode info
; | | |_______0 = no output functions
; | | 1 = output functions
; | |________ 0 = monochrome mode
; | 1 = color mode
; |__________ 0 = text mode
; 1 = graphics mode
; 15..5 = RESERVED

WIN_A_ATTS DB ? ; Window A attributes
WIN_B_ATTS DB ? ; Window B attributes
WIN_GRAIN DW ? ; Window granularity
WIN_SIZE DW ? ; Window size
WIN_A_SEG DW ? ; Segment address for window A
WIN_B_SEG DW ? ; Segment address for window B
WIN_PTR DD ? ; Far pointer to window function
BYTES_PER_ROW DW ? ; Bytes per screen row

; Extended mode data. Optional until version 1.2
X_RES DW ? ; Horizontal resolution
Y_RES DW ? ; Vertical resolution
X_CHAR_SIZE DB ? ; Pixel width of character cell
Y_CHAR_SIZE DB ? ; Pixel height of character cell
BIT_PLANES DB ? ; Number of bit planes
BITS_PER_PIX DB ? ; Bits per pixel in this mode
NUM_OF_BANKS DB ? ; Number of video memory banks
MEM_MODEL DB ? ; Memory model
BANK_SIZE DB ? ; Kb per bank

DW 0 ; Padding
; Direct color fields. Defined in VESA BIOS version 1.2
RED_MASK DB ? ; Bit size of red mask
RED_POSITION DB ? ; Red mask LSB position
GREEN_MASK DB ? ; Bit size of green mask
GREEN_POSITION DB ? ; Green mask LSB position
BLUE_MASK DB ? ; Bit size of blue mask
BLUE_POSITION DB ? ; Blue mask LSB position
RSVD_MASK DB ? ; Bit size of reserved mask
RSVD_POSITION DB ? ; Reserved mask LSB position
DC_INFO DB ? ; Attributes of direct color

SuperVGA Programming 359

© 2003 by CRC Press LLC

; modes, as follows:
; bit 0 = color ramp
; 0 = fixed
; 1 = programmable
; bit 1 = Reserved field bits
; 0 = not usable
; 1 = usable

DB 216 DUP (?) ; Remainder of block

2. Carry set if error

VESA_105
Set SuperVGA to VESA mode number 105H with a resolution of 1024 by 768 pixels in
256 colors.

Receives:

Nothing

Assumes:

That the data variables in the buffers VESA_BUFFER and VESA_INFO
have been filled by a previous call to the VESA_MODE procedure.

Returns:

Carry clear if mode was set

Carry set if error

SVGA_PIX_105
Write a screen pixel accessing SVGA memory directly and using a far call to the bank
switching routine.

Receives:
1. word variable of x pixel coordinate
2. word variable of y pixel coordinate
3. byte variable of 8-bit color code

Assumes:
1. SVGA in VESA mode 105H (1,024 by 768 pixels in 256

colors)
2. Size of video bank is 64K
3. ES holds base address of video buffer (A000H)

Returns:
Nothing

Action:
Pixel is set

SVGA_CLS_105
Clear video memory while in VESA mode number 105H.

Receives:
1. byte integer of 8-bit color code

Assumes:
1. SVGA in VESA mode 105H (1,024 by 768 pixels in 256

360 Chapter Thirteen

© 2003 by CRC Press LLC

colors)
2. Size of video bank is 64K
3. ES holds base address of video buffer (A000H)

Returns:
Nothing

Action:
Screen is initialized to requested color code.

SVGA_READ_105
Read a screen pixel accessing SVGA memory directly and using a far call to the bank
switching routine.

Receives:
1. word variable of x pixel coordinate
2. word variable of y pixel coordinate

Assumes:
1. SVGA in VESA mode 105H (1,024 by 768 pixels in 256

colors)
2. Size of video bank is 64K
3. ES holds base address of video buffer (A000H)

Returns:
1. byte integer of pixel color

Action:
Pixel is read

SuperVGA Programming 361

© 2003 by CRC Press LLC

Chapter 14

DOS Animation

Topics:
• Animation fundamantals

• User interaction in animation

• Image movement

• DOS imaging techniques

This chapter describes the principles and programming techniques of image anima-
tion in DOS. The chapter also covers mouse programming by means of the Microsoft
mouse interface. The discussion includes image mapping, panning and geometrical
transformations, as well as imaging techniques by looping, and by system timer and
vertical retrace interrupts.

14.1 Graphics and Animation
Computer graphics animation is usually defined as the simulation of life-like qualities
by digital manipulations of a computer-generated image. The concept is somewhat
limiting since it excludes analog operations and assumes that the only objects that can
be computer animated are images on the CRT. However, in the microcomputer envi-
ronment animation is mostly about manipulating screen images so as to mimic life.
This is often performed by moving images on the screen, but color and shapes can also
be changed to create a life-like illusion.

Computer graphics animation can take place in a real- or a delayed-time frame.
For example, a computer program can generate and store a series of consecutive im-
ages that simulate the movement of an object. The stored images can be recorded on
storage devices, such as a video tape, and later played back at a faster rate than they
were generated. In this case we can say that the computer animation took place in a
delayed-time frame; the animated action was not visible until the images were
played back on a television set. On the other hand, a computer program can simu-
late a ping-pong game on the screen. In this case the animation takes place in a

© 2003 by CRC Press LLC

real-time frame. Graphics animation in the microcomputer environment is, for the
most part, image animation in real-time. For this reason in the present chapter we
emphasize real-time operations. Delayed-frame is also known as frame-by-frame an-
imation.

Animated screen images can be classified according to the user's interaction with
the graphics object. When the object is directly controlled by the user of the soft-
ware we speak of interactive animation. Screen objects that are animated independ-
ently of the user's action often move by means of a machine-generated time-pulse.
In this sense we speak of time-pulse animation. The mouse is an input device closely
related to interactive animation. For this reason we have incorporated mouse pro-
gramming into the present chapter. Although not all mouse programming operations
are related to animated screen objects, we have, for practical reasons, included all
phases of mouse programming in the present treatment. Time-pulse animation is
also discussed in some detail.

14.1.1 Physiology of Animation
The image of an object created by the human eye can persist in the brain for a brief pe-
riod of time after the object no longer exists in the real world. This physiological phe-
nomena is called visual retention. Although the biological mechanisms of retention
are not fully understood, we do know that it involves the chemistry of the retina and
the structure of cells and neurons in the eye. First cinematography, and more recently
television, have taken advantage of visual retention to create the illusion of continu-
ous movement. This is done by consecutively flashing still images at a faster rate than
the period of visual retention. This technique, by which a new image replaces the old
one before the period of retention has expired, creates in our minds the illusion of a
smoothly moving object.

It has been determined experimentally that the critical image update rate for
smooth animation is from 22 to 30 images per second. Modern day moving picture
films are recorded and displayed at a rate of 24 images per second. Although the
threshold for smooth animation varies with individuals, it is generally estimated at a
rate of approximately 18 images per second. This means that if the consecutive im-
ages are projected at a rate slower than this threshold, the average individual is able
to perceive a certain jerkiness. However, if the flashing rate exceeds the threshold,
our brains merge the images together with no perception of the individual flashes.
This threshold rate can be called the critical jerkiness frequency.

14.1.2 PC Animation
Animated graphics systems, such as the ones used in many electronic video games, are
based on vector refresh technology. In these systems the movement of the electron
beam is limited to the objects that must be redrawn during a refresh cycle. Therefore,
vector refresh displays are more efficient in animating small objects than raster scan
systems in which the entire screen area must be scanned by the electron gun or guns
during each cycle.

PC graphics use raster scan technology. Animation on a raster scan computer is
based on creating an illusion of movement by displaying successive images. The

© 2003 by CRC Press LLC

graphics object is typically stored in a dedicated buffer which is imaged on the CRT
by the video hardware. The name frame buffer animation has often been used in this
context. In VGA systems the frame buffer is the video memory itself. In XGA sys-
tems, in addition to video memory, there is a second, smaller, frame buffer dedi-
cated to storing the sprite image. Image changes can be made by altering the
contents of video memory or by changing the screen position at which the frame
buffer is displayed.

Image size and critical jerkiness frequency are usually the limiting factors in
frame buffer animation. For example, assume a VGA video system in mode number
18 (640 by 480 pixels in 16 colors). If to produce smooth animation the system must
redraw the screen at a rate of 20 images per second, then the changes in the frame
buffer must be performed in less than 1/20s. Furthermore consider that to animate a
screen object its image must be erased from the current position before it is re-
drawn at a new position, otherwise the animation would leave a track of objects on
the video display. Therefore the buffer update sequence is, in reality, a sequence of
redraw, erase, redraw operations, which means that the critical jerkiness frequency
is the time elapsed from redraw to redraw cycle. Consequently, the allotted time for
the redraw-erase cycle becomes 1/48s.

Although the above example is a worse-case scenario it does show the con-
straints in which animation must be performed in a raster scan system. In the PC, in
particular, graphics animation is a battle against time: the time in which the frame
buffer must be updated before the entire screen is redrawn by the video hardware.
Therefore the animation programmer must resort to every known trick and strata-
gem in order to squeeze the maximum performance while updating the frame buffer.
But, in many cases, even the most efficient and imaginative programming is not able
to overcome the system's limitations and the animated image is bumpy and coarse.

14.1.3 Software Support for Animation Routines

In previous chapters we provided software support mainly in the form of library rou-
tines that can be called by a graphics program. But most animation routines have ex-
tremely critical performance constraints. This determines that animation software be
customized and optimized for a particular program design. Furthermore, animated
programs are often designed with these hardware limitations in mind. To provide ani-
mation routines in the form of library procedures would introduce, in the first place,
an unnecessary call-and-return overhead over on-line code. In addition, the proce-
dures would have to be adaptable to the many varying circumstances of animated pro-
grams and, at the same time, optimized for maximum performance. Code that is
simultaneously flexible and efficient is a programming contradiction.

For these reasons we have opted to provided code support for the animation
techniques discussed in this chapter in the form of coding templates, rather than as
library routines. The template files can also be found in the book's software pack-
age. The reader can use these templates to avoid having to re-code the routine ma-
nipulations in the various animation techniques. However, we have left blank lines
in the templates (marked by ellipses) to indicate where the programmer must sup-
ply the customized code.

© 2003 by CRC Press LLC

The software package furnished with this book contains a VGA animated pro-
gram named MATCH. The reader should consult the README.NOW file in the
MATCH directory before executing the program. The source files for the MATCH
program demonstrate interactive and time-pulse animation in a VGA system.

14.2 Interactive Animation
Interactive animation refers to screen objects that are moved at will by the user.
Typically the animated screen object is controlled by means of an input device, such as
a mouse, puck, or graphics tablet (see Section 1.1.2). In the present section we discuss
programming the mouse device as a means for animating an interactive screen object.
Other interactive input devices are specialty tools used mostly in CAD software, there-
fore they are outside the scope of this book.

14.2.1 Programming the Mouse

The IBM BIOS, as documented in the IBM Personal System/2 and Personal Computer
BIOS Interface Technical Reference (see bibliography), describes a pointing device
interface associated with service number 194 of INT 15H. However, there are several
difficulties associated with this service. In the first place, the IBM documentation
dealing with this mouse service is not sufficient for programming the device. Another
consideration is that the services are not compatible with different mouse hardware.
Then there is the problem that various non-IBM versions of the BIOS do not include
this service. Finally, the service is not recognized in the DOS mode of OS/2.

If the BIOS mouse services of INT 15H were operational and compatible with
standard mouse hardware, a program could use these functions much the same way
as it uses the video, printer or the communications services in the BIOS. However,
due to the difficulties mentioned in the preceding paragraph, most applications
must find alternative ways of controlling mouse operation. But all alternative solu-
tions have the disadvantage of requiring an installed mouse driver. To an application
this leaves three alternatives: (1) the software must assume that the user has previ-
ously installed and loaded a compatible mouse driver, (2) the software must provide
an installation routine that loads the driver, or (3) the code must include a low-level
driver for the mouse device.

14.2.2 The Microsoft Mouse Interface

The mouse driver software that has achieved more general acceptance is the one by
Microsoft Corporation. The Microsoft mouse control software is installed as a system
driver or as a TSR program. The system version is usually stored in a disk file with the
extension .SYS and the TSR version in a file with the extension .COM. The Microsoft
mouse interface services are documented in the book Microsoft Mouse Programmer's
Reference, published by Microsoft Press (see Bibliography).

Most manufacturers of mouse devices provide drivers that are compatible with
the one by Microsoft. Therefore, the use of the Microsoft mouse interface is not lim-
ited to mouse devices manufactured by this company, but extends to all
Microsoft-compatible hardware and software. The installation command for the
mouse driver is usually included in the CONFIG.SYS or AUTOEXEC.BAT files. The

© 2003 by CRC Press LLC

Microsoft mouse interface attaches itself to software interrupt 33H and provides a
set of 36 sub-services. These mouse sub-services are accessible by means of an INT
33H instruction.

14.2.3 Checking Mouse Software Installation
We have mentioned that applications that use the mouse device must adopt one of
three alternatives regarding the support software: assume that the driver was in-
stalled by the user, load a driver program, or provide the low-level services within its
code. By far, most applications adopt the first option, that is, assume that the user has
previously loaded the mouse driver software. Although the more refined programs
that use a mouse device include an installation utility that selects the appropriate
driver and creates or modifies a batch file in order to insure that the mouse driver is
resident at the time of program execution.

In any case, the first operation usually performed by an application that plans to
use the mouse control services in interrupt 33H is to test the successful installation
of the driver program. Since the driver is vectored to interrupt 33H, this test consists
simply of checking that the corresponding slot in the vector table is not a null value
(0000:0000H) or an IRET operation code. Either one of these alternatives indicates
that no mouse driver is presently available. The following coding template shows
the required processing.

; Template file name: MOUSE1.TPL
; Code to check if mouse driver software is installed in the
; interrupt 33H vector. The check is performed by reading the
; interrupt 33H vector using MS-DOS service number 53,
; of INT 21H

MOV AH,53 ; MS_DOS service request
MOV AL,33H ; Desired interrupt number
INT 21H ; MS-DOS service

; ES:BX holds address of interrupt handler, if installed
MOV AX,ES ; Segment to AX
OR AX,BX ; OR with offset
JNZ OK_INT33 ; Go if not zero

; Test for an IRET opcode in the vector
CMP BYTE PTR ES:[BX],0CFH ; CFH is IRET opcode
JNE OK_INT33 ; Go if not IRET

; At this point the program should provide an error handler
; to exit execution or to load a mouse driver

.

.

.
; Execution continues at this label if a valid address was found
; in the interrupt 33H vector
OK_INT33:

.

.

.

14.2.4 Sub-services of Interrupt 33H
The Microsoft mouse interface was designed to provide control of the mouse device
from high- and low-level languages. VGA alphanumeric programs can use the
Microsoft mouse software by selecting one of two available text cursors. In the alpha

© 2003 by CRC Press LLC

modes the mouse driver manages the text cursor on a coarse grid of screen columns
and rows, according to the active display mode. VGA programs that execute in graph-
ics modes must provide their own cursor bitmap, which is installed by means of an in-
terrupt 33H sub-service. However, since the graphics cursor operated by the driver is
limited to a size of 16 by 16 pixels, many graphics programs create and manage their
own cursor. In this case the driver services are used to detect mouse movements, but
the actual cursor operation and display are handled directly by the application. This is
also the case of XGA programs that use the sprite functions to manage a mouse cursor
image

In addition to mouse cursor management and display, the sub-services of inter-
rupt 33H include functions to set the mouse sensitivity and rate, to read button
press information, to select video pages, and to initialize and install interrupt han-
dlers that take control when the mouse is moved or when the mouse buttons are op-
erated. However, some of the services in the interrupt 33H drivers reprogram the
video hardware in ways that can conflict with an application. For this reason, we
have limited our discussion to those mouse services that are not directly related to
the video environment. These services can be used from any VGA, XGA, or
SuperVGA graphics modes without interference. However, in this case, it is the ap-
plication's responsibility to perform all video updates.

Sub-service 0 - Initialize Mouse
Sub-service number 0 of interrupt 33H is used to reset the mouse device and to obtain
its status. An application usually calls this service to certify that the mouse driver is
resident and to initialize the device parameters. The following coding template shows
a call to this sub-service.

; Template file name: MOUSE2.TPL
; Initialize mouse by calling sub-service 0 of interrupt 33H

MOV AX,0 ; Reset mouse hardware and
; software

INT 33H ; Mouse interrupt
CMP AX,0 ; Test for error during reset
JNZ OK_RESET ; No problem

; At this point the program should provide an error routine to
; handle an invalid initialization call

.

.

.
; Execution continues at this label if the mouse was initialized
OK_RESET:

.

.

.

Sub-service 5 - Check Button Press Status
Programs that do not use interrupts can check mouse button press status by calling
sub-service number 5 of the Microsoft mouse interface. The call is typically located in
a polling loop. The calling program passes the button code in the BX register; the value
of 0 corresponds to the left mouse button and a value of 1 to the right button. The call
returns the button status in the AX register; bit 0 is mapped to the left mouse button
and bit 1 to the right mouse button. A value of 1 indicates that the corresponding but-

© 2003 by CRC Press LLC

ton is down. The BX register returns the number of button presses that have occurred
since this call was last made or since a driver software reset (see sub-service 0 earlier
in this section). The CX and DX registers hold the x and y cursor coordinates of the
screen position where the last press occurred. The following coding template shows a
call to this sub-service.

; Template file name: MOUSE3.TPL
;**
; button action handler
;**
; The following routine calls service 5 of interrupt 33H to
; detect mouse press action on the mouse device
; If the right button was pressed execution is directed to the
; label RIGHT_BUT, if the left button was pressed execution is
; directed to the label LEFT_BUT
;**********************|
; check left button |
;**********************|
;

MOV AX,5 ; Service request to read
; mouse button status

MOV BX,0 ; First test left button
INT 33H ; Mouse interrupt

; Number of button presses is returned in the BX register
CMP BX,0 ; Test for no presses
JE TEST_RIGHT_BUT ; Not pressed. Test right button

; Code at this point should take the program action corresponding
; to one or more presses of the left mouse button

.

.

.
; Execution should be allowed to fall through to the right button
; test routine
;
;**********************|
; check right button |
;**********************|
TEST_RIGHT_BUT:

MOV AX,5 ; Service request to read
; mouse button status

MOV BX,1 ; Test right button
INT 33H ; Mouse interrupt

; Number of button presses is returned in the BX register
CMP BX,0 ; Test for no presses
JE END_BUTTON_RTN ; Not pressed. End of routine

; Code at this point should take the program action corresponding
; to one or more presses of the right mouse button

.

.

.
; Button press status processing ends at this label
END_BUTTON_RTN:

.

.

.

© 2003 by CRC Press LLC

Sub-service 11 - Read Motion Counters
The actual movement of the mouse-controlled icon is dependent on the state of two
counters maintained by the mouse interface software. The Microsoft mouse interface
at interrupt 33H stores the motion parameters in 1/200-in units called mickeys. The
changes in the motion counters represent values from the last time the function was
called. Sub-service 11, of interrupt 33H, returns the values stored in the horizontal and
vertical motion counters. The horizontal motion count is returned in the CX register
and the vertical count in the DX register. The values are signed integers in two's com-
plement form. A negative value in the horizontal motion counter indicates mouse
movement to the left, while a negative value in the vertical motion counter indicates a
movement in the upward direction. Both the vertical and the horizontal counters are
automatically reset by the service routine.

We mentioned that the detection of mouse action can be by a polling loop or by
interrupts. Polling loops are often used in reading the motion counters so as to keep
interrupt processing times to a minimum, especially considering that the Microsoft
mouse interface does not allow the installation of more than one service routine.
The processing inside a polling loop or a service routine takes place in similar fash-
ion. The following coding template shows the structure of a basic mouse movement
handler.

; Template file name: MOUSE4.TPL
;**
; mouse movement handler
;**
; The following routine calls service 11 of interrupt 33H to
; detect horizontal or vertical movement of the mouse device
; If the movement is along the x axis (horizontal) execution is
; directed to the label H_MOVE, if the movement is along the y
; axis, execution is directed to the label Y_MOVE. If no change
; is detected in the motion counters, then execution is directed
; to the label NO_MOVE
;**********************|
; service No. 11 of |
; INT 33H |
;**********************|

MOV AX,11 ; Service request to read
; motion counters

INT 33H ; Mouse interrupt
; CX = Horizontal mouse movement from last call to this service
; DX = vertical mouse movement from last call

MOV AL,CL ; Horizontal counter to AL
MOV AH,DL ; Vertical counter to AH
CMP AX,0 ; If AX is 0 then no mouse
JNE XORY_MOVE ; Some movement detected
JMP NO_MOVE ; Go if no movement

; At this point there is vertical or horizontal mouse movement
XORY_MOVE:

CMP CX,0 ; Test for no horizontal
JE Y_MOVE ; Go to vertical movement test

;**********************|
; horizontal move |
;**********************|
; Code at this point moves the mouse icon according to the
; direction and magnitude of the value in the CX register

© 2003 by CRC Press LLC

X_MOVE:
PUSH DX ; Save vertical move counter
.
.
.
POP DX ; Restore vertical counter

; Once the horizontal movement is executed the code should fall
; through to the vertical movement routine. This takes care of
; the possibility of simultaneous movement along both axes
;**********************|
; vertical move |
;**********************|
; Code at this point moves the mouse icon according to the
; direction and magnitude of the value in the DX register
Y_MOVE:

.

.

.
;**********************|
; no movement |
;**********************|
; This label is the routine's exit point
NO_MOVE:

.

.

.

Sub-service 12 - Set Interrupt Routine

The user action on the mouse hardware can be monitored by polling or by interrupt
generation, as is the case with most other input devices. Polling methods are based on
querying the device status on a time lapse basis, therefore polling routines are usually
coded as part of execution loops. In the case of the mouse hardware the polling rou-
tine can check the motion counter registers and the button press and release status
registers that are maintained by the mouse interface software. The services to read
these registers are described later in this section.

The second and often preferred method of monitoring user interaction with the
mouse device, particularly mouse button action, is by means of hardware interrupts.
In this technique the program enables the mouse hardware actions that generate in-
terrupts and installs the corresponding interrupt handlers. Thereafter, user action
on the enabled hardware sources in the mouse automatically transfers control to
the handler code. This frees the software from polling frequency constraints and
simplifies program design and coding.

A typical application enables mouse interrupts for one or more sources of user in-
teraction. For example, a program that uses the mouse to perform menu selection
would enable an interrupt for movement of the trackball (or other motion detector
mechanism) and another interrupt for the action of pressing the left mouse button.
If the mouse is moved, the interrupt handler linked to trackball movement changes
the screen position of the marker or icon according to the direction and magnitude
of the movement. If the left mouse button is pressed, the corresponding interrupt
handler executes the selected menu option.

© 2003 by CRC Press LLC

Another frequently used programming method is to poll the mouse motion coun-
ters that store trackball movement and to detect button action by means of inter-
rupts. This design reduces execution time inside the interrupt handler, which can be
an important consideration in time-critical applications. The MATCH demonstration
program furnished in the book's software package uses a polling routine to move
the mouse icon and an interrupt handler to detect button action.

In the mouse interface software, the hardware conditions that can be pro-
grammed to generate an interrupt are related to an integer value called the call
mask. Figure 14.1 shows the call mask bitmap in the Microsoft mouse interface soft-
ware. To enable a mouse interrupt condition the software sets the corresponding bit
in the call mask. To disable a condition the call mask bit is cleared.

Figure 14-1 Mouse Interrupt Call Mask

Sub-service number 12 of the mouse interface at interrupt 33H provides a means
for installing an interrupt handler and for selecting the action or actions that gener-
ate the interrupt. The following coding template shows the necessary processing for
enabling mouse interrupts on right and left button pressed.

; Template file name: MOUSE5.TPL
; Select left mouse button pressed and right mouse button pressed
; as interrupt conditions and set address of service routine
; by means of mouse sub-service number 12, interrupt 33H
; The code assumes that the interrupt handler is located in the
; program's code segment, at the offset of the label named
; MOUSE_ACTION

CLI ; Interrupts off
PUSH ES ; Save video buffer segment
PUSH CS ; Program's segment
POP ES ; to ES
MOV AX,12 ; Mouse service number 12

; Interrupt mask bitmap:
; 15 ----------------------5 4 3 2 1 0
; |-- these bits unused ---| | | | | |___ Tracking movement
; | | | |_____ Left button pressed
; | | |_______ Left button released
; | |_________ Right button pressed
; |___________ Right button released

015

tracking movement

left button pressed

left button released

right button pressed

bits 5 to 15
RESERVED

bit 0

bit 1

bit 2

bit 3

right button releasedbit 4

© 2003 by CRC Press LLC

MOV CH,0 ; Unused bits

MOV CL,00001010B ; Interrupt on left button and

; right button pressed

MOV DX,OFFSET CS:MOUSE_ACTION ; Address of the

; service routine

INT 33H ; Mouse interrupt

POP ES ; Restore segment

STI ; Interrupts on

.

.

.

When the user's interrupt service routine receives control the mouse interface
software passes a condition code in the AL register that matches the call mask
bitmap (see Figure 14.1). In this manner the user's handler can determine which of
the unmasked conditions actually generated the interrupt. An interrupt condition bit
is set when the corresponding condition originated the interrupt. For example, if the
conditions that originate the interrupt are the left or right mouse buttons pressed
(as enabled by the previous coding template), then the program can test the state of
bit number 1 (see Figure 14.1) to determine if the interrupt was caused by the left
mouse button. If not, the code can assume that it was caused by the user pressing
the right mouse button, since only these two conditions are active.

A characteristic of service number 12 or the Microsoft mouse interface is that
only one interrupt handler can be installed. If two consecutive calls are made to this
service, even if the call mask settings enable different bits, the address in the latest
call replaces the previous one. Therefore it is not possible to install more than one
service routine by means of this service. On the other hand, service number 24 al-
lows the installation of more than one service routine, each one linked to a different
interrupt cause. However, this service operates only when the Shift, Ctrl, or Alt keys
are held down while the mouse action is performed. In addition, in several
non-Microsoft versions of the mouse interface software the service does not per-
form as documented. For these reasons it is not considered in this book.

14.3 Image Animation
In the PC video animation usually consists of successively displaying images that vary
in composition or in screen location according to a specific pattern of change. Notice
that the concept of a pattern of change does not imply that this pattern be known be-
forehand to the software. For example, the image changes can be determined by user
interaction or by the occurrence of random events. In this respect we can speak of the
animation of object with predictable or unpredictable movements. The direction of
movement of a mouse icon, for example, cannot be normally predicted by the soft-
ware, therefore it falls in the second category. On the other hand, a graphics program
could animate a screen object that moves in a predictable path across the screen. It is
also possible for the movement of a screen object to contain both a predictable and an
unpredictable element. For example, a mouse-controlled icon can be allowed to move
inside a certain screen window, or the image of a planet that moves diagonally across
the screen can exhibit random rotation on its own axis.

© 2003 by CRC Press LLC

The combinations and variations of the predictable and unpredictable elements
in the movement of screen objects can be quite complex. For example, the following
screen image in an animated game could depend on screen objects with pro-
grammed movement, with random movement, and controlled by user interaction.
The one common element to all three animated movements is the concept of a pat-
tern of change, which means that the subsequent images of animated objects are
somehow related to previous ones. The elements of this relationship are usually lo-
cation, gradation (color hue), and object shape. In other words, to produce a realis-
tically animated movement of a screen object the software must control the pattern
of change. This usually implies restricting the transformations of location, grada-
tion, and shape from one screen image of the object to the next one.

Many of the complexities of the theory and practice of computer image animation
are beyond the scope of this book. In the bibliography we have listed some useful
theoretical references in the field of computer graphics. However, computer anima-
tion in the PC is much more limited than in dedicated systems. The processing
power of CPU and video hardware impose very restrictive limits on the number and
size of objects that can be smoothly animated in this environment. The following
discussion is also limited by these hardware limits.

14.3.1 Image Mapping and Panning

Image animation in raster scan systems is often based on manipulating a stored image
map. This map can be located in a mechanical or optical device, in video memory, in
ROM, or in the application's memory space. In previous chapters we have manipulated
image maps contained in disk files, in ROM, in RAM, and in video memory. The storage
location of the image map is often less important than its format. Bitmap formats and
conventions are the subject of Chapter 10. Processing speed is usually an important
consideration in image animation. Therefore the storage location for image maps is
usually limited to the video memory and the applications's RAM space. The terms
video buffer and image buffer are often used in this context.

Video and Image Buffers

While the video buffer is a physical device the concept of an image buffer is a logical
one. Graphics systems use the concept of a virtual graphics device, which assumes an
imaginary display of fictitious characteristics. Frequently, the attributes of the virtual
machine exceed those of the physical one. Therefore, the capacity of the image buffer
can exceed that of the video buffer. For example, a VGA system is equipped with a
video buffer suitable for holding an image of 640-by-480 pixels in 16 colors. Yet a pro-
gram running in the VGA environment may support an image buffer capable of storing
2000 by 1200 pixels in 512 colors.

We have made use of this concept in developing the calculation routines in the
VGA libraries furnished with this book. In this manner the storage areas for screen
coordinate points (named X_BUFFER and Y_BUFFER) in the VGA2 module are ca-
pable of storing 2048 values for each coordinate axis. This considerably exceeds the
best available resolution in VGA systems, which is of 640 by 480 pixels. However,
this additional storage space makes possible the use of the geometrical calculation
routines in XGA and SuperVGA modes that have greater screen resolution (1,024 by

© 2003 by CRC Press LLC

768 pixels) than the VGA. As far as the VGA calculation routines are concerned the
limits of the video system are not those of the physical device (VGA, XGA, or
SuperVGA) but those of an image buffer with a storage space for 2,048-by-2,048 pix-
els.

Viewport and Windows
The viewport is defined as the display area used for graphic operations. In IBM micro-
computer graphics the entire display must be set for a chosen graphics or alphanu-
meric mode. Therefore the viewport is the entire display surface. In other words, the
dimensions of the graphic viewport coincide with the those of the physical video dis-
play. A window is an area of the display surface, usually rectangular in shape. How-
ever, there is no reason for excluding windows of other shapes. In fact, circular and
elliptical windows are visually pleasant and would serve to break the geometrical mo-
notony of squares and rectangles.

A rectangular display window is usually defined by the coordinates of its start
and end points. For example, on a 640-by-480 pixel display, a window filling the up-
per left quarter would have start coordinates (0,0) and end coordinates (320,240).
Windows can also be defined descriptively; for example, we sometimes speak of the
graphic window, the text window, and the menu window.

Panning
Image buffers, viewport, and windows are often used in producing a form of image ani-
mation called panning. In panning an image appears to move by changing the rectan-
gular region of the image buffer that is mapped to the viewport or window. The
elements of panning animation are shown in Figure 14.2.

Figure 14-2 Elements in Panning Animation

FOREGROUND IMAGE
BUFFER

BACKGROUND IMAGE BUFFER

© 2003 by CRC Press LLC

In Figure 14.2 we can see that the viewport or window is smaller than the back-
ground image buffer. Therefore the display routine can show only a portion of the
background image buffer at one time. A smooth panning effect can be produced on
the video display by progressively changing the portion of the image buffer that is
mapped to the viewport. An additional enhancement can be added in the form of a
separate foreground screen object (in Figure 14.2 this object is a space shuttle). The
foreground object is stored in its own image buffer (labeled the foreground image
buffer in Figure 14.2). The panning effect can be further enhanced by changing the
portion of the background image buffer mapped to the viewport, while the fore-
ground object (in this example the shuttle image), remains in a fixed position. The
resulting panning animation simulates the shuttle moving in space.

14.3.2 Geometrical Transformations
Graphical systems employ elaborate schemes for encoding image data. The pur-

pose of these data structures is to facilitate image manipulation by hardware and
software. The organization of graphical data is based, first, on identifying the funda-
mental image elements, such as lines, curves, arcs, polygons, and bitmaps. These
primitive elements are stored in a logical structure called the display file. In turn,
this display is composed of one or more modeling elements placed in structural lev-
els sometimes called image files, image segments, and image descriptors. The de-
sign of graphical data storage devices and the manipulation of this data is a
specialized field outside the scope of this book. The interested reader should con-
sult a book on theoretical computer graphics (see Bibliography).

The subject of graphical data structures is related to animation by the fact that it
is possible to transform a graphical image by performing logical and mathematical
operations on the data structure that encodes it. In Chapter 5, starting in Section 5.3,
we discussed geometrical transformations that are performed by manipulating im-
age data. The most usual transformations are mirrowing, translation, rotation, scal-
ing, and clipping. An animated effect can be achieved by performing and displaying
progressive transformations of a graphical image. For example, a screen object can
appear to be approaching the viewer by displaying a sequence of scaled images in
which the object becomes progressively larger. Figure 14.3 shows how rotation and
scaling transformations are used to simulate this effect.

Figure 14-3 Animation by Scaling and Rotation

Notice, in Figure 14.3, that the simulation is enhanced by introducing a second,
non-transformed object in the viewport (the reticle symbol). In any case of real-time
animation by image transformation the quality of the simulation depends on the rate
at which the successive images are displayed as well as on the rate of change be-

© 2003 by CRC Press LLC

tween successive images. The faster the display rate and the slower the rate of im-
age change, the more realistic the animation.

14.4 Imaging Techniques
We saw that computer animation often depends on the display of a series of images,
called the image set. In some forms of animation the images themselves are progres-
sively changed to form the image set. For example, panning animation is based on
changing the portion of the image that is visible on the viewport. Other geometrical
transformations can be used to generate the image set. In Figure 14.3 we see how scal-
ing and rotation transformations are applied to a graphical object in order to simulate
its approaching the viewer. In all cases, animation in real-time requires two separate
programming steps: the creation of an image set and the sequential display of these im-
ages.

Many graphics and non-graphics techniques are used in the creation of an image
set that follows a pre-defined pattern of change. We have mentioned how the image
set can be generated by performing geometrical transformations on the display file.
Hand-drawn or optically scanned bitmaps are also used to create the image set. No-
tice that the creation of the image set need not take place in real-time; it is its dis-
play that is time-critical. But whether the image set is in the form of geometrical
display commands or encoded in consecutive bitmaps, the actual animation re-
quires displaying these images consecutively, in real-time, and ideally, at a rate that
is not less than the critical flicker frequency. In this section we discuss some pro-
gramming methods used for displaying the animation image set in real-time.

14.4.1 Retention

We mentioned that the human visual organs retain, for a short time, the images of ob-
jects that no longer exist in the real world. This physiological phenomenon makes pos-
sible the creation of an illusion of animation by the frame-by-frame projection of a set
of progressively changing images of a graphics object. We have referred to this collec-
tion of smoothly changing images as the animation image set. If the rate at which the
individual images are shown on the video display is close to the critical rate of 22 im-
ages per second, then the animation appears smooth and pleasant. On the other hand,
if the software cannot approximate this critical rate the user perceives a disturbing
flicker and the animation appears coarse and bumpy to various degrees.

It is image retention which imposes performance requirements on real-time ani-
mated systems. If a computer animation program is to create a smooth and pleasant
effect, all the manipulations and changes from image to image must be performed in
less than 1/20 of a second. We mentioned that raster scan video systems, with
bitmapped image buffers such as those in the PC, are not well suited for computer
animation.

14.4.2 Interference

A raster scan display system is based on scanning each horizontal row of screen pixels
with an electron beam. The pixel rows are usually scanned starting at the top-left
screen corner and ending at the bottom-right corner. At the end of each pixel row,

© 2003 by CRC Press LLC

called a scan line, the electron beam is turned off while the gun is re-aimed to the start
of the next scan line. When this row-by-row process reaches the bottom scan line, the
beam is turned off while the gun is re-aimed to the top-left screen corner. The period of
time required to re-aim the electron gun from the right-bottom of the screen to the top
left corner is known as the vertical retrace or screen blanking cycle.

Some of the original graphics systems in the PC were prone to a form of display
interference called snow. The direct cause for the interference was performing a
buffer update during a screen refresh. Programmers soon discovered that on the
CGA card this could be avoided or reduced by synchronizing the buffer updates with
the period of time that the electron gun was turned off during vertical retrace. EGA
and VGA systems were designed to avoid this form of interference when conven-
tional methods of buffer update are used. However, the interference problem
reapears when an EGA or VGA screen image has to be updated at short time inter-
vals, as in animation.

The result is that, in order to avoid interference, the frequent screen updates re-
quired by most animation routines must be timed with the period during which the
electron gun is off. This usually means synchronizing the buffer updated with the
vertical retrace cycle of the CRT controller. This requirement, which applies to
EGA, VGA, XGA, and SuperVGA systems, imposes a substantial burden on programs
that perform animated graphics. For example, the screen refresh period in VGA
graphics modes takes place at an approximate rate of 70 times per second. Since the
individual images must be updated in the buffer while the electron gun is off, this
gives the software 1/70th of a second to replace the old image with the new one.
How much buffer update can be performed in 1/70 is the most limiting factor in pro-
gramming smooth, real-time animation on IBM microcomputer video systems.

Notice that a screen refresh rate of approximately 1/70 considerably exceeds the
critical jerkiness frequency of 1/24 used as the image refresh rate in motion picture
technology (see Section 14.1.1). This difference is related to the time period re-
quired for the human eye to adjust to a light intensity change and detect flicker. We
can speak of a critical flicker frequency, as different from the critical jerkiness fre-
quency mentioned above. The motion picture projector contains a rotating dia-
phragm that blackens the screen only during the very short interval required to
move the film to the next frame. This allows projection speeds to take place at the
critical jerkiness rate rather than at the flicker rate. By the same token, a computer
monitor must adjust the screen refresh cycle to this critical flicker frequency.

14.4.3 XOR Operations

In Section 14.1.2 we mentioned that in order to animate a screen object its image
must be erased from current screen position before being redrawn at the new posi-
tion. Otherwise the object's movement would leave an image track on the video dis-
play. The buffer update sequence takes the form: redraw, erase, redraw, erase,
redraw. For example, in lateral translation, an object is made to appear to move
across the screen, from left to right, by progressively redrawing and erasing its
screen image at consecutively larger x coordinates. Notice that erasing the screen

© 2003 by CRC Press LLC

object is at least as time consuming as drawing it, since each pixel in the object must
be changed to its previous state.

The are several ways of performing the redraw-erase cycle required in figure ani-
mation. The most obvious method is to save that portion of the screen image that is
to be occupied by the object. The object can then be erased by re-displaying the
saved image. The problem with this double pixBlt is that it requires a preliminary,
and time-consuming, read operation to store the screen area that is to be occupied
by the animated object. Therefore the redraw-erase cycle is performed by a
video-to-RAM pixBlt (save screen), RAM-to-video pixBlt (display object), and an-
other RAM-to-video pixBlt (restore screen).

A faster method of erasing and redrawing the screen is based on the properties of
the logical exclusive or (XOR) operation. The action of the logical XOR is that a bit
in the result is set if both operands contain opposite values. Consequently, XORing
the same value twice restores the original contents, as in the following example:

10000001B

XOR mask 10110011B

00110010B

XOR mask 10110011B

10000001B

Notice that the resulting bitmap (10000001B) is the same as the original one. The
XOR method can be used in EGA, VGA, and SuperVGA systems because the Data Ro-
tate register of the Graphics Controller can be programmed to write data normally,
or to AND, OR, or XOR, the CPU data with the one in the latches. In XGA systems,
mix mode number 06H produces a logical XOR of source and destination pixels (see
Table 7-8).

The logical XOR operation provides a convenient and fast way for consecutively
drawing and erasing a screen object. Its main advantage is that it does not require a
previous read operation to store the original screen contents. This results in a faster
and simpler read-erase cycle. The XOR method is particularly useful when more
than one animated object can coincide on the same screen position since it insures
that the original screen image is always restored.

The disadvantage of the XOR method is that the resulting image depends on the
current screen contents. In other words, each individual pixel in the object dis-
played by means of a logical XOR operation is determined both by the XORed value
and by the present pixel contents. For example, the following XOR operation pro-
duces a red object (in IRGB format) on a bright white screen background

I R G B

background = 1 1 1 1 (bright white)

XOR mask = 1 0 1 1

image = 0 1 0 0 (red)

© 2003 by CRC Press LLC

However, if the same XOR mask is used over a bright green background the re-
sulting pixel is blue, as in the following example:

I R G B

background = 1 0 1 0 (bright green)

XOR mask = 1 0 1 1

image = 0 0 0 1 (blue)

This characteristic of XOR operations, whereby an object's color changes as it
moves over different backgrounds, can be an advantage or a disadvantage in graph-
ics applications. For example, a marker symbol conventionally displayed will disap-
pear as it moves over a background of its same color, while a marker displayed by
means of a logical XOR can be designed to be visible over all possible backgrounds.
On the other hand, the color of a graphics object might be such an important charac-
teristic that any changes during display operations would be objectionable.

In conclusion, the peculiar effect of XOR operations on the object's color may not
be objectionable, and even advantageous under some conditions, but in other appli-
cations it could make this technique unsuitable. More advanced video graphics sys-
tems include hardware support for animated imagery. In XGA, for example, the
sprite mechanism allows for the display and movement of marker symbols or icons
independently of the background. In this manner the XGA programmer can move
the sprite symbol by defining its new coordinates. The XGA hardware takes care of
erasing the old marker and restoring the underlaying image.

Programming the Function Select Bits

To make possible the XOR operation the software must manipulate the function select
bits of the Graphics Controller Data Rotate register (see Section 2.2.4 and Table 2-6).
The following code fragment shows the required processing.

; Set the Graphics Controller function select field of the Data

; Rotate register to the XOR mode

MOV DX,03CEH ; Graphic controller port address

MOV AL,3 ; Select Data Rotate register

OUT DX,AL

INC DX ; 03CFH register

MOV AL,00011000B ; Set bits 3 and 4 for XOR

OUT DX,AL

Many conventional graphics operations, such as pixBlt and text display func-
tions, require that the function select bits of the data rotate register be set for nor-
mal operation. The following code fragment shows the necessary processing.

; Set the Graphics Controller function select field of the Data

; Rotate register to the normal mode

MOV DX,03CEH ; Graphic controller port address

MOV AL,3 ; Select Data Rotate register

OUT DX,AL

INC DX ; 03CFH register

MOV AL,00000000B ; Reset bits 3 and 4 for normal

OUT DX,AL

© 2003 by CRC Press LLC

The procedure named LOGICAL_MODE in the VGA1 module of the GRAPHSOL li-
brary can be used to set the function select field of the Graphics Controller Data Ro-
tate register to any one of four possible logical modes.

14.4.4 Time-Pulse Animation
Time-pulse animation is a real-time technique by which a screen object is successively
displayed and erased at a certain rate. Ideally, the redraw rate in time-pulse animation
should be higher than the critical jerkiness frequency of 20 images per second,
although, in practice, the time pulse is often determined by the screen refresh rate.

Looping Techniques
The programmer has several methods of producing the timed pulse at which the ani-
mated image is updated. Which method is selected depends on the requirements of the
application as well as on the characteristics of the video display hardware. The sim-
plest method for updating the screen image of an animated object is by creating an ex-
ecution loop to provide some form of timing device. But the loop must include not only
the processing operations for updating the screen image, but also one or more polling
routines. In addition, the loop's execution can be interrupted by hardware devices re-
quiring processor attention. Another factor that can affect the precision of the loop
timing is processor speed and and memory access facilities of the particular machine.
The result is that an animation pulse created by loop methods is difficult to estimate,
leading to non-uniform or unpredictable movement of the animated object.

The System Timer
Another time-pulse source available in the PC is the system's timer pulse. This pulse,
which can be intercepted by an application, beats at the default rate of approximately
18.2 times per second. However, an application can reprogram the system timer to
generate a faster rate. An interrupt intercept routine can be linked to the system timer
so that the program receives control at every timer beat. If it were not for interference
problems, the system timer intercept would be an ideal beat generator for use in ani-
mation routines.

The following coding template installs a system timer intercept routine. The in-
stallation routine accelerates the system timer from 18.2 to 54.6 beats per second, or
three times the original rate.

; Template file name: ANIMATE1.TPL
;**
;**
; timer-driven pulse generator
;**
;**
;
; Changes performed during installation:
; 1. The BIOS system timer vector is stored in a code segment
; variable
; 1. The timer hardware is made to run 3 times faster to ensure
; a beat that is close to the critical flicker frequency
; 3. New service routine for INT 08H is installed in the
; program's address space
;
; Operation:

© 2003 by CRC Press LLC

; 3. The new interrupt handler at INT 08H gains control with
; every bear of the system timer. The program maintains a
; beat counter in the range 0 to 2. Every third beat
; (counter = 2) execution is passed to the original INT 08H
; handler in the BIOS in order to preserve the timer-dependent
; services
;
CODE SEGMENT

START:
.
.
.

;**
; installation routine for INT 08H handler
;**
; Operations:
; 1. Obtain vector for INT 08H and store in a CS variable
; named OLD_VECTOR_08
; 2. Speed up system timer by a factor of 3
; 3. Set INT 08H vector to routine in this module
;**
;**********************|
; save old INT 08H |
;**********************|
; Uses DOS service 53 of INT 21H

MOV AH,53 ; Service request number
MOV AL,08H ; Code of vector desired
INT 21H

; ES --> Segment address of installed interrupt handler
; BX --> Offset address of installed interrupt handler

MOV SI,OFFSET CS:OLD_VECTOR_08
MOV CS:[SI],BX ; Save offset of original handler
MOV CS:[SI+2],ES ; and segment

;**********************|
; speed up system |
; timer by 3 |
;**********************|
; Original divisor is 65,536
; New divisor (65,536/3) = 21,845
; CLI ; Interrupts off while write

; LSB then MSM
; xxxx 011x binary system

OUT 43H,AL
MOV BX,21845 ; New divisor
MOV AL,BL
OUT 40H,AL ; Send LSB
MOV AL,BH
OUT 40H,AL ; Send MSB

;**********************|
; set new INT 08H in |
; vector table |
;**********************|
; Mask off all interrupts while changing INT 08H vector

CLI
; Save mask in stack

IN AL,21H ; Read 8259 mask register
PUSH AX ; Save in stack
MOV AL,0FFH ; Mask off IRQ0 to IRQ7
OUT 21H,AL ; Write to 8259 mask register

© 2003 by CRC Press LLC

; Install new interrupt vector
MOV AH,25H
MOV AL,08H ; Interrupt code
MOV DX,OFFSET HEX08_INT
INT 21H

; Restore original interrupt mask
POP AX ; Recover mask from stack
OUT 21H,AL ; Write to 8259 mask register
STI ; Set 80x86 interrupt flag

; At this point the graphics program continues execution
.
.
.

;**
; exit routine
;**
; Before the program returns control to the operating system
; it must restore the hardware to its original state. This
; requires resetting the time speed to 18.2 beats per second
; and re-installing the BIOS interrupt handler in the vector
; table
;**********************|
; reset system timer |
;**********************|
; Original divisor is 65,536

CLI ; Interrupts off while write
; LSB then MSM
; xxxx 011x binary system

OUT 43H,AL
MOV BX,65535 ; Default divisor
MOV AL,BL
OUT 40H,AL ; Send LSB
MOV AL,BH
OUT 40H,AL ; Send MSB

;**********************|
; restore INT 0AH |
;**********************|

PUSH DS ; Save program's DS
MOV SI,OFFSET CS:OLD_VECTOR_08

; Set DS:DX to original segment and offset of keyboard interrupt
MOV DX,CS:[SI] ; DX --> offset
MOV AX,CS:[SI+2] ; AX --> segment
MOV DS,AX ; Segment to DS
MOV AH,25H ; DOS service request
MOV AL,08H ; Interrupt number
INT 21H
POP DS
STI ; Interrupts on again

; At this point the exiting program usually resets the video
; hardware to text mode and returns control to the operating
; system

.

.

.
;**
; new INT 08H handler
;**
; The handler is designed so that a new timer tick cannot take
; place during execution. This is ensured by not sending the 8259
; end-of-interrupt code until the routine's processing is

© 2003 by CRC Press LLC

; complete
;**
HEX08_INT:

STI ; Interrupts on
PUSH AX ; Save registers used by routine
PUSH BX
PUSH CX ; Other registers can be pushed
PUSH DX ; if necessary
PUSH DS

; User video image update routine is coded at this point
.
.
.

; The intercept routine maintains a code segment variable named
; TIMER_COUNT which stores a system timer pulse count. This
; variable is used to return control to the system timer
; interrupt every third timer beat, thus maintaining the
; original rate of 18.2 beats per second

DEC CS:TIMER_COUNT
JZ TIME_OF_DAY ; Exit through time_of_day

;**********************|
; direct exit |
;**********************|

MOV AL,20H ; Send end-of-interrupt code
OUT 20H,AL ; to 8259 interrupt controller
POP DS ; Restore registers
POP DX
POP BX
POP AX
IRET ; Return from interrupt

;**********************|
; pass to original |
; INT 08H handler |
;**********************|
TIME_OF_DAY:

MOV CS:TIMER_COUNT,2 ; Reset counter variable
POP DS
POP DX
POP BX
POP AX
STC ; Continue processing
JMP DWORD PTR CS:OLD_VECTOR_08
IRET

;**********************|
; code segment data |
;**********************|
TIMER_COUNT DB 2 ; Timer counter
OLD_VECTOR_08 DD 0 ; Far pointer to original INT 08H

.

.

.
;
CODE ENDS

Interference Problems
PC software that uses the system timer to produce a pulse for animation routines

encounter interference problems. At least two methods are available to avoid or
minimize display interference: to turn-off the CRT while the buffer is being changed
or to time the buffer updates with the vertical retrace cycle of the CRT controller.

© 2003 by CRC Press LLC

Neither method is a panacea; as we have already mentioned it is not always possible
to produce smooth real-time animation in an IBM microcomputer. Applications can
try either or both methods and select the better option. The following coding tem-
plate fragment shows the processing necessary to turn off the VGA video display
system.

; Template file name: ANIMATE2.TPL
; Screen is turned off by setting the Clocking Mode register bit
; number 5 of the VGA Sequencer Group

MOV DX,03C4H ; Sequencer group
MOV AL,01H ; Clocking Mode register
OUT DX,AL ; Select this register
JMP SHORT $+2 ; I/O delay
INC DX ; To data port 3C5H
IN AL,DX ; Read Clocking Mode register
OR AL,00100000B ; Set bit 5, preserve others
OUT DX,AL ; Write back to port

; At this point the VGA video display function is OFF
.
.
.

The reverse process is necessary to turn on the VGA video display system.

; Template file name: ANIMATE3.TPL
; Screen is turned on by clearing the Clocking Mode register bit
; number 5 of the VGA Sequencer Group

MOV DX,03C4H ; Sequencer group
MOV AL,01H ; Clocking Mode register
OUT DX,AL ; Select this register
JMP SHORT $ + 2 ; I/O delay
INC DX ; To data port 3C5H
IN AL,DX ; Read Clocking Mode register
AND AL,11011111B ; Clear bit 5, preserve others
OUT DX,AL ; Write back to port

; At this point the VGA video display function is ON
.
.
.

The second method for reducing interference is to synchronize the video buffer
update with the vertical retrace cycle of the CRT controller. In the following section
we will see how, in some systems, we can enable an interrupt that occurs on the ver-
tical retrace cycle. But whether the vertical retrace interrupt is available or not, it is
possible to detect the start of the vertical retrace cycle in order to perform the
buffer update operations while the CRT controller is turned off. The following cod-
ing template shows the processing necessary to detect the start of the vertical re-
trace in VGA systems.

; Template file name: ANIMATE4.TPL
; Test for start of the vertical retrace cycle of the CRT
; controller. Bit 3 of the Input Status Register 1 is set if a
; vertical cycle is in progress

MOV DX,3DAH ; VGA Input Status register 1
VRC_CLEAR:

IN AL,DX ; Read byte at port
TEST AL,00001000B ; Is bit 3 set?
JNZ VRC_CLEAR ; Wait until bit clear

© 2003 by CRC Press LLC

; At this point the vertical retrace ended. Wait for it to
; restart
VRC_START:

IN AL,DX ; Read byte at port
TEST AL,00001000B ; Is bit 3 set?
JZ VRC_START ; Wait until bit set

; At this point a vertical retrace cycle has just started
; The code can now proceed to update the video image

.

.

.

Figure 7.7 is a bitmap of the Input Status register 0 and 1 of the VGA General Reg-
ister Group. Notice that bit 7 of the Input Status register 0 can be used to detect the
vertical retrace cycle only if the vertical retrace interrupt is enabled. If not, we must
use bit 3 of Input Status register 1, as in the above code fragment.

14.4.5 The Vertical Retrace Interrupt
For many PC graphics applications the most satisfactory method for obtaining a timed
pulse is by programming the CRT controller to generate an interrupt at the start of the
vertical retrace cycle. The EGA, VGA, and XGA screen refresh rate, which is 70 cycles
per second, is more than sufficient to produce smooth animation. In fact, the most im-
portant objection to this method is that it leaves very little time in which to perform im-
age or data processing operations between timed pulses. Another consideration is
that not all IBM and IBM-compatible video systems support a vertical retrace inter-
rupt. For example, the IBM VGA Adapter is not documented to support the vertical re-
trace interrupt. The same applies to many VGA cards by third party vendors. Therefore
VGA programs that use the vertical retrace interrupt may not be portable to these sys-
tems.

One advantage of using the vertical retrace interrupt as a time-pulse generator is
that, since screen updates take place while the video system is turned off, interfer-
ence is automatically avoided. The typical method of operation is to synchronize the
screen update with the beginning of the vertical retrace cycle of the CRT controller.
How much processing can be done while the CRT is off depends on the system hard-
ware. In VGA systems this depends mainly on the type and speed of the CPU and the
memory access facilities. XGA systems have their own graphics coprocessor and,
for this reason, can execute considerably more processing during the vertical re-
trace cycle. Notice that in IBM XGA documentation the vertical retrace cycle is
called the screen blanking period.

VGA Vertical Retrace Interrupt
In VGA systems the smooth animation of relatively small screen objects can be exe-
cuted satisfactorily by vertical retrace synchronization. As the screen objects get
larger it is more difficult to update the video buffer in the short time lapse of the verti-
cal retrace cycle. Since so many performance factors enter into the equation it is prac-
tically impossible to give exact limits or guidelines for satisfactory animation. For
example, the demonstration program, MATCH, furnished with the book's software
package uses the vertical retrace interrupt to animate a running boar target. At the
same time, the user interactively animates by mouse controls the image of a crosshair
symbol. Both simultaneous animation operations used in the MATCH program tax

© 2003 by CRC Press LLC

VGA and system performance to the maximum. For this reason the program requires
an IBM microcomputer equipped with a 80386 or 486 processor to perform satisfacto-
rily. A certain bumpiness is noticeable in the MATCH animation when the program ex-
ecutes in a 80286 or slower machine.

It is often possible to program around the limitations of vertical retrace timing. In
the first place, the image update operation can be split into two or more vertical re-
trace cycles. This is possible because the jerkiness frequency of 20 cycles per sec-
ond is considerably less than the typical vertical retrace pulse of 70 cycles per
second. However, splitting the update operations introduces programming compli-
cations, as well as an additional overhead in keeping track of which portion of the
image is to be updated in each cycle. This method should be considered only if no
simpler solution is available.

We mentioned that in VGA the vertical retrace cycle of the CRT controller takes
place at a rate of approximately 70 times per second. In VGA systems that support
the vertical retrace interrupt, software can enable it as a pulse generator and install
a routine that receives control on every vertical retrace cycle. The following coding
template contains the program elements necessary for the installation and opera-
tion of a vertical retrace intercept in a VGA system.

; Template file name: ANIMATE5.TPL
;**
;**
; vertical retrace interrupt pulse generator
; for VGA systems
;**
;**
;
; Operations performed during installation:
; 1. The VGA port base address is stored in a code segment
; variable named CRT_PORT and the default contents of the
; Vertical Retrace End register are stored in a variable
; named OLD_VRE
; 2. The address of the interrupt 0AH handler is saved in a
; far pointer variable named OLD_VECTOR_0A
; 3. A new handler for interrupt 0AH is installed at the label
; HEX0A_INT.
; 4. The IRQ2 bit is enabled in the 8259 (or equivalent)
; interrupt controller mask register
; 5. The vertical retrace interrupt is activated
;
; Operation:
; The new interrupt handler at INT 0AH gains control with
; every vertical retrace cycle of the CRT controller.
; The software can perform limited buffer update operations
; at this time without causing video interference
;**
; Installation routine for
; the vertical retrace interrupt
;**
; The following code enables the vertical retrace interrupt on
; a VGA system and intercepts INT 0AH (IRQ2 vector)
;**********************|
; save parameters |
;**********************|

© 2003 by CRC Press LLC

; System port address is saved in CS variables
CLI ; Interrupts off
MOV AX,0H ; Clear AX
MOV ES,AX ; and ES
MOV DX,ES:[0463H] ; Get CRT controller base address

; from BIOS data area
MOV CS:CRT_PORT,DX ; Save address in memory variable
MOV AL,11H ; Offset of Vertical Retrace End

; register in the CRTC
OUT DX,AL ; Select this register

; Value stored in port's data register is saved in a code segment
; variable for later use by the software

INC DX ; Point to Data register
IN AL,DX ; Read default value in register
JMP SHORT $+2 ; I/O delay
MOV CS:OLD_VRE,AL ; Save value in variable

;**********************|
; save old INT 0AH |
;**********************|
; Uses DOS service 53 of INT 21H to store the address of the
; original INT 0AH handler in a code segment variable

MOV AH,53 ; Service request number
MOV AL,0AH ; Code of vector desired
INT 21H

; ES --> Segment address of installed interrupt handler
; BX --> Offset address of installed interrupt handler

MOV SI,OFFSET CS:OLD_VECTOR_0A
MOV CS:[SI],BX ; Save offset of original handler
MOV CS:[SI+2],ES ; and segment

;**********************|
; install this INT 0AH |
; handler |
;**********************|
; Uses DOS service 37 of INT 21H to install the present handler
; in the vector table

MOV AH,37 ; Service request number
MOV AL,0AH ; Interrupt code
PUSH DS ; Save data segment
PUSH CS
POP DS ; Set DS to CS for DOS service
MOV DX,OFFSET CS:HEX0A_INT
INT 21H
POP DS ; Restore local data

;**********************|
; enable IRQ2 |
;**********************|
; Clear bit 2 of the 8259 Mask register to enable the IRQ2 line

CLI ; Make sure interrupts are off
MOV DX,21H ; Port address of 8259 Mask

; register
IN AL,DX ; Read byte at port
AND AL,11111011B ; Mask for bit 2
OUT DX,AL ; Back to 8259 port

;**********************|
; activate vertical |
; retrace interrupt |
;**********************|

MOV DX,CS:CRT_PORT ; Recover CRT base address
MOV AL,11H ; Offset of Vertical Retrace End

; register in the CRTC

© 2003 by CRC Press LLC

MOV AH,CS:OLD_VRE ; Default value in Vertical
; Retrace End register

AND AH,11001111B ; Clear bits 4 and 5 in VRE
; Bit 4 = clear vertical
; interrupt
; Bit 5 = enable vertical retrace

OUT DX,AX ; To port
OR AH,00010000B ; Mask to set bit 4 to re-enable
OUT DX,AX
STI ; Enable interrupts

; At this point the vertical retrace interrupt is active
; Program code to follow

.

.
;**
; exit routine
;**
; Before the program returns control to the operating system
; it must restore the hardware to its original state. This
; requires disabling the vertical retrace interrupt and restoring
; the original INT 0AH handler in the vector table
;**********************|
; disable vertical |
; interrupts |
;**********************|
; Code assumes that on program entry the vertical retrace
; was disabled

MOV DX,CS:CRT_PORT ; Recover CRT base address
MOV AL,11H ; Offset of Vertical Retrace End

; register in the CRTC
MOV AH,CS:OLD_VRE ; Default value in Vertical

; Retrace End register
OUT DX,AX ; To port

;**********************|
; restore original |
; INT 0AH handler |
;**********************|

MOV SI,OFFSET CS:OLD_VECTOR_0A
; Set DS:DX to original segment and offset of keyboard interrupt

MOV DX,CS:[SI] ; DX --> offset
MOV AX,CS:[SI+2] ; AX --> segment
MOV DS,AX ; segment to DS
MOV AH,25H ; DOS service request
MOV AL,0AH ; IRQ2
INT 21H

; At this point the exiting program usually resets the video
; hardware to a text mode and returns control to the operating
; system

.

.
;**
; VGA vertical retrace interrupt handler
;**
; The following routine gains control with every vertical retrace
; interrupt (approximately 70 times per second)
; The code can now perform limited video buffer update operations
; without interference
; The vertical retrace interrupt is not re-enabled until the
; routine has concluded to avoid re-entrancy
;**

© 2003 by CRC Press LLC

HEX0A_INT:
CLI ; Interrupts off

; Save registers
PUSH AX ; Save context at interrupt time
PUSH BX
PUSH CX
PUSH DX
PUSH ES

;**********************|
; test for vertical |
; retrace interrupt |
;**********************|
; Since several hardware interrupts can be located at IRQ2 the
; software must make sure that it was the vertical retrace that
; originated this action. This is done by testing bit 7 of the
; Input Status Register 0, which will be set if a vertical
; retrace interrupt has occurred

MOV DX,3C2H ; Input Status Register 0
IN AL,DX ; Read byte at port
TEST AL,10000000B ; Is bit 7 set
JNE VRI_CAUSE ; Go if vertical retrace

;**********************|
; chain to next handler|
;**********************|
; At this point the interrupt was not due to a vertical retrace
; Execution is returned to the IRQ2 handler

POP ES ; Restore context
POP DX
POP CX
POP BX
POP AX
STC ; Continue processing
JMP DWORD PTR CS:OLD_VECTOR_0A

;**********************|
; animation operations |
;**********************|
VRI_CAUSE:
; At this point the handler contains the graphics operations
; necessary to perform the animation function

.

.
;**********************|
; service routine exit |
;**********************|
; Enable 8259 interrupt controller to receive other interrupts

MOV AL,20H ; Port address
OUT 20H,AL ; Send EOI code

; Re-enable vertical retrace interrupt by clearing bits 4 and 5
; of the Vertical Retrace End register and then setting bit 5
; so that the interrupt is not held active

MOV DX,CS:CRT_PORT ; Recover CRT base address
MOV AL,11H ; Offset of Vertical Retrace End

; register in the CRTC
MOV AH,CS:OLD_VRE ; Default value in VRE register
AND AH,11001111B ; Clear bits 4 and 5

; 4 = clear vertical interrupt
; 5 = enable vertical retrace

OUT DX,AX ; To port
OR AH,00010000B ; Set bit 4 to reset flip-flop
OUT DX,AX ; To port

© 2003 by CRC Press LLC

;**********************|
; restore context |
;**********************|
; Registers used by the service routine are restored from the
; stack

POP ES
POP DX
POP CX
POP BX
POP AX
STI ; Re-enable interrupts
IRET

;**
; code segment data
;**
OLD_VECTOR_0A DD 0 ; Pointer to original INT 0AH

; interrupt
CRT_PORT DW 0 ; Address of CRT controller
OLD_VRE DB 0 ; Original contents of VRE

; register
.
.
.

Applications can extend the screen update time by locating the animated image
as close as possible to the bottom of the video screen. In this manner the interfer-
ence-free period includes not only the time lapse during which the beam is being di-
agonally re-aimed, but also the period during which the screen lines above the image
are being scanned. This technique is used in the MATCH program included in the
book's software package.

XGA Screen Blanking Interrupt
The XGA documentation refers to the vertical retrace cycle as the screen blanking pe-
riod. Two interrupts sources are related to the blanking period: the start of picture in-
terrupt and the start of blanking interrupt. The start of picture coincides with the end
of the blanking period. Both interrupts are enabled in the XGA Interrupt Enable regis-
ter (offset 21x4H). Figure 14.4 shows a bitmap of the XGA Interrupt Enable register.

Figure 14-4 XGA Interrupt Enable Register Bitmap

7 6 5 4 3 2 1 0

Coprocessor operation complete

Coprocessor access rejected

Sprite display complete

UNDEFINED

Start of picture (end of blanking)

Start of blanking (end of picture)

BIT SETTINGS:
1 = interrupt source enabled
0 = interrupt source disabled

© 2003 by CRC Press LLC

Like the VGA interrupts, the XGA video interrupts are vectored to the IRQ2 line of
the 8259/A (or compatible) interrupt controller chip, which is mapped to the 0AH
vector. By testing the bits in the Interrupt Status register (at offset 21x5H) an XGA
program can determine the cause of an interrupt on this line. Figure 14.5 shows a
bitmap of the XGA Interrupt Status register.

Figure 14-5 XGA Interrupt Status Register Bitmap

The XGA Interrupt Status register is also used to clear an interrupt condition.
This operation is performed by the handler in order to reset the interrupt origin. The
following template contains the program elements necessary for the installation and
operation of a vertical retrace intercept in an XGA system.

; Template file name: ANIMATE6.TPL
;**
;**
; screen blanking interrupt pulse generator
; for XGA systems
;**
;**
;
; Operations performed during installation:
; 1. The XGA port base address is stored in a code segment
; variable named XGA_BASE
; 2. The address of the interrupt 0AH handler is saved in a
; far pointer variable named OLD_VECTOR_0A
; 3. A new handler for interrupt 0AH is installed at the label
; XGA_0A_INT.
; 4. The IRQ2 bit is enabled in the 8259 (or equivalent)
; Interrupt Controller Mask register
; 5. The XGA screen blanking interrupt is enabled
;
; Operation:
; 3. The new interrupt handler at INT 0AH gains control with
; every vertical retrace cycle of the CRT controller.
; The software can perform limited buffer update operations
; at this time without causing video interference

7 6 5 4 3 2 1 0

Coprocessor operation complete

Coprocessor access rejected

Sprite display complete

UNDEFINED

Start of picture (end of blanking)

Start of blanking (end of picture)

ON READ:
1 = interrupt occurred
0 = interrupt did not occur

ON WRITE:
1 = clear interrupt condition
0 = no effect

BIT SETTING INTERPRETATION

© 2003 by CRC Press LLC

;
;**
; Installation routine for
; the XGA screen blanking interrupt
;**
; The following code enables the screen blanking interrupt on
; a XGA system and intercepts INT 0AH (IRQ2 vector)
;**********************|
; init XGA |
;**********************|
; XGA initialization is performed by means of the services in the
; XGA1 and XGA2 modules of the GRAPHSOL library

CALL OPEN_AI ; Open Adapter Interface for use
CALL INIT_XGA ; Initialize XGA hardware

; The INIT_XGA procedure returns the address of the XGA register
; base in the BX register. The code stores this value in a code
; segment variable named XGA_BASE

MOV CS:XGA_BASE,BX ; Store in code segment variable
MOV AL,2 ; Select mode XGA mode number 2

; 1024 by 768 pixels in 256 colors
CALL XGA_MODE ; Mode setting procedure

;**********************|
; save old INT 0AH |
;**********************|
; Uses DOS service 53 of INT 21H to store the address of the
; original INT 0AH handler in a code segment variable

MOV AH,53 ; Service request number
MOV AL,0AH ; Code of vector desired
INT 21H

; ES --> Segment address of installed interrupt handler
; BX --> Offset address of installed interrupt handler

MOV SI,OFFSET CS:OLD_VECTOR_0A
MOV CS:[SI],BX ; Save offset of original handler
MOV CS:[SI+2],ES ; and segment

;**********************|
; install this INT 0AH |
; handler |
;**********************|
; Uses DOS service 37 of INT 21H to install the present handler
; in the vector table

MOV AH,37 ; Service request number
MOV AL,0AH ; Interrupt code
PUSH DS ; Save data segment
PUSH CS
POP DS ; Set DS to CS for DOS service
MOV DX,OFFSET CS:XGA_0A_INT
INT 21H
POP DS ; Restore local data

;**********************|
; enable IRQ2 |
;**********************|
; Clear bit 2 of the 8259 Mask register to enable the IRQ2 line

CLI ; Make sure interrupts are off
MOV DX,21H ; Port address of 8259 Mask

; register
IN AL,DX ; Read byte at port
AND AL,11111011B ; Mask for bit 2
OUT DX,AL ; Back to 8259 port

;**********************|
; activate XGA screen |

© 2003 by CRC Press LLC

; blanking interrupt |
;**********************|
; Reset all interrupts in the Status register

MOV DX,CS:XGA_BASE ; Base address of XGA video
ADD DX,05H ; Interrupt Status register
MOV AL,0C7H ; All ones
OUT DX,AL ; Reset all bits

; Enable the start of blanking cycle interrupt source (bit 0)
MOV DX,CS:XGA_BASE ; XGA base address
ADD DX,04H ; Interrupt Enable register
IN AL,DX ; Read register contents
OR AL,00000001B ; Make sure bit 0 is set
OUT DX,AL ; Back to Interrupt Enable

; register
STI ; Interrupts ON

; At this point the XGA start of blanking interrupt is active
; Program code to follow

.

.

.
;**
; exit routine
;**
; Before the program returns control to the operating system
; it must restore the hardware to its original state. This
; requires disabling the XGA screen blanking interrupt and
; restoring the original INT 0AH handler in the vector table
;**********************|
; disable XGA screen |
; blanking interrupt |
;**********************|

MOV DX,CS:XGA_BASE ; XGA base address
ADD DX,04H ; Interrupt Enable register
IN AL,DX ; Read register contents
AND AL,11111110B ; Make sure bit 0 is clear
OUT DX,AL ; Back to Interrupt Enable

; register
;**********************|
; restore original |
; INT 0AH handler |
;**********************|

MOV SI,OFFSET CS:OLD_VECTOR_0A
; Set DS:DX to original segment and offset of keyboard interrupt

MOV DX,CS:[SI] ; DX --> offset
MOV AX,CS:[SI+2] ; AX --> segment
MOV DS,AX ; segment to DS
MOV AH,25H ; DOS service request
MOV AL,0AH ; IRQ2
INT 21H

; At this point the exiting program usually resets the video
; hardware to a text mode and returns control to the operating
; system

.

.

.
;**
; XGA screen blanking interrupt handler
;**
; The following routine gains control with every vertical retrace
; interrupt (approximately 70 times per second)

© 2003 by CRC Press LLC

; The code can now perform limited video buffer update operations
; without interference
; In order to avoid interrupt re-entrancy, the screen blanking
; interrupt is not re-enabled until the routine has concluded
;**
XGA_0A_INT:

CLI ; Interrupts off
; Save registers

PUSH AX ; Save context at interrupt time
PUSH BX
PUSH CX
PUSH DX
PUSH ES

;**********************|
; test for screen |
; blanking interrupt |
;**********************|
; Since several hardware interrupts can be located at IRQ2 the
; software must make sure that it was screen blanking that
; originated this action. This can be done by testing bit 0 of
; the XGA Interrupt Status register

MOV DX,CS:XGA_BASE ; XGA base address
ADD DX,05H ; Interrupt Status register
IN AL,DX ; Read register contents
TEST AL,00000001B ; Test start of blanking bit
JNZ BLK_CAUSE ; Go if bit set

;**********************|
; chain to next handler|
; if not blanking |
;**********************|
; At this point the interrupt was not due to an XGA screen
; blanking interrupt. Execution is returned to the IRQ2 handler

POP ES ; Restore context
POP DX
POP CX
POP BX
POP AX
STC ; Continue processing
JMP DWORD PTR CS:OLD_VECTOR_0A

;**********************|
; animation operations |
;**********************|
BLK_CAUSE:
; At this point the handler contains the graphics operations
; necessary to perform the animation function

.

.

.
;**********************|
; service routine exit |
;**********************|
; Enable 8259 interrupt controller to receive other interrupts

MOV AL,20H ; Port address
OUT 20H,AL ; Send EOI code

; The handler must reset bit 0 of the XGA Interrupt Status
; register to clear the interrupt condition

MOV DX,CS:XGA_BASE ; Display controller base address
ADD DX,05H ; Interrupt Status register
IN AL,DX ; Read status
OR AL,00000001B ; Set bit 0, preserve others

© 2003 by CRC Press LLC

OUT DX,AL ; Reset start of blanking
;**********************|
; restore context |
;**********************|
; Registers used by the service routine are restored from the
; stack

POP ES
POP DX
POP CX
POP BX
POP AX
STI ; Re-enable interrupts
IRET

;**
; code segment data
;**
OLD_VECTOR_0A DD 0 ; Pointer to original INT 0AH

; interrupt
XGA_BASE DW 0 ; Address of CRT controller

.

.

.

The comparatively high performance of the XGA system makes possible the
smooth animation of images much larger and elaborate than those that can be ani-
mated in VGA. Whenever possible the animation routine should use direct
coprocessor programming (see Chapter 12) in order to minimize execution time.
The system memory to video RAM pixBlt operation discussed in Section 12.5.3 can
often be used in XGA animation.

© 2003 by CRC Press LLC

Chapter 15

DOS Bitmapped Graphics

Topics:
• Image file encoding

• GIF file format

• LZW compression

• TIFF file format

• TIFF packBits compression

• PCL format for bitmapped fonts

This chapter describes the various techniques and standards used in encoding com-
puter graphics images into units of memory storage. It includes a discussion of three
popular image data storage formats: GIF, TIFF format, and PCL bitmapped fonts, also
of the various data compression methods used in reducing the size of image data files,
such as PackBits and LZW.

15.1 Image File Encoding
Bitmapping is the graphics technique whereby a memory bit represents the attribute
of a screen pixel. In previous chapters we created and manipulated bitmapped image
in an intuitive and almost primitive manner. The encodings were tailored to the spe-
cific video hardware; for example, in 16-color modes we used a 4-bit image code in
IRGB format, and in 256-color modes, a double-bit format based on an IIRRGGBB en-
coding. In all cases the encodings we so far used have contained little more than the
image's pixel-by-pixel color for a particular display system setup.

However, a graphics image can be encoded in more a complete and efficient
structure than is offered by a pixel-by-pixel attribute list. A limitation of a raw pixel
color list is that in most IBM graphics systems the pixel attribute is not a color code
in itself, but an index into a color look-up table. For example, in XGA 256-color
modes the pixel value 00001100B is displayed as bright red if the LUT registers are
in the default setting, but the same code corresponds to a light shade of green if the
LUT is changed to the IIRRGGBB encoding (see the XGALUT program in the book's

© 2003 by CRC Press LLC

software package). This means that the actual pixel code is meaningless if the image
encoding does not offer information about the LUT register setting. LUT register
data can be furnished implicitly, by designating a conventional format, such as
IRGB, or explicitly, as a list of values to be loaded into the DAC registers.

The movement towards the standardization of image file encodings in IBM micro-
computers originated with commercial software developers in need of methods for
storing and displaying graphics images. At the present time there are over 20 differ-
ent image file encodings in frequent use. It is common for a graphics application im-
port or export service to present the user with over a dozen image file formats.
Although some of these commercial encodings have gained more popularity than
others, very little has been achieved in standardizing image file encodings for IBM
microcomputers. In this chapter we have selected the image file formats that we be-
lieve are more useful and that have gained more widespread acceptance in the IBM
microcomputer field. This selection does not imply that we endorse these particular
encodings or approve of their design or operation.

15.1.1 Raw Image Data
We mentioned that the simplest possible image data encoding is a bare list of pixel at-
tributes. This simple encoding, called the raw image data, is often all that is required
by a graphics application. For example, the monochrome bitmap of a running boar tar-
get is encoded in the MATCH program (see book's software package) as raw image
data. Figure 15-1 shows the bitmap and pixel list.

Figure 15-1 Raw Image Data for a Monochrome Bitmap

Since the image in Figure 15-1 is displayed in monochrome, the encoding is based
on a bit per pixel scheme; a 1-bit in the attribute list indicates that the screen pixel is
set, a 0-bit indicates that it remains in the background attribute. The reader can
match the first line of the encoding (1FH 80H 0FH FFH F0H 00H) with the pixels on
the top image row. The first value on the list (1FH = 00011111B) corresponds to the

1. 1FH 80H 0FH FFH F0H 00H
2. 00H 43H F0H 81H 0EH 00H
3. 00H 3CH 01H 3CH 81H 00H
4. 00H 40H 02H 42H 40H C0H
5. 00H 40H 04H 99H 20H 30H
6. 00H 80H 05H 24H A0H 0CH
7. 00H 80H 05H 5AH A0H 03H
8. 00H 80H 05H 5AH A0H 01H

11. 08H 00H 02H 42H 47H 80H
12. 10H 00H 01H 3CH 88H 00H
13. 28H 00H 00H 81H 07H 80H
14. 5FH C1H F0H 3FH 00H 40H
15. FCH 3EH 0FH FCH 00H B0H
16. 14H 00H 00H 02H 61H 60H
17. 24H 00H 00H 01H 99H 00H
18. 78H 00H 00H 00H 06H 80H
19. 00H 00H 00H 00H 01H C0H9. 07H 00H 05H 24H A0H 1EH

10. 08H 00H 04H 99H 20H 60H

© 2003 by CRC Press LLC

first eight image pixels, the second value on the list (80H = 10000000B) corresponds
to the next eight image pixels, and so forth to the last value on the list.

But a display routine usually requires more data that can be encoded in a pixel at-
tribute list. For example, the procedure named MONO_MAP_18 in the VGA2 module
of the GRAPHSOL library requires the x and y screen coordinates, the color attrib-
ute, and the number of pixel rows and columns in the bitmap. This data is furnished
to the MONO_MAP_18 procedure in a preamble data block that precedes the pixel
attribute list. The following code fragment corresponds to the image block for the
left-hand running boar target used in the MATCH program (see the MATCHC.ASM
module in the book's software package).

;***********************|

; left-to-right boar |

;***********************|

; Block control area: Displacement -->

LPIG_X DW 4 ; Present x coordinate 0

LPIG_Y DW 440 ; y coordinate 2

DB 19 ; Horizontal rows in block 4

DB 6 ; Number of bytes per row 5

; Pixel attribute list for the left-hand running boar target

DB 01FH,080H,00FH,0FFH,0F0H,000H ; 1

DB 000H,043H,0F0H,081H,00EH,000H ; 2

DB 000H,03CH,001H,03CH,081H,000H ; 3

DB 000H,040H,002H,042H,040H,0C0H ; 4

DB 000H,040H,004H,099H,020H,030H ; 5

DB 000H,080H,005H,024H,0A0H,00CH ; 6

DB 000H,080H,005H,05AH,0A0H,003H ; 7

DB 000H,080H,005H,05AH,0A0H,001H ; 8

DB 007H,000H,005H,024H,0A0H,01EH ; 9

DB 008H,000H,004H,099H,020H,060H ; 10

DB 008H,000H,002H,042H,047H,080H ; 11

DB 010H,000H,001H,03CH,088H,000H ; 12

DB 028H,000H,000H,081H,007H,080H ; 13

DB 05FH,0C1H,0F0H,03FH,000H,040H ; 14

DB 0FCH,03EH,00FH,0FCH,000H,0B0H ; 15

DB 014H,000H,000H,002H,061H,060H ; 16

DB 024H,000H,000H,001H,099H,000H ; 17

DB 078H,000H,000H,000H,006H,080H ; 18

DB 000H,000H,000H,000H,001H,0C0H ; 19

DW 0000H ; padding

;

BOAR_COLOR DB 00000100B ; Red bit set

Notice that the pixel attribute list in the above code fragment corresponds to the
raw data in Figure 15-1, and also that the display color is encoded in a separate vari-
able (named BOAR_COLOR) whose address is passed to the MONO_MAP_18 dis-
play routine in the BX register. The block format in the above image is customized to
store the data necessary to the MONO_MAP_18 display routine. The advantage of
this method is that only the necessary data for the display manipulations is encoded
with the raw pixel attribute list. This provides a compact data structure which can
be used in optimizing the code. On the other hand, this customized encoding would
almost certainly not be portable to any other graphics application.

© 2003 by CRC Press LLC

The program designer must often decide whether to use a customized format that
usually includes only the data that is strictly necessary for the display routine, or to
represent the image in one of the general purpose formats that are recognized by
other graphics applications. The basis for this decision is usually one of image por-
tability. A stand-alone program (such as MATCH) which has no need to communi-
cate graphics data to other applications, can use a raw data format whenever it is
convenient. On the other hand, an application that must exchange image data with
other graphics programs could benefit from adopting one of the existing image data
formats described later in this chapter.

15.1.2 Bitmaps in Monochrome and Color
Etymologically, the term monochrome means "of one color;" however, in computer
jargon, it is often interpreted as black-and-white. This equivalency is certainly untrue
in bitmapped graphics, because a monochrome bitmap can be displayed in any avail-
able color or attribute. Furthermore, it is possible to combine several monochrome
bitmaps to form a multicolor image on the screen. For example, several of the color
images used in the MATCH program (furnished in the book's software package) are
composites formed by overlaying separate monochrome bitmaps. The image of the ri-
fle in the initial MATCH screen is formed by overlaying the monochrome bitmaps
shown in Figure 15-2.

Figure 15-2 Monochrome Overlays to Form a Color Image

The original image of the rifle used in the first screen of the MATCH program was
scanned from a black-and-white catalog illustration into a bitmap editing program.
The three color overlays in Figure 15-2 were created by editing the original scan.
The overlays were then saved into disk based image files in the TIFF format (dis-
cussed later in this chapter). The MATCH program successively reads and displays
the three monochrome bitmaps and superimposes them to form a multicolor image.
Notice that the order in which the bitmaps are displayed is important, because if

BLACK BITMAP

BROWN BITMAP

BRIGHT WHITE BITMAP

© 2003 by CRC Press LLC

two overlays contain a common pixel, this pixel is shown in the attribute of the last
bitmap displayed.

A color image can also be stored in a single bitmap in which each pixel is repre-
sented in any of the available colors. The result is a more compact image file and a
faster display operation. In fact, the only reasons for using several monochrome
bitmaps in the creation of a color image are convenience and limited resources. The
raw pixel data format for a color image often matches the characteristics of the
video system for which it is intended. In VGA, SuperVGA, and XGA systems color
images are typically stored in 16 or 256 colors. We already mentioned that, in IBM
microcomputers, the pixel color data is an index into a look-up table (LUT) and the
actual pixel color is determined by the setting of the DAC registers.

15.1.3 Image Data Compression

Bitmapped image data takes up considerable memory space. For example, the raw im-
age data for a full screen, in an XGA or SuperVGA mode of 1,024 by 768 pixels resolu-
tion in 256 colors, requires approximately 768K. This is three-fourths of the total
memory space available in an IBM microcomputer under MS-DOS. Consequently, sev-
eral data compression schemes have been devised to reduce the memory space re-
quired for storing pixel-coded images. However, image data compression is achieved
at a price: the additional processing time required for packing and unpacking the im-
age data. In microcomputer graphics, performance is usually such a critical factor that
this overhead is an important consideration in adopting a compressed data format.

Many of the compression methods used for alphanumeric data are not adaptable
for image data. In the first place, all of the irreversible techniques used in character
data compaction cannot be used for graphics images, since image data must be re-
stored integrally. The same applies to many semantic-dependent techniques of vari-
ous degrees of effectiveness. On the other hand, some general principles of data
compression are applicable to graphics and packed bits encoding schemes can be
used to compress pixel color data. For example, the IRGB encoding used in VGA
16-color graphics modes can be packed into two codes per byte, saving one half the
storage space required for unpacked data.

Run-length Encoding

The principles of run-length encoding are particularly useful in compacting graphics
data. The method is based on the suppression of repeated character codes, according
to the principle that if a character is repeated three times or more, then the data can be
more compactly represented in coded form. Run-length encoding is a simple and effi-
cient graphics data compression scheme based on the assumption that image data of-
ten contains entire areas of repeated pixel values. Notice that approximately
two-thirds of the bitmaps shown in Figure 15-2 consist of NULL pixels (white back-
ground color). Furthermore, even the images themselves contain substantial areas of
black and of uniform shades of gray. In this case a simple compression scheme could
be used to pack the data in the white, black, and gray areas so as to save considerable
image storage space.

© 2003 by CRC Press LLC

The Kermit protocol, well known in computer data transmission, uses a
run-length encoding based on three data elements. The first code element indicates
that a compression follows, the second character is the repetition code, and the
third one represents the repetition count. The PackBits compression algorithm,
which originated in the Macintosh computers, is an even more efficient run-length
encoding scheme for graphics image data. The TIFF image file format discussed
later in this chapter uses PackBits compression encoding.

Facsimile Compression Methods

Facsimile machines and methods (FAX) are often used in transmitting alphanumeric
characters and graphics image data over telephone lines. Several compression proto-
cols have been devised for facsimile transmission. The International Telegraph and
Telephone Consultative Committee (CCITT), based in Geneva, Switzerland, has stan-
dardized several data compression protocols for use in facsimile equipment. The TIFF
convention has adapted the CCITT standards to the storage of image data in computer
systems. Notice that the actual compression algorithm used in CCITT is a variation of
a method known developed by David A. Huffman in the 1950s. The CCITT method,
which is quite efficient for monochrome scanned and dithered images, is elaborate
and difficult to implement.

LZW Compression

LZW is a compression technique suited to color image data. The method is named after
Abraham Lempel, Jabob Ziv, and Terry Welch. The algorithm, also known as
Ziv-Lempel compression, was first published in 1977 in an article by Ziv and Lempel in
the IEEE Transactions on Information Theory. The compression technique was re-
fined by Welch in an article titled "A Technique for High-Performance Data Compres-
sion" that appeared in Computer, in 1984 (see bibliography). LZW compression is
based on converting raw data into a reversible encoding in which the data repetitions
are tokenized and stored in compressed form. LZW compression is used in many popu-
lar data and image compression programs, including the Compuserve GIF image data
encoding format and in some versions of the TIFF standard. Notice that LZW compres-
sion has been patented by Unisys Corporation. Therefore its commercial use requires
a license from the patent holders. The following statement is inserted at the request of
Unisys Corporation:

The LZW data compression algorithm is said to be covered by U.S. Patent

4,558,302 (the "Welch Patent"). The Welch Patent is owned by Unisys

Corportation. Unisys has a significant number of licensees of the patent and

is comitted to licensing the Welch Patent on reasonable non-discriminatory

terms and conditions. For further information, contact Unisys Welch Li-

censing Department, P.O. Box 500, Blue Bell, PA 19424, M/S C1SW19.

LZW algorithm is explained later in this chapter.

15.1.4 Encoders and Decoders
An encoder is a program or routine used to convert raw image data into a standard for-
mat. We speak of a GIF encoder as a program or routine used to store a graphics image
in a file structured in the GIF format. A decoder program or routine performs the re-

© 2003 by CRC Press LLC

verse operation, that is, it reproduces the graphics image or the raw data from the in-
formation stored in an encoded image file. In the more conventional sense, a GIF
decoder displays on the screen an image file stored in the Compuserve GIF format.
Therefore the fundamental tool-kit for operating with a given image data format con-
sists of encoder and decoder code. Notice that with some compressed image formats
the processing required in encoders and decoders can be quite elaborate.

15.2 The Graphics Interchange Format (GIF)
The Graphics Interchange Format (GIF) originated in the Compuserve computer in-
formation service. The first description of the GIF protocol, which appeared on the
Compuserve Picture Support Forum on May 28, 1987, was identified with the code let-
ters GIF87a, while the current version is labeled GIF89a. GIF is the only graphics im-
age storage format in use today that is not associated with any software company.
Although the GIF standard is copyrighted, Compuserve grants royalty-free adoption
rights to anyone wishing to use it. This means that, according to Compuserve, soft-
ware developers are free to use the GIF encodings by accepting the terms of the
Compuserve licensing agreement, which basically states that all changes to the stan-
dard must be made by the copyright holders and that the software utilizing GIF must
acknowledge Compuserve's ownership. The agreement can be obtained form the
Compuserve Graphics Technology Department or from the graphics forum files.

GIF was conceived as a compact and efficient storage and transmission format
for computer imagery. The GIF87a specification supports multiple images with a
maximum of 16,000 by 16,000 pixels resolutions in 256 colors. This format is quite
suited to the maximum resolution available today in SuperVGA and XGA systems,
although it seems that the 256-color modes will soon require expansion.

The advantages of the GIF standard are related to its being compact, powerful,
portable, and, presumably, public, and also the fact that there is an extensive collec-
tion of public domain images in GIF format which can be found in the Compuserve
graphics forums and in many bulletin board services. The programmer should keep
in mind that images of recognizable individuals often require the person's release
before the image can be legally used commercially. This is true even if the image file
is publicly available.

The major disadvantage of the GIF standard is that many commercial programs
do not support it. Consequently, users of popular graphics programs often discover
that GIF is not included in the relatively extensive catalog of file formats which the
application can import and export. This limitation can often be solved by means of a
conversion utility that translates a format recognized by the particular application
into a GIF encoding. Several of these format conversion utilities are available on the
Compuserve graphics forums.

15.2.1 GIF Sources
The main sources of information about the GIF standard are the graphics forums on
the Compuserve Information Service. The specifications of GIF89a are available in the
file GIF89A.DOC found in library number 14 of the Compuserve Graphics Support fo-
rum. Image files in the GIF format are plentiful on the Compuserve Graphics Support

© 2003 by CRC Press LLC

libraries as well as in many BBS's. In this book's software package we have included
several public domain image files in the GIF format. Also in the book's software pack-
age is a Shareware GIF file display program named Compushow.

15.2.2 The GIF File Structure
The two versions of the GIF standard at the time of this writing are labeled GIF87a and
GIF89a. Version 89a is an extension of version 87a which adds several features to the
original GIF protocol, namely: the display of text messages, comments, and applica-
tion and graphics control data. The detailed description of the GIF protocol is found in
the file GIF89A.DOC mentioned in the previous paragraph. The following description
is limited to the features common to both the GIF87a and GIF89a specifications.

The GIF87a format is defined as a series of blocks and sub-blocks containing the
data necessary for the storage and reproduction of a computer graphics image. A
GIF data stream contains the data stored in these blocks and sub-blocks in the order
defined by the GIF protocol. The first block in the data stream is the header and the
last one is the trailer. Image data and other information is encoded between the
header and trailer blocks. These can include a logical screen descriptor block and a
global color table, as well as one or more local image descriptors, local color tables,
and compressed image data. The GIF89a protocol allows graphics control and ren-
dering blocks, plain text blocks, and an application data block. Figure 15-3 shows
the elements of the GIF87a data stream.

Figure 15-3 Elements of the GIF Data Stream

Header

The first item in the GIF data stream is the header. It consists of six ASCII characters.
The first three characters, called the signature, are the letters "GIF." The following
three characters encode the GIF version number. The value "87a" in this field refers to
the version of the GIF protocol approved in May 1987, while the value "89a" refers to
the GIF version dated July 1989. Figure 15-4 shows the elements of the GIF header.

header

[global color table]

logical screen descriptor

local image descriptor

[local color table]

image data

trailer

Note: optional items are enclosed in braces

© 2003 by CRC Press LLC

Figure 15-4 GIF Header

One header must be present in each GIF data stream. A GIF encoder must initial-
ize all six characters in the GIF header. The version number field should correspond
with the earliest GIF version that defines all the blocks in the actual data stream. In
other words, a GIF file that uses only the elements of the GIF87a protocol should
contain the characters 87a in the version field of the GIF header, even if the file was
created after the implementation of the GIF89a protocol. The GIF decoder uses the
information in the header block to certify that the file is encoded in the GIF format
and to determine version compatibility.

Logical Screen Descriptor
The block immediately following the header is named the logical screen descriptor.
This block contains the information about the display device or mode compatible with
the image. One logical screen descriptor block must be present in each GIF data
stream. Figure 15-5 shows the elements of the logical screen descriptor block.

Figure 15-5 GIF Logical Screen Descriptor

The fields of the GIF logical screen descriptor are formatted as follows:

1. The words at offset 0 and 2, labeled logical screen width and logical screen height, en-
code the pixel dimensions of the logical screen to be used by the display device. In IBM
microcomputers this value usually coincides with the selected display mode.

2. The byte at offset 4 is divided into 4 bit fields. Bit 7, labeled the global color table flag,
serves to indicate if a global color table is present in the data stream that follows. The
global color table is discussed later in this section. Bits 6, 5, and 4 are the color resolu-
tion field. This value represents the number of palette bits for the selected mode, plus

signature field
(GIF)

version field
(87a or 89a)

7 6 5 4 3 2 1 0

logical screen width

logical screen height

bit fields:
7 = global color table flag

(set if global color table present)
6-5-4 = color resolution

original palette is field+1
3 = sort flag

(set if most important color first)
2-1-0 = size of global color table

number of entries is 2(field+1)

background color

pixel aspect ratio

word

word

byte

byte

© 2003 by CRC Press LLC

one. For example, a 16-color VGA palette (4 bits encoding) would be represented by
the bit value 011 (decimal 3). Bit 3, labeled the sort flag, is used to signal that the global
color table (if present) is sorted starting with the most important colors. This informa-
tion can be used by the software if the display device has fewer colors available than
those used in the image. Finally, the field formed by bits 2, 1, and 0 determines the size
of the global color table (if one is present). The value is encoded as a power of 2, dimin-
ished by 1. Therefore, to restore the original exponent it is necessary to add 1 to the
value encoded in the bit field. For example, a bit value of 011 (3 decimal) corresponds
to a global color table representing 24, or 16 colors. Notice that this value corresponds
with the number of color in the global color table, not with its byte length (discussed
later in this section). The maximum representable value in a 3-bit field is 7, which lim-
its the number of colors in the global color table to 28, or 256 colors.

3. The field at offset 5, labeled background color in Figure 15-4, is used to represent the
color of those pixels located outside of the defined image or images. The value is an
offset into the global color table.

4. The field at offset 6, labeled the pixel aspect ratio in Figure 15-4, is used to compensate
for non-proportional x and y dimensions of the display device (see Section 11.4.1).
This field should be set to zero for systems with a symmetrical pixel density, such as
the most used modes in VGA and XGA systems.

Global Color Table
The global color table is an optional GIF block used to encode a general color palette
for displaying images in data streams without a local color table. The global color table
serves as a default palette for the entire stream. Recall that the GIF data stream can
contain multiple images. The presence of a global color table and its size is determined
from the data furnished in the logical screen descriptor block (see Figure 15-4). Only
one global color table can be present in the data stream. Figure 15-6 shows the struc-
ture of a global color table.

Figure 15-6 GIF Global Color Table Block

0

1

2

3

4

.

.

.

766

767

offset

RED
GREEN
BLUE

BLUE

RED
GREEN

GREEN

color number 1

color number 2

color number 256

© 2003 by CRC Press LLC

The entries in the global color table consist of values for the red, green, and blue
palette registers. Each component color takes up 1 byte in the table, therefore each
palette color consists of 3 bytes in the global color table. The number of entries in
the global color table can be determined by reading bits 0, 1, and 2 of the global
color size field in the logical screen descriptor block (see Figure 15-4). The byte
length of the table is three times the number of entries. The maximum number of
palette colors is 256. In this case the global color table takes up 768 bytes (see Fig-
ure 15-6).

Image Descriptor
Each image in the GIF data stream is defined by an image descriptor, an optional local
color table, and one or more blocks of compressed image data. The image descriptor
block contains the information for decoding and displaying the image. Figure 15-7
shows the elements of the image descriptor block.

Figure 15-7 GIF Image Descriptor

The fields of the GIF image descriptor are formatted as follows:

1. The byte at offset 0, labeled image separator in Figure 15-7, must be the code 2CH.

2. The words at offset 1 and 3, labeled image left position and image right position, re-
spectively (see Figure 15-7), encode the screen column and row coordinates of the im-
age's top left corner. This location is an offset within the logical screen defined in the
logical screen descriptor block (see Figure 15-4).

3. The words at offset 5 and 7, labeled image pixel width and image pixel height, respec-
tively (see Figure 15-7), encode the size of the image, measured in screen pixels.

4. The byte at offset 8 in Figure 15-7 is divided into 5 bit fields. Bit 7, labeled the local color
table flag, serves to indicate if a local color table follows the image descriptor block. If
a local color table is present in the data stream it is used for displaying the image repre-
sented in the corresponding descriptor block. Bit 6, labeled interlace flag, encodes if
the image is interlaced, that is, if its rows are not arranged in consecutive order. In IBM
microcomputers interlaced images are used in some CGA and EGA display modes, but

image left position

image separator (code 2CH)

image right position

bit fields:
7 = local color table flag

(set if local color table present)
6 = interlace flag

(set if image is interlaced)
5 = sort flag

(set if most important color first)
4 - 3 = RESERVED (bits = 0)
2-1-0 = size of local color table

number of entries is 2^(field+1)

image pixel width

image pixel height

7 6 5 4 3 2 1 0

word

byte

word

word

word

0

1

3

5

7

8

offset

© 2003 by CRC Press LLC

not in the proprietary VGA and XGA modes. Bit 5, labeled the sort flag, is used to signal
that the local color table (if present) is sorted starting with the most important colors.
This information can be used by the software if the display device has fewer available
colors than those in the table. The field formed by bits 2, 1, and 0 determines the size of
the local color table (if one is present). The value is encoded as a power of 2, dimin-
ished by 1. Therefore, to restore the original exponent it is necessary to add 1 to the
value encoded in the bit field. For example, a bit value of 011 (3 decimal) corresponds
to a global color table representing 24, or 16 colors. Notice that this value corresponds
to the number of colors in the local color table, not with its byte length (refer to the pre-
vious discussion about the global color table).

Local Color Table

The local color table is an optional GIF block that encodes the color palette used in
displaying the image corresponding to the preceding image descriptor block. If no lo-
cal color table is furnished, the image is displayed using the values in the global color
table. If neither table is present, it shall be displayed using the current setting of the
DAC registers. The GIF data stream can contain multiple images, with each one having
its own local color table. The structure of the local color table is identical to the one
described for the global color table (see Figure 15-6).

Compressed Image Data

The image itself follows the local color table, if one is furnished, or the image
descriptor block if the data stream does not include a local color table. The GIF stan-
dard sets no limit to the number of images contained in the data stream. Image data is
divided into sub-blocks; each sub-block can have at the most 255 bytes. The data val-
ues in the image are offsets into the current color palette. For example, if the palette is
set to standard IRGB code, a pixel value of 1100B (decimal 12) corresponds to the 12th
palette entry, which, in this case, encodes the LUT register settings for bright red.

Preceding the image data blocks is a byte value that holds the code size used for
the LZW compression of the image data in the stream. This data item normally
matches the number of bits used to encode the pixel color. For example, an image
intended for VGA mode number 18, in 16 colors, has an LZW code size of 4, while an
image for VGA mode number 19, in 256 colors, has an LZW code size of 8. Figure 15-8
shows the format of the GIF data blocks.

The image data sub-blocks contain the image data in compressed form. The LZW
compression algorithm used in the GIF protocol is discussed in Section 15-3.2. Each
data sub-block starts with a block-size byte, which encodes the byte length of the
data stored in the rest of the sub-block. The count, which does not include the count
byte itself, can be in the range 0 to 255. The compressed data stream ends with a
sub-block with a zero byte count (see Figure 15-8).

Trailer

The simplest GIF block is named the trailer. This block consists of a single byte con-
taining the GIF special code 3BH. Every GIF data stream must end with the trailer
block. The GIF trailer is shown in Figure 15-9.

© 2003 by CRC Press LLC

Figure 15-8 GIF Image Data Blocks

GIF89a Extensions
We mentioned that GIF version 89a contains several features that are not present in
version 87a. These features include the following new blocks:

1. A graphics control extension refers to a graphics rendering block, also a new feature
introduced in version 89a. The graphics control extension contains information on
displaying the rendering block. This information includes instructions about the dis-
posing of the currently displayed image, handling the background color, action on user
input, time delay during the display operation, and image transparency.

2. The graphics rendering blocks can be an image descriptor block, as described for GIF
version 87a, or a new plain text extension. The plain text extension contains ASCII
data to be displayed in a coarse grid of character cells determined in the block. Also in
the plain text block are the foreground and background colors, the coordinates of the
start position, and the text message itself.

3. The applications extension is an extension block in GIF version 89a that contains ap-
plication-specific information. The block includes an 8-byte application identifier
field intended for an ASCII string that identifies the particular piece of software. A
3-byte authentication code follows the identifier. Application data follows the authen-
tication code field.

Figure 15-9 GIF Trailer

15.2.3 GIF Implementation of LZW Compression

One operation in creating a GIF image data file is the formatting of the various blocks
according to the specifications described in the standard (see 15.2.1). This operation
is quite simple and presents no programming complications. However, the image data
in a GIF file must be stored in compressed form; the GIF standard offers no alterna-

0

1

.

.

.

.

.

.

.

.

.

offset LZW code size

Terminator sub-block (00H)

first image data sub-block:
offset 0 = block size byte
offset 1 = start of LZW data

last image data sub-block:
offset 0 = block size byte
offset 1 = start of LZW data

byte

byte

byte

byte

byte

byte

Special code 3BHbyte

© 2003 by CRC Press LLC

tive. The compression algorithm adopted by GIF is the method originally devised by
Lempel and Ziv and later improved by Welch (see Section 15.3.3). The implementation
of this compression algorithm, often designated LZW (Lempel-Ziv-Welch) compres-
sion, is the most difficult programming operation in developing a GIF encoder or de-
coder program or routine.

LZW Concepts
The original concept of LZW compression is based on the assumption that the data to
be compressed presents patterns of repetition. These repetitions can be in the form of
the vowel-consonant patterns of all modern languages, in the words of a text file, or in
the pixel repetition pattern of a graphics image. For this reason LZW compression has
been successfully used in compressing both text and image data. Many well-known
compression programs found in Web sites, such as PAK, PKARK, PKZIP, and PKUNZIP,
use LZW compression. In the graphics field LZW compression is used in GIF, TIFF, and
other image file storage formats.

The programmer must consider that LZW is an algorithm, not a standard. This
means that each particular implementor of a data compression scheme based on
LZW feels free to adapt the algorithm to meet specific needs. In this manner LZW
compression as used in the GIF standard is different from LZW compression as used
in TIFF or in other data storage conventions, in spite of the fact that the actual com-
pression methods are quite similar in all LZW implementations. Once understood,
LZW compression can be easily applied to match the requirements of any specific
application.

The central idea of LZW compression is to replace repeated characters with indi-
vidual symbols. In text compression this translates to encoding strings with single
codes. In graphics compression the method consists of detecting repeated pixel pat-
terns and representing them with a single value. LZW does not search the data for
repetitions, but stores them as they are encountered in the data stream. The adverse
consequences of this form of operation is that some significant patterns of repeti-
tion can be missed during the encoding, and that repeated patterns are often en-
coded more than once. The advantage of this "compress as you find them" technique
is that the decoder can reconstruct the repetitions from the information in the data
stream, making it unnecessary to transmit tables of patterns or other general decod-
ing information.

The General LZW Algorithm
The LZW compression algorithm requires a basic-table of codes representing each
item in the data stream. For example, an alphanumeric implementation of LZW can be
based on the IBM extended character set, which consists of 256 character codes (see
Table 1-2). In this case the basic-table contains 256 entries, one for each possible data
code in the stream. On the other hand, an LZW implementation for pixel data in the
IRGB format would require only a basic-table with 16 entries, one for each possible
IRGB combination in the data stream.

The LZW compression codes start after the basic table. In the GIF implementa-
tion two special codes (discussed later in this section) are added at the end of the
basic-table. However, in the present discussion we assume that the compression

© 2003 by CRC Press LLC

codes start immediately after the basic-table. For example, if the LZW implementa-
tion is based on 256 alphanumeric character codes, in the range 0 to 255, the first
available compression code would be the value 256. The highest compression code
in LZW is preset to the value 4095. Therefore, in this example, the compression
codes would be values in the range 256 to 4095. In LZW compression, the part of the
table that stores the repeated patterns is often called the string-table.

The compression algorithm assumes that information is received in a continuous
data stream and that the software has some means of detecting the end of this data
stream. In our first example of LZW compression we assume, for the sake of simplic-
ity, that the data stream consists of character bytes in the range 0 to 255. Therefore
the basic-table can contain codes in this range, and the string-table starts at the
value 256. Let us assume that the data stream consists of a series of monetary values
separated by the slash symbol, as follows:

�������������������������������	
�

In the above data sample the expression <EOI> indicates the presence of an "end
of information" code in the data stream. The compression algorithm requires a
scratchpad data structure which is sometimes called the current string. In the fol-
lowing description we arbitrarily designate the current string with the @ symbol.
Compression takes place in the following steps:

STEP 1: Initialize the basic-table with all the code combinations that can be present in
the data stream. The string-table codes start after the last code in the ba-
sic-table.

STEP 2: Initialize the current string (scratchpad element) to a NULL string. Designate the
current string as @.

STEP 3: Read character from the data stream. Designate the current character as C. If C =
<EOI> then end execution.

STEP 4: Concatenate the current string (@) and the character (C) to form @+C.

STEP 5: If @+C is in the basic-table or in the string-table perform the following opera-
tions:

a. @ = @+C

b. Go to STEP 3

STEP 6: If @+C is not in the basic-table or in the string-table perform the following opera-
tions:

a @+C in the string-table

b. send @ to the output stream

c. @ = C

d. go to STEP 3

The above description assumes that the data stream does not overflow the total
number of allowed entries in the string-table. Later in this section we will present a
working sample of GIF LZW compression that takes this possibility into account. Ta-
ble 15-1 shows the LZW compression of the string listed above.

© 2003 by CRC Press LLC

Table 15-1

LZW Compression Example

ITERATION INPUT STRING TABLE OUTPUT CURRENT STRING (@)
NUMBER STREAM ENTRY STREAM INITIAL @C FINAL

1 '/' NONE -- NULL '/' '/'
2 '$' 256 = '/$’ '/' '/' '/$' '$'
3 '1' 257 = '$1' '$' '$' '$1' '1'
4 '0' 258 = '10' '1' '1' '10' '0'
5 '.' 259 = '0.' '0' '0' '0.' '.'
6 '0' 260 = '.0' '.' '.' '.0' '0'
7 '0' 261 = '00' '0' '0' '00' '0'
8 '/' 262 = '0/' '0' '0' '0/' '/'
9 '$' NONE -- '/' '/$' '/$'

10 '2' 263 = '/$2' <256> '/$' '/$2' '2'
11 '2' 264 = '22' '2' '2' '22' '2'
12 '.' 265 = '2.' '2' '2' '2.' '.'
13 '0' NONE -- '.' '.0' '.0'
14 '0' 266 = '.00' <260> '.0' '.00' '0'
15 '/' NONE -- '0' '0/' '0/'
16 ‘$' 267 = '0/$' <262> '0/' '0/$' '$'
17 '1' NONE -- '$' '$1' '$1'
18 '2' 268 = '$12' <257> '$1' '$12' '2'
19 '.' NONE -- '2' '2.' '2.'
20 '1' 269 = '2.1' <265> '2.' '2.1' '1'
21 '0' NONE -- '1' '10' '10'
22 '/' 270 = '10/' <258> '10' '10/' '/'
23 '$' NONE -- '/' '/$' '/$
24 '2' NONE -- '/$' '/$2' '/$2'
25 '2' 271 = '/$22' <263> '/$2' '/$22' '2'
26 '2' NONE -- '2' '22' '22'
27 '.' 272 = '22.' <264> '22' '22.' '.'
28 '0' NONE -- '.' '.0' '.0'
29 '0' NONE -- '.0' '.00' '.00'
30 <EOI> NONE <266>

String: /$10.00/$22.00/$12.10/$222.00<EOI>

In the compression of the string in Table 15-1 notice the following interesting
points:

1. On iteration number 1 the current string is initialized to a NULL string. Since the input
character '/' is in the basic-table, algorithm STEP 5 executes. Therefore @ = '/' at the
conclusion of this iteration.

2. On iteration number 2 the current string (@) contains the initial value of '/' (previous
character input). @+C becomes '/$', which is not in the basic-table or the string-table
(the string-table is empty at this time). Therefore algorithm STEP 6 executes and '/$' is
the first entry in the string-table, which is numbered 256.

3. On iteration number 3 the current string (@+C) contains '$1' which is not in the
string-table. Therefore STEP 6 executes again. In this case the '$1' is entry number 257
in the string-table.

© 2003 by CRC Press LLC

4. The iterations during which there is no entry in the string-table (labeled NONE in Table
15-1) are those in which algorithm STEP 5 executes. Notice that no output takes place
in this case.

5. Every iteration that produces an entry in the string-table also generates output to the
character stream (algorithm STEP 6). The output is the contents of the current string
(@), which can be a single character or a string. The string corresponds to an entry in
the string-table and is represented by its number.

6. Compression concludes when the "end of information" code is detected in the input
stream. This situation takes place in iteration number 30 of Table 15-1.

Notice several important features of the LZW compression algorithm:

1. The compression codes are of variable length.

2. The decoder program is able to reproduce the string-table from the input data. This ta-
ble is identical to the one used by the encoder.

3. The use of variable-length codes results in greater compression efficiency than if the
information were conveyed on fixed-size data packets.

4. The self-reproducing string-table saves having to transmit conversion or character ta-
bles to the decoder.

The GIF Implementation

The implementation of LZW compression in the GIF protocol closely matches the orig-
inal algorithm as described by Lempel, Ziv, and Welch. Two variations are introduced
in the GIF implementation: a special code that serves to signal to the decoder that the
string-table must be cleared, and another one to signal the end of the compressed data.
The code to clear the string-table is often represented with the letters <CC> and the
code to end the compressed data stream is identified as <EOI> (end of information).

These two special codes, <CC> and <EOI>, are added to the basic-table. Since the
GIF implementation is applied to graphics data, the basic-table for GIF LZW com-
pression consists of all the pixel codes used in the image, plus the "clear
string-table" code <CC> and the "end of information" code <EOI>. For example, in
encoding a video image for VGA mode number 18, with 16 possible colors, the ba-
sic-table would have the codes 0 to 15. In this case the clear code <CC> would be as-
signed code number 16, and the <EOI> code would be assigned number 17.
Therefore the first entry in the string-table would correspond to code number 18.
Since the LZW string-table can extend to code number 4,095, the range in this case
would be from 18 to 4,095.

LZW Code Size

We saw (Figure 15-8) that in the GIF encoding the compressed data in the first image
data sub-block must be preceded with a byte that encodes the LZW code size. This
value coincides with the bit-size of the elements in the basic-table. In the example
mentioned above, in which the image is encoded for VGA mode number 18, in 16 col-
ors, the LZW code size is 4. By the same token, the LZW code size would be 8 for an im-
age encoded in 256 colors.

© 2003 by CRC Press LLC

The GIF Image File
Perhaps the easiest way to understand the GIF encoding and its implementation of
LZW compression is by an example. Figure 15-10 shows the pixel map of a simple
graphics image in three colors.

Figure 15-10 Sample Image for GIF LZW Compression

The following code fragment shows the data structures necessary for encoding
the image in Figure 15-10 in GIF format. In order to create a disk image of the GIF
file we must first assemble the source and then strip off the object-file header ap-
pended by the assembler program. This can be easily done by means of the "write"
command of a debugger program (such as Microsoft Debug or Symdeb) or of a disk
file editing utility.

DATA SEGMENT
;
;**********************|
; GIF file header |
;**********************|
; The 6-byte header block includes the GIF signature and version
; fields (see Figure 15-4)

DB 'GIF87a'
;**********************|
; logical screen |
; descriptor |
;**********************|
; The logical screen descriptor block contains the information
; listed in Figure 15-4. In this example we have adopted a VGA
; resolution of 640 by 480 pixels in 8 colors

DW 640 ; Logical screen width
DW 480 ; Logical screen height
DB 10100010B ; Global flag

; Global flag bitmap:
; 0 0 1 1 0 0 0 0
; 7 6 5 4 3 2 1 0 <= bits
; | | | | | |_|_|_ size of global color
; | | | | | table (2 ^(field+1))
; | | | | |___ sort flag
; | | | | 1 = most important color

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9

2 - 2 - 2 - 2 - 4 - 2 - 2 - 2 - 2
2 - 2 - 3 - 3 - 4 - 3 - 3 - 2 - 2
2 - 2 - 3 - 2 - 4 - 2 - 3 - 2 - 2
4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4
2 - 2 - 3 - 2 - 4 - 2 - 3 - 2 - 2
2 - 2 - 3 - 3 - 4 - 3 - 3 - 2 - 2

RAW IMAGE DATA:

2 - 2 - 2 - 2 - 4 - 2 - 2 - 2 - 2

= blue (2) = green (3) = red (4)

PIXEL MAP OF IMAGE:

PIXEL COLOR CODES:

© 2003 by CRC Press LLC

; | | | | first
; | |_|_|__ color resolution original
; | palette is (field + 1)
; |________ global color table
; 1 = table present
; 0 = no global table

DB 0 ; Background color index
; (meaningless in this case)

DB 0 ; Pixel aspect ration
; (symmetrical in VGA systems)

;**********************|
; global color table |
;**********************|
; The code furnishes an 8-entry global color table. Each entry
; consists of 3 bytes encoding the red, green, and blue values.
; Notice that only colors number 2, 3, and 4 are required by the
; image (see Figure 15-6)
; R G B Color color number

DB 000H,000H,000H ; Black 0
DB 0BBH,0BBH,0BBH ; White 1
DB 000H,000H,0AAH ; Blue 2
DB 000H,0AAH,000H ; Green 3
DB 0AAH,000H,000H ; Red 4
DB 080H,080H,0AAH ; Light blue 5
DB 080H,0AAH,080H ; Light green 6
DB 0AAH,080H,080H ; Light red 7

;**********************|
; image descriptor |
;**********************|
; This block contains the information listed in Figure 15-7

DB 2CH ; GIF image separator code
DW 10 ; x coordinate for image
DW 10 ; y coordinate
DW 9 ; Image width (in pixels)
DW 7 ; Image height (in pixels)
DB 00000000B ; Local flag

; Local flag bitmap:
; 1 0 0 0 0 0 1 0
; 7 6 5 4 3 2 1 0 <= bits
; | | | | | |_|_|_ size of local color
; | | | | | table
; | | | | | value is 2 ^(field+1)
; | | | |_|_______ RESERVED
; | | |_______ sort flag
; | | 1 = most important color
; | | first
; | |______ interlace flag
; | 1 = image is interlaced
; | 0 = image is not interlaced
; |________ local color table flag
; 1 = table present
; 0 = no local table

;**********************|
; image data |
; (LZW compression) |
;**********************|
; Follows image data compressed according to the GIF
; implementation of the LZW algorithm (see Figure 15-8)

DB 3 ; LZW code size
DB 20 ; Image size (in bytes)

© 2003 by CRC Press LLC

DB 028H,02AH,0B4H,03BH,083H,040H,037H,098H,0A8H,08CH

DB 0E8H,0ADH,055H,06DH,098H,017H,04DH,08EH,0B5H,024H

; Block terminator

DB 0

;**********************|

; trailer |

;**********************|

; The trailer is a single-byte block that marks the end of a GIF

; data stream. The required terminator code is 3BH (Figure 15-9)

DB 3BH ; GIF terminator

;

DATA ENDS

END

Although only three colors are necessary for the image in Figure 15-10, we have
added white and black to the palette. The monochrome colors are often added so as
to allow displaying a color image in a black-and-white system. In Section 15.2.1 we
mentioned that the number of colors in the GIF global and local color tables must
coincide with powers of 2, therefore, 2, 4, 8, 16, 32, 64, 128, and 256 entries can be
chosen for the palette. This example requires 5 colors, hence an 8-color palette is se-
lected. Palette entry number 0 corresponds to the color black and entry number 1 to
the color white. The colors corresponding to palette entries 2, 3, and 4 are shown in
Figure 15-15. In actual programming we can either zero the remaining palette entries
(5, 6, and 7) or set them to any given color value. However, the memory space must
be reserved for the total number of palette entries. In the previous code sample pal-
ette entries number 5, 6, and 7 have been initialized to light blue, light green, and
light red respectively.

The image descriptor block in the previous code sample contains the x and y co-
ordinates for image display. Notice that we have placed the image at 10 pixels from
the screen's top left corner, and also that the image dimensions are 9 horizontal pix-
els by 7 pixel rows, as in Figure 15-10.

GIF LZW Encoding

In the previous code fragment we saw that the image data consists of the LZW
code size byte, a block count byte, 20 image code bytes, and the block terminator
code 00H. The process of obtaining the compressed codes is shown in Table 15-2.

Notice, in Table 15-2, that the raw data from the image in Figure 15-10 is used as
an input stream for GIF LZW compression, and that the first code output to the
stream is the clear string-table command <CC> which is assigned the value 8. Notice
also that the output stream ends in the end-of-information code <EOI>, which is
number 9 in this case. The rest of the output stream is generated following the LZW
algorithm as described in the general example in Table 15-1.

The asterisks in Table 15-2 mark the first characters of each image row (see Fig-
ure 15-10). Also notice that the string-table entries in the output stream are enclosed
with angle brackets to differentiate them from the basic-table entries. Table 15-3
shows the processing operations required to obtain the compressed data encoding
from the output stream in Table 15-2.

© 2003 by CRC Press LLC

Table 15-2

GIF LZW Compression Example

ITERATION INPUT STRING TABLE OUTPUT CURRENT STRING (@)
NUMBER STREAM ENTRY STREAM INITIAL @C FINAL

1 --- NONE 8
2 2 * NONE -- NULL 2 2
3 2 10 = 22 2 2 22 2
4 2 NONE -- 2 22 22
5 2 11 = 222 <10> 22 222 2
6 4 12 = 24 2 2 24 4
7 2 13 = 42 4 4 42 2
8 2 NONE -- 2 22 22
9 2 NONE -- 22 222 222

10 2 14 = 2222 <11> 222 2222 2
11 2 * NONE -- 2 22 22
12 2 NONE -- 22 222 222
13 3 15 = 2223 <11> 222 2223 3
14 3 16 = 33 3 3 33 3
15 4 17 = 34 3 3 34 4
16 3 18 = 43 4 4 43 3
17 3 NONE -- 3 33 33
18 2 19 = 332 <16> 33 332 2
19 2 NONE -- 2 22 22
20 2 * NONE -- 22 222 222
21 2 NONE -- 222 2222 2222
22 3 20 = 22223 <14> 2222 22223 3
23 2 21 = 32 3 3 32 2
24 4 NONE -- 2 24 24
25 2 22 = 242 <12> 24 242 2
26 3 23 = 23 2 2 23 3
27 2 NONE -- 3 32 32
28 2 24 = 322 <21> 32 322 2
29 4 * NONE -- 2 24 24
30 4 25 = 244 <12> 24 244 4
31 4 26 = 44 4 4 44 4
32 4 NONE -- 4 44 44
33 4 27 = 444 <26> 44 444 4
34 4 NONE -- 4 44 44
35 4 NONE -- 44 444 444
36 4 28 = 4444 <27> 444 4444 4
37 4 NONE -- 4 44 44
38 2 * 29 = 442 <26> 44 442 2
39 2 NONE -- 2 22 22
40 3 30 = 223 <10> 22 223 3
41 2 NONE -- 3 32 32
42 4 31 = 324 <21> 32 324 4
43 2 NONE -- 4 42 42
44 3 32 = 423 <13> 42 423 3
44 2 NONE -- 3 32 32
45 2 NONE -- 32 322 322
46 2 * 33 = 3222 <24> 322 3222 2
47 2 NONE -- 2 22 22
48 3 NONE -- 22 223 223
49 3 34 = 2233 <30> 223 2233 3

(continues)

© 2003 by CRC Press LLC

Table 15-2

GIF LZW Compression Example (continued)

ITERATION INPUT STRING TABLE OUTPUT CURRENT STRING (@)
NUMBER STREAM ENTRY STREAM INITIAL @C FINAL

50 4 NONE -- 3 34 34
51 3 35 = 343 <17> 34 343 3
52 3 NONE -- 3 33 33
53 2 NONE -- 33 332 332
54 2 36 = 3322 <19> 332 3322 2
55 2 * NONE -- 2 22 22
56 2 NONE -- 22 222 222
57 2 NONE -- 222 2222 2222
58 2 37 = 22222 <14> 222 22222 2
59 4 NONE -- 2 24 24
60 2 NONE -- 24 242 242
61 2 38 = 2422 <22> 242 2422 2
62 2 NONE -- 2 22 22
63 2 NONE -- 22 222 222
64 <EOI> NONE -- <11>
65 9

Basic table: 0 7 = colors 8 = <CC> 9 = <EOI> String table: 10 4095

Table 15-3

GIF LZW Compression Data Processing

TABLE OUTPUT (FROM TABLE 15-2) BLOCKED BINARY HEXADECIMAL
ENTRY DECIMAL BINARY OUTPUT VALUE

8 1000 00101000 28
10 2 0010
11 10 1010 00101010 2A
12 2 0010
13 4 0100 10110100 B4
14 11 1011
15 11 1011 00111011 3B
16 <== 3 0011
17 3 00011 10000011 83
18 4 00100 01000000 40
19 16 10000
20 14 01110 00110111 37
21 3 00011 10011000 98
22 12 01100
23 2 00010 10101000 A8
24 21 10101
25 12 01100 10001100 8C
26 4 00100 11101000 E8
27 26 11010
28 27 11011 10101101 AD
29 26 11010 01010101 55
30 10 01010
31 21 10101 01101101 6D
32 <== 13 01101

(continues)

© 2003 by CRC Press LLC

Table 15-3

GIF LZW Compression Data Processing (continued)

TABLE OUTPUT (FROM TABLE 15-2) BLOCKED BINARY HEXADECIMAL
ENTRY DECIMAL BINARY OUTPUT VALUE

33 24 011000 10011000 98
34 30 011110 00010111 17
35 17 010001 01001101 4D
36 19 010011
37 14 001110 10001110 8E
38 22 010110 10110101 B5

11 001011 00100100 24
9 001001

We mentioned that an important characteristic of the LZW compression algo-
rithm is the variable-length of the encoded data. In Table 15-3 we can see that the bi-
nary column of compression codes starts at 4 bits width, then changes to 5 bits, and
later to 6 bits wide. Notice that the variable width of the output codes results from
the increasing values of the string-table entry numbers, since the entries from the
basic-table are always limited to the initial range. In the example in Table 15-2 the
first string-table entry is number 10, which is representable in 4 bits, but the last en-
try is number 38, which requires 6 bits.

The arrows in Table 15-3 signal the string-table entry numbers 16 and 32. The
value 16 is the first one requiring a 5-bit encoding and the value 32 is the first requir-
ing a 6-bit encoding. Therefore, as soon as table entry number 16 is generated, the
representation of the output codes is increased by 1-bit. Another 1-bit increase takes
place immediately after table entry number 32. The width increases take place auto-
matically after the table entry is created (not as wider codes are required in the out-
put stream) because the decoding software must be able to predict the code-length
changes. Figure 15-11, on the following page, is a flowchart of LZW compression as
implemented in the GIF standard.

GIF encoder software must block the variable-length binary output codes that re-
sult from the compression process into groups of 8 bits so that they can be stored in
byte-size memory cells or transmitted through the communications lines. The block-
ing operation consists of packing these bits right-to-left as shown in Table 15-3. Ob-
serve that the last column of this table, labeled "hexadecimal value", coincides with
the image data listed in the GIF image code fragment.

GIF LZW Decoding

GIF decoding software obtains system and image information from the standard data
blocks in the file. The first operation performed by the decoder is to make certain the
GIF signature is present at the start of the file and the processing software is compati-
ble with the version field of this block. The GIF standard recommends that if the de-
coder encounters a version with which it is not familiar, the software should post a
warning message and process the file as best it can.

© 2003 by CRC Press LLC

Figure 15-11 GIF LCW Compression Flowchart

As is the case with the encoder, the most elaborate operation to be performed by
the decoder software is regarding the LZW compressed data. GIF LZW decompres-
sion follows the reverse process as the compression previously described. To the
decoder the compression codes form the input stream. The initial bit width is calcu-
lated by adding 1 to the value in the LZW code-size field of the image block. Table
15-4 is a LZW decompression example that uses as input the compressed string gen-
erated in Table 15-1.

The decompression algorithm, as described below uses a variable to temporarily
store the previous input value. This variable is placed in the column labeled OLD
CODE in Table 15-4 and designated with the % symbol. The decompression process
can be described as follows:

STEP 1: Initialize the basic-table with all the code combinations that can be present in
the data stream. The string-table codes start after the last code in the ba-
sic-table.

STEP 2: Create a variable named OLD CODE (%) to hold the previous input. Initialize % to
NULL. Designate the first character of the current input value as C.

STEP 3: Read first character from the data stream. If C = <EOI> then end execution. If C =
<CC> then re-initialize string-table. If not, then output the first character.

STEP 4: If C is a character in the basic-table perform the following operations:

YES

YES

YES

NO

NO

NO

START

Initialize basic table
Assign value to <CC> and <EOI>

@ = current string = NULL

Read next input character
designate as C

is
C = <CC>

?

is
@+C in basic table

or string table
?

is
C = <EOI>

?

Clear
string table

END

@ = @ + C

Enter @ + C in the string table
send @ to output stream

@ = C

© 2003 by CRC Press LLC

a. output C

b. % = C

c. create a new string-table entry with the value % + C

d. go to STEP 4

STEP 5: If C is a compression code perform the following operations:

a. look up compression code in string-table and output value

b. % = C

c. C = first character in compression string

d. create a new string-table entry with the value % + C

e. go to STEP 4

Table 15-4

LZW Decompression Example

ITERATION INPUT OLD CODE CHARACTER OUTPUT STRING TABLE
STREAM (%) (C) STREAM (% C)

1 '/' -- '/' '/'
2 '$' '/' '$' '$' 256 = '/$'
3 '1' '$' '1' '1' 257 = '$1'
4 '0' '1' '0' '0' 258 = '10'
5 '.' '0' '.' '.' 259 = '0.'
6 '0' '.' '0' '0' 260 = '.0'
7 '0' '0' '0' '0' 261 = '00'
8 <256> '0' '/' '/$' 262 = '0/'
9 '2' <256> '2' '2' 263 = '/$2'

10 '2' '2' '2' '2' 264 = '22'
11 <260> '2' '.' '.0' 265 = '2.'
12 <262> <260> '0' '0/' 266 = '.00'
13 <257> <262> '$' '$1' 267 = '0/$'
14 <265> <257> '2' '2.' 268 = '$12'
15 <258> <265> '1' '10' 269 = '2.1'
16 <263> <258> '/' '/$2' 270 = '10/'
17 <264> <263> '2' '22' 271 = '/$22'
18 <266> <264> '.' '.00' 272 = '22.'

Basic table: ASCCI codes in range 0 to 255

Notice that in performing the read-operation the software must keep track of bit
boundaries in the input data. Also that the algorithm assumes that the first element
in the input stream is a character and handles this case independently (STEP 3).

There are less iterations in LZW decompression than in compression. For exam-
ple, there are 30 iterations in the compression process shown in Table 15-1 while
there are only 18 in the example in Table 15-4. Notice that in the decompression pro-
cess a string-table entry results in each iteration after the first one. This is a conse-
quence of the mechanics of the compression process, in which an output is
generated only when an entry is made in the string-table (see Table 15-1). Also no-
tice that the string-table that results from the decompression (Table 15-4) is identi-
cal to the one generated during compression (Table 15-1).

© 2003 by CRC Press LLC

15.3 The Tag Image File Format (TIFF)
The tag image file format (TIFF) was developed by ALDUS Corporation with the sup-
port of several other companies, including Hewlett-Packard and Microsoft. The stan-
dard is an effort at providing a flexible file-storage format for raster images. Its origin
is related to scanner hardware and software for microcomputers. The first version of
TIFF was published in the fall of 1986. The present update, designated as TIFF Revi-
sion 6.0, was released in June 1992. TIFF is a non-proprietary standard which can be
used without license or previous royalty agreement. Technical information about
TIFF can be obtained from the Aldus Developer's Desk at Aldus Corporation, Seattle,
Washington, or from the Aldus forum on Compuserve (GO ALDSVC).

The purpose of the TIFF standard is to provide an image storage convention with
maximum flexibility and portability. TIFF is not intended for any particular com-
puter, operating system, or application program. Consistent with this idea, the files
in TIFF format have no version number or other update identification code. A typi-
cal TIFF reader searches for the data necessary to its own purposes and ignores all
other information contained in the file. The format supports both the Intel and the
Motorola data ordering schemes but hardware-specific features are not documented
in the TIFF file. Which mode, resolution, or color range used in displaying a TIFF
file is left entirely to the software.

The TIFF standard supports monochrome, grayscale, and color images of various
specifications. The original TIFF documents classified the various image types into
four classes. Class B was used for binary (black-and-white) images, class G for
grayscale images, class P for palette color images (8-bits per pixel color), and class
R for full-color images (24-bits per pixel color). A TIFF application need not provide
support for all TIFF image types. For example, a VGA TIFF reader could exclude
class R images since the system's maximum color range is 8 bits per pixel (256 col-
ors). By the same token, a routine or application that reads monochrome scanned
images could limit its support to the class B category. The image class designations
by letter codes was dropped in TIFF revision 6.0; however, the image classification
into bilevel, grayscale, RGB, and palette types was preserved.

TIFF originally supported uncompressed images as well as compressed data ac-
cording to several compression schemes, namely, PackBits, CCITT, and LZW (see
Section 15-3.3). LZW compression support was dropped in TIFF version 6.0; because
the compression algorithm is patented by Unysis Corporation (see Section 15.3.3).
Notice that, in the TIFF standard, compression methods are usually associated with
the particular file classes mentioned in the preceding paragraph.

15.3.1 The TIFF File Structure
The TIFF standard is an image file protocol. A file in the TIFF format is divided into
three areas: the header, the image file directory, and the actual image data. These ele-
ments are described separately in the following paragraphs.

The notion of tags is the feature that identifies files in the TIFF format. A TIFF tag
is a word integer that serves to identify the file structure that follows. For example,
the tag value 103H indicates that the structure that follows contains data compres-

© 2003 by CRC Press LLC

sion information. TIFF file processing software can search for this tag in order to
determine which, if any, compression scheme was used in encoding the image data.
TIFF tags are discussed in greater detail later in this section.

The TIFF Header
An image file in TIFF format must start with an 8-byte block called the header. Figure
15-12 shows the structure of the TIFF image file header.

Figure 15-12 TIFF File Header

The word at offset 0 of the TIFF file header consists of the ASCII characters 'II' or
'MM'. The 'II' code identifies a file in the Intel byte ordering scheme, that is, word
and doubleword entries appear with the least significant byte in the lowest num-
bered memory address. This data ordering format is sometimes known as the "lit-
tle-endian" scheme. The 'MM' code identifies a file in the Motorola byte ordering
order, that is, with the least significant byte of word and doubleword entries in the
highest numbered memory address. This format is known as the "big-endian"
scheme. The ASCII number '42' found at the word at offset 2 of the header serves to
further identify a file in TIFF format. The numbers themselves have no documented
significance. The ASCII code '42' has sometimes been called the TIFF version num-
ber, although it is not described as such in the standard. The doubleword at offset 4
of the header block contains the offset, in the TIFF file, of the first image file direc-
tory (IFD).

The file header block is the only TIFF file structure that must be located at a pre-
determined offset from the start of the file. The remaining structures can be located
anywhere in the TIFF file. TIFF file processing code reads the data in the header
block to certify that the file is in TIFF format and to make decisions regarding the
data ordering scheme. A sophisticated application could be capable of making ad-
justments in order to read data both in the Intel and in Motorola orders, while an-
other one could require data in a specific format.

The TIFF Image File Directory (IFD)

Once the code determines that the file is in TIFF format and that it is encoded in a valid
ordering scheme, it uses the doubleword at offset 4 of the header (see Figure 15-12) in
order to determine the location of the first image file directory (IFD). Notice that a
TIFF file can contain more than one image. If so, each image in the file is associated

byte ordering ('II' or 'MM')
'II' = Intel byte ordering
'MM' = Motorola byte ordering

'42'

offset of first IFD

word

word

doubleword

0

2

4

offset

© 2003 by CRC Press LLC

with its own IFD. However, by far the more common situation is that a TIFF file con-
tains a single image. This assumption is made in the code and examples for manipulat-
ing TIFF files. The structure of the IFD is shown in Figure 15-13.

Figure 15-13 TIFF Image File Directory (IFD)

Observe that the offset values in the leftmost column of Figure 15-13 (labeled "lo-
cal offset") refer to offsets within the IFD block. This must be so because the IFD it-
self can be located anywhere within the TIFF file. The word at local offset 0 of the
IFD is a count of the number of directory entries. Recall that the number of direc-
tory entries is unlimited in the TIFF standard. The last directory entry is followed by
a doubleword field which contains the offset of the next IFD, if one exists. If not,
this doubleword contains the value 0000H (see Figure 15-13). Each entry in the IFD
takes up 12 bytes. The structure of each IFD entry is shown in Figure 15-14.

The tag code is located at local offset 0 in the directory entry field. TIFF requires
that the entry fields be sorted by increasing order of the tag codes, therefore, a
lower numbered tag code always precedes a higher numbered one. This simplifies
searching for a particular tag code since the search terminates when one with a
higher numbered tag is encountered. The type code is located at local offset 2 within
the directory entry field. Table 15-5 shows the type code values according to TIFF
version 6.0. Be aware that code numbers 6 and higher were introduced in Version 6.0
and are not documented in previous versions of the standard.

number of IFD entries

directory entry No. 0

directory entry No. 1

last directory entry

offset of next IFD or
0000H if last IFD

word

doubleword

12-byte directory
entry

12-byte directory
entry

12-byte directory
entry

0

2

14

.

.

local
offset

© 2003 by CRC Press LLC

Figure 15-14 TIFF Directory Entry

Table 15-5

TIFF Version 6.0 Field Type Codes

TYPE STORAGE
CODE UNIT FIELD CONTENTS

1 byte 8-bit unsigned integer
2 ASCII character Offset of ASCII string terminated in

NULL byte
3 word 16-bit unsigned integer
4 doubleword 32-bit unsigned integer
5 quadword Rational number; the first doubleword

is the numerator of a fraction and
the last doubleword the denominator

6 byte 8-bit signed integer
7 byte Undefined; can be used at will by

the software
8 word 16-bit signed integer in 2's

complement form
9 doubleword 32-bit signed integer in 2's

complement form
10 quadword Rational number; the first doubleword

is the signed numerator of a fraction
and the last doubleword the signed
denominator

11 doubleword Single precision floating point
number in IEEE format

12 quadword Double precision floating point
number in IEEE format

tag code

type code

number of values (count)

value / offset

word

word

doubleword

doubleword

0

2

4

8

local
offset

© 2003 by CRC Press LLC

The count field is a doubleword at offset 4 of the directory entry. This field, which
was named the length field in previous versions of TIFF, encodes the number of data
repetitions in the current directory entry. Notice that this value does not encode the
number of bytes, but the number of data units. For example, if the field type code is
3 (word unit) then the count field would represent the number of data words of in-
formation that are associated with the entry.

The value/offset field is designated in this manner because it contains either a di-
rect value or an offset into the TIFF file. The general rule is that if the encoded data
fits into a doubleword storage (4 bytes) then the data is entered directly in the
doubleword at local offset 8 of the directory entry (see Figure 15-14). This design
saves coding space and simplifies processing. However, some TIFF tags, such as the
StripOffset tag mentioned later in this section, always contain offset data in this
field. The software determines if the data in the value/offset field is either a value or
an offset by means of the tag, the field type code, and the data item count.

If the tag contains either a value or an offset, the program must first examine the
field type codes (see Table 15-4). In this case data corresponding to field type codes
1, 3, 4, 5, 6, 7, 8, 9, and 11 (see Table 15-4), are contained in a doubleword storage
unit and are therefore entered as values. By the same token, field types 2, 5, 10, and
12 encode an offset in the value/offset field of the directory entry. Once determined
that an individual data item fits in the 4 bytes allocated to the value/offset field then
the software must examine the number of values associated with the directory en-
try. If the total number of values exceeds the allocated space (4 bytes) then the
value/offset field contains an offset. In this case the type code and the count fields
are multiplied in order to determined the number of items supplied.

15.3.2 TIFF Tags for Bilevel Images

Over 50 tags have been defined in the TIFF standard; however, only a handful are used
in most TIFF images. A complete description of all the TIFF tags can be found in the
TIFF Revision 6.0 specification available, at no charge, from Aldus Corporation (see
Section 15.3). The TIFF tags mentioned in the following discussion are those that
would be commonly found in monochrome (bilevel in TIFF terminology) scanned im-
ages. These are also the tags decoded by the TIFFSHOW program found in the /TIFF di-
rectory of books' software package.

OldSubFileType (tag code 00FFH)

This tag, originally called the SubFileType, has been replaced by the NewSubFileType
tag mentioned below; however, many older TIFF programs still use this tag. The tag
provides information about the bitmap associated with the IFD. The tag can take the
following values:

Value = 1 indicates that the image is in full-resolution format.

Value = 2 indicates the image data is in reduced-resolution format.

Value = 3 indicates that the image data is a single page of a multi-page image.

© 2003 by CRC Press LLC

NewSubFileType (00FEH)

This tag, which replaces OldSubFileType, describes the kind of data in the IFD. The tag
is made up of a doubleword integer with the following significant bits:

Bit 0 is set if the image is a reduced-resolution version of another image.

Bit 1 is set of the image is a single-page of a multi-page image.

Bit 2 is set if the image is a transparency mask (see the PhotometricInterpretation tag
later in this section.)

ImageWidth (tag code 0100H)

This tag encodes the number of pixel columns in the image.

ImageLength (tag code 0101H)

This tag encodes the number of pixel rows in the image.

BitsPerSample (tag code 0102H)

This tag encodes the number of bits required to represent each pixel sample. The value
of this tag is 1 for bilevel images, 4 for 16-color palette images, and 8 for 256-color pal-
ette images. In IBM video graphics systems the number of bits per sample is usually
the same as the number of bits per pixel color. Regarding images encoded in RGB for-
mat (as used in some Macintosh systems and in the XGA Direct Color mode) the num-
ber of bits per sample refers to each individual color. In this case the SamplesPerPixel
tag (described below) encodes the number of pixel colors (three colors in RGB encod-
ing), and the BitsPerSample tag the number of bits assigned to each color. For exam-
ple, if 6 bits are assigned to the red sample, 8 bits to the green, and 6 bits to the blue, the
total number of bits per pixel would be 20.

Compression (tag code 0103H)

This tag encodes the compression scheme used in the image data. The tag can take the
following values:

Value = 1 indicates that the image data is not compressed. Pixel information is packed
at the byte level, as tightly as possible. Uncompressed data has the disadvantage over
compressed data that it takes up more memory space. On the other hand, it has the ad-
vantage that it can be manipulated faster by the display routines.

Value = 2 indicates that image data is compressed according to CCITT Group 3 (Mod-
ified Huffman) run-length encoding.

Value = 32,773 (8005H) indicates the data is compressed according to the PackBits
scheme described in detail later in this section.

PhotometricInterpretation (tag code 0106H)

This tag describes how to interpret the color encoding in the bitmap. The tag can take
the following values:

© 2003 by CRC Press LLC

Value = 0 is used in bilevel and grayscale images to indicate that a bit value of 0 repre-
sents the white color.

Value = 1 is used in bilevel and grayscale images to indicate that a bit value of 0 repre-
sents the black color.

Value = 2 is used to indicate an encoding in RGB format.

Value = 3 is used to indicate palette color format. In this case a ColorMap tag must be
included to hold the LUT values.

Value = 4 indicates that the image is a transparency mask used to define an irregularly
shaped region of another image.

Threshholding (tag code 0107H)

This tag describes the technique used for representing the gray scale in a
black-and-white image. The tag can have the following values:

Value = 1 indicates that the image contains no dithering or halftoning. Bilevel images
use this value.

Value = 2 indicates that the image has been dithered or halftoned.

Value = 3 indicates that a randomized process, such as the error diffusion algorithm,
has been applied to the image data.

StripsOffset (tag code 0111H)

This tag provides the information necessary for the software to locate the image data
within the TIFF file. By definition, the value in this tag is always an offset from the be-
ginning of the TIFF file. The structure of the TIFF image data as well as the use of this
tag is discussed in Section 15.3.3.

SamplesPerPixel (tag code 0115H)

This tag encodes the number of color components for each screen pixel. The value of
this tag is 1 for bilevel, grayscale, and palette color images, and 3 for images in RGB
format.

RowsPerStrip (tag code 0116H)

This tag determines the number of rows in each strip. Image encoding in the TIFF stan-
dard is discussed in Section 15.3.3.

StripByteCounts (tag code 0117H)

This tag determines the number of bytes in each strip, after compression. Image en-
coding in the TIFF standard is discussed in Section 15.3.3.

XResolution (tag code 011AH)

This tag provides information about the x-axis resolution at which the original image
was created or scanned. The data is important to software that must reproduce the im-

© 2003 by CRC Press LLC

age exactly as it was originally produced. This is a critical factor in the reproduction of
dithered images, which do not allow scaling.

YResolution (tag code 011BH)

This tag provides information about the y-axis resolution at which the original image
was created or scanned. See the text in the XResolution tab.

PlanarConfiguration (tag code 011CH)

This tag provides information regarding the organization of color pixel data. It is rele-
vant only for color images in RGB format (more than 1 samples per pixel). The tag can
have the following values:

Value = 1 indicates that RGB data is stored in the order of the color components, that
is, in a repeating sequence of RED, GREEN, and BLUE values. This organization is
called the chunky format in TIFF documentation.

Value = 2 indicates that RGB data is stored by bit planes, that is, the red color compo-
nents are stored first, followed by the green, and then by the blue. This organization is
called the planar format in TIFF documentation.

ResolutionUnit (tag code 128H)

This tag determines the unit of measurement used in the parameters contained in
XResolution and YResolution tags. Many TIFF programs do not use this tag, but it is
recommended by the standard. The tag can have the following values:

Value = 1 indicate no unit of resolution.

Value = 2 indicates inches.

Value = 3 indicates centimeters.

15.3.3 Locating TIFF Image Data

Although TIFF file processing software often ignores many tags and makes assump-
tions regarding others, one necessary manipulation in an image display operation is
the locating and decoding of the image bitmap.

TIFF Image data can be located almost anywhere in the file. This is true of both
uncompressed and compressed data. Furthermore, the TIFF standard allows divid-
ing an image into several areas, called strips. The idea is to facilitate data input and
output in machines limited to a 64K segment size. This is the case of Intel processors
operating in MS DOS or Windows systems. The data for each individual strip is rep-
resented by a separate tag.

When the image is divided into strips, three tags participate in locating the image
data: RowsPerStrip, StripOffsets, and StripByteCounts. The first operation is for the
software to calculate the number of strips into which the image data is divided. This
value, which is not encoded in any particular tag, can be obtained from the number
of values field of the StripOffsets tag (see Figure 15-14). The following code frag-

© 2003 by CRC Press LLC

ment shows the processing necessary to determine if a TIFF image is encoded in a
single strip or in multiple strips.

; The number of strips in the image is obtained from the length
; field of the StripOffsets tag
; Code assumes that the SI register points to the start of the
; first IFD in the TIFF file

MOV AX,0111H ; Tag for strip offsets
CALL FIND_TAG
JNC OK_OFFSETS ; Go if tag found

;**********************|
; ERROR handler |
;**********************|
; At this point the code should contain an error routine to
; handle the case of a TIFF file with no StripOffsets tag.

.

.

.
; At this label the processing has located the StripOffsets tag.
; Image can be encoded in one or more strips. The number of
; strips is stored in the length field of the StripOffsets tag
; Unpacking and display of multi-strip images requires the number
; of rows per strip and the number of bytes in each strip row. ; These
parameters are not necessary if the image is encoded in a
; single strip
OK_OFFSETS:

MOV AX,WORD PTR [SI+4] ; Get number of strips
CMP AX,1 ; Test for single strip
JNE MULTI_STRIP ; Go if not a single strip
JMP ONE_STRIP

;**********************|
; multi-strip image |
;**********************|
MULTI_STRIP:
; Multi-strip image processing routine

.

.

.
;**********************|
; single strip image |
;**********************|
ONE_STRIP:
; Single strip processing routine

.

.

.
FIND_TAG PROC NEAR
; Find a specific tag code in the Image File Directory
; On entry:
; AX = desired tag code
; SI ==> start of Image File Directory (IFD)
; On exit:
; Carry clear if tag code found
; SI ==> first tag field (code)
;
; Carry set code not present in IFD
;
TEST_TAG_CODE:

MOV BX,WORD PTR [SI] ; Get tag code
CMP BX,0 ; Test for last IFD

© 2003 by CRC Press LLC

JE END_OF_IFD ; Go if last
CMP AX,BX ; Compare with one desired
JNE NEXT_TAG_CODE ; Index if not

; At this point desired tag code has been found
CLC ; Tag found return code
RET

NEXT_TAG_CODE:
ADD SI,12 ; Index to next tag

; Test for last tag
JMP TEST_TAG_CODE ; Continue

END_OF_IFD:
STC ; Tag not found
RET

FIND_TAG ENDP
.
.
.

Notice that the FIND_TAG procedure in the previous code fragment provides a
convenient tool for indexing into the IFD in search of any particular tag code. Such a
procedure would be called repeatedly by a TIFF image processing routine. The pro-
cedure named FIND_TIFF_TAG in the BITIO module of the GRAPHSOL library per-
forms this operation.

Locating the image data in a single strip image consists of adding the value in the
StripOffsets tag to the start of the TIFF file. In this case the image size (in bytes) is
obtained by reading the value in the ImageWidth tag (which is the number of pixels
per row), dividing it by 8 to determine the number of data bytes per pixel row, and
multiplying this value by the number of pixel rows stored in the ImageLength tag.
The processing operations can be seen in the TIFFSHOW.ASM file in the book's soft-
ware package.

If the image data consists of multiple strips, then each strip is handled separately
by the software. In this case the number of bytes in each strip, after compression, is
obtained from the corresponding entry in the StripByteCounts tag. The display rou-
tine obtains the number of pixel rows encoded in each strip from the value stored in
the RowsPerStrip tag. However, if the total number of rows, as stored in the
ImageLength tag, is not an exact multiple of the RowsPerStrip value, then the last
strip could contain less rows than the value in the RowsPerStrip tag. TIFF software
is expected to detect and handle this special case.

15.3.4 Processing TIFF Image Data
Once the start of the TIFF image data is located within the TIFF file, the code must de-
termine if the data is stored in compressed or uncompressed format and proceed ac-
cordingly. This information is found in the Compression tag previously mentioned. In
TIFF Version 5.0 the Compression tag could hold one of six values. Value number 1
correspondes to no compression, values 2, 3, and 4 corresponded to three modes of
CCITT compression, and value 5 to LZW compression, finally value 32,773 in the Com-
pression tag indicates PackBits compression.

We mentioned that several of these compression schemes were dropped in Ver-
sion 6.0 of the TIFF standard (see Section 15-3). In the present TIFF implementa-

© 2003 by CRC Press LLC

tion, values 3, 4, and 5 for the Compression tag are no longer supported. Since there
are substantial reasons to favor the LZW algorithm for the compression of color im-
ages (which was dropped in TIFF Version 6.0 because of patent rights consider-
ations) we have limited the discussion on TIFF image decoding to the case of
PackBits compression. Hopefully, a future TIFF version will again support LZW
compression methods.

TIFF PackBits Compression

The PackBits compression algorithm was originally developed on the Macintosh com-
puter. The MacPaint program uses a version of PackBits compression for its image
files. Macintosh users have available compression and decompression utilities for
files in this format. The compression scheme is simple to implement and often offers
satisfactory results with monochrome and scanned images.

PackBits, as implemented in TIFF, is a byte-level, simplified run-length compres-
sion scheme. The encoding is based on the value of the first byte of each com-
pressed data unit, often designated as the "n" byte. The decompression logic can be
described in the following steps.

STEP 1: If end-of-information code then end decompression.

STEP 2: Read next source byte. Designate as n (n is an unsigned integer).

STEP 3: if n is in the range 0 to 127 (inclusive) perform the following operations:

a. read the next n+1 bytes literally from the source file into the output stream.

b. go to STEP 1.

STEP 4: if n is in the range 129 to 255 (inclusive) perform the following operations:

a. negate n (n = -n).

b. copy the next byte n+1 times to the output stream.

c. go to STEP 1.

STEP 5: Goto STEP 1.

Notice that in the above description we assume that n is an unsigned integer. This
convention, which facilitates coding in 80x86 assembly language, differs from other
descriptions of the algorithm in which n is a signed value. Figure 15-15 is a flowchart
of this decompression logic.

Observe that in the TIFF implementation of PackBits no action is taken if n = 128.
If n = 0 then 1 byte is copied literally from source to output. The maximum number
of bytes in a compression run is 128. In addition, the TIFF implementation of
PackBits compression adopted the following special rules:

1. Each pixel row is compressed separately. Compressed data cannot cross pixel row
boundaries.

2. The number of uncompressed bytes per row is defined as the value in the ImageWidth
tag, plus 7, divided by 8. If the resulting image map has an even number of bytes per
row, the decompression buffer should be word-aligned.

© 2003 by CRC Press LLC

Figure 15-15 TIFF PackBits Decompression

The following code fragment shows the processing required for unpacking a TIFF
file compressed as a single strip, using the PackBits method.

; Unpacking logic for TIFF PackBits scheme
; PackBits packages consist of 2 bytes. The first byte (n)
; encodes the following options:
; 1. if n is in the range 0 to 127 then the next n+1 bytes
; are to be interpreted as literal values
; 2. if n is in the range -127 to -1 then the following
; byte is repeated -n+1 times
; 3. if n = 128 then no operation is executed
; Code assumes:
; 1. SI --> start of the compressed image (1 strip)
; 2. DI --> storage buffer for decompressed image
; 3. the variable IMAGE_SIZE holds the byte size of the
; uncompressed image. In a single strip image this
; value is obtained by dividing ImageWidth (number
; of pixels per row) by 8 and multiplying by ImageLength
;
; Note: the routine keeps track of the number of bytes in the
; decompressed bitmap in the variable EXP_COUNT. This
; value is compared to the IMAGE_SIZE variable to determine
; the end-of-information point
;**********************|
; test value of n |
;**********************|
TEST_N_BYTE:

MOV AL,[SI] ; Get n byte

START

n = next source byte

end-of-information
?

END
YES

YES

YES

NO

NO

NO

0 <= n < 128
?

copy n+1 bytes literally
from source to output

128 < n < 256
?

n = -n
copy next byte n+1 times

to output stream

© 2003 by CRC Press LLC

CMP AL,128 ; Code for NOP
JB LITERAL_CODE ; Go if in the literal range
JA REPEAT_CODE ; Go if in repeat range

; At this point n = 128. No operation is performed
INC SI ; Skip NOP code
JMP NEXT_PACK_CODE ; Continue

;**********************|
; 0 <= n < 128 |
; (literal expansion) |
;**********************|
LITERAL_CODE:

MOV CL,AL ; Counter to CL
MOV CH,0 ; Clear high byte of counter
INC CX ; Add 1
INC SI ; Skip n byte
ADD EXP_COUNT,CX ; Add bytes to counter

LIT_MOVE:
MOV AL,[SI] ; Get literal byte
MOV [DI],AL ; Place in bitmap
INC DI ; Bump pointers
INC SI
LOOP LIT_MOVE
JMP NEXT_PACK_CODE

;**********************|
; 128 < n < 256 |
; (repeated expansion) |
;**********************|
REPEAT_CODE:

NEG AL ; Negate to convert to 2's
; complement representation

MOV CL,AL ; Counter to CL
MOV CH,0 ; Clear high byte of counter
INC CX ; Add 1
INC SI ; Skip n byte
ADD EXP_COUNT,CX ; Add bytes to counter

; to keep track of decompressed
; bytes

MOV AL,[SI] ; Get byte to repeat
INC SI ; Skip to next n byte

EXP_MOVE:
MOV [DI],AL ; Place byte in buffer
INC DI ; Bump bitmap pointer
LOOP EXP_MOVE

;**********************|
; test for <EOI> |
;**********************|
; EXP_COUNT holds the byte count in bitmap at this point
; IMAGE_SIZE holds the total bytes in the expanded bitmap
NEXT_PACK_CODE:

MOV AX,EXP_COUNT ; Bytes now in bitmap
CMP AX,IMAGE_SIZE ; Compare with map size
JAE EOI_FOUND ; Go if at end of image
JMP TEST_N_BYTE

; Decompression has concluded at this label
EOI_FOUND:

.

.

.

© 2003 by CRC Press LLC

15.3.5 TIFF Software Samples

The book's software package includes several software items related to TIFF file op-
erations. In the first place we have furnished source and executable files for a rudi-
mentary TIFF reader program named TIFFSHOW. Notice that the code is limited to the
analysis, decompression, and display of small, bilevel TIFF files. The data in the
source TIFF encoding can be either uncompressed or compressed by means of the
PackBits option. The code also requires that the data be located in a single strip.
TIFFSHOW can be used to examine the TIFF format files (extension .TIF) that are part
of the MATCH program. For this reason TIFFSHOW is included in the \MATCH direc-
tory of the book's software package.

In addition to the TIFFSHOW program, we have also furnished several TIFF pro-
cedures as part of the GRAPHSOL library. These procedures are located in the
BITIO.ASM module. The procedure named SHOW_TIFF can be used to display a
bitmap encoded in TIFF bilevel format. This procedure requires that the user pass a
formatted data block, as shown in the header. The SHOW_TIFF procedures calls the
procedure named LOAD_TIFF, also in the BITIO module, which decompresses and
loads the encoded image. One advantage of using these library procedures is that
they place the TIFF file and the image bitmap in a separate data segment, therefore
freeing the caller's code from having to devote storage space to TIFF data.

15.4 The Hewlett-Packard Bitmapped Fonts
The LaserJet line of printers, manufactured by Hewlett-Packard Corporation, has
gained considerable popularity in the microcomputer world. For use in these printers
Hewlett-Packard developed a standard for encoding text characters, sometimes
known as the Hewlett-Packard Printer Control Language (PCL) bitmap convention.
Fonts in PCL format are widely available as disk files (soft fonts) from
Hewlett-Packard and other companies. Although these fonts are primarily designed
for use in laser printers that recognized the PCL printer language (discussed in Chap-
ter 11), they can also be put to less conventional uses. For example, in the MATCH pro-
gram (furnished in the book's software) we have used PCL soft fonts to display text
message in larger letters than those available in the VGA system.

In the present section we discuss the structure and design of the PCL soft fonts.
However, the PCL bitmap format is a refined and elaborate one. We believe that the
information presented here is sufficient to make the PCL bitmap technology accessi-
ble to the graphics programmer. On the other hand, the design of new soft fonts in
PCL bitmap format requires knowledge of typography and character graphics as
well as a high degree of familiarity with the PCL encoding. Hewlett-Packard has
published several technical reference manuals for their LaserJet printers that in-
clude detailed description of the PCL bitmap fonts. These titles (listed in the Bibli-
ography) can be obtained directly from Hewlett-Packard or through one of their
dealers.

Notice that PCL commercial fonts are usually copyright by the font developers or
vendors. The programmer should investigate the legality of the intended use before
distributing or modifying the font files.

© 2003 by CRC Press LLC

15.4.1 PCL Character Encoding

Two technologies are commonly used for encoding text characters: bitmaps and vec-
tor graphics. We encountered vector fonts in the short stroke vector characters used
in 8514/A and XGA systems (see Section 11.3.5). Some printers of the Hewlett-Packard
LaserJet family are equipped with vector fonts supplied in the form of scalable charac-
ter sets; Hewlett-Packard has adopted the scalable font technology developed by Agfa
Corporation, designated as the Font Access and Interchange Format (FAIS).

Bitmapped fonts in the PCL format are compatible with all HP PCL laser printers.
In addition, several commercial programs are available to generate and edit font
files in PCL format. One advantage of fixed-size bitmapped fonts if that their display
quality is often judged to be better than the one obtained from scalable fonts.

A PCL-format soft font disk file contains the following elements:

1. One font descriptor field that encodes the general characteristics of the font.

2. One or more character descriptors fields that encodes the data pertaining to each indi-
vidual character as well as the character bitmap. The bitmap is the binary raster data
that defines the character's shape.

3. Several command strings in PCL language.

The PCL command strings are unrelated to the font definition, although they are
sometimes used to locate specific data areas within the file. These command strings
are provided to facilitate programming of LaserJet printers and compatible devices,
a subject discussed in detail in Chapter 11.

Font Descriptor

The first element we encounter in a font file in PCL format is a PCL language command
string. The initial command in the font file is the one used to download the font
descriptor field into a PCL printer. The command can be generically represented as
follows:

��
�������

The value 1BH is the escape code that precedes all PCL commands (see Chapter
11). The character string 's???W' represent a generic command in which the ques-
tion mark ('?') takes the place of one to three ASCII characters that encode the byte
length of the descriptor field. Table 15-6 is a partial screen snapshot of the
Hewlett-Packard font file TR140RPN.UPS

The data elements in the PCL bitmap font descriptor field are those that apply to
the entire font. There are 33 data entries in the font descriptor field of PCL level 5,
although software and devices often ignore many of these entries. The font
descriptor field starts after the end of the download command string. In Table 15-6
the command string takes the form

��
 ������

© 2003 by CRC Press LLC

Table 15-6

Hexadecimal and ASCII Dump of the HP PCL Font File TR140RPN.UPS

HEXADECIMAL DUMP
OFFSET � � � � � � � � � 	
 � �
 � � ASCII DUMP

���� �� �	 �� �� �� �� �� �� �� �� �� �� �� �� �� �� ����������������

���� �� �� �� �� �� �� �� �� �� �� �	 �� �� �� �� �� ����������������

���� �� �� �� �� �� �� �� �� �� �� �
 �� �� �� �� �� ����������������

���� �� �� �� �� �� �� �� �� �
 �� �� �
 �� �� �� �� �������������

���� �� �� �� �� �� �� �� �� �� �� �� �� �	 �� �� �� ��� ��

���� � � � ������ !"#$"

���� %&'(&�) ����&��*

���� �	���
$$ ����

���� � �"�"�+")� �"�

��	� ��),' ���* &)&�

��
� & ��� ��)�� ��-

���� , ��� �. '���"�

���� �. ��� .�� ��

��
� �����-� ")* "/'"

���� � &� &$$�#") ,�

���� � � �)"� �" '�������

���� �� �� �� �� �� �� �� �� �� �
 �� �� �� �� �� �� $&#�� �0'�����

���� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ����������������

���� �� �	 �� �� �� �� �� �� �� �� �� �� �� �� �� �� ����������������

���� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ����������������

���� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �
 �� ��������������0'

���� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �����"����������

The ASCII characters '257' in the sample of Table 15-6 encodes the number of
bytes in the font descriptor field, not including the command string. Notice, in Table
15-6, that the end of the font descriptor field coincides with the command string
1BH *c33E (see dump offset 0108H) discussed later in this section.

Font descriptor data starts at offset 0007H of the dump shown in Table 15-6. The
size of the binary data section of the font descriptor is 64 bytes (40H). The remain-
der of the font descriptor, from the byte at offset 0048H to the end of the field, con-
tains an optional ASCII-coded copyright message preceded by a character count
(BFH). Table 15-7, on the following page, shows the elements in the bitmap font
descriptor field according to PCL level 5.

Data in the font descriptor field is stored according to the big-endian scheme,
that is, the low-order element of word and doubleword entries are located at the
highest memory location. For example, at offset 0007H of the dump of Table 15-6 is
the font descriptor size word, which, in this case, has the value 00 40. If we were to
load this word value into a register of a processors that follows the little-endian
storage scheme (such as the ones used in IBM microcomputers) the high- and
low-order elements would be inverted. In this case the code can exchange the low-
and high-bytes in order to correct this situation. The processing operations can be
followed in the source code for the CSETHP program furnished in the book's soft-
ware package.

© 2003 by CRC Press LLC

Table 15-7

PCL Bitmap Font Descriptor Field

STORAGE VALUE
OFFSET UNIT RANGE CONTENTS

0 word 64 Font descriptor size
2 byte 0 Descriptor format (0 = bitmap)
3 byte 0/1/2 Font type:

0 = 7 bit (96 characters)
1 = 8 bits (192 characters)
2 = 8 bits (256 characters)

4 byte Style, MSB (see offset 23)
5 byte RESERVED
6 word Baseline distance (in PCL dots)
8 word Cell width (in PCL dots)

10 word Cell height (in PCL dots)
12 byte 0/1/2/3 Orientation:

0 = portrait
1 = landscape
2 = reverse portrait
3 = reverse landscape

13 byte 0/1 Spacing (fixed or proportional)
0 = fixed spacing
1 = proportional spacing

14 word Symbol set
16 word Pitch (in PCL quarterdots)
18 word Height (in PCL quarterdots)
20 word xheight (in PCL quarterdots)
22 byte Width type (code)
23 byte Style, LSB (see offset 4)
24 byte Stroke weight (code)
25 byte Typeface family, LSB
26 byte Typeface family, MSB
27 byte Serif style (code)
28 byte 0/1/2 Quality (code):

0 = data processing
1 = near letter quality
2 = letter quality

29 byte Placement (code)
30 byte Underline distance (in PCL dots)
31 byte Underline height (in PCL dots
32 word Text height (in PCL quarterdots)
34 word Text width (in PCL quarterdots)
36 word First printable character
38 word Last printable character
40 byte Pitch field extension
41 byte Height field extension
42 word Cap height (percent of em)
44 doubleword Font number (code)
48 15 bytes ASCII font name
64 --- Start of optional copyright notice

note: data is in Motorola storage format (big-endian scheme)

Many of the data entries in the font descriptor field would be of interest only to
the font designer or graphics text specialist. Other entries contain information that
would be required only in developing sophisticated text management functions,

© 2003 by CRC Press LLC

such as those expected of a typesetting or desktop publishing program. Figure 15-16
shows the fundamental information furnished by the font descriptor field.

Figure 15-16 PCL Bitmap Character Cell

In Figure 15-16 notice that the dimensions labeled "cell width" and "cell height"
correspond to the entries at offset 6 and 8 of the font descriptor (see Table 15-7),
while the "baseline distance" is found at offset 6, the "underline distance" at offset
30, and "x-height" dimension at offset 20.

Character Descriptor

The PCL format is optimized so that each bitmap takes up the minimum storage space.
In this respect the cell height and cell width parameters of Figure 15-16 refer merely to
a "general cell box" that is required to enclose all the characters in the font. The char-
acter descriptor field contains the data elements that define the individual character.

Like the font descriptor field, the disk image of the character descriptor field
starts with a PCL command string. In fact, in the case of individual characters two
command strings are necessary: the first one, known as the character code com-
mand, is used to inform the device of the decimal code for the character that fol-
lows. At offset 0108H, in Table 15-6, we can see the first PCL command string, which
is

��
 ������

In this case the decimal value '33' identifies the '!' symbol, which is located at this
position in the character table (see Table 1-2). The second command string, known
as the character descriptor and data command is used to download to the PCL de-
vice the information associated with the particular character as well as its bitmap.
At offset 010EH of the dump at Table 15-6 we can see this command string:

baseline

general
cell box

underline
distance

ba
se

lin
e

di
st

an
ce

x
he

ig
ht

cell width

ce
ll

he
ig

ht

underline

© 2003 by CRC Press LLC

��
 ������

In this case the sub-string '57' encodes, in ASCII, the byte length of the data
descriptor plus its corresponding bitmap. Immediately following this PCL command
string we find a 16-byte block which is called the character header area of the char-
acter descriptor field. Table 15-8 shows the data elements in the character
descriptor header.

Table 15-8

PCL Bitmap Character Descriptor Header

STORAGE VALUE
OFFSET UNIT RANGE CONTENTS

0 byte 4/10 Data format:
4 = LaserJet family
10 = Intelifont scalable

1 byte 0/1 Continuation:
0 = bitmap is a character block
1 = bitmap is a continuation of

another block
2 byte 14/2 Size of character descriptor header:

14 byte for LaserJet family
2 for Intelifont scalable

3 byte 1/2/3/4 Bitmap class:
1 = uncompressed bitmap
2 = compressed bitmap
3 = Intelifont scalable
4 = Compound contour (Intelifont)

4 byte 0/1/2/3 Orientation:
0 = portrait
1 = landscape
2 = reverse portrait
3 = reverse landscape

5 byte RESERVED
6 word Left offset (in PCL dots)
8 word Top offset (in PCL dots)

10 word Character width (in PCL dots)
12 word Character height (in PCL dots)
14 word Delta x (in PCL quarter dots)
16 ---- Start of character bitmap

Notice that the character header field has a total length of 16 bytes, which is con-
sistent with the value 14 decimal stored at offset 2 of the character descriptor
header, since this last value refers to the "remaining" portion of the header field.

The continuation entry, at offset 1 of the header block, is related to the limit of
32,767 bytes imposed by the PCL language on the character bitmap. If a character
bitmap exceeds this limit it has to be divided into two or more sections. In this case
the continuation entry is set to indicate that the associated bitmap (which follows
this byte) is a continuation of the previous one.

The entry at offset 3 indicates the bitmap class. Most PCL character bitmaps in
commercial use are in the uncompressed format (class 1). Compressed bitmaps use
a run-length compression scheme. This variation, introduced in PCL level 5, is not

© 2003 by CRC Press LLC

compatible with level 4 devices, such as the LaserJet series II and compatible print-
ers. For this reason we will not discuss the compressed encodings any further.

The entry at offset 4 indicates the orientation of the character. The word "por-
trait" is used in this context in reference to a character that takes up a vertical rect-
angle, such as the one in Figure 15-16. By the same token, characters located in a
horizontal rectangle are referred to as being of "landscape" orientation. Notice that
this use of the words "portrait" and "landscape" is related to photographic terminol-
ogy.

The remaining entries in the character descriptor header refer to the character's
dimensions. Figure 15-17 shows the locations of these dimensions in a sample char-
acter.

Figure 15-17 PCL Character Dimensions

Notice the two reference points along the baseline of the character in Figure
15-17. The start reference point can be thought of as the cursor position at the start
of character display. The end reference point marks the cursor position once the
character is displayed. The character reference points are used by software in im-
plementing typesetting operations such as kerning and proportional spacing (see
Glossary).

The word entry at offset 6 in Table 15-8 indicates the character's left offset (see
Figure 15-17). This dimension is the distance, expressed in PCL dots, from the char-
acter pattern to the start reference point. The word at offset 7 refers to the charac-
ter's top offset, which is the distance from the reference points to the top of the
character pattern.

baseline

to
p

of
fs

et

ch
ar

ac
te

r
he

ig
ht

character width

1 2 3 4

bitmap columns

end
reference
point

character
cell

start
reference

point

delta x

left
offset

© 2003 by CRC Press LLC

The character width entry, located at offset 10 in Table 15-8, determines the char-
acter's dot width. The dimension extends from the leftmost dot to the rightmost
one. Notice that the actual bitmap often requires padding so that it can be encoded
in byte-size storage units. Therefore the character width may not coincide with the
width of the bitmap, as is the case in the character shown in Figure 15-17. The char-
acter height, located at offset 12 in Table 15-8, is the measurement of the number of
vertical dots in the character map (see Figure 15-17). The delta x dimension, located
at offset 14 in Table 15-8, is the distance, measured in PCL quarter dots, from the
start reference point to the end reference point (see Figure 15-17).

The PCL Bitmap
The bitmap for each particular character starts at offset 16 of the character descriptor
header. Software can obtain the bitmap dimensions from the character width and
character height entries in the header. For example, in Table 15-6 we find the character
width for the first character in the set at offset 011EH. The value in this case is 00 07 (7
decimal) which indicates that the character map is 7 dots wide. Since storage must be
in byte units, the bitmap takes up 1 horizontal byte, in which the low-order bit is pad-
ded with zero. The bitmap height is obtained from the character height dimensions at
offset 120H, which stores the value 00 29 (41 decimal). Therefore we calculate that the
character bitmap is 1 byte wide and 41 bytes high, which means that it occupies 41
bytes of memory space.

Notice that the first character represented in Table 15-6 corresponds with the
decimal value 33. The font uses the conventional US symbol set, therefore we can
refer to Table 1-2 and find that the value 33 (21H) corresponds to the exclamation
point symbol. This means that the 1-by-41 bitmap mentioned in the preceding para-
graph represents the exclamation point symbols in the Hewlett-Packard TmsRmn,
14 point, normal density, portrait font encoded in the file named TR140RPN.USP.
Figure 15-18 shows the bitmap for the lowercase letter "q" used in the previous illus-
trations.

Figure 15-18 Character Dot Drawing and Bitmap

1 2 3 4
bitmap columns

1 00H FCH 0FH C0H

2 07H FFH 1FH E0H

3 0FH E1H 9FH C0H

4 3FH DBH E0H 00H

5 3EH 01H FEH 00H

6 7CH 00H 7EH 00H

7 78H 00H 7EH 00H

.

.

.

.

.

31 03H FFH E0H 00H

32 01H FFH 80H 00H

dot
row

hexadecimal
bit map

© 2003 by CRC Press LLC

15.4.2 PCL Bitmap Support Software
The book's software package includes several software items related to PCL bitmap
operations. The VGA2 module of the GRAPHSOL library includes two procedures
which allow the screen display of a Hewlett-Packard printer font in PCL format. One
procedure, named READ_HPFONT, allows loading a PCL soft font into RAM. The sec-
ond procedure, named FINE_TEXTHP, allows displaying a text message using a previ-
ously loaded PCL font. The MATCH program (in the book's software package) uses
PCL fonts to display large screen text. It is also possible to display screen text message
using PCL fonts while in XGA and SuperVGA modes. In this case it is first necessary to
call the SET_DEVICE procedure in the VGA3 module in order to enable XGA or
SuperVGA display operations.

In addition to the library routines, the book's software package contains a pro-
gram named CSETHP which displays all the characters in a PCL disk file. The pro-
gram uses a VGA graphics mode.

© 2003 by CRC Press LLC

Part III

Windows API Graphics

© 2003 by CRC Press LLC

Chapter 16

Graphics Programming in Windows

Topics:
• Using Developer Studio wizards

• Elements of a Windows program

• WinMain()

• The Windows procedure

• Using program resources

• The HelloWindows program

This chapter is a brief review of the basic techniques used in Windows API program-
ming. The book assumes a basic level of Windows programming skills, therefore it is
not a intended to teach Windows programming, but to serve as a review and a re-
fresher. Furthermore, we need to agree upon a code base for the chapters that follow.
Here we establish the code structures and the coding style for the rest of the book.

16.1 Windows at the API Level
Our approach to Windows programming is to avoid class libraries or other wrappers,
such as The Microsoft Foundation Classes (MFC). At an initial level of Windows pro-
gramming the use of pre-canned interfaces may have some attraction; however, in
high-performance graphics these packages are, at best, a nuisance and more often a
major hindrance. On the other hand, we do take advantage of the editing and code gen-
erating facilities provided by Developer Studio and use the program-generating wiz-
ards, since there is no control or performance price to be paid in this case.

Before we can create a major graphics application we must be able to construct
the Windows code framework that supports it. Fabricating a program requires not
only knowledge of the programming language, but also skills in using the develop-
ment environment. For example, to create an icon for your program's title bar you
need to know about the API services that are used in defining and loading the icon,
but you also need to have skills in using the icon editor that is part of Developer Stu-

© 2003 by CRC Press LLC

dio. Even after the icon has been created and stored in a file, you need to follow a
series of steps that make this resource available to the program.

16.1.1 The Program Project

We assume that you have already installed one of the supported software development
products. The text is compatible with Microsoft Visual C++ Version 5.0 and later. We
used Visual C++ Version 6.0 in creating the sample programs for this book. The follow-
ing section describes the steps in creating a new project in Microsoft Developer Stu-
dio, inserting a source code template into the project, modifying and saving the
template with a new name, and compiling the resulting file into a Windows executable.

Creating a Project

You start Developer Studio by double-clicking on the program icon on the desktop, or
selecting it from the Microsoft Visual C++ program group. The initial screen varies
with the program version, the Windows configuration, the options selected when De-
veloper Studio was last executed, and the project under development. Version 5.0 in-
troduced the notion of a project workspace, also called a workspace, as a container
for several related projects. In version 5 the extension .mdp, used previously for pro-
ject files, was changed to .dsw, which now refers to a workspace. The dialog boxes for
creating workspaces, projects, and files were also changed. The workspace/project
structure and the basic interface are also used in Visual C++ Version 6.0.

We start by creating a project from a template file. The walkthrough is intended
to familiarize the reader with the Developer Studio environment. Later in this chap-
ter you will learn about the different parts of a Windows program and develop a
sample application. We call this first project Program Zero Demo, for the lack of a
better name. The project files are found in the Program Zero project folder in the
book's software package.

A project is located in a workspace, which can include several projects. Project
and workspace can be located in the same folder or subfolder or in different ones,
and can have the same or different names. In the examples and demonstration pro-
grams used in this book we use the same folder for the project and the workspace.
The result of this approach is that the workspace disappears as a separate entity,
simplifying the creation process.

A new project is started by selecting the New command from the Developer Stu-
dio File menu. Once the New dialog box is displayed, click on the Project tab option
and select a project type from the displayed list. In this case our project is Win32 Ap-
plication. Make sure that the project location entry corresponds to the desired drive
and folder. If not, click the button to the right of the location text box and select an-
other one. Next, enter a project name in the corresponding text box at the upper
right of the form. The name of the project is the same one used by Development Stu-
dio to create a project folder. In this example we create a project named Program
Zero Demo which is located in a folder named 3DB_PROJECTS. You can use these
same names or create ones of your liking. Note that as you type the project name it
is added to the path shown in the location text box. At this point the New dialog box
appears as in Figure 16-1.

© 2003 by CRC Press LLC

Figure 16-1 Using the New Command in Developer Studio File Menu

Make sure that the radio button labeled Create new workspace is selected so that
clicking the OK button on the dialog box creates both the project and the
workspace. At this point, you have created a project, as well as a workspace of the
same name, but there are no program files in it yet. How you proceed from here de-
pends on whether you are using another source file as a base or template or starting
from scratch.

If you wish to start a source file from scratch, click on Developer Studio Project
menu and select Add To Project and New commands. This action displays the same
dialog box as when creating a project, but now the Files tab is open. In the case of a
source file, select the C++ Source File option from the displayed list and type a file
name in the corresponding text box. The dialog appears as shown in Figure 16-2, on
the following page.

The development method we use in this book is based on using source code tem-
plates. To use a template as a base, or another source file, you have to follow a dif-
ferent series of steps. Assuming the you have created a project, the next step is to
select and load the program template or source file. We use the template named
Templ01.cpp. If you have installed the book's software in your system, the template
file is in the path 3DB/Templates.

To load the source file into your current project, open Developer Studio Project
menu and select Add To Project item and then the Files commands. This action dis-
plays an Insert Files into Project dialog box. Use the buttons to the right of the Look
in text box to navigate into the desired drive and folder until the desired file is se-

© 2003 by CRC Press LLC

lected. Figure 16-3 shows the file Templ01.cpp highlighted and ready for inserting
into the project.

Figure 16-2 Creating a New Source File In Developer Studio

When using a template file to start a new project you must be careful not to de-
stroy or change the original source. The template file is usually renamed once it is
inserted into the project. It is possible to insert a template file in a project, rename
it, delete it from the project, and then reinsert the renamed file. However, it is easier
to rename a copy of the template file before it is inserted into the project. The fol-
lowing sequence of operations are used:

1. Click the File menu and select the Open command. Navigate through the directory
structure to locate the file to be used as a template. In this case the file Templ01.cpp is
located in 3DB/Templates folder.

2. With the cursor still in Developer Studio editor pane, open the File menu and click on
the Save As command. Navigate through the directory structure again until you reach
the 3DB_PROJECTS\Program Zero Demo folder. Save the file using the name
Prog_zero.cpp.

3. Click on the Project menu and select the commands Add to Project and Files. Locate
the file named Prog_Zero.cpp in the Insert Files into Project dialog box, select it, and
click the OK button.

© 2003 by CRC Press LLC

Figure 16-3 Inserting an Existing Source File Into a Project

The file Prog_zero.cpp now appears in the Program Zero Demo file list in Devel-
oper Studio workspace pane. It is also displayed in the Editor window.

The Developer Studio main screen is configurable by the user. Furthermore, the
size of its display areas is determined by the system resolution. For this reason, it is
impossible to depict a Developer Studio screen display that matches the one that ev-
ery user will see. In the illustrations and screen snapshots throughout this book we
have used a resolution of 1152-by-854 pixels in 16-bit color with large fonts. How-
ever, our screen format may not exactly match yours. Figure 16-4, on the following
page, shows a full screen display of Developer Studio with the file Prog_zero.cpp
loaded in the Editor area.

The Project Workspace pane of Developer Studio was introduced in Version 4.0.
It has four possible views: Class View, File View, Info View, and Resource View. The
Resource View is not visible in Figure 6-4. In order to display the source file in the
editor pane, you must first select File View tab and double-click on the
Prog_zero.cpp filename.

At this point, you can proceed to develop the new project using the renamed tem-
plate file as the main source. The first step is to make sure that the development
software is working correctly. To do this open the Developer Studio Build menu and
click the Rebuild All command. Developer Studio compiles and builds your pro-
gram, which is at this stage nothing more than the renamed template file. The re-
sults are shown in the Output area. If compilation and linking took place without
error, reopen the Build menu and select the Execute Prog_zero.exe command but-
ton. If everything is in order, a do-nothing program executes in your system.

© 2003 by CRC Press LLC

Figure 16-4 Developer Studio Project Workspace, Editor, and Output Panes

Now click the Save command on the File menu to make sure that all project files
are saved on your hard drive.

16.2 Elements of a Windows Program

The template file Templ01.cpp, which we used and renamed in the previous example,
is a bare bones windows program with no functionality except to display a window on
the screen. Before proceeding to edit this template into a useful program, you should
become acquainted with its fundamental elements. In this section, we take apart the
template file Templ01.cpp for a detailed look into each of its components. The pro-
gram contains two fundamental components: WinMain() and the Windows procedure.

16.2.1 WinMain()

All Windows GUI applications must have a WinMain() function. WinMain() is to a Win-
dows GUI program what main() is to a DOS application. It is usually said that
WinMain() is the program's entry point, but this is not exactly true. C/C++ compilers
generate a startup code that calls WinMain(), so it is the startup code and not
WinMain() that is actually called by Windows. The WinMain() header line is as follows:

© 2003 by CRC Press LLC

|------------------- Return type

| |-------------- One of the standard calling conventions

| | defined in windows.h

| | |------- Function name

| | |

| | | [parameter list

--- ------ ------- ---

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,

PSTR szCmdLine, int iCmdShow) {

WINAPI is a macro defined in the windows.h header file which translates the
function call to the appropriate calling convention. Recall that calling conventions
refer to how the function arguments are placed in the stack at call time, and if the
caller or the called routine is responsible for restoring stack integrity after the call.
Microsoft Basic, FORTRAN, and Pascal push the parameters onto the stack in the
same order in which they are declared. In these languages the stack must be re-
stored by the caller. In C and C++, the parameters are pushed in reverse order, and
the stack is restored automatically after the call returns. For historical reasons (and
to take advantage of hardware features of the Intel processors) Windows requires
the Pascal calling convention. In previous versions of Windows the calling conven-
tion for WinMain() was PASCAL or FAR PASCAL. You can still replace WINAPI for
FAR PASCAL and the program will compile and link correctly, but the use of the
WINAPI macro makes your program more portable.

Parameters

Most often parameters are passed to WinMain() by Windows, but some can be passed
by whatever program executes your application. Your code can inspect these parame-
ters to obtain information about the conditions in which the program executes. Four
parameters are passed to WinMain():

• HINSTANCE is a handle-type identifier. The variable hInstance is an integer that identi-
fies the instance of the program. Consider that in a multitasking environment there can
be several copies (instances) of the same program running simultaneously. Windows
sets this value and passes it to your code. Your program needs to access this parameter
to enter it in the WNDCLASSEX structure; also when calling the CreateWindow() func-
tion. Because the handle to the instance is required outside of WinMain() by many func-
tions of the Windows API, the template file stores it in a public variable, named
pInstance. In general, the use of public variables is undesirable in Windows program-
ming, but this case is one of the valid exceptions to the rule.

• The variable hPrevInstance is also of type HINSTANCE. This parameter is included in
the call for compatibility with previous versions of Windows, which used a single copy
of the code to run more than one program instance. In 16-bit Windows the first instance
had a special role in the management of resources. Therefore, an application needed to
know if it was the first instance. hPrevInstance held the handle of the previous in-
stance. In Windows 95/98/NT this parameter is unused and its value is set to NULL.

• PSTR szCmdLine. This is a pointer to a string that contains the command tail entered by
the user when the program is executed. It works only when the program name is en-
tered from the DOS command line or from the Run dialog box. For this reason, it is
rarely used by code.

© 2003 by CRC Press LLC

• int iCmdShow. This parameter determines how the window is to be initially displayed.
The program that executes your application (normally Windows) assigns a value to this
parameter, as shown in Table 16-1.

Table 16-1

WinMain() Display Mode Parameters

VALUE MEANING

SW_HIDE Hides the window and activates another window

SW_MINIMIZE Minimizes the specified window and activates the
top-level window in the system's list

SW_RESTORE Activates and displays a window. If the window is
minimized or maximized, Windows restores it to its
original size and position (same as SW_SHOWNORMAL)

SW_SHOW Activates a window and displays it in its current
size and position

SW_SHOWMAXIMIZED Activates a window and displays it as a maximized
window

SW_SHOWMINIMIZED Activates a window and displays it as an icon

SW_SHOWMINNOACTIVE Displays a window as an icon. The active window
remains active

SW_SHOWNA Displays a window in its current state. The active
window remains active

SW_SHOWNOACTIVATE Displays a window in its most recent size and
position. The active window remains active

SW_SHOWNORMAL Activates and displays a window. If the window is
minimized or maximized, Windows restores it to its
original size and position (same as SW_RESTORE)

16.2.2 Data Variables

The program file Templ01.cpp defines several variables. One of them, the handle to the
program's main window, is defined globally. The other ones are local to WinMain() or
the windows procedure. The variable defined globally is:

���� �����

HWND is a 16-bit unsigned integer which serves as a handle to a window. The
variable hwnd refers to the actual program window. The variable is initialized when
we make the call to CreateWindow() service, described later in this section.

The variables defined in WinMain() are as follows:

static char szClassName[] = "MainClass" ; // Class name

MSG msg ;

The first one is and array of char that shows the application's class name. In the
template it is given the name MainClass, which you can replace for a more meaning-

© 2003 by CRC Press LLC

ful one. The appl icat ion class name must be the same one used in the
WNDCLASSEX structure.

MSG is a message-type structure of which msg is a variable. The MSG structure is
defined in the Windows header files as follows:

typedef struct tagMSG { // msg
HWND hwnd; // Handle to window receiving message
UINT message; // message number
WPARAM wParam; // Context-dependent additional information
LPARAM lParam; // about the message
DWORD time; // Time at which message was posted
POINT pt; // Cursor position when message was posted

} MSG;

The comments to the structure members show that the variable holds informa-
tion that is important to the executing code. The values of the message variable are
reloaded every time a new message is received.

16.2.3 WNDCLASSEX Structure
This structure is defined in the windows header files, as follows:

typedef struct tagWNDCLASSEX {
UINT cbSize;
UINT style;
WNDPROC lpfnWndProc;
int cbClsExtra;
int cbWndExtra;
HINSTANCE hInstance;
HICON hIcon;
HCURSOR hCursor;
HBRUSH hbrBackground;
LPCSTR lpszMenuName;
LPCSTR lpszClassName;
HICON hIconSm;
} WNDCLASSEX;

The WNDCLASSEX structure contains window class information. It is used with
the RegisterClassEx() and GetClassInfoEx() functions. The structure is similar to
the WNDCLASS structure used in 16-bit Windows. The differences between the two
structures is that WNDCLASSEX has a cbSize member, which specifies the size of
the structure, and the hIconSm member, which contains a handle to a small icon as-
sociated with the window class. In the template file Templ01.cpp the structure is de-
clared and the variable initialized as follows:

// Creating a WNDCLASSEX structure
WNDCLASSEX wndclass ;
wndclass.cbSize = sizeof (WNDCLASSEX) ;
wndclass.style = CS_HREDRAW | CS_VREDRAW ;
wndclass.lpfnWndProc = WndProc ;
wndclass.cbClsExtra = 0 ;
wndclass.cbWndExtra = 0 ;
wndclass.hInstance = hInstance ;
wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
wndclass.hbrBackground = (HBRUSH) GetStockObject

(WHITE_BRUSH) ;

© 2003 by CRC Press LLC

wndclass.lpszMenuName = NULL ;
wndclass.lpszClassName = szClassName ;
wndclass.hIconSm = LoadIcon (NULL, IDI_APPLICATION) ;

The window class is a template that defines the characteristics of a particular
window, such as the type of cursor and the background color. The class also speci-
fies the address of the windows procedure that carries out the work for the window.
The structures variables define the window class, as follows:

cbSize specifies the size, in bytes, of the structure. The member is set using the
sizeof operator in the statement:

	
��
��������������

style specifies the class style or styles. Two or more styles can be combined by means
of the C bitwise OR (|) operator. This member can be any combination of the values in
Table 16-2.

Table 16-2

Summary of Window Class Styles

SYMBOLIC CONSTANT ACTION

CS_BYTEALIGNCLIENT Aligns the window's client area on the byte
boundary (in the x direction) to enhance
performance during drawing operations.
This style affects the width of the window
and its horizontal position on the display.

CS_BYTEALIGNWINDOW Aligns a window on a byte boundary (in the
direction) to enhance performance during
operations that involve moving or sizing the
window. This style affects the width of the window
and its horizontal position on the display.

CS_CLASSDC Allocates one device context to be shared by all
windows in the class. Window classes are process
specific; therefore, different threads can create
windows of the same class.

CS_DBLCLKS
Sends double-click messages to the window
procedure when the user double-clicks the mouse
while the cursor is within a window belonging to
the class.

CS_GLOBALCLASS Allows an application to create a window of the
class regardless of the value of the hInstance
parameter passed to the CreateWindowEx() function.
If you do not specify this style, the hInstance
parameter passed to CreateWindowEx() function must
be the same as the one passed to the RegisterClass()
function.

CS_HREDRAW Redraws the entire window if a movement or size
adjustment changes the width of the client area.

CS_NOCLOSE Disables the Close command on the System menu.

(continues)

© 2003 by CRC Press LLC

Table 16-2

Summary of Window Class Styles (continued)

SYMBOLIC CONSTANT ACTION

CS_OWNDC Allocates a unique device context for each window
in the class.

CS_PARENTDC Specifies that child windows inherit their parent
window's device context. Specifying CS_PARENTDC
enhances an application's performance.

CS_SAVEBITS Saves, as a bitmap, the portion of the screen
image obscured by a window. Windows uses the saved
bitmap to recreate the screen image when the
window is removed. This style is useful for small
windows (such as menus or dialog boxes) that are
displayed briefly and then removed before other
screen activity takes place.

CS_VREDRAW Redraws the entire window if a movement or size
adjustment changes the height of the client area.

Of these, the styles CS_HREDRAW and CS_VREDRAW are the ones most com-
monly used. They can be ORed to produce a window that is automatically redrawn if
it is resized vertically or horizontally, as implemented in the Templ01.cpp code.

lpfnWndProc is a pointer to the window procedure, described later in this chap-
ter. In the template Templ01.cpp it is initialized to the name of the Windows proce-
dure, as follows:

������		����������
� � �����
��

cbClsExtra is a count of the number of extra bytes to be allocated following the
window-class structure. The operating system initializes the bytes to zero. In the
template this member is set to zero.

cbWndExtra is a count of the number of extra bytes to allocate following the win-
dow instance. The operating system initializes the bytes to zero. In the template this
member is set to zero.

hInstance is a handle to the instance of the window procedure.

hIcon is a handle to the class icon. If this member is NULL, an application must
draw an icon whenever the user minimizes the application's window. In the template
this member is initialized by calling the LoadIcon() function.

hCursor is a handle to the class cursor. If this member is NULL, an application
must explicitly set the cursor shape whenever the mouse moves into the applica-
tion's window. In the template this member is initialized by calling the LoadCursor()
function.

© 2003 by CRC Press LLC

hbrBackground is a background brush. This member can be a handle to the physi-
cal brush to be used for painting the background, or it can be a color value. If it is a
color value, then it must be one of the standard system colors listed in Table 16-3.

Table 16-3

Common Windows Standard System Colors

SYMBOLIC CONSTANT MEANING

COLOR_ACTIVEBORDER Border color of the active window
COLOR_ACTIVECAPTION Caption color of the active window
COLOR_APPWORKSPACE Window background of MDI clients
COLOR_BACKGROUND Desktop color
COLOR_BTNFACE Face color for buttons
COLOR_BTNSHADOW Shadow color for buttons
COLOR_BTNTEXT Text color on buttons
COLOR_CAPTIONTEXT Text color for captions, size boxes, and scroll bar boxes
COLOR_GRAYTEXT Color for dissabled text
COLOR_HIGHLIGHT Color of a selected item
COLOR_HIGHLIGHTTEXT Text color of a selected item
COLOR_INACTIVEBORDER Border color of inactive window
COLOR_INACTIVECAPTION Caption color of an inactive window
COLOR_MENU Background color of a menu
COLOR_MENUTEXT Text color of a menu
COLOR_Scroll bar Color of a scroll bar's gray area
COLOR_WINDOW Background color of a window
COLOR_WINDOWFRAME Frame color of a window
COLOR_WINDOWTEXT Text color of a window

When this member is NULL, an application must paint its own background when-
ever it is required to paint its client area. In the template this member is initialized
by calling the GetStockObject() function.

lpszMenuName is a pointer to a null-terminated character string that specifies the
resource name of the class menu, as it appears in the resource file. If you use an in-
teger to identify the menu, then you must use the MAKEINTRESOURCE macro. If
this member is NULL, the windows belonging to this class have no default menu, as
is the case in the template file.

lpszClassName is a pointer to a null-terminated string or it is an atom. If this pa-
rameter is an atom, it must be a global atom created by a previous call to the
GlobalAddAtom() function. The atom, a 16-bit value, must be in the low-order word
of lpszClassName; the high-order word must be zero. If lpszClassName is a string, it
specifies the window class name. In Templ01.cpp this member is set to the
szClassName[] array.

In Windows 95/98 hIconSm is a handle to a small icon that is associated with the
window class. This is the icon shown in dialog boxes that list filenames and by Win-
dows Explorer. A Windows 95/98 application can use a predefined icon in this case,
using the LoadIcon function with the same parameters as for the hIcon member. In
Windows NT this member is not used and should be set to NULL. Windows 95/98 ap-
plications that set the small icon to NULL still have the default small icon displayed
on the task bar.

© 2003 by CRC Press LLC

In most cases it is better to create both the large and the small icon than to let
Windows create the small one from the large bitmap. Later in this chapter we de-
scribe how to create both icons as a program resource and how to make these re-
sources available to the application.

Contrary to what has sometimes been stated, the LoadIcon() function cannot be
used to load both large and small icons from the same resource. For example, if the
icon resource is named IDI_ICON1, and we proceed as follows:

wndclass.hicon = LoadIcon (hInstance,
MAKEINTRESOURCE(IDI_ICON1);

.

.

.
wndclass.hiconSm = LoadIcon (hInstance,

MAKEINTRESOURCE(IDI_ICON1);

the result is that the large icon is loaded from the resource file, but not the small one.
This happens even if the resource file contains both images. Instead, you must use the
LoadImage() function, as follows:

wndclass.hIcon = (HICON)LoadImage(hInstance,
MAKEINTRESOURCE(IDI_ICON1),
IMAGE_ICON, // Type
32, 32, // Pixel size
LR_DEFAULTCOLOR) ;

.

.

.
wndclass.hIconSm = (HICON)LoadImage(hInstance,

MAKEINTRESOURCE(IDI_ICON1),
IMAGE_ICON, // Type
16, 16, // Pixel size
LR_DEFAULTCOLOR) ;

Now both the large and the small icon resources are loaded correctly and are
used as required. Also notice that the value returned by LoadImage() is typecast into
HICON. This manipulation became necessary starting with version 6 of Microsoft Vi-
sual C++ due to changes made to the compiler in order to improve compatibility
with the ANSI C++ standard.

16.2.4 Registering the Windows Class
Once your code has declared the WNDCLASSEX structure and initialized its member
variables, it has defined a window class that encompasses all the structure attributes.
The most important ones are the window style (wndclass.style), the pointer to the
Windows procedure (wndclass.lpfnWndProc), and the window class name (wndclass.
lpszClassName). The RegisterClassEx() function is used to notify Windows of the ex-
istence of a particular window class, as defined in the WNDCLASSEX structure vari-
able. The address-of operator is used to reference the location of the specific structure
variable, as in the following statement:

��
	!�����		�" �#������		� �

The RegisterClassEx() function returns an atom (16-bit integer). This value is
non-zero if the class is successfully registered. Code should check for a successful

© 2003 by CRC Press LLC

registration since you cannot create a window otherwise. The following construct
ensures that execution does not proceed if the function fails.

if(!RegisterClassEx (&wndclass))
return(0);

This coding style is the one used in the template Templ01.cpp.

16.2.5 Creating the Window
A window class is a general classification. Other data must be provided at the time the
actual windows is created. The CreateWindowEx() function receives the additional
information as parameters. CreateWindowEx() is a Windows 95 version of the
CreateWindow() function. The only difference between them is that the new version
supports an extended window style passed as its first parameter.

The CreateWindowEx() function is very rich in arguments, many of which apply
only to special windows styles. For example, buttons, combo boxes, list boxes, edit
boxes, and static controls can all be created with a CreateWindowEx() call. At this
time, we refer only to the most important function parameters that relate to the a
program's main window.

In the file Templ01.cpp the call to CreateWindowEx is coded as follows:
hwnd = CreateWindowEx (

WS_EX_LEFT, // left aligned (default)
szClassName, // pointer to class name
"Window Caption", // window caption (title bar)
WS_OVERLAPPEDWINDOW, // window style
CW_USEDEFAULT, // initial x position
CW_USEDEFAULT, // initial y position
CW_USEDEFAULT, // initial x size
CW_USEDEFAULT, // initial y size
NULL, // parent window handle
NULL, // window menu handle
hInstance, // program instance handle
NULL) ; // creation parameters

The first parameter passed to the CreateWindowEx() function is the extended
window style introduced in the Win32 API. The one used in the file Templ01.cpp,
WS_EX_LEFT, acts as a placeholder for others that you may want to select, since it
is actually the default value. Table 16-4 lists some of the most common extended
styles.

The second parameter passed to the CreateWindowEx() function call is either a
pointer to a string with the name of the window type, a string enclosed in double
quotation marks, or a predefined name for a control class.

In the template file, szClassName is a pointer to the string defined at the start of
WinMain(), with the text "MainClass." You can edit this string in your own applica-
tions so that the class name is more meaningful. For example, if you were coding an
editor program you may rename the application class as "TextEdClass." However,
this is merely a name used by Windows to associate a window with its class; it is not
displayed as a caption or used otherwise.

© 2003 by CRC Press LLC

Table 16-4

Most Commonly Used Windows Extended Styles

SYMBOLIC CONSTANT MEANING

WS_EX_ACCEPTFILES The window created with this style accepts
drag-drop files.

WS_EX_APPWINDOW A top-level window is forced onto the application
taskbar when the window is minimized.

WS_EX_CLIENTEDGE Window has a border with a sunken edge.

WS_EX_CONTEXTHELP The title bar includes a question mark. When the
user clicks the question mark, the cursor changes
to a question mark with a pointer. If the user
then clicks a child window, it receives a WM_HELP
message.

WS_EX_CONTROLPARENT Allows the user to navigate among the child
windows of the window by using the TAB key.

WS_EX_DLGMODALFRAME Window that has a double border. Optionally the
window can be created with a title bar by
specifying the WS_CAPTION style in the dwStyle
parameter.

WS_EX_LEFT Window has generic "left-aligned" properties.
This is the default.

WS_EX_MDICHILD Creates an MDI child window.

WS_EX_NOPARENTNOTIFY Specifies that a child window created with
this style does not send the WM_PARENTNOTIFY
message to its parent window when it is created or
destroyed.

WS_EX_OVERLAPPEDWINDOW Combines the WS_EX_CLIENTEDGE and
WS_EX_WINDOWEDGE styles.

WS_EX_PALETTEWINDOW Combines the WS_EX_WINDOWEDGE,
WS_EX_TOOLWINDOW, and WS_EX_TOPMOST

styles.

WS_EX_RIGHTSCROLLBAR Scroll bar Vertical scroll bar (if present) is to the right of
the client area. This is the default.

WS_EX_STATICEDGE Creates a window with a three-dimensional border
style intended to be used for items that do not
accept user input.

WS_EX_TOOLWINDOW Creates a tool window. This type of window is
intended to be used as a floating toolbar.

WS_EX_TOPMOST A window created with this style should be placed
above all non-topmost windows and should stay
above them, even when the window is deactivated.

WS_EX_TRANSPARENT A window created with this style is transparent.
That is, any windows that are beneath it are not
obscured by it.

WS_EX_WINDOWEDGE Window has a border with a raised edge.

© 2003 by CRC Press LLC

Control classes can also be used as a window class name. These classes are the
symbolic constants BUTTON, Combo box, EDIT, List box, MDICLIENT, Scroll bar,
and STATIC.

The third parameter can be a pointer to a string or a string enclosed in double
quotation marks entered directly as a parameter. In either case, this string is used as
the caption to the program window and is displayed in the program's title bar. Often
this caption coincides with the name of the program. You should edit this string to
suit your own program.

The fourth parameter is the window style. Over 25 styles are defined as symbolic
constants. The most used ones are listed in Table 16-5.

Table 16-5

Window Styles

SYMBOLIC CONSTANT MEANING

WS_BORDER Window that has a thin-line border.

WS_CAPTION Window that has a title bar (includes the
WS_BORDER style).

WS_CHILD Child window. This style cannot be used with the
WS_POPUP style.

WS_CLIPCHILDREN Excludes the area occupied by child windows when
drawing occurs within the parent window.

WS_CLIPSIBLINGS Clips child windows relative to each other.
When a particular child window receives a WM_PAINT
message, this style clips all other overlapping
child windows out of the region of the child
window to be updated. If WS_CLIPSIBLINGS is not
specified and child windows overlap, it is
possible to draw within the client area of a
neighboring child window.

WS_DISABLED Window is initially disabled. A disabled window
cannot receive input from the user.

WS_DLGFRAME Window has a border of a style typically used
with dialog boxes. The window does not have a
title bar.

WS_HSCROLL Window that has a horizontal scroll bar.

WS_ICONIC Window is initially minimized. Same as the
WS_MINIMIZE style.

WS_MAXIMIZE Window is initially maximized.

WS_MAXIMIZEBOX Window that has a Maximize button. Cannot be
combined with the WS_EX_CONTEXTHELP style.

WS_MINIMIZE Window is initially minimized. Same as the
WS_ICONIC style.

WS_MINIMIZEBOX Window has a Minimize button. Cannot be combined
with the WS_EX_CONTEXTHELP style.

WS_OVERLAPPED Overlapped window. Has a title bar and a border.

WS_OVERLAPPEDWINDOW Overlapped window with the WS_OVERLAPPED,
WS_CAPTION, WS_SYSMENU, WS_THICKFRAME,
WS_MINIMIZEBOX, and WS_MAXIMIZEBOX styles.
Same as the WS_TILEDWINDOW style.

WS_POPUP Pop-up window. Cannot be used with the WS_CHILD style.

(continues)

© 2003 by CRC Press LLC

Table 16-5

Window Styles (continued)

SYMBOLIC CONSTANT MEANING

WS_POPUPWINDOW Pop-up window with WS_BORDER, WS_POPUP, and
WS_SYSMENU styles. The WS_CAPTION and
WS_POPUPWINDOW styles must be combined to make
the System menu visible.

WS_SIZEBOX Window that has a sizing border. Same as the
WS_THICKFRAME style.

WS_SYSMENU Window that has a System-menu box in its title
bar. The WS_CAPTION style must also be specified.

WS_TILED Overlapped window. Has a title bar and a border.
Same as the WS_OVERLAPPED style.

WS_TILEDWINDOW Overlapped window with the WS_OVERLAPPED,
WS_CAPTION, WS_SYSMENU, WS_THICKFRAME,
WS_MINIMIZEBOX, and WS_MAXIMIZEBOX styles.
Same as the WS_OVERLAPPEDWINDOW style

WS_VISIBLE Window is initially visible.

WS_VSCROLL Window that has a vertical scroll bar.

The style defined in the template file Templ01.ccp is WS_OVERLAPPEDWINDOW.
This style creates a window that has the styles WS_OVERLAPPED, WS_CAPTION,
WS_SYSMENU, WS_THICKFRAME, WS_MINIMIZEBOX, and WS_MAXIMIZEBOX. It
is the most common style of windows.

The fifth parameter to the CreateWindowEx() service defines the initial horizon-
tal position of the window. The value CS_USERDEFAULT (0x80000000) determines
the use of the default position. The template file uses the same CS_USERDEFAULT
symbolic constant for the y position, and the windows x and y size.

Parameters nine and ten are set to NULL since this window has no parent and no
default menu.

The eleventh parameter, hInstance, is a the handle to the instance that was
passed to WinMain() by Windows.

The last entry, called the creation parameters, can be used to pass data to a pro-
gram. A CREATESTRUCT-type structure is used to store the initialization parame-
ters passed to the windows procedure of an application. The data can include an
instance handle, a new menu, the window's size and location, the style, the win-
dow's name and class name, and the extended style. Since no creation parameters
are passed, the field is set to NULL.

The CreateWindowEx() function returns a handle to the window of type HWND.
The template file Templ01.cpp stores this handle in a global variable named hwnd.
The reason for this is that many functions in the Windows API require this handle.
By storing it in a global variable we make it visible throughout the code.

If CreateWindowsEx() fails, it returns NULL. Code in WinMain() can test for this
error condition with the statement:

© 2003 by CRC Press LLC

if(!hwnd)
return(0);

We do not use this test in the template file Templ01.cpp because it is usually not
necessary. If WinMain() fails, you may use the debugger to inspect the value of hwnd
after CreateWindowEx() in order to make sure that a valid handle was returned.

16.2.6 Displaying the Window
CreateWindowEx() creates the window internally but does not display it. To display
the window your code must call two other functions: ShowWindow() and
UpdateWindow(). ShowWindow() sets the window's show state and UpdateWindow()
updates the window's client area. In the case of the program's main window,
ShowWindow() must be called once, using as a parameter the iCmdShow value passed
by Windows to WinMain(). In the template file the call is coded as follows:

��
��
��
� �����$
�%���
�� �

The first parameter to ShowWindow() is the handle to the window returned by
CreateWindowEx(). The second parameter is the window's display mode parameter,
which determines how the window must be initially displayed. The display mode pa-
rameters are listed in Table 16-1, but in this first call to ShowWindow() you must use
the value received by WinMain().

UpdateWindow() actually instructs the window to paint itself by sending a
WM_PAINT message to the windows procedure. The processing of the WM_PAINT
message is described later in this chapter. The actual code in the template file is as
follows:

&���!��
��
� ������ �

If all has gone well, at this point your program is displayed on the screen. It is
now time to implement the message passing mechanisms that are at the heart of
event-driven programming.

16.2.7 The Message Loop
In an event-driven environment there can be no guarantee that messages are pro-
cessed faster than they originate. For this reason Windows maintains two message
queues. The first type of queue, called the system queue, is used to store messages that
originate in hardware devices, such as the keyboard and the mouse. In addition, every
thread of execution has its own message queue. The message handling mechanism can
be described with a simplified example: when a keyboard event occurs, the device
driver software places a message in the system queue. Windows uses information
about the input focus to decide which thread should handle the message. It then
moves the message from the system queue into the corresponding thread queue.

A simple block of code, called the message loop, removes a messages from the
thread queue and dispatches it to the function or routine which must handle it.
When a special message is received, the message loop terminates, and so does the
thread. The message loop in Templ01.cpp is coded as follows:

while (GetMessage (&msg, NULL, 0, 0))

© 2003 by CRC Press LLC

{
TranslateMessage (&msg) ;
DispatchMessage (&msg) ;
}

return msg.wParam ;

The while statement calls the function GetMessage(). The first parameter to
GetMessage() is a variable of the structure type MSG, described in Section 16.2.2.
The structure variable is filled with information about the message in the queue, if
there is one. If no message is waiting in the queue, Windows suspends the applica-
tion and assigns its time slice to other threads of execution. In an event-driven envi-
ronment, programs act only in response to events. No event, no message, no action.

The second parameter to GetMessage() is the handle to a window for which to re-
trieve a message. Most applications set this parameter to NULL, which signals that
all messages for windows that belong to the application making the call should be
retrieved. The third and the fourth parameter to GetMessage() are the lowest and
the highest message numbers to be retrieved. Threads that only retrieve messages
within a particular range can use these parameters as a filter. When the special value
0 is assigned to both of these parameters (as is the case in our message loop) then
no filtering is performed and all messages are passed to the application.

There are two functions inside the message loop. TranslateMessage() is a key-
board processing function that converts keystrokes into characters. The characters
are then posted to the message queue. If the message is not a keystroke that needs
translation, then no special action is taken. The DispatchMessage() function sends
the message to the windows procedure, where it is further processed and either
acted upon, or ignored. The windows procedure is discussed in the following sec-
tion. GetMessage() returns 0 when a message labeled WM_QUIT is received. This
signals the end of the message loop; at this point execution returns from WinMain(),
and the application terminates.

16.3 The Window Procedure
At this moment in a program's execution the window class has been registered, the
window has been created and displayed, and all messages are being routed to your
code. The windows procedure, sometimes called the window function, is where you
write code to handle the messages received from the message loop. It is in the win-
dows procedure where you respond to the events that pertain to your program.

Every window must have a window procedure. Although the name WinProc() is
commonly used, you can use any other name for the windows procedure provided
that it appears in the procedure header, the prototype, in the corresponding entry of
the WNDCLASSEX structure, and that it does not conflict with another name in your
application. Also, a Windows program can have more than one windows procedure.
The program's main window is usually registered in WinMain() but others can be
registered elsewhere in an application. Here again, each windows procedure corre-
sponds to a window class, has its own WNDCLASSEX structure, as well as a unique
name.

In the template, the windows procedure is coded as follows:

© 2003 by CRC Press LLC

|------------------------ Return type, equivalent to a long type
| |---------------- Same as FAR PASCAL calling convention.
| | Used in windows and dialog procedures.
| | |------- Procedure name
| | | [parameter list ...]

------- -------- ------- ---
LRESULT CALLBACK WndProc (HWND hwnd, UINT iMsg, WPARAM wParam,

LPARAM lParam) {

The windows procedure is of callback type. The CALLBACK symbol was first in-
troduced in Windows 3.1 and is equivalent to FAR PASCAL, and also to WINAPI,
since all of them currently correspond to the __stdcall calling convention. Although
it is possible to substitute __stdcall for CALLBACK in the function header, it is not
advisable, since this could compromise the application's portatibility to other plat-
forms or to future versions of the operating system.

The return value of a windows procedure is of type LRESULT, which is a 32-bit in-
teger. The actual value depends on the message, but it is rarely used by application
code. However, there are a few messages for which the windows procedure is ex-
pected to return a specific value. It is a good idea to check the Windows documenta-
tion when in doubt.

16.3.1 Windows Procedure Parameters
The four parameters to the windows procedure are the first four fields in the MSG
structure. The MSG structure is discussed earlier in this chapter. Since the windows
procedure is called by Windows, the parameters are provided by the operating system
at call time, as follows:

• hwnd is the handle to the window receiving the message. This is the same handle re-
turned by CreateWindow().

• iMsg is a 32-bit unsigned integer (UINT) that identifies each particular message. The
constants for the various messages are defined in the windows header files. They all
start with the letters WM_, which stand for window message.

• wParam and lParam are called the message parameters. They provide additional infor-
mation about the message. Both values are specific to each message.

The last two members of the message structure, which correspond to the mes-
sage's time of posting and cursor position, are not passed to the windows proce-
dure. However, application code can use the functions GetMessageTime() and
GetMessagePos() to retrieve these values.

16.3.2 Windows Procedure Variables
The implementation of the windows procedure in Templ01.cpp starts by declaring a
scalar of type HDC and two structure variables of type HWND and MSG respectively.
The variables are as follows:

• hdc is a handle to the device context. A device context is a data structure maintained by
Windows which is used in defining the graphics objects and their attributes, as well as
their associated graphics modes. Devices such as the video display, printers, and plot-
ters, must be accessed through a handle to their device contexts, which is obtained
from Windows.

© 2003 by CRC Press LLC

• ps is a PAINTSTRUCT variable. The structure is defined by Windows as follows:

typedef struct tagPAINTSTRUCT {
HDC hdc; // identifies display device
BOOL fErase; // not-zero if background must be erased
RECT rcPaint; // Rectangle structure in which painting is

// requested
BOOL fRestore; // RESERVED
BOOL fIncUpdate; // RESERVED
BYTE rgbReserved[32]; // RESERVED

} PAINTSTRUCT;

The structure contains information that is used by the application to paint its own cli-
ent area.

• rect is a RECT structure variable. The RECT structure is also defined by Windows:

typdef struct _RECT {
LONG left; // x coordinate of upper-left corner
LONG top; // y of upper-left corner
LONG right; // x coordinate of bottom-right corner
LONG bottom; // y of bottom-right

} RECT;

The RECT structure is used to define the corners of a rectangle, in this case of the
application's display area, which is also called the client area.

16.3.3 Message Processing
The windows procedure receives and processes messages. The message can originate
as follows:

• Some messages are dispatched by WinMain(). In this group are the messages placed in
the thread's message queue by the DispatchMessage() function in the message loop.
Messages handled in this manner are referred to as queued messages. Queued mes-
sages originate in keystrokes, mouse movements, mouse button clicks, the system
timer, and in orders to redraw the window.

• All other messages come directly from Windows. These are called nonqueued mes-
sages.

The windows procedure examines each message, queue or nonqueued, and either
takes action or passes the message back for default processing. In the template file
Templ01.cpp the message processing skeleton is coded as follows:

switch (iMsg)
{

// Windows message processing
// Preliminary operations
case WM_CREATE:

return (0);

// Redraw window
case WM_PAINT :

hdc = BeginPaint (hwnd, &ps) ;
GetClientRect (hwnd, &rect) ;

// Initial display operations here
EndPaint (hwnd, &ps) ;
return 0 ;

© 2003 by CRC Press LLC

// End of program execution
case WM_DESTROY :

PostQuitMessage (0) ;
return 0 ;

}
return DefWindowProc (hwnd, iMsg, wParam, lParam) ;

Messages are identified by uppercase symbolic constants that start with the char-
acters WM_ (window message). Over two hundred message constants are defined in
Windows. Three messages are processed in the template file: WM_CREATE,
WM_PAINT and WM_DESTROY.

When the Windows procedure processes a message it must return 0. If it does not
process a particular message, then the function DefWindowsProc() is called to pro-
vide a default action.

WM_CREATE Message Processing

The WM_CREATE message is sent to an application as a result of the
CreateWindowEx() function in WinMain(). This message gives the application a
chance to perform preliminary initialization, such as displaying a greeting screen, or
playing a sound file. In the template, the WM_CREATE processing routine does noth-
ing. It serves as a placeholder where the programmer can inserts the appropriate code.

WM_PAINT Message Processing

The WM_PAINT message informs the program that all or part of the client window
must be repainted. This happens when the user minimizes, overlaps, or resizes the cli-
ent window area. Recall that the style of the program's main window is defined in the
template with the statement:

������		�	!'�� � ��(�������) ��(*������ �

This style determines that the screen is redrawn if it is resized vertically or hori-
zontally.

In WM_PAINT, processing begins with the BeginPaint() function. BeginPaint()
serves to prepare the window for a paint operation by filling a variable of type
PAINTSTRUCT, previously discussed. The call to BeginPaint() requires the hwnd
variable, which is the handle to the window that is to be painted. Also a variable ps,
of a structure of type PAINTSTRUCT, which is filled by the call. During BeginPaint()
Windows erases the background using the currently defined brush.

The call to GetClientRect() requires two parameters. The first one is the handle to
the window (hwnd), which is passed to the windows procedure as a parameter. In
the template file this value is also stored in a public variable. The second parameter
is the address of a structure variable of type RECT, where Windows places the coor-
dinates of the rectangle that defines the client area. The left and top values are al-
ways set to zero.

Processing ends with EndPaint(). EndPaint() notifies Windows that the paint op-
eration has concluded. The parameters passed to EndPaint() are the same ones

© 2003 by CRC Press LLC

passed to BeginPaint(): the handle to the window and the address of the structure
variable of type PAINTSTRUCT.

WM_DESTROY Message Processing

The WM_DESTROY message is received by the windows procedure when the user
takes an action to destroy the window, usually clicking the Close button or selecting
the Close or Exit commands from the File or the System menus. The standard process-
ing performed in WM_DESTROY is:

�
	!+,
!-�		� � �.� �

The PostQuitMessage() function inserts a WM_QUIT message in the message
queue, thus terminating the GetMessage loop and ending the program.

16.3.4 The Default Windows Procedure
The code in the template file contains a return statement for each of the messages that
it handles. For example:

case WM_PAINT :
hdc = BeginPaint (hwnd, &ps) ;
GetClientRect (hwnd, &rect) ;

// Initial display operations here
EndPaint (hwnd, &ps) ;
return 0 ;

The last statement in this routine returns a value of zero to Windows. The Win-
dows documentation states that zero must be returned when an application pro-
cesses the WM_PAINT message. Some Windows messages, not many, require a
return value other than zero.

Many of the messages received from Windows, or retrieved from the message
queue, are of no interest to your application. In this case, code must provide a de-
fault action for those messages that it does not handle. Windows contains a func-
tion, named DefWindowsProc(), that ensures this default action. DefWindowsProc()
provides specific processing for those messages that require it, thus implementing a
default behavior. For those messages that can be ignored, DefWindowsProc() re-
turns zero. Your application uses the return value of DefWindowsProc() as its own
return value from the Windows procedure. This action is coded as follows in the
template file:

��!,�� ����
��
���
� �����$
-	 $ �����%$ �����%� �

The parameters passed to DefWindowsProc() are the same message parameters
received by your windows procedure from the operating system.

16.4 The WinHello Program
In the first walkthrough, at the beginning of this chapter, we used the template file
Templ01.cpp to create a new project, which we named Program Zero Demo. Program
Zero Demo resulted in a do-nothing program since no modifications were made to the
template file at that time. In the present walkthrough we proceed to make modifica-
tions to the template file in order to create a Windows program different from the tem-

© 2003 by CRC Press LLC

plate. This project, which we named Hello Windows, is a Windows version of the
classic "Hello World" program.

We first create a new project and use the template file Templ01.cpp as the source
code base for it. In order to do this we must follow all the steps in the first
walkthrough, except that the project name is now Hello Windows and the name tem-
plate file Templ01.cpp is copied and renamed WinHello.cpp. After you have finished
all the steps in the walkthrough you will have a project named Hello Windows and
the source file named WinHello.cpp listed in the Project Workspace and displayed in
the Editor Window. After the source file is renamed, you should edit the header
block to reflect the file's new name and the program's purpose. Figure 16-5 shows
the Developer Studio screen at this point.

Figure 16-5 The Hello Windows Project and Source File

The project Hello Windows, which we are about to code, has the following fea-
tures:

• The caption displayed on the program title bar is changed to "Hello Windows."

• When the program executes it displays a greeting message on the center of its client
area.

© 2003 by CRC Press LLC

• The program now contains a customized icon. A small version of the icon is displayed in
the title bar and a larger one is used when the program's executable is represented by a
shortcut on the Windows desktop.

Once you have created the project named Hello Windows and included in it the
source file WinHello.cpp, you are ready to start making modifications to the source
and inserting new elements into the project.

16.4.1 Modifying the Program Caption
The first modification that we make to the source is to change the caption that is dis-
played on the title bar when the program executes. This requires editing the third pa-
rameter passed to the CreateWindowsEx() function in WinMain(). The parameter now
reads "Hello Windows." Throughout this book we use the project's name, or a variation
of it, as the title bar caption. Our reason for this is to make it easy to find the project
files from a screen snapshot of the executable.

16.4.2 Displaying Text in the Client Area
The second modification requires entering a call to the DrawText() API function in the
case WM_PAINT processing routine. The routine now is:

case WM_PAINT :
hdc = BeginPaint (hwnd, &ps) ;
GetClientRect (hwnd, &rect) ;

// Display message in the client area
DrawText (hdc,

"Hello World from Windows",
-1,
&rect,
DT_SINGLELINE | DT_CENTER | DT_VCENTER);

EndPaint (hwnd, &ps) ;
return 0 ;

The call to DrawText() requires five parameters. When calls require several pa-
rameters, we can improve the readability of the source by devoting a separate text
line to each parameter, or to several associated parameters, as in the previous list-
ing.

• The first parameter to DrawText() is the handle to the device context. This value was
returned by the call to BeginPaint(), described previously in this chapter.

• The second parameter to DrawText() points to the string to be displayed. The string can
also be enclosed in double quotation marks, as in the previous listing.

• The third parameter is –1 if the string defined in the second parameter terminates in
NULL. If not, then the third parameter is the count of the number of characters in the
string.

• The fourth parameter is the address of a structure of type RECT which contains the log-
ical coordinates of the area in which the string is to be displayed. The call to
GetClientRect(), made in the WM_PAINT message intercept, filled the members of the
rect structure variable.

© 2003 by CRC Press LLC

• The fifth parameter are the text formatting options. Table 16-6 lists the most used of
these controls.

Table 16-6

Symbolic Constant in DrawText() Function

SYMBOLIC CONSTANT MEANING

DT_BOTTOM Bottom-justifies text. Must be combined with

DT_SINGLELINE.

DT_CALCRECT This constant is used to determine the width and

height of the rectangle.

If there are multiple lines of text, DrawText uses

the width of the rectangle in the RECT structure

variable supplied in the call and extends the base

of the rectangle to bound the last line of text.

If there is only one line of text, DrawText

modifies the right side of the rectangle so that

Text is not drawn.

DT_CENTER Centers text horizontally.

DT_EXPANDTABS Expands tab characters. The default number of

characters per tab is eight.

DT_EXTERNALLEADING Includes the font external leading in line height.

Normally, it is not included.

DT_LEFT Aligns text to the left.

DT_NOCLIP Draws without clipping. The function executes

somewhat faster when DT_NOCLIP is used.

DT_NOPREFIX DrawText interprets the control character & as a

command to underscore the character that follows.

The control characters && prints a single &. By

specifying DT_NOPREFIX, this processing is turned

off.

DT_RIGHT Aligns text to the right.

DT_SINGLELINE Displays text on a single line only. Carriage

returns and linefeeds are ignored.

DT_TOP Top-justifies text (single line only).

DT_VCENTER Centers text vertically (single line only).

DT_WORDBREAK Breaks words. Lines are automatically broken

between words if a word extends past the edge of

the rectangle specified by the lpRect parameter.

A carriage return-linefeed sequence also breaks

the line.

© 2003 by CRC Press LLC

16.4.3 Creating a Program Resource
The last customization that you have to perform on the template file is to create two
customized icons, which are associated with the program window. The icons corre-
spond to the hIcon and hIconSm members of the WNDCLASSEX structure described
previously and listed in Appendix A. hIcon is the window's standard icon. Its default
size is 32-by-32 pixels, although Windows automatically resizes this icon as required.
The standard icon is used on the Windows desktop when a shortcut is created and in
some file listing modes of utilities like Windows Explorer. The small icon is 16-by-16
pixels, which makes it one-fourth the size of the large one. This is the icon shown in di-
alog boxes that list filenames, by Windows Explorer, and in the program's title bar.
Windows NT uses a scaled version of the standard icon when a smaller one is required.

An icon is a resource. Resources are stored in read-only, binary data files, that the
application can access by means of a handle. We introduce icons at this time be-
cause other program resources such as cursors, menus, dialog boxes, bitmaps, and
fonts are handled similarly. The icons that we create in this walkthrough are consid-
ered an application-defined resource.

The most convenient way of creating and using resources is to take advantage of
the facilities in the development environment. Visual C++ provides several resource
editors, and Developer Studio facilitates the creation and manipulation of the sup-
port files required for using resources. Graphics programmers often want to retain
the highest possible control over their code; however, the use of these facilities in
creating and managing resources does not compromise this principle. The files cre-
ated by the development environment are both visible and editable. As you gain con-
fidence and knowledge about them you can progressively take over some or all of
the operations performed by the development software. In this book we sometimes
let the development environment generate one or more of the program files and
then proceed to edit them so that it better suits our purpose.

The convenience of using the automated functions of the development environ-
ment is made evident by the fact that a simple resource often requires several soft-
ware elements. For example, a program icon requires the following components:

• A bitmap that graphically encodes the icon. If the operating system and the application
supports the small icon, then two bitmaps are required.

• A script file (also called a resource definition file) that lists all the resources in the appli-
cation and may describe some of them in detail. The resource script can also reference
other files and may include comments and preprocessor directives. The resource com-
piler (RC.EXE) compiles the script file into a binary file with the extension .RES. This
binary file is referenced at link time. The resource file has the extension .RC.

• The script file uses a resource header file, with the default filename "resource.h", which
contains preprocessor directives related to the resources used by the application. The
application must reference this file with an #include statement.

16.4.4 Creating the Icon Bitmap
Developer Studio provides support for the following resources: dialog boxes, menus,
cursors, icons, bitmaps, toolbars, accelerators, string tables, and version controls.

© 2003 by CRC Press LLC

Each resource has either a graphics editor or a wizard that helps create the resource.
In this discussion we refer to either one of them as a resource editor.

Resource editors can be activated by clicking on the Resource command in the
Insert menu. At this time Developer Studio displays a dialog box with an entry for
each type of resource. Alternatively, you can access the resource editors faster by
displaying the Resource toolbar. In Visual C++ 4 and later this is accomplished by
clicking on the Toolbars command in the View menu, and then selecting the
checkbox for the Resource option. In Versions 5 and 6 select the Customize com-
mand in the Tools menu, open the Toolbars tab in the Customize dialog box and se-
lect the checkbox for the Resource option. The Graphics and Colors boxes should
also be checked to display the normal controls in the resource editors. The resulting
toolbar is identical in both cases. Once the Resource toolbar is displayed, you can
drag it into the toolbar area or to any other convenient screen location. The Insert
Resource dialog screen and the resource toolbar are shown in Figure 16-6.

Figure 16-6 Developer Studio Insert Resource Dialog Screen and Toolbar

© 2003 by CRC Press LLC

You can activate the icon editor either by selecting the icon option in the Re-
source dialog box or by clicking the appropriate button on the toolbar. The icon edi-
tor is simple to use and serves well in most cases. It allows creating the bitmap for
several sizes of icons. Although the interface to the icon editor is simple, it is also
powerful and flexible. You should experiment with the icon editor, as well as with
the other resource editors, until you have mastered all their options and modes. Fig-
ure 16-7 shows the icon editor in Developer Studio.

Figure 16-7 Creating An Icon Resource with Developer Studio Icon Editor

The toolbar on the right of the icon editor is similar to the one used in the Win-
dows Paint utility and in other popular graphics programs. There are several tools
that allow drawing lines, curves, and geometrical figures in outline or filled form.
Also, there is a palette box from which colors for foreground and background can be
selected.

Developer Studio makes possible the creation of a large and a small icon in the
same resource. To request the small icon, click on the New Device Image button and
then select the 16-by-16 icon. The two icons, 32 by 32 pixels and 16 by 16 pixels, can
be developed alternatively by selecting one of them in the Open Device Image scroll
box in the icon editor. Windows automatically uses the large and the small icon as
required.

In the WinHello program the WNDCLASSEX structure is edited to support
user-created large and small icons, as follows:

© 2003 by CRC Press LLC

// The program icon is loaded in the hIcon and hIconSm

// structure members

WNDCLASSEX wndclass ;

wndclass.hIcon = (HICON) LoadImage(hInstance,

MAKEINTRESOURCE(IDI_ICON1),

IMAGE_ICON, // Type

32, 32, // Pixel size

LR_DEFAULTCOLOR) ;

.

.

.

wndclass.hIconSm = (HICON) LoadImage(hInstance,

MAKEINTRESOURCE(IDI_ICON1),

IMAGE_ICON, // Type

16, 16, // Pixel size

LR_DEFAULTCOLOR) ;

The MAKEINTRESOURCE macro is used to convert an integer value into a re-
source. Although resources can also be referenced by their string names, Microsoft
recommends the use of the integer value. The name of the icon resource,
IDI_ICON1, can be obtained from the resource script file. However, an easier way of
finding the resource name is to click the Resource Symbols button on the Resource
toolbar (labeled ID=) or select the Resource Symbols command in the View menu.
Either the symbolic name or the numerical value for the icon resource that is shown
on the Resource Symbols screen can also be used in the MAKEINTRESOURCE
macro.

In the process of creating an icon bitmap, Developer Studio also creates a new
script file, or adds the information to an existing one. However, when working out-
side of the MFC, you must manually insert the script file into the project. This is
done by selecting the Add to Project command in the Project menu and then clicking
on the Files option. In the Insert Files into Project dialog box, select the script file,
which in this case is the one named Script1.rc, and then press the OK button. The
script file now appears on the Source Files list in the Files View window of the Pro-
ject Workspace.

In addition to the script file, Developer Studio also creates a header file for re-
sources. The default name of this file is resource.h. In order for resources to be
available to the code you must enter an #include statement in the main source file,
as follows:

/
���,�� 0��	
,�����0

Notice that the double quotation marks surrounding the filename indicate that it
is in the current folder.

At this point, all that is left to do is to compile the resources, the source files, and
link the program into an executable. This is done by selecting the Rebuild All com-
mand in the Build menu. Figure 16-8 shows the screen display of the WinHello pro-
gram.

© 2003 by CRC Press LLC

Figure 16-8 Screen Snapshot of the WinHello Program

16.5 WinHello Program Listing
The following is a listing of the WinHello cpp source file that is part of the Hello Win-
dows project .

//**
// PROJECT: Hello Windows
// Source: WinHello.cpp
// Chapter reference: 16
//**
// Description:
// A Hello Windows demonstration program
// Topics:
// 1. Create a program icon
// 2. Display a text message in the client area
//**

#include <windows.h> // Standard Windows header
#include "resource.h" // Load resource file for icon

// Predeclaration of the window procedure
LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

//**
// WinMain
//**
int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,

PSTR szCmdLine, int iCmdShow)
{

static char szAppName[] = "Demo" ; // Class name
HWND hwnd ;

© 2003 by CRC Press LLC

MSG msg ;

// Defining a structure of type WNDCLASSEX
// The program icon is loaded in the hIcon and hIconSm
// structure members
WNDCLASSEX wndclass ;
wndclass.cbSize = sizeof (wndclass) ;
wndclass.style = CS_HREDRAW | CS_VREDRAW ;
wndclass.lpfnWndProc = WndProc ;
wndclass.cbClsExtra = 0 ;
wndclass.cbWndExtra = 0 ;
wndclass.hInstance = hInstance ;
wndclass.hIcon = (HICON)LoadImage(hInstance,

MAKEINTRESOURCE(IDI_ICON1),
IMAGE_ICON,
32, 32,
LR_DEFAULTCOLOR) ;

wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
wndclass.hbrBackground = (HBRUSH) GetStockObject

(WHITE_BRUSH) ;
wndclass.lpszMenuName = NULL ;
wndclass.lpszClassName = szAppName ;
wndclass.hIconSm = (HICON)LoadImage(hInstance,

MAKEINTRESOURCE(IDI_ICON1),
IMAGE_ICON,
16, 16,
LR_DEFAULTCOLOR) ;

// Registering the structure wmdclass
RegisterClassEx (&wndclass) ;

// CreateWindow()
hwnd = CreateWindowEx (

WS_EX_LEFT, // Left aligned (default)
szAppName, // pointer to class name

"Hello Windows", // window caption
WS_OVERLAPPEDWINDOW, // window style
CW_USEDEFAULT, // initial x position
CW_USEDEFAULT, // initial y position
CW_USEDEFAULT, // initial x size
CW_USEDEFAULT, // initial y size
NULL, // parent window handle
NULL, // window menu handle
hInstance, // program instance handle
NULL) ; // creation parameters

ShowWindow (hwnd, iCmdShow) ;
UpdateWindow (hwnd) ;

// Message loop
while (GetMessage (&msg, NULL, 0, 0))

{
TranslateMessage (&msg) ;
DispatchMessage (&msg) ;
}

return msg.wParam ;
}
//****************************
// Windows Procedure
//****************************
LRESULT CALLBACK WndProc (HWND hwnd, UINT iMsg, WPARAM wParam,

© 2003 by CRC Press LLC

LPARAM lParam)
{

PAINTSTRUCT ps ;
RECT rect ;
HDC hdc;

switch (iMsg)
{

// Windows message processing
case WM_CREATE:

return 0;

case WM_PAINT :
hdc = BeginPaint (hwnd, &ps) ;
GetClientRect (hwnd, &rect) ;

// Display message in the client area
DrawText (hdc,

"Hello World from Windows",
-1,
&rect,
DT_SINGLELINE | DT_CENTER | DT_VCENTER);

EndPaint (hwnd, &ps) ;
return 0 ;

// End of program execution
case WM_DESTROY :

PostQuitMessage (0) ;
return 0 ;

}
return DefWindowProc (hwnd, iMsg, wParam, lParam) ;

}

© 2003 by CRC Press LLC

Chapter 17

Text Graphics

Topics:
• Text in Windows applications

• The client area and the display context

• Mapping modes

• Text as a graphics object

• Drawing with text

In this chapter we discuss a field of Windows programming that is not conventionally
considered as part of computer graphics, mainly text display. Windows is a graphics
environment; all Windows programming is, in a sense, graphics programming. A natu-
ral line of demarcation between graphics and non-graphics services does not exist in
the GDI. Text can be considered a graphics resource, since displaying and manipulat-
ing text characters is not different than any other graphics object.

Furthermore, discussing text programming at this point serves as an introduction
into Windows application development. Understanding text programming requires
knowledge of the fundamental concepts of Windows programming. These are the
client area, the Windows coordinate system, the display context, and the mapping
mode, which are also central elements of Windows graphics.

17.1 Text in Windows
Computer systems, including the PC, have historically differentiated between text
and graphics. The original notion was that programs could either execute in textual
form, by displaying messages composed of alphabetical and numeric characters, or
they could use pictures and images to convey information. When the VGA (Video
Graphics Array) video standard was released in 1987, it defined both text and graphics
modes, with entirely different features and programming. Even in Windows, which is a
graphics environment by design, there is a distinction between console-based applica-
tions and graphics-based applications. In console-based applications, Windows refers
to a Console User Interface, or CUI, and in graphics-based applications, to a Graphics

© 2003 by CRC Press LLC

User Interface, or GUI. When you select the New command in the Developer Studio File
menu, the Projects tab contains an option for creating a Win32 Console Application.

In fact, in the Windows environment, the distinction between text and graphics
programs is not clear. The text-related functions in the API, which are more than 20,
are actually part of the GDI (Graphics Device Interface). In Windows text is a another
graphics resource.

Here we consider Windows text operations as related to GUI programming. Con-
sole-based applications are not discussed in this book. In addition, text manipulations
and programming provide an introduction to topics related to client area access and
control, which are at the core of Windows programming.

17.1.1 The Client Area

The part of the window in which a program can draw is called the client area. The client
area does not include the title bar, the sizing border, nor any of the optional elements
such as the menu, toolbar, status bar, and scroll bars. The client area is the part of the
program window that you access to convey information to the user and on which your
application displays child windows and program controls.

DOS programmers own the device, whether working on graphics or on text modes.
Once a DOS text program has set a video mode, it knows how many characters can be
displayed in each text line, and how many text lines fit on the screen. By the same to-
ken, a DOS graphics program knows how many pixel rows and columns are in its do-
main. Some Windows programs use a fixed-size window, but in most cases, a
Windows application cannot make assumptions regarding the size of its client area.
Normally, the user is free to resize the screen vertically, horizontally, or in both direc-
tions simultaneously. There is practically no limit to how small it can be made, and it
can be as large as the entire Windows application area. Writing code that can reason-
ably accommodate the material displayed to any size of the client area is one of the
challenges of Windows programming.

17.2 Device and Display Contexts
The notion of a device context is that of a Windows data structure that stores informa-
tion about a particular display device, such as the video display or a printer. All Windows
functions that access the GDI require a handle to the device context as a parameter. The
device context is the link between your application, the GDI, and the device-dependent
driver that executes the graphics command on the installed hardware. Figure 17-1 is a
schematic diagram of this relationship.

In Figure 17-1 we see that the Windows application uses one of several available
operations to obtain a device context. The call to BeginPaint(), used in TEMPL01.CPP
and in the WinHello program listed in Chapter 16, returns the handle to the device
context. BeginPaint() is the conventional way of obtaining the handle to the device
context in a WM_PAINT handler. The GetDC() function is often used to obtain the
handle to the device context outside of WM_PAINT. In either case, from now on, a
particular device context data structure is associated with the application.

© 2003 by CRC Press LLC

Figure 17-1 The Device Context, Application, GDI, and Device Driver

Once a device context has been obtained, GDI calls examine the device context
attributes to determine how to perform a drawing operation. In Figure 4-1 we see
some of the DC attributes: the background color, the brush, and the current position
of the drawing pen. There are many attributes associated with a common display
context. For example, the default stock pen is defined as BLACK_PEN in the device
context. If this stock pen is not changed, the GDI uses it in all drawing operations.
The application can, however, change the stock pen in the device context to
NULL_PEN or WHITE_PEN by calling SelectPen().

17.2.1 The Display Context

The video display is a device that requires most careful handling in a multitasking envi-
ronment. Several applications, as well as the system itself, usually share the display
device. The notions of child and parent windows, client and non-client areas, desktop
windows, and of applications area, all relate to this topic. The display context is a spe-
cial device context for a display device.

The principal difference between a device context and the display context is that
a device context allows access to the entire device, while the display context limits
access to the output area of its associated window. A display context usually refers
to one of the following areas:

reads DC
data

GDI

function

graphics output

request

.

.

.
DC attributes/modes:
background color =
brush =
current pen position =
drawing mode =
pen =
.
.
.

obtains a DC

Windows
Application

GDI

Device
Driver

© 2003 by CRC Press LLC

• The window's client area

• The window's entire surface, including the non-client area

• The entire desktop surface

Application output is usually limited to the client area, therefore, this is the de-
fault display context.

Since the display context is a specialization of the term device context, it is cor-
rect to refer to the display context as a device context. The reverse, however, is not
always true. For example, the printer device context is not a display context. In
Chapter 3 we referred to the display context as a device context, which is accept-
able. Windows documentation does not always use these terms rigorously. This has
been the cause of some misunderstanding. The fact that Windows documentation
sometimes uses the term display device context as equivalent to display context has
added to the confusion.

17.2.2 Display Context Types

According to the application's needs, there are four possible classes of display con-
texts: common DC, single DC, private DC, and parent DC. The type of display context
for a window is defined in the WNDCLASSEX structure. During the call to
RegisterClassEx() we establish the type of display context for the windows class. This
is determined by the value entered in the wndclass.style member of WNDCLASSEX.

In Table 16-2 there are three constants that refer to the display context types:
CS_OWNDC, CS_CLASSDC, and CS_PARENTDC. When no display type constant is
entered in the wndclass.style, then the display context type is common, which is the
default. In the case of a common display context, Windows resets all attributes to
the default values each time the handle is retrieved. This requires the application to
reset each attribute that is different from the default settings.

The class display context is enabled with the CS_CLASSDC constant at the time
of registering the window class. In this case, Windows initializes the display context
attributes once, for all windows of the class. When the display context is retrieved,
Windows resets the device origin and the clipping region, but not the other attrib-
utes. All windows of this class obtain the same attributes with the handle to the dis-
play context. One disadvantage of a class display context is that if one window
makes changes to the display context, these changes remain in effect for all subse-
quent windows that use it.

The parent display context is enabled by entering the CS_PARENTDC constant in
the WNDCLASSEX structure. In this case, Windows creates a common display con-
text and sets its clipping region to the same as that of the parent. The result is that a
child window can draw to its parent's client area. The most common use of a parent
display context is in drawing controls inside dialog boxes. Round-off errors that re-
sult from calculating the bounding box for dialog boxes sometimes cause controls
that are clipped at display time. Using a parent display context solves this problem.

© 2003 by CRC Press LLC

The private display context is associated with a window when the CS_OWNDC
constant is used in the wndclass.style member of WNDCLASSEX. At registration
time, each window created from the class is given a private display context. Be-
cause each window has its own display context permanently associated, it need be
retrieved only once. All attributes assigned to a private display context are retained
until they are explicitly changed. In some types of applications the use of a private
display context minimizes coding and improves performance.

Applications that often make changes to the client area, as is the case with many
graphics programs, can often profit from a private display context. In order to ac-
complish this, several changes have to be made to the TEMPL01.CPP program file.
In the first place, an OR operation must be performed between the CS_OWNDC con-
stant and the other values in the wndclass.style member of WNDCLASSEX, as fol-
lows:

// Defining a structure of type WNDCLASSEX
WNDCLASSEX wndclass ;
wndclass.cbSize = sizeof (wndclass) ;
wndclass.style = CS_HREDRAW | CS_VREDRAW | CS_OWNDC;

.

.

.

The remaining changes take place in the Windows procedure. In the first place,
you must declare a variable of type HDC. This variable must have static scope so
that its value is preserved between reentries of the windows procedure. The display
context can be obtained during WM_CREATE processing, which executes at the
time the window is created. This is possible because the display context is private.
In this case, you can use the GetDC() function to obtain the handle to the display
context, as in the following code fragment:

LRESULT CALLBACK WndProc (HWND hwnd, UINT iMsg, WPARAM wParam,
LPARAM lParam) {

// Local variables
PAINTSTRUCT ps ;
RECT rect ;
static HDC hdc; // Handle to private DC

switch (iMsg)
{

// Windows message processing
case WM_CREATE:

hdc = GetDC(hwnd); // Obtain handle to
// private DC

return 0;
.
.
.

The private display context is available during WM_PAINT message intercept,
and need not be retrieved during each iteration. Therefore, the return value from
BeginPaint() can be discarded and the EndPaint() function becomes unnecessary,
as in the following code fragment:

© 2003 by CRC Press LLC

case WM_PAINT :

BeginPaint (hwnd, &ps) ;

GetClientRect (hwnd, &rect) ;

// Display message in the client area

DrawText (hdc,

"Demo program using a private DC",

-1,

&rect,

DT_SINGLELINE | DT_CENTER | DT_VCENTER);

return 0 ;

.

.

.

The project named Private DC Demo, in the book's software package, contains
the full source for a private DC demonstration. You can use the source file
TEMPL02.CPP as a template for creating applications that use a private display con-
text.

17.2.3 Window Display Context

Applications sometimes wish to draw not only on the client area, but elsewhere in the
window. Normally, areas such as the title bar, menus, status bar, and scroll bars are in-
accessible to code that uses one of the display context types previously mentioned.
You can, however, retrieve a window-level display context. In this case, the display
context's origin is not at the top-left corner of the client area, but at the top-left corner
of the window. The GetWindowDC() function is used to obtain the handle to the win-
dow-level display context and the ReleaseDC() function to release it. In general, draw-
ing outside of the client area should be avoided, since it can create problems to the
application and to Windows.

17.3 Mapping Modes
One of the most important attributes of the display context is the mapping mode, since
it affects practically all drawing operations. The mapping mode is actually the algo-
rithm that defines how logical units of measurement are translated into physical units.
To understand mapping modes we must start with logical and device coordinates.

The programmer specifies GDI operations in terms of logical coordinates, or logi-
cal units. The GDI sends commands to the device driver in physical units, also called
device coordinates. The mapping mode defines the logical units and establishes the
methods for translating them into device coordinates. This translation can be de-
scribed as a mapping operation. In regards to the display device, as well as in most
printers, device coordinates are expressed in pixels. Logical coordinates depend on
the selected mapping mode. Windows defines six fixed-size mapping modes, as
shown in Table 17-1.

Two other mapping modes, not listed in Table 17-1, are MM_ANISOTROPIC and
MM_ISOTROPIC. These modes can be used for shrinking and expanding graphics by
manipulating the coordinate system. These two scalable mapping modes, useful for
very powerful graphics manipulation, are discussed in Chapter 19.

© 2003 by CRC Press LLC

Table 17-1

Windows Fixed-Size Mapping Modes

MAPPING MODE LOGICAL UNITS X-AXIS Y-AXIS

MM_TEXT pixel right down
MM_LOWMETRIC 0.1 mm right up
MM_HIGHMETRIC 0.01 mm right up
MM_LOENGLISH 0.01 inch right up
MM_HIENGLISH 0.001 inch right up
MM_TWIPS 1/1440 inch right up

The default mapping mode, MM_TEXT, is also the most used one. In MM_TEXT,
the logical coordinates coincide with the device coordinates. Programmers who
learned graphics in the DOS environment usually feel very comfortable with this
mapping mode. Note that the name MM_TEXT refers to how we normally read text
in the Western languages: from left-to-right and top-to-bottom. The name is unre-
lated to text display.

The selection of a mapping mode depends on the needs and purpose of the appli-
cation. Two of the mapping modes, MM_LOMETRIC and MM_HIMETRIC, are based
on the metric system (millimeters). MM_LOENGLISH and MM_HIENGLISH are
based on the English system of measurement (inches). MM_TWIPS is based on a
unit of measurement used in typography called the twip, which is equivalent to
1/20th of a point, or 1/1440 inch. An application that deals with architectural or tech-
nical drawings, in which dimensions are usually in inches or millimeters, can use
one of the mapping modes based on metric or English units of measurement. A
graphics design program, or a desktop publishing application, would probably use
the MM_TWIPS mapping mode.

The SetMapMode() function is used to change the mapping mode in the device
context. One of the parameters in the call is the handle to the device context; the
other parameter is one of the predefined mapping mode constants. For example, to
change the mapping mode to LO_METRIC, you would code:

static int oldMapMode;

.

.

.

oldMapMode = SetMapMode (hdc, LO_METRIC);

The function returns the previous mapping mode, which can be stored in an inte-
ger variable. Later on, the original mapping mode can be restored as follows:

���������� �	�
� ����������
�

SetMapMode() returns zero if the function call fails.

17.3.1 Screen and Client Area

Windows uses several coordinate systems. The basic unit of measurement is the pixel,
also called a device unit. Horizontal values increase from left to right and vertical val-
ues from top to bottom. The origin of the coordinate system is the top-left corner of the

© 2003 by CRC Press LLC

drawing surface. Three different extents are used in relation to the device area:
screen, client area, and window coordinate systems.

The screen coordinate system refers to the entire display area. This coordinate
system is used when location and size information refer to the entire video display.
The call to CreateWindowEx(), in the program WINHELLO.CPP and most of the
template files, uses the symbolic constant CW_USEDEFAULT. This constant lets
Windows select a position and size for the program's window. Alternatively, we
could have specified the window's location and size in device units. For example,
the following call to CreateWindowEx() locates the window at 20 by 20 pixels from
the screen's upper-left corner and forces a dimension of 400 by 500 pixels:

// CreateWindow()
hwnd = CreateWindowEx (

WS_EX_LEFT, // Left aligned (default)
szClassName, // pointer to class name
"WinHello Program", // window caption
WS_OVERLAPPEDWINDOW, // window style
20, // initial x position
20, // initial y position
400, // initial x size
500, // initial y size
NULL, // parent window handle
NULL, // window menu handle
hInstance, // program instance handle
NULL) ; // creation parameters

Other Windows functions, such as those that return the mouse cursor position,
the location of a message box, or the location and size of the windows rectangle,
also use screen coordinates.

Client area coordinates are relative to the upper-left corner of the client area, not
to the video display. The default unit of measurement is the pixel. The function
ClientToScreen() can be used to obtain the screen coordinates of a point in the cli-
ent area. ScreenToClient() obtains the client area coordinates of a point defined by
its screen coordinates. In either function, the x and y coordinates are passed and re-
turned in a structure of type POINT.

Window coordinates refer to the top-left corner of the window itself, not to the
client area. Applications that use the window display context, mentioned earlier in
this chapter, use windows coordinates.

17.3.2 Viewport and Window
The terms viewport and window, when used in relation to logical and device coordi-
nates, can be the source of some confusion. In the first place, Windows documentation
uses the term viewport in a way that does not coincide with its most accepted mean-
ing. In graphics terminology, a viewport is a specific screen area set aside for a particu-
lar graphics function. In this sense, the notion of a viewport implies a region within the
application's window.

In Windows, the viewport is often equated with the client area, the screen area, or
the application area, according to the bounds of the device context. The one charac-

© 2003 by CRC Press LLC

teristic element of the viewport is that it is expressed in device units, which are pix-
els. The window, on the other hand, is expressed in terms of logical coordinates.
Therefore, the unit of measurement of a window can be inches, millimeters, twips,
or pixels in the six fixed-sized mapping modes, or one defined by the application in
the two scalable mapping modes.

In regards to viewports and windows, there are two specific boundaries that must
be considered: the origin and the extent. The origin refers to the location of the win-
dow or viewport, and the extent to its width and height. The origin of a window and
a viewport can be set to different values in any of the mapping modes. Function
calls to set the window and the viewport extent are ignored when any one of the six
fixed-sized mapping modes is selected in the device context. However, in the two
scalable mapping modes, MM_ISOTROPIC and MM_ANISOTROPIC, both the origin
and the extent of the viewport and the window can be set separately.

A source of confusion is that both the viewport and the window coincide in the
default mapping mode (MM_TEXT). In the fixed-size mapping modes, the extent of
the viewport and the window cannot be changed, as mentioned in the preceding
paragraph. This should not be interpreted to mean that they have the same value.
Actually, the measurement in units of length of the viewport and the window extent
is meaningless. It is the ratio between the extent that is useful. For example, if the
viewport extent is 20 units and the window extent is 10 units, then the ratio of
viewport to window extent is of 20/10, or 2. This value is used as a multiplier when
converting between window and device coordinates. Other factors that must be
taken into account in these conversions are the location of the point, the origin of
the viewport, and the origin of the window. Figure 17-2, on the following page, is a
simplified, schematic representation of the concepts of viewport and window.

In Figure 17-2, the dimension of the logical units is twice that of the device units,
in both axes. Therefore, the ratio between the window extension and the device ex-
tension (xVPExt / xWExt and yVPExt / yWExt) equals 2. The point located at xW, yW
is at window coordinates xW = 8, yW = 9, as shown in the illustration. To convert to
device coordinates, we apply the corresponding formulas. In calculating the x-axis
viewport coordinate of the point xW, yW, we proceed as follows:

xVP = (xW - xWOrg) x (xVPExt / xWExt) + xVPOrg

xVP = (8 -(- 16)) x 2 + 0

xVP = 48

This means that in the example in Figure 17-2, the point at window coordinates x
= 8, y = 9, located in a window whose origin has been displaced 16 logical units on
the x-axis, and 5.5 logical units in the y-axis, is mapped to viewport coordinates xVP
= 48, yVP = 25. Note that the sample calculations do not include the y-coordinate.

17.4 Programming Text Operations
Text operations in console-based applications are usually a simple task. The text char-
acters are displayed using whatever font is selected at the system level, and at the
screen line and column where the cursor is currently positioned. In analogy with the
old Teletype machines, this form of text output programming is said to be based on the

© 2003 by CRC Press LLC

model of a "glass TTY." But even when the program takes control of the display area,
the matter of text output is no more complicated than selecting a screen line and a col-
umn position.

Figure 17-2 Viewport and Window Coordinates

In graphics programming, and particularly in Windows graphics, the coding of
text operations often becomes a major task, to the point that Windows text pro-
gramming is considered a specialty field. In this sense, it is possible to speak of
bitmapped graphics, of vector graphics, and of text graphics. Developing a
GDI-based text-processing application, such as a Windows word processing or desk-
top publishing program, involves a great amount of technical complexity. In addi-
tion to programming skills, it requires extensive knowledge of typography, digital
composition, and graphics arts. At present, we are concerned with text graphics in a
non-specialized context. That is, text display is one of the functionality that is nor-
mally necessary in implementing a Windows application. But even in this more gen-
eral sense, text programming in Windows is not without some complications.

window coordinates
(logical units)

viewport coordinates
(device units)

viewport origin (xVPOrg, yVPOrg)

window origin (xWOrg, yWOrg)

point location (xW, yW)

xVP = (xW - xWOrg) x (xVPExt / xWExt) + xVPOrg
yVP = (yW - yWOrg) x (yVPExt / yWExt) + yVPOrg

CONVERSION FORMULAS: (all mapping modes)

xW = (xVP- xVPOrg) x (xWExt / xVPExt) + xWOrg
yW = (yVP- yVPOrg) x (yWExt / yVPExt) + yWOrg

xWOrg = -16

xW = +8

© 2003 by CRC Press LLC

17.4.1 Typefaces and Fonts
A collection of characters of the same design is called a typeface. Courier, Times Ro-
man, and Helvetica are typefaces. Courier is a monospaced typeface that originated in
typewriter technology. The characters in the Courier typeface all have the same width.
Times Roman is a typeface developed in the nineteenth century by an English newspa-
per with the purpose of making small type readable when printed on newspaper stock.
Times Roman uses short, horizontal lines of a different thickness. To some, these ele-
ments resemble hooks; for which the typeface is called serif (hook, in French). On the
other hand, the characters in the Helvetica typeface have the same thickness; there-
fore, it is called a sans-serif typeface (without hooks).

Times Roman and Helvetica are proportionally spaced fonts; that is, each charac-
ter is designed to an ideal width. In a proportionally spaced font, the letter "w" is
wider than the letter "i." In Windows, proportionally spaced fonts are sometimes
called variable pitch fonts. They are more pleasant and easier to read than
monospaced fonts, but digits displayed in proportionally spaced fonts do not align
in columns. Figure 17-3 shows text in Courier, Times Roman, and Helvetica type-
faces.

Figure 17-3 Courier, Times Roman, and Helvetica Typefaces.

A group of related typefaces is called a typeface family; for example, Helvetica
Bold and Helvetica Oblique are typeface families. A font is a collection of characters
of the same typeface and size. In this sense you can speak of the Times Roman
12-point font. Type style is a term used somewhat loosely in reference to specific at-
tributes applied to characters in a font. Boldface (dark), roman (straight up), and
italics (slanted towards the right) are common type styles.

Historically, Windows fonts have been of three different types: raster, vector, and
TrueType. Raster fonts are stored as bitmaps. Vector fonts, sometimes called stroke
fonts, consist of a set of drawing orders required to produce each letter. TrueType
fonts, introduced in Windows 95, are similar to PostScript fonts. They are defined as

These lines are in typeface.
All characters have the same width.

Courier

These lines are in typeface.
Times Roman is a serif typeface of
great readability.

Times Roman

These lines are in typeface.
Helvetica is a sans-serif typeface
often used for display type.

Helvetica

© 2003 by CRC Press LLC

lines and curves, can be scaled to any size, and rotated at will. TrueType fonts are
more versatile and have the same appearance on the screen as when printed.
TrueType fonts also assure portability between applications. Programmers working
in Windows 95 and NT deal mostly with TrueType fonts.

For reasons related to copyright and trademark laws, some Windows fonts have
names that differ from the traditional typefaces. For example, Times New Roman is
the Windows equivalent of Times Roman, and the Helvetica typeface is closely ap-
proximated by the Windows versions called Arial, Swiss, and Switzerland.

The default Windows font is named the system font. In current versions of Win-
dows, the system font is a proportionally spaced font. It is also a raster font, there-
fore, the characters are defined as individual bitmaps. Figure 17-4 is a screen
snapshot of a Windows program that demonstrates the screen appearance of the
various non-TrueType fonts.

Figure 17-4 Windows Non-TrueType Fonts

17.4.2 Text Formatting

In order to display text in a graphics, multitasking environment (one in which the
screen can be resized at any time), code must be able to obtain character sizes at run
time. For example, in order to display several lines of text you must know the height of
the characters so that the lines are shown at a reasonable vertical distance from each
other. By the same token, you also need to know the width of each character, as well as
the width of the client area, in order to handle the end of each text line.

The GetTextMetrics() function provides information about the font currently se-
lected in the display context. GetTextMetrics() requires two parameters: the handle
to the device context and the address of a structure variable of type TEXTMETRICS.
Table 17-2 lists the members of the TEXTMETRIC structure:

© 2003 by CRC Press LLC

Table 17-2

TEXTMETRIC structure

TYPE MEMBER CONTENTS

LONG tmHeight Character height (ascent + descent)
LONG tmAscent Height above the baseline
LONG tmDescent Height below the baseline
LONG tmInternalLeading Internal leading
LONG tmExternalLeading External leading
LONG tmAveCharWidth Width of the lowercase letter "x"
LONG tmMaxCharWidth Width of widest letter in font
LONG tmWeight Font weight
LONG tmOverhang Extra width per string added to some

synthesized fonts
LONG tmDigitizedAspectX Device horizontal aspect
LONG tmDigitizedAspectY Device vertical aspect. The ratio of

tmDigitizedAspectX / tmDigitizedAspectY
members is the aspect ratio of the device for which
the font was designed.

BCHAR tmFirstChar First character in the font
BCHAR tmLastChar Last character in the font
BCHAR tmDefaultChar Character used as a substitute for

Those not implemented in the font
BCHAR tmBreakChar Character used as a word break in

Text justification
BYTE tmItalic Nonzero if font is italic
BYTE tmUnderlined Nonzero if font is underlined
BYTE tmStruckOut Nonzero if font is strikeout

BYTE tmPitchAndFamily Contains information about the font family in the
four low-order bits of the following constants:
CONSTANT BIT MEANING
TMPF_FIXED PITCH 0 fixed pitch font
TMPF_VECTOR 1 vector font
TMPF_TRUETYPE 2 True Type font
TMPF_DEVICE 3 device font

BYTE tmCharSet Specifies the font's character set

Notice that in printing and display technology, the baseline is an imaginary hori-
zontal line that aligns the base of the characters, excluding descenders. The term
leading (pronounced "led-ing") refers to the space between lines of type, usually
measured from the baseline of one line to the baseline of the next one. Figure 17-5
shows the vertical character dimensions represented by the corresponding mem-
bers of the TEXTMETRIC structure.

Figure 17-5 Vertical Character Dimensions in the TEXTMETRIC Structure

Ag
tmExternalLeading

tmInternalLeading

tmAscent

tmDescent

baseline

tmHeight

© 2003 by CRC Press LLC

Text metric values are determined by the font installed in the device context. For
this reason, where and how an application obtains data about text dimensions de-
pend on the font and on how the device context is handled. An application that uses
the system font, and no other, need only obtain text metric values once in each ses-
sion. Since the system font does not change during a Windows session, these values
are valid throughout the program's lifetime. However, if an application changes de-
vice contexts or fonts during execution, then the text metric values may also
change.

In the simplest case, a text processing application can obtain text metric data
while processing the WM_CREATE message. Usually, the minimal data required for
basic text manipulations is the character height and width. The height is calculated
by adding the values in the tmHeight and tmExternalLeading members of the
TEXTMETRIC structure for the current display context (see Figure 17-5). The width
of the lowercase characters can be obtained from the tmAveCharWidth member.

The calculation of the average width of uppercase characters is somewhat more
complicated. If the font currently selected in the display context is monospaced
(fixed pitch, in Windows terminology), then the width of the uppercase characters is
the same as the lowercase ones. However, if the current font is proportionally
spaced (sometimes called a variable pitch font in Windows), then you can obtain an
approximation of the width of the uppercase characters by calculating 150 percent
of the width of the lowercase ones. We have seen that the tmPitchAndFamily mem-
ber of TEXTMETRIC has the low-order bit set if the font is monospaced. We can log-
ically AND this value with a binary 1 in order to test if the font is monospaced.
Assuming that a TEXTMETRIC structure variable is named tm, and that the width of
the lowercase characters is stored in an integer variable named cxChar, the code
would be as follows:

int cxCaps; // Storage for width of uppercase characters
if(tm.tmPitchAndFamily & 0x1)

cxCaps = (3 * cxChar) / 2; // 150 percent
else

cxCaps = cxChar; // 100 percent

More compact coding results from using the ? operator, as follows:

����� � ���������
	��������� � � � � �
 !
��	�" # �

The values can be stored in static variables for future use. The following code
fragment shows the usual processing in this case:

static int cxChar; // Storage for lowercase character width
static int cxCaps; // Storage for uppercase character width
static int cyChar; // Storage for character height plus

// leading
.
.
.
case WM_CREATE :

hdc = GetDC (hwnd) ;
GetTextMetrics (hdc, &tm) ;

cxChar = tm.tmAveCharWidth ;

© 2003 by CRC Press LLC

cxCaps = (tm.tmPitchAndFamily & 1 ? 3 : 2) * cxChar / 2;
cyChar = tm.tmHeight + tm.tmExternalLeading ;

ReleaseDC (hwnd, hdc) ;
return 0 ;

In addition to information about text dimensions, text processing applications
also need to know the size of the client area. The problem in this case is that in most
applications, the size of the client area can change at any time. If the window was
created with the style WM_HREDRAW and WM_VREDRAW, a WM_SIZE message is
sent to the Windows procedure whenever the client area size changes vertically or
horizontally. A WM_PAINT message automatically follows. The application can in-
tercept the WM_SIZE message and store, in a static variable, the vertical and hori-
zontal dimensions of the client area. The size of the client area can be retrieved from
these variables whenever you need to redraw to the window. Traditionally, the vari-
ables named cxClient and cyClient are used to store these values. The low word of
the lParam value, passed to the Windows procedure during WM_SIZE, contains the
width of the client area, and the high word contains the height. The code can be as
follows:

static int cxClient; // client area width
static int cyClient; // client area height
.
.
.
case WM_SIZE:

cxClient = LOWORD (lParam);
cyClient = HIWORD (lParam);
return 0;

17.4.3 Paragraph Formatting
The logic needed for text formatting at the paragraph level is as follows: First, we de-
termine the character dimensions by calling the GetTextMetric() and then reading the
corresponding members of a TEXTMETRIC structure. Next, we obtain the size of the
client area during WM_SIZE processing by means of the high- and low-word of the
lParam argument. This information is sufficient for performing exact calculation on a
monospaced font. In the case of a proportionally spaced font, we are forced to deal in
approximations, since what we have obtained is the average width of lower-case char-
acters and an estimate of the width of the upper-case ones.

GetTextExtentPoint32(), a function that has suffered several transformations in
the various versions of Windows, computes the exact width and height of a charac-
ter string. The function takes as a parameter the handle to the device context, since
the string size calculated is based on the currently installed font. Other parameters
are the address of the string, its length in characters, and the address of a structure
of type SIZE where information is returned to the caller. The SIZE structure con-
tains only two members: one for the x dimension and another one for the y dimen-
sion. The value returned by GetTextExtentPoint32() is in logical units.

Putting it all together: suppose you have a rather long string, one that requires
more than one screen line, stored in a static or public array, and you want to display
this string breaking the screen lines only at the end of words. Since in Windows the

© 2003 by CRC Press LLC

length of each line in the client area can be changed at any time by the user, the code
would have to dynamically adjust for this fact. Placing the processing in a
WM_PAINT message handler ensures that the display is updated when the client
area changes in size. This also requires that we intercept the WM_SIZE message to
recalculate the size of the client area, as discussed previously. The processing logic
in WM_PAINT could be as follows:

1. Step through the string, pausing at each space, and calculate the string length using
GetTextExtentPoint32(). Keep count of the number of characters to the previous
space, or the beginning of the text string in the case of the first word.

2. If the length of the string is larger than could fit in the client area, then backtrack to the
previous space and display the string to that point. Reset the string pointer so that the
new string starts at the last character displayed. Continue at step 1.

3. If the end of the string has been reached, display the string starting at the last space and
exit the routine.

The actual implementation requires a few other processing details. For example,
you may want to leave a margin of a couple of characters on the left and right sides
of the display area. In addition, the code would need to manipulate pointers and
counters to keep track of the string positions and the number of characters to the
previous space. One possible algorithm is reminiscent of the classic case of a circu-
lar buffer with two pointers: one to the buffer head and another one to the tail. Fig-
ure 17-6 graphical ly shows the code elements in one of many possible
implementations.

Figure 17-6 Processing Operations for Multiple Text Lines

In Figure 17-6, the pointer that signals the start of the string is designated with the
letter s and the one for the end of the string with the letter e. s1 and e1 is the start
position for both pointers. The variable i is a counter that holds the number of char-
acters since the preceding space, and j holds the number of characters in the current
substring. The code steps along the string looking for spaces. At each space, it mea-
sures the length of the string and compares it to the horizontal dimension of the cli-
ent area. When the s pointer reaches location s2, the substring is longer than the
display space available in the client area. The variable i is then used to reset the
pointer to the preceding space and to decrement the j counter. The substring is dis-

client area

s1 s2

e1

i

j - i

j

© 2003 by CRC Press LLC

played starting at e1, for a character count of j. Pointers and counters are then reset
to the new sub-string and processing continues until the end of the string is found.

A demonstration program named TEX1_DEMO is furnished in the book's soft-
ware package. The message to be displayed is stored in a public string, as follows:

// Public string for text display demonstration
char TextMsg[] = {"Visual Studio 97 provides the development "
"environment in which your programming and Web site "
"development packages run. This integrated set of tools runs"
.
.
.

"spreadsheet programs." };
The processing operations, located in the Windows procedure, are coded as
follows:
LRESULT CALLBACK WndProc (HWND hwnd, UINT iMsg, WPARAM wParam,

LPARAM lParam) {
static int cxChar, cxCaps, cyChar ;// Character dimensions
static int cxClient, cyClient; // Client area parameters

HDC hdc ; // handle to device context
int j; // Offset into string
int i; // characters since last

// space
char *startptr, *endptr; // String pointers
int cyScreen; // Screen row holder

// Structures
PAINTSTRUCT ps;
TEXTMETRIC tm;
SIZE textsize; // Test string size

switch (iMsg)
{

case WM_CREATE :
hdc = GetDC (hwnd) ;
GetTextMetrics (hdc, &tm) ;

// Calculate and store character dimensions
cxChar = tm.tmAveCharWidth ;
cxCaps = ((tm.tmPitchAndFamily & 1) ? 3 : 2) *\

cxChar / 2 ;
cyChar = tm.tmHeight + tm.tmExternalLeading ;

ReleaseDC (hwnd, hdc) ;
return 0 ;

case WM_SIZE:
// Determine and store size of client area
cxClient = LOWORD(lParam);
cyClient = HIWORD(lParam);
return 0;

case WM_PAINT :
hdc = BeginPaint (hwnd, &ps) ;

// Initialize variables
cyScreen = cyChar; // screen row counter
startptr = TextMsg; // start position pointer

© 2003 by CRC Press LLC

endptr = TextMsg; // end position pointer
j = 0; // length of string
i = 0; // characters since last

// space

// Text line display loop
// INVARIANT:
// i = characters since last space
// j = length of current string
// startptr = pointer to substring start
// endptr = pointer to substring end

while(*startptr) {
if(*startptr == 0x20){ // if character is

// space
GetTextExtentPoint32 (hdc, endptr, j,\

&textsize);

// ASSERT:
// textsize.cx is the current length of the
// string
// cxClient is the abscissa of the client area
// (both in logical units)
// Test for line overflow condition. If so, adjust
// substring to preceding space and display

if(cxClient - (2 * cxChar) < textsize.cx) {
j = j - i;
startptr = startptr - i;
TextOut (hdc, cxChar, cyScreen, endptr, j);
cyScreen = cyScreen + cyChar;
endptr = startptr;
j = 0;
}

// End of space character processing.
// Reset chars-to-previous-space counter, whether
// or not string was displayed

i = 0;
}

// End of processing for any text character
// Update substring pointer and counters

startptr++;
j++;
i++;
}

// End of while loop
// Display last text substring

j = j - i;
TextOut (hdc, cxChar, cyScreen, endptr, j);
EndPaint (hwnd, &ps);
return 0 ;

case WM_DESTROY :
PostQuitMessage (0) ;
return 0 ;

}

return DefWindowProc (hwnd, iMsg, wParam, lParam) ;

}

© 2003 by CRC Press LLC

In Figure 17-7 there are two screen snapshots of the TEX1_DEMO program in the
Text Demo No 1 project folder. The first one shows the text line as originally dis-
played in our system. The second one shows them after the client area has been
resized.

Figure 17-7 Two Screen Snapshots of the TEX1_DEMO Program

Notice that the TEX1_DEMO program uses a variable (j) to store the total size of
the substring (see Figure 17-6). In C++ it is valid to subtract two pointers in order to
determine the number of elements between them. The code in the TEX1_DEMO pro-
gram could have calculated the number of elements in the substring by performing
pointer subtraction.

17.4.4 The DrawText() Function

Another useful text display function in the Windows API is DrawText(). This function
is of a higher level than TextOut() and, in many cases, text display operations are eas-
ier to implement with DrawText(). DrawText() uses a rectangular screen area that de-
fines where the text is to be displayed. In addition, it recognizes some control
characters embedded in the text string as well as a rather extensive collection of for-
mat controls, which are represented by predefined constants. The following are the
general forms for TextOut() and DrawText()

TextOut (hdc, nXStart, nYStart, lpString, cbString);

DrawText (hdc, lpString, nCount, &rect, uFormat);

before resizing

after resizing

© 2003 by CRC Press LLC

In both cases, hdc is the handle to the device context and lpString is a pointer to
the string to be displayed. In TextOut() the second and third parameters (xXstart
and nYStart) are the logical coordinates of the start point in the client area, and the
last parameter is the string length. In DrawText() the third parameter (nCount) is
the string length in characters. If this parameter is set to –1 then Windows assumes
that the string is zero terminated. The positioning of the string in DrawText() is by
means of a rectangle structure (type RECT) described in Chapter 3 and listed in Ap-
pendix A. This structure contains four members, two for the rectangle's top-left co-
ordinates, and two for its bottom-right coordinates. The values are in logical units.
The last parameter (uFormat) is any combination of 19 format strings defined by the
constants listed in Table 17-3.

Table 17-3

String Formatting Constants in DrawText()

SYMBOLIC CONSTANT MEANING

DT_BOTTOM Specifies bottom-justified text. Must be combined
with DT_SINGLELINE.

DT_CALCRECT Returns width and height of the rectangle. In the
case of multiple text lines, DrawText() uses the
width of the rectangle pointed to by lpRect and
extends its base to enclose the last line of text.
In the case of a single text line, then
DrawText() modifies the right side of the rectangle
so that it encloses the last character. In either
case, DrawText() returns the height of the
formatted text, but does not draw the text.

DT_CENTER Text is centered horizontally.

DT_EXPANDTABS Expands tab characters. The default number of
characters per tab is eight.

DT_EXTERNALLEADING ncludes the font's external leading in the line
height. Normally, external leading is not included
in the height of a line of text.

DT_LEFT Specifies text that is aligned flush-left.

DT_NOCLIP Draws without clipping. This improves performance.

DT_NOPREFIX Turns off processing of prefix characters.
Normally, DrawText() interprets the ampersand (&)
mnemonic-prefix character as an order to
underscore the character that follows. The double
ampersands (&&) is an order to print a single
ampersand symbol. This function is turned off by
DT_NOPREFIX.

DT_RIGHT Specifies text that is aligned flush-right.

DT_SINGLELINE Specifies single line only. Carriage returns and
linefeed are ignored.

DT_TABSTOP Sets tab stops. The high-order byte of nFormat is
the number of characters for each tab. The default
number of characters per tab is eight.

DT_TOP Specifies top-justified text (single line only).

DT_VCENTER Specifies vertically centered text (single line only).

DT_WORDBREAK Enables word-breaking. Lines are automatically
broken between words if a word woul extend past
the edge of the rectangle specified by lpRect. A
carriage return (\n) or linefeed code (\r) also
breaks the line.

© 2003 by CRC Press LLC

The program TEX2_DEMO, located in the Text Demo No 2 project folder on the
book's software package, is a demonstration of text display using the DrawText()
function. Following are the excerpts from the program code:

LRESULT CALLBACK WndProc (HWND hwnd, UINT iMsg, WPARAM wParam,
LPARAM lParam) {

static int cxChar, cyChar ; // Character dimensions
static int cxClient, cyClient; // Client area parameters
HDC hdc ; // handle to device context

// Structures
PAINTSTRUCT ps;
TEXTMETRIC tm;
RECT textRect;

switch (iMsg) {
case WM_CREATE :

hdc = GetDC (hwnd) ;
GetTextMetrics (hdc, &tm) ;

// Calculate and store character dimensions
cxChar = tm.tmAveCharWidth ;
cyChar = tm.tmHeight + tm.tmExternalLeading ;

ReleaseDC (hwnd, hdc) ;
return 0 ;

case WM_SIZE:
// Determine and store size of client area
cxClient = LOWORD(lParam);
cyClient = HIWORD(lParam);
return 0;

case WM_PAINT :
hdc = BeginPaint (hwnd, &ps) ;

// Initialize variables
SetRect (&textRect, // address of structure

2 * cxChar, // x for start
cyChar, // y for start
cxClient -(2 * cxChar), // x for end
cyClient); // y for end

// Call display function using left-aligned and
//wordbreak controls
DrawText(hdc, TextStr, -1, &textRect,

DT_LEFT | DT_WORDBREAK);

EndPaint (hwnd, &ps);
return 0 ;

case WM_DESTROY :
PostQuitMessage (0) ;
return 0 ;

}

return DefWindowProc (hwnd, iMsg, wParam, lParam) ;
}

© 2003 by CRC Press LLC

17.5 Text Graphics
Comparing the listed processing operations with those used in the TEX1_DEMO pro-
gram (previously in this chapter) you can see that the processing required to achieve
the same functionality is simpler using DrawText() than TextOut(). This observation,
however, should not mislead you into thinking that DrawText() should always be pre-
ferred. The interpretation of the reference point at which the text string is displayed
when using TextOut() depends on the text-alignment mode set in the device context.
The GetTextAlign() and SetTextAlign() functions can be used to retrieve and change
the eleven text alignment flags. This feature of TextOut() (and its newer version
TextOutExt()) allow the programmer to change the alignment of the text-bounding
rectangle and even to change the reading order to conform to that of the Hebrew and
Arabic languages.

Windows NT and Windows 95 GDI supports the notion of paths. Paths are dis-
cussed in detail in Chapter 20. For the moment, we define a path, rather imprecisely,
as the outline produced by drawing a set of graphical objects. One powerful feature
of TextOut(), which is not available with DrawText(), is that when it is used with a
TrueType font, the system generates a path for each character and its bounding box.
This can be used to display text transparently inside other graphics objects, to dis-
play character outlines (called stroked text), and to fill the text characters with
other graphics objects. The resulting effects are often powerful.

17.5.1 Selecting a Font
The one limitation of text display on paths is that the font must be TrueType. There-
fore, before getting into fancy text graphics, you must be able to select a TrueType font
into the device context. Font manipulations in Windows are based on the notion of a
logical font. A logical font is a description of a font by means of its characteristics. Win-
dows uses this description to select the best matching font among those available.

Two API functions allow the creation of a logical font. CreateFont() requires a long
series of parameters that describe the font characteristics. CreateFontIndirect() uses
a structure in which the font characteristics are stored. Applications that use a single
font are probably better off using CreateFont(), while programs that change fonts
during execution usually prefer CreateFontIndirect(). Note that the item list used in
the description of a logical font is the same in both functions. Therefore, storing font
data in structure variables is an advantage only if the structure can be reused. The de-
scription that follows refers to the parameters used in the call to CreateFont(), which
are identical to the ones used in the structure passed by CreateFontIndirect().

The CreateFont() function has one of the longest parameter lists in the Windows
API: fourteen in all. Its general form is as follows:

HFONT CreateFont(nHeight, nWidth, nEscapement, int nOrientation,
fnWeight, fdwItalic, fdwUnderline, fdwStrikeOut,
fdwCharSet, fdwOutputPrecision, fdwClipPrecision,
fdwQuality, fdwPitchAndFamily,
LPCTSTR lpszFace);

Following are brief descriptions of the function parameters.

© 2003 by CRC Press LLC

• nHeight (int) specifies the character height in logical units. The value does not include
the internal leading, so it is not equal to the tmHeight value in the TEXTMETRIC struc-
ture. Also note that the character height does not correspond to the point size of a font.
If the MM_TEXT mapping mode is selected in the device context, it is possible to con-
vert the font's point size into device units by means of the following formula:

• hHeight = (point_size * pixels_per_inch) / 72

• The pixels per inch can be obtained by reading the LOGPIXELSY index in the device
context, which can be obtained by the call to GetDeviceCaps(). For example, to obtain
the height in logical units of a 50-point font we can use the following expression:

• 50 * GetDeviceCaps (hdc, LOGPIXELSY) / 72

• nWidth (int) specifies the logical width of the font characters. If set to zero, the Win-
dows font mapper uses the width that best matches the font height.

• nEscapement (int) specifies the angle between an escapement vector, defined to be
parallel to the baseline of the text line, and the drawn characters. A value of 900 (90 de-
grees) specifies characters that go upward from the baseline. Usually this parameter is
set to zero.

• nOrientation (int) defines the angle, in tenths of a degree, between the character's base
line and the x-axis of the device. In Windows NT the value of the character's escape-
ment and orientation angles can be different. In Windows 95 they must be the same.

• fnWeight (int) specifies the font weight. The constants listed in Table 4-4 are defined for
convenience:

Table 17-4

Character Weight Constants

WEIGHT CONSTANT

FW_DONTCARE = 0

FW_THIN = 100

FW_EXTRALIGHT = 200

FW_ULTRALIGHT = 200

FW_LIGHT = 300

FW_NORMAL = 400

FW_REGULAR = 400

FW_MEDIUM = 500

FW_SEMIBOLD = 600

FW_DEMIBOLD = 600

FW_BOLD = 700

FW_EXTRABOLD = 800

FW_ULTRABOLD = 800

FW_HEAVY = 900

FW_BLACK = 900

© 2003 by CRC Press LLC

• fdwItalic (DWORD) is set to 1 if font is italic.

• fdwUnderline (DWORD) is set to 1 if font is underlined.

• fdwStrikeOut (DWORD) is set to 1 if font is strikeout.

• fdwCharSet (DWORD) defines the font's character set. The following are predefined
character set constants:

ANSI_CHARSET
DEFAULT_CHARSET
SYMBOL_CHARSET
SHIFTJIS_CHARSET
GB2312_CHARSET
HANGEUL_CHARSET
CHINESEBIG5_CHARSET
OEM_CHARSET

Windows 95 only:

JOHAB_CHARSET
HEBREW_CHARSET
ARABIC_CHARSET
GREEK_CHARSET
TURKISH_CHARSET
THAI_CHARSET
EASTEUROPE_CHARSET
RUSSIAN_CHARSET
MAC_CHARSET
BALTIC_CHARSET

The DEFAULT_CHARSET constant allows the name and size of a font to fully de-
scribe it. If the font does not exist, another character set can be substituted. For this
reason, this field should be used carefully. A specific character set should always be
defined to ensure consistent results.

fdwOutputPrecision (DWORD) determines how closely the font must match the
values entered in the fields that define its height, width, escapement, orientation,
pitch, and font type. Table 17-5 lists the constants associated with this parameter.

Table 17-5

Predefined Constants for Output Precision

PREDEFINED CONSTANT MEANING

OUT_CHARACTER_PRECIS Not used.

OUT_DEFAULT_PRECIS Specifies the default font mapper behavior.

OUT_DEVICE_PRECIS Instructs the font mapper to choose a Device
font when the system contains multiple fonts
with the same name.

OUT_OUTLINE_PRECIS Windows NT: This value instructs the font
mapper to choose from TrueType and other
outline-based fonts.
Not used in Windows 95.

OUT_RASTER_PRECIS Instructs the font mapper to choose a raster
font when the system contains multiple fonts
with the same name.

(continues)

© 2003 by CRC Press LLC

Table 17-5

Predefined Constants for Output Precision (continued)

PREDEFINED CONSTANT MEANING

OUT_STRING_PRECIS This value is not used by the font mapper, but
it is returned when raster fonts are
enumerated.

OUT_STROKE_PRECIS Windows NT: This value is not used by the font
mapper, but it is returned when TrueType, other
outline-based fonts, and vector fonts are
enumerated.
Windows 95: This value is used to map vector
fonts, and is returned when TrueType or vector
fonts are enumerated.

OUT_TT_ONLY_PRECIS Instructs the font mapper to choose from only
TrueType fonts. If there are no TrueType fonts
installed in the system, the font mapper
returns to default behavior.

OUT_TT_PRECIS Instructs the font mapper to choose a TrueType
font when the system contains multiple fonts
with the same name.

If there is more than one font with a specified name, you can use the
OUT_DEVICE_PRECIS, OUT_RASTER_PRECIS, and OUT_TT_PRECIS constants to
control which one is chosen by the font mapper. For example, if there is a font
named Symbol in raster and TrueType form, specifying OUT_TT_PRECIS forces the
font mapper to choose the TrueType version. OUT_TT_ONLY_PRECIS forces the
font mapper to choose a TrueType font, even if it must substitute one of another
name.

fdwClipPrecision (DWORD) specifies the clipping precision. This refers to how
to clip characters that are partially outside the clipping region. The constants in Ta-
ble 17-6 are recognized by the call.

Table 17-6

Predefined Constants for Clipping Precision

PREDEFINED CONSTANT MEANING

CLIP_DEFAULT_PRECIS Default clipping behavior.

CLIP_CHARACTER_PRECIS Not used.

CLIP_STROKE_PRECIS Not used by the font mapper, but is returned
when raster, vector, or TrueType fonts are
enumerated.
Windows NT: For compatibility, this value is
always returned when enumerating fonts.

CLIP_MASK Not used.

CLIP_EMBEDDED Specify this flag to use an embedded
read-only font.

CLIP_LH_ANGLES The rotation for all fonts depends on whether
the orientation of the coordinate system is
left- or right-handed.
If not used, device fonts always rotate
counterclockwise.

CLIP_TT_ALWAYS Not used.

© 2003 by CRC Press LLC

fdwQuality (DWORD) specifies the output quality. This value defines how care-
fully GDI must attempt to match the logical font attributes to those of an actual
physical font. The constants in Table 17-7 are recognized by CreateFont().

Table 17-7

Predefined Constants for Output Precision

PREDEFINED CONSTANT MEANING

DEFAULT_QUALITY Appearance of the font does not matter.

DRAFT_QUALITY Appearance of the font is less important than
when the PROOF_QUALITY value is used.

PROOF_QUALITY Character quality of the font is more
important than exact matching of the
logical-font attributes.
When PROOF_QUALITY is used, the quality of
the font is high and there is no distortion
of appearance.

fdwPitchAndFamily (DWORD) defines the pitch and the family of the font. The 2
low-order bits specify the pitch, and the 2 high-order bits specify the family. Usually,
the 2 bit fields use a logical OR for this parameter. Table 17-8 lists the symbolic con-
stants recognized by CreateFont() for the font pitch and the family values.

Table 17-8

Pitch and Family Predefined Constants

TYPE VALUE MEANING

PITCH:
DEFAULT_PITCH
FIXED_PITCH
VARIABLE_PITCH

FAMILY:
FF_DECORATIVE Novelty fonts (such as Old English)
FF_DONTCARE Don't care or don't know.
FF_MODERN Fonts with constant stroke width, with or without

serifs, such as Pica, Elite, and Courier New.
FF_ROMAN Fonts with variable stroke width and with serifs,

such as MS Serif.
FF_SCRIPT Fonts designed to look like handwriting, such as

Script and Cursive.
FF_SWISS Fonts with variable stroke width and without serifs,

such as MS Sans Serif.

lpszFace (LPCTSTR) points to a null-terminated string that contains the name of
the font's typeface. Alternatively, the typeface name can be entered directly inside
double quotation marks. If the requested typeface is not available in the system, the
font mapper substitutes with an approximate one. If NULL is entered in this field, a
default typeface is used. Example typefaces are Palatino, Times New Roman, and
Arial. The following code fragment shows a call to the CreateFont() API for a
50-point, normal weight, high quality, italic font using the Times New Roman type-
face.

HFONT hFont; // handle to a font
// Create a logical font
hFont = CreateFont (

50 * GetDeviceCaps (hdc, LOGPIXELSY) / 72, //height
0, // width

© 2003 by CRC Press LLC

0, // escapement angle
0, // orientation angle
FW_NORMAL, // weight
1, // italics
0, // not underlined
0, // not strikeout
DEFAULT_CHARSET, // character set
OUT_DEFAULT_PRECIS, // precision
CLIP_DEFAULT_PRECIS, // clipping precision
PROOF_QUALITY, // quality
DEFAULT_PITCH | FF_DONTCARE, // pitch and family
"Times New Roman"); // typeface name

// Select font into the display context
SelectObject (hdc, hFont);

17.5.2 Drawing with Text
Once a TrueType font is selected in the display context, you can execute several ma-
nipulations that treat text characters as graphics objects. One of them is related to the
notion of a path, introduced in Windows NT and also supported by Windows 95 and
later. A path is the outline generated by one or more graphics objects drawn between
the BeginPath() and EndPath() functions. Paths are related to regions and to clipping,
topics covered in detail in Chapter 20.

The TextOut() function has a unique property among the text display functions: it
generates a path. For this to work, a TrueType font must first be selected into the
display context. Path drawing operations are not immediately displayed on the
screen but are stored internally. Windows provides no handles to paths, and there is
only one path for each display context. Three functions are available to display
graphics in a path: StrokePath() shows the path outline, FillPath() fills and displays
the path's interior, and StrokeAndFillPath() performs both functions. You may ques-
tion the need for a FillAndStrokePath() function since it seems that you could use
StrokePath() and FillPath() consecutively to obtain the same effect. This is not the
case. All three path-drawing APIs automatically destroy the path. Therefore, if two
of these functions are called consecutively, the second one has no effect.

The path itself has a background mix mode, which is delimited by the rectangle
that contains the graphics functions in the path. The background mix mode is a dis-
play context attribute that affects the display of text, as well as the output of
hatched brushes and nonsolid pens. Code can set the background mix mode to
transparent by means of the SetBkMode() function. This isolates the text from the
background. The program TEX3_DEMO, located in the Text Demo No 3 folder in the
book's software package, is a demonstration of text display inside paths. One of the
text lines is stroked and the other one is stroked and filled. The program first cre-
ates a logical font and then selects it into the display context. Processing is as fol-
lows:

case WM_PAINT :
hdc = BeginPaint (hwnd, &ps) ;
.
.
.
// Start a path for stroked text

© 2003 by CRC Press LLC

// Set background mix to TRANSPARENT mode
BeginPath (hdc);
SetBkMode(hdc, TRANSPARENT); // background mix
TextOut(hdc, 20, 20, "This Text is STROKED", 20);
EndPath(hdc);
// Create a custom black pen, 2 pixels wide
aPen = CreatePen(PS_SOLID, 2, 0);
SelectObject(hdc, aPen); // select it into DC
StrokePath (hdc); // Stroke the path

// Second path for stroked and filled text
BeginPath (hdc);
SetBkMode(hdc, TRANSPARENT);
TextOut(hdc, 20, 110, "Stroked and Filled", 18);
EndPath(hdc);
// Get and select a stock pen and brush
aPen = GetStockObject(BLACK_PEN);
aBrush = GetStockObject(LTGRAY_BRUSH);
SelectObject(hdc, aPen);
SelectObject(hdc, aBrush);
StrokeAndFillPath (hdc); // Stroke and fill path

// Clean-up and end WM_PAINT processing
DeleteObject(hFont);
EndPaint (hwnd, &ps);

Figure 17-8 is a screen snapshot of the TEXTDEM3 program.

Figure 17-8 Screen Snapshot of the TEXTDEM3 Program

© 2003 by CRC Press LLC

Chapter 18

Keyboard and Mouse Programming

Topics:
• Keyboard input and input focus

• Keystroke processing

• The caret

• Mouse programming

• Mouse messages

• The cursor

Most applications require user input and control operations. The most common input
devices are the keyboard and the mouse. In this chapter we discuss keyboard and
mouse programming in Windows.

18.1 Keyboard Input
Since the first days of computing, typing on a typewriter-like keyboard has been an ef-
fective way of interacting with the system. Although typical Windows programs rely
heavily on the mouse device, the keyboard is the most common way to enter text char-
acters into an application.

The mechanisms by which Windows monitors and handles keyboard input are
based on its message-driven architecture. When the user presses or releases a key,
the low-level driver generates an interrupt to inform Windows of this action. Win-
dows then retrieves the keystroke from a hardware register, stores it in the system
message queue, and proceeds to examine it. The action taken by the operating sys-
tem depends on the type of keystroke, and on which application currently holds the
keyboard foreground, called the input focus. The keystroke is dispatched to the cor-
responding application by means of a message to its Windows procedure.

The particular way by which Windows handles keystrokes is determined by its
multitasking nature. At any given time, several programs can be executing simulta-
neously, and any one of these programs can have more than one thread of execution.

© 2003 by CRC Press LLC

One of the possible results of a keystroke (or a keystroke sequence) is to change the
thread that holds the input focus, perhaps to a different application. This is the rea-
son why Windows cannot directly send keyboard input to any specific thread.

It is the message loop in the WinMain() function of an application that retrieves
keyboard messages from the system queue. In fact, all system messages are posted
to the application's message queue. The process makes the following assumptions:
first, that the thread's queue is empty; second, that the thread holds the input focus;
and third, that a keystroke is available at the system level. In other words, it is the
application that asks Windows for keystrokes; Windows does not send unsolicited
keystroke data.

The abundance of keyboard functions and keyboard messages makes it appear
that Windows keyboard programming is difficult or complicated. The fact is that ap-
plications do not need to process all keyboard messages, and hardly ever do so. Two
messages, WM_CHAR and WM_KEYDOWN, usually provide code with all the neces-
sary data regarding user keyboard input. Many keystrokes can be ignored, since
Windows generates other messages that are more easily handled. For example, ap-
plications can usually disregard the fact that the user selected a menu item by
means of a keystroke, since Windows sends a message to the application as if the
menu item had been selected by a mouse click. If the application code contains pro-
cessing for menu selection by mouse clicks, then the equivalent keyboard action is
handled automatically.

18.1.1 Input Focus

The application that holds the input focus is the one that gets notified of the user's key-
strokes. A user can visually tell which window has the input focus since it is the one
whose title bar is highlighted. This applies to the parent window as well as to child win-
dows, such as an input or dialog box. The application can tell if a window has the input
focus by calling the GetFocus() function, which returns the handle to the window with
the input focus.

The Windows message WM_SETFOCUS is sent to the window at the time that it
receives the input focus, and WM_KILLFOCUS at the time it loses it. Applications
can intercept these messages to take notice of any change in the input focus. How-
ever, these messages are mere notifications; application code cannot intercept these
messages to prevent losing the input focus.

Keyboard data is available to code holding the input focus at two levels. The
lower level, usually called keystroke data, contains raw information about the key
being pressed. Keystroke data allows code to determine whether the keystroke mes-
sage was generated by the user pressing a key or by releasing it, and whether the
keystroke resulted from a normal press-and-release action or from the key being
held down (called typematic action). Higher-level keyboard data relates to the char-
acter code associated with the key. An application can intercept low-level or charac-
ter-level keystroke messages generated by Windows.

© 2003 by CRC Press LLC

18.1.2 Keystroke Processing

Four Windows messages inform application code of keystroke data: WM_KEYDOWN,
WM_SYSKEYDOWN, WM_KEYUP, and WM_SYSKEYUP. The keydown-type messages
are generated when a key is pressed, sometimes called the make action. The
keyup-type messages are generated when a key is released, called the break action.
Applications usually ignore the keyup-type message. The "sys-type" messages,
WM_SYSKEYDOWN and WM_SYSKEYUP, relate to system keys. A system keystroke
is one generated while the Alt key is held down.

When any one of these four messages takes place, Windows puts the keystroke
data in the lParam and wParam passed to the window procedure. The lParam con-
tains bit-coded information about the keystroke, as shown in Table 18-1.

Table 18-1

Bit and Bit Fields in the lParam of a Keystroke Message

BITS MEANING

0-15 Repeat count field. The value is the number of
times the keystroke is repeated as a result of the
user holding down the key (typematic action).

16-23 OEM scan code. The value depends on the original
equipment manufacturer.

24 Extended key. Bit is set when the key pressed is
one duplicated in the IBM Enhanced 101- and 102-key
keyboards, such as the right-hand ALT and CTRL
keys, the / and Enter keys on the numeric
keypad, or the Insert, Delete, Home, PageUp,
PageDown, and End keys.

25-28 Reserved.

29 Context code. Bit is set if the Alt key is down
while the key is pressed. Bit is clear if the
WM_SYSKEYDOWN message is posted to the active
window because no window has the keyboard focus.

30 Previous key state. Key is set if the key is down
before the message is sent. Bit is clear if the key
is up. This key allows code to determine if the keystroke
resulted from a make or break action.

31 Transition state. Always 0 for a WM_SYSKEYDOWN
Message.

The wParam contains the virtual-key code, which is a hardware-independent
value that identifies each key. Windows uses the virtual-key codes instead of the de-
vice-dependent scan code. Typically, the virtual-key codes are processed when the
application needs to recognize keys that have no associated ASCII value, such as the
control keys. Table 18-2, on the following page, lists some of the most used vir-
tual-key codes.

Notice that originally, the "w" in wParam stood for "word," since in 16-bit Win-
dows the wParam was a word-size value. The Win32 API expanded the wParam from
16 to 32 bits. However, in the case of the virtual-key character codes, the wParam is
defined as an int type. Code can typecast the wParam as follows:

© 2003 by CRC Press LLC

Table 18-2

Virtual-Key Codes

SYMBOLIC NAME HEX VALUE KEY

VK_CANCEL 0x01 Ctrl + Break

VK_BACK 0x08 Backspace

VK_TAB 0x09 Tab

VK_RETURN 0x0D Enter

VK_SHIFT 0x10 Shift

VK_CONTROL 0x11 Ctrl

VK_MENU 0x12 Alt

VK_PAUSE 0x13 Pause

VK_CAPITAL 0x14 Caps Lock

VK_ESCAPE 0x1B Esc

VK_SPACE 0x20 Spacebar

VK_PRIOR 0x21 Page Up

VK_NEXT 0x22 Page Down

VK_END 0x23 End

VK_HOME 0x24 Home

VK_LEFT 0x25 Left arrow

VK_UP 0x26 Up arrow

VK_RIGHT 0x27 Right arrow

VK_DOWN 0x28 Down arrow

VK_SNAPSHOT 0x2C Print Screen

VK_INSERT 0x2D Insert

VK_DELETE 0x2E Delete

VK_MULTIPLY 0x6A Numeric keypad *

VK_ADD 0x6B Numeric keypad +

VK_SUBTRACT 0x6D Numeric keypad -

VK_DIVIDE 0x6F Numeric keypad /

VK_F1..VK_F12 0x70..0x7B F1 .. F12

int aKeystroke;
char aCharacter;
.
.
aKeystroke = (int) wParam;
aCharacter = (char) wParam;

S i m p l e k e y s t r o k e p r o c e s s i n g c a n b e i m p l e m e n t e d b y i n t e r c e p t i n g
WM_KEYDOWN. Occasionally, an application needs to know when a system-level
message is generated. In this case, code can intercept WM_SYSKEYDOWN. The first
operation performed in a typical WM_KEYDOWN or WM_SYSKEYDOWN handler is

© 2003 by CRC Press LLC

to store in local variables the lParam, the wParam, or both. In the case of the
wParam code can cast the 32-bit value into an int or a char type as necessary (see
the preceding Tech Note).

Processing the keystroke usually consists of performing bitwise operations in or-
der to isolate the required bits or bit fields. For example, to determine if the ex-
tended key flag is set, code can logically AND with a mask in which bit 24 is set and
then test for a non-zero result, as in the following code fragment:

unsigned long keycode;

.

.

WM_KEYDOWN:

keycode = lParam; // store lParam

if(keycode & 0x01000000) { // test bit 24

// ASSERT:

// key pressed is extended key

Processing the virtual-key code, which is passed to your intercept routine in the
lParam, consists of comparing its value with the key or keys that you wish to detect.
For example, to know if the key pressed was the Backspace, you can proceed as in
the following code fragment:

int virtkey;

.

.

WM_KEYDOWN:

virtkey = (int) lParam; // cast and store lParam

if(virtkey == VK_BACK) { // test for Backspace

// ASSERT:

// Backspace key pressed

18.1.3 Determining the Key State

An application can determine the state of any virtual-key by means of the
GetKeyState() service. The function's general form is as follows:

����� �����	��
����
�����	��

GetKeyState() returns a SHORT integer with the high-order bit set if the key is
down and the low-order bit set if it is toggled. Toggle keys are those which have a
keyboard LED to indicate their state: Num Lock, Caps Lock, and Scroll Lock. The
LED for the corresponding key is lit when it is toggled and unlit otherwise. Some vir-
tual-key constants can be used as the nVirtKey parameter of GetKeyState(). Table
18-3, on the following page, lists the virtual-keys.

Take note that in testing for the high-bit set condition returned by GetKeyState()
you may be tempted to bitwise AND with a binary mask, as follows:

��������� � ������	��
���
���������� �

© 2003 by CRC Press LLC

Table 18-3

Virtual-Keys Used in GetKeyState()

PREDEFINED SYMBOL KEY RETURNS

VK_SHIFT Shift State of left or right Shift keys

VK_CONTROL Ctrl State of left or right Ctrl keys

VK_MENU Alt State of left or right Alt keys

VK_LSHIFT Shift State of left Shift key

VK_RSHIFT Shift State of right Shift key

VK_LCONTROL Ctrl State of left Ctrl key

VK_RCONTROL Ctrl State of right Ctrl key

VK_LMENU Alt State of left Alt key

VK_RMENU Alt State of right Alt key

The following statement is a test for the left Shift key pressed.

if(GetKeyState(VK_LSHIFT) < 0) {
// ASSERT:
// Left shift key is pressed

Although, in many cases, such operations produce the expected results, its suc-
cess depends on the size of a data type, which compromises portability. In other
words, if GetKeyState() returns a 16-bit integer, then the mask 0x8000 effectively
tests the high-order bit. If the value returned is stored in 32 bits, however, then the
mask must be the value 0x80000000. Since any signed integer with the high-bit set
represents a negative number, it is possible to test the bit condition as follows:

��������	��
���
�������� � �� �

This test does not depend on the operand's bit size.

18.1.4 Character Code Processing
Applications often deal with keyboard input as character codes. It is possible to obtain
the character code from the virtual-key code since it is encoded in the wParam of the
WM_KEYDOWN, WM_SYSKEYDOWN, WM_KEYUP, and WM_SYSKEYUP messages.
The codes for the alphanumeric keys are not listed in Table 18-1; however, there is also
a virtual-key code for each one. The virtual-key codes for the numeric keys 0 to 9 are
VK_0 to VK_9, and the ones for the alphabetic characters A through Z are VK_A
through VK_Z.

This type of processing is not without complications. For example, the vir-
tual-key code for the alphabetic characters does not specify if the character is in up-
per- or lower-case. Therefore, the application would have to call GetKeyState() in
order to determine if the <Shift> key was down or the Caps Lock key toggled when
the character key was pressed. Furthermore, the virtual-key codes for some of the
character keys, such as ;, =, +, <, are not defined in the windows header files. Appli-
cations must use the numeric values assigned to these keys or define their own sym-
bolic constants.

© 2003 by CRC Press LLC

Fortunately, character code processing in Windows is much easier. The
TranslateMessage() function converts the virtual-key code for each character into
its ANSI (or Unicode) equivalent and posts it in the thread's message queue.
TranslateMessage() is usually included in the program's message loop. After
TranslateMessage(), the message is retrieved from the queue, typically by
GetMessage() or PeekMessage(). The final result is that an application can intercept
WM_CHAR, WM_DEADCHAR, WM_SYSCHAR, and WM_SYSDEADCHAR in order to
obtain the ANSI character codes that correspond to the virtual-key of a
WM_KEYDOWN message.

Dead-type character messages refer to the diacritical characters used in some for-
eign language keyboards. These are marks added to characters to distinguish them
from other ones, such as the acute accent (á) or the circumflex (â). In English lan-
guage processing, WM_DEADCHAR and WM_SYSDEADCHAR are usually ignored.

The WM_SYSCHAR message corresponds to the virtual-key that results from
WM_SYSKEYDOWN. WM_SYSCHAR is posted when a character key is pressed
while the Alt key is held down. Since Windows also sends the message that corre-
sponds to a mouse cl ick on the system item, applicat ions often ignore
WM_SYSCHAR.

This leaves us with WM_CHAR for general purpose character processing. When
the WM_CHAR message is sent to your Windows procedure, the lParam is the same
as for WM_KEYDOWN. However, the wParam contains the ANSI code for the char-
acter, instead of the virtual-key code. This ANSI code, which is approximately equiv-
alent to the ASCII code, can be directly handled and displayed without additional
manipulations. Processing is as follows:

char aChar; // storage for character

.

.

case WM_CHAR:

aChar = (char) wParam;

// ASSERT:

// aChar holds ANSI character code

18.1.4 Keyboard Demonstration Program

The program KBR_DEMO.CCP, located in the Keyboard Demo folder on the book's
software package, is a demonstration of the keyboard processing routines described
previously. The program uses a private device context; therefore, the font is selected
once, during WM_CREATE processing. KBR_DEMO uses a typewriter-like, TrueType
font, named Courier. Courier is a monospaced font (all characters are the same
width). This makes possible the use of standard character symbols to produce a graph
of the bitmaps. Figure 18-1, on the following page, is a screen snapshot of the
KBD_DEMO program.

© 2003 by CRC Press LLC

Figure 18-1 KBR_DEMO Program Screen

Figure 18-1 shows the case in which the user has typed the Alt key. Note that the
wParam value 00010010 is equivalent to 0x12, which is the virtual-key code for the
Alt key (see Table 18-1). The critical processing in the KBD_DEMO program is as fol-
lows:

LRESULT CALLBACK WndProc (HWND hwnd, UINT iMsg, WPARAM wParam,
LPARAM lParam) {

static int cxChar, cyChar ; // Character dimensions
static int cxClient, cyClient; // Client area parameters
static HDC hdc ; // handle to private DC
unsigned long keycode; // storage for keystroke
unsigned long keymask; // bit mask
unsigned int virtkey; // virtual-key
int i, j; // counters
char aChar; // character code

// Structures
PAINTSTRUCT ps;
TEXTMETRIC tm;
RECT textRect; // RECT-type
HFONT hFont;
.
.
.
case WM_PAINT :

// Processing consists of displaying the text messages
BeginPaint (hwnd, &ps) ;
// Initialize rectangle structure
SetRect (&textRect, // address of structure

2 * cxChar, // x for start
cyChar, // y for start
cxClient -(2 * cxChar), // x for end
cyClient); // y for end

// Display multi-line text string

© 2003 by CRC Press LLC

DrawText(hdc, TextStr0, -1, &textRect,
DT_LEFT | DT_WORDBREAK);

// Display second text string
SetRect (&textRect, // address of structure

2 * cxChar, // x for start
13 * cyChar, // y for start
cxClient -(2 * cxChar), // x for end
cyClient); // y for end

// Display text string
DrawText(hdc, TextStr1, -1, &textRect,
DT_LEFT | DT_WORDBREAK);
.
.
.
EndPaint (hwnd, &ps);
return 0 ;

// Character code processing
case WM_CHAR:

aChar = (char) wParam;
// Test for control codes and replace with space
if (aChar < 0x30)

aChar = 0x20;

// Test for shift key pressed
if(GetKeyState (VK_SHIFT) < 0) {

i = 0; // counter
j = 13; // string offset
for(i = 0; i < 3; i++){

TextStr4[j] = StrON[i];
j++;

}
}
else {

i = 0; // counter
j = 13; // string offset
for(i = 0; i < 3; i++){

TextStr4[j] = StrOFF[i];
j++;

}
}

TextStr2[17] = aChar;
return 0;

// Scan code and keystroke data processing
// Display space if a system key
case WM_SYSKEYDOWN:

TextStr2[17] = 0x20;

case WM_KEYDOWN:
// Store bits for lParam in TextStr0[]

keycode = lParam; // get 32-bit keycode value
i = 0; // counter for keystroke bits
j = 0; // offset into string
keymask = 0x80000000;// bitmask

for (i = 0; i < 32; i++) {
// Test for separators and skip

© 2003 by CRC Press LLC

if(i == 8 || i == 16 || i == 24) {
TextStr0[j] = 0x20;
j++;

}
// Test for 1 and 0 bits and display digits
if(keycode & keymask)

TextStr0[j] = '1';
else

TextStr0[j] = '0';
keymask = keymask >> 1;
j++;
}

// Store bits for wParam in TextStr1[]
keycode = wParam; // get 32-bit keycode value
i = 0; // counter for keystroke bits
j = 18; // initial offset into string
keymask = 0x8000; // bitmask

// 16-bit loop
for (i = 0; i < 16; i++) {

// Test for separators and skip
if(i == 8) {

TextStr1[j] = 0x20;
j++;

}
// Test for 1 and 0 bits and display digits

if(keycode & keymask)
TextStr1[j] = '1';

else
TextStr1[j] = '0';
keymask = keymask >> 1;
j++;

}

// Test for Backspace key pressed
virtkey = (unsigned int) wParam;

if (virtkey == VK_BACK)
TextStr3[15] = 'Y';

else
TextStr3[15] = 'N';

// Force WM_PAINT message
InvalidateRect(NULL, NULL, TRUE);
return 0;
.
.
.

18.2 The Caret
In the MS DOS environment, the graphic character used to mark the screen position at
which typed characters are displayed is called the cursor. The standard DOS cursor is
a small, horizontal bar that flashes on the screen to call the user's attention to the point
of text insertion. In Windows, the word cursor is used for an icon that marks the screen
position associated with mouse-like pointing. Windows applications signal the loca-
tion where keyboard input is to take place by means of a flashing, vertical bar called
the caret.

© 2003 by CRC Press LLC

In order to avoid confusion and ambiguity, Windows displays a single caret. The system
caret, which is a shared resource, is a bitmap that can be customized by the application. The
window with the input focus can request the caret to be displayed in its client area, or in a
child window.

18.2.1 Caret Processing

Code can intercept the WM_SETFOCUS message to display the caret. WM_KILLFOCUS notifies
the application that it has lost focus and that it should therefore destroy the caret. Caret display
andprocessing inWM_SETFOCUSusuallystartsbycallingCreateCaret().Thefunction'sgeneral
form is as follows:

���� ���
���
����� �!" ����#
$" �%�!��" ����&����

The first parameter is the handle to the window that owns the caret. The second one is an
optional handle to a bitmap. If this parameter is NULL then a solid caret is displayed. If it is
(HBITMAP) 1, then the caret is gray. If it is a handle to a bitmap, the other parameters are ig-
nored and the caret takes the form of the bitmap. The last two parameters define the caret's
width and height, in logical units. Applications often determine the width and height of the
caret in terms of character dimensions.

CreateCaret() defines the caret shape and size but does not set its screen position, nor does
it display it. To set the caret's screen position you use the SetCaretPos() function, which takes
two parameters, the first one for the caret's x-coordinate and the second one for the
y-coordinate. The caret is displayed on the screen using ShowCaret(), whose only argument is
the handle to the window.

Applications that use the caret usually intercept WM_KILLFOCUS. This ensures that they
are notified when the window looses the keyboard focus, at which time the caret must be hid-
den and destroyed. The HideCaret() function takes care of the first action. Its only parameter is
the handle to the window that owns the caret. DestroyCaret(), which takes no parameters, de-
stroys the caret, erases it from the screen, and breaks the association between the caret and
the window.

Applications that use the caret to signal the point of input often display the characters typed
by the user. But since the caret is a graphics object, it must be erased from the screen before
the character is displayed. Otherwise, the caret symbol itself, or parts of it, may pollute the
screen. A program that processes the WM_CHAR message to handle user input usually starts
by hiding the caret, then the code processes the input character, and finally, resets the caret po-
sition and redisplays it.

18.2.2 Caret Demonstration Program

The CAR_DEMO program, located in the Caret Demo folder on the book's software package, is a
demonstration of caret processing during text input. The program displays an entry form and
uses the caret to signal the current input position. When the code detects the Enter key, it moves
to the next line in the entry form. The Backspace key can be used to edit the input. When Back-
space ispressed, thepreviouscharacter iserasedandthecaretposition isupdated.Programlogic
keeps track of the start location of each input line so that the user cannot backspace past this
point. The Esc key erases the caret and ends input. Note that since user input is not stored by the

© 2003 by CRC Press LLC

program, the text is lost if the screen is resized or if the application looses the input focus. Figure
18-2 is a screen snapshot of the CAR_DEMO program.

Figure 18-2 CAR_DEMO Program Screen

Figure 18-2 shows execution of the CAR_DEMO program. The following are ex-
cerpts of the program's processing:

LRESULT CALLBACK WndProc (HWND hwnd, UINT iMsg, WPARAM wParam,
LPARAM lParam) {

static int cxChar, cyChar ; // character dimensions
static int cxClient, cyClient; // client area parameters
static int xCaret, yCaret; // caret position
static int xLimit; // left limit of line
static int formEnd = 0; // 1 if Esc key pressed
static int lineNum = 1; // input line
static HDC hdc ; // handle to private DC
char aChar; // storage for character code

// Structures
PAINTSTRUCT ps;
TEXTMETRIC tm;
RECT textRect;
HFONT hFont;

switch (iMsg) {

case WM_CREATE :
.
.
.

// Calculate and store character dimensions
cxChar = tm.tmAveCharWidth ;
cyChar = tm.tmHeight + tm.tmExternalLeading ;
// Store size of client area
cxClient = LOWORD(lParam);
cyClient = HIWORD(lParam);
// Store initial caret position
xCaret = xLimit = 10;
yCaret = 3;
return 0 ;
.
.
.

case WM_PAINT :

caret signals input location

© 2003 by CRC Press LLC

BeginPaint (hwnd, &ps) ;
// Initialize rectangle structure
SetRect (&textRect, // address of structure

2 * cxChar, // x for start
cyChar, // y for start
cxClient -(2 * cxChar), // x for end
cyClient); // y for end

// Display multi-line text string
DrawText(hdc, TextStr1, -1, &textRect,

DT_LEFT | DT_WORDBREAK);

EndPaint (hwnd, &ps);
return 0 ;
// Character input processing

case WM_CHAR:

HideCaret(hwnd);
aChar = (char) wParam;

switch (wParam) { // wParam holds virtual-key code
case '\r': // Enter key pressed

yCaret++;
aChar = 0x20;

// cascaded tests set x caret location in new line
if(yCaret == 4) // in address: line

xCaret = xLimit = 13;

if(yCaret == 5) // in city: line
xCaret = xLimit = 10;

if(yCaret == 6) // in state: line
xCaret = xLimit = 11;

if(yCaret == 7) // in zip code: line
xCaret = xLimit = 14;

if(yCaret > 7) { // Enter key ignored on
// last line

yCaret--;
}
break;

case '\b': // Backspace key pressed
if (xCaret > xLimit) {

aChar = 0x20; // Replace with space
xCaret--;
// Display the blank character
TextOut (hdc, xCaret * cxChar, yCaret * cyChar,

&aChar, 1);
}

break;

case 0x1b: // Esc key processing
formEnd = 1;
// Destroy the caret
HideCaret(hwnd);
DestroyCaret();
break;

default:

© 2003 by CRC Press LLC

// Display the character if Esc not pressed
if(formEnd == 0) {

TextOut (hdc, xCaret * cxChar, yCaret * cyChar,
&aChar, 1);

xCaret++;
}

break;
}
if(formEnd == 0) {

SetCaretPos(xCaret * cxChar, yCaret * cyChar);
ShowCaret(hwnd);

}
return 0;

case WM_SETFOCUS:
if(formEnd == 0) {

CreateCaret (hwnd, NULL, cxChar / 4, cyChar);
SetCaretPos(xCaret * cxChar, yCaret * cyChar);
ShowCaret(hwnd);

}
return 0;

case WM_KILLFOCUS:
// Destroy the caret
HideCaret(hwnd);
DestroyCaret();
return 0;

. . .

18.3 Mouse Programming
The use of a mouse as an input device dates back to the work at Xerox PARC, which pi-
oneered the ideas of a graphical user interface. Since mouse and GUI have been inter-
related since their original conception, one would assume that a graphical operating
system, such as Windows, would require the presence of a mouse device. This is not
the case. Windows documentation still considers the mouse an option and recom-
mends that applications provide alternate keyboard controls for all mouse-driven op-
erations.

During program development, you can make sure that a mouse is available and
operational by means of the GetSystemMetrics() function, as follows:

''��� �����	'��#(����)'��(�(�*�+,�+�+-����

In this case, the assert macro displays a message box if a mouse is not present or
not operational. The developer can then choose to ignore the message, debug the
code, or abort execution. In the release version of a program that requires a mouse
you can use the abort macro to break execution. For example:

if (!GetSystemMetrics(SM_MOUSEPRESENT))
abort();

Alternatively, an application can call PostQuitMessage(). This indicates to Win-
dows that a thread has made a termination request and it posts a WM_QUIT mes-
sage. PostQuitMessage() has an exit code parameter that is returned to Windows,
but current versions of the operating system make no use of this value. The objec-

© 2003 by CRC Press LLC

tion to using PostQuitMessage() for abnormal terminations is that execution ends
abruptly, without notification of cause or reason. In this case the program should
display a message box informing the user of the cause of program termination.

Windows supports other devices such as pens, touch screens, joysticks, and
drawing tablets, which are all considered mouse input. The mouse itself can have up
to three buttons, labeled left, middle, and right buttons. A one-button mouse is an
anachronism and the three-button version is usually associated with specialized sys-
tems. The most common one is the two-button mouse, where the left button is used
for clicking, double-clicking, and dragging operations and the right button activates
context-sensitive program options.

An application can tell how many buttons are installed in the mouse by testing the
SM_CMOUSEBUTTONS with the GetSystemMetrics() function. If the application re-
quires a certain number of buttons, then the assert or abort macros can be used, as
previously shown. For example, a program that requires a three-button mouse could
test for this condition as follows:

''��� �����	'��#(����)'��(��(�*�+��*���-�� .. /��

If the three-button mouse is required in the release version of the program, then
the code could be as follows:

if(GetSystemMetrics(SM_CMOUSEBUTTONS) != 3))

abort();

Notice that the assert macro is intended to be used in debugging. If the condition
is false, the macro shows information about the error and displays a message box
with three options: abort, debug, and ignore. Assert has no effect on the release ver-
sion of the program; it is as if the statement containing assert had been commented
out of the code. For this reason conditions that must be evaluated during execution
of the release version of a program should not be part of an assert statement.

The abort macro can be used to stop execution in either version. Abort provides
no information about the cause of program termination.

Programs that use the assert macro must include the file assert.h. VERIFY and
other debugging macros are available when coding with the Foundation Class Li-
brary, but they are not implemented in ANSI C.

18.3.1 Mouse Messages

There are 22 mouse messages currently implemented in the Windows API. Ten of these
messages refer to mouse action on the client area, and ten to mouse action in the
nonclient area. Of the remaining two messages WM_NCHITTEST takes place when
the mouse is moved either over the client or the nonclient area. It is this message that
generates all the other ones. WM_MOUSEACTIVATE takes place when a mouse button
is pressed over an inactive window, an event that is usually ignored by applications.

The abundance of Windows messages should not lead you to think that mouse
processing is difficult. Most applications do all their mouse processing by intercept-

© 2003 by CRC Press LLC

ing two or three of these messages. Table 18-4 lists the mouse messages most fre-
quency handled by applications.

Table 18-4

Frequently Used Client Area Mouse Messages

MOUSE MESSAGE DESCRIPTION

WM_LBUTTONDOWN Left button pressed

WM_LBUTTONUP Left button released

WM_RBUTTONDOWN Right button pressed

WM_RBUTTONUP Right button released

WM_RBUTTONDBLCLK Right button double-clicked

WM_LBUTTONDBLCLK Left button double-clicked

WM_MOUSEMOVE Mouse moved into client area

In Table 18-4 lists only client area mouse messages; nonclient area messages are
usually handled by the default windows procedure.

Mouse processing is similar to keyboard processing, although mouse messages
do not require that the window have the input focus. Once your application gains
control in a mouse message handler, it can proceed to implement whatever action is
required. However, there are some differences between keyboard messages and
mouse messages. To Windows, keyboard input is always given maximum attention.
The operating system tries to assure that keyboard input is always preserved. Mouse
messages, on the other hand, are expendable. For example, the WM_MOUSEMOVE
message, which signals that the mouse cursor is over the application's client area, is
not sent while the mouse is over every single pixel of the client area. The actual rate
depends on the mouse hardware and on the processing speed. Therefore, it is possi-
ble, given a small enough client area and a slow enough message rate, that code may
not be notified of a mouse movement action over its domain. Mouse programming
must take this possibility into account.

In client area mouse messages, the wParam indicates which, if any, keyboard or
mouse key was held down while the mouse action took place. Windows defines five
symbolic constants to represent the three mouse keys and the keyboard Ctrl and
Shift keys. These constants are listed in Table 18-5.

Table 18-5

Virtual Key Constants for Client Area Mouse Messages

CONSTANT ORIGINATING CONDITION

MK_CONTROL Ctrl key is down.

MK_LBUTTON Left mouse button is down.

MK_MBUTTON Middle mouse button is down.

MK_RBUTTON Right mouse button is down.

MK_SHIFT Shift key is down.

© 2003 by CRC Press LLC

Code can determine if one of the keys was held down by ANDing with the corre-
sponding constant. For example, the following fragment can be used to determine if
the Ctrl key was held down at the time that the left mouse button was clicked in the
client area:

case WM_LBUTTONDOWN:

if(wParam & MK_CONTROL) {

// ASSERT:

// Left mouse button clicked and <Ctrl> key down

The predefined constants represent individual bits in the operand; therefore, you
must be careful not attempt to equate the wParam with any one of the constants.
F o r e x a m p l e , t h e M K _ L B U T T O N c o n s t a n t i s a l w a y s t r u e i n t h e
WM_LBUTTONDOWN intercept, for this reason the following test always fails:

case WM_LBUTTONDOWN:

if(wParam == MK_CONTROL) {

On the other hand, you can determine if two or more keys were held down by per-
forming a bitwise OR of the predefined constants before ANDing with the wParam.
For example, the following expression can be used to tell if either the Ctrl keys or
the Shift keys were held down while the left mouse button was clicked:

if(wParam & (MK_CONTROL | MK_SHIFT)) {

// ASSERT:

// Either the <Ctrl> or the <Shift> key was held down

// when the mouse action occurred

To test if both the <Ctrl> and the <Shift> keys were down when the mouse action
occurred, you can code as follows:

if((wParam & MK_CONTROL) && (wParam & MKSHIFT)) {

// ASSERT:

// The <Ctrl> and <Shift> key were both down when the

// mouse action occurred

18.3.2 Cursor Location

Applications often need to know the screen position of the mouse. In the case of the
client area messages, the lParam encodes the horizontal and vertical position of the
mouse cursor when the action takes place. The high-order word of the lParam con-
tains the vertical mouse position and the low-order word the horizontal position. Code
can use the LOWORD and HIWORD macros to obtain the value in logical units. For ex-
ample:

int cursorX, cursorY; // Storage for coordinates

.

.

.

case WM_MOUSEMOVE:

cursorX = LOWORD(lParam)

cursorY = HIWORD(lParam);

// ASSERT:

// Variables now hold x and y cursor coordinates

© 2003 by CRC Press LLC

18.3.3 Double-Click Processing
Handling mouse double-clicks requires additional processing as well as some fore-
thought. In the first place, mouse double-click messages are sent only to windows that
were created with the CS_DBLCLKS style. The CS_DBLCLKS style is described in Ta-
ble 16-2. The structure of type WNDCLASSES for a windows that it to receive mouse
double-clicks can be defined as follows:

// Defining a structure of type WNDCLASSEX
WNDCLASSEX wndclass ;
wndclass.cbSize = sizeof (WNDCLASSEX) ;
wndclass.style = CS_HREDRAW | CS_VREDRAW |

CS_DBLCLKS;
.
.
.

Three client area mouse messages are related to the double-click action, one for
each mouse button. If the window class includes the CS-DBLCLKS type, then client
area double-click messages take place. WM_LBUTTONDBLCLK intercepts dou-
ble-clicks for the left mouse button, WM_RBUTTONDBLCLK for the right mouse
button, and WM_MBUTTONDBLCLK for the center button.

The double-click notification occurs when a mouse button is clicked twice within
a predefined time interval. The double-click speed is set by selecting the Mouse
Properties option in the Windows Control Panel. The SetDoubleClickTime() func-
tion can also be used to change the double-click interval from within an application,
although it is not a good idea to do this without user participation. The default dou-
ble-click time is 500 msec (one-half second). In addition, the two actions of a dou-
ble-click must occur within a rectangular area defined by Windows, according to the
display resolution. If the mouse has moved outside of this rectangle between the
first and the second clicks, then the action is not reported as a double-click. The pa-
r a m e t e r s f o r t h e d o u b l e - c l i c k r e c t a n g l e c a n b e r e t r i e v e d w i t h t h e
GetSystemMetrics() function, using the predefined constant SM_CXDOUBLECLK
for the x-coordinate, and SM_CYDOUBLECLK for the y coordinate.

A double-click intercept receives control on the second click, because at the time
of the first click it is impossible to know if a second one is to follow. Therefore, if
the code intercepts normal mouse clicks, it also receives notification on the first
click of a double-click action. For this reason, programs are usually designed so that
the action taken as a result of a double-click is a continuation of the one taken on a
single click. For example, selecting an application file in Windows Explorer by
means of a single mouse click has the effect of highlighting the filename. If the user
double-clicks, the file is executed. In this case the double-click action complements
the single-click one. Although it is possible to implement double-click processing
without this constraint, the programming is more complicated and the user inter-
face becomes sluggish.

18.3.4 Capturing the Mouse
The mouse programming logic so far discussed covers most of the conventional pro-
gramming required for handling mouse action inside the active window. By inter-

© 2003 by CRC Press LLC

cepting the client area messages, not the nonclient area ones, we avoid being notified of
actions that usually do not concern our code. However, there are common mouse opera-
tions that cannot be implemented by processing client area messages only. For exam-
ple, a Windows user installs a program icon on the desktop by right-clicking on the icon
and then dragging it outside of the program group window. When the right mouse button
is released, Windows displays a menu box that includes options to move or copy the pro-
gram item, to create a shortcut, or to cancel the operation. In this case, the action re-
quires crossing the boundary of the active window. Therefore, client area messages
cease as soon as this boundary is reached.

Another case is a drawing program that uses a mouse dragging operation to display
a rectangular outline. The rectangle starts at the point where the button is clicked,
and ends at the point where the button is released. But what happens if the user
crosses over the client area boundary before releasing the mouse button? In this case
the application is not notified of the button release action since it occurs outside the
client area. Furthermore, if the drawing action is performed during the
WM_MOUSEMOVE intercept, the messages also stop being sent to the applications
windows procedure as soon as the client area boundary is crossed. It would be a dan-
gerous assumption to implement this function assuming that the user never crosses
the boundary of the program's client area.

Problems such as these are solved by capturing the mouse, which is done by the
SetCapture() function. The only parameter to SetCapture() is the handle of the cap-
turing window. Once the mouse is captured, all mouse actions are assumed to take
place in the client area, and the corresponding message intercepts in the application
code are notified. The most obvious result of a mouse capture is that the client area
message handlers are active for mouse actions that take place outside the client area.
Only one window can capture the mouse, and it must be the active one, also called the
foreground window. While the mouse is captured all system keyboard functions are
disabled. The mouse capture ends with the call to ReleaseCapture(). GetCapture() re-
turns the handle to the window that has captured the mouse, or NULL if the mouse
capture fails.

Applications should capture the mouse whenever there is a possibility, even a re-
mote one, of the user crossing the boundary of the client area during mouse process-
ing. Implementing a simple drag-and-drop operation usually requires capturing the
mouse. Mouse operations that take place between windows, whether they be child
windows or not, also require capturing the mouse. Multitasking operations are limited
during mouse capture. Therefore, it is important that the capture is released as soon
as it is no longer necessary.

18.3.5 The Cursor

The screen image that corresponds to the mouse device is called the cursor. Windows
provides 13 built-in cursors from which an application can select. In addition, you can
create your own customized cursor and use it instead of a standard one. There are over
20 Windows functions that relate to cursor operations; however, even programs that
manipulate cursor images hardly ever use more than a couple of them. Figure 18-3
shows the Windows built-in cursors and their corresponding symbolic names.

© 2003 by CRC Press LLC

Figure 18-3 Windows Built-In Cursors

Code that manipulates cursor images must be aware of Windows cursor-handling
operations. A mouse-related message not yet discussed is WM_SETCURSOR. This
message is sent to your window procedure, and to the default window procedure,
whenever a noncaptured mouse moves over the client area, or when its buttons are
pressed or released. In the WM_SETCURSOR message, the wParam holds the han-
dle to the window receiving the message. The low-order word of lParam is a code
that allows determining where the action takes place, usually called the hit code.
The high-order word of the lParam holds the identifier of the mouse message that
triggered WM_SETCURSOR.

One of the reasons for WM_SETCURSOR is to give applications a chance to
change the cursor; also for a parent window to manipulate the cursor of a child win-
dow. The problem is that Windows has a mind of its own regarding the cursor. If
your application ignores the WM_SETCURSOR message, the default window proce-
dure receives the message anyway. If Windows determines (from the hit code) that
the cursor has moved over the client area of a window, then the default window pro-
cedure sets the cursor to the class cursor defined in the hCursor member of the
WNDCLASSEX structure in WinMain(). If the cursor is in a nonclient area, then Win-
dows sets it to the standard arrow shape.

What all of this means to your application code is that if you ignore the
WM_SETCURSOR message, and don't take other special provisions, Windows con-
tinuously changes the cursor according to its own purposes, probably interfering
w i t h y o u r o w n m a n i p u l a t i o n s . T h e s i m p l e s t s o l u t i o n i s t o i n t e r c e p t
WM_SETCURSOR and return a nonzero value. In this case the window procedure
halts all further cursor processing. You could also use the WM_SETCURSOR inter-
cept to install your own cursor or cursors; however, the disadvantage of this ap-

IDC_APPSTARTING

IDC_ARROW

IDC_CROSS

IDC_HELP

IDC_IBEAM

IDC_NO

IDC_SIZEALL

IDC_SIZENESW

IDC_SIZENS

IDC_SIZENWSE

IDC_SIZEWE

IDC_UPARROW

IDC_WAIT

© 2003 by CRC Press LLC

proach is that WM_SETCURSOR does not provide information about the cursor's
screen location.

An alternate method is to perform cursor manipulations at one of the mouse mes-
sage intercepts, or any other message handler for that matter. For example, code
can implement cursor changes at WM_MOUSEMOVE. In this case the lParam con-
tains the cursor's horizontal and vertical position. Child windows can use this inter-
cept to display their own cursors. In this case the hCursor field of the
WNDCLASSEX structure is usually set to NULL, and the application takes on full re-
sponsibility for handling the cursor.

Applications that manipulate the cursor often start by setting a new program cur-
sor during WM_CREATE processing. In cursor processing there are several ways of
achieving the same purpose. The methods described are those that the authors have
found more reliable. To create and display one of the built-in cursors you need a
variable to store the handle to the cursor. The LoadCursor() and SetCursor() func-
tions can then be used to load and display the cursor. To load and display the
IDC_APPSTARTING cursor code can be as follows:

HCURSOR aCursor;

.

.

.

aCursor = LoadCursor(NULL, IDC_APPSTARTING);

SetCursor (aCursor);

The first parameter of the LoadCursor() function is the handle to the program in-
stance. This parameter is set to NULL to load one of the built-in cursors. Any of the
symbolic names in Figure 18-3 can be used. The cursor is not displayed until the
SetCursor() function is called, using the cursor handle as a parameter.

Graphics applications sometimes need one or more special cursors to suit their
own needs. In the Visual C++ development environment, creating a custom cursor is
made easy by the image editor. The process described for creating a program icon in
Chapter 3, in the section, "Creating a Program Resource," is almost identical to the
one for creating a custom cursor. Briefly reviewing:

1. In the Insert menu select the Resource command and then the Cursor resource type.

2. Use the editor to create a cursor. Note that all cursors are defined in terms of a 32 by 32
bit monochrome bitmap.

3. A button on the top bar of the editor allows positioning the cursor's hot spot. The de-
fault position for the hot spot is the upper left corner.

4. In the process of creating a cursor, Developer Studio also creates a new script file, or
adds the information to an existing one. You must manually insert the script file into
the project by selecting the Add to Project command from the Project menu and then
selecting the Files option. In the "Insert Files into Project" dialog box select the script
file and then click the OK button. The script file now appears on the Source Files list in
the Files View window of the Project Workspace.

© 2003 by CRC Press LLC

5. In addition to the script file, Developer Studio also creates a header file for resources.
The default name of this file is resource.h. In order for resources to be available to the
code you must enter an #include statement for the resource.h file in your source.

In order to use the custom cursor in your code you must know the symbolic name
assigned to this resource, or its numeric value. The information can be obtained by
selecting the Resource Symbols command from the View menu, or clicking the cor-
responding button on the toolbar.

The LoadCursor() function parameters are different for a custom cursor than for
a built-in one. In the case of a custom cursor, you must enter the handle to the in-
stance as the first parameter, and use the MAKEINTRESOURCE macro to convert
the numeric or symbolic value into a compatible resource type. For example, if the
symbolic name of the custom cursor is IDC_CURSOR1, and the handle to the in-
stance is stored in the variable pInstance (as is the case in the template files fur-
nished in this book) you can proceed as follows:

HCURSOR aCursor; // handle to a cursor
.
.
.
aCursor = LoadCursor(pInstance,

MAKEINTRESOURCE(IDC_CURSOR1));
SetCursor(aCursor);

18.4 Mouse and Cursor Demonstration Program
The program named MOU_DEMO, located in the Mouse Demo project folder of the
book's software package, is a demonstration of some of the mouse handling opera-
tions previously described. At this point in the book we have not yet covered the
graphics services, or the implementation of user interface functions. For these rea-
sons, it is difficult to find a meaningful demonstration for mouse operations.

MOU_DEMO monitors the left and the right mouse buttons. Clicking the left but-
ton changes to one of the built-in cursors. The cursors are displayed are the same
ones as in Figure 18-3. Clicking the right mouse button displays a customized cursor
in the form of the letter "A." The hot spot of the custom cursor is the vertex of the
"A." When the mouse is moved in the client area, its position is displayed on the
screen. Figure 18-4 is a screen snapshot of the MOU_DEMO program.

Figure 18-4 MOU_DEMO Program Screen

© 2003 by CRC Press LLC

The program's first interesting feature is that no class cursor is defined in the
WNDCLASSEX structure. Instead, the hCursor variable is initialized as follows:

 �!)0
''1��2�'3� . -*���

Since the program has no class cursor, one is defined during WM_CREATE pro-
cessing, with the following statements:

// Select and display a cursor
aCursor = LoadCursor(NULL, IDC_UPARROW);
SetCursor(aCursor);

In this code, the variable aCursor, of type HCURSOR, is declared in the windows
procedure. Toggling the built-in cursors is performed in the WM_LBUTTONDOWN
message intercept. The coding is as follows:

case WM_LBUTTONDOWN:
curNum++; // bump to next cursor

switch (curNum) {
case 1:

aCursor = LoadCursor(NULL, IDC_WAIT);
SetCursor(aCursor);
break;

case 2:
aCursor = LoadCursor(NULL, IDC_APPSTARTING);
SetCursor(aCursor);
break;

case 3:
aCursor = LoadCursor(NULL, IDC_CROSS);
SetCursor(aCursor);
break;

.

.

.
case 12:

aCursor = LoadCursor(NULL, IDC_UPARROW);
SetCursor(aCursor);
curNum = 0;
break;

}

Note that the static variable curNum, defined in the window procedure, is used to
keep track of the cursor being displayed and to index through all 13 cursor images.
The custom cursor is created using the cursor editor that is part of Visual Studio.
The display of the custom cursor is implemented during WM_RBUTTONDOWN pro-
cessing:

case WM_RBUTTONDOWN:
aCursor = LoadCursor(pInstance,

MAKEINTRESOURCE(IDC_CURSOR1));
SetCursor(aCursor);
return 0;

The movement of the mouse in the client area is detected by intercepting the
WM_MOUSEMOVE message. The processing consists of obtaining the cursor coor-
dinates from the low-order and high-order words of lParam, and converting the nu-
meric values into ASCII strings for display. The code uses _itoa() for this purpose.

© 2003 by CRC Press LLC

The ASCII values are placed on the corresponding string arrays. The processing is as
follows:

case WM_MOUSEMOVE:
cursorX = LOWORD(lParam);
cursorY = HIWORD(lParam);
// Convert integer to ASCII string
_itoa(cursorX, CurXStr + 4, 10);
_itoa(cursorY, CurYStr + 4, 10);
// Display x coordinate of mouse cursor
// First initialize rectangle structure
SetRect (&textRect, // address of structure

2 * cxChar, // x for start
3 * cyChar, // y for start
cxClient -(2 * cxChar), // x for end
cyClient); // y for end

// Erase the old string
DrawText(hdc, CurXBlk, -1, &textRect,

DT_LEFT | DT_WORDBREAK);
// Display new string
DrawText(hdc, CurXStr, -1, &textRect,

DT_LEFT | DT_WORDBREAK);
// Display y coordinate of mouse cursor
.
.
.
return 0;

In order to avoid having Windows change the cursor as it moves into the client
area, the code intercepts the WM_SETCURSOR message, as follows:

case WM_SETCURSOR:
return 1;

When running the MOU_DEMO program notice that if the cursor is moved at a
rather fast rate out of the client area, toward the left side or the top of the screen,
the last value displayed for the diminishing coordinate may not be zero. This is due
to the fact, mentioned earlier in this section, that WM_MOUSEMOVE messages are
not sent to the window for every pixel of screen travel. Mouse programming must
also take this into account and use greater-than and smaller-than comparisons to de-
termine screen areas of cursor travel.

© 2003 by CRC Press LLC

Chapter 19

Child Windows and Controls

Topics:
• Windows styles

• Child windows

• Menus

• Creating a menu

• Dialog boxes

• Common controls

This chapter is about programming the Windows graphical user interface (GUI). The
Windows GUI consists of child windows and built-in controls, such as status bars,
toolbars, ToolTips, trackbars, up-down controls, and many others. The discussion
also includes general purpose controls such as message boxes, text boxes, combo
boxes, as well as the most used of the common controls. All of these components are
required to build a modern Windows program; it is difficult to imagine a graphics appli -
cation that does not contain most of these elements.

19.1 Window Styles

One of the members of the WNDCLASSEX structure is the windows style. In Chapter
16 we briefly discussed windows styles, and Table 16-2 is a summary of the constants
that can be used to define this member. Since the eleven style constants can be ORed
with each other, many more windows styles can result. Furthermore, when you create
a window using the CreateWindow() function, there are 27 window style identifiers
(see Table 16-5). In addition, the CreateWindowEx() function provides 21 style exten-
sions (see Table 16-4). Although the number of possible combinations of all these ele-
ments is very large, in practice, about 20 window styles, with unique properties, are
clearly identified, all of which are occasionally used. This lists can be further simplify
into three general classes (overlapped, pop-up, and child windows) and three varia-
tions (owned, unowned, and child), which gives rise to five major styles.

© 2003 by CRC Press LLC

In the sections that follow we discuss four specific window styles:

• Unclassed child windows. These are windows that are related to a parent window but
that do not belong to one of the predefined classes.

• Basic controls. These are child windows that belong to one of the standard control
classes: BUTTON, Combo box, EDIT, LISTBOX, MDICLIENT, SCROLLBAR, and
STATIC.

• Dialog boxes. A special type of pop-up window, that usually includes several child win-
dow controls, typically used to obtain and process user input.

• Common controls. A type of controls introduced in Windows 3.1, which include status
bars, toolbars, progress bars, animation controls, list and tree view controls, tabs, prop-
erty sheets, wizards, rich edit controls, and a new set of dialog boxes.

Several important topics related to child windows and window types are not dis-
cussed; among them are OLE control extensions, ActiveX controls, and multiple
document interface (MDI). OCX controls relate to OLE automation and ActiveX con-
trols are used mostly in the context of Web programming.

19.1.1 Child Windows

The simplest of all child windows is one that has a parent but does not belong to any of
the predefined classes. Sometimes these are called "unclassed" child windows. How-
ever, if we refer to the "classed" child windows as controls, then the "unclassed" win-
dows can be simply called "child windows." These are the designations used in the rest
of the book: we refer to unclassed child windows simply as child windows and the
classed variety as controls.

A child window must have a parent, but it cannot be an owned or an unowned
window. The child window can have the appearance of a main window, that is, it can
have a sizing border, a title bar, a caption, one or more control buttons, an icon, a
system menu, a status bar, and scroll bars. The one element it cannot have is a
menu, since an application can have a single menu and it must be on the main win-
dow. On the other hand, a child window can be defined just as an area of the parent
window. Moreover, a child window can be transparent; therefore, invisible on the
screen. The conclusion is that it is often impossible to identify a child window by its
appearance.

A child window with a caption bar can be moved inside its parent client area;
however, it will be automatically clipped if moved outside of the parent. The child
window overlays a portion of its parent client area. When the cursor is over the
child, Windows sends messages to the child, not to the parent. By the same token,
mouse action on the child window's controls, or its system menu, is sent to the
child. A child window can have its own window procedure and perform input pro-
cessing operations independently of the parent. When the child window is created
or destroyed, or when there is a mouse-button-down action on the child, a
WM_PARENTNOTIFY message is sent to the parent window. One exception to par-
ent notification is if the child is created with the WS_EX_NOPARENTNOTIFY style.

© 2003 by CRC Press LLC

A child window is created in a manner similar to the parent window, although
there are some important variations. Creating a child window involves the same
steps as creating the main window. You must first initialize the members of the
WNDCLASSEX structure. Then the window class must be registered. Finally, the
window is actually created and displayed when a call is made to CreateWindow() or
CreateWindowEx() function.

There are not many rules regarding when and where an application creates a
child window. The child window can be defined and registered in WinMain() and dis-
played at the same time as the main window. Or the child window can be created as
the result of user input or program action. We have already mentioned the great
number of windows[check] styles and style combinations that can be used to define
a child window. Some of these styles are incompatible, and others are ineffective
when combined. The styles used in creating the child window determine how it
must be handled by the code. For example, if a child window is created with the
WS_VISIBLE style, then it is displayed as it is created. If the WS_VISIBLE style is not
used, then to display the child window you have to call ShowWindow() with the han-
dle to the child window as the first parameter, and SW_SHOW, SW_SHOWNORMAL,
or one of the other predefined constants, as the second parameter.

In operation, the child window provides many features that facilitate program de-
sign. For instance, a child window has its own window procedure, that can do its
own message processing. This procedure receives the same parameters as the main
window procedure and is notified of all the windows[check] messages that refer to
the child. The child window can have its own attributes, such as icons, cursors, and
background brush. If the main window is defined with an arrow cursor and the child
window with a cross cursor, the cursor changes automatically to a cross as it travels
over the child, and back to an arrow as it leaves the child's client area. The fact that
each windows does is own message processing considerably simplifies the coding.
Screen environments with multiple areas, such as the ones in Visual Studio, Win-
dows Explorer, and many other applications, are implemented by means of child
windows.

Parent and child windows can share the same display context or have different
ones. In fact, each window can have any of the display contexts described in Chap-
ter 4. If the child window is declared with the class style CS_PARENTDC, then it
uses the parent's display context. This means that output performed by the child
takes place in the parent's client area, and the child has no addressable client area
of its own. On the other hand, parent and child can have separate device contexts. If
both windows are declared with the class style CS_OWNDC, discussed in Chapter 4,
then each has its own display context with a unique set of attributes. If there is more
than one child window, they can be declared with the class style CS_CLASSDC, and
the children share a single device context, which can be different from the one of
the parent window.

Each child window is given its own integer identifier at the time it is created.
Since child windows can have no menus, the HMENU parameter passed to
CreateWindows() or CreateWindowsEx() is used for this purpose. The child window
uses this identifier in messages sent to its parent, which enables the parent to tell to

© 2003 by CRC Press LLC

which child window the message belongs, if more than one is enabled. If multiple
child windows are given the same numeric identification then it may be impossible
for the parent to tell them apart.

19.1.2 Child Windows Demonstration Program
The program named CHI_DEMO, located in the Child Window Demo project folder on
the book's software package, is a demonstration of a program with a child window.
The program displays an overlapped child window inside the parent window. When
the left mouse button is clicked inside the child window, a text message is displayed in
its client area. The same happens when the left mouse button is clicked in the parent's
client area. At the same time, the old messages in the parent or the child windows are
erased. Figure 19-1 is a screen snapshot of the CHI_DEMO program.

Figure 19-1 CHI_DEMO Program Screen

T h e p r o g r a m u s e s a c h i l d w i n d o w, w h i c h i s d e f i n e d u s i n g t h e
WS_OVERLAPPEDWINDOW style. This style, which is the same one used in the par-
ent window, gives both the parent and the child a title bar with caption, a system
menu, a border, and a set of control buttons to close, minimize and restore. The
child window is created during WM_CREATE message processing of the parent win-
dow, as follows:

LRESULT CALLBACK WndProc(HWND hwnd, UINT iMsg, WPARAM wParam,
LPARAM lParam) {

PAINTSTRUCT ps ;
WNDCLASSEX chiclass ;
switch (iMsg) {

case WM_CREATE:
hdc = GetDC (hwnd) ;
// The system monospaced font is selected
SelectObject (hdc, GetStockObject (SYSTEM_FIXED_FONT)) ;
// Create a child window
chiclass.cbSize = sizeof (chiclass) ;
chiclass.style = CS_HREDRAW | CS_VREDRAW

| CS_OWNDC;
chiclass.lpfnWndProc = ChildWndProc ;
chiclass.cbClsExtra = 0 ;
chiclass.cbWndExtra = 0 ;
chiclass.hInstance = pInstance ;
chiclass.hIcon = NULL;
chiclass.hCursor = LoadCursor (NULL, IDC_CROSS) ;
chiclass.hbrBackground = (HBRUSH) GetStockObject

© 2003 by CRC Press LLC

(WHITE_BRUSH);
chiclass.lpszMenuName = NULL;
chiclass.lpszClassName = "ChildWindow" ;
chiclass.hIconSm = NULL;
RegisterClassEx (&chiclass) ;

hChild = CreateWindow ("ChildWindow",
"A Child Window", // caption
WS_CHILD | WS_VISIBLE |
WS_OVERLAPPEDWINDOW ,
40, 40, // x and y of window location
400, 100, // x and y of window size
hwnd, // handle to the parent window
(HMENU) 1001, // child window designation
pInstance, // program instance
NULL) ;

// Make sure child window is valid
assert(hChild != NULL);
return 0 ;
.
.
.

Note that the child is defined with the styles WS_CHILD, WS_VISIBLE, and
WS_OVERLAPPEDWINDOW. The WS_VISIBLE class style ensures that the child be-
comes visible as soon as CreateWindows() is executed. The child window is as-
signed the arbitrary value 1001 in the HMENU parameter to CreateWindow(). The
child has a private DC, the same as the parent, but the DCs are different. The assert
statement ensures, during program development, that the child window is a valid
one.

During the parent's WM_PAINT message processing a call is made to
UpdateWindow() with the handle of the child window as a parameter. The result of
this call is that the child's window procedure receives a WM_PAINT message.

The window procedure for the child, named ChildWndProc() in the demo pro-
gram, is prototyped in the conventional manner and its name defined in the
lpfnWndProc member of the child's WNDCLASSEX structure. The child's window
procedure is coded as follows:

LRESULT CALLBACK ChildWndProc (HWND hChild, UINT iMsg, WPARAM wParam,
LPARAM lParam) {

switch (iMsg) {
case WM_CREATE:

childDc = GetDC(hChild);
SelectObject (childDc, GetStockObject

(SYSTEM_FIXED_FONT)) ;
return 0;

case WM_LBUTTONDOWN:
// Display message in child and erase text in parent
TextOut(childDc, 10, 10, "Mouse action in child ", 22);
TextOut(hdc, 10, 10, " ", 22);

return 0;
case WM_DESTROY:

return 0;
}

return DefWindowProc (hChild, iMsg, wParam, lParam) ;
}

© 2003 by CRC Press LLC

During the WM_CREATE processing of the child's windows[check] procedure,
the code obtains a handle to the child's DC. Also, the system fixed font is selected
into the DC at this time.

In the CHI_DEMO program we have declared several public variables: the han-
dles to the windows of the parent and the child and the handles to their display con-
text. This stretches one of the fundamental rules of Windows programming: to keep
public data at a minimum. In this case, however, we achieve a substantial simplifica -
tion in the coding, since now the parent can have access to the child's device con-
text, and vice versa. Therefore, when the user clicks the left mouse button in the
child's client area, a text message is displayed in the child window and the one in the
parent window is simultaneously erased. Similar processing takes place when the
left mouse button is clicked in the parent's client area.

19.1.3 Basic Controls

These are the traditional controls that have been around since the Win16 APIs. They
are predefined child windows that belong to one of the standard window classes. Ta-
ble 19-1 lists the predefined classes used for controls.

Table 19-1

Predefined Control Classes

CLASS NAME MEANING

BUTTON A small rectangular child window representing a button.
The user clicks a button to turn it on or off. Button
controls can be used alone or in groups, and they can
be labeled or not. Button controls typically change
appearance when clicked.

COMBOBOX Consists of a list box and a selection field similar to
an edit control (see description). Depending on
its style, you can or cannot edit the contents of
the selection field. If the list box is visible, typing
characters into the selection field highlights the first
list box entry that matches the characters typed.
By the same token, selecting an item in the list box
displays the selected text in the selection field.

EDIT A rectangular child window into which you type text.
You select the edit box and give it the keyboard focus
by clicking it or moving to it by pressing the Tab key.
You can enter text into an Edit control if it displays a
flashing caret. You use the mouse to move the cursor
inside the box, to select characters to be replaced, or
to position the cursor for inserting new characters. The
Backspace key deletes characters.
Edit controls use a variable-pitch system font and
display characters from the ANSI character set. The
WM_SETFONT message can be used to change the
Default font. During input, tab characters are expanded into
As many spaces as are required to move the caret to the
Next tab stop. Tab stops are preset eight spaces apart.

(continues)

© 2003 by CRC Press LLC

Table 19-1

Predefined Control Classes (continued)

CLASS NAME MEANING

LISTBOX A list of character strings. It is used to present a
list of names, such as filenames, from which you can
select. Selection is made by clicking an item in the
list box. The selected string is highlighted, and a
notification message is sent to the parent window.
When the item list is too long for the window, you can
use a vertical or horizontal scroll bar. If the scroll
bar is not needed, it is automatically hidden.

SCROLLBAR A rectangular control with a scroll box and direction
arrows at both ends. The scroll bar sends a notification
message to its parent window whenever the user clicks
it. The parent window is responsible for updating the
position of the scroll box when necessary. Scroll bar
controls have the same appearance and function as scroll
bars used in ordinary windows. Unlike scroll bars,
however, scroll bar controls can be positioned anywhere
in a window and for any purpose.
The scroll bar class also includes size box controls,
which is a small rectangle that you can expand to change
the size of the window.

STATIC A simple text field, box, or rectangle, used to label,
group, or separate other controls. Static controls take no
input and provide no output.

Figure 19-2 shows buttons of several types, a list box, a combo box, and a scroll
bar control.

Figure 19-2 Buttons, List Box, Combo Box, and Scroll Bar Controls

© 2003 by CRC Press LLC

In conventional Windows programming basic controls are not frequently used in
the client area of the main window. Most often you see them in message boxes or in -
put boxes, described later in this chapter. For this reason, Developer Studio does
not provide a resource editor for inserting controls in the client area, although it
does contain a powerful editor for dialog boxes. In spite of this, the use of basic con-
trols in child windows adds considerable power to a programmer's toolkit. The re -
sult is a completely customizable message, dialog box, toolbar, or other child
window, in which you are free from all the restrictions of the built-in versions of
these components. The price for this power and control is that you must implement
all the functionality in your own code.

The CreateWindow() or CreateWindowEx() functions are used to build any one
of the controls in Table 19-1. If the control is created using the WS_VISIBLE window
style, then it is displayed immediately on the window whose handle is passed as a
parameter to the call. If not, then the ShowWindow() function has to be called in or -
der to display it. The call returns a handle to the created control, or NULL if the op -
eration fails. The following code fragment shows creating a button control.

static HWND hwndRadio1; // Handle to control

. . .

hwndRadio1 = CreateWindow (

"BUTTON", // Control class name

"Radio 1", // Button name text

WS_CHILD | WS_VISIBLE | BS_RADIOBUTTON /| WS_SIZEBOX,

20, // x coordinate of location

60, // y coordinate

100, 30, // button size

hChild, // Handle to parent window

(HMENU) 201, // control id number

pInstance, // Instance handle

NULL) ; // Pointer to additional data

Because controls belong to predefined classes, they need not be registered as a
window c lass . Therefore , the WNDCLASSEX s t ructure and the ca l l to
RegisterClass() or RegisterClassEx() are not required in this case. In the case of a
main window, the eighth parameter of CreateWindow() is the handle to its menu.
Since controls cannot have a menu, this parameter is for the control's numeric des -
ignation, the same as with a child window. Thereafter, this numeric value, which can
be also a predefined constant, identifies the control. If the control is to be address -
able, this identification number should be unique.

In addition to the general window style, each of the predefined control classes
has its own set of attributes. The prefixes are shown in Table 19-2.

The class-specific styles are ORed with the window style constants passed in the
third parameter to CreateWindow(). Note that in the previous code fragment the
BS_RADIOBUTTON constant is included in the field. There are several variations of
the button class. The buttons in the first group of Figure 19-2, labeled Pushbuttons,
are plain pushbuttons. They appear raised when not pushed and sunken after being
pushed by the user. Pushbuttons operate independently. These buttons are usually
created with the BS_PUSHBUTTON and BS_DEFPUSHBUTTON styles.

© 2003 by CRC Press LLC

Table 19-2

Prefix for Predefined Window Classes

PREFIX CONTROL TYPE

BS button
CBS combo box
ES edit box
LBS list box
SBS scroll bar
SS static

Radio buttons are reminiscent of the buttons in the radios of old-style automo -
biles: pushing one button automatically pops out all the others. The styles
BS_RADIOBUTTON and BS_AUTORADIOBUTTONS are used for creating this type
of button. Radio buttons contain a circular area with a central dot that indicates the
button's state.

Another variation is the checkbox. A checkbox can have two or three states. A
two-state checkbox can be checked or unchecked, while the three-state style can
also be grayed. Checkboxes, like regular buttons, operate independently of each
other. Two-state checkboxes are created with the BS_CHECKBOX style. The
three-state version requires ORing the BS_3STATE constant with BS_CHECKBOX.

A unique style of button is the groupbox, which is enabled with the button style
BS_GROUPBOX. A groupbox is used to enclose several buttons or controls in a la-
beled frame. It is unique in the sense that it is defined as a button, but a groupbox
does not respond to user input, nor does it send messages to the parent window. Fig-
ure 19-2 shows three group boxes, one for each type of button.

Three types of controls are designed for manipulating text: the edit box, the
combo box, and the list box. You select an edit box control for input by clicking it or
tabbing until it has the input focus. When a caret is displayed, you can enter text un-
t i l the rec tang le i s f i l l ed . I f the ed i t box contro l i s crea ted wi th the
ES_AUTOSCROLL style, then you can enter more characters than fit in the box
since the text automatically scrolls to the left, although this practice is not recom-
mended since part of the input disappears from the screen. If the edit box is defined
with the ES_MULTILINE style then you can enter more than one text line. However,
this style can create conflicts if the active window contains a default pushbutton
that also responds to the Enter key. The built-in solution to this problem is that the
default style of edit box requires the Ctrl+Enter key combination to end an input
line. However, if the edit box is created with the style ES_WANTRETURN, then the
Enter key alone serves as a line terminator.

The list box control displays a list of text items from which the user can select
one or more. Code can add or remove strings from the list box. Scroll bars can be re-
quested for a list box. If the list box is created with the LBS_NOTIFY style then the
parent window receives a message whenever the user clicks or double-clicks an
item. The LBS_SORT style makes the list box sort items alphabetically.

© 2003 by CRC Press LLC

The combo box is a combination of a textbox and a list box. The user can enter
text on the top portion of the combo box, or drop down the list box and select an
item from it. Alternatively, the edit function of the combo box can be disabled. Fig -
ure 19-2 shows a combo box.

Scroll bar controls can be vertical or horizontal and be aligned at the bottom, top,
left, or right of a rectangle defined at call time. It is important to distinguish be-
tween window and control scroll bars. Any window can have scroll bars if it is de-
fined with the WS_VSCROLL or WS_HSCROLL styles. Scroll bar controls are
individual scroll bars which can be positioned anywhere on the parent's client area.
Both windows and control scroll bars send messages to the parent window when-
ever a user action takes place. Scroll bar controls are of little use by themselves but
provide a powerful and convenient way of obtaining user input, for example, a scroll
bar control that allows the user to move up or down a numeric range without typing
values. In this case the scroll bar is usually combined with another control that dis -
plays the selected value. The CON_DEMO program, in this chapter, has an example
of this use of a scroll bar control.

Static controls do not interact with the user since they cannot receive mouse or
keyboard input. The principal use of static controls is to display rectangular frames
of several colors and borders, and to provide feedback from another control. The
CON_DEMO program, described later in this chapter, which is found in the Controls
Demo project folder in the book's software pckage, has a child window with a static
control that displays the position of a scroll bar.

19.1.4 Communicating with Controls

Controls are child windows and child windows can communicate with their parents.
As is the case in all Windows functions, controls communicate with their parent win-
dow by means of a message passing mechanism. The messages passed to the parent
window depend on the type of control. This communication works both ways: a con-
trol sends a message to its parent window informing it that a certain user action has
taken place, or the parent window sends a message to a control requesting that it take
a certain action or report some item of information stored internally. For example,
when the user clicks on a pushbutton control, a WM_COMMAND message is sent to
the parent window. When a parent window needs to know if a radio button is checked
or unchecked it sends a BM_GETCHECK message to the radio button control.

WM_COMMAND is used to inform the parent window of action on a menu, on a
control, or of an accelerator keystroke. The high-order word of the wParam is zero
if the message originates in a menu, and one if it originates in an accelerator key-
stroke. If the message originated in a control, then the high-word of the wParam is a
control-specific notification code. Table 19-3 lists the notification codes for the but-
ton controls.

© 2003 by CRC Press LLC

Table 19-3

Notification Codes for Buttons

NOTIFICATION CODE ACTION

BN_CLICKED Button was clicked
BN_DBLCLK Button was double-clicked
BN_SETFOCUS Button has gained keyboard focus
BN_KILLFOCUS Button has lost keyboard focus

In the case of a control, the low-order word of the wParam contains the control
identifier. This identifier is the number assigned to the control in the hMenu parame -
ter of CreateWindows() or CreateWindowsEx(). Usually, an application defines a
symbolic constant for each control, since this is a mnemonic aid and helps to make
sure that no two controls are assigned the same value. One or more #define state -
ments can be used as follows:

#define WARMBUTTON 101

#define HOTBUTTON 102

#define COLDBUTTON 103

A switch statement on the low word of wParam can later be used to tell which
button been pressed by the user, for example:

int buttonID, buttonNotify;

.

.

case WM_COMMAND:

buttonID = LOWORD(wParam);

buttonNotify = HIWORD(wParam);

//eliminate non-control actions

if(buttonNotify <= 1)

return 0;

switch (buttonID):

case WARMBUTTON:

if(buttonNotify == BN_CLICKED)

// ASSERT:

// Tested button was clicked

.

.

.

Some controls store information about their state or other data. For example, a
three-state checkbox can be in a checked, unchecked, or indeterminate state. Table
19-4 lists the checkbox constants that define the three settings. These are used with
three-state checkboxes and radio buttons.

Table 19-4

Notification Codes for Three-State Controls

NOTIFICATION CODE ACTION

BST_CHECKED Control is checked
BST_INDETERMINATE Control is checked and grayed
BST_UNCHECKED Control is unchecked

© 2003 by CRC Press LLC

If you send a BM_GETCHECK message to a three-state checkbox or radio button
it responds with one of these values. Suppose a three-state checkbox, with identifi -
cation code CHKBOX1, and handle hwndChkBox1, which you wished to change
from the checked to indeterminate state; it can be coded as follows:

LRESULT butMsg;

int buttonID, buttonNotify;

.

.

.

case WM_COMMAND:

buttonID = LOWORD(wParam);

buttonNotify = HIWORD(wParam);

//eliminate non-control actions

if(buttonNotify <= 1)

return 0;

switch (buttonID):

case CHKBOX1:

butMsg = SendMessage(hwndChkBox1, // handle

BM_GETCHECK, // message

0, 0L); // must be zero

if(butMsg == BST_CHECKED)

// ASSERT:

// checkbox is in checked state

SendMessage(hwndChkBox1,

BM_SETCHECK, // order to set new state

BST_INDETERMINATE, // change to this state

0, 0l);

.

.

.

Note, in the previous code fragment, that we used the SendMessage() function to
communicate with the control. SendMessage() is used to send a message to a win -
dow or windows bypassing the message queue. In contrast, the PostMessage() func -
tion places the message in the thread's message queue. In communicating with a
control, the first parameter to SendMessage() is the control's handle and the second
one is the message to be sent. The third parameter is zero when we wish to obtain
information from a control, and it contains a value or state when we wish to change
the data stored. The BM_GETCHECK message returns a value, of type LRESULT,
which is one of the notification codes in Table 19-4. The BM_SETCHECK message is
used to change the button's state.

Scroll bar controls have a unique way of communicating with the parent window.
Like main windows scroll bars, scroll bar controls send the WM_VSCROLL and
WM_HSCROLL messages, the first one in the case of a vertical scroll bar action and
the second one in the case of a horizontal scroll bar. The lParam is set to zero in win -
dows scroll bars and to the scroll bar handle in the case of a scroll bar control. The
high-order word of the wParam contains the position of the scroll box and the
low-order word the scroll box value, which is one of the SB prefix constants listed in
Table 19-5.

© 2003 by CRC Press LLC

Table 19-5

User Scroll Request Constants

VALUE MEANING

SB_BOTTOM Scroll to the lower right

SB_ENDSCROLL End scrolling

SB_LINELEFT Scroll left by one unit

SB_LINERIGHT Scroll right by one unit

SB_PAGELEFT Scroll left by the width of the window

SB_PAGERIGHT Scroll right by the width of the window

SB_THUMBPOSITION Scrolls to the absolute position. The current
position is specified by the nPos parameter

SB_THUMBTRACK Drags scroll box to the specified position.
The current position is specified by the
NPos parameter

SB_TOP Scroll to the upper left

In processing scroll bar controls the first step is to make sure that the message
originates in the control being monitored. When the scroll action does not originate
in windows scroll bars, or on those of another control, the processing usually con-
sists in determining the new position for the scroll box. Two functions in the Win-
dows API, SetScrollInfo() and GetScrollInfo(), provide all necessary functionality
for scroll bar operation. SetScrollInfo() is used to set the minimum and maximum
positions for the scroll box, to define the page size, and to set the scroll box to a spe-
cific location. GetScrollInfo() retrieves the information regarding these parameters.
Four other functions, SetScrollPos(), SetScrollRange(), GetScrollPos(), and
GetScrollRange() are furnished. In theory, these last four functions are furnished for
backward compatibility, although they are often easier to implement in code that
the new versions.

A program that implements a horizontal scroll bar usually starts by creating a
scroll bar control. You can use the SBS_HORZ scroll bar style and determine its ver-
tical and horizontal size in the sixth and seventh parameters to CreateWindows(), as
follows:

#define SCROLLBAR 401 // scroll bar id code
static HWND hwndSB; // handle for the scroll bar

.
.

// create a scroll bar class child window
hwndSB = CreateWindow ("SCROLLBAR", // Control class name

"", // Button name text
WS_CHILD | WS_VISIBLE | SBS_HORZ ,
20, // x coordinate of location
140, // y coordinate
150, 25, // dimensions
hChild, // handle to parent window
(HMENU) SCROLLBAR, // child window id.
pInstance, // instance handle
NULL) ;

© 2003 by CRC Press LLC

Once the scroll bar is created, you must determine its range, set the initial posi-
tion of the scroll box, and define its page size, if page operations are implemented.
This last value determines how much the scroll box moves when the bar itself is
clicked. All of this can be done with a single call to SetScrollInfo(), in which case
the parameters are stored in a SCROLLINFO-type structure, as follows:

// Store parameters in SCROLLINFO structure members
scinfo.cbSize = sizeof(SCROLLINFO); // structure size
scinfo.fMask = SIF_POS | SIF_RANGE | SIF_PAGE; mask
scinfo.nMin = 0; // minimum value
scinfo.nMax = 99; // maximum value
scinfo.nPage = 0; // page size
scinfo.nPos = 50; // initial position

// Store scroll bar information
SetScrollInfo(hwndSB, SB_CTL, &scinfo, TRUE);
// | | | |___ redraw
// | | |____ address of SCROLLINFO
// | |_____ refers to a scroll bar
// control
// |_____________ handle to the scroll bar control

Manipulating the scroll bar requires intercepting the corresponding scroll bar
messages. The current position of the scroll box is usually stored in a local variable,
in this case the variable is named sbPos. Since this is a horizontal scroll bar, you can
intercept the WM_HSCROLL message and then make sure that it refers to the scroll
bar you are monitoring.

static int sbPos; // position of scroll box
.
.
.

case WM_HSCROLL:
// Make sure action refers to local scroll bar
// not the Windows scroll bars
if(hwndSB == (HWND) lParam) {

switch (LOWORD (wParam)) // Scroll code
{

case SB_LINELEFT: // Scroll left one unit
if(sbPos > 0)
sbPos--;
break;

case SB_LINERIGHT: // Scroll right one unit
if(sbPos < 99)
sbPos++;
break;

// Processing for user dragging the scroll box
case SB_THUMBTRACK:
case SB_THUMBPOSITION:

sbPos = HIWORD (wParam);
break;

}
// Display scroll box at new position

SetScrollPos(hwndSB,
SB_CTL,
sbPos,
TRUE);

}
return 0;

© 2003 by CRC Press LLC

Finally, there is the static class of controls that are often used for text fields, for
labeling boxes, and for drawing frames and rectangles. Although static controls are
frequently limited to labeling and simple drawing operations, they can be made to
receive mouse input by means of the SS_NOTIFY style. Furthermore, the text in a
static control can be changed at run time. The CON_DEMO program, described in
the following section, located in the Controls Demo project folder on the book's
software package, has two static controls. One is used to display the position of the
scroll bar, and the other one is a black frame that surrounds the scroll bar buttons.

19.1.5 Controls Demonstration Program
The program named CON_DEMO, in the book’s software package, is a demonstration
of some of the basic controls described in previous sections and of the programming
required to operate them. The controls are contained in a child window, much like the
one created in the CHI_DEMO program already described. Figure 19-3 is a labeled
screen snapshot of the CON_DEMO program.

Figure 19-3 CON_DEMO Program Screen

radio button

check box (3-state)

scroll bars

static button

group box

child window

static frame

pushbuttons

© 2003 by CRC Press LLC

The program's main screen contains a pushbutton that displays the child window.
In the remainder of this section we have selected some excerpts from the program
code to demonstrate the processing.

At the start of the code, the child windows and controls are defined as symbolic
names. This is a useful simplification in applications that manipulate several re-
sources or program elements that are identified by numeric values. The advantage is
that the information is centralized for easy access and that it ensures that there are
no repeated values.

// Constants for child windows and controls
#define CHILD1 1001
#define CREATEWIN 102
#define DESTROYWIN 103
#define RADGROUP 104
#define RADIO1 201
#define RADIO2 202
#define RADIO3 203
#define CHKBOX1 301
#define CHKBOX2 302
#define SCROLLBAR 401
#define SCRBARWIN 501
#define FRAME 502

The numeric values assigned to individual controls are arbitrary; it is a good idea,
however, to follow a pattern for numbering resources and controls, since this avoid
chaos in large programs. For example, child windows can be assigned a four-digit
number, controls a three-digit number, and so forth. It is also recommended practice
to use a dense set of integers for representing related controls, since there are Win-
dows functions that operate on this assumption. Following this rule, the radio but-
tons in the CON_DEMO program are numbered 201, 202, and 203, and the
checkboxes have numbers 301 and 302.

The creation of the child window in the CON_DEMO program is almost identical
to the one in CHI_DEMO, previously described. The individual controls are created
in the child window using the CreateWindow() function with the parameter set re-
quired in each case. The handles for the individual controls are defined as static
variables in the child windows[check] procedure, as follows:

LRESULT CALLBACK ChildWndProc (HWND hChild, UINT iMsg, WPARAM
wParam, LPARAM lParam) {

static HWND hwndChildBut1; // Handle to child's button
static HWND hwndRadio1, hwndRadio2, hwndRadio3;
static HWND hwndChkBx1, hwndChkBx2;
static HWND hwndSB, hwndVal;
static HWND hwndGrpBox1;
static HWND hwndFrame;
.
.
.

The code in the child window intercepts the WM_CREATE message. During mes-
sage processing it installs the system's fixed font in the display context and then
proceeds to create the individual controls. A bool-type variable, named childStatus,
is used to store the state of the child window. This variable is TRUE if the child win-

© 2003 by CRC Press LLC

dow is displayed. This avoids creating more than one copy of the child. The first
control created in the child window is the pushbutton that destroys it and returns
execution to the parent. Before that, the system's fixed font is selected into the dis-
play context. Coding is as follows:

switch (iMsg) {
case WM_CREATE:
// Test that child window is not already displayed
if(childStatus)

return 0;
// ASSERT:
// child window is not displayed
childStatus = TRUE; // child window is displayed
childDc = GetDC(hChild); // handle to private DC

SelectObject (childDc,
GetStockObject (SYSTEM_FIXED_FONT));

// Place destroy button on child window
hwndChildBut1 = CreateWindow (

"BUTTON", // Control class name
"Destroy Child", // Button name text
WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON,
20, 20, // x and y location
150, // Window width
30, // Window height
hChild, // Handle to parent window
(HMENU) DESTROYWIN, // Child window id.
pInstance, // Instance handle
NULL) ;
.
.
.

The user interaction with the controls is monitored and processed in the
WM_COMMAND message intercept of the child window. First, the notification code
and the button identifier are stored in local variables. A switch statement on the but-
ton identification code allows directing the processing to the routines for each of
the buttons. The code examines the notification code to make sure that the inter-
cept is due to action on a button control, and not on an accelerator key or a menu
item.

case WM_COMMAND:
buttonID = LOWORD (wParam);
buttonNotCode = HIWORD (wParam);
switch (buttonID) {

if(buttonNotCode <= 1)
return 0;

case DESTROYWIN:
if(buttonNotCode == BN_CLICKED) {

childStatus = FALSE;
DestroyWindow(hChild);
UpdateWindow(hwnd);
}
break;

// Radio button # 1 action
case RADIO1:

// Set radio button ON
SendMessage(hwndRadio1, BM_SETCHECK, 1, 0L);

© 2003 by CRC Press LLC

SendMessage(hwndRadio2, BM_SETCHECK, 0, 0L);

SendMessage(hwndRadio3, BM_SETCHECK, 0, 0L);

break;

.

.

.

19.2 Menus
The menu is one of the most important elements of the Windows user interface. It oc-
cupies the line below the title bar. Often, only the program's main window has a
top-level menu. There has been considerable uncertainty regarding the names of the
various elements in a menu. The following designations are based on Microsoft's The
Windows Interface Guidelines for Software Design, listed in the Bibliography.

• The menu bar is a screen line directly below the title bar, which contains entries called
the menu titles, or just the menus.

• Each menu title (menu) activates a drop-down box, which contains one or more menu
items. Menu items are usually arranged in a single column, although Windows supports
multiple column menus.

• Menu items can be of three types: menu commands, child menus, and separators. A
menu command is a menu item that executes a program function directly. A child menu,
also called a cascading or hierarchical menu, is a submenu, which can in turn contain
menu commands, child menus, and separators. Items that activate a child menu are
usually marked by a triangular arrow to the right of its name. A separator is a screen line
that is used to group related menu items.

• Pop-up menus are activated by clicking the second mouse button. They are usually un-
related to the program's menu bar.

• Access keys are keystrokes that can be used instead of mouse button action to access
menu items. Access keys are underscored in the menu title and in menu items. To acti-
vate a menu title by means of the access key you must hold down the Alt key. Once a
drop down menu is displayed, access to the contained items is by pressing the corre-
sponding access key. The Alt key is not required in this case.

• Shortcut keys are keystroke combinations that allow accessing a menu item directly.
Shortcut keys are usually a Ctrl + key combination or a function key. Windows docu-
mentation sometimes calls these shortcut keys accelerators, but The Windows Inter-
face Guidelines for Software Design prefers the former name.

There are also some style considerations regarding the design and implementa-
tion of menus. Although the design of the user interface is a topic outside the scope
of this book, there are several general principles worth mentioning.

• A menu title should be a single word that represents the items that it contains. Each
menu title should have an access key, which activates the menu when used in conjunc-
tion with the Alt key. Access keys are underlined in the menu bar. No two menu titles
should have the same access key.

• Cascading menus should be used sparingly since they add complexity to the interface.
Their purpose is to reduce the number of entries in the main menu and to logically orga-

© 2003 by CRC Press LLC

nize hierarchical entries. The user should never have to navigate through more than
two levels of cascading menus to reach a command.

• Menu items that are not active or are currently unavailable should be disabled and dis-
played in gray characters. Alternatively, a permanently inactive item can be removed
from a menu.

• If a menu command requires additional data to execute, it should be followed by an el-
lipsis (...). The ellipsis serves as a visual key that information for executing a command
is incomplete. Typically, commands with ellipses display a dialog box where the addi-
tional data is supplied. However, commands that obviously generate other informa-
tional actions should not be followed by ellipses; for example, a Properties command is
expected to display information, therefore it should not have ellipsis.

• Check boxes are used in menus to indicate the status of a menu item. A checked item
signals that it is functional. Code should check and uncheck items during processing to
update their status.

• All menu items should have access keys, but items on the same drop down menu cannot
have the same access key. The first choice for an access keys is the first character in the
menu title or entry. If the first character is already used as an access key, then the next
one in the item name that is not used as an access key should be selected.

• Shortcut keys that activate menu commands are best implemented with the Crtl key
followed by a mnemonic letter associated with the entry. Function keys can also be
used. For example, Ctrl + S can be used for a Save command and Ctrl + P for a Print
command. The most used commands should be assigned a shortcut.

Figure 19-4 shows some of the most common elements in a menu.

Figure 19-4 Common Menu Elements

menu bar

child menuinactive menu item

menu title

separator

drop-down menu

checked menu item

© 2003 by CRC Press LLC

19.2.1 Creating a Menu
There are several ways to create a menu. Before the Visual Studio and other develop-
ment environments came into existence, menus were created using API functions.
CreateMenu() creates an empty menu and returns its handle. InsertMenuItem() can be
used to populate the menu with components. AppendMenu() adds a component to an
existing menu. Other functions, such as DeleteMenu(), DestroyMenu(),
DrawMenuBar(), ModifyMenu() and RemoveMenu() are also available. Finally, the
LoadMenuIndirect() function can be used to load a menu from a memory resident
menu template.

1. From the Developer Studio Insert menu, select the Resource command. Select the
Menu resource type in the dialog box, and click New.

2. Create the main menu entries in you program (the menu titles) as well as the menu
items in each of the drop-down menus. At this time you can assign an identification
code to each menu item, define child menus (called pop-up in the input form), deter-
mine if the item is initially grayed, checked, or inactive, assign shortcut keys, and other
menu attributes. Details on how to use the menu editor are available in Developer Stu-
dio online Help. Figure 19-5 shows the Developer Studio menu editor screen.

Figure 19-5 Developer Studio Menu Editor

3. Once you have finished creating the menu, click on the close button of the menu editor
window. If the application already has a script file, the new menu is added to it. If not, De-
veloper Studio prompts you to save the new script file.

4. Skip this step if a script file has already been inserted into the project. If not, open the
Project menu, select Add to Project, and then Files. In the Insert Files into Project dialog

© 2003 by CRC Press LLC

box, select the script file and then click OK. The script file now appears in the project
workspace window.

5. Select the Resource View button in the project workspace pane and click + on Script Re-
sources. Click + on Menu. Note the identifier name for the menu resource, which is
IDR_MENU1 if this is the first menu created.

6. Enter the menu identifier in the wndclass structure defined in WinMain(), as follows:

������������	
���
��� �
����
��������������
�
����

7. Developer Studio creates a header file named resource.h which assigns numeric values to
the program resources. The file is saved under the name "resource.h" and stored in the
project's main directory. The main source file must reference this header file in an include
statement, such as:

 !������ "#��$�#���%"

8. To recompile the program with the new menu, select Rebuild All from the Build menu.

9. To edit the menu, double-click on the corresponding IDR_MENU1 icon.

If you receive a redefinition of symbol error at build time there are two possible solu-
tions: one is to comment-out the redefined symbol in the file named afxres.h located in
Msdev\Mfc\Include directory. The other one is to edit the resource, in this case the
menu, and change the name in the ID: field. Changing the afxres.h file is a permanent
way of avoiding this error, but the development system cannot be used for MFC appli-
cations if afxres.h has been altered.

19.2.2 Menu Item Processing
There are several intercept messages related to application menu processing.
WM_MENUSELECT is sent when the mouse cursor moves among the menu items, and
WM_INITITEM when the user selects an item from a menu. However, most applications
do all their menu processing in the WM_COMMAND message intercept. In the case of a
menu, the lParam is 0 and the wParam contains the menu ID code, which is the identifica-
tion number and its corresponding string constant found in the resource.h file. System
menus notify the application through the WM_SYSCOMMAND message. The following
code fragment shows the intercept routine for the item named Open in the File menu:

case WM_COMMAND:
switch (LOWORD (wParam)) {
case ID_MYFILE_OPEN:

// ASSERT:
// Menu item resource named ID_MY-FILE_OPEN
// was activated by user

.

.

.

An important fringe benefit from using the menu editor in Developer Studio is that
access keys are automatically detected and vectored to the corresponding handler.
Suppose that in the preceding code fragment the Open command was defined so that
the letter O is preceded by the & symbol in the editor screen. In this case, when the user
presses the "O" key while the File menu is open, a WM_COMMAND message with the
key code ID_MYFILE_OPEN is sent to the handler.

© 2003 by CRC Press LLC

19.2.3 Shortcut Keys
Shortcut keys require a special treatment so that the keystrokes are vectored to the de-
sired handler. It is recommended that shortcut keys be listed in the same line as the
menu item. In order to do this you must insert the text for the control keystroke, pre-
ceded by \t in the caption window of the Menu Item Properties editor screen. In this
case \t indicates a Tab code which displays the following text on the next tab field. Fig-
ure 19-6 shows the insertion of a shortcut key designation in Developer Studio menu
editor.

Figure 19-6 Developer Studio Insertion of a Shortcut Key Code

But the shortcut key label is only a caption and has no effect on the processing. In
order to associate a shortcut key with a menu item you must create an accelerator
table. The following steps can be followed:

1. Select Resource from the Developer Studio Insert menu. Select the Accelerator re-
source type in the dialog box and click New.

2. Create an accelerator table. The table includes an identification field that contains the
resource ID, a key field for the keystroke that activates the shortcut, and a type field
that specifies the properties of the key. Figure 19-7 shows the Accel Properties dialog
box in the accelerator editor.

3. Once created, the accelerator table becomes a program resource whose name can be
found in the Resource tab of Developer Studio project workspace pane, or by clicking
the Resource Symbols command in the View menu or its corresponding toolbar but-
ton. Developer Studio assigns the name IDR_ACCELERATOR1 to the first accelerator
table; normally, there is one per application.

4. The accelerator table must now be loaded into the application and processed so that
the corresponding messages are sent to the windows[check] procedure. This requires
using the LoadAccelerator() function. Its parameters are the handle to the program's
instance and an identifier of the accelerator table. LoadAccelerator() returns a handle
to the accelerator, of type HACCEL. Processing of accelerator keys is by means of the
TranslateAccelerator() function, which takes as parameters the handle to the window
whose messages are to be translated, the handle to the accelerator table returned by
LoadAccelerator(), and a pointer to a message structure. Both functions are usually in-
cluded in WinMain(), as in the following code fragment:

© 2003 by CRC Press LLC

Figure 19-7 Developer Studio Accelerator Editor

LRESULT CALLBACK WinMain (HINSTANCE hInstance, HINSTANCE
hPrevInstance, PSTR szCmdLine,
int iCmdShow) {

static char szAppName[] = "Demo" ;
HWND hwnd ;
MSG msg ;
HACCEL hAccel; // Handle to accelerator

.

.

.
ShowWindow (hwnd, iCmdShow) ;
UpdateWindow (hwnd) ;

// Load accelerators
hAccel = LoadAccelerators (hInstance,

MAKEINTRESOURCE (IDR_ACCELERATOR1));
// Message loop
while (GetMessage (&msg, NULL, 0, 0)) {

if (!TranslateAccelerator (hwnd, hAccel, &msg)) {
TranslateMessage (&msg) ;
DispatchMessage (&msg) ;

}
}
return msg.wParam ;

}

19.2.4 Pop-Up Menus
A pop-up menu is a context-sensitive submenu that is activated by clicking the right
mouse button. The pop-up menu is unrelated to the application's main menu and im-
plemented differently. The items in a pop-up menu should be related to the context in
which the right mouse button is pressed. Therefore, in a full-featured application, the
processing usually requires calculating the screen coordinates where the mouse ac-
tion takes place, or the object currently selected, in order to determine which, among
several pop-up menus, is to be activated.

© 2003 by CRC Press LLC

As with the program's main menu, there are several methods for creating a
pop-up menu. You can use the menu editor to create a pop-up menu; however, a little
trickery is required since pop-up menus have no title and the menu editor does not
allow creating menu items without first entering the title. The following steps can be
used to create and install a simple pop-up menu:

1. Use the menu editor to create the pop-up menu. In order to create a drop down menu
you have to enter a temporary menu title. Since this title is used by Developer Studio
name mangler to create the item id, it may be a good idea to used the menu title
"popup1."

2. Under the temporary menu title (popup1 is the suggested one), enter the menu items as
you would for a program menu. You can use all the attributes available and there can
be child menus in the pop-up. Once you have finished creating the menu, double-click
on the temporary menu title (popup1) and erase all the characters in the caption field.
This creates a drop down menu with no menu title. To see the drop down menu you
have to click on the left corner of the menu editor's title bar. This can be a little decep-
tive, since at times it may seem that the drop down menu has disappeared.

3. When you close the menu editor, a new menu resource appears in the Resource tab of
the Program window. If this is your second menu it is named IDR_MENU2. The new
menu is now included in your script resource file.

4. You need to load the pop-up menu and obtain its handle. This can be done in the
WM_CREATE message intercept of the window that contains it. It requires the use of
the LoadMenu() function, which returns a handle to the menu resource. The
GetSubMenu() function converts this handle into a submenu handle, which can then
be used by the code. Processing is usually as follows:

static HMENU pMenu; // Handle to pop-up menu

.

.

.
case WM_CREATE:

hdc = GetDC(hwnd);
// Get handle to pop-up menu
pMenu = LoadMenu(pInstance,

(MAKEINTRESOURCE(IDR_MENU2)));
pMenu = GetSubMenu(pMenu, 0);
return 0;

5. Once you have its handle, the pop-up menu can be displayed. The TrackPopupMenu()
function is used to define the screen location where the pop-up menu is shown, its po-
sition relative to the mouse cursor, and to define which mouse button actions, if any,
are tracked when an item is selected. If the pop-up menu is activated by the right
mouse button, as is usually the case, then the menu display code can be placed at the
corresponding message intercept, as in the following code fragment.

case WM_RBUTTONDOWN:
// Get mouse coordinates
aPoint.x = LOWORD(lParam);
aPoint.y = HIWORD(lParam);
ClientToScreen(hwnd, &aPoint);
TrackPopupMenu(pMenu,

© 2003 by CRC Press LLC

TPM_LEFTALIGN | TPM_TOPALIGN |\
TPM_LEFTBUTTON,
aPoint.x, aPoint.y,
0,
hwnd,
NULL);

return 0;

In the preceding code sample we start by obtaining the mouse coordinates from the
lParam. One problem is that TrackPopupMenu() requires the horizontal and vertical
coordinates in screen units, and the WM_RBUTTONDOWN message intercept reports
the mouse position in client area units. For this reason, the ClientToScreen() function
is necessary to convert client area into screen coordinates.

The TrackPopupMenu() function displays the pop-up menu. Its first parameter is the
handle to the menu obtained during WM_CREATE processing. The second parameter
is one or more bitwise constants. In this case we have established that the display posi-
tion is relative to the upper left corner of the menu box, and that the left mouse button
is the one tracked for menu selections. The display points are entered as the third and
fourth parameters to the call. The fifth one is reserved (must be zero), the sixth one is
the handle to the window that owns the pop-up menu, and the last one defines a
RECT-type structure in which the user can click without erasing the pop-up menu. If
this value is NULL then the shortcut menu disappears if the user clicks outside of its
area.

6. Intercepting action on the pop-up menu is at WM_COMMAND message processing.
For example, if the id of the first item in the pop-up menu is ID_POPUP1_UNDO, then
the case statement at the intercept point has this label, as follows:

case WM_COMMAND:
switch (LOWORD (wParam)) {
.
.
.
case ID_POPUP1_UNDO:
// Assert:
// User clicked "undo" item on pop-up menu

19.2.5 The Menu Demonstration Program
The program named MEN_DEMO, contained in the Menu Demo project folder on the
book's software package, is a trivial demonstration of an application with a main
menu, a shortcut key (accelerator) to access one of the menu items, and a pop-up
menu that is displayed when the user right-clicks on the client area. Processing con-
sists of a message box that lists the menu item selected by the user.

19.3 Dialog Boxes
Dialog boxes are a programming aid; they provide no new functionality. Everything
that can be done in a dialog box can also be done in a child window, as described ear-
lier in this chapter.

What dialog boxes do for the programmer is to prepackage a series of functions
that are frequently needed. Also, dialog boxes perform much of the processing and

© 2003 by CRC Press LLC

housekeeping operations for you. They handle the keyboard focus, passing key-
board input from one control to another one, they monitor mouse movements, and
they provide a special procedure for tracking action on the controls contained in the
dialog box. When used in conjunction with the dialog box editor in Developer Stu-
dio, dialog boxes are easy to create and implement in code.

Windows 3.1 introduced an extension to the concept of dialog boxes, usually
called the common dialog boxes. The common dialog boxes are a set of prepack-
aged services for operations that are usually required in many applications. These
include opening and saving files, selecting a font, selecting or changing color attrib-
utes, searching and replacing text strings, and controlling the printer. The common
dialog boxes are discussed later in this section.

19.3.1 Modal and Modeless
There are two general types of dialog boxes: those that suspend the application until
the user interacts with the dialog box, and those that do not. The first type, which are
the most common ones, are called modal dialog boxes. The second type, which are of-
ten seen in floating toolbars, are called modeless dialog boxes. Modal dialog boxes do
not prevent the user from switching to another application, although, upon return to
the original thread, it is the modal dialog box that retains the foreground. The Win-
dows Interface Guidelines for Software Design (see Bibliography) recommends that
modal dialog boxes should have an OK button, to accept and process input, and a Can-
cel button to abort execution and discard the users action with the dialog box.

19.3.2 The Message Box
The simplest of all dialog boxes is used to display a message on the screen, which the
user acknowledges having read by pressing a button. A special function in the Win-
dows API allows creating message boxes directly, without having to use the dialog box
editor or manipulate a program resource. The message box contains a title, a message,
any one of several predefined icons, and one or more pushbuttons. The general form of
the function call is as follows:

!�&
����'�($)�%���* ����)&* �����&!$�* ��+����

where hwnd is the handle to the window that owns the message box, lpText is a pointer
to the text message to be displayed (or the message string itself), lpCaption is a pointer
to the caption (or the caption string itself), and uType is one of several bit flags that
control the behavior of the message box. Table 19-6 lists the most useful bit flags used
in the MessageBox() function.

Table 19-6

Often Used Message Box Bit Flags

SYMBOLIC CONSTANT MEANING

MB_ABORTRETRYIGNORE Contains three push buttons: Abort, Retry, and Ignore.
MB_OK Contains one push button: OK. This is the default.
MB_OKCANCEL Contains two push buttons: OK and Cancel.
MB_RETRYCANCEL The message box has two push buttons: Retry and Cancel.
MB_YESNO Contains two push buttons: Yes and No.
MB_YESNOCANCEL Contains three push buttons: Yes, No, and Cancel.

(continues)

© 2003 by CRC Press LLC

Table 19-6

Often Used Message Box Bit Flags (continued)

SYMBOLIC CONSTANT MEANING

Icon Flags:
MB_ICONEXCLAMATION Exclamation-point icon.
MB_ICONWARNING Exclamation-point icon.
MB_ICONINFORMATION Question mark icon.
MB_ICONASTERISK Lowercase letter i icon in a circle.
MB_ICONQUESTION Question-mark icon.
MB_ICONSTOP Stop-sign icon.
MB_ICONERROR Hand icon.
MB_ICONHAND Hand icon.

Default Button Flags:
MB_DEFBUTTON1 The first button is the default button.
MB_DEFBUTTON2 The second button is the default button.
MB_DEFBUTTON3 The third button is the default button.
MB_DEFBUTTON4 The fourth button is the default button.

Modality Flags:
MB_APPLMODAL User must respond to the message box before continuing

work in the window. However, the user can move to the
window of another application and work in those windows.

MB_SYSTEMMODAL Same as MB_APPLMODAL except that the message box
has the WS_EX_TOPMOST style. Use system-modal
message boxes to notify the user of serious errors that
require immediate attention.

MB_TASKMODAL Same as MB_APPLMODAL except that all the top-level
windows belonging to the current task are disabled if the
hwnd parameter is NULL.

Other Flags:
MB_HELP Adds a Help button to the message box. Choosing the Help

button or pressing F1 generates a Help event.
MB_RIGHT The text is right-justified.
MB_SETFOREGROUND The message box becomes the foreground window.

Internally, Windows calls the SetForegroundWindow function
for the message box.

MB_TOPMOST Message box is created with the WS_EX_TOPMOST
window style.

For example, the following statement creates a message box labeled "Menu Ac-
tion," with the text string "File Close Requested," which contains an exclamation
sign icon, and a button labeled OK:

MessageBox (hwnd,
"File Close Requested",
"Menu Action",
MB_ICONEXCLAMATION | MB_OK);

Figure 19-8 shows the resulting message box.

Figure 19-8 Simple Message Box

© 2003 by CRC Press LLC

19.3.3 Creating a Modal Dialog Box

Developer Studio provides a dialog box editor, which is a tool for creating dialog
boxes. Once the dialog box has been created, it becomes another program resource
that can be referenced in the code. The dialog box editor can be used to create simple
message boxes; however, in this case it is easier to use the MessageBox() function de-
scribed in the previous section. Dialog boxes are useful when they are used to obtain
user input.

A unique feature of dialog boxes is that they contain their own processing. In a
sense, the dialog box procedure is like your window procedure.

You create a modal dialog box by means of the DialogBox() function, with the fol-
lowing standard form:

!�& �!��$'($) �%���&����* ��������&�* %���,�#��&* ���!�,#$���

where hInstance is the handle to the program instance that contains the dialog box,
lpTemplate identifies the dialog box template or resource, hwndParent is the handle
to the owner window, and lpDiaProc is the name of the dialog box procedure. It is this
procedure that receives control when the dialog box is created. The following code
fragment shows the creation of a dialog box at the time that a menu command with the
id ID_DIALOG_ABOUT is intercepted:

ID_DIALOG_ABOUT:

DialogBox (pInstance,

MAKEINTRESOURCE (IDD_DIALOG1),

hwnd,

(DLGPROC) AboutDlgProc);

In this case the dialog box resource is named IDD_DIALOG1, and the dialog box
procedure that receives control is AboutDlgProc(). The dialog box procedure's gen-
eral form is as follow:

(��- �!��$',#$� �%�����'* �
�'* �,�#��* �,�#����

where DialogProc is the name of the procedure defined in the lpDiaProc field of the
DialogBox() function. The first parameter passed to the dialog procedure (hwndDlg)
is the handle to the dialog box. The second one is the Windows message. The wParam
and lParam values contain message-specific information, as is the case in the window
procedure.

As soon as the dialog box is created, and before it is displayed, Windows sends
the WM_INITDIALOG message to the dialog box procedure. Typically, the dialog
box procedure intercepts the message to initialize controls and perform other
housekeeping functions. In WM_INITDIALOG the wParam contains the handle to
the control that has focus, which is the first visible and not disabled control in the
box. The application returns TRUE to accept this default focus. Alternatively, the
application can set the focus to another control, in which case it returns FALSE.

The dialog box procedure receives messages for the controls in the dialog box.
These messages can be intercepted in the same manner as those sent to the window

© 2003 by CRC Press LLC

procedure. The following code fragment is a dialog box procedure for a dialog box
that contains a single button:

BOOL CALLBACK AboutDlgProc (HWND hDlg, UINT iMsg, WPARAM wParam,
LPARAM lParam) {

switch (iMsg) {
case WM_INITDIALOG :

return TRUE ;
// Dialog box controls message intercepts
case WM_COMMAND :

switch (LOWORD (wParam)) { // Get control id
case IDOK :

EndDialog (hDlg, 0) ;
return TRUE ;

}
break ;
}

return FALSE ;
}

Notice that, unlike a window function, AboutDlgProc() does not return control
via the default window procedure. In general, a dialog box procedure returns FALSE
to indicate that default processing is to be provided by Windows and TRUE when no
further processing is required. The exception is the WM_INITDIALOG message in
which the return value refers to the acceptance or rejection of the default focus, as
discussed previously.

Notice that dialog procedures, like all window procedures, have to be of type
CALLBACK. Failing to declare a window procedure, or a callback procedure, with
this type, can be the source of unpredictable errors, such as the General Protection
Fault.

You can create a dialog box by means of the following steps:

1. Select Resource from the Developer Studio Insert menu. Select the Dialog resource
type in the dialog box and click New.

2. The dialog box editor executes by displaying a blank form and a floating toolbox con-
taining controls that can be inserted in the dialog box. If the toolbar is not visible, you
can show it on the editor screen by opening the Tools menu, then selecting Customize,
and checking the Controls box in the Toolbars tab. The controls include all those al-
ready mentioned and some others. To add a control to the dialog box you drag it onto
the form and then use the handles to size it. Double-clicking on the form, or on one of
the controls, displays a Dialog Properties window which allows defining the attributes
of that particular element. Figure 19-9, on the following page, shows the dialog box ed-
itor with the Dialog Properties windows for the form and the Controls toolbox.

3. Once you have finished creating the dialog box, click the Close button of the menu edi-
tor window. If the application already has a script file, the dialog box is added to it. If
not, Developer Studio prompts you to save the new script file.

4. Skip this step if a script file has already been inserted into the project. If not, open the
Project menu, select Add to Project, and then select Files. In the Insert Files into Pro-
ject dialog box, select the script file and then click OK. The script file now appears in
Developer Studio project workspace pane.

© 2003 by CRC Press LLC

Figure 19-9 Developer Studio Dialog Editor

5. Select Resource View button in project workspace pane and click + on Script Re-
sources. Click + on Dialog. Note the identifier name for the dialog box resource, (usu-
ally IDD_DIALOG1) if this is the first dialog box created.

6. Your code must now create the dialog box, usually by intercepting the corresponding
menu command and calling DialogBox(). Also, the dialog box procedure has to inter-
cept the WM_INITDIALOG message and provide handlers for the controls contained
in the box, as previously described.

19.3.4 Common Dialog Boxes

Windows 3.1 introduced the common dialog boxes as a set of prepackaged services for
performing routine operations required in many applications. The idea behind them is
to standardize frequent input functions so that they appear the same in different pro-
gram functions and even in different applications. For example, the common dialog
box used to select a filename and to browse through the disk storage system is the
same if you are opening or saving a file. Furthermore, two applications that manipu-
late files can use the same common dialog box, giving the user a familiar interface. The
following operations can be performed by means of common dialog boxes: opening
and saving files, selecting fonts, selecting or changing color attributes, searching and
replacing text strings, and controlling the printer. Common dialog boxes have a modal
behavior, that is, the program is suspended until the user closes the dialog box.

Common dialog boxes are processed internally by Windows; therefore, they do
not have a dialog box procedure.

The identification for the menu item or other resource that activates the common
dialog box usually serves as the message intercept. The processing is done directly

© 2003 by CRC Press LLC

in the intercept routine. Each common dialog box is associated with a structure that
is used to pass information to it and to receive the results of the user's action. Pro-
grams that use common dialog boxes should include the commdlg.h header file.

For example, the menu item ID_DIALOG_COLORSELECTOR can intercept user
action in WM_COMMAND message processing and then proceed to fill a variable of
the structure type CHOOSECOLOR (see Appendix A) as in the following code frag-
ment:

LRESULT CALLBACK WndProc (HWND hwnd, UINT iMsg, WPARAM wParam,
LPARAM lParam) {

HDC hdc ;
TEXTMETRIC tm ;
HBRUSH hBrush; // Handle to brush

// Variables for color and font common dialog
static CHOOSECOLOR cc ; // Structure
static COLORREF custColors[16] ; // Array for custom

// colors
int i; // counter for custom color display
switch (iMsg) {

...
case WM_COMMAND:

switch (LOWORD (wParam)) {
// Color Selector common dialog

case ID_DIALOG_COLORSELECTOR:
cc.lStructSize = sizeof (CHOOSECOLOR) ;
cc.hwndOwner = hwnd ;
cc.hInstance = NULL ;
cc.rgbResult = RGB (0x80, 0x80, 0x80) ;
cc.lpCustColors = custColors ;
cc.Flags = CC_RGBINIT | CC_FULLOPEN ;
cc.lCustData = 0L ;
cc.lpfnHook = NULL ;
cc.lpTemplateName = NULL ;
...

Once the structure variable is filled with the necessary data, the application can
call the ChooseColor() function to display the common dialog box. ChooseColor()
requires a single parameter: the address of the previously mentioned structure. Most
of the structure members are obvious. The lpCustColors member is an array of 16
COLORREF-type values that holds the RGB values for the custom colors in the dia-
log box. The Flags members are bit flags that determine the operation of the dialog
box. In the previous example we set CC_RGBINIT bit so that the rgbResult member
holds the initial color selection. The values 0x80 for each of the red, green, and blue
components produce a middle gray color. The last three members of the structure
are used for customizing the dialog box. The constant CC_FULLOPEN causes the di-
alog box to open in the full display mode, that is, with the controls necessary for the
user to create custom colors.

ChooseColor() returns TRUE if the user clicks the OK button on the dialog box.
Therefore, the coding continues as follows:

if (ChooseColor (&cc) == TRUE) {
// ASSERT:

© 2003 by CRC Press LLC

// structure members have color data selected by user
// Clear the client window
hdc = GetDC(hwnd);
InvalidateRect (hwnd, NULL, TRUE) ;
UpdateWindow (hwnd) ;

T h e c o l o r s s e l e c t e d b y t h e u s e r a r e s t o r e d i n t w o m e m b e r s o f t h e
CHOOSECOLOR structure: rbgResult holds the solid color box, and the array vari-
able custColor holds the 16 custom colors. The code now creates a solid brush, us-
ing the color stored in the rgbResult member, and displays a rectangle filled with
this color. Then a loop displays the first eight of the 16 custom colors:

hBrush = CreateSolidBrush(cc.rgbResult);
// Select the brush in the DC
SelectObject (hdc, hBrush) ;
// Draw a rectangle using the brush
Rectangle (hdc, 20, 20, 100, 100) ;
// Display first eight custom colors using the
// color triplets stored in the custColors array

for (i = 0; i < 8; i++) {
hBrush = CreateSolidBrush(custColors[i]);

SelectObject (hdc, hBrush) ;
Rectangle (hdc, 20+(20 * i), 120,
40+(20 * i), 140) ;

}
// Clear and exit
DeleteObject (SelectObject (hdc, hBrush)) ;
ReleaseDC (hwnd, hdc);

}
return 0 ;

...

Figure 19-10 shows the color dialog box as displayed by this code.

Figure 19-10 Color Selection Common Dialog Box

© 2003 by CRC Press LLC

19.3.5 The Dialog Box Demonstration Program
The program named DIA_DEMO, contained in the Dialog Box Demo project folder on
the book's software package, is a trivial demonstration of several dialog boxes. The
Dialog menu contains commands for creating a modeless dialog box, three different
modal dialog boxes (one of them with a bitmap), and for the color and font common di-
alog boxes. The code demonstrates how information obtained by modal and common
dialog boxes is passed to the application.

19.4 Common Controls
Windows 95 introduced a new set of controls that supplements the ones that existed
previously. They are also available in Windows NT version 3.51 and later. These con-
trols, sometimes referred to as the new common controls, allow the implementation
of status bars, toolbars, trackbars, progress bars, animation controls, image lists, list
view controls, tree view controls, property sheets, tabs, wizards, and rich edit con-
trols. It is evident from this list that one could devote an entire volume to their discus-
sion. Table 19-7 is a list of the Windows common controls first implemented in
Windows 95.

Table 19-7

Original Set of Common Controls

CONTROL DESCRIPTION

Frame Window Controls:
toolbar Displays a window with command-generating buttons.
ToolTip Small pop-up window that describes purpose of a toolbar

button or other tool.
status bar Displays status information at the bottom screen line.

Explorer-type Controls:
list view Displays a list of text with icons.
tree view Displays a hierarchical list of items.

Miscellaneous Controls:
animation Displays successive frames of an AVI video clip.
header Appears above a column of text. Controls width of text

displayed.
hotkey Enables user to perform an action quickly.
image list A collection of images used to manage large sets of icons or

bitmaps. It isn't really a control, but supports lists used by
other controls.

progress bar Indicates progress of a long operation.
rich edit Allows the user to edit with character and paragraph

formatting.
slider Displays a slider control with optional tick marks.
spin button Displays a pair of arrow buttons user can click to increment

or decrement a value.
tab Displays divider-like elements used in tabbed dialog

boxes or property sheets.

Before we can implement the new common controls, some preliminary steps are
required. The reason is that the common controls library is not automatically refer-
enced at link time, nor is it initialized for operation. The following operations are
necessary:

1. The common controls library, named Comctl32.lib, must be included in the list of li-
braries referenced by the linker program. This is accomplished by opening the Project
menu and selecting the Settings command. In the Project Settings dialog box, open the

© 2003 by CRC Press LLC

Link tab. The "Object/library modules" edit box contains a list of all the referenced li-
braries, separated from one another by a space. Position the caret between two library
entries and type "Comctl32.lib." Click the OK button.

2. The program code must include the common controls header file. This is accom-
plished with the statement:

 !������ .�$���&#��%/

3. The InitCommonControls() function must be called before the common controls are
used. This function takes no parameters and returns nothing. The initialization can be
placed in WinMain(), as follows:

��!&�$��$��$�&#$�����

4. Rich edit controls reside in their own library, named Riched32.dll, and have their own
header file, named richedit.h. To use library controls your program must include the
statement:

-$��-!0#�#+ �"���1��23��--"��

At this point the application can implement common controls. In this section we
sample some of the common controls that are more frequently found in graphics ap-
plications, namely toolbars and ToolTip controls. These, together with the status bar
controls, are sometimes called the frame window controls. Some of the common
controls are available in the toolbar of Developer Studio dialog box editor. The re-
source editor contains a specific toolbar editor for creating this type of common
contro l . Most common contro l s can a lso be crea ted by means of the
CreateWindow() or CreateWindowEx() functions. Others have a dedicated function,
such as CreateToolbarEx().

19.4.1 Common Controls Message Processing

Most common controls send WM_NOTIFY messages. One notable exception is the
toolbar controls, which send WM_COMMAND. In processing common controls mes-
sages we follow similar methods as in processing menu selections.

The WM_NOTIFY message contains the ID of the control in wParam and a pointer
to a structure in lParam. The structure is either an NMHDR structure or, more fre-
quently, a larger structure that has an NMHDR structure as its first member. The
common notifications (whose names start with NM_) and the ToolTip control's
TTN_SHOW and TTN_POP notifications are the only cases in which the NMHDR
structure is actually used by itself. The format of the NMHDR structure is as follows:

typedef struct tagNMHDR {

HWND hwndFrom;

UINT idFrom;

UINT code;

} NMHDR;

where hwndFrom is the handle to the controls sending the message, idFrom is the con-
trol identifier, and code is one of values in Table 19-8.

© 2003 by CRC Press LLC

Table 19-8

Common Control Notification Codes

CODE ACTION IN CONTROL OR RESULTS

NM_CLICK User clicked left mouse button.
NM_DBLCLK User double-clicked left mouse button.
NM_RCLICK User clicked right mouse button.
NM_RDBLCLK User double-clicked right mouse button.
NM_RETURN User pressed the Enter key.
NM_SETFOCUS Control has been given input focus.
NM_KILLFOCUS Control has lost input focus.
NM_OUTOFMEMORY Control could not complete an operation because there

was not enough memory available.

Most often notifications pass a pointer to a larger structure that contains an
NMHDR structure as its first member. For example, the list view control uses the
LVN_KEYDOWN notification message, which is sent when a key is pressed. In this
case the pointer is to an LV_KEYDOWN structure, defined as follows:

typedef struct tagLV_KEYDOWN {
NMHDR hdr;
WORD wVKey;
UINT flags;

} LV_KEYDOWN;

Since the NMHDR member is the first one in this structure, the pointer in the noti-
fication message can be cast to either a pointer to an NMHDR or a pointer to an
LV_KEYDOWN.

19.4.2 Toolbars and ToolTips
A toolbar is a window containing graphics buttons or other controls. It is usually lo-
cated between the client area and the menu bar. Although Windows applications have
been using toolbars for a long time, there was no system support for toolbars until the
release of the WIN-32 API. The most common use of toolbars is to provide fast access
to menu commands. Toolbars often include separators, which are spaces in the
toolbar that allow grouping associated buttons. A ToolTip is a small pop-up window
that is displayed when the mouse is left on a toolbar button for more than one-half sec-
ond. ToolTips usually consist of a short text message that explains the function of the
toolbar button or control. Figure 19-11 shows a program containing a toolbar with
nine buttons.

Figure 19-11 Toolbar

© 2003 by CRC Press LLC

Note in Figure 19-11 that separators are used to group the toolbar buttons. In this
case, the first group of buttons correspond with functions in the File menu, the sec-
ond group with functions in the Edit menu, and so forth. Normally, not all menu
commands have a toolbar button, but only the ones most often used.

19.4.3 Creating a Toolbar

There are several ways to create a toolbar. You can define the toolbar in code, using
standard buttons furnished in Visual C++. You can use a pre-made bitmap of toolbar
buttons, which can be converted into a toolbar resource and then edited. You can cre-
ate custom buttons using the toolbar editor. Or you can use a combination of these
methods. In this section we follow the simplest method, but even then, you must be
careful to perform the steps in the same order in which we list them. The toolbar cre-
ation tools in Developer Studio were designed to be used in MFC programming; there-
fore, the system makes assumptions regarding the order in which the steps are
performed. If you are careless in this respect, you may end up having to do some man-
ual editing of the resource files.

We must accept that there are complications in creating a toolbar outside of the
MFC, however, much suffering can be avoided if the toolbar is not created until the
program menu has been defined. The idea is to use the same identification codes for
the toolbar as for the corresponding menu items, such that message processing
takes place at the same intercept routine. For example, if the first toolbar button in
Figure 19-11 corresponds to the New command in the File menu, then both the but-
ton and the menu item could be named ID_FILE_NEW. The same applies to the
other buttons in the toolbar. In the following description about the creation of a
toolbar we assume that the identification strings have been defined for the corre-
sponding menu entries:

File menu:

ID_FILE_NEW

ID_FILE_OPEN'

ID_FILE_SAVE

Edit menu:

ID_EDIT_CUT

ID_EDIT_COPY

ID_EDIT_PASTE

Print menu:

ID_PRT_PRINT

Help menu:

ID_HLP_ABOUT

ID_HLP_HELP

All of the toolbar buttons in Figure 19-11 correspond to standard buttons con-
tained in Developer Studio. These buttons can be loaded into the toolbar by refer-
encing their system names, or by loading a bitmap that contains them. In the current
example we use the bitmap approach.

Toolbars require that each of the buttons be defined in a structure of type
TBBUTTON (see Appendix A). Your program, usually in the window procedure, cre-
ates an array of structures, with one entry for each button in the toolbar. The button

© 2003 by CRC Press LLC

separators must be included. In the case of the screen in Figure 19-11, the array of
TBBUTTON structure is as follows:

// Array for attributes for toolbar buttons
TBBUTTON tbb[] = {

0, ID_FILE_NEW, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0, 0, 0,
1, ID_FILE_OPEN, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0, 0, 0,
2, ID_FILE_SAVE, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0, 0, 0,
0, 0, TBSTATE_ENABLED, TBSTYLE_SEP, 0, 0, 0, 0,
3, ID_EDIT_CUT, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0, 0, 0,
4, ID_EDIT_COPY, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0, 0, 0,
5, ID_EDIT_PASTE, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0, 0, 0,
0, 0, TBSTATE_ENABLED, TBSTYLE_SEP, 0, 0, 0, 0,
6, ID_PRT_PRINT, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0, 0, 0,
0, 0, TBSTATE_ENABLED, TBSTYLE_SEP, 0, 0, 0, 0,
7, ID_HLP_ABOUT, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0, 0, 0,
8, ID_HLP_HELP, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0, 0, 0, }; /*
|------------| |-------------| |------------|| see note |
| | | | below
| | | |--- One or more
| | | button styles
| | |----------- One or more state flags
| |--------------------------- Command ID mapped to
| button
|------------------- Zero-based index to button image in
| bitmap (excluding separators)

Note:
0, 0, 0, 0
| | | |------------ index of button string
| |--|--------------- application defined value
|--------------------- Reserved

*/

Table 19-9 lists the style flags used with toolbars.

Table 19-9

Toolbar and Toolbar Button Style Flags

STYLE DESCRIPTION

Toolbar Styles:
BSTYLE_ALTDRAG Allows the user to change the position of a toolbar button by

dragging it while holding down the Alt key. If this style is not
specified, the user must hold down the Shift key while
dragging a Button.
Note that the CCS_ADJUSTABLE style must be specified to
enable toolbar buttons to be dragged.

TBSTYLE_TOOLTIPS Creates a ToolTip control that an application can use to
display descriptive text for the buttons in the toolbar.

TBSTYLE_WRAPABLE Creates a toolbar that can have multiple lines of buttons.
Toolbar buttons can "wrap" to the next line when the toolbar
becomes too narrow to include all buttons on the same line.
Wrapping occurs on separation and non-group boundaries.

Toolbutton Styles:
TBSTYLE_BUTTON Creates a standard push button.
TBSTYLE_CHECK Button toggles between the pressed and not pressed states

each time the user clicks it. The button has a different
background color when it is in the pressed state.

TBSTYLE_CHECKGROUP Creates a check button that stays pressed until another
button in the group is pressed.

(continued)

© 2003 by CRC Press LLC

Table 19-9

Toolbar and Toolbar Button Style Flags (continues)

STYLE DESCRIPTION

Toolbutton Styles:
TBSTYLE_GROUP Creates a button that stays pressed until another button in

the group is pressed.
TBSTYLE_SEP Creates a separator. A button that has this style does not

receive user input and is not assigned a button number.

Table 19-10 lists the toolbar states

Table 19-10

Toolbar States

TOOLBAR STATE DESCRIPTION

TBSTATE_CHECKED The button has the TBSTYLE_CHECKED style and is being
pressed.

TBSTATE_ENABLED The button accepts user input. A button not having this state
does not accept user input and is grayed.

TBSTATE_HIDDEN The button is not visible and cannot receive user input.

TBSTATE_INDETERMINATE The button is grayed.

TBSTATE_PRESSED The button is being pressed.

TBSTATE_WRAP A line break follows the button. The button must also have
the TBSTATE_ENABLED state.

The bitmap for the toolbar in Figure 19-11 is furnished with Developer Studio. We
have made a copy of this bitmap and you can find it in the Resource directory on the
book's software package. The name of the bitmap is toolbar.bmp. The process of
creating a toolbar from a toolbar bitmap requires that you follow a certain sequence.
The price to pay for changing the order of operations is that you may end up with in-
correct resource files that must be manually edited. The following operations result
in the toolbar resource:

1. Select Resource from the Insert menu. Select the Bitmap resource type and click the
Import button.

2. In the Import Resource dialog editor, edit the filename field for that of a bitmap file.
This is accomplished by entering "*.bmp". Now you can search though the file system
until you find the toolbar bitmap. In this case the desired bitmap has the name
"toolbar.bmp." Select the bitmap and click on the button labeled Import.

3. The toolbar bitmap is now loaded into the bitmap editor. The toolbar bitmap is shown
in Figure 19-12. The buttons are labeled according to the identifications assigned in the
TBBUTTON structure members listed previously.

4. Now you must convert the bitmap into a toolbar resource. This is accomplished by
opening the Image menu and clicking on the Toolbar editor command. The New
Toolbar Resource dialog box with the pixel size of normal toolbar buttons is displayed,
which is 16 pixels wide and 15 pixels high. Click OK and the toolbar editor appears
with the bitmap converted into a toolbar.

© 2003 by CRC Press LLC

Figure 19-12 ”Toolbar.bmp" Button Identification Codes

5. You can now proceed to edit the toolbar and assign identification codes to each of the
buttons. Note that there is a blank button at the end of the toolbar, which is used for
creating custom buttons. You can click on the blank button and use the editor to create
a new button image. To delete a button, click on it and drag it off the toolbar. To reposi-
tion a button, click on it and drag it to it new location. To create a space in the toolbar
drag the button so that it overlaps half the width of its neighbor button. To assign an
identification code to a toolbar button, double-click on the button and enter the new
identification in the ID: edit box of the Toolbar Button Properties dialog box. At this
time you may enter the corresponding identification codes for all the buttons in the
toolbar. Figure 19-13 shows the toolbar editor once the separators have been inserted.

Figure 19-13 Developer Studio Toolbar Editor

ID_FILE_NEW

ID_FILE_OPEN

ID_FILE_SAVE

ID_EDIT_CUT

ID_EDIT_COPY

ID_EDIT_PASTE

ID_PRT_PRINT

ID_HLP_ABOUT

ID_HLP_HELP

© 2003 by CRC Press LLC

Figure 19-13 also shows the Toolbar Button Properties dialog box open and the new
identification code in the ID: edit box.

6. Once the identification codes have been assigned to all the buttons, click the button la-
beled X to close the editor. Also close the next screen and save the resource file under
the default name, or assign it a new one. Some programmers like to give the resource
file the same base name as the application's main module. The extension for the re-
source file must be .RC.

7. The next step is one that you have already done for other resources: open the Project
menu, click the Add To Project command, select Files, and add the resource file to the
project. The toolbar is now in the project. You can use the Resource Symbols com-
mand in the View menu, or the corresponding toolbar button, to make sure that the
identification codes are correct and coincide with those in the BBUTTON structure,
and the menu items.

8. Displaying the toolbar requires a call to the CreateToolbarEx() function. The call re-
turns a handle to the toolbar, which is of type HWND since the toolbar is a window. In
this example, the call is as follows:

#define ID_TOOLBAR 400 // Toolbar id number
.
.
.

HWND tbHandle; // Handle to the toolbar
.
.
.

case WM_CREATE:
// Create toolbar
tbHandle = CreateToolbarEx (hwnd, // Handle to window

WS_CHILD | WS_VISIBLE |
WS_CLIPSIBLINGS |
CCS_TOP | TBSTYLE_ToolTipS, // Window styles
ID_TOOLBAR, // Toolbar identifier
9, // Number of button images

// in toolbar bitmap
hInst, // Module instance
IDB_BITMAP1, // Bitmap ID
tbb, // TBBUTON structure
12, // Number of buttons

// plus separators
0, 0, 0, 0,
sizeof (TBBUTTON));

The second parameter in the call refers to controls bits that define the style, posi-
tion, and type of toolbar. The window style WS_CHILD is always required and most
toolbars use WS_VISIBLE and WS_CHILDREN. The bits with the CCS_ prefix are
common control styles. Table 19-11 lists the common control styles that refer to
toolbars.

In the current cal l to CreateToolbarEx() we used CCS_TOP and the
TBSTYLE_TOOLTIPS in order to create a toolbar displayed above the application's
client area, and to provide ToolTip support.

© 2003 by CRC Press LLC

Table 19-11

Toolbar Common Control Styles

STYLE DESCRIPTION

CCS_ADJUSTABLE Allows toolbars to be customized by the user. If this style is
used, the toolbar's owner window must handle the
customization notification messages sent by the toolbar.

CCS_BOTTOM Causes the toolbar to position itself at the bottom of the
parent window's client area and sets the width to be the
same as the parent window's width.

CCS_NODIVIDER Prevents a two-pixel highlight from being drawn at the top of
the control.

CCS_NOHILITE Prevents a one-pixel highlight from being drawn at the top of
the control.

CCS_NOMOVEY Causes the toolbar to resize and move itself horizontally, but
not vertically, in response to a WM_SIZE message. If the
CCS_NORESIZE style is used, this style does not apply.

CCS_NOPARENTALIGN Prevents the toolbar from automatically moving to the top or
bottom of the parent window. Instead, the it keeps its
position within the parent window despite changes to the
size of the parent window.

CCS_NORESIZE Prevents the toolbar from using the default width and height
when setting its initial size or a new size. Instead, the
control uses the width and height specified in the request for
creation or sizing.

CCS_TOP Causes the control to position itself at the top of the parent
window's client. The width is set to the size of the parent
window. This is the default style.

19.4.4 Standard Toolbar Buttons
The common controls library contains bitmaps for standard toolbar buttons that can
be referenced by name and used by application code. In this case no toolbar bitmap is
required; therefore, the button images cannot be edited in Developer Studio. There are
a total of 15 button images in two sizes: 24 by 24 pixels and 16 by 16 pixels. When using
the standard toolbar buttons, the TBBUTTON structure must be filled differently than
when using a toolbar bitmap resource. The parameters of CreateToolbarEx() are also
different. The following code fragment shows the TBBUTTON structure for loading all
15 standard toolbar buttons:

TBBUTTON tbb[] = {
// File group
STD_FILENEW, ID_FILE_NEW, TBSTATE_ENABLED, TBSTYLE_BUTTON,

0, 0, 0, 0,
STD_FILEOPEN, ID_FILE_OPEN, TBSTATE_ENABLED, TBSTYLE_BUTTON,

0, 0, 0, 0,
STD_FILESAVE, ID_FILE_SAVE, TBSTATE_ENABLED, TBSTYLE_BUTTON,

0, 0, 0, 0,
0, 0, TBSTATE_ENABLED, TBSTYLE_SEP,

0, 0, 0, 0,
// Edit group
STD_COPY, ID_EDIT_COPY, TBSTATE_ENABLED, TBSTYLE_BUTTON,

0, 0, 0, 0,
STD_CUT, ID_EDIT_CUT, TBSTATE_ENABLED, TBSTYLE_BUTTON,

0, 0, 0, 0,
STD_PASTE, ID_EDIT_PASTE, TBSTATE_ENABLED, TBSTYLE_BUTTON,

0, 0, 0, 0,

© 2003 by CRC Press LLC

STD_FIND, ID_EDIT_FIND, TBSTATE_ENABLED, TBSTYLE_BUTTON,
0, 0, 0, 0,

STD_REPLACE, ID_EDIT_REPLACE, TBSTATE_ENABLED,
TBSTYLE_BUTTON,
0, 0, 0, 0,

STD_UNDO, ID_EDIT_UNDO, TBSTATE_ENABLED, TBSTYLE_BUTTON,
0, 0, 0, 0,

STD_REDOW, ID_EDIT_REDO, TBSTATE_ENABLED, TBSTYLE_BUTTON,
0, 0, 0, 0,

STD_DELETE, ID_EDIT_DELETE, TBSTATE_ENABLED,
TBSTYLE_BUTTON,
0, 0, 0, 0,

0, 0, TBSTATE_ENABLED, TBSTYLE_SEP,
0, 0, 0, 0,

// Print group
STD_PRINTPRE, ID_PRINT_PREVIEW, TBSTATE_ENABLED,

TBSTYLE_BUTTON,
0, 0, 0, 0,

STD_PRINT, ID_PRINT_PRINT, TBSTATE_ENABLED,
TBSTYLE_BUTTON,
0, 0, 0, 0,

0, 0, TBSTATE_ENABLED, TBSTYLE_SEP,
0, 0, 0, 0,

// Help and properties group
STD_PROPERTIES,ID_PROPS, TBSTATE_ENABLED, TBSTYLE_BUTTON,

0, 0, 0, 0,
STD_HELP, ID_HELP, TBSTATE_ENABLED, TBSTYLE_BUTTON,

0, 0, 0, 0, } ;

The call to CreateToolbarEx() is also different. The fourth parameter, which indi-
cates the number of button images in the toolbar bitmap is set to zero in the case of
standard buttons. The fifth parameter, which in the case of a toolbar bitmap is set to
the application instance, is now the constant HINST_COMMCTRL defined in the com-
mon controls library. The sixth parameter is the constant IDB_STD_SMALL_COLOR.
The resulting call to CreateToolbarEx() is as follows:

tbHandle = CreateToolbarEx (hwnd,
WS_CHILD | WS_VISIBLE | CCS_TOP |
TBSTYLE_WRAPABLE,
ID_TOOLBAR, // Toolbar ID number
0, // Number of bitmaps (none)
(HINSTANCE)HINST_COMMCTRL, // Special resource

// instance for
// standard buttons

IDB_STD_SMALL_COLOR, // Bitmap resource ID
tbb, // TBBUTTON variable
18, // Count of buttons plus

// separators
0, 0, 0, 0, // Not required for standard

// buttons
sizeof (TBBUTTON));

The program named TB1_DEMO, located in the Toolbar Demo No 1 project folder
in the book's software package, is a demonstration of using the standard toolbar
buttons. When you click on any of the toolbar buttons, a message box is displayed
that contains the button's name. Figure 19-14 is a screen snapshot of the
TN1_DEMO program.

© 2003 by CRC Press LLC

Figure 19-14 TB1_DEMO Program Screen

19.4.5 Combo Box in a Toolbar
Windows programs, including Developer Studio, often contain a combo box as part of
the toolbar. This application of the combo box is a powerful one. For example, the
combo box that is part of Developer Studio standard menu bar is used to remember
search strings that have been entered by the user. At any time, you can inspect the
combo box and select one of the stored strings for a new search operation. Not only
does it save you the effort of retyping the string, it is also a record of past searches.

The position of the combo box in the toolbar is an important consideration. If the
combo box is to the right of the last button in the toolbar, then it is a matter of calcu-
lating the length of the toolbar in order to position the combo box. However, if, as is
often the case, the combo box is located between buttons in the toolbar, or at its
start, then code must make space in the toolbar. The method suggested by Nancy
Cluts in her book Programming the Windows 95 User Interface (see Bibliography)
is based on adding separators to make space for the combo box. Since each separa-
tor is 8 pixels wide, we can calculate that for a 130-pixels-wide combo box we would
need at least 17 separators. In many cases a little experimentation may be necessary
to find the number of separators.

The creation of the combo box requires call ing CreateWindow() with
"COMBOBOX" as the fist parameter. If the combo box is to have a series of string
items, as is usually the case, then it is created with the style CBS_HASSTRINGS. If
the combo box is to have an edit box feature, then the CBS_DROPDOWN style is
used. If it is to have a list of selectable items but no editing possibilities, then the
CBS_DROPDOWNLIST style is used. The following code fragment shows the cre-
ation of a combo box in a toolbar:

static HWND cbHandle; // Handle to combo box
static HWND tbHandle; // Handle to toolbar
.
.
.

cbHandle = CreateWindow ("COMBOBOX",
NULL, // No class name
WS_CHILD | WS_VISIBLE | WS_BORDER |
CBS_HASSTRINGS |CBS_DROPDOWNLIST,
0, // x origin
0, // y origin
130, // width
144, // height

© 2003 by CRC Press LLC

tbHandle, // Parent window handle
(HMENU) IDR_MENU1, // Menu resource ID
pInstance, // Application instance
NULL);

Once the combo box is created, we need to add the text strings with which it is
originally furnished. This is accomplished by a series of calls to SendMessage() with
the message code CB_INSERTSTRING. Typical coding is as follows:

char *szStrings[] = { "Visual C++",
"Borland C",
"Pascal",
"Fortran 80",
"Visual Basic" };

.

.

.
//Add strings to combo box

for (i=0; i < 5; i++)
SendMessage(cbHandle,

CB_INSERTSTRING,
(WPARAM)-1,
(LPARAM)szStrings[i]);

The program TB2_DEMO, located in the Toolbar Demo No 2 project folder on the
book's software package, demonstrates the creation of a toolbar that includes a
combo box.

19.4.6 ToolTip Support
A ToolTip is a small window that contains a brief descriptive message. Although
ToolTips can be activated in relation to any screen object, we are presently concerned
with ToolTips associated with a toolbar. For a toolbar to support ToolTips, it must
have been created with the TBSTYLE_TOOLTIPS, listed in Table 19-9.

Providing ToolTip support for toolbar buttons is straightforward and simple.
However, when you need to furnish ToolTips for other elements in the toolbar, such
as the combo box previously mentioned, then ToolTip processing may get more
complicated. The first step in creating ToolTips is retrieving a handle for the ToolTip
window. This is usually performed in the WM_CREATE message intercept. It con-
sists of calling SendMessage() with the first parameter set to the toolbar handle and
the second parameter set to the TB_GETTOOLTIPS message identifier. The follow-
ing code fragment shows the creation of a three-button toolbar and its correspond-
ing ToolTip window:

LRESULT CALLBACK WndProc (HWND hwnd, UINT iMsg, WPARAM wParam,
LPARAM lParam) {

static HWND tbHandle; // Handle to toolbar
static HWND hWndTT; // Handle to ToolTip

.

.

.
switch (iMsg)

{
case WM_CREATE:

// Create a toolbar

© 2003 by CRC Press LLC

tbHandle = CreateToolbarEx (hwnd, // Handle to window
WS_CHILD | WS_VISIBLE |
WS_CLIPSIBLINGS |
CCS_TOP | TBSTYLE_TOOLTIPSS, // Window styles
0, // Toolbar identifier
3, // Number of button images

// in toolbar bitmap
pInstance, // Module instance
IDB_BITMAP1, // Bitmap ID
tbb, // TBBUTON structure
3, // Number of buttons

// plus separators
0, 0, 0, 0, // Not required
sizeof (TBBUTTON));

// Get the handle to the ToolTip window.
hWndTT = (HWND)SendMessage(tbHandle,

TB_GETToolTipS, 0, 0);
.
.
.

Once you create the ToolTip window and obtain its handle, the next step is to cre-
ate and initialize a structure of type TOOLINFO. The coding proceeds as follows:

if (hWndTT) {
// Fill in the TOOLINFO structure.
lpToolInfo.cbSize = sizeof(lpToolInfo);
lpToolInfo.uFlags = TTF_IDISHWND | TTF_CENTERTIP;
lpToolInfo.hwnd = hwnd;
lpToolInfo.uId = (UINT)tbHandle;
lpToolInfo.hinst = pInstance;
lpToolInfo.lpszText = LPSTR_TEXTCALLBACK;

}

The first flag, TTF_IDISHWND, indicates that the fourth structure member (uId)
is a handle to a window, in this case, the toolbar. The flag TTF_CENTERTIP deter-
mines that the ToolTip is displayed below the window specified in the uId member,
here again, the toolbar. Finally, the lpszText member is set to the constant
LPSTR_TEXTCALLBACK, which makes the control send the TTN_NEEDTEXT noti-
fication message to the owner window. The values entered in the other structure
members are self-explanatory.

Processing of ToolTip messages, as is the case with most controls, takes place at
the WM_NOTIFY message intercept. At the time the message handler receives con-
trol, the lParam is a pointer to a structure of type HMHDR (see Appendix A), or to a
larger structure that has NMHDR as its first member. The third member of the
HMHDR structure contains the control-specific notification code. This parameter is
TTN_NEEDTEXT when text is required for a ToolTip. Therefore, code can switch on
this structure member and provide processing in a case statement, as shown in the
following code fragment:

LPNMHDR pnmh; // Pointer to HMHDR structure
TOOLTIPINFO lpToolTipInfo;
LPTOOLTIPTEXT lpToolTipText;
static char szBuf[128]; // Buffer for ToolTip text
.
.

© 2003 by CRC Press LLC

.
case WM_NOTIFY:

pnmh = (LPNMHDR) lParam;
switch (pnmh->code) {

case TTN_NEEDTEXT:
// Display ToolTip text.

lpToolTipText = (LPTOOLTIPTEXT)lParam;
LoadString (pInstance,

lpToolTipText->hdr.idFrom,
szBuf,
sizeof(szBuf));
lpToolTipText->lpszText = szBuf;

break;
default:

return TRUE;
break;

}
return 0;

break;

Note that the TTN_NEEDTEXT message intercept contains a pointer to a struc-
ture of type TOOLTIPTEXT in the lParam (see Appendix A). The first member of
TOOLlTIPTEXT (hdr) is a structure of type NMHDR, and the idFrom member of
HMHDR is the identifier of the control sending the message. Code uses this informa-
tion and the LoadString() function to move the text into the buffer named szBuf. The
text moved into szBuf comes from the lpszText member of a structure variable of
type TOOLTIPTEXT. This second member is a pointer to a text string defined as a
string resource in the application's executable.

The string resource that contains the messages that are displayed with each
ToolTip is the last missing element of ToolTip implementation. You create the string
resource by opening the Insert menu and selecting the Resource command. In the
Insert Resource dialog box select String Table and then click on the New button. An
example of a resource table is seen in Figure 19-15.

Figure 19-15 Developer Studio Resource Table Editor

The resource table consists of three entries: the id, the value, and the caption
fields. You fill the id field so that it contains the same identification code as the but-
ton for which you are providing a ToolTip. In the caption field, you enter the text
that is to be displayed at the ToolTip. Developer Studio automatically fills the value

© 2003 by CRC Press LLC

field for the one assigned to the corresponding toolbar button. Double-clicking on
the entry displays a dialog box where these values can be input.

The program named TT_DEMO, located in the ToolTip Demo project folder on
the book's software package, is a demonstration of the processing required for the
implementation of ToolTip controls.

© 2003 by CRC Press LLC

Chapter 20

Pixels, Lines, and Curves

Topics:
• Basic architecture of a Windows graphics application

• Graphics device interface attributes

• The device context

• Graphic objects: pens, brushes, mixes, pen position, and arc direction

• Drawing pixels, lines, and curves using GDI functions

This chapter is on graphics programming using the services in the Windows Graphics
Device Interface. It discusses the simpler of these services, which are used for reading
and setting individual pixels and for drawing lines and curves in a two-dimensional
space. The described graphics functions are among the most often used in conven-
tional Windows graphics.

The chapter starts with the architecture of a Windows graphics application, the
GDI itself, and a more extensive look at the Windows Device Context. It is in the De-
vice Context where system-level graphics information is stored. Applications must
often read these attributes. It also covers Windows graphics objects and their attrib-
utes, that is, pens, brushes, bitmaps, palettes, fonts, paths, and regions, as well as
some of the attributes of the Device Context: color, mix mode, background mode,
pen position, and arc direction. These attributes determine how graphics output
takes place.

20.1 Drawing in a Window
Windows programs are event driven; applications share resources with all other run-
ning programs and with the operating system. This determines that a graphics pro-
gram cannot make exclusive use of the display, or of other system resources, since
these are part of a pool that is accessible to all code in a multitasking environment. The
following implications result from this architecture:

• A typical Windows application must obtain information about the system and the dis-
play device before performing output operations. The application must know the struc-

© 2003 by CRC Press LLC

ture and dimensions of the output surface, as well as its capabilities, in order to manage
the display function.

• In Windows, output to devices is performed by means of a logical link between the ap-
plication, the device driver, and the hardware components. This link is called a device
context. A display context is a special device context for the display device. Applica-
tions that draw to a window using conventional Windows functions must first obtain
the display context. The handle to this display context is passed as a parameter to all
API drawing functions.

• Unlike a DOS program, a Windows applications cannot draw to the screen and assume
that the resulting image remains undisturbed for unlimited time. On the contrary, a Win-
dows program must take into account that the video display is a shared resource. Win-
dows notifies the application that its client area needs to be painted or repainted by
posting a WM_PAINT message to the program's message queue. A well-designed Win-
dows programs must be able to redraw its client area upon receiving this message.

The first two of these topics, that is, obtaining the device context handle and the
display device attributes, are discussed in a separate section later in this chapter.
Here we are concerned with the mechanisms used by Windows applications for ac-
cessing the display device in a way that is consistent with the multitasking nature of
the environment.

20.1.1 The Redraw Responsibility

Windows applications are burdened with the responsibility of redrawing their client
area at any time. This is an obligation to be taken seriously since it implies that code
must have ways for reconstructing the display on demand. What data structures and
other controls are necessary to redraw the screen and how code handles this responsi-
bility depends on the application itself. In some programs the screen redraw burden is
met simply by keeping tabs of which on several possible displays is active. In other ap-
plications the screen redraw obligation can entail such elaborate processing that it be-
comes a major consideration in program design.

The operating system, or your own code, sends the WM_PAINT message when-
ever the client area, or a portion thereof, needs to be redrawn. Application code re-
sponds to its screen redraw responsibility during the WM_PAINT message intercept.
The following events cause the operating system to send WM_PAINT:

• The user has brought into view a previously hidden area of the application window.
This happens when the window has been moved or uncovered.

• The user has resized the window.

• The user has scrolled the window contents.

The WM_PAINT message is not produced when a window is merely moved to an-
other position on the desktop, since in this case, the client area has not been
changed by the translation. Therefore, the operating system is able to maintain the
screen contents because no new graphics elements were introduced or removed,
and the screen size remains the same. However, the operating system cannot antici-
pate how an application handles a screen resizing operation. There are several pos-
sible processing options: are the screen contents scaled to the new dimension of the

© 2003 by CRC Press LLC

client area, or is their original size maintained? Are the positions of the graphics ele-
ments changed as a consequence of the resize operation, or do they remain in the
same place? Not knowing how these alternatives are to be handled, the operating
system responds by sending WM_PAINT to the application and letting it take what-
ever redraw action considers appropriate. The same logic applies when the client
area is scrolled or when portions of the window are uncovered.

There are other times during which Windows attempts to restore the applica-
tion's screen, but may occasionally post the WM_PAINT message if it fails in this ef-
fort. These occasions are when a message or dialog box is displayed, when a menu
is pulled down, or when a tooltip is enabled. Finally, there are cases in which Win-
dows always saves and restores the screen automatically, for example, when the
mouse cursor or a program icon is dragged or moved across the client area.

20.1.2 The Invalid Rectangle
In an effort to minimize the processing, Windows keeps tabs on which portion of the
application's client area needs to be redrawn. This notion is based on the following
logic: it is wasteful for application code to repaint the entire screen when only a small
portion of the program's client area needs to be redrawn. In practice, for simpler pro-
grams, it is often easier to assume that the entire client area needs redrawing than to
get into the complications of repainting parts of the screen. However, in more complex
applications, particularly those that use multiple child windows, it may save consider-
able time and effort if code can determine which of these elements need redrawing
and which can be left unchanged.

The screen area that needs to be redrawn is called the update region. The small-
est rectangle that binds the update region is called the invalid rectangle. When the
WM_PAINT message is placed in the message queue, Windows attaches to it a struc-
ture of type RECT that contains the dimensions and location of the invalid rectan-
gle. If another screen area becomes invalid before WM_PAINT is posted, Windows
then makes the necessary correction in the invalid rectangle. This scheme saves
posting more than one WM_PAINT message on the queue. Applications can call
GetUpdateRect() to obtain the coordinates of the top-left and bottom-right corner of
the update region.

An application can force Windows to send a WM_PAINT message to its own win-
dow procedure. This is accomplished by means of the InvalidateRect() or
InvalidateRgn() functions. InvalidateRect() has the effect of adding a rectangle to a
window's update region. The function has the following general form:

BOOL InvalidateRect(
HWND hWnd, // 1
CONST RECT* lpRect, // 2
BOOL bErase // 3

);

The first parameter identifies the window whose update region has changed. The
second parameter is a pointer to a structure variable of type RECT that contains the
coordinates of the rectangle to be added to the update region. If this parameter is
NULL, then the entire client area is added to the update region. The third parameter

© 2003 by CRC Press LLC

is a flag that indicates if Windows should erase or not erase the background. If this
parameter is TRUE, then the background is erased when the BeginPaint() function
is called by the application. If it is FALSE, the background remains unchanged.

20.1.3 Screen Updates On-Demand
The standard reply of an application that has received a WM_PAINT message is to re-
draw its own client area. This implies that the application has been designed so that a
screen update takes place every time a WM_PAINT message is received. In this case
the application design has to take into account the message-driven characteristic of a
Windows program.

Consider a program that contains three menu commands: one to display a circle,
another one to display a rectangle, and a third one to display a triangle. When the
user clicks on any one of the three menu items, a WM_COMMAND message is
posted to the application's message queue. The low word of the WPARAM encodes
the menu item selected. Application code usually switches on this value in order to
field all possible commands. However, the screen should not be updated during
WM_COMMAND processing. What code can do at this point is set a switch that indi-
cates the selected command. In this example a static variable of type int, named
drawMode, could be set to 1 to indicate a circle drawing request, to 2 to indicate a
rectangle, and to 3 to indicate a triangle. After this switch is set according to the
menu command entered by the user, code calls InvalidateRect() so that Windows
posts WM_PAINT to the application's own message queue. The application then pro-
cesses WM_PAINT inspecting the value of the drawMode variable. If the value is 1 it
draws a circle, if its is 2 it draws a rectangle, and if it is 3 it draws a triangle.

To a non-Windows programmer this may appear to be quite a round-about way of
doing things. Why not draw the geometrical figures at the time that the menu com-
mands are received? The problem with drawing as the commands are received is
that if the window is resized or covered there is no mechanism in place to restore its
screen image. The result would be either a partially or a totally blank client area.
However, if the screen updates take place during WM_PAINT message processing,
then when Windows sends WM_PAINT to the application because of a screen con-
tents change, the application redraws itself and the client area is correctly restored.

On the other hand, not all screen drawing operations can take place during
WM_PAINT message processing. Applications sometimes have to perform display
functions that are directly linked to a user action, for example, a rubber-band image
that is drawn in direct and immediate response to a mouse movement. In this case
code cannot postpone the drawing until WM_PAINT is received.

20.1.4 Intercepting the WM_PAINT Message
The WM_PAINT message is generated only for windows that were created with the
styles CS_HREDRAW or CS_VREDRAW. Receiving WM_PAINT indicates to applica-
tion code that all or part of the client area must be repainted. The message can origi-
nate in Windows, typically because the user has minimized, overlapped, or resized the
client area. Or also because the application itself has produced the message by calling
InvalidateRect() or InvalidateRgn(), as previously discussed.

© 2003 by CRC Press LLC

Typically, WM_PAINT processing begins with the BeginPaint() function.
BeginPaint() prepares the window for a paint operation. In the first place it fills a
variable of type PAINTSTRUCT, which is defined as follows:

typedef struct tagPAINTSTRUCT {
HDC hdc; // Identifies display device
BOOL fErase; // TRUE if background must be

// erased
RECT rcPaint; // Rectangle structure specifying

// the update region
BOOL fRestore; // RESERVED
BOOL fIncUpdate; // RESERVED
BYTE rgbReserved[32]; // RESERVED

} PAINTSTRUCT;

If the screen erasing flag is set, BeginPaint() uses the window's background
brush to erase the background. In this case, when execution returns from
BeginPaint() code can assume that the update region has been erased. At this point
the application can call GetClientRect() to obtain the coordinates of the update re-
gion, or proceed on the assumption that the entire client area must be redrawn.

Processing ends with EndPaint(). EndPaint() notifies Windows that the paint op-
eration has concluded. The parameters passed to EndPaint() are the same ones
passed to BeginPaint(): the handle to the window and the address of the structure
variable of type PAINTSTRUCT. One important consequence of the EndPaint() func-
tion is that the invalid region is validated. Drawing operations by themselves have
no validating effect. Placing the drawing operations between BeginPaint() and
EndPaint() functions automatically validates the invalid region so that other
WM_PAINT messages are not produced. In fact, placing the BeginPaint() EndPaint()
functions in the WM_PAINT intercept, with no other processing operation, has the
effect of validating the update region. The DefWindowProc() function operates in
this manner.

The project Pixel and Line Demo in the book's software package demonstrates
image display and update in response to WM_PAINT messages. The processing uses
a static variable to store the state of the display. A switch construct in the
WM_PAINT routine performs the screen updates, as in the following code fragment:

// Drawing command selector
static int drawMode = 0;
// 0 = no menu command active
// Active menu command:
// 1 = Set Pixel
// 2 = LineTo
// 3 = Polyline
// 4 = PolylineTo
// 5 = PolyPolyline
// 6 = Arc
// 7 = AngleArc
// 8 = PolyBezier
// 9 = PolyDraw

. . .
//********************************
// menu command processing
//********************************

© 2003 by CRC Press LLC

case WM_COMMAND:
switch (LOWORD (wParam)) {

//****************************
// SetPixel command

//****************************
case ID_DRAWOP_PIXELDRAW:
drawMode = 1; // Command to draw line
InvalidateRect(hwnd, NULL, TRUE);
break;
//****************************
// LineTo command
//****************************
case ID_DRAWOP_LINE_LINETO:
drawMode = 2; // Command to draw line
InvalidateRect(hwnd, NULL, TRUE);
break;

. . .
//********************************
// WM_PAINT processing
//********************************
case WM_PAINT :
BeginPaint (hwnd, &ps) ;
switch(drawMode)

{
// 1 = SetPixel command
case 1:
pixColor = RGB(0xff, 0x0, 0x0); // Red
for (i = 0; i < 1000; i++) {
x = i * cxClient / 1000;
y = (int) (cyClient / 2 *
(1- sin (pix2 * i / 1000)));
SetPixelV (hdc, x, y, pixColor);

}
break;
// 2 = LineTo command
case 2:
// Create a solid blue pen, 4 pixels wide
SelectObject(hdc, bluePen4);
MoveToEx (hdc, 140, 140, NULL);
LineTo (hdc, 300, 140);
LineTo (hdc, 300, 300);
LineTo (hdc, 140, 300);
LineTo (hdc, 140, 140);
break;

. . .

20.2 Graphics Device Interface
The Graphics Device Interface (GDI) consists of a series of functions and related data
structures that applications can use to generate graphics output. The GDI can output
to any compatible device, but most frequently the device is either the video display, a
graphics hard copy device (such as a printer or plotter), or a metafile in memory. By
means of GDI functions you draw lines, curves, closed figures, paths, bitmapped im-
ages, and text. The objects are drawn according to the style selected for drawing ob-
jects, such as pens, brushes, and fonts. The pen object determines how lines and
curves are drawn; the brush object determines how the interior of closed figures is
filled. Fonts determine the attributes of text.

© 2003 by CRC Press LLC

Output can be directed to physical devices, such as the video display or a printer,
or to a logical device, such as a metafile. A metafile is a memory object that stores
output instructions so that they can later be used to produce graphics on a physical
device. It works much like a tape recording that can be played back at any time, any
number of times.

The GDI is a layer between the application and the graphics hardware. It ensures
device-independence and frees the programmer from having to deal with hardware
details of individual devices. The device context, mentioned in Chapter 4, is one of
the fundamental mechanisms used by the GDI to implement device-independent
graphics. The GDI is a two-dimensional interface, which contains no 3D graphics
primitives or transformations. It is also a static system, with very little support for
animation. Therefore, the GDI is not capable of doing everything that a graphics pro-
grammer may desire, but within these limitations, it provides an easy and conve-
nient toolkit of fundamental functions.

GDI functions can be classified into three very general categories:

• Functions that relate to the device context. These are used to create and release the DC,
to get information about it, and to get and set its attributes.

• Drawing primitives. These are used to draw lines and curves, fill areas, and display
bitmaps and text.

• Functions that operate on GDI objects. These perform manipulation of graphics ob-
jects such as pens, brushes, and bitmaps, which are not part of the device context.

20.2.1 Device Context Attributes

The GDI can output to any compatible device, including hard copy graphics devices
and memory. For this reason, when referring to the GDI functions, we always use the
term device context, instead of the more restrictive display context. In Chapter 4 we
discussed the fundamentals of the device context and developed a template file
TEMPL02.CPP, found in the Templates directory on the book's software package; it
creates a program that uses a private device context. A private device context has the
advantage that it need be retrieved only once and that attributes assigned to it are re-
tained until they are explicitly changed. In the following examples and demonstration
programs, we continue to use a private device context to take advantage of these sim-
plifications.

The mapping modes are among the most important attributes of the device con-
t e x t . Tw o s c a l a b l e m a p p i n g m o d e s , n a m e d M M _ A N I S O T R O P I C a n d
MM_ISOTROPIC, are use in shrinking and expanding graphics by manipulating the
coordinate system. They provide a powerful image manipulation mechanism and are
discussed in Chapter 21. For now, we continue to use the default mapping mode,
MM_TEXT, in the demonstrations and examples.

Device context operations belong to two types: those that obtain information and
those that set attributes. For example, the GDI function GetTextColor() retrieves
the current text color from the device context, while the function SetTextColor() is
used to change the text color attribute. Although these functions are sometimes re-

© 2003 by CRC Press LLC

ferred to as get- and set-types, the function names do not always start with these
words. For example, the SelectObject() function is used to both get and set the at-
tributes of pens, brushes, fonts, and bitmaps.

Graphics applications often need to obtain information regarding the device con-
text. For example, a program may need to know the screen resolution or the number
of display colors. One of the most useful functions for obtaining information regard-
ing the capabilit ies of a device context is GetDeviceCaps(). The call to
GetDeviceCaps() requires two parameters: the first one is the handle to the device
context, and the second one is an index value that identifies the capability being
queried. Table 20.1 lists some of the most useful information returned by this func-
tion.

Table 20-1

Information Returned by GetDeviceCaps()

INDEX MEANING

DRIVERVERSION Version number of device driver.
TECHNOLOGY Any one of the following:

Value Meaning
DT_PLOTTER Vector plotter
DT_RASDISPLAY Raster display
DT_RASPRINTER Raster printer
DT_RASCAMERA Raster camera
DT_CHARSTREAM Character stream
DT_METAFILE Metafile
DT_DISPFILE Display file

HORZSIZE Width of the physical screen (millimeters).
VERTSIZE Height of the physical screen (millimeters).
HORZRES Width of the screen (pixels).
VERTRES Height of the screen (raster lines).
LOGPIXELSX Number of pixels per logical inch along the screen

width.
LOGPIXELSY Number of pixels per logical inch along the screen

height.
BITSPIXEL Number of color bits per pixel.
PLANES Number of color planes.
NUMBRUSHES Number of device-specific brushes.
NUMPENS Number of device-specific pens.
NUMFONTS Number of device-specific fonts.
NUMCOLORS Number of entries in the color table, if the

device has a color depth of no more than 8 bits
per pixel. Otherwise, –1 is returned.

ASPECTX Relative width of a device pixel used for line
drawing.

ASPECTY Relative height of a device pixel used for line
drawing.

ASPECTXY Diagonal width of the device pixel.

(continues)

© 2003 by CRC Press LLC

Table 20-1

Information Returned by GetDeviceCaps() (continued)

INDEX MEANING

CLIPCAPS Flag indicating clipping capabilities of the
device. Value is 1 if the device can clip to a
rectangle. Otherwise, it is 0.

SIZEPALETTE Number of entries in the system palette.
NUMRESERVED Number of reserved entries in the system palette.
COLORRES Actual color resolution of the device, in bits per

pixel.
PHYSICALWIDTH For printing devices: the width of the physical

page, in device units.
PHYSICALHEIGHT For printing devices: the height of the physical

page, in device units.
PHYSICALOFFSETX For printing devices: the distance from the left

edge of the physical page to the left edge of the
printable area, in device units.

PHYSICALOFFSETY For printing devices: the distance from the top
edge of the physical page to the top edge of the
printable area, in device units.

RASTERCAPS Value that indicates the raster capabilities of
the device, as follows:
Capability Meaning
RC_BANDING Requires banding support.
RC_BITBLT Capable of transferring bitmaps.
RC_BITMAP64 Supports bitmaps larger than

64K.
RC_DI_BITMAP Supports SetDIBits() and

GetDIBits functions.
RC_DIBTODEV Capable of supporting the

SetDIBitsToDevice function.
RC_FLOODFILL Capable of performing flood

fills.
RC_PALETTE Palette-based device.
RC_SCALING Capable of scaling.
RC_STRETCHBLT Capable of performing the

StretchBlt function.
RC_STRETCHDIB Capable of performing the

StretchDIBits function.
CURVECAPS Indicates the curve capabilities of the device,

as follows:
Value Meaning
CC_NONE Does not support curves.
CC_CIRCLES Device can draw circles.
CC_PIE Device can draw pie wedges.
CC_CHORD Device can draw chord arcs.
CC_ELLIPSES Device can draw ellipses.
CC_WIDE Device can draw wide borders.
CC_STYLED Device can draw styled borders.
CC_WIDESTYLED Device can draw wide and styled

borders.
CC_INTERIORS Device can draw interiors.
CC_ROUNDRECT Device can draw rounded

Rectangles.

(continues)

© 2003 by CRC Press LLC

Table 20-1

Information Returned by GetDeviceCaps() (continued)

INDEX MEANING

LINECAPS Indicates the line capabilities of the device, as
follows:
Value Meaning
LC_NONE Does not support lines.
LC_POLYLINE Device can draw a polyline.
LC_MARKER Device can draw a marker.
LC_POLYMARKER Device can draw multiple

markers.
LC_WIDE Device can draw wide lines.
LC_STYLED Device can draw styled lines.
LC_WIDESTYLED Device can draw lines that are

wide and styled.
LC_INTERIORS Device can draw interiors.

POLYGONALCAPS Indicates the polygon capabilities of the device,
as follows:
Value Meaning
PC_NONE Does not support polygons.
PC_POLYGON Device can draw alternate-fill

polygons.
PC_RECTANGLE Device can draw rectangles.
PC_WINDPOLYGON Device can draw winding-fill

polygons.
PC_SCANLINE Device can draw a single

scanline.
PC_WIDE Device can draw wide borders.
PC_STYLED Device can draw styled borders.
PC_WIDESTYLED Device can draw borders that

Are wide and styled.
PC_INTERIORS Device can draw interiors.

TEXTCAPS Indicates the text capabilities of the device, as
follows:
Value Meaning
TC_OP_CHARACTER Device is capable of character

output precision.
TC_OP_STROKE Device is capable of stroke

output precision.
TC_CP_STROKE Device is capable of stroke clip

precision.
TC_CR_90 Device is capable of 90-degree

character rotation.
TC_CR_ANY Device is capable of any

character rotation.
TC_SF_X_YINDEP Device can scale independently

in the x- and y-directions.
TC_SA_DOUBLE Device is capable of doubled

character for scaling.
TC_SA_INTEGER Device uses integer multiples

only for character scaling.
TC_SA_CONTIN Device uses any multiples for

exact character scaling.

(continues)

© 2003 by CRC Press LLC

Table 20-1

Information Returned by GetDeviceCaps() (continued)

VALUE MEANING

TC_EA_DOUBLE Device can draw double-weight
characters.

TC_IA_ABLE Device can italicize.
TC_UA_ABLE Device can underline.
TC_SO_ABLE Device can draw strikeouts.
TC_RA_ABLE Device can draw raster fonts.
TC_VA_ABLE Device can draw vector fonts.
TC_SCROLLBLT Device cannot scroll using a

bit-block transfer.

20.2.2 DC Info Demonstration Program
The program named DCI_DEMO, located in the DC Info Demo project folder on the
book's software package, shows how to obtain device context information. The menu
labeled "DC Info" contains commands for displaying the most used general device con-
text capabilities, the device driver version, as well as the specific line and curve draw-
ing capabilities. Figure 20-1 shows the various menu commands in the DCI_DEMO
program.

Figure 20-1 Screen Snapshots of the DC Info Program

© 2003 by CRC Press LLC

The Capabilities command in the DC Info menu displays the device context val-
ues for some of the most used elements returned by the GetDeviceCaps() function.
To simplify the programming, the data required during processing is stored in a
header file named DC_Caps.h, which can be found in the project directory. The
header file is formatted as follows:

// Header file for DC Info Demo project
// Contains array of structures

#define LINES ((int) (sizeof DCcaps / sizeof DCcaps [0]))
struct

{
int iIndex ;
char *szLabel ;
char *szDesc ;

}
DCcaps [] =

{
HORZSIZE, "HORZSIZE", "Width (in mm):",
VERTSIZE, "VERTSIZE", "Height (in mm):",
HORZRES, "HORZRES", "Width (in pixels):",
.
.
.
NUMRESERVED, "NUMRESERVED", "Reserved palette entries:",
COLORRES, "COLORRES", "Actual color resolution:"
} ;

Each entry in the array of structures contains three elements. The first one (int
iIndex) is the index name required in the GetDeviceCaps() call. The two other ele-
ments are strings used at display time. Processing takes place in a loop in which the
number of iterations is determined by the constant LINES, which is calculated by di-
viding the number of entries in the structure by the number of elements in each en-
try. This coding allows us to change the number of entries in the array without
having to change the loop.

// Obtain and display DC capabilities
for (i = 0 ; i < LINES ; i++) {
TextOut (hdc, cxChar, cyChar * (1 + i),
DCcaps[i].szLabel,
strlen (DCcaps[i].szLabel)) ;
TextOut (hdc, cxChar + 16 * cxCaps, cyChar * (1 + i),
DCcaps[i].szDesc,
strlen (DCcaps[i].szDesc)) ;
SetTextAlign (hdc, TA_RIGHT | TA_TOP) ;
TextOut (hdc, cxChar + 16 * cxCaps + 40 * cxChar,
cyChar * (1 + i), szBuffer,
wsprintf (szBuffer, "%5d",
GetDeviceCaps (hdc, DCcaps[i].iIndex))) ;
SetTextAlign (hdc, TA_LEFT | TA_TOP) ;

}
break;

In the previous code fragment, the first TextOut() call displays the szLabel vari-
able in the DCcaps structure. The second call to TextOut() displays the szDesc
string. The value in the device context is obtained with the GetDeviceCaps() func-
tion that is part of the third call to TextOut(). In this case the iIndex element in the

© 2003 by CRC Press LLC

array is used as the second parameter to the call. The wsprintf() function takes care
of converting and formatting the integer value returned by GetDeviceCaps() into a
displayable string.

Obtaining and displaying the driver version is much simpler. The coding is as fol-
lows:

// Get driver version
_itoa(GetDeviceCaps(hdc, DRIVERVERSION),
szVersion + 16, 10);
// Initialize rectangle structure

SetRect (&textRect, // address of structure
2 * cxChar, // x for start
cyChar, // y for start
cxClient, // x for end
cyClient); // y for end

DrawText(hdc, szVersion, -1, &textRect,
DT_LEFT | DT_WORDBREAK);
break;

In this case we use the _itoa() function to convert the value returned by
GetDeviceCaps() into a string. SetRect() and DrawText() are then used to format
and display the string.

Obtaining and displaying the curve drawing and line drawing capabilities of the
device context requires different processing. These values (see Table 20-1) are re-
turned as bit flags associated with an index variable. For example, we make the call
to GetDeviceCaps() using the index constant CURVECAPS as the second parameter.
The integer returned by the call contains all the bit flags that start with the prefix CC
(CurveCaps) in Figure 20-1. Code can then use a bitwise AND to test for one or more
of curve drawing capabilities. The following code fragment shows one possible ap-
proach for obtaining curve-drawing capabilities:

// Get curve drawing capabilities
curvecaps = GetDeviceCaps (hdc, CURVECAPS);
// Test individual bit flags and change default
// string if necessary
if (curvecaps & CC_NONE)
strncpy(szCurvCaps + 21, strNo, 3);
if (curvecaps & CC_CIRCLES)
strncpy(szCurvCaps + (26 + 21), strYes, 3);

.

.

.
if (curvecaps & CC_ROUNDRECT)
strncpy(szCurvCaps + (9 * 26 + 21), strYes, 3);
// Initialize rectangle structure

SetRect (&textRect, // address of
// structure

2 * cxChar, // x for start
cyChar, // y for start
cxClient, // x for end
cyClient); // y for end

DrawText(hdc, szCurvCaps, -1, &textRect,
DT_LEFT | DT_WORDBREAK);
break;

© 2003 by CRC Press LLC

Each of the if statements in the processing routine tests one of the bit flags re-
turned by GetDeviceCaps(). If the bit is set, then a text string containing the words
YES or NO is moved into the display string. When all the bits have been examined,
the message string named szCurvCaps is displayed in the conventional manner.

20.2.3 Color in the Device Context
Monochrome displays are a thing of the past. Virtually all Windows machines have a
color display and most of them can go up to 16.7 million displayable colors. In graphics
programming you will often have to investigate the color capabilities of a device as
well as select and manipulate colors.

In Chapter 1 we discussed the primary and the complementary color components
of white light. In Windows programming, colors are defined by the relative intensity
of the red, green, and blue primary components. Each color value is encoded in 8
bits, therefore, all three primary components require 24 bits. Since no C++ data type
is exactly 24 bits, however, the color value in Windows is stored in a type called
COLORREF, which contains 32 bits. The resulting encoding is said to be in RGB for-
mat, where the letters stand for the red, green, and blue components, respectively.
Figure 20-2 shows the bit structure of the COLORREF type.

Figure 20-2 COLORREF Bitmap

Windows provides a macro named RGB, defined in the windows.h header file; it
simplifies entering the color values into a data variable of type COLORREF. The
macro takes care of inserting the zeros in bits 24 to 31, and in positioning each color
in its corresponding field. As the name RGB indicates, the first value corresponds to
the red primary, the second one to the green, and the third one to the blue. For ex-
ample, to enter a middle-gray value, in which each of the primary colors is set to 128,
proceed as follows:

COLORREF midGray; // Variable of type COLORREF

midGray = RGB(128, 128, 128);

The COLORREF data type is also used to encode palette colors. Windows uses
the high-order 8 bits to determine if a color value is in explicit RGB, palette-index,
or palette-relative format. If the high-order byte is zero, then the color is an explicit
RGB value; if it is 1 then it is a palette-index value; if it is 2 then the color is a pal-
ette-relative value. Using the RGB macro when creating explicit-RGB values ensures
that the high-order byte is set correctly.

31....24 23....16 15.... 8 7 0

FORMAT
CODE RED

0 for explicit RGB format
1 for palette-index format
2 for palette-relative format

GREEN BLUE

© 2003 by CRC Press LLC

Obtaining color information from the device context requires careful consider-
ation. Note in Table 20-1that the index constant NUMCOLORS is valid only if the
color depth is no more than 8 bits per pixel. The device queried in Figure 20-1 has 16
bits per pixel; therefore, the NUMCOLORS value is set to –1. By the same token, the
COLORRES index constant is valid only if the device sets the RC_PALETTE bit. In
Figure 20-1 the value of this field is 0. The two most useful constants for obtaining
general color depth information are PLANES and BITPIXEL. PLANES returns the
number of color planes and BITPIXEL returns the number of bits used in encoding
each plane.

20.3 Graphic Objects and GDI Attributes
We should first mention that Windows graphics objects are not objects in the ob-
ject-oriented sense. Windows graphics objects are pens, brushes, bitmaps, palettes,
fonts, paths, and regions. Of these, pens and brushes are the objects most directly re-
lated to pixel and line drawing operations.

20.3.1 Pens

The pen graphics object determines a line's color, width, and style. Windows uses the
pen currently selected in the device context with any of the pen-based drawing func-
tions. Three stock pens are defined: BLACK_PEN, WHITE_PEN, and NULL_PEN. The
default pen is BLACK_PEN, which draws solid black lines. Applications refer to a pen
by means of its handle, which is stored in a variable of type HPEN. The
GetStockObject() function is used to obtain a handle to one of the stock pens. The pen
must be selected into the device context before it is used, as follows:

HPEN aPen; // handle to pen

.

.

.

aPen = GetStockObject (WHITE_PEN);

SelectObject (hdc, aPen);

The two functions can be combined in a single statement, as follows:

������������ �	
�� �����
�������� �������������

In this case, no pen handle variable is required. SelectObject() returns the handle
to the pen previously installed in the device context. This can be used to save the
original pen so that it can be restored later.

Drawing applications sometimes require one or more custom pens, which have a
particular style, width, and color. Custom pens can be created with the functions
CreatePen(), CreatePenIndirect(), and ExtCreatePen(). In the CreatePen() function
the pen's style, width, and color are passed as parameters. CreatePenIndirect() uses
a structure of type LOGPEN to hold the pen's sty le , width, and color.
ExtCreatePen(), introduced in Windows 95, is the more powerful of the three. The
iStyle parameter is a combination of pen type, styles, end cap style, and line join at-
tributes. The constants used in defining this parameter are listed in Table 20-2, on
the following page.

© 2003 by CRC Press LLC

Table 20-2

Values Defined for the ExtCreatePen() iStyle Parameter

PEN TYPE DESCRIPTION

PS_GEOMETRIC Pen is geometric.
PS_COSMETIC Pen is cosmetic. Same as those created with

CreatePen() and CreatePenIndirect(). Width
must be 1 pixel.

Pen Style

PS_ALTERNATE Windows NT: Pen sets every other pixel.
(Cosmetic pens only.)
Windows 95: Not supported.

PS_SOLID Pen is solid.
PS_DASH Pen is dashed.
PS_DOT Pen is dotted.
PS_DASHDOT Pen has alternating dashes and dots.
PS_DASHDOTDOT Pen has alternating dashes and double dots.
PS_NULL Pen is invisible.
PS_USERSTYLE Windows NT: Pen uses a styling array supplied by

the user.
Windows 95: Not supported.

PS_INSIDEFRAME Pen is solid. Any drawing function that takes a
bounding rectangle, the dimensions of the figure
are shrunk so that it fits entirely in the
bounding rectangle. Geometric pens only.

End Cap Style (only in stroked paths)

PS_ENDCAP_ROUND End caps are round.
PS_ENDCAP_SQUARE End caps are square.
PS_ENDCAP_FLAT End caps are flat.

Join Style (only in stroked paths)

PS_JOIN_BEVEL Joins are beveled.
PS_JOIN_MITER Joins are mitered when they are within the current

limit set by the SetMiterLimit() function. If it
exceeds this limit, the join is beveled.
SetMiterLimit() is discussed in Chapter 21.

PS_JOIN_ROUND Joins are round.

The standard form of the ExtCreatePen() function is as follows:

HPEN ExtCreatePen (iStyle, // pen style

iWidth, // pen width

&aBrush, // pointer to a LOGBRUSH

// structure (next section)

dwStyleCount,// length of next parameter

lpStyle); // dot-dash pattern array

The second parameter to ExtCreatePen() defines the pen's width. If the pen is a
geometric pen, then its width is specified in logical units. If it is a cosmetic pen then
the width must be set to 1.

© 2003 by CRC Press LLC

A geometric pen created with ExtCreatePen() has brush-like attributes. The third
parameter is a pointer to LOGBRUSH. The LOGBRUSH structure, described in the
following section, is defined as follows:

struct tagLOGBRUSH {
UINT lbStyle;
COLORREF lbColor;
LONG lbHatch;
} LOGBRUSH

If the pen is a cosmetic pen, then the lbStyle member must be BS_SOLID and the
lbColor member defines the pen's color. In this case the lbHatch member, which sets
a brush's hatch pattern, is ignored. If the pen is geometric, then all three structure
members are meaningful and must be used to specify the corresponding attributes.

The fourth parameter, dwStyleCount, determines the length of the fifth parame-
ter. The fifth parameter, lpStyle, is a pointer to an array of doubleword values. The
first value in the array is the length of the first dash of a user-defined pen style, the
second one is the length of the first space, and so on. If the pen style does not con-
tain the PS_USERSTYLE constant, then the fourth parameter must be zero, and the
fifth parameter must be NULL. Note that PS_USERSTYLE is supported in Windows
NT but not in Windows 95 or 98.

The end cap styles determine the appearance of the line ends. Three constants
are defined for round, square, and flat line ends. The end join style determines the
appearance of the connecting point of two lines. Both styles are available only for
geometric pens. Figure 20-3 shows the pen styles and the effects of the different end
caps and joins.

Figure 20-3 Pen Syles, End Caps, and Joins

PS_SOLID
PS_DASH
PS_DOT
PS_DASHDOT
PS_DASHDOTDOT
PS_INSIDEFRAME
PS_NULL

PS_SOLID

PS_INSIDEFRAME

PS_ENDCAP_ROUND

PS_JOIN_BEVEL

PS_ENDCAP_SQUARE

PS_JOIN_MITER

PS_ENDCAP_FLAT

PS_JOIN_ROUND

Pen Styles:

End Cap Styles:

Line Join Styles:

© 2003 by CRC Press LLC

Note in Figure 20-3 that the difference between square and flat caps is that the
square style extends the line by one-half its width. The white lines in the end cap style
insert are drawn with the white stock pen, to better show the style's effect. The
NULL_PEN style creates a pen that draws with transparent ink, therefore it leaves no
mark as it moves on the drawing surface. This style is occassionaly used in creating fig-
ures that are filled with a particular brush style but have no border.

20.3.2 Brushes

The brush object determines the attributes used in filling a solid figure. The outline of
these figures is determined by the brush selected in the device context. A brush has a
style, color, and hatch pattern. There are several stock brushes: WHITE_BRUSH,
LTGRAY_BRUSH, GRAY_BRUSH, DKGRAY_BRUSH, BLACK_BRUSH, and
NULL_BRUSH. All stock brushes are solid, that is, they fill the entire enclosed area of the
figure. The NULL_BRUSH is used to draw figures without filling the interior. If a solid fig-
ure is drawn with the NULL_PEN, then it is filled but has no outline.

Applications refer to a brush by its handle, which is stored in a variable of type
HBRUSH. The GetStockObject() function is used to obtain a handle to one of the stock
brushes. The brush must be selected into the device context before use, as follows:

HBRUSH aBrush; // handle to brush

.

.

.

aBrush = GetStockObject (WHITE_BRUSH);

SelectObject (hdc, aBrush);

As in the case of a pen, the two functions can be combined in a single statement, as
follows:

������������ �	
�� �����
�������� ���������������

In this case, no brush handle variable is required. SelectObject() returns the handle
to the brush previously installed in the device context. This can be used to save the
original brush so that it can later be restored.

A custom brush is created by means of the CreateBrushIndirect() function. The call
returns a handle to the brush, of type HBRUSH. The only parameter is a pointer to a
structure of type LOGBRUSH which holds the brush style, color, and hatch pattern. The
LOGBRUSH structure is also used by the ExtCreatePen() previously described. Table
20-3 lists the predefined constants used for members of the LOGBRUSH structure.

The foreground mix mode attribute of the device context, also called the drawing
mode, determines how Windows combines the pen or brush color with the display sur-
face when performing drawing operations. The mixing is a raster operation based on a
boolean function of two variables: the pen and the background. For this reason it is de-
scribed as a binary raster operation, or ROP2. All four boolean primitives are used in
setting the mix mode: AND, OR, NOT, and XOR. The function for setting the foreground
mix mode is SetROP2(). GetROP2() returns the current mix mode in the device con-
text. The general form of the SetROP2() function is as follows:

© 2003 by CRC Press LLC

Table 20-3

Constants in the LOGBRUSH Structure Members

BRUSH STYLE DESCRIPTION

BS_DIBPATTERN A pattern brush defined by a device-independent
bitmap. If lbStyle is BS_DIBPATTERN, the lbHatch
member contains a handle to a packed DIB.
Note: DIB stands for Device Independent Bitmap.
DIBs are discussed in Chapter 8.

BS_DIBPATTERNPT Same as BS_DIBPATTERN but the lbHatch member
contains a pointer to a packed DIB.

BS_HATCHED Hatched brush.
BS_HOLLOW Hollow brush.
BS_NULL Same as BS_HOLLOW.
BS_PATTERN Pattern brush defined by a memory bitmap.
BS_SOLID Solid brush.
Brush Color Description
DIB_PAL_COLORS The color table consists of an array of 16-bit

indices into the currently realized logical
palette.

DIB_RGB_COLORS The color table contains literal RGB values.

Hatch Style

HS_BDIAGONAL A 45-degree upward, left-to-right hatch.
HS_CROSS Horizontal and vertical cross-hatch.
HS_DIAGCROSS 45-degree crosshatch.
HS_FDIAGONAL A 45-degree downward, left-to-right hatch.
HS_HORIZONTAL Horizontal hatch.
HS_VERTICAL Vertical hatch.

int SetROP2(
HDC hdc, // 1
int fnDrawMode // 2

);

Figure 20-4 shows the brush hatch patterns.

Figure 20-4 Brush Hatch Patterns

HS_VERICAL

HS_HORIZONTAL

HS_BDIAGONAL

HS_FDIAGONAL

HS_CROSS

HS_DIAGCROSS

© 2003 by CRC Press LLC

20.3.3 Foreground Mix Mode
The first parameter is the handle to the device context and the second parameter is
one of 16 mix modes defined by Windows. The function returns the previous mix
mode, which can be used to restore the original condition. Table 20-4 lists the ROP2
mix modes. The center column shows how the pen (P) and the screen (S) pixels are
logically combined at draw time. The boolean operators correspond to the symbols
used in C.

Table 20-4

Mix Modes in SetROP2()

BOOLEAN
CONSTANT OPERATION DESCRIPTION

R2_BLACK 0 Pixel is always 0.
R2_COPYPEN P Pixel is the pen color. This is the

default mix mode.
R2_MASKNOTPEN ~P&S Pixel is a combination of the colors

common to both the screen and the
inverse of the pen.

R2_MASKPEN P&S Pixel is a combination of the colors
common to both the pen and the screen.

R2_MASKPENNOT P&~S Pixel is a combination of the colors
common to both the pen and the inverse
of the screen.

R2_MERGENOTPEN ~P|S Pixel is a combination of the screen
color and the inverse of the pen color.

R2_MERGEPEN P|S Pixel is a combination of the pen color
and the screen color.

R2_MERGEPENNOT P|~S Pixel is a combination of the pen color
and the inverse of the screen color.

R2_NOP S Pixel remains unchanged.
R2_NOT ~S Pixel is the inverse of the screen

color.
R2_NOTCOPYPEN ~P Pixel is the inverse of the pen color.
R2_NOTMASKPEN ~(P&S) Pixel is the inverse of the R2_MASKPEN

color.
R2_NOTMERGEPEN ~(P|S) Pixel is the inverse of the

R2_MERGEPEN color.
R2_NOTXORPEN ~(P^S) Pixel is the inverse of the R2_XORPEN

color.
R2_WHITE 1 Pixel is always 1.
R2_XORPEN P^S Pixel is a combination of the colors in

the pen and in the screen, but not in
both.

Legend:
~ = boolean NOT
| = boolean OR
& = boolean AND
^ = boolean XOR

20.3.4 Background Modes
Windows recognizes two background modes that determine how the gaps between
dots and dashes are filled when drawing discontinuous lines, as well as with text and

© 2003 by CRC Press LLC

hatched brushes. The background modes, named OPAQUE and TRANSPARENT, are
set in the device context by means of the SetBkMode() function. The function's gen-
eral form is as follows:

int SetBkMode(

HDC hdc, // 1

int iBkMode // 2

);

The first parameter is the handle to the device context, and the second one the
constants OPAQUE or TRANSPARENT. If the opaque mode is selected, the back-
ground is filled with the current screen background color. If the mode is
TRANSPARENT, then the background is left unchanged.

The background mode affects lines that result from a pen created with
CreatePen() or CreatePenIndirect(), but not by those created with ExtCreatePen().

20.3.5 Current Pen Position
Many GDI drawing functions start at a screen location known as the current pen posi-
tion, or the current position. The pen position is an attribute of the device context. The
initial position of the pen is at logical coordinates (0, 0). Two functions relate directly
to the current pen position: MoveToEx() and GetCurrent Position(). Some drawing
functions change the pen position as they execute. The MoveToEx() function is used
to set the current pen position. Its general form is as follows:

BOOL MoveToEx(

HDC hdc, // 1

int X, // 2

int Y, // 3

LPPOINT lpPoint // 4

);

The first parameter is the handle to the device context. The second and third pa-
rameters are the x- and y-coordinates of the new pen position, in logical units. The
fourth parameter is a pointer to a structure of type POINT that holds the x- and
y-coordinates of the previous current pen position. If this parameter is set to NULL
the old pen position is not returned. The function returns a boolean that is TRUE if
the function succeeds and FALSE if it fails.

The GetCurrentPositionEx() function can be used to obtain the current pen posi-
tion. Its general form is as follows:

BOOL MoveToEx(

HDC hdc, // 1

int X, // 2

int Y, // 3

LPPOINT lpPoint // 4

);

The second parameter is a pointer to a structure variable of type POINT that re-
ceives the coordinates of the current pen position. The function returns TRUE if it
succeeds and FALSE if it fails.

© 2003 by CRC Press LLC

Drawing functions whose names contain the word "To" use and change the cur-
rent pen position; these are LineTo(), PolylineTo(), and PolyBezierTo(). Windows is
not always consistent in this use of the word "To", since the functions AngleArc()
and PolyDraw() also use and update the current pen position.

20.3.6 Arc Direction
One start-point and one end-point on the circumference of a circle define two different
arcs: one drawn clockwise and one drawn counterclockwise. The exception is when
the start and end points coincide. Figure 20-5 shows this possible ambiguity.

Figure 20-5 The Arc Drawing Direction

In Figure 20-5 the solid line arc is drawn counterclockwise from point A to point
B, while the dotted line arc is drawn clockwise between these same points. The
SetArcDirection() function is used to resolve this problem. The function's general
form is as follows:

int SetArcDirection(

HDC hdc, // 1

int ArcDirection // 2

);

The second parameter is either the constant AD_CLOCKWISE, or the constant
AD_COUNTERCLOCKWISE. The function returns the previous arc drawing direc-
tion.

20.4 Pixels, Lines, and Curves
The lowest-level graphics primitives are to set a screen pixel to a particular attribute
and to read the attributes of a screen pixel. In theory, with functions to set and read a
pixel, all the other graphics operations can be developed in software. For example, a
line can be drawn by setting a series of adjacent pixels, a closed figure can be filled by
setting all the pixels within its boundaries, and so on. However, in actual programming
practice these simple primitives are not sufficient. In the first place, high-level lan-
guage code requires considerable overhead in performing the pixel set and read opera-
tions. To draw lines and figures by successively calling these functions would be

A

B

© 2003 by CRC Press LLC

prohibitively time consuming. On the other hand, there are cases in which the pro-
grammer must resort to pixel-by-pixel drawing since other higher-level functions are
not available.

There are 11 functions in the Windows API that can be used to draw lines. For one
of them, StrokePath(), we postpone the discussion until Chapter 7, since we must
first discuss paths in greater detail. Table 20-5 lists the remaining ten line-drawing
functions.

Table 20-5

Line-Drawing Functions

FUNCTION DRAWING OPERATION

LineTo() A straight line from current position up to
a point. Pen position is updated to line's end
point.

PolylineTo() One or more straight lines between the current
position and points in an array. Pen position is
used for the first line and updated to end point
of last line.

Polyline() A series of straight line segments between points
defined in an array.

PolyPolyLine() Multiple polylines.
ArcTo() An elliptical arc updating current pen position.
Arc() An elliptical arc without updating current pen

position.
AngleArc() A segment of arc starting at current pen position.
PolyBezier() One or more Bezier curves without updating the

current pen position.
PolyBezierTo() One or more Bezier curves updating the current

pen position.
PolyDraw() A set of lines and Bezier curves.
StrokePath() See Chapter 21.

20.4.1 Pixel Operations
Two Windows functions operate on single pixels: SetPixel() and GetPixel().
SetPixel() is used to set a pixel at any screen location to a particular color attribute.
GetPixel() reads the color attribute of a pixel at a given screen location. The general
form of SetPixel() is as follows:

COLORREF SetPixel(
HDC hdc, // 1
int X, // 2
int Y, // 3
COLORREF crColor // 4

);

The first parameter is the handle to the device context. The second and third pa-
rameters are the x- and y-coordinates of the pixel to set, in logical units. The fourth
parameter contains the pixel color in a COLORREF type structure. The function re-
turns the RGB color to which the pixel was set, which may not coincide with the one
requested in the call because of limitations of the video hardware. A faster version
of this function is SetPixelV(). It takes the same parameters but returns a boolean

© 2003 by CRC Press LLC

value that is TRUE if the operation succeeded and FALSE if it failed. In most cases
SetPixelV() is preferred over SetPixel() because of its better performance. The fol-
lowing code fragment shows how to draw a box of 100-by-100 pixels using the
SetPixelV() function:

int x, y, i, j; // control variables
COLORREF pixColor;
.
.
.
x = 120; // start x
y = 120; // start y

pixColor = RGB(0xff, 0x0, 0x0); // Red
// Draw a 100-by-100 pixel box
for (i = 0; i < 100; i++) {
for (j = 0; j < 100; j++) {
SetPixelV (hdc, x, y, pixColor);
x++;

}
x = 120;
y++;

}

20.4.2 Drawing with LineTo()
The simplest of all line-drawing functions is LineTo(). The function requires three pa-
rameters: the handle to the device context, and the coordinates of the end points of the
line. The line is drawn with the currently selected pen. The start point is the current
pen position; for this reason LineTo() is often preceded by MoveToEx() or another
drawing function that sets the current pen position. LineTo() returns TRUE if the func-
tion succeeds and FALSE if it fails, but most often the return value is not used by code.
If the LineTo() function succeeds, the current pen position is reset to the line's end
point; therefore, the function can be used to draw a series of connected line segments.

The following code fragment draws a rectangle using four lines:

HPEN bluePen4; // handle for a pen
int x, y, i, j; // local variables
.
.
.

// Create and select pen
bluePen4 = CreatePen (PS_SOLID, 4, RGB (0x00, 0x00, 0xff);
SelectObject (hdc, bluePen4);

// Set current pen position for start point
MoveToEx (hdc, 140, 140, NULL);

LineTo (hdc, 300, 140); // draw first segment
LineTo (hdc, 300, 200); // second segment
LineTo (hdc, 140, 300); // third segment
LineTo (hdc, 140, 140); // last segment

20.4.3 Drawing with PolylineTo()
The PolylineTo() function draws one or more straight lines between points contained
in an array of type POINT. The current pen position is used as a start point and is reset
to the location of the last point in the array. PolylineTo() provides an easier way of

© 2003 by CRC Press LLC

drawing several connected line segments, or an unfilled closed figure. The function
uses the current pen. Its general form is as follows:

BOOL PolylineTo(
HDC hdc, // 1
CONST POINT *lppt, // 2
DWORD cCount // 3

);

The second parameter is the address of an array of points that contains the x- and
y-coordinate pairs. The third parameter is the count of the number of points in the
array. The function returns TRUE if it succeeds and FALSE otherwise. The following
code fragment shows the drawing of a rectangle using the PolylineTo() function:

HPEN redPen2;
POINT pointsArray[4]; // array of four points
.
.
.

// Create a solid red pen, 2 pixels wide
redPen2 = CreatePen (PS_SOLID, 2, RGB(0xff, 0x00, 0x00));
SelectObject (hdc, redPen2);
// Fill array of points
pointsArray[0].x = 300; pointsArray[0].y = 160;
pointsArray[1].x = 300; pointsArray[1].y = 300;
pointsArray[2].x = 160; pointsArray[2].y = 300;
pointsArray[3].x = 160; pointsArray[3].y = 160;
// Set start point for first segment
MoveToEx (hdc, 160, 160, NULL);
// Draw polyline
PolylineTo (hdc, pointsArray, 4);

20.4.4 Drawing with Polyline()
The Polyline() function is similar to PolylineTo() except that it does not use or change
the current pen position. Therefore, you need one more entry in the array of points to
draw a figure with Polyline() since the initial position of the drawing pen cannot be
used as the starting point for the first line segment. The following code fragment
shows drawing a rectangle using the Polyline() function.

HPEN blackPen;
POINT pointsArray[4]; // array of four points
.
.
.

// Create a solid red pen, 2 pixels wide
blackPen = CreatePen (PS_DASH, 1, 0);
SelectObject (hdc, blackPen);
// Fill array of points
pointsArray[0].x = 160; pointsArray[0].y = 160;
pointsArray[1].x = 300; pointsArray[1].y = 160;
pointsArray[2].x = 300; pointsArray[2].y = 300;
pointsArray[3].x = 160; pointsArray[3].y = 300;
pointsArray[4].x = 160; pointsArray[4].y = 160;
// Draw polyline
Polyline (hdc, pointsArray, 5);

© 2003 by CRC Press LLC

20.4.5 Drawing with PolyPolyline()
As the function name implies, PolyPolyline() is used to draw several groups of lines or
"polylines." Since the points array contains sets of points for more than one polyline,
the function requires an array of values that holds the number of points for each
polyline. PolyPolyline(), like Polyline(), does not use or change the current pen posi-
tion. The function's general form is as follows:

BOOL PolyPolyline(

HDC hdc, // 1

CONST POINT *lppt, // 2

CONST DWORD *lpdwPolyPoints, // 3

DWORD cCount // 4

);

The second parameter is an array containing vertices of the various polylines.
The third parameter is an array that contains the number of vertices in each of the
polylines. The fourth parameter is the count of the number of elements in the third
parameter, which is the number of polylines to be drawn. The function returns
TRUE if it succeeds and FALSE otherwise. The following code fragment shows the
drawing of two polylines, each with five vertices, using the PolyPolyline() function.

POINT pointsArray[10]; // array of points

DWORD vertexArray[2]; // vertices per polyline

// Fill array of points for first polyline

pointsArray[0].x = 160; pointsArray[0].y = 160;

pointsArray[1].x = 300; pointsArray[1].y = 160;

pointsArray[2].x = 300; pointsArray[2].y = 300;

pointsArray[3].x = 160; pointsArray[3].y = 300;

pointsArray[4].x = 160; pointsArray[4].y = 160;

// Fill array of points for second polyline

pointsArray[5].x = 160; pointsArray[5].y = 230;

pointsArray[6].x = 230; pointsArray[6].y = 160;

pointsArray[7].x = 300; pointsArray[7].y = 230;

pointsArray[8].x = 230; pointsArray[8].y = 300;

pointsArray[9].x = 160; pointsArray[9].y = 230;

// Fill number of vertices in array

vertexArray[0] = 5;

vertexArray[1] = 5;

// Draw two polylines

PolyPolyline (hdc, pointsArray, vertexArray, 2);

Figure 20-6 shows the figures that result from executing the previous code sam-
ple. The second polyline is shown in dashed lines to visually distinguish it from the
first one. However, in an actual drawing there is no way of changing pens inside a
call to PolyPolyline().

20.4.6 Drawing with Arc()
The Arc() function draws an elliptical arc. It is also used to draw circles, since the cir-
cle is a special case of the ellipse. The function's general form is as follows:

© 2003 by CRC Press LLC

Figure 20-6 Coordinates of Two Polylines in the Sample Code

BOOL Arc(
HDC hdc, // 1
int nLeftRect, // 2
int nTopRect, // 3
int nRightRect, // 4
int nBottomRect, // 5
int nXStartArc, // 6
int nYStartArc, // 7
int nXEndArc, // 8
int nYEndArc // 9

);

The second and third parameters are the x- and y-coordinates of the upper-left
corner of a rectangle that contains the ellipse, while the fourth and fifth parameters
are the coordinates of its lower-right corner. By using a bounding rectangle to define
the ellipse, the Windows API avoids dealing with elliptical semi-axes. However,
whenever necessary, the bounding rectangle can be calculated from the semi-axes.
The sixth and seventh parameters define the coordinates of a point that sets the
start point of the elliptical arc. The last two parameters set the end points of the el-
liptical arc. The elliptical arc is always drawn in the counterclockwise direction.
The SetArcDirection() function has no effect in this case.

The coordinates of the start and end points of the elliptical arc need not coincide
with the arc itself. Windows draws an imaginary line from the center of the ellipse to
the start and end points. The point at which this line (or its prolongation) intersects
the elliptical arc is used as the start or end point. If the start and end points are the
same, then a complete ellipse is drawn. The following code fragment draws an ellip-
tical arc:

Arc (hdc,
150, 150, // upper-left of rectangle
350, 250, // lower-right
250, 260, // start point
200, 140; // end point

x = 160
y = 160

x = 300
y = 160

x = 300
y = 300

x = 160
y = 300

x = 300
y = 230

x = 230
y = 300

x = 160
y = 230

x = 230
y = 160

© 2003 by CRC Press LLC

Figure 20-7 shows the location of each of the points in the preceding call to the
Arc() function and the resulting ellipse.

Figure 20-7 Coordinates of an Elliptical Arc in Sample Code

20.4.7 Drawing with ArcTo()

ArcTo() is a version of the Arc() function that updates the current pen position to the
end point of the elliptical arc. This function requires Windows NT Version 3.1 or later. It
is not available in Windows 95 or 98. The function parameters are identical to those of
the Arc() function.

20.4.8 Drawing with AngleArc()

The AngleArc() function draws a straight line segment and an arc of a circle. The
straight line segment is from the current pen position to the arc's starting point. The arc
is defined by the circle's radius and two angles: the starting position, in degrees, relative
to the x-axis, and the angle sweep, also in degrees, relative to the starting position. The
arc is drawn in a counterclockwise direction. The function's general form is as follows:

BOOL AngleArc(

HDC hdc, // 1

int X, // 2

int Y, // 3

DWORD dwRadius, // 4

FLOAT eStartAngle, // 5

FLOAT eSweepAngle // 6

);

The second and third parameters are the coordinates of the center of the circle that
defines the arc, in logical units. The fourth parameter is the radius of the circle, also
in logical units. The fifth parameter is the start angle in degrees, relative to the x-axis.
The last parameter is the sweep angle, also in degrees, relative to the angle's starting
position. Figure 20-8 shows the various elements in the AngleArc() function.

x = 150
y = 150

x = 350
y = 250

bounding
rectangle

x = 200
y = 140

(start point)

(end point)

drawing
direction

x = 250
y = 260

© 2003 by CRC Press LLC

Figure 20-8 AngleArc() Function Elements

The AngleArc() function is not available in Windows 95 or 98; however, it can be
emulated in code. Microsoft Developers Network contains the following listing
which allows implementing the AngleArc() function in software:

BOOL AngleArc2(HDC hdc, int X, int Y, DWORD dwRadius,
float fStartDegrees, float fSweepDegrees) {
int iXStart, iYStart; // End point of starting radial line

int iXEnd, iYEnd; // End point of ending radial line
float fStartRadians; // Start angle in radians
float fEndRadians; // End angle in radians
BOOL bResult; // Function result

float fTwoPi = 2.0f * 3.141592f;
/* Get the starting and ending angle in radians */
if (fSweepDegrees > 0.0f) {
fStartRadians = ((fStartDegrees / 360.0f) * fTwoPi);
fEndRadians = (((fStartDegrees + fSweepDegrees) / 360.0f) *
fTwoPi);
} else {
fStartRadians = (((fStartDegrees + fSweepDegrees) / 360.0f) *
fTwoPi);
fEndRadians = ((fStartDegrees / 360.0f) * fTwoPi);

}

/* Calculate a point on the starting radial line via */
/* polar -> cartesian conversion */
iXStart = X + (int)((float)dwRadius * (float)cos(fStartRadians));
iYStart = Y - (int)((float)dwRadius * (float)sin(fStartRadians));

/* Calculate a point on the ending radial line via */
/* polar -> cartesian conversion */
iXEnd = X + (int)((float)dwRadius * (float)cos(fEndRadians));
iYEnd = Y - (int)((float)dwRadius * (float)sin(fEndRadians));

/* Draw a line to the starting point */
LineTo(hdc, iXStart, iYStart);

/* Draw the arc */
bResult = Arc(hdc, X - dwRadius, Y - dwRadius,
X + dwRadius, Y + dwRadius,
iXStart, iYStart,

circle center
and pen position

segment
and arc

radius

start angle

sweep angle

© 2003 by CRC Press LLC

iXEnd, iYEnd);

// Move to the ending point - Arc() wont do this and ArcTo()
// wont work on Win32s or Win16 */
MoveToEx(hdc, iXEnd, iYEnd, NULL);

return bResult;
}

Notice that the one documented difference between the preceding listing of
AngleArc2() and the GDI AngleArc() function is that if the value entered in the sixth
parameter exceeds 360 degrees, the software version will not sweep the angle multi-
ple times. In most cases this is not a problem.

The program named PXL_DEMO, in the Pixel and Line Demo project folder on the
book's software package, uses the AngleArc2() function to display a curve similar to
the one in Figure 20-8.

20.4.9 Drawing with PolyBezier()
In mechanical drafting, a spline is a flexible edge that is used to connect several points
on an irregular curve. Two French engineers, Pierre Bezier and Paul de Casteljau, al-
most simultaneously discovered a mathematical expression for a spline curve that can
be easily adapted to computer representations. This curve is known as the Bezier
spline or curve, since it was Bezier who first published his findings. The Bezier curve is
defined by its end points, called the nodes, and by one or more control points. The con-
trol points serve as magnets or attractors that "pull" the curve in their direction, but
never enough for the curve to intersect the control point. Figure 20-9 shows the ele-
ments of a simple Bezier curve.

Figure 20-9 The Bezier Spline

The Bezier curve in Figure 20-9 can be generated by a geometrical method that
consists of creating a series of progressively smaller line segments. The process,
sometimes called the divide and conquer method, starts by joining the half-way
points between the nodes and the attractor, thus creating a new set of nodes and a
new attractor. The process continues until a sufficiently accurate approximation of
the spline is reached. Figure 20-10 shows the progressive steps in creating a Bezier
spline by this method.

start node

Bezier curve

end node

control point
(attractor)

© 2003 by CRC Press LLC

Figure 20-10 Divide-and-Conquer Method of Creating a Bezier Curve

In Step 1of Figure 20-10, we see the start node S1, the end node E1, and the attrac-
tor A1. We first find a point midway between S1 and A1 and label it P1. Another
point midway between A1 and E1 is labeled P2. Points P1 and P2 are joined by a line
segmen, whose midpoint is labeled P3. In Step 2 we can see two new figures. The
first one has nodes at S2 and E2, and the attractor at A2. The second figure has
nodes at S3 and E3, and the attractor at A3. In Step 3 we have joined the midpoints
between the nodes and the attractors with a line segment, thus continuing the pro-
cess. The two new figures have their new respective nodes and attractors, so the
process can be again repeated. In Step 3 we can see how the resulting line segments
begin to approximate the Bezier curve in Figure 20-9.

The divide and conquer process makes evident the fundamental assumption of
the Bezier spline: the curve is in the same direction and tangent to straight lines
from the nodes to the attractors. A second assumption is that the curve never inter-
sects the attractors. The Bezier formulas are based on these assumptions.

The Bezier curve generated by the divide and conquer method is known as a qua-
dratic Bezier. In computer graphics the most useful Bezier is the cubic form. In the
cubic form the Bezier curve is defined by two nodes and two attractors. The devel-
opment of the cubic Bezier is almost identical to that of the quadratic. Figure 20-11
shows the elements of a cubic Bezier curve.

STEP 1:

STEP 2:

STEP 3:

S1

S2

S4

S5

A5

E5

A4

E4

E2

A2

A3

S3

E3

P3

P2

P1

A1

E1

© 2003 by CRC Press LLC

Figure 20-11 Elements of the Cubic Bezier

The PolyBezier() function, introduced in Windows 95, draws one or more cubic
Bezier curves, each one defined by its nodes and two attractors. The function can be
called to draw multiple Bezier curves. In this case the first curve requires four pa-
rameters, and all the other curves require three parameters. This is because the end
node of the preceding Bezier curve serves as the start node for the next one.
PolyBezier() does not change the current pen position. The Bezier curve is drawn
using the pen selected in the device context. The function's general form is as fol-
lows:

BOOL PolyBezier(

HDC hdc, // 1

CONST POINT *lppt, // 2

DWORD cPoints // 3

);

The first parameter is the handle to the device context. The second parameter is
the address of an array of points that contains the x- and y-coordinate pairs for the
nodes and control points. The third parameter is the count of the number of points
in the array. This value must be one more than three times the number of curves to
be drawn. For example, if the PolyBezier() function is called to draw four curves,
there must be 13 coordinate pairs in the array (1 + (3 * 4)). The function returns
TRUE if it succeeds and FALSE otherwise.

The Bezier data is stored in the array of points in a specific order. In the first
Bezier curve, the first and fourth entries are the nodes and the second and third are
attractors. Note that in the array the first and fourth entries are at offset 0 and 3; re-
spectively, and the second and third entries are at offset 1 and 2. If there are other
Bezier curves in the array, the first node is not explicit in the data, since it coincides
with the end node of the preceding curve. Therefore, after the first curve, the follow-
ing two entries are attractors, and the third entry is the end node. Table 20-6 shows
the sequence of nodes and control points for an array with multiple Bezier curves.

start node

first
control

point

second
control
point

end node

Bezier spline

© 2003 by CRC Press LLC

Table 20-6

Nodes and Control Points for the PolyBezier() Function

NUMBER OFFSET TYPE

1 0 Start node of curve 1
2 1 First attractor of curve 1
3 2 Second attractor of curve 1
4 3 End node of curve 1
5 4 First attractor of curve 2
6 5 Second attractor of curve 2
7 6 End node of curve 2
8 7 First attractor of curve 3
9 8 Second attractor of curve 3
10 9 End node of curve 3

The following code fragment shows the drawing of a Bezier curve using the
PolyBezier() function:

POINTS pointsArray[4]; // Array of x/y coordinates

.

.

.

// Fill array of points for Bezier spline

// Entries 0 and 3 are nodes

// Entries 1 and 2 are attractors

pointsArray[0].x = 150; pointsArray[0].y = 150;

pointsArray[1].x = 200; pointsArray[1].y = 75;

pointsArray[2].x = 280; pointsArray[2].y = 190;

pointsArray[3].x = 350; pointsArray[3].y = 150;

// Draw a Bezier spline

PolyBezier (hdc, pointsArray, 4);

The resulting Bezier curve is similar to the one in Figure 20-9.

20.4.10 Drawing with PolyBezierTo()

The PolyBezierTo() function is very similar to PolyBezier() except that the start node
for the first curve is the current pen position, and the current pen position is updated
to the end node of the last curve. The return value and parameters are the same for
both functions. In the case of PolyBezierTo() each curve is defined by three points:
two control points and the end node. Table 20-7, on the following page, shows the se-
quence of points stored in the points array for the PolyBezierTo() function.

20.4.11 Drawing with PolyDraw()

PolyDraw() is the most complex of the Windows line-drawing functions. It creates the
possibility of drawing a series of line segments and Bezier curves, which can be joint
or disjoint. PolyDraw() can be used in place of several calls to MoveTo(), LineTo(), and
PolyBezierTo() functions. All the figures are drawn with the pen currently selected in
the device context. The function's general form is as follows:

© 2003 by CRC Press LLC

BOOL PolyDraw(

HDC hdc, // 1

CONST POINT *lppt, // 2

CONST BYTE *lpbTypes, // 3

int cCount // 4

);

Table 20-7

Nodes and Control Points for the PolyBezierTo() Function

NUMBER OFFSET TYPE

1 0 First attractor of curve 1
2 1 Second attractor of curve 1
3 2 End node of curve 1
4 3 First attractor of curve 2
5 4 Second attractor of curve 2
6 5 End node of curve 2
7 6 First attractor of curve 3
8 7 Second attractor of curve 3
9 7 End node of curve 3

The second parameter is the address of an array of points that contains x- and
y-coordinate pairs. The third parameter is an array of type BYTE that contains iden-
tifiers that define the purpose of each of the points in the array. The fourth parame-
ter is the count of the number of points in the array of points. The function returns
TRUE if it succeeds and FALSE otherwise. Table 20-8 lists the constants used to rep-
resent the identifiers entered in the function's third parameter.

Table 20-8

Constants for PolyDraw() Point Specifiers

TYPE MEANING

PT_MOVETO This point starts a disjoint figure. The point
becomes the new current pen position.

PT_LINETO A line is to be drawn from the current position to
this point, which then becomes the new current
pen position.

PT_BEZIERTO This is a control point or end node for a Bezier
curve. This constant always occurs in sets of three.
The current position defines the start node for the
Bezier curve. The other two coordinates are control
points. The third entry is the end node.

PT_CLOSEFIGURE The figure is automatically closed after the
PT_LINETO or PT_BEZIERTO type for this point is
executed. A line is drawn from the end point to the
most recent PT_MOVETO or MoveTo() point.
The PT_CLOSEFIGURE constant is combined by
means of a bitwise OR operator with a PT_LINETO or
PT_BEZIERTO constant. This indicates that the
corresponding point is the last one in a figure and
that the figure is to be closed.

The PolyDraw() function is not available in Windows 95 or 98. Microsoft has pub-
lished the following code for implementing the function in software:

© 2003 by CRC Press LLC

//*****************************
// Win95 version of PolyDraw()
// as published by Microsoft)
//*****************************
BOOL PolyDraw95(HDC hdc, // handle of a device context

CONST LPPOINT lppt, // array of points
CONST LPBYTE lpbTypes, // line and curve identifiers
int cCount) // count of points

{
int i;
for (i=0; i<cCount; i++)
switch (lpbTypes[i]) {
case PT_MOVETO :
MoveToEx(hdc, lppt[i].x, lppt[i].y, NULL);
break;

case PT_LINETO | PT_CLOSEFIGURE:
case PT_LINETO :
LineTo(hdc, lppt[i].x, lppt[i].y);
break;

case PT_BEZIERTO | PT_CLOSEFIGURE:
case PT_BEZIERTO :
PolyBezierTo(hdc, &lppt[i], 3);
i+=2;
break;

}

return TRUE;
}

Notice that in the function PolyDraw95() the processing for closed and open fig-
ures takes place in the same intercepts. Therefore, there is no closing action imple-
m e n t e d . W h e n u s i n g t h i s s o f t w a r e i m p l e m e n t a t i o n , i n c l u d i n g t h e
PT_CLOSEFIGURE constant has no effect on the drawing. We have coded the fol-
lowing modification, named PolyDraw95A(), which closes open figures:

//*****************************
// Win95 version of PolyDraw()
// improved!
//*****************************
BOOL PolyDraw95A (HDC hdc, // handle to device context
CONST LPPOINT lppt, // array of points
CONST LPBYTE lpbTypes, // array of identifiers
int cCount) // count of points
{
int i;

static long lastPenx, lastPeny; // Storage for last pen position
POINT currentPoints[1];

// Store initial position of drawing pen
GetCurrentPositionEx (hdc, currentPoints);
lastPenx = currentPoints[0].x;
lastPeny = currentPoints[0].y;

for (i=0; i<cCount; i++)
switch (lpbTypes[i]) {
case PT_MOVETO :
MoveToEx(hdc, lppt[i].x, lppt[i].y, NULL);

© 2003 by CRC Press LLC

// Store position for closed figures
lastPenx = lppt[i].x;
lastPeny = lppt[i].y;
break;

case PT_LINETO | PT_CLOSEFIGURE:
LineTo(hdc, lppt[i].x, lppt[i].y);
LineTo(hdc, lastPenx, lastPeny);
break;

case PT_LINETO :
LineTo(hdc, lppt[i].x, lppt[i].y);
break;

case PT_BEZIERTO | PT_CLOSEFIGURE:
// Store start points of Bezier for closing
GetCurrentPositionEx (hdc, currentPoints);
lastPenx = currentPoints[0].x;
lastPeny = currentPoints[0].y;
// Draw curve
PolyBezierTo(hdc, &lppt[i], 3);
i+=2;
// Close with line
LineTo(hdc, lastPenx, lastPeny);
break;

case PT_BEZIERTO :
// Draw Bezier
PolyBezierTo(hdc, &lppt[i], 3);
i+=2;
break;

}

return TRUE;
}

The following code fragment displays several open and close figures using the
PolyDraw() function or its software version Polydraw95A():

POINT pointsArray[16]; // array of points
BYTE controlArray[16];
.
.
.

// In this example, pen is moved to start position externally
MoveToEx (hdc, 150, 50, NULL);

// Filling array of points for three lines
// offset: purpose:
// 0 end point of line 1
// 1 start of line 2
// 2 end of line 2
// 3 start of line 3
// 4 end of line 3

pointsArray[0].x = 250; pointsArray[0].y = 50;
pointsArray[1].x = 150; pointsArray[1].y = 70;
pointsArray[2].x = 250; pointsArray[2].y = 70;
pointsArray[3].x = 150; pointsArray[3].y = 90;
pointsArray[4].x = 250; pointsArray[4].y = 90;

© 2003 by CRC Press LLC

// Move to start node of Bezier curve
pointsArray[5].x = 150; pointsArray[5].y = 150;

// Filling array of points for first Bezier spline
pointsArray[6].x = 200; pointsArray[6].y = 75;
pointsArray[7].x = 280; pointsArray[7].y = 190;
pointsArray[8].x = 350; pointsArray[8].y = 150;

// Filling array for closed figure
pointsArray[9].x = 200; pointsArray[9].y = 200;
pointsArray[10].x = 300; pointsArray[10].y = 200;
pointsArray[11].x = 300; pointsArray[11].y = 300;
pointsArray[12].x = 200; pointsArray[12].y = 300;

// Filling array for second Bezier spline
pointsArray[13].x = 300; pointsArray[13].y = 90;
pointsArray[14].x = 350; pointsArray[14].y = 40;
pointsArray[15].x = 350; pointsArray[15].y = 40;
pointsArray[16].x = 400; pointsArray[16].y = 90;

// Filling control array
controlArray[0] = PT_LINETO;
controlArray[1] = PT_MOVETO;
controlArray[2] = PT_LINETO;
controlArray[3] = PT_MOVETO;
controlArray[4] = PT_LINETO;
controlArray[5] = PT_MOVETO;
controlArray[6] = PT_BEZIERTO;
controlArray[7] = PT_BEZIERTO;
controlArray[8] = PT_BEZIERTO;
controlArray[9] = PT_MOVETO;
controlArray[10] = PT_LINETO;
controlArray[11] = PT_LINETO;
controlArray[12] = PT_LINETO | PT_CLOSEFIGURE;
controlArray[13] = PT_MOVETO;
controlArray[14] = PT_BEZIERTO | PT_CLOSEFIGURE;
controlArray[15] = PT_BEZIERTO;
controlArray[16] = PT_BEZIERTO;
// Drawing lines and Bezier curves
PolyDraw95A (hdc, pointsArray, controlArray, 17);

Figure 20-12 is an approximation of the figures that result from the previous code
sample.

Figure 20-12 Approximate Result of the PolyDraw() Code Sample

© 2003 by CRC Press LLC

20.4.12 Pixel and Line Demonstration Program
The program named PXL_DEMO, located in the Pixel and Line Demo project folder of
the book's software package, is a demonstration of the drawing functions discussed
in this chapter. Pixel-level functions are used to display the point plot of a sine curve.
Also, the program contains a function named DrawDot(), which uses the SetPixelV()
function to draw a black screen dot by setting five adjacent pixels. The demo program
displays a pop-up menu, named Line Functions, which has menu commands for exer-
cising LineTo(), PolyLineTo(), PolyLine(), PolyPolyLine(), Arc(), AngleArc(),
PolyBezier(), and PolyDraw(). Code for implementing PolyDraw() and AngleArc() in
software is also included in the demo program.

© 2003 by CRC Press LLC

Chapter 21

Drawing Figures, Regions, and Paths

Topics:
• Setting the drawing attributes

• Drawing closed figures such as rectangles, ellipses, chords, pie sections,
and polygons

• Drawing operations on rectangles

• Creating, combining, filling, and painting regions

• Clipping operations

• Creating , deleting, and converting paths

• Path information and rendering

• Filled Figures Demo program

In this chapter we continue exploring the graphics functions in the Windows GDI, con-
centrating on geometrical figures that contain an interior region, in addition to a per-
imeter or outline. These are called solid or closed figures. The interior area allows
them to be filled with a given color, hatch pattern, or bitmap image. At the same time,
the perimeter of a closed figure can be rendered differently than the filled area. For ex-
ample, the circumference of a circle can be outlined with a 2-pixel-wide black pen, and
the circle's interior filled with 1-pixel-wide red lines, slanted at 45 degrees, and sepa-
rated from each other by 10 pixels.

21.1 Closed Figures
Closed figures allow several graphics manipulations. For instance, a solid figure can
be used to define the output area to which Windows can perform drawing operations.
This area, called the clipping region, allows you to produce unique and interesting
graphics effects, such as filling geometrical figures with text or pictures.

Some closed figures are geometrically simple: a rectangle, an ellipse, or a sym-
metrical polygon. More complex figures are created by combining simpler ones. A
region is an area composed of one or more rectangles, polygons, or ellipses. Regions

© 2003 by CRC Press LLC

are used to define irregular areas that can be filled, to clip output, or to establish an
area for mouse input.

Paths are relatively new graphics objects, since they were introduced with Win-
dows NT, and are also supported in Windows 95/98. A path is the route the drawing
instrument follows in creating a figure or set of figures. It is used to define the out-
line of a graphics object. After a path is created, you can draw its outline (called
stroking the path), fill its interior, or both. A path can also be used in clipping, or
converted into a region. Paths and regions add a powerful dimension to Windows
graphics.

21.1.1 Area of a Closed Figure
A closed figure has both a perimeter and an interior. The perimeter of a closed figure is
drawn using the current pen and the GDI line-related attributes discussed in Chapter
20. The interior is filled using the current brush, also partly discussed in Chapter 20.
There are several closed figures that can be drawn with the Windows GDI; among them
are ellipses, polygons, chords, pies, and rectangles. Later in this chapter we see that
the Windows names for some of these figures are not geometrically correct. Areas
bound by complex lines, such as irregular polygons, Bezier curves, and text charac-
ters, can also be filled.

Like lines and curves, closed figures have attributes that determine their charac-
teristics. Most of the attributes that relate to closed figures are described in Chapter
20. These include the mix mode, the background mode, the arc direction, the brush
pattern, the pen styles, as well as the brush, pen, and background colors. Two attrib-
utes that are specific to closed figures are the brush origin and the polygon filling
mode.

21.1.2 Brush Origin
Figure 20-4, in the preceding chapter, shows the various hatch patterns that can be
used with a brush. Windows locates the hatch pattern in reference to coordinates
(0,0). It is important to know that this origin is in device units, not in logical units. The
hatch pattern is a bitmap. In Windows 95/98, the bitmap is 8-by-8 pixels. In Windows
NT, it can have any size. The painting process consists of repeating the bitmap horizon-
tally and vertically until the area is filled.

In some cases the default origin of the bitmap produces undesirable results. This
usually happens when the alignment of a filled figure does not coincide with that of
the brush hatch pattern. Figure 21-1 shows two rectangles, one filled with an un-
aligned hatch pattern and the other one filled with an aligned hatch pattern.

The SetBrushOrgEx() function can be used to reposition the hatch bitmap in rela-
tion to the origin of the client area. The function's general form is as follows:

BOOL SetBrushOrgEx(
HDC hdc, // 1
int nXOrg, // 2
int nYOrg, // 3
LPPOINT lppt // 4

);

© 2003 by CRC Press LLC

Figure 21-1 Brush Hatch Patterns

The second parameter specifies the x-coordinate of the new brush origin. In Win-
dows 95/98, the range is 0 to 7. In Windows NT, the range cannot be greater than the
width of the bitmap. In either case, if the entered value exceeds the width of the
bitmap, it is adjusted by performing the modulus operation:

���� � ���� � ���	
� ��
��

The third parameter is the y-coordinate of the new brush origin. Its range and ad-
justments are the same as for the second parameter. The fourth parameter is a
pointer to a POINT structure that stores the origin of the brush previously selected
in the device context. If this information is not required, NULL can be entered in this
parameter. The function returns TRUE if the operation succeeds and FALSE other-
wise.

A call to SetBrushOrgEx() sets the origin of the next brush that an application se-
lects into the device context. Note that the first parameter of the SetBrushOrgEx()
function is the handle to the device context, and that the brush variable is nowhere
to be found in the parameter list. Therefore, the brush origin is associated with the
device context, not with a particular brush. The origin in the device context is as-
signed to the next brush created.

The following code fragment shows the display of two rectangles. The brush ori-
gin is changed for the second one. The Rectangle() function is described later in this
chapter.

static HBRUSH vertBrush1, vertBrush2;
LOGBRUSH brush1;
.
.
.
// Create a brush
brush1.lbStyle = BS_HATCHED;
brush1.lbColor = RGB(0x0, 0xff, 0x0);
brush1.lbHatch = HS_VERTICAL;
vertBrush1 = CreateBrushIndirect (&brush1);
SelectObject (hdc, (HGDIOBJ)(HBRUSH) vertBrush1);
// Draw a rectangle with this brush
Rectangle (hdc, 150, 150, 302, 300);

unaligned hatch pattern aligned hatch pattern

© 2003 by CRC Press LLC

// Create a new hatched brush with offset origin
brush1.lbStyle = BS_HATCHED;
brush1.lbColor = RGB(0x0, 0x0, 0x0);
brush1.lbHatch = HS_VERTICAL;
// Offset the new brush 6 pixels
SetBrushOrgEx (hdc, 5, 0, NULL);
vertBrush2 = CreateBrushIndirect (&brush1);
SelectObject (hdc, (HGDIOBJ)(HBRUSH) vertBrush2);
// Draw a rectangle with the new brush
Rectangle (hdc, 350, 150, 502, 300);

The results of executing this code are similar to the rectangles in Figure 21-1. The
GetBrushOrg() function can be used to retrieve the origin of the current brush.

Notice that Windows documentation recommends that to avoid brush misalign-
ment an application should call SetStretchBltMode() with the stretching mode set to
HALFTONE before calling SetBrushOrgEx().

21.1.3 Object Selection Macros
The Windows header file windowsx.h contains four macros that can be used in select-
ing a pen, brush, font, or bitmap. The advantage of using these macros is that the ob-
jects are automatically typecast correctly. The macros are named SelectPen(),
SelectBrush(), SelectFont(), and SelectBitmap(). They are all defined similarly. The
SelectBrush() macro is as follows:

#define SelectBrush (hdc, hbr) \
((HBRUSH) SelectObject ((hdc, (HGDIOBJ)(HBRUSH)(hbr)))

You can use these macros to easily produce correct code that is correct and more
portable. Programs that use the object selection macros must contain the statement:

������
� ����
�������

21.1.4 Polygon Fill Mode
The polygon fill mode attribute determines how overlapping areas of complex poly-
gons and regions are filled. The polygon fill mode is set with the SetPolyFillMode()
function. The function's general form is as follows:

int SetPolyFillMode(
HDC hdc, // 1
int iPolyFillMode // 2

);

The second parameter is one of two constants: ALTERNATE and WINDING.
ALTERNATE defines a mode that fills between odd-numbered and even-numbered
polygon sides, or in other words, those areas that can be reached from the outside of
the polygon by crossing an odd number of lines, excluding the vertices. This fill al-
gorithm is based on what is called the parity rule.

The WINDING mode is based on the nonzero winding rule. In the WINDING
mode, the direction in which the figure is drawn determines whether an area is to be
filled. A polygon line segment is drawn either in a clockwise or a counterclockwise
direction. The term winding relates to the clockwise and counterclockwise drawing

© 2003 by CRC Press LLC

of the polygon segments. An imaginary line, called a ray, is extended from an en-
closed area in the figure, to a point distant from the figure and outside of it. The ray
must be on a positive x-direction. Every time the ray crosses a clockwise winding, a
counter is incremented. The same counter is decremented whenever the line
crosses a counterclockwise winding. The winding counter is examined when the ray
reaches the outside of the figure. If the winding counter is nonzero, the area is filled.

In figures that have a single interior region the fill mode is not important. This is
not the case in figures that have enclosed areas. A typical case is a polygon in the
shape of a five-pointed star with an enclosed pentagon. In this case, the
ALTERNATE mode does not fill the interior pentagon, while the WINDING fill mode
does. In more complex figures the same rules apply, although they may not be imme-
diately evident. Figure 21-2 shows the results of the polygon fill modes in two differ-
ent figures. Recall that in the WINDING fill mode, the direction in which the line
segments are drawn is significant.

Figure 21-2 Effects of the Polygon Fill Modes

ALTERNATE polygon fill mode WINDING polygon fill mode

Application of nonzero winding rule
to polygon's interior areas

P1

P0

P2

P3

W = 21

W = 10

W = 13

W = 22

© 2003 by CRC Press LLC

In Figure 21-2 you can see the application of the nonzero winding rule to the inte-
rior areas of a complex polygon. For example, the ray from point P1 to the exterior
of the figure crosses two clockwise segments (windings). Therefore, it has a wind-
ing value of 2. Since the winding is nonzero, the area is filled. The same rule can be
applied to other points in the figure's interior, as shown in Figure 21-2.

Notice that some Windows documentation states that in the WINDING mode all
interior areas of a figure are filled. This oversimplification is not correct. If the inte-
rior segments of the polygon in Figure 21-2 were drawn in the opposite direction,
some areas would have zero winding and would not be filled. The program named
FIL_DEMO, located in the Filled Figure Demo project folder, in the book's software
package, contains the menu command Polygon (2), on the Draw Figures pop-up
menu, which displays a complex polygon that has an unfilled interior in the
WINDING mode.

You can retrieve the current polygon fill mode with the GetPolyFillMode() func-
tion. The only parameter to the call is the handle to the device context. The value re-
turned is either ALTERNATE or WINDING.

21.1.5 Creating Custom Brushes

In Chapter 20 we mentioned that a logical brush can be created with the
CreateBrushIndirect() function. CreateBrushIndirect() has the following general
form:

HBRUSH CreateBrushIndirect (

CONST LOGBRUSH* lplb // 1

);

The only parameter of the function is the address of a structure of type
LOGBRUSH. The structure members are divided into three groups: brush style,
brush color, and hatch style. The function returns the handle to the created brush.
Table 21-1 lists the members of the LOGBRUSH structure.

Once the brush is created, it can be selected into the device context by either call-
ing the SelectObject() function or the SelectBrush() macro discussed previously in
this chapter. In addition, you can create specific types of brushes more easily by us-
i n g t h e f u n c t i o n s C r e a t e S o l i d B r u s h () , C r e a t e H a t c h B r u s h () , o r
CreatePatternBrush(). CreateSolidBrush() is used to create a brush of a specific
color and no hatch pattern. The function's general form is as follows:

������ ���
������
����� ��!���"# �������$%&

The only parameter is a color value in the form of a COLORREF type structure.
The color value can be entered directly using the RGB macro. For example, the fol-
lowing code fragment creates a solid blue brush:

static HBRUSH solidBlueBrush;

.

.

.

solidBlueBrush = CreateSolidBrush (RGB (0x0, 0x0, 0xff));

© 2003 by CRC Press LLC

Table 21-1

LOGBRUSH Structure Members

BRUSH STYLE DESCRIPTION

BS_DIBPATTERN A pattern brush defined by a device-independent
bitmap. If lbStyle is BS_DIBPATTERN, the lbHatch
member contains a handle to a packed DIB.

BS_DIBPATTERNPT Same a BS_DIBPATTERN but the lbHatch member
contains a pointer to a packed DIB.

BS_HATCHED Hatched brush.
BS_HOLLOW Hollow brush.
BS_NULL Same as BS_HOLLOW.
BS_PATTERN Pattern brush defined by a memory bitmap.
BS_SOLID Solid brush.

BRUSH COLOR DESCRIPTION

DIB_PAL_COLORS The color table consists of an array of 16-bit
indices into the currently realized logical palette.

DIB_RGB_COLORS The color table contains literal RGB values.

HATCH STYLE DESCRIPTION

HS_BDIAGONAL A 45-degree upward, left-to-right hatch.
HS_CROSS Horizontal and vertical cross-hatch.
HS_DIAGCROSS 45-degree crosshatch.
HS_FDIAGONAL A 45-degree downward, left-to-right hatch.
HS_HORIZONTAL Horizontal hatch.
HS_VERTICAL Vertical hatch.

CreatehatchBrush() creates a logical brush with a hatch pattern and color. The
function's general form is as follows:

HBRUSH CreateHatchBrush(

int fnStyle, // 1

COLORREF clrref // 2

);

The first parameter is one of the hatch style identifiers listed in Figure 21-2. The
second parameter is a color value of COLORREF type. The function returns the han-
dle to the logical brush.

If an application requires a brush with a hatch pattern different from the ones pre-
defined in Windows, it can create a custom brush with its own bitmap. In Windows
95/98, the size of the bitmap cannot exceed 8-by-8 pixels, but there is no size restric-
tion in Windows NT. The function's general form is as follows:

HBRUSH CreatePatternBrush (

HBITMAP hbmp // 1

);

The function's only parameter is a handle to the bitmap that defines the brush.
The bitmap can be created with CreateBitmap(), CreateBitmapIndirect() or
CreateCompatibleBitmap() functions. These functions are described in Chapter 8.

© 2003 by CRC Press LLC

21.2 Drawing Closed Figures

There are seven Windows functions that draw closed figures, shown in Table 21-2.

Table 21-2

Windows Functions for Drawing Closed Figures

FUNCTION FIGURE

Rectangle() Rectangle with sharp corners
RoundRect() Rectangle with rounded corners
Ellipse() Ellipse or circle
Chord() Solid figure created by an arc on the

circumference of an ellipse connected by
a chord

Pie() Pie-shaped wedge created by joining the
end points of an arc on the perimeter of an
ellipse with the center of the arc

Polygon() Closed polygon
PolyPolygon() Series of closed polygons, possibly overlapping

All functions that draw closed figures use the pen currently selected in the device
context for the figure outline, and the current brush for filling the interior. All of the
line attributes discussed in Chapter 20 apply to the perimeter of solid figures. The
programmer has control of the width of the perimeter, its line style, and its color. By
selecting NULL_PEN you can draw a figure with no perimeter. The fill is determined
by the current brush. Windows approximates the color of the brush according to the
device capabilities.

This often requires manipulating dot sizes by a process called dithering. Dithering
is a technique that creates the illusion of colors or shades of gray by treating the tar-
geted areas as a dot pattern. The process takes advantage of the fact that the human
eye tends to blur small spots of different color by averaging them into a single color
or shade. For example, a pink color effect can be produced by mixing red and white
dots.

T h e b r u s h c a n b e a n y o n e o f t h e s t o c k b r u s h e s : W H I T E _ B R U S H ,
LTGRAY_BRUSH, GRAY_BRUSH, DKGRAY_BRUSH, BLACK_BRUSH, and
NULL_BRUSH. All stock brushes are solid. NULL_BRUSH is used to draw figures
without filling the interior. The GetStockObject() function is used to obtain a handle
to one of the stock brushes. Since stock brushes need not be stored locally, the most
common case is that the stock brush is retrieved and installed in the device context
at the time it is needed. SelectBrush() and GetStockObject() can be combined as fol-
lows:

����������� �
�' (������)��*��� +�,-".�����%%&

The creation and installation of custom brushes was discussed previously in this
chapter.

© 2003 by CRC Press LLC

21.2.1 Drawing with Rectangle()
The simplest solid-figure drawing function is Rectangle(). This function draws a rect-
angle using the current pen for the outline and fills it with the current brush. The func-
tion's general form is as follows:

BOOL Rectangle(
HDC hdc, // 1
int nLeftRect, // 2
int nTopRect, // 3
int nRightRect, // 4
int nBottomRect // 5
);

The second and third parameters are the coordinates of the upper-left corner of
the rectangle. The fourth and fifth parameters are the coordinates of the lower-right
corner. The function returns TRUE if it succeeds and FALSE if it fails. Figure 21-3
shows a rectangle drawn using this function.

Figure 21-3 Figure Definition in the Rectangle() Function

21.2.2 Drawing with RoundRect()
The RoundRect() function draws a rectangle with rounded corners. Like all the solid
figure drawing functions, it uses the current pen for the outline and fills the figure with
the current brush. The function's general form is as follows:

BOOL RoundRect(
HDC hdc, // 1
int nLeftRect, // 2
int nTopRect, // 3
int nRightRect, // 4
int nBottomRect, // 5
int nWidth, // 6
int nHeight // 7
);

The second and third parameters are the coordinates of the upper-left corner of
the bounding rectangle. The fourth and fifth parameters are the coordinates of the
lower-right corner. The sixth parameter is the width of the ellipse that is used for

x of upper-left
y of upper-left

x of lower-right
y of lower-right

© 2003 by CRC Press LLC

drawing the rounded corner arc. The seventh parameter is the height of this ellipse.
The function returns TRUE if it succeeds and FALSE if it fails. Figure 21-4 shows the
values that define a rounded-corner rectangle drawn using this function.

Figure 21-4 Definition Parameters for the RoundRect() Function

21.2.3 Drawing with Ellipse()

The Ellipse() function draws a solid ellipse. Ellipse() uses the current pen for the out-
line and fills the figure with the current brush. The function's general form is as fol-
lows:

BOOL Ellipse(

HDC hdc, // 1

int nLeftRect, // 2

int nTopRect, // 3

int nRightRect, // 4

int nBottomRect // 5

);

The second and third parameters are the coordinates of the upper-left corner of a
rectangle that binds the ellipse. The fourth and fifth parameters are the coordinates
of the lower-right corner of this rectangle. The function returns TRUE if it succeeds
and FALSE if it fails. Figure 21-5 shows an ellipse drawn using this function.

x of upper-left
y of upper-left

x of lower-right
y of lower-right

corner
rounding
ellipse

width

h
e
ig

h
t

© 2003 by CRC Press LLC

Figure 21-5 Figure Definition in the Ellipse() Function

21.2.4 Drawing with Chord()

Chord() draws a solid figure composed of an arc of an ellipse whose ends are con-
nected to each other by a straight line, called a secant. The Chord() function is related
to the Arc() function described in Chapter 20. The parameters that define the elliptical
arc are the same for the Arc() as for the Chord() function. The function's general form
is as follows:

BOOL Chord(

HDC hdc, // 1

int nLeftRect, // 2

int nTopRect, // 3

int nRightRect, // 4

int nBottomRect, // 5

int nXRadial1, // 6

int nYRadial1, // 7

int nXRadial2, // 8

int nYRadial2 // 9

);

The second and third parameters are the x- and y-coordinates of the upper-left
corner of a rectangle that contains the ellipse, while the fourth and fifth parameters
are the coordinates of its lower-right corner. The sixth and seventh parameters de-
fine the coordinates of a point that sets the start point of the secant. The last two pa-
rameters set the end points of the secant. The elliptical arc is always drawn in the
counterclockwise direction. The SetArcDirection() function has no effect in this
case.

The coordinates of the start and end points of the secant need not coincide with
the elliptical arc, since Windows prolongs the secant until it intersects the elliptical
arc. Figure 21-6, on the following page, shows the elements that define the figure.

x of upper-left
y of upper-left

bounding
rectangle

x of lower-right
y of lower-right

© 2003 by CRC Press LLC

Figure 21-6 Figure Definition in the Chord() Function

Notice that the name of the Chord() function does not coincide with its mathe-
matical connotation. Geometrically, a chord is the portion of a secant line that joins
two points on a curve, not a solid figure.

21.2.5 Drawing with Pie()
Pie() draws a solid figure composed of the arc of an ellipse whose ends are connected
to the center by straight lines. In Windows terminology the two straight lines are called
radials. The Pie() function is related to the Arc() function described in Chapter 20. The
parameters that define the elliptical arc are the same for the Arc() as for the Pie() func-
tions. It is also similar to the Chord() function previously described. The difference
between Chord() and Pie() is that in Chord() the line points are connected to each
other and in Pie() they are connected to the center of the ellipse. The function's gen-
eral form is as follows:

BOOL Pie(
HDC hdc, // 1
int nLeftRect, // 2
int nTopRect, // 3
int nRightRect, // 4
int nBottomRect, // 5
int nXRadial1, // 6
int nYRadial1, // 7
int nXRadial2, // 8
int nYRadial2 // 9
);

The second and third parameters are the x- and y-coordinates of the upper-left
corner of a rectangle that contains the ellipse, while the fourth and fifth parameters
are the coordinates of its lower-right corner. The sixth and seventh parameters de-
fine the coordinates of the end point of the start radial line. The last two parameters
set the coordinates of the end points of the end radial line. The elliptical arc is al-

bounding
rectangle

arc
drawing
direction

x of upper-left
y of upper-left

x of lower-right
y of lower-rightx of secant start

y of secant start

x of secant end
y of secant end

© 2003 by CRC Press LLC

ways drawn in the counterclockwise direction. The SetArcDirection() function has
no effect in this case.

The coordinates of the start and end points of the radials need not coincide with
the elliptical arc, since Windows prolongs these lines until they intersect the ellipti-
cal arc. Figure 21-7 shows the elements that define the figure.

Figure 21-7 Figure Definition in the Arc() Function

21.2.6 Drawing with Polygon()
The Polygon() function is similar to the Polyline() function described in Chapter 20.
The main difference between a polygon and a polyline is that the polygon is closed au-
tomatically by drawing a straight line from the last vertex to the first one. The polygon
is drawn with the current pen and filled with the current brush. The inside of the poly-
gon is filled according to the current polygon fill mode, which can be ALTERNATE or
WINDING. Polygon fill modes were discussed in detail earlier in this chapter. The
function's general form is as follows:

BOOL Polygon(
HDC hdc, // 1
CONST POINT *lpPoints, // 2
int nCount // 3
);

The second parameter is the address of an array of points that contains the x- and
y-coordinate pairs of the polygon vertices. The third parameter is the count of the
number of vertices in the array. The function returns TRUE if it succeeds and FALSE
otherwise.

When drawing the lines that define a polygon you can repeat the same segment. It
is not necessary to avoid going over an existing line. When the WINDING fill mode is
selected, however, the direction of each edge determines the fill action. The follow-

bounding
rectangle

arc
drawing
direction

x of upper-left
y of upper-left

x of lower-right
y of lower-rightx of radial start line

y of radial start line

x of radial end line
y of radial end line

© 2003 by CRC Press LLC

ing code fragment shows the drawing of a complex polygon that is defined in an ar-
ray of structures of type POINT.

// Arrays of POINT structures for polygon vertices
POINT polyPoints1[] = {

{ 100, 100 }, // 1
{ 150, 100 }, // 2
{ 150, 150 }, // 3
{ 300, 150 }, // 4
{ 300, 300 }, // 5
{ 150, 300 }, // 6
{ 150, 150 }, // 7
{ 200, 150 }, // 8
{ 200, 200 }, // 9
{ 250, 200 }, // 10
{ 250, 250 }, // 11
{ 200, 250 }, // 12
{ 200, 200 }, // 13
{ 150, 200 }, // 14
{ 150, 150 }, // 15
{ 100, 150 } // 16

} ;
.
.
.
// Draw the polygon using array data
SetPolyFillMode (hdc, ALTERNATE);
Polygon (hdc, polyPoints1, 17);

Figure 21-8 shows the figure that results from this code when the ALTERNATE fill
mode is active. The polygon vertices are numbered and labeled.

Figure 21-8 Figure Produced by the Polygon Program

1-(100,100)

2-(150,100)

3-(150,150)

4-(300,150)

16-(100,150)

7-(150,150)

15-(150,150)

9-(200,200)

8-(200,150)

6-(150,300)

5-(300,300)

12-(200,250)

13-(200,200)

14-(150,200)

10-(250,200)

11-(250,250)

© 2003 by CRC Press LLC

21.2.7 Drawing with PolyPolygon()
As the function name implies, PolyPolygon() is used to draw several closed polygons.
The outlines of all the polygons are drawn with the current pen and the interiors are
filled with the current brush and according to the selected fill mode. The polygons can
overlap. Unlike the Polygon() function, the figures drawn with PolyPolygon() are not
automatically closed. The PolyPolygon() function is similar to the PolyPolyline()
function described in Chapter 20. Like the PolyPolyline() function, PolyPolygon() re-
quires an array of values that holds the number of points for each polygon. The func-
tion's general form is as follows:

BOOL PolyPolygon(
HDC hdc, // 1
CONST POINT *lpPoints, // 2
CONST INT *lpPolyCounts, // 3
int nCount // 4
);

The second parameter is an array containing the vertices of the various polygons.
The third parameter is an array that contains the number of vertices in each of the
polygons. The fourth parameter is the count of the number of elements in the third
parameter, which is also the number of polygons to be drawn. The function returns
TRUE if it succeeds and FALSE otherwise. The following code fragment shows the
drawing of four polygons, each one with four vertices, using the PolyPolygon() func-
tion.

// Arrays of POINT structures for holding the vertices
// of all four polygons
POINT polyPoly1[] = {

{ 150, 150 }, // 1 |
{ 300, 150 }, // 2 |
{ 300, 300 }, // 3 |-- first polygon
{ 150, 300 }, // 4 |
{ 150, 150 }, // 5 |

{ 200, 200 }, // 6 |
{ 250, 200 }, // 7 |
{ 250, 250 }, // 8 |-- second polygon
{ 200, 250 }, // 9 |
{ 200, 200 }, // 10 |

{ 150, 150 }, // 11 |
{ 200, 150 }, // 12 |
{ 200, 200 }, // 13 |-- third polygon
{ 150, 200 }, // 14 |
{ 150, 150 }, // 15 |

{ 100, 100 }, // 11 |
{ 150, 100 }, // 12 |
{ 150, 150 }, // 13 |-- fourth polygon
{ 100, 150 }, // 14 |
{ 100, 100 }, // 15 |

} ;

// Array holding the number of segments in each
// polygon
int vertexArray[] = {

© 2003 by CRC Press LLC

{ 5 },
{ 5 },
{ 5 },
{ 5 }

};
.
.
.
// Draw the polygon using array data
SetPolyFillMode (hdc, ALTERNATE);
PolyPolygon (hdc, polyPoly1, vertexArray, 4);

The resulting polygon is identical to the one in Figure 21-8.

21.3 Operations on Rectangles
Rectangular areas are often used in Windows programming. Child windows are usu-
ally in the form of a rectangle, as are message and input boxes as well as many other
graphics components. For this reason, the Windows API includes several functions
that operate on rectangles. These are listed in Table 21-3.

Table 21-3

Windows Functions Related to Rectangular Areas

FUNCTION FIGURE

FillRect() Fills the interior of a rectangle using a
brush defined by its handle

FrameRect() Draws a frame around a rectangle
InvertRect() Inverts the pixels in a rectangular area
DrawFocusRect() Draws rectangle with special dotted pen to

indicate that the object has focus

One common characteristic of all the rectangular functions is that the rectangle
coordinates are stored in a structure of type RECT. The use of a RECT structure is a
more convenient way of defining a rectangular area than by passing coordinates as
function parameters. It allows the application to easily change the location of a rect-
angle,and to define a rectangular area without hard-coding the values, thus making
the code more flexible. The RECT structure is as follows:

typdef struct _RECT {
LONG left; // x coordinate of upper-left corner
LONG top; // y of upper-left corner
LONG right; // x coordinate of bottom-right corner
LONG bottom; // y of bottom-right

} RECT;

21.3.1 Drawing with FillRect()
The FillRect() function fills the interior of a rectangular area, whose coordinates are
defined in a RECT structure. The function uses a brush specified by its handle. The
filled area includes the upper-left corner of the rectangle but excludes the bot-
tom-right corner. The function's general form is as follows:

int FillRect(
HDC hDC, // 1
CONST RECT *lprc, // 2

© 2003 by CRC Press LLC

HBRUSH hbr // 3

);

The second parameter is a pointer to a structure of type RECT that contains the
rectangle's coordinates. The third parameter is the handle to a brush or a system
color. If a handle to a brush, it must have been obtained with CreateSolidBrush(),
CreatePatternBrush(), or CreateHatchBrush() functions described previously. Addi-
t ional ly, you may use a stock brush and obtain its handle by means of
GetStockObject(). The function returns TRUE if it succeeds and FALSE if it fails. Ta-
ble 21-4 lists the constants that are used to identify the system colors in Windows.

Table 21-4

Windows System Colors

VALUE MEANING

COLOR_3DDKSHADOW Dark shadow display elements
COLOR_3DFACE,
COLOR_BTNFACE Face color for display elements
COLOR_3DHILIGHT,
COLOR_3DHIGHLIGHT,
COLOR_BTNHILIGHT,
COLOR_BTNHIGHLIGHT Highlight color for edges facing the light

source
COLOR_3DLIGHT Light color for edges facing the light

source
COLOR_3DSHADOW,
COLOR_BTNSHADOW Shadow color for edges facing away from

the light source
COLOR_ACTIVEBORDER Active window border
COLOR_ACTIVECAPTION Active window caption
COLOR_APPWORKSPACE Background color of multiple document

Interface. (MDI) applications
COLOR_BACKGROUND,
COLOR_DESKTOP Desktop color
COLOR_BTNTEXT Text on push buttons
COLOR_CAPTIONTEXT Text in caption, size box, and scroll bar

Arrow box
COLOR_GRAYTEXT Grayed (disabled) text Set to 0 if the

Current display driver does not support a
solid gray color

COLOR_HIGHLIGHT Item(s) selected in a control
COLOR_HIGHLIGHTTEXT Text of item(s) selected in a control
COLOR_INACTIVEBORDER Inactive window border
COLOR_INACTIVECAPTION Inactive window caption
COLOR_INACTIVECAPTIONTEXT Color of text in an inactive caption
COLOR_INFOBK Background color for ToolTip controls
COLOR_INFOTEXT Text color for ToolTip controls
COLOR_MENU Menu background
COLOR_MENUTEXT Text in menus
COLOR_SCROLLBAR Scroll bar gray area
COLOR_WINDOW Window background
COLOR_WINDOWFRAME Window frame
COLOR_WINDOWTEXT Text in windows

© 2003 by CRC Press LLC

21.3.2 Drawing with FrameRect()
The FrameRect() function draws border around a rectangular area, whose coordinates are
defined in a RECT structure. The width and height of this border are one logical unit. The
border is drawn with a brush, not with a pen. The brush is specified by its handle. The func-
tion's general form is as follows:

int FrameRect(
HDC hDC, // 1
CONST RECT *lprc, // 2
HBRUSH hbr // 3
);

The second parameter is a pointer to a structure of type RECT that contains the coor-
dinates. The third parameter is the handle to a brush, which must have been obtained
with CreateSolidBrush(), CreatePatternBrush(), or CreateHatchBrush() functions de-
scribed previously. Additionally, you may use a stock brush and obtain its handle by
means of GetStockObject(). The function returns TRUE if it succeeds and FALSE if it
fails.

Because the borders of the rectangle are drawn with a brush, rather than with a pen,
the function is used to produce figures that can not be obtained by other means. For ex-
ample, if you select a brush with the vertical hatch pattern HS_VERTICAL, the resulting
rectangle has dotted lines for the upper and lower segments since this is the brush pat-
tern. The vertical segments of the rectangle are displayed as solid lines only when the
rectangle's side coincides with the brush's bitmap pattern. Another characteristic of the
FrameRect() function is that dithered colors can be used to draw the rectangle's border.

21.3.3 Drawing with DrawFocusRect()
The DrawFocusRect() function draws a rectangle of dotted lines. The rectangle's interior is
not filled. The function's name relates to its intention, not to its operation, since the drawn
rectangle is not given the keyboard focus automatically. The DrawFocusRect() function
uses neither a pen nor a brush to draw the perimeter. The dotted lines used for the rectangle
are one pixel wide, one pixel high, and are separated by one pixel. The function's general
form is as follows:

BOOL DrawFocusRect(
HDC hDC, // 1
CONST RECT *lprc // 2
);

The second parameter is a pointer to a structure of type RECT that contains the coor-
dinates. The function returns TRUE if it succeeds and FALSE if it fails. Figure 21-9 shows
a rectangle drawn with the DrawFocusRect() function.

There are several unique features of the DrawFocusRect() function. The most impor-
tant feature is that the rectangle is displayed by means of an XOR operation on the back-
ground pixels. This ensures that it is visible on most backgrounds. Also, that the
rectangle can be erased by calling the function a second time with the same parameters.
This is a powerful feature of this function since an application can call DrawFocusRect()
to draw a rectangle around an object or background, and then erase the rectangle and re-
store the display without having to preserve the overdrawn area.

© 2003 by CRC Press LLC

Figure 21-9 Rectangle Drawn with DrawFocusRect()

The area that contains a rectangle drawn with DrawFocusRect() cannot be
scrolled. In order to scroll this area you can call DrawFocusRect() a second time to
erase the rectangle, scroll the display, then call the function again to redraw the fo-
cus rectangle.

21.3.4 Auxiliary Operations on Rectangles

Windows provides several auxiliary functions designed to facilitate manipulating
structures of type RECT. Although these functions have no unique functionality, they
do simplify the coding. Table 21-5 lists these auxiliary functions.

Table 21-5

Rectangle-Related Functions

FUNCTION FIGURE

SetRect() Fills a RECT structure variable with
coordinates

CopyRect() Copies the data in a RECT structure variable to
another one

SetEmptyRect() Fills a RECT structure variable with zeros thus
creating an empty rectangle

OffsetRect() Translates a rectangle along the x- and y-axes
InflateRect() Increases or decreases the width and height of a

rectangle
IntersectRect() Creates a rectangle that is the intersection of

two other rectangles
UnionRect() Creates a rectangle that is the union of two other

rectangles
SubratctRect() Creates a rectangle that is the difference between

two other rectangles
IsRectEmpty() Determines if a rectangle is empty
PtInRect() Determines if a point is located within the

perimeter of a rectangle
EqualRect() Determines if two rectangles are equal

The function SetRect() is used to set the coordinates in a RECT structure. It is
equivalent to entering these values into the structure member variables. The func-
tion's general form is as follows:

© 2003 by CRC Press LLC

BOOL SetRect(
LPRECT lprc, // 1
int xLeft, // 2
int yTop, // 3
int xRight, // 4
int yBottom // 5
);

The first parameter is a pointer to the structure variable that references the rect-
angle to be set. The second and third parameters are the x and y-coordinates of the
upper-left corner. The fourth and fifth parameters are the coordinates of the
lower-right corner.

The CopyRect() function is used to copy the parameters from one rectangle struc-
ture variable to another one. The function's parameters are the addresses of the des-
tination and source structures. Its general form is as follows:

BOOL CopyRect(
LPRECT lprcDst, // 1
CONST RECT *lprcSrc // 2
);

The first parameter is a pointer to a structure of type RECT that receives the cop-
ied coordinates. The second parameter is a pointer to the structure that holds the
source coordinates.

The function SetRectEmpty() takes as a parameter the address of a structure
variable of type RECT and sets all its values to zero. The result is an empty rectangle
that does not show on the screen. Its general form is as follows:

���! ���"	��/���� !0�"�- ����%&

The function's only parameter is the address of the RECT structure that is to be
cleared.

Notice that there is a difference between an empty rectangle and a NULL rectan-
gle. An empty rectangle is one with no area, that is, one in which the coordinate of
the right side is less than or equal to that of the left side, or the coordinate of the bot-
tom side is less than or equal to that of the top side. A NULL rectangle is one in
which all the coordinates are zero. The Foundation Class Library contains different
member functions for detecting an empty and a NULL rectangle. The Windows API,
however, has no function for detecting a NULL rectangle.

OffsetRect() translates a rectangle along both axes. The function's general form
is as follows:

BOOL OffsetRect(
LPRECT lprc, // 1
int dx, // 2
int dy // 3
);

The first parameter is a pointer to a structure variable of type RECT that contains
the parameters of the rectangle to be moved. The second parameter is the amount to
move the rectangle along the x-axis. The third parameter is the amount to move the

© 2003 by CRC Press LLC

rectangle along the y-axis. Positive values indicate movement to the right or down.
Negative values indicate movement to the left or up.

In reality, the OffsetRect() function does not move the rectangle, but simply
changes the values in the RECT structure variable referenced in the call. Another
call to a rectangle display function is necessary in order to show the translated rect-
angle on the screen. Figure 21-10 shows the effect of OffsetRect().

Figure 21-10 Effect of the OffsetRect() Function

In Figure 21-10, the light-gray rectangle shows the original figure. The
OffsetRect() function was applied to the data in the figure's RECT structure vari-
able, adding 50 pixels along the x-axis and subtracting 50 pixels along the y-axis.
The resulting rectangle is shown with a dark-gray fill.

InflateRect() serves to increase or decrease the size of a rectangle. The function's
general form is as follows:

BOOL InflateRect(

LPRECT lprc, // 1

int dx, // 2

int dy // 3

);

The first parameter is a pointer to a structure variable of type RECT that contains
the rectangle to be resized. The second parameter is the amount to add or subtract
from the rectangle's width. The third parameter is the amount to add or subtract
from the rectangle's height. In both cases, positive values indicate an increase of the
dimension and negative values a decrease. The InflateRect() function does not
change the displayed rectangle, but modifies the values in the RECT structure vari-
able referenced in the call. Another call to a rectangle display function is necessary
in order to show the modified rectangle on the screen. Figure 21-11, on the following
page, shows the effect of the InflateRect() function.

© 2003 by CRC Press LLC

Figure 21-11 Effect of the InflateRect() Function

In Figure 21-11, the light-gray rectangle shows the original 150-by-150 pixels fig-
ure. The InflateRect() function was applied to increase the width by 100 pixels and
decrease the height by 75 pixels. The results are shown in the dark-gray rectangle.

The IntersectRect() function applies a logical AND operation on two rectangles
to create a new rectangle that represents the intersection of the two figures. If there
are no common points in the source rectangles, then an empty rectangle is pro-
duced. The function's general form is as follows:

BOOL IntersectRect (LPRECT, CONST LPRECT, CONST LPRECT);
------ ------------ ------------

| | |
1 2 3

The first parameter is the address of a RECT structure variable where the inter-
section coordinates are placed. The second parameter is a pointer to a RECT struc-
ture variable that holds the coordinates of the first rectangle. The third parameter is
a pointer to a RECT structure variable with the coordinates of the second rectangle.
Figure 21-12 shows the effect of the IntersectRect() function.

Figure 21-12 Effect of the IntersectRect() Function

© 2003 by CRC Press LLC

The UnionRect() function applies a logical OR operation on two rectangles to cre-
ate a new rectangle that represents the union of the two figures. If there are no com-
mon points in the source rectangles, then an empty rectangle is produced. The
resulting image is the smallest rectangle that contains both sources. The function's
general form is as follows:

BOOL UnionRect(
LPRECT lprcDst, // 1
CONST RECT *lprcSrc1, // 2
CONST RECT *lprcSrc2 // 3
);

The first parameter is the address of a RECT structure variable where the union
rectangle coordinates are placed. The second parameter is a pointer to a RECT
structure variable that holds the coordinates of the first rectangle, and the third pa-
rameter is a pointer to a RECT structure variable with the coordinates of the second
rectangle. Figure 21-13 shows the effect of the UnionRect() function.

Figure 21-13 Effect of the UnionRect() Function

The SubtractRect() function creates a new rectangle by subtracting the coordi-
nates of two source rectangles. The function's general form is as follows:

BOOL SubtractRect(

LPRECT lprcDst, // 1

CONST RECT *lprcSrc1, // 2

CONST RECT *lprcSrc2 // 3

);

The first parameter is the address of a RECT structure variable where the result-
ing coordinates are placed. The second parameter is a pointer to a RECT structure
variable that holds the coordinates of the first source rectangle. It is from this rect-
angle that the coordinates of the second source rectangle are subtracted. The third

S1

S2

Union of S1 and S2

© 2003 by CRC Press LLC

parameter is a pointer to a RECT structure variable with the coordinates of the sec-
ond source rectangle. The coordinates of this rectangle are subtracted from the
ones of the first source rectangle.

The result of the operation must be a rectangle, not a polygon or any other
non-rectangular surface. This imposes the restriction that the rectangles must com-
pletely overlap in either the vertical or the horizontal direction. If not, the coordi-
nates of the resulting rectangle are the same as those of the first source rectangle.
Figure 21-14 shows three possible cases of rectangle subtraction.

Figure 21-14 Cases in the SubtractRect() Function

The IsRectEmpty() function determines whether a rectangle is empty. An empty
rectangle is one with no area, that is, one in which the width and/or the height are
zero or negative. The function's general form is as follows:

BOOL IsRectEmpty(

CONST RECT *lprc // 1

);

Source Rectangles

S1

S1

S1

S2

S2

S2

Difference Rectangle

S1 S2 =

S1 S2 =

S1 S2 =

© 2003 by CRC Press LLC

The only parameter is the address of the RECT structure variable that contains
the rectangle's parameters. The function returns TRUE if the rectangle is empty and
FALSE otherwise.

The PtInRect() function determines whether a point lies within a rectangle. A
point that lies on the rectangle's top or left side is considered to be within the rect-
angle, but a point within the right or bottom side is not. The function's general form
is as follows:

BOOL PtInRect(

CONST RECT *lprc, // 1

POINT pt // 2

);

The first parameter is the address of a RECT structure variable that contains the
rectangle's dimensions. The second parameter is a structure of type POINT which
holds the coordinates of the point being tested. The function returns TRUE if the
point is within the rectangle and FALSE otherwise.

The EqualRect() function determines whether two rectangles are equal. For two
rectangles to be equal all their coordinates must be identical. The function's general
form is as follows:

BOOL EqualRect(

CONST RECT *lprc1, // 1

CONST RECT *lprc2 // 2

);

The first parameter points to a RECT structure variable that contains the parame-
ters of one rectangle. The second parameter points to a RECT structure variable
with the parameters of the second rectangle. The function returns TRUE if both
rectangles are equal and FALSE otherwise.

21.3.5 Updating the Rectangle() Function

All of the rectangle operations described in the preceding section receive the coordi-
nates in a structure of type RECT. The basic rectangle-drawing function, Rectangle(),
receives the figure coordinates as parameters to the call. This difference in data for-
mats, which is due to the evolution of Windows, makes it difficult to transfer the re-
sults of a rectangle operation into the Rectangle() function. To solve this problem we
have coded a rectangle-drawing function, called DrawRect(), which takes the figure
coordinates from a RECT structure. The function is as follows:

BOOL DrawRect (HDC hdc, LPRECT aRect) {

return (Rectangle (hdc, aRect->left,

aRect->top,

aRect->right,

aRect->bottom));

}

Since DrawRect() uses Rectangle() to draw the figure, the return values are the
same for both functions.

© 2003 by CRC Press LLC

21.4 Regions
A region is an area composed of one or more polygons or ellipses. Since a rectangle is a
polygon, a region can also be (or contain) a rectangle, or even a rounded rectangle. In
Windows programming, regions are used for three main purposes:

• To fill or frame an irregular area

• To clip output to an irregular area

• To test for mouse input in an irregular area

From these uses we can conclude that the main role of a region is to serve as a
boundary. Regions can be combined logically, copied, subtracted, and translated to
another location. In Windows 95/98 and NT, a new region can be produced by per-
forming a rotation, scaling, reflection, or shearing transformation on another re-
gion. Transformations are discussed in Chapter 9. Here, we deal with the simpler
operations on regions. There is a rich set of functions that relate to regions and re-
gion operations. These are listed in Table 21-6.

Table 21-6

Region-Related GDI Functions

FUNCTION ACTION

CREATING REGIONS:
CreateRectRgn() Creates a rectangular-shaped region, given

the four coordinates of the rectangle
CreateRectRgnIndirect() Creates a rectangular-shaped region, given

a RECT structure with the coordinates of
the rectangle

CreateRoundRectRgn() Creates a region shaped like a rounded-
corner rectangle, given the coordinates
of the rectangle and the dimensions of the
corner ellipse

CreateEllipticRgn() Creates an elliptically shaped region from
a bounding rectangle

CreateEllipticRegionIndirect()
Creates an elliptically shaped region
from the parameters of a bounding rectangle
in a RECT structure

CreatePolygonRgn() Creates a polygon-shaped region from an
array of points that define the polygon

CreatePolyPolygonRgn() Creates one or more polygon-shaped regions
from an array of points that define the
polygons

PathToRegion() Converts the current path into a region
ExtCreateRgn() Creates a region based on a transformation

performed on another regions.

COMBINING REGIONS:
CombineRgn() Combines two regions into one by performing

a logical, subtraction, or copy
Operation

FILLING AND PAINTING REGIONS:
FillRgn() Fills a region using a brush

(continues)

© 2003 by CRC Press LLC

Table 21-6

Region-Related GDI Functions (continued)

FUNCTION ACTION

GetPolyFillMode() Gets fill mode used by FillRgn()
SetPolyFillMode() Sets the fill mode for FillRgn()
FrameRgn() Frames a region using a brush
PaintRgn() Paints the interior of a region with the

brush currently selected in the device
context

InvertRgn() Inverts the colors in a region

REGION STATUS AND CONTROL:
SetWindowRgn() Sets the window regions. The window region

is the area where the operating system
allows drawing operations to take place

GetWindowRgn() Retrieves the window region established
by SetWindowRgn()

OffsetRgn() Moves a region along the x- or y-axis
SelectClipRgn() Makes a region the current clipping region
ExtSelectClipRgn() Combines a region with the current clipping

region
GetClipRgn() Gets handle of the current clipping region
ValidateRgn() Validates the client area removing the

area in the region from the current update
region

InvalidateRgn() Forces a WM_PAINT message by invalidating
a screen area defined by a region

OBTAIN REGION DATA:
PtInRegion() Tests if a point is located within a region
RectInRegion() Tests if a given rectangle overlaps any part

of a region
EqualRgn() Tests if two regions are equal
GetRgnBox() Retrieves a region's bounding box
GetRegionData() Retrieves internal structure information

about a region

In the sections that follow we discuss some of the region-related functions. Other
region operations are discussed, in context, later in the book.

21.4.1 Creating Regions
A region is a GDI object, hence, it must be explicitly created. The functions that create
a region return a handle of type HRGN (handle to a region). With this handle you can
perform many region-based operations, such as filling the region, drawing its outline,
and combining it with another region. You often create two or more simple regions by
calling their primitive functions, and then combine them into a more complex region,
usually by means of the CombineRgn() function.

CreateRectRgn() is used to create a rectangular region. The function's general
form is as follows:

HRGN CreateRectRgn(
int nLeftRect, // 1
int nTopRect, // 2

© 2003 by CRC Press LLC

int nRightRect, // 3

int nBottomRect // 4

);

The first and second parameters are the coordinates of the upper-left corner of
the rectangle. The third and fourth parameters are the coordinates of the lower-right
corner.

CreateRectRgnIndirect() creates a rectangular-shaped region, identical to the one
produced by CreateRectRgn(); the only difference is that CreateRectRgnIndirect()
receives the coordinates in a RECT structure variable. The function's general form
is as follows:

HRGN CreateRectRgnIndirect(

CONST RECT *lprc // 1

);

CreateRoundRectRgn() creates a region shaped like a rounded rectangle. Its gen-
eral form is as follows:

HRGN CreateRoundRectRgn(

int nLeftRect, // 1

int nTopRect, // 2

int nRightRect, // 3

int nBottomRect, // 4

int nWidthEllipse, // 5

int nHeightEllipse // 6

);

The first and second parameters are the coordinates of the upper-left corner of
the bounding rectangle. The third and fourth parameters are the coordinates of the
lower-right corner. The fifth parameter is the width of the ellipse that is used for
drawing the rounded corner arc. The sixth parameter is the height of this ellipse.
The shape of the resulting region is the same as that of the rectangle in Figure 21-4.

CreateEllipticRgn() creates an elliptically shaped region. The function's general
form is as follows:

HRGN CreateEllipticRgn(

int nLeftRect, // 1

int nTopRect, // 2

int nRightRect, // 3

int nBottomRect // 4

);

The first and second parameters are the coordinates of the upper-left corner of a
rectangle that bounds the ellipse. The third and fourth parameters are the coordi-
nates of the lower-right corner of this bounding rectangle. The shape of the resulting
region is similar to the one in Figure 21-5.

CreateEllipticRegionIndirect() creates an elliptically shaped region identical to
the one produced by CreateEllipticRgn() except that in this case the parameters are
read from a RECT structure variable. The function's general form is as follows:

© 2003 by CRC Press LLC

HRGN CreateEllipticRgnIndirect(

CONST RECT *lprc // 1

);

CreatePolygonRgn() creates a polygon-shaped region. The call assumes that the
polygon is closed; no automatic closing is provided. The function's general form is
as follows:

HRGN CreatePolygonRgn(

CONST POINT *lppt, // 1

int cPoints, // 2

int fnPolyFillMode // 3

);

The first parameter is the address of an array of points that contains the x- and
y-coordinate pairs of the polygon vertices. The second parameter is the count of the
number of vertices in the array. The third parameter specifies the polygon fill mode,
which can be ALTERNATE or WINDING. ALTERNATE defines a mode that fills be-
tween odd-numbered and even-numbered polygon sides, that is, those areas that can
be reached from the outside of the polygon by crossing an odd number of lines.
WINDING mode fills all internal regions of the polygon. These are the same con-
stants as used in the SetPolyFillMode() function described earlier in this chapter. In
the CreatePolygonRgn() function call the fill mode determines which points are in-
cluded in the region.

CreatePolyPolygonRgn() creates one or more polygon-shaped regions. The call
assumes that the polygons are closed figures. No automatic closing is provided.
CreatePolyPolygonRgn() is similar to PolyPolygon(). The function's general form is
as follows:

HRGN CreatePolyPolygonRgn(

CONST POINT *lppt, // 1

CONST INT *lpPolyCounts, // 2

int nCount, // 3

int fnPolyFillMode // 4

);

The first parameter is a pointer to an array containing vertices of the various
polygons. The second parameter is a pointer to an array that contains the number of
vertices in each of the polygons. The third parameter is the count of the number of
elements in the second parameter, which is the same as the number of polygons to
be drawn. The fourth parameter specifies the polygon fill mode, which can be
ALTERNATE or WINDING. These two constants have the same effect as described
in the CreatePolygonRgn() function.

All the region-creation functions discussed so far return the handle to the region
if the call succeeds, and NULL if it fails.

A region can be created from a path by means of the PathToRegion() function.
Paths are discussed later in this chapter. The ExtCreateRgn() function allows creat-
ing a new region by performing a transformation on another region. Transforma-
tions are discussed in Chapter 23.

© 2003 by CRC Press LLC

21.4.2 Combining Regions
Sometimes a region consists of a simple, primitive area such as a rectangle, and el-
lipse, or a polygon. On other occasions a region is a complex figure, composed of two
or more simple figures of the same or different types, which can overlap, be adjacent,
or disjoint. The CombineRgn() function is used to create a complex region from two
simpler ones. The function's general form is as follows:

int CombineRgn(
HRGN hrgnDest, // 1
HRGN hrgnSrc1, // 2
HRGN hrgnSrc2, // 3
int fnCombineMode // 4

);

The first parameter is the handle to the resulting combined region. The second
parameter is the handle to the first source region to be combined. The third parame-
ter is the handle to the second source region to be combined. The fourth parameter
is one of five possible combination modes, listed in Table 21-7.

Table 21-7

Region Combination Modes

MODE EFFECT

RGN_AND The intersection of the two combined regions
RGN_COPY A copy of the first source region
RGN_DIFF Combines the parts of the first source region that are

not in the second source region
RGN_OR The union of two combined regions
RGN_XOR The union of two combined regions except for any

overlapping area

CombineRgn() returns one of four integer values, as shown in Table 21-8.

Table 21-8

Region Type Return Values

VALUE MEANING

NULLREGION The region is empty
SIMPLEREGION The region is a single rectangle
COMPLEXREGION The region is more complex than a single rectangle
ERROR No region was created

One property of CombineRgn() is that the destination region, expressed in the
first parameter, must exist as a region prior to the call. Creating a memory variable
to hold the handle to this region is not sufficient. The region must have been first
created by means of one of the region-creation functions, otherwise CombineRgn()
returns ERROR. The following code fragment shows the required processing for cre-
ating two simple regions and then combining them into a complex region using the
RGN_AND combination mode:

HRGN rectRgn, ellipRgn, resultRgn;
.
.

© 2003 by CRC Press LLC

.
// Create a rectangular region
rectRgn = CreateRectRgn (100, 100, 300, 200);
// Create an elliptical region
ellipRgn = CreateEllipticRgn (200, 100, 400, 200);
// Create a dummy region for results. Skipping this
// step results in an ERROR from the CombineRgn() call
resultRgn = CreateRectRgn (0, 0, 0, 0);
// Combine regions and fill
CombineRgn (resultRgn, rectRgn, ellipRgn, RGN_AND);
FillRgn (hdc, resultRgn, redSolBrush);

Figure 21-15 shows the results of applying the various region combination modes
on two simple, overlapping regions.

Figure 21-15 Regions Resulting from CombineRgn() Modes

source region 1 source region 2

RGN_AND

RGN_DIFF

RGN_COPY

RGN_OR

RGN_XOR

© 2003 by CRC Press LLC

In addition to the CombineRgn() function, the windowsx.h header files define
several macros that facilitate region combinations. These macros implement the
five combination modes that are entered as the last parameter of the CombineRgn()
call. They are as follows:

CopyRgn (hrgnDest, hrgnScr1);

IntersectRgn (hrgnDest, hrgnSrc1, hrgnSrc2);

SubtractRgn (hrgnDest, hrgnScr1, hrgnScr2);

UnionRgn (hrgnDest, hrgnSrc1, hrgnSrc2);

XorRgn (hrgnDest, hrgnSrc1, hrgnScr2);

In all of the macros, hrgnDest is the handle to the destination region, while
hrgnScr1 and hrgnSrc2 are the handles to the source regions.

21.4.3 Filling and Painting Regions
Several functions relate to filling, painting, and framing regions. The difference be-
tween filling and painting is that fill operations require a handle to a brush, while paint
operations use the brush currently selected in the device context.

The FillRgn() function fills a region using a brush defined by its handle. The func-
tion's general form is as follows:

BOOL FillRgn(

HDC hdc, // 1

HRGN hrgn, // 2

HBRUSH hbr // 3

);

The first parameter is the handle to the device context. The second one is the han-
dle to the region to be filled. The third parameter is the handle to the brush used in
filling the region. The function returns TRUE if it succeeds and FALSE if it fails.

PaintRgn() paints the interior of a region with the brush currently selected in the
device context. The function's general form is as follows:

BOOL PaintRgn(

HDC hdc, // 1

HRGN hrgn // 2

);

The second parameter is the handle to the region to be filled. The function re-
turns TRUE if it succeeds and FALSE if it fails.

FrameRgn() draws the perimeter of a region using a brush defined by its handle.
The function's general form is as follows:

BOOL FrameRgn(

HDC hdc, // 1

HRGN hrgn, // 2

HBRUSH hbr, // 3

int nWidth, // 4

int nHeight // 5

);

© 2003 by CRC Press LLC

The second parameter is the handle to the region to be filled. The third one is the
handle to the brush used in filling the region. The fourth parameter specifies the
width of the brush, in logical units. The fifth parameter specifies the height of the
brush, also in logical units. The function returns TRUE if it succeeds and FALSE if it
fails. If the width and height of the brush are different, then oblique portions of the
image are assigned an intermediate thickness. The result is similar to using a callig-
raphy pen. Figure 21-16 shows a region drawn with the FrameRgn() function.

Figure 21-16 Region Border Drawn with FrameRgn()

The InvertRgn() function inverts the colors in a region. In a monochrome screen,
inversion consists of turning white pixels to black and black pixels to white. In a
color screen, inversion depends on the display technology. In general terms, invert-
ing a color produces its complement. Therefore, inverting blue produces yellow, in-
verting red produces cyan, and inverting green produces magenta. The function's
general form is as follows:

BOOL InvertRgn(
HDC hdc, // 1
HRGN hrgn // 2
);

The second parameter is the handle to the region to be inverted. The function re-
turns TRUE if it succeeds and FALSE if it fails.

21.4.4 Region Manipulations
Several functions allow the manipulation of regions. These manipulations include
moving a region, using a region to define the program's output area, setting the clip-
ping region, obtaining the clipping region handle, and validating or invalidating a
screen area defined by a region. The region manipulations related to clipping are dis-
cussed in the following section.

A powerful, but rarely used function in the Windows API is SetWindowRgn(). It
allows you to redefine the window area of a window, thus redefining the area where
drawing operations take place. In a sense, SetWindowRgn() is a form of clipping
that includes not only the client area, but the entire window. The SetWindowRgn()
function allows you to create a window that includes only part of the title bar, or to
eliminate one or more of the window borders, as well as many other effects. The
function's general form is as follows:

int SetWindowRgn(
HWND hWnd, // 1

© 2003 by CRC Press LLC

HRGN hRgn, // 2

BOOL bRedraw // 3

);

The first parameter is the handle to the window whose region is to be changed.
The second parameter is the handle to the region that is to be used in redefining the
window area. If this parameter is NULL then the window has no window area, there-
fore becoming invisible. The third parameter is a redraw flag. If set to TRUE, the op-
erating system automatically redraws the window to the new output area. If the
window is visible the redraw flag is usually TRUE. The function returns nonzero if it
succeeds and zero if it fails.

The function GetWindowRgn() is used to obtain the window area of a window,
which usually has been set by SetWindowRgn(). The function's general form is as
follows:

int GetWindowRgn(

HWND hWnd, // 1

HRGN hRgn // 2

);

The first parameter is the handle to the window whose region is to be obtained.
The second parameter is the handle to a region that receives a copy of the window
region. The return value is one of the constants listed in Table 21-8.

The OffsetRgn() function is used to move a region to another location. The func-
tion's general form is as follows:

int OffsetRgn(

HRGN hrgn, // 1

int nXOffset, // 2

int nYOffset // 3

);

The first parameter is the handle to the region that is to be moved. The second pa-
rameter is the number of logical units that the region is to be moved along the
x-axis. The third parameter is the number of logical units along the y-axis. The func-
tion returns one of the constants listed in Table 21-8.

Sometimes the OffsetRgn() function does not perform as expected. It appears
that when a region is moved by means of this function, some of the region attributes
are not preserved. For example, assume a region that has been filled red is moved to
a new location that does not overlap the old position. If we now call InvertRgn() on
the translated window, the result is not a cyan-colored window, but one that is the
reverse of the background color. In this case the red fill attribute of the original win-
dow was lost as it was translated into a new position, and the translated window has
no fill. If the translated window partially overlaps the original one, however, then
the overlap area's original color is negated when the InvertRgn() function is called
on the translated region. Figure 21-17 shows the result of inverting a region trans-
lated by means of OffsetRgn().

© 2003 by CRC Press LLC

Figure 21-17 Effect of OffsetRgn() on Region Fill

Two functions, SelectClipRgn() and ExtSelectClipRgn(), refer to the use of re-
gions in clipping. These functions, along with clipping operations, are discussed
later in this chapter.

The InvalidateRgn() function adds the specified region to the current update re-
gion of the window. The invalidated region is marked for update when the next
WM_PAINT message occurs. The function's general form is as follows:

BOOL InvalidateRgn(

HWND hWnd, // 1

HRGN hRgn, // 2

BOOL bErase // 3

);

The first parameter is the handle to the window that is to be updated. The second
parameter is the handle to the region to be added to the update area. If this parame-
ter is NULL then the entire client area is added to the update area. The third parame-
ter is an update flag for the background area. If this parameter is TRUE then the
background is erased. The function always returns a nonzero value.

The ValidateRgn() function removes the region from the update area. It has the
reverse effect as InvalidateRgn(). The function's general form is as follows:

BOOL ValidateRgn(

HWND hWnd, // 1

HRGN hRgn // 2

);

The first parameter is the handle to the window. The second parameter is the han-
dle to the region to be removed from the update area. If this parameter is NULL then
the entire client area is removed from the update area. The function returns TRUE if
it succeeds and FALSE if it fails.

original region

offset region
after InvertRgn()

overlap area
after InvertRgn()

© 2003 by CRC Press LLC

21.4.5 Obtaining Region Data
A few region-related functions are designed to provide region data to application
code. The GetRegionData() funct ion is used mainly in relat ion to the
ExtCreateRegion() function. Both of these functions relate to geometric transforma-
tions and are discussed in Chapter 23.

PtInRegion() tests if a point defined by its coordinates is located within a region.
The function's general form is as follows:

BOOL PtInRegion(
HRGN hrgn, // 1
int X, // 2
int Y // 3
);

The first parameter is the handle to the region to be examined. The second and
third parameters are the x- and y-coordinates of the point. If the point is located
within the region, the function returns TRUE. If not, the function returns FALSE.

The RectInRegion() function determines if any portion of a given rectangle is
within a specified region. The function's general form is as follows:

BOOL RectInRegion (
HRGN, // 1
CONST RECT * // 2
);

The first parameter is the handle to the region to be examined. The second pa-
rameter is a pointer to a RECT structure that holds the coordinates of the rectangle.
If any part of the specified rectangle lies within the region, the function returns
TRUE. If not, the function returns FALSE.

EqualRgn() tests if two regions are identical in size and shape. The function's gen-
eral form is as follows:

BOOL EqualRgn(
HRGN hSrcRgn1, // 1
HRGN hSrcRgn2 // 2
);

The first parameter identifies one of the regions and the second parameter the
other one. If the two regions are identical, the function returns TRUE. If not, the
function returns FALSE.

The GetRgnBox() function retrieves the bounding rectangle that encloses the
specified region. The function's general form is as follows:

int GetRgnBox(
HRGN hrgn, // 1
LPRECT lprc // 2
);

The first parameter is the handle to the region. The second parameter is a pointer
to a RECT structure variable that receives the coordinates of the bounding rectan-

© 2003 by CRC Press LLC

gle. The function returns one of the first three constants listed in Table 21-8. If the
first parameter does not identify a region then the function returns zero.

21.5 Clipping Operations
One of the fundamental graphics manipulations is clipping. In Windows programming,
clipping is associated with regions, since the clip action is defined by a region. In prac-
tice, a clipping region is often of rectangular shape, which explains why some clipping
operations refer specifically to rectangles. Figure 21-18 shows the results of a clipping
operation.

Figure 21-18 Results of Clipping

A clipping region is an object of the device context. The default clipping region is
the client area. Not all device contexts support a predefined clipping region. If the
device context is supplied by a call to BeginPaint(), then Windows creates a default
clipping region and assigns to it the area of the window that needs to be repainted. If
the device context was created with a call to CreateDC() or GetDC(), as is the case
with a private device context, then no default clipping region exists. In this case an
application can explicitly create a clipping region. Table 21-9, on the following page,
lists the functions that relate to clipping.

Note that Metaregions were introduced in Windows NT and are supported in Win-
dows 95/98. However, very little has been printed about their meaning or possible
uses. Microsoft documentation for Visual C++, up to the May prerelease of version
6.0, has nothing on metaregions beyond a brief mentioning of the two related func-
tions listed in Table 21-9. For this reason, it is impossible to determine at this time if
a metaregion is a trivial alias for a conventional region, or some other concept not
yet documented. Metaregions are not discussed in the text.

Before clipping After clipping

viewport

clipping
region

© 2003 by CRC Press LLC

Table 21-9

Windows Clipping Functions

FUNCTION ACTION

CREATING OR MODIFYING A CLIPPING REGION:
SelectClipRgn() Makes a region the clipping region for a specified

device context
ExtSelectClipRgn() Combines a specified region with the clipping

region according to a predefined mode
IntersectClipRect() Creates a new clipping region from the interception

of a rectangle and the current clipping region
in a device context

ExcludeClipRect() Subtracts a rectangle from the clipping region
OffsetClipRgn() Moves the clipping region horizontally or

vertically
SelectClipPath() Appends the current path to the clipping region

of a device context, according to a predefined mode

OBTAIN CLIPPING REGION INFORMATION:
GetClipBox() Retrieves the bounding rectangle for the

clipping region
GetClipRgn() Retrieves the handle of the clipping region

for a specified device context
PtVisible() Determines if a specified point is within the

clipping region of a device context
RectVisible() Determines whether any part of a rectangle lies

within the clipping region

METAREGION OPERATIONS:
GetMetaRgn() Retrieves the metaregion for the specified

device context
SetMetaRgn() Creates a metaregion, which is the intersection

of the current metaregion and the clipping
region

21.5.1 Creating or Modifying a Clipping Region
In order for a region to be used to clip output, it must be selected as such in a device
context. The SelectClipRgn() function is the primary method of achieving clipping.
The region must first be defined and a handle for it obtained. Then the handle to the de-
vice context and the handle to the region are used to enforce the clipping. The func-
tion's general form is as follows:

int SelectClipRgn(
HDC hdc, // 1
HRGN hrgn // 2
);

The first parameter is the handle to the device context that is to be clipped. The
second parameter is the handle to the region used in clipping. This handle is ob-
tained by any of the region-creating calls listed in Table 21-6. The function returns
one of the values in Table 21-8.

Once the call is made, all future output is clipped; however, the existing screen
display is not automatically changed to reflect the clipping area. Some unexpected
or undesirable effects are possible during clipping. Once a clipping region is defined

© 2003 by CRC Press LLC

for a device context, then all output is limited to the clipping region. This requires
that clipping be handled carefully, usually by installing and restoring clipping re-
gions as necessary.

When a call is made to SelectClipRgn(), Windows preserves a copy of the previ-
ous clipping region. The newly installed clipping region can be removed from the de-
vice context by means of a call to SelectClipRgn() specifying a NULL region handle.

The ExtSelectClipRgn() function allows combining the current clipping region
with a new one, according to one of five predefined modes. The function's general
form is as follows:

int ExtSelectClipRgn(
HDC hdc, // 1
HRGN hrgn, // 2
int fnMode // 3

);

The first parameter is the handle to the device context that is to be clipped. The
second parameter is the handle to the region used in clipping. The third parameter is
one of the constants listed in Table 21-10.

Table 21-10

Clipping Modes

VALUE ACTION

RGN_AND The resulting clipping region combines the
overlapping areas of the current clipping region and
the one identified in the call, by performing a
logical AND between the two regions

RGN_COPY The resulting clipping region is a copy of the
region identified in the call. The result is
identical to calling SelectClipRgn(). If the region
identified in the call is NULL, the new clipping
region is the default clipping region

RGN_DIFF The resulting clipping region is the difference
between the current clipping region and the one
identified in the call

RGN_OR The resulting clipping region is the result of
performing a logical OR operation on the current
clipping region and the region identified in the
call

RGN_XOR The resulting clipping region is the result of
performing a logical XOR operation on the current
clipping region and the region identified in the
Call

The clipping regions that result from these selection modes are the same as those
u s e d i n t h e C o m b i n e R g n () f u n c t i o n , a s s h o w n i n F i g u r e 2 1 - 1 5 . T h e
ExtSelectClipRgn() function returns one of the values in Table 21-8.

The IntersectClipRect() function creates a new clipping region by performing a
logical AND between the current clipping region and a rectangular area defined in
the call. The function's general form is as follows:

© 2003 by CRC Press LLC

int IntersectClipRect(

HDC hdc, // 1

int nLeftRect, // 2

int nTopRect, // 3

int nRightRect, // 4

int nBottomRect // 5

);

The second and third parameters are the coordinates of the upper-left corner of
the rectangle. The fourth and fifth parameters are the coordinates of the lower-right
corner. The function returns one of the values in Table 21-8.

The function ExcludeClipRect() subtracts a rectangle specified in the call from
the clipping region. The function's general form is as follows:

int ExcludeClipRect(

HDC hdc, // 1

int nLeftRect, // 2

int nTopRect, // 3

int nRightRect, // 4

int nBottomRect // 5

);

The second and third parameters are the coordinates of the upper-left corner of
the rectangle. The fourth and fifth parameters are the coordinates of the lower-right
corner. The function returns one of the values in Table 21-8.

The function OffsetClipRgn() translates the clipping region along the horizontal
or vertical axes. The function's general form is as follows:

int OffsetClipRgn(

HDC hdc, // 1

int nXOffset, // 2

int nYOffset // 3

);

The second parameter is the amount to move the clipping region along the x-axis.
The third parameter is the amount to move along the y-axis. Positive values indicate
movement to the right or down. Negative values indicate movement to the left or up.
The function returns one of the values in Table 21-8.

The SelectClipPath() function appends the current path to the clipping region of
a device context, according to a predefined mode. The function's general form is as
follows:

BOOL SelectClipPath(

HDC hdc, // 1

int iMode // 2

);

The second parameter is one of the constants listed in Table 21-10. The function
returns TRUE if it succeeds and FALSE if it fails. Paths are discussed later in this
chapter.

© 2003 by CRC Press LLC

21.5.2 Clipping Region Information
Code that uses clipping often needs to obtain information about the clipping region.
Several functions are available for this purpose. The GetClipBox() function retrieves
the bounding rectangle for the clipping region. This rectangle is the smallest one that
can be drawn around the visible area of the device context. The function's general form
is as follows:

int GetClipBox(
HDC hdc, // 1
LPRECT lprc // 2
);

The second parameter is a pointer to a RECT structure that receives the coordi-
nates of the bounding rectangle. The function returns one of the values in Table 21-8.

The GetClipRgn() function retrieves the handle of the clipping region for a speci-
fied device context. The function's general form is as follows:

int GetClipRgn(
HDC hdc, // 1
HRGN hrgn // 2
);

The first parameter is the handle to the device context whose clipping region is de-
sired. The second parameter is the handle to an existing clipping region that holds the
results of the call. The function returns zero if there is no clipping region in the device
context. The return value 1 indicates that there is a clipping region and that the func-
tion's second parameter holds its handle. A return value of –1 indicates an error. The
function refers to cl ipping regions that result from SelectCl ipRgn() of
ExtSelectClipRgn() functions. Clipping regions assigned by the system on calls to the
BeginPaint() function are not returned by GetClipRgn().

The PtVisible() function is used to determine if a specified point is within the clip-
ping region of a device context. The function's general form is as follows:

BOOL PtVisible(
HDC hdc, // 1
int X, // 2
int Y // 3
);

The first parameter is the handle to the device context under consideration. The
second and third parameters are the x- and y-coordinates of the point in question. The
function returns TRUE if the point is within the clipping region, and FALSE other-
wise.

The function RectVisible() is used to determine whether any part of a rectangle lies
within the clipping region of a device context. The function's general form is as fol-
lows:

BOOL RectVisible(
HDC hdc, // 1
CONST RECT *lprc // 2
);

© 2003 by CRC Press LLC

The first parameter is the handle to the device context under consideration. The
second parameter is a pointer to a structure variable of type RECT that holds the co-
ordinates of the rectangle in question. The function returns TRUE if any portion of
the rectangle is within the clipping region, and FALSE otherwise.

21.6 Paths
In previous chapters we have discussed paths rather informally. The project folder
Text Demo No 3, in the book's software package, contains a program that uses paths to
achieve graphics effects in text display. We now consider revisit paths in a more rigor-
ous manner, and apply paths to other graphics operations.

Paths were introduced with Windows NT and are also supported by Windows
95/98. As its name implies, a path is the route the drawing instrument follows in cre-
ating a particular figure or set of figures. A path, which is stored internally by the
GDI, can serve to define the outline of a graphics object. For example, if we start at
coordinates 100, 100, and move to the point at (150, 100), then to (150, 200), from
there to (100, 200), and finally to the start point, we have defined the path for a rect-
angular figure. We can now stroke the path to draw the rectangle's outline, fill the
path to produce a solid figure, or both stroke and fill the path to produce a figure
with both outline and fill. In general, there are path-related functions to perform the
following operations:

• To draw the outline of the path using the current pen.

• To paint the interior of the path using the current brush.

• To draw the outline and paint the interior of a path.

• To modify a path converting curves to line segments.

• To convert the path into a clip path.

• To convert the path into a region.

• To flatten the path by converting each curve in the path into a series of line segments.

• To retrieve the coordinates of the lines and curves that compose a path.

The path is an object of the device context, such as a region, a pen, a brush, or a
bitmap. One characteristic of a path is that there is no default path in the device con-
text. Another one is that there is only one path in each device context; this deter-
mines that there is no need for a path handle. Every path is initiated by means of the
BeginPath() function. This clears any old path from the device context and prepares
to record the drawing primitives that create the new path, sometimes called the path
bracket. Any of the functions listed in Table 21-11 can be used for defining a path in
Windows NT. The subset of functions that can be used in paths in Windows 95/98 is
listed in Table 21-12.

Since paths are mostly utilized in clipping operations, the CloseFigure() function
is generally used to close an open figure in a path. After all the figures that form the
path have been drawn into the path bracket, the application calls EndPath() to se-
lect the path into the specified device context. The path can then be made into a
clipping region by means of a call to SelectClipPath().

© 2003 by CRC Press LLC

Table 21-11

Path-Defining Functions in Windows NT

AngleArc() LineTo() Polyline()
Arc() MoveToEx() PolylineTo()
ArcTo() Pie() PolyPolygon()
Chord() PolyBezier() PolyPolyline()
CloseFigure() PolyBezierTo() Rectangle()
Ellipse() PolyDraw() RoundRect()
ExtTextOut() Polygon() TextOut()

Table 21-12

Path-Defining Functions in Windows 95 and Later

ExtTextOut() PolyBezierTo() PolyPolygon()
LineTo() Polygon() PolyPolyline()
MoveToEx() Polyline() TextOut()
PolyBezier() PolylineTo()

Notice that the term clip path, or clipping path, sometimes found in the Windows
documentation, can be somewhat confusing. It is better to say that the
SelectClipPath() function converts a path to a clipping region, thus eliminating the
notion of a clip path as a separate entity.

Table 21-13 lists the paths-related functions.

Table 21-13

Path-Related Functions

FUNCTION ACTION

PATH CREATION, DELETION, AND CONVERSION:
BeginPath() Opens a path bracket
EndPath() Closes the path bracket and selects the path

into the device context
AbortPath() Closes and discards any open path bracket on the

Device context
SelectClipPath() Makes the current path into a clipping region for

a specified device context. Combines the new
clipping region with any existing one according
to a predefined mode

PathToRegion() Closes an open path and converts is to a region

PATH RENDERING OPERATIONS:
StrokePath() Renders the outline of the current path using the

current pen
FillPath() Closes and opens figure in the current path

and fills the path interior with the current
brush, using the current polygon fill mode

StrokeAndFillPath() Renders the outline of the current path using the
current pen and fills the interior with the
current brush

CloseFigure() Draws a line from the current pen position to
the figure's start point. The closing line is connected
to the figure's first line using the current line join style

(continues)

© 2003 by CRC Press LLC

Table 21-13

Path-Related Functions (continued)

FUNCTION ACTION

PolyDraw() Draws lines and curves that result from GetPath()
(Windows NT only)

PATH MANIPULATIONS:
FlattenPath() Converts curves in the current path into line

segments
WidenPath() Redefines the current path in a given device

context as the area that would be painted if the
path were stroked with the current pen

SetMiterLimit() Sets the length of the miter joins for the
specified device context

OBTAIN PATH INFORMATION:
GetPath() Retrieves the coordinates of the endpoints of

lines and control points of curves in a path
GetMiterLimit() Returns the limit for the length of the miter

joins in the specified device context
GetPolyFillMode() Returns the current polygon fill mode

21.6.1 Creating, Deleting, and Converting Paths
A path is initiated by calling the BeginPath() function. The call discards any existing
path in the device context and opens a path bracket. The function's general form is as
follows:

���! �����0
�� �1� �
�%&

The only parameter is the handle to the device context. The function returns TRUE if
it succeeds and FALSE if it fails. After the call to BeginPath() is made an application
can call any of the functions in Table 21-11 or 21-12, according to the operating system
platform.

The EndPath() function closes a path bracket and selects the path into the speci-
fied device context. The function's general form is as follows:

���! "�
0
�� �1� �
�%&

The only parameter is the handle to the device context. The function returns
TRUE if it succeeds and FALSE if it fails.

The AbortPath() functions closes and discards any open path bracket on the
specified device context. The function's general form is as follows:

���! 2����0
�� �1� �
�%&

The only parameter is the handle to the device context.

A path bracket is created by calling BeginPath(), followed by one or more of the
drawing functions listed in Table 21-11 and 21-12, and closed by a call to EndPath().
At this point applications usually proceed to stroke, fill, or stroke-and-fill the path
or to install it as a clipping region. Two possible methods can be followed for con-
verting a path into a clipping region. One method is to use PathToRegion() to create

© 2003 by CRC Press LLC

a region and then call ExtSelectClipRgn() to make the region a clipping region. Al-
ternatively, code can call SelectClipPath() and perform both functions in a single
call.

SelectClipPath() makes the current path into a clipping region for a specified de-
vice context, according to a predefined combination mode. The function's general
form is as follows:

BOOL SelectClipPath(

HDC hdc, // 1

int iMode // 2

);

The second parameter is one of the values listed in Table 21-7. The function re-
turns TRUE if it succeeds and FALSE if it fails.

The PathToRegion() function closes an open path and converts is to a region. The
function's general form is as follows:

��(3 0
��-������� �1� �
�%&

The function's only parameter is the handle to the device context. The call as-
sumes that the path in the device context is closed. PathToRegion() returns the han-
dle to the created region. Since there are no path handles, this function provides a
way of identifying a particular path, although it must be first converted into a re-
gion. Unfortunately, there is no method for converting a region into a path.

21.6.2 Path-Rendering Operations

After a path is created it is possible to render it as an image by stroking it, filling it, or
both. In Windows NT it is also possible to directly draw line segments and Bezier
curves that form a path, whose end and control points are stored in an array of type
POINT.

The StrokePath() function renders the outline of the current path using the cur-
rent pen. The function's general form is as follows:

���! ����)�0
�� �1� �
�%&

The only parameter is the handle to the device context that contains a closed
path. Since a device context can only have a single path, there is no need for further
specification. The path is automatically discarded from the device context after it is
stroked. The function returns TRUE if it succeeds and FALSE if it fails.

Notice that Microsoft Visual C++ documentation does not mention that
StrokePath() discards the path automatically. What is worse, the remarks on the
StrokeAndFillPath() function suggest that it is possible to first stroke and then fill
the same path by making separate calls to the StrokePath() and FillPath() function.
In reality, the StrokePath() function destroys the path before exiting execution. A
subsequent call to FillPath() has no effect, since there is no longer a path in the de-
vice context. This is the reason why the StrokeAndFillPath() function exists. With-
out this function it would be impossible to both stroke and fill a path.

© 2003 by CRC Press LLC

The FillPath() function closes an open figure in the current path and fills the path
interior with the current brush, using the current polygon fill mode. The function's
general form is as follows:

���! #���0
�� �1� �
�%&

The only parameter is the handle to the device context that contains a valid path.
Since a device context can only have a single path, there is no need for further speci-
fication. The path is automatically discarded from the device context after it is
filled. The function returns TRUE if it succeeds and FALSE if it fails.

The StrokeAndFillPath() function closes an open figure in the current path,
strokes the path outline using the current pen, and fills the path's interior with the
current brush, using the current polygon fill mode. The function's general form is as
follows:

���! ����)�2�
#���0
�� �1� �
�%&

The only parameter is the handle to the device context that contains a valid path.
The path is automatically discarded from the device context after it is stroked and
filled. StrokeAndFillPath() provides the only way for both stroking and filling a path
in Windows, since StrokePath() and FillPath() destroy the path after they execute.
The function returns TRUE if it succeeds and FALSE if it fails.

The CloseFigure() function draws a line from the current pen position to the fig-
ure's start point. The closing line is connected to the figure's first line using the cur-
rent line join style. The function's general form is as follows:

���! �����#����� �1� �
�%&

The only parameter is the handle to the device context that contains a valid path.
A figure in a path is open unless the CloseFigure() call has been made, even if the
figure's starting point and the current point coincide. Usually, the starting point of
the figure is the one in the most recent call to MoveToEx().

The effect of closing a figure using the CloseFigure() function is not the same as
using a call to a drawing primitive. For example, when the figure is closed with a call
to the LineTo() function, end caps are used at the last corner, instead of a join. If the
figure is drawn with a thick, geometric pen, the results can be quite different. Figure
21-19 shows the difference between closing a figure by calling LineTo() or by calling
CloseFigure().

The triangles in Figure 21-19 are both drawn with a pen style that has a miter join
and a round end cap. One of the figures is closed using the LineTo() drawing func-
tion and the other one with CloseFigure(). The apex of the triangle closed using the
LineTo() function is rounded while the one closed using the CloseFigure() function
is mitered. This is due to the fact that two segments drawn with LineTo() do not
have a join at a common end point. In this case, the appearance of the apex is deter-
mined by the figure's round end cap. On the other hand, when the figure is closed
with the CloseFigure() function, the selected join is used in all three vertices.

© 2003 by CRC Press LLC

Figure 21-19 Figure Closing Differences

The PolyDraw() function, available only in Windows NT, draws lines segments
and Bezier curves. Because of its limited portability we do not discuss it here.

21.6.3 Path Manipulations

Several functions allow modifying existing paths or determining the path characteris-
tics. FlattenPath() converts curves in the current path into line segments. The func-
tion's general form is as follows:

���! #�
����0
�� �1� �
�%&

The only parameter is the handle to the device context that contains a valid path.
The function returns TRUE if it succeeds and FALSE if it fails. There are few docu-
mented uses for the FlattenPath() function. The screen appearance of a flattened
path is virtually undetectable. The documented application of this function is to fit
text on a curve. Once a curved path has been flattened, a call to GetPath() retrieves
the series of line segments that replaced the curves of the original path. Code can
now use this information to fit the individual characters along the line segments.

The WidenPath() function redefines the current path in a given device context as
the area that would be painted if the path were stroked with the current pen. The
function's general form is as follows:

���! +�
��0
�� �1� �
�%&

The only parameter is the handle to the device context that contains a valid path.
Any Bezier curves in the path are converted to straight lines. The function makes a
difference when the current pen is a geometric pen or when it has a width or more
than one device unit. WidenPath() returns TRUE if it succeeds and FALSE if it fails.
This is another function with few documented uses. The fact that curves are con-

closed using LineTo()

first and last line segment use end caps

first and last line segment use a join

closed using CloseFigure()

© 2003 by CRC Press LLC

verted into line segments suggests that it can be used in text fitting operations, such
as the one described for the FlattenPath() function.

The SetMiterLimit() function sets the length of the miter joins for the specified
device context. The function's general form is as follows:

BOOL SetMiterLimit(
HDC hdc, // 1
FLOAT eNewLimit, // 2
PFLOAT peOldLimit // 3
);

The first parameter is the handle to the device context. The second parameter
specifies the new miter limit. The third parameter is a pointer to a floating-point
variable that holds the previous miter limit. If this parameter is NULL the value of
the previous miter limit is not returned. The function returns TRUE if it succeeds
and FALSE if it fails.

The miter length is the distance from the intersection of the line walls on the in-
side of the join to the intersection of the line walls on the outside of the join. The mi-
ter limit is the ratio between the miter length, to the line width. Figure 21-20 shows
the miter length, the line width, and the miter limit.

Figure 21-20 Miter Length, Line Width, and Miter Limit

The miter limit determines if the vertex of a join that was defined with the
PS_JOIN_MITER style (see Figure 20-3 in the previous chapter) is drawn using a mi-
ter or a bevel join. If the miter limit is not exceeded, then the join is mitered. Other-
wise, it is beveled. Mitered and beveled joins apply only to pens created with the
ExtCreatePen() function and to stroked paths. The following code fragment shows
the creation of two joins.

static HPEN fatPen; // Handle for pen

static FLOAT oldMiter; // Storage for miter limit

.

.

.

// Create a special pen

fatPen = ExtCreatePen (PS_GEOMETRIC | PS_SOLID |

miter length

miter length
miter limit =

line
width

line width

© 2003 by CRC Press LLC

PS_ENDCAP_ROUND | PS_JOIN_MITER,
15,
&fatBrush, 0, NULL);

SelectBrush (hdc, GetStockObject (LTGRAY_BRUSH));
SelectPen (hdc, fatPen);
// Draw first angle
BeginPath (hdc);
MoveToEx (hdc, 100, 100, NULL);
LineTo (hdc, 250, 100);
LineTo (hdc, 150, 180);
EndPath (hdc);
StrokePath (hdc);
// Draw second angle
GetMiterLimit (hdc, &oldMiter);
SetMiterLimit (hdc, 2, &oldMiter);
BeginPath (hdc);
MoveToEx (hdc, 300, 100, NULL);
LineTo (hdc, 450, 100);
LineTo (hdc, 350, 180);
EndPath (hdc);
StrokePath (hdc);
SetMiterLimit (hdc, oldMiter, NULL);

Figure 21-21 is a screen snapshot of the execution of the preceding code frag-
ment. Notice in Figure 21-21 that the image on the left, in which the default miter
limit of 10 is used, is drawn with a miter join. In the right-hand figure the miter limit
was changed to 1, therefore, the figure is drawn using a bevel join.

Figure 21-21 Effect of the SetMiterLimit() Function

21.6.4 Obtaining Path Information

Several functions provide information about the path, or about GDI parameters that
affect the path. The GetPath() function retrieves the coordinates of the endpoints of
lines and control points of curves in a path. The function's structure is quite similar to
the PolyDraw() function discussed in Chapter 20. GetPath() is related to the
PolyDraw() function mentioned earlier. The function's general form is as follows:

© 2003 by CRC Press LLC

int GetPath(

HDC hdc, // 1

LPPOINT lpPoints, // 2

LPBYTE lpTypes, // 3

int nSize // 4

);

The first parameter identifies the device context. The second parameter is a
pointer to an array of POINT structures that contains the endpoints of the lines and
the control points of the curves that form the path. The third parameter is an array
of type BYTE which contains identifiers that define the purpose of each of the
points in the array. The fourth parameter is the count of the number of points in the
array of points. The function returns TRUE if it succeeds and FALSE otherwise. Ta-
ble 21-14 lists the constants used to represent the identifiers entered in the func-
tion's third parameter.

Table 21-14

Constants for the GetPath() Vertex Types

TYPE MEANING

PT_MOVETO This point starts a disjoint figure. The point
becomes the new current pen position.

PT_LINETO A line is to be drawn from the current position to
this point, which then becomes the new current
pen position.

PT_BEZIERTO This is a control point or end node for a Bezier
curve. This constant always occurs in sets of
three.The current position defines the start node for
The Bezier curve. The other two coordinates are
control points. The third entry (if coded) is the
end node.

PT_CLOSEFIGURE The figure is automatically closed after the
PT_LINETO or PT_BEZIERTO type for this point is
executed. A line is drawn from the end point to the
most recent PT_MOVETO or MoveTo() point.
The PT_CLOSEFIGURE constant is combined by
means of a bitwise OR operator with a PT_LINETO or
PT_BEZIERTO constant. This indicates that the
corresponding point is the last one in a figure and
that the figure is to be closed.

T h e G e t M i t e r L i m i t () f u n c t i o n , w h i c h w a s m e n t i o n e d i n r e g a r d s t o
SetMiterLimit(), returns the limit for the length of the miter join in the specified de-
vice context. The function's general form is as follows:

BOOL GetMiterLimit(

HDC hdc, // 1

PFLOAT peLimit // 2

);

The first parameter is the handle to the device context. The second parameter
stores the current miter limit. The function returns TRUE if it succeeds and FALSE
if it fails.

© 2003 by CRC Press LLC

The GetPolyFillMode() returns the current polygon fill mode. The only parameter
is the handle to the device context. The value returned is either ALTERNATE or
W I N D I N G . T h e f i l l m o r e a f f e c t s t h e o p e r a t i o n o f t h e F i l l P a t h () a n d
StrokeAndFillPath() functions.

21.7 Filled Figures Demo Program
The program named FIL_DEMO, located in the Filled Figure Demo project folder of
the book's software package, is a demonstration of the graphics functions and opera-
tions discussed in this chapter. The first entry in the Operations menu shows the offset
of the hatch origin to visually improve a filled rectangle. The main menu contains sev-
eral pop-up menus that demonstrate most of the graphics primitives discussed in the
text. These include drawing solid figures, operations on rectangles, regions, clipping,
and paths. Another menu entry demonstrates the use of the SetMiterLimit() function.
Many of the illustrations used in this chapter were taken from the images displayed by
the demonstration program.

© 2003 by CRC Press LLC

Chapter 22

Windows Bitmapped Graphics

Topics:
• Raster and vector graphics on the PC

• Windows bitmap formats and structures

• Bitmap programming and the bitblt operation

• Manipulating and transforming bitmaps

This chapter is about bitmaps. A bitmap is a digitized image in which each dot is repre-
sented by a numeric value. Bitmap images are used in graphics programming at least
as frequently as vector representation. The high resolution and extensive color range
of current video display systems allow encoding bitmapped images with
photo-realistic accuracy. The powerful storage and processing capabilities of the
modern day PC make possible for software to rapidly and effectively manipulate and
transform bitmaps. Computer simulations, virtual reality, artificial life, and electronic
games are fields of application that rely heavily on bitmap operations.

22.1 Raster and Vector Graphics
The two possible ways of representing images in a computer screen, or a digital graph-
ics device, are based on vector and raster graphics technologies. All of the graphics
primitives discussed in Chapters 6 and 7 are based on vector techniques. Commer-
cially speaking, vector graphics are associated with drawing programs, while raster
graphics are associated with painting programs. The vector representation of a line
consists of its start and end points and its attributes, which usually include width,
color, and type. The raster representation of the same line is a mapping of adjacent
screen dots. Most current computer systems are raster based, that is, the screen is a
two-dimensional pixel grid and all graphics objects are composed of individual screen
dots, as described in Chapter 1. Vector graphics are a way of logically defining images,
but the images must be rasterized at display time.

Vector and raster representations have their advantages and drawbacks. Vector
images can be transformed mathematically (as you will see in Chapter 9); they can
also be scaled without loss of quality. Furthermore, vector images are usually more

© 2003 by CRC Press LLC

http://www.itknowledgebase.net/books/1232/1678_FM.pdf

compact. Many images can be conveniently represented in vector form, such as an
engineering drawing composed of geometrical elements that can be mathematically
defined. The same applies to illustrations, and even to artwork created by combin-
ing geometrical elements.

22.1.1 The Bitmap
An image of Leonardo's Mona Lisa, or a photograph of the Crab nebulae, can hardly be
vectorized. When geometrical elements are not present, or when the image is rich in
minute details, vector representations cease to be practical. In these cases it is better
to encode the image as a data structure containing all the individual picture elements.
This pixel-by-bit encoding is called a bitmap.

A bitmap is a form of raster image. A raster image can be defined as pixel-by-pixel
enumeration, usually in scan-line order. A bitmap is a formatted raster image en-
coded according to some predefined standard or convention. A raster image, on the
other hand, can be in raw format. For example, a scanning instrument onboard a sat-
ellite or space craft acquires and transmits image data in raster form. Once received,
the raster data can be processed and stored as bitmaps that can be easily displayed
on a computer screen. Television images are in raster form.

A bitmap is a memory object, not a screen image. It is the memory encoding of an
image at the pixel level. Although bitmaps are often represented in image form, it is
important to remember that a bitmap is a data construct. Bitmaps cannot be easily
transformed mathematically, as is the case with vector images, nor can they be
scaled without some loss of information. However, bitmaps offer a more faithful re-
production of small details than is practical in vector representations.

In bit-mapping, one or more memory bits are used to represent the attribute of a
screen pixel. The simplest and most compact scheme is that in which a memory bit
represents a single screen pixel : i f the bit is set , so is the pixel . This
one-bit-to-one-pixel representation leaves no choice about pixel attributes, that is, a
pixel is either set or not. In a monochrome video system a set bit can correspond to
a bright pixel and a reset bit to a black one. Figure 22-1 shows a bit-to-pixel image
and bitmap.

Figure 22-1 One Bit Per Pixel Image and Bitmap

0x0100
0x0100
0x0100
0x0100
0x0FE0
0x0920
0x0920
0xFFFE
0x0920
0x0920
0x0FE0
0x0100
0x0100
0x0100
0x0100

1-bit codes:

0 =

1 =

bitmap:

© 2003 by CRC Press LLC

Most current video systems support multiple attributes per screen pixel. PC color
video systems are usually capable of representing 16, 256, 65,535, and 16.7 million
colors. Shades of gray can also be encoded in a bitmap. The number of bits devoted
to each pixel determines the attribute range. Sixteen colors or shades of gray can be
represented in four bits. Eight bits can represent 256 colors. Sixteen bits encode
65,535 colors. So-called true color systems, which can display approximately 16.7
million colors, require 24 data bits per screen dot. Some color data formats use
32-bits per pixel, but this representation is actually 24 bits of pixel data plus 8 bits of
padding. Figure 22-2 shows an image and bitmap in which each pixel is represented
by two memory bits.

Figure 22-2 Two Bits Per Pixel Image and Bitmap

In Figure 22-2, each screen pixel can be in one of four attributes: background,
light gray, dark gray, or black. In order to represent these four states it is necessary
to assign a 2-bit field for each screen pixel. The four bit combinations that corre-
spond with the attribute options are shown on the left side of Figure 22-2. At the bot-
tom of the illustration is a map of one of the pixel rows, with the corresponding
binary codes for each pixel, as well as the hexadecimal digits of the bitmap.

22.1.2 Image Processing

The fact that raster images cannot be transformed mathematically does not mean that
they cannot be manipulated and processed. Image Processing is a major field of com-
puter graphics. It deals exclusively with the manipulation and analysis of
two-dimensional pictorial data in digital form. In practice, this means processing ras-
ter data. Although digital image processing originated in the science programs of the
National Aeronautics and Space Administration (NASA) it has since been applied to
many other technological fields, including biological research, document processing,
factory automation, forensics, medical diagnostics, photography, prepress publishing
operations, space exploration, and special effects on film and video.

0x0001 0000
0x0001 0000
0x0001 0000
0x0001 0000
0x00AA A800
0x0083 0800
0x0083 0800
0x55BF FD54
0x0083 0800
0x0083 0800
0x00AA A800
0x0001 0000
0x0001 0000
0x0001 0000
0x0001 0000

2-bit codes:

00 =

01 =

10 =

11 =

bitmap:

01 01 01 01 10 11 11 11 11 11 10 01 01 01 01 00

55H BFH FDH 54H

© 2003 by CRC Press LLC

22.1.3 Bitblt Operations
The fundamental bitmap operation is the bit block transfer, or bitblt (pronounced
bit-blit). In the bitblt a rectangular block of memory bits, representing pixel attributes,
is transferred as a block. If the destination of the transfer is screen memory, then the
bitmapped image is displayed. At the time of the transfer, the source and destination
bit blocks can be combined logically or arithmetically, or a unary operation can be per-
formed on the source or the destination bit blocks. Figure 22-3 shows several binary
and unary operations on bit blocks.

Figure 22-3 Binary and Unary Operations on Bit Blocks

22.2 Bitmap Constructs

Several Windows data structures and concepts relate to bitmaps:

DESTINATION (D) RESULTSOURCE (S)

S OR D

S AND D

S XOR D

(~S)AND D

~ D

D = 0

=

=

=

=

=

=

© 2003 by CRC Press LLC

• Bitmap formats

• Structures for bitmap operations

• Creating bitmap resources

You must understand these concepts in order to be able to manipulate and display
bitmaps.

22.2.1 Windows Bitmap Formats

The computer establishment has created hundreds of bitmap image formats over the
past two or three decades; among the best known are GIF, PCX, Targa, TIFF, and Jpeg.
Windows does not provide support for manipulating image files in any commercial for-
mat. The only bitmap formats that can be handled are those specifically created for
Windows. These are the original device-specific bitmaps (extension BMP) and the
newer device-independent bitmaps (extension DIB).

The device-specific bitmap format was created in Windows 3.0. It can store im-
ages with up to 24-bit color. Files in BMP format are uncompressed, which makes
them quick to read and display. The disadvantage of uncompressed files is that they
take up considerable memory and storage space. Another objection to using the de-
vice-specific bitmap is that the BMP header cannot directly encode the original col-
ors in the bitmap. For this reason, the format works well for copying parts of the
screen to memory and pasting them back to other locations. But problems often oc-
cur when the device-specific bitmap must be saved in a disk file and then output to a
different device, since the destination device may not support the same colors as
the original one. For this reason it is usually preferable to use the de-
vice-independent format, although its data structures are slightly larger.

Note that many Windows bitmap functions operate both on device-specific and
device-independent bitmaps. The Bitmap Demo project on the book's software
package displays bitmaps in BMP and DIB format using the same Windows func-
tions. In the remainder of this chapter we deal exclusively with device-independent
bitmaps encoded in DIB format, although device independent bitmaps can also be
stored in .BMP files.

22.2.2 Windows Bitmap Structures

There are eleven structures directly or indirectly related to Windows bitmaps, listed in
Table 22-1, on the following page.

22.2.3 The Bitmap as a Resource

In Visual C++ a bitmap can be a program resource. Developer Studio includes a
bitmap editor that can be used for creating and editing bitmaps that do not exceed a
certain size and color range. Bitmaps in BMP or DIB format created with other applica-
tions can also be imported into a program. In this case you can select the Resource
command in the Insert menu, and then select the bitmap resource type and click the
Import button. The dialog that appears allows you to browse through the file system in
order to locate the bitmap file. It is usually better to copy the bitmap file into the pro-
ject's folder, thus ensuring that it is not deleted or modified inadvertently.

© 2003 by CRC Press LLC

Table 22-1

Bitmap-Related Structures

STRUCTURE CONTENTS

BITMAP Defines the width, height, type, format,
and bit values of a bitmap.

BITMAPCOREHEADER Contains information about the dimensions
and color format of a DIB.

BITMAPCOREINFO Contains a BITMAPCOREHEADER structure and
a RGBTRIPLE structure array with the bitmap's
color intensities.

BITMAPFILEHEADER Contains information about a file that holds
a DIB.

BITMAPINFO Defines the dimensions and color data of a
DIB. Includes a BITMAPINFOHEADER structure
and a RGBQUAD structure.

BITMAPINFOHEADER Contains information about the dimensions and
color format of a DIB.

COLORADJUSTMENT Defines the color adjustment values used by
the StrtchBlt() and StretchDIBits() functions.

DIBSECTION Contains information about a bitmap created by
means of the CreateDIBSection() function.

RGBQUAD Describes the relative intensities of the
red, green, and blue color components. The
fourth byte of the structure is reserved.

RGBTRIPLE Describes the relative intensities of the red,
green, and blue color components. The
BITMAPCOREINFO structure contains an array of
RGBTRIPLE structures.

SIZE Defines the width and height of a rectangle,
which can be used to represent the dimensions
of a bitmap.

Some of the structures in Table 22-1 are listed and described in this chapter.

Once a bitmap has been imported in the project, it is listed in the Resource tab of
t h e P r o j e c t Wo r k s p a c e p a n e . A t t h i s p o i n t i t i s p o s s i b l e t o u s e t h e
MAKEINTRESOURCE macro to convert it into a resource type that can be managed
by the application. Since the final objective is to obtain the handle to a bitmap, code
usually proceeds as follows:

HBITMAP aBitmap;

.

.

.

aBitmap = LoadBitmap (pInstance,

MAKEINTRESOURCE (IDB_BITMAP1));

In this case, IDB_BITMAP1 is the resource name assigned by Developer Studio
when the bitmap was imported. It is listed in the Bitmap section of the Resource tab
in the Project Workspace pane and also by the Resource Symbols command in the
View menu.

© 2003 by CRC Press LLC

22.3 Bitmap Programming Fundamentals
The bitmap is an object of the device context, such as a brush, a pen, a font, or a

region. Bitmap manipulations and display functions in Windows are powerful, but
not without some limitations and complications. This overview presents a prelimi-
nary discussion of simple bitmap programming. Later in this chapter we get into
more complicated operations.

22.3.1 Creating the Memory DC
The unique characteristic of a bitmap is that it can be selected only into a memory de-
vice context. The memory DC is defined as a device context with a display surface. It
exists only in memory and is related to a particular device context. In order to use a
memory device context you must first create it. The CreateCompatibleDC() function
is used for this purpose. Its general form is as follows:

��� ���������	��
�����
��� �����

Its only parameter is the handle to the device context with which the memory de-
vice context is to be compatible. This parameter can be NULL if the memory device
context is to be compatible with the video screen. If the function succeeds, it re-
turns the handle to the memory device context. The call returns NULL if it fails.
CreateCompatibleDC() assumes that the device context supports raster operations,
which is true in all PC video systems, but not necessarily so for other graphics de-
vices, such as a plotter. The GetDeviceCaps() function with the RASTERCAPS con-
stant can be used to determine if a particular device supports raster operations (see
Table 20-4).

Like the device context, a memory device context has a mapping mode attribute.
Applications often use the same mapping mode for the memory device context and
for the device context. In this case the SetMapMode() and GetMapMode() functions
can be combined as follows:

HDC hdc; // Handle to device context
HDC memDC; // Handle to memory device context
.
.
.
SetMapMode (memDC, GetMapMode (hdc));

22.3.2 Selecting the Bitmap
When the memory device context is created, it is assigned a display surface of a single
monochrome pixel. The single pixel acts as a placeholder until a real one is selected
into the memory DC. The SelectObject() function, discussed in Chapter 6, can be used
to select a bitmap into a memory device context, but the SelectBitmap() macro, dis-
cussed in Chapter 7, serves the same purpose. Both, SelectObject() and
SelectBitmap() have the same interface. For SelectBitmap() it is as follows:

HBITMAP SelectBitmap (HDC, HBITMAP);
| -------
| |
1 2

© 2003 by CRC Press LLC

The first parameter must be the handle of a memory device context. The second
parameter is the handle to the bitmap being installed. If the call succeeds, the macro
returns the handle to the device context object being replaced. If the call fails, it re-
turns NULL. Using the SelectBitmap() macro instead of the SelectObject() function
produces code that is correct and the coding is made easier. Recall that programs
that use the object selection macros must include the windowsx.h file.

The handle to the bitmap used in the SelectBitmap() macro is usually obtained
with the LoadBitmap() function previously discussed.

22.3.3 Obtaining Bitmap Dimensions

Bitmap functions often require information about the dimensions and other charac-
teristics of the bitmap. For example, the function most often used to display a bitmap
is BitBlt(); it requires the width and height of the bitmap. If the bitmap is loaded as a re-
source from a file, the application must obtain the bitmap dimensions before blitting it
to the screen. The GetObject() function is used to obtain information about a bitmap.
The function's general form is as follows:

int GetObject(

HGDIOBJ hgdiobj, // l

int cbBuffer, // 2

LPVOID lpvObject // 3

);

The first parameter is the handle to a graphics object; in this case, the handle to a
bitmap. The second parameter is the size of the buffer that holds the information re-
turned by the call. In the case of a bitmap, this parameter can be coded as sizeof
(BITMAP). The third parameter is a pointer to the buffer that holds the information
returned by the call. In the case of a bitmap, the buffer is a structure variable of type
BITMAP. The BITMAP structure is defined as follows:

typedef struct tagBITMAP {

LONG bmType; // Must be zero

LONG bmWidth; // bitmap width (in pixels)

LONG bmHeight; // bitmap height (in pixels)

LONG bmWidthBytes; // bytes per scan line

WORD bmPlanes; // number of color planes

WORD bmBitsPixel; // bits per pixel color

LPVOID bmBits; // points to bitmap values array

} BITMAP;

The structure member bmType specifies the bitmap type. It must be zero. The
member bmWidth specifies the width, in pixels, of the bitmap. Its value must be
greater than zero. The member bmHeight specifies the height, in pixels, of the
bitmap. The height must be greater than zero. The bmWidthBytes member specifies
the number of bytes in each scan line. Since Windows assumes that the bitmap is
word-aligned, its value must be divisible by 2. The member bmPlanes specifies the
number of color planes. The member bmBitsPixel specifies the number of bits re-
quired to indicate the color of a pixel. The member bmBits points to the location of
the bit values for the bitmap. It is a long pointer to an array of character-size values.

© 2003 by CRC Press LLC

When the target of the GetObject() call is a bitmap, the information returned is
the structure members related to the bitmap width, height, and color format. The
GetObject() function cannot be used to read the value of the pointer to the bitmap
data in the bmBits structure member. GetDIBits() retrieves the bit data of a bitmap.

The mapping mode can also be a factor in regard to bitmap data. The GetObject()
function returns the bitmap width and height in the BITMAP structure. The values
returned are in pixels, which are device units. This works well if the mapping mode
of the memory device context is MM_TEXT, but is not acceptable in any of the map-
ping modes that use logical units. The DPtoLP() function allows the conversion of
device coordinates (pixels) into logical coordinates for a particular device context.
The function's general form is as follows:

BOOL DPtoLP(
HDC hdc, // 1
LPPOINT lpPoints, // 2
int nCount // 3

);

The first parameter identifies the device context. In the case of a bitmap, it is a
memory device context. The second parameter points to an array of POINT struc-
tures that holds the transformed values for the x- and y-coordinates. The third pa-
rameter holds the number of points in the array specified in the second parameter.
The function returns TRUE if it succeeds and FALSE if it fails.

A bitmap size is defined by two values: the x-coordinate is the width and the
y-coordinate the height. When a call to DPtoLP() is made to obtain the bitmap size,
the third parameter is set to 1. This indicates that the coordinates to be transformed
refer to a single point. By the same token, the second parameter is a pointer to a sin-
gle POINT structure that holds the bitmap width in the x member and the bitmap
height in the y member.

22.3.4 Blitting the Bitmap
Once a bitmap has been selected onto a memory device context, and the code has ob-
tained the necessary information about its width and height, it is possible to display it
at any screen position by blitting the memory stored bitmap onto the screen. The
BitBlt() function is the simplest and most direct method of performing the bitmap dis-
play operation. The function's general form is as follows:

BOOL BitBlt(
HDC hdcDest, // 1
int nXDest, // 2
int nYDest, // 3
int nWidth, // 4
int nHeight, // 5
HDC hdcSrc, // 6
int nXSrc, // 7
int nYSrc, // 8
DWORD dwRop // 9

);

The first parameter identifies the destination device context. If the call to BitBlt()
is made to display a bitmap, this will be the display context. The second and third

© 2003 by CRC Press LLC

parameters are the x- and y-coordinates of the upper-left corner of the destination
rectangle. Which is also the screen location where the upper-left corner of the
bitmap is displayed. The fourth and fifth parameters are the width and height of the
bitmap, in logical units. The sixth parameter is the source device context. In the
case of a bitmap display operation, this parameter holds the memory device context
where the bitmap is stored. The seventh and eighth parameters are the x- and
y-coordinates of the source bitmap. Since the blitted rectangles must be of the same
dimensions, as defined by the fourth and fifth parameters, the seventh and eighth
parameters are usually set to zero.

The ninth parameter defines the raster operation code. These codes are called
ternary raster operations. They differ from the binary raster operation codes
(ROP2) discussed in Chapter 6 in that the ternary codes take into account the
source, the destination, and a pattern determined by the brush currently selected in
the device context. There are 256 possible raster operations, fifteen of which have
symbolic names defined in the windows.h header file. The raster operation code de-
termines how the color data of the source and destination rectangles, together with
the current brush, are to be combined. Table 22-2 lists the fifteen raster operations
with symbolic names.

Table 22-2

Symbolic Names for Raster Operations

NAME DESCRIPTION

BLACKNESS Fills the destination rectangle using the color
associated with index 0 in the physical palette. The
default value is black.

DSTINVERT Inverts the destination rectangle.
MERGECOPY Merges the colors of the source rectangle with the

specified pattern using an AND operation.
MERGEPAINT Merges the colors of the inverted source rectangle with

the colors of the destination rectangle using an
OR operation.

NOTSRCCOPY Inverts the bits in the source rectangle and copies it to
The destination.

NOTSRCERASE Combines the colors of the source and destination
rectangles using an OR operation, and then inverts the
result.

PATCOPY Copies the specified pattern to the destination
bitmap.

PATINVERT Combines the colors of the specified pattern with the
colors of the destination rectangle using an XOR
operation.

PATPAINT Combines the colors of the pattern with the colors of
the inverted source rectangle using an OR operation.
The result of this operation is combined with the colors
of the destination rectangle using an OR operation.

SRCAND Combines the colors of the source and destination
rectangles using an AND operation SRCCOPY
Copies the source rectangle directly to the destination
rectangle. This is, by far, the most-used mode in bitblt
operations.

(continues)

© 2003 by CRC Press LLC

Table 22-2

Symbolic Names for Raster Operations (continued)

NAME DESCRIPTION

SRCERASE Combines the inverted colors of the destination rectangle
with the colors of the source rectangle using an AND
operation.

SRCINVERT Combines the colors of the source and destination
rectangles using an XOR operation.

SRCPAINT Combines the colors of the source and destination
rectangles using an OR operation.

WHITENESS Fills the destination rectangle using the color associated
with index 1 in the physical palette. The default value is
White.

22.3.5 A Bitmap Display Function
Displaying a bitmap is a multistage process that includes the following operations:

1. Creating a memory device context.

2. Selecting the bitmap into the memory device context.

3. Obtaining the bitmap dimensions and converting device units to logical units.

4. Blitting the bitmap onto the screen according to a ternary raster operation code

Many graphics applications can make use of a function that performs all of the
previous operations. The function named ShowBitmap() is used in the Bitmap Demo
project on the book's software package. The function's prototype is as follows:

void ShowBitmap (HDC, HBITMAP, int, int, DWORD);
| ------- | | -----
| | | | |
1 2 3 4 5

The first parameter is the handle to the device context. The ShowBitmap() func-
tion creates its own memory device context. The second parameter is the handle to
the bitmap that is to be displayed. The third and fourth parameters are the screen
coordinates for displaying the upper-left corner of the bitmap. The fifth parameter is
the ternary ROP code used in blitting the bitmap. If this parameter is NULL then the
bitmap is displayed using the SRCCOPY raster operation. The following is a listing
of the ShowBitmap() function:

void ShowBitmap (HDC hdc, HBITMAP hBitmap, int xStart, int yStart,\
DWORD rop3) {

BITMAP bm; // BITMAP structure
HDC memoryDc; // Handle to memory DC
POINT ptSize; // POINT for DC
POINT ptOrigin; // POINT for memory DC
int mapMode; // Mapping mode

// Test for NULL ROP3 code
if (rop3 == NULL)

rop3 = SRCCOPY;

memoryDc = CreateCompatibleDC (hdc); // Memory device

© 2003 by CRC Press LLC

// handle
mapMode = GetMapMode (hdc); // Obtain mapping

// mode
SetMapMode (memoryDc, mapMode); // Set memory DC

// mapping mode

// Select bitmap into memory DC
// Note: assert statement facilitates detecting invalid
// bitmaps during program development
assert (SelectBitmap (memoryDc, hBitmap));

// Obtain bitmap dimensions
GetObject (hBitmap, sizeof(BITMAP), (LPVOID) &bm);

// Convert device units to logical units
ptSize.x = bm.bmWidth;
ptSize.y = bm.bmHeight;
DPtoLP (hdc, &ptSize, 1);

ptOrigin.x = 0;
ptOrigin.y = 0;
DPtoLP (memoryDc, &ptOrigin, 1);

// Bitblt bitmap onto display memory
BitBlt(hdc, xStart, yStart, ptSize.x, ptSize.y, memoryDc,

ptOrigin.x, ptOrigin.y, rop3);

// Delete memory DC with bitmap

DeleteDC (memoryDc);

}

22.4 Bitmap Manipulations
In addition to displaying a bitmap stored in a disk file, graphics applications often
need to perform other bitmap-related operations. The following are among the most
common operations:

• Creating and displaying a hard-coded bitmap

• Creating a bitmap in heap memory

• Creating a blank bitmap and filling it by means of GDI functions

• Creating a system-memory bitmap which applications can access directly

• Using a bitmap to create a pattern brush

22.4.1 Hard-Coding a Monochrome Bitmap
With the facilities available in Developer Studio for creating bitmaps, the programmer
is seldom forced to hard-code a bitmap. Our rationale for discussing this option is that
hard-coding bitmaps is a basic skill for a graphics programmer, and that it helps you to
understand bitmaps in general.

A monochrome bitmap has one color plane and is encoded in a 1-bit per pixel for-
mat. In Windows, a monochrome bitmap is displayed by showing the 0-bits in the
foreground color and the 1-bits in the background color. If the screen has a white
foreground and a black background, 0-bits in the bitmap are displayed as white pix-

© 2003 by CRC Press LLC

els, and vice versa. If the bitmap is to be blitted on the screen using the BitBlt() func-
tion, the action of the bits can be reversed by changing the raster operation code.
This gives the programmer the flexibility of using either zero or one bits for back-
ground or foreground attributes. Figure 22-4 shows a hard-coded monochrome
bitmap.

Figure 22-4 Hard-Coded, Monochrome Bitmap

In Figure 22-4 the dark pixels in the image are represented by 0-bits in the bitmap.
The resulting data structure has five bytes per scan line and a total of 10 scan lines.
The illustration shows how eight pixels in the bottom row of the image are repre-
sented by 8 bits (1 byte) of the bitmap. The dark pixels are encoded as 0 bits and the
light pixels as 1-bits. In order to display this bitmap so that the letters are black on a
white screen background, the black and white pixels have to be reversed by chang-
ing the raster operation mode from the default value, SCRCOPY, to NOTSCRCOPY,
as previously explained.

Once the bit image of a monochrome bitmap has been calculated, we can proceed
to store this bit-to-pixel information in an array of type BYTE. Windows requires
that bitmaps be word-aligned; therefore, each scan line in the array must have a

0

0
1
2
3
4
5
6
7
8
9

431

bitmap:

2

0 1 2 3 4
0- 0xC6 0x7C 0xC1 0x81 0xF0
1- 0xC6 0x7C 0xC1 0x83 0xF8
2- 0xC6 0x60 0xC1 0x83 0x18
3- 0xC6 0x60 0xC1 0x83 0x18
4- 0xFE 0x78 0xC1 0x83 0x18
5- 0xFE 0x78 0xC1 0x83 0x18
6- 0xC6 0x60 0xC1 0x83 0x18
7- 0xC6 0x60 0xC1 0x83 0x18
8- 0xC6 0x7C 0xF9 0xF3 0xF8
9- 0xC6 0x7C 0xF9 0xF1 0xF0

1 1 0 0 0 1 1 0 = 0xC6

effective size = 37 pixels

© 2003 by CRC Press LLC

number of bytes divisible by 2. In regards to the bitmap in Figure 22-4, you would
have to add a padding byte to each scan line in order to satisfy this requirement. The
resulting array could be coded as follows:

// 0 1 2 3 4 5
static BYTE hexBits[] = {0xc6, 0x7c, 0xc1, 0x81, 0xf0, 0x0,

0xc6, 0x7c, 0xc1, 0x83, 0xf8, 0x0,
0xc6, 0x60, 0xc1, 0x83, 0x18, 0x0,
0xc6, 0x60, 0xc1, 0x83, 0x18, 0x0,
0xfe, 0x78, 0xc1, 0x83, 0x18, 0x0,
0xfe, 0x78, 0xc1, 0x83, 0x18, 0x0,
0xc6, 0x60, 0xc1, 0x83, 0x18, 0x0,
0xc6, 0x60, 0xc1, 0x83, 0x18, 0x0,
0xc6, 0x7c, 0xf9, 0xf3, 0xf8, 0x0,
0xc6, 0x7c, 0xf9, 0xf1, 0xf0, 0x0};

// |
// padding byte -----------|

The CreateBitmap() function can be used to create a bitmap given the bit-to-pixel
data array. The function's general form is as follows:

HBITMAP CreateBitmap(
int nWidth, // 1
int nHeight, // 2
UINT cPlanes, // 3
UINT cBitsPerPel, // 4
CONST VOID *lpvBits // 5

);

The first parameter is the actual width of the bitmap, in pixels. In relation to the
bitmap in Figure 22-4, this value is 37 pixels, as shown in the illustration. The second
parameter is the number of scan lines in the bitmap. The third parameter is the num-
ber of color planes. In the case of a monochrome bitmap this value is 1. The fourth
parameter is the number of bits per pixel. In a monochrome bitmap this value is also
1. The fifth parameter is a pointer to the location where the bitmap data is stored. If
the function succeeds, the returned value is the handle to a bitmap. If the function
fails, the return value is NULL. The following code fragment initializes a mono-
chrome bitmap using the bitmap data in the hexBits[] array previously listed:

static HBITMAP bmImage1;
.
.
.
// Initialize monochrome bitmap
bmImage1 = CreateBitmap (37, 10, 1, 1, hexBits);

Alternatively, a bitmap can be defined using a structure of type BITMAP, listed
previously in this chapter and in Appendix A. Before the bitmap is created, the
structure members must be initialized, as in the following code fragment:

static BITMAP monoBM;
.
.
.
// Initialize data structure for a monochrome bitmap
monoBM.bmType = 0; // must be zero
monoBM.bmWidth = 37; // actual pixels used

© 2003 by CRC Press LLC

monoBM.bmHeight = 10; // scan lines
monoBM.bmWidthBytes = 6; // width (must be word aligned)
monoBM.bmPlanes = 1; // 1 for monochrome bitmaps
monoBM.bmBitsPixel = 1; // 1 for monochrome bitmaps
monoBM.bmBits = (LPVOID) &hexBits; // address of bit field

When the bitmap data is stored in a structure of type BITMAP, the bitmap can be
created by means of the CreateBitmapIndirect() function. The function's general
form is as follows:

HBITMAP CreateBitmapIndirect(
CONST BITMAP *lpbm // 1

);

The function's only parameter is a pointer to a structure of type BITMAP. If the
function succeeds, the returned value is the handle to a bitmap. If the function fails,
the return value is NULL. The following code fragment uses CreateBitmapIndirect()
to initialize a monochrome bitmap using the bitmap data in the hexBits[] array pre-
viously listed:

static HBITMAP bmImage1;
.
.
.
// Initialize monochrome bitmap
bmImage1 = CreateBitmapIndirect (&monoBM);

W h e t h e r t h e b i t m a p w a s c r e a t e d u s i n g C r e a t e B i t m a p () o r
CreateBitmapIndirect(), it can now be displayed by means of the ShowBitmap()
function developed and listed previously in this chapter.

22.4.2 Bitmaps in Heap Memory
A bitmap can take up a considerable amount of memory or storage resources. For ex-
ample, a 1200-by-1200 pixel bitmap encoded in 32-bit color takes up approximately 5.7
Mb. Applications that store large bitmaps in their own memory space can run into
memory management problems. One possible solution is to store large bitmaps in dy-
namically allocated memory, which can be freed as soon as the bitmap is no longer
needed. Note that freeing memory where the bitmap is stored does not affect the
screen image.

Several programming techniques can be used to allocate and release heap mem-
ory for a bitmap. The one most suitable depends on the particular needs of each par-
ticular programming problem. In one case you may allocate heap memory for a
bitmap during WM_CREATE message processing, and then use this allocated space
to create or copy different bitmaps during program execution. The allocated mem-
ory can then be freed during WM_DESTROY processing. Another option is to allo-
cate memory at the time it is required, create or copy the bitmap to this allocated
space, and deallocate the memory when the bitmap is no longer needed.

Many fables and fantastic theories have originated in the complications and
misunderstandings of Windows memory management. Although most of these
problems were corrected in Windows 3.1, an entire programming subculture
still thrives on discussions related to these topics. A programmer
encountering memory management in Windows finds that there are three

© 2003 by CRC Press LLC

separate sets of memory allocation and deallocation operators that serve
apparently identical purposes: the C++ operators new and delete, the
traditional C operators malloc and free, and the Windows kernel functions
LocalAlloc(), GlobalAlloc(), LocalFree(), and GlobalFree().

In Win32 programming, the first simplification is a result of the fact that there is
no difference between the global and the local heaps. Therefore, GlobalAlloc() and
LocalAlloc(), as well as GlobalFree() and LocalFree(), actually perform virtually
identical functions. Because of their greater flexibility we will use GlobalAlloc() and
GlobalFree() instead of new and delete or malloc and free operators from the C++
and C libraries. Another reason for this preference is that most Windows compilers
implement malloc and new in terms of GlobalAlloc(); therefore, the traditional oper-
ators offer no advantage.

Traditionally, three types of memory are documented as being available to appli-
cations: fixed memory, moveable memory, and discardable memory. The justifica-
tion for preferring moveable memory disappeared with Windows 95, in which a
memory block can be moved in virtual memory while retaining the same address.
For the same reason, the use of fixed memory no longer needs to be avoided.
Discardable memory is only indicated when the data can be easily recreated, which
is not usually the case with image data structures. In conclusion, fixed memory is
usually quite suitable for dynamically storing bitmaps and other image data.

Note that the terms moveable and movable are both accepted, although movable
is preferred. However, the Windows API contains the constants GMEM_MOVEABLE
and LMEM_MOVEABLE. For this reason we have used the former.

In this section we discuss the bare essentials of memory allocation and
deallocation in Windows. The topic of Windows memory management can easily fill
a good-size volume. Graphics applications are often memory-intensive and may re-
quire sophisticated memory management techniques. A graphics programmer
should have a thorough knowledge of Win32 memory architecture, virtual memory,
and heap management. The book Advanced Windows, by Richter (see Bibliography)
has chapters devoted to each of these topics.

The GlobalAlloc() function is used to allocate memory from the default heap. The
default heap is initially 1Mb, but under Windows, this heap grows as it becomes nec-
essary. The function's general form is as follows:

HGLOBAL GlobalAlloc(

UINT uFlags, // 1
DWORD dwBytes // 2

);

The first parameter is a flag that determines how memory is allocated to the
caller. Table 22-3 lists the most commonly used allocation flags. The second parame-
ter is the number of bytes of memory to be allocated. If it succeeds, the function re-
turns the handle to the allocated memory object. If the allocation flag is
GMEM_FIXED, the handle can be directly cast into a pointer and the memory used.
If the allocated memory is not fixed, then it must be locked using GlobalLock() be-
fore it can be used by code. The function returns NULL if the allocation request fails.

© 2003 by CRC Press LLC

Table 22-3

Win-32 Commonly Used Memory Allocation Flags

FLAG MEANING

GMEM_FIXED Allocates fixed memory. This flag cannot be
Combined with the GMEM_MOVEABLE or
GMEM_DISCARDABLE flag. The return value is a
pointer to the memory block.

GMEM_MOVEABLE Allocates moveable memory. This flag cannot be
combined with the GMEM_FIXED flag. The return
Value is the handle of the memory object, which is
A 32-bit quantity private to the calling process.

GMEM_DISCARDABLE Allocates discardable memory. This flag cannot be
combined with the flag. Win32-based operating
systems ignore this flag.

GMEM_ZEROINIT Initializes memory to 0.
GPTR Combines the GMEM_FIXED and

GMEM_ZEROINIT flags.
GHND Combines the GMEM_MOVEABLE and

GMEM_ZEROINIT flags.

The process of creating a bitmap in heap memory and displaying it on the video
screen can be accomplished by the following steps:

1. Dynamically allocate the memory required for the bitmap and the corresponding data
structures.

2. Store the bitmap data and the bitmap dimensions and color information, thus creating
a DIB.

3. Convert the device independent bitmap (DIB) into a device dependent bitmap using
CreateDIBitmap().

4. Display the bitmap using SetDIBitsToDevice().

Suppose you wanted to create a 200-pixel wide bitmap, with 255 scan lines, in
32-bit color. Since each pixel requires four bytes, each scan line consists of 800
bytes, and the entire bitmap occupies 204,000 bytes. A BITMAPINFO structure vari-
able is used to hold the bitmap information. Notice that because this is a true-color
bitmap, the RGBQUAD structure is not necessary. In this case the memory alloca-
tion operations can be coded as follows:

static PBITMAPINFO pDibInfo; // pointer to BITMAPINFO structure

static BYTE *pDib; // pointer to bitmap data

.

.

.

pDibInfo = (PBITMAPINFO) LocalAlloc(LMEM_FIXED, \

sizeof(BITMAPINFOHEADER));

pDib = (BYTE*) LocalAlloc(LMEM_FIXED, 204000);

At this point the code has allocated memory for both the bitmap and the
BITMAPINFOHEADER structure variable that is to hold the bitmap format informa-
tion. The pointers to each of these memory areas can be used to fill them in. First
the bitmap information:

© 2003 by CRC Press LLC

pDibInfo->bmiHeader.biSize = (LONG) sizeof(BITMAPINFOHEADER);
pDibInfo->bmiHeader.biWidth = (LONG) 200; // pixel width
pDibInfo->bmiHeader.biHeight = (LONG) 255; // pixel height
pDibInfo->bmiHeader.biPlanes = 1; // number of planes
pDibInfo->bmiHeader.biBitCount = 32; // bits per pixel

Assume that the bitmap is to represent a blue rectangle with 255 decreasing inten-
sities of blue, along the scan lines. The code to fill this bitmap can be coded as fol-
lows:

int i, j, k; // counters
BYTE shade; // shade of blue
.
.
.
// Fill the bitmap using 32-bit color data
// <--------- 200 pixels (4 bytes each) -------->
// |
// | ... 255 scan lines
shade = 0;

for (k = 0; k < 255; k++){ // Counts 255 scan lines
for (i = 0; i < 200; i++){ // Counts 200 pixels

for(j = 0; j < 4; j++) { // Counts 4 bytes
pDib[((k*800)+(i*4)+0] = shade; // blue
pDib[((k*800)+(i*4)+1] = 0; // green
pDib[((k*800)+(i*4)+2] = 0; // red
pDib[((k*800)+(i*4)+3] = 0; // must be zero
};

};
shade++;

};

Now that the bitmap data structures have been initialized and the bitmap data en-
tered into the allocated heap memory, it is time to create the device-dependent
bitmap that can be displayed on the display context. The function used for this pur-
pose is named CreateDIBitmap(); this name is somewhat confusing since it actually
creates a dependent device from a device-independent bitmap. The function's gen-
eral form is as follows:

HBITMAP CreateDIBitmap(
HDC hdc, // 1

CONST BITMAPINFOHEADER *lpbmih, // 2
DWORD fdwInit, // 3
CONST VOID *lpbInit, // 4
CONST BITMAPINFO *lpbmi, // 5
UINT fuUsage // 6

);

The first parameter is the handle to the device context for which the device de-
pendent bitmap is to be configured. The second parameter is a pointer to a
BITMAPINFOHEADER structure variable that contains the bitmap data. The third
parameter is a flag that determines how the operating system initializes the bitmap
bits. If this parameter is zero the bitmap data is not initialized and parameters 4 and
5 are not used. If it is set to CBM_INIT, then parameters 4 and 5 are used as pointers
to the data used in initializing the bitmap bits. The fourth parameter is a pointer to
the array of type BYTE that contains the bitmap data. The fifth parameter is a
pointer to a BITMAPINFO structure that contains the bitmap size and color data.

© 2003 by CRC Press LLC

The sixth parameter is a flag that determines whether the bmiColors member of the
BITMAPINFO structure contains explicit color values in RGB format or palette indi-
ces. In the first case the constant DIB_RGB_COLORS is used for this parameter, and
in the second case the constant is DIB_PAL_COLORS. The function returns the han-
dle to the bitmap if it succeeds, or NULL if it fails.

In the example that we have been following, the device-dependent bitmap is cre-
ated as follows:

static HBITMAP hBitmap; // handle to a bitmap
.
.
.

hBitmap = CreateDIBitmap (hdc,
(LPBITMAPINFOHEADER) &pDibInfo->bmiHeader,
CBM_INIT,
(LPSTR) pDib,
(LPBITMAPINFO) pDibInfo,
DIB_RGB_COLORS);

Having obtained its handle, the bitmap can be displayed using the ShowBitmap()
funct ion developed ear l ier in th is chapter. Al ternat ive ly, you can use
SetDIBitsToDevice() to set the screen pixels. The function's general form is as fol-
lows:

int SetDIBitsToDevice(
HDC hdc, // 1
int XDest, // 2
int YDest, // 3
DWORD dwWidth, // 4
DWORD dwHeight, // 5
int XSrc, // 6
int YSrc, // 7
UINT uStartScan, // 8
UINT cScanLines, // 9
CONST VOID *lpvBits, // 10
CONST BITMAPINFO *lpbmi, // 11
UINT fuColorUse // 12

);

The first parameter is the handle to the display context to which the bitmap is to
be output. The second and third parameters are the x- and y-coordinates of the des-
tination rectangle, in logical units. This is the screen location where the bitmap is
displayed. The fourth and fifth parameters are the width and height of the DIB.
These va lues are of ten read f rom the correspond ing members of the
BITMAPINFOHEADER structure variable that defines the bitmap. The sixth and
seventh parameters are the x- and y-coordinates of the lower-left corner of the DIB.
The eighth parameter is the starting scan line of the DIB. The ninth parameter is the
number of scan lines. The tenth parameter is a pointer to the bitmap data and the
eleventh parameter is a pointer to the BITMAPINFO structure variable that de-
scribes the bitmap. The twelfth parameter is a flag that determines whether the
bmiColors member of the BITMAPINFO structure contains explicit color values in
RGB format or palette indices. In the first case the constant DIB_RGB_COLORS is
used, and in the second case the constant DIB_PAL_COLORS. If the function suc-

© 2003 by CRC Press LLC

ceeds the return value is the number of scan lines displayed. The function returns
NULL if it fails.

In the current example, the bitmap can be displayed with the following call to
SetDIBitsToDevice():

SetDIBitsToDevice (hdc, 50, 50,
pDibInfo->bmiHeader.biWidth,
pDibInfo->bmiHeader.biHeight,
0, 0, 0,
pDibInfo->bmiHeader.biHeight,
pDib,
(BITMAPINFO FAR*) pDibInfo,
DIB_RGB_COLORS);

22.4.3 Operations on Blank Bitmaps
Sometimes an application needs to fill a blank bitmap using GDI functions. The func-
tions can include all the drawing and text display primitives discussed in previous
chapters. There are several programming approaches to creating a bitmap on which
GDI operations can be performed. The simplest approach is to select a bitmap into a
memory device context and then perform the draw operation on the memory device
context. Note that all the drawing functions discussed previously require a handle to
the device context. When the drawing takes place on a memory DC, the results are not
seen on the video display until the memory DC is blitted to the screen. In this approach
the following steps are required:

1. Select the bitmap into a memory device context using the SelectObject() function.

2. Clear or otherwise paint the bitmap using the PatBlt() function.

3. Perform drawing operations on the memory device context that contains the bitmap.

4. Display the bitmap by blitting it on the screen, typically with BitBlt().

The CreateCompatibleBitmap() function has the following general form:

HBITMAP CreateCompatibleBitmap(
HDC hdc, // 1
int nWidth, // 2
int nHeight // 3

);

The first parameter is the handle to the device context with which the created
bitmap is to be compatible. If the bitmap is to be displayed this parameter is set to
the display context. The second and third parameters are the width and height of the
bitmap, in pixels. If the function succeeds it returns the handle to the bitmap. The
function returns NULL if it fails.

In the following code sample we create a blank, 300 by 300-pixel bitmap, draw a
rectangle and an ellipse on it, and then blit it to the screen. First we start by creating
the blank bitmap:

static HDC aMemDC; // memory device context
static HBITMAP bmBlank; // handle to a bitmap
static HGDIOBJ oldObject; // storage for current object
.

© 2003 by CRC Press LLC

.

.

// Preliminary operations

aMemDC = CreateCompatibleDC (NULL); // Memory device handle

mapMode = GetMapMode (hdc); // Obtain mapping mode

SetMapMode (aMemDC, mapMode); // Set memory DC mapping mode

// Create the bitmap

bmBlank = CreateCompatibleBitmap (hdc, 300, 300);

oldObject = SelectObject (aMemDC, bmBlank);

Note that we use a generic handle (HGDIOBJ) to store the current handle in the
device context.

There is no guarantee that the bitmap thus created and selected into the device is
initialized. The PatBlt() function can be used to set all the bitmap bits to a particular
attribute or to a predefined pattern. The function's general form is as follows:

BOOL PatBlt(

HDC hdc, // 1

int nXLeft, // 2

int nYLeft, // 3

int nWidth, // 4

int nHeight, // 5

DWORD dwRop // 6

);

The first parameter is the handle to the device context, which can be a memory
device context. The second and third parameters are the x- and y-coordinates of the
upper-left corner of the rectangle to be filled. The fourth and fifth parameters are
the width and height of the bitmap, in logical units. The sixth parameter is one of the
following constants: PATCOPY, PATINVERT, DSTINVERT, BLACKNESS, or
WHITENESS. The constants are defined in Table 22-2. The call returns TRUE if it
succeeds and FALSE if it fails.

Following the current example, the call clears the bitmap and sets all bits to the
white attribute:

������
������� �� �� ���� ���� �����������

At this point in the code we can start performing drawing operations on the
bitmap. The only requirement is that the drawing primitives reference the handle to
the memory device context where the blank bitmap was selected, as in the following
example:

Ellipse (aMemDC, 10, 10, 210, 110);

Polyline (aMemDC, rectangle, 5);

Once you have finished drawing on the blank bitmap, it can be displayed by
means of a bitblt, as in the following example:

�
����
���� ��� ��� ���� ���� ������� �� �� � ��!�"��

In this case, the call references both the display context (hdc) and the memory
device context containing the bitmap (aMemDC).

© 2003 by CRC Press LLC

Clean-up operations consist of reselecting the original object to the memory de-
vice context, then deleting the device context and the bitmap.

22.4.4 Creating a DIB Section

The methods described in the preceding section are satisfactory when the bitmap area
requires drawing operations that can be implemented by GDI functions, but code has
no d i re c t a c c e ss t o t he b i t m a p i t se l f . Th is i s due to the fac t tha t
CreateCompatibleBitmap() does not return a pointer to the bitmap data area. The
CreateDIBSection() function, first introduced in Win32 and formalized in Windows 95,
allows creating a device-independent bitmap that applications can access directly.

Note that the original Windows documentation for Win32 contained incorrect in-
formation about the CreateDIBSection() function and the associated DIBSECTION
structure. Some of the errors and omissions were later corrected so that current
documentation is more accurate, although not very clear.

Before CreateDIBSection(), an application would access bitmap data by calling
the GetDIBits() function, which copies the bitmap into a buffer supplied by the
caller. At the same time, the bitmap size and color data is copied into a
BITMAPINFO structure from which the application can read these values. After the
bitmap is changed, the SetDIBits() function is used to redisplay the bitmap. Both
functions, GetDIBits() and SetDIBits(), allow selecting the first scan line and the
number of scan lines. When operating on large bitmaps, this feature makes it possi-
ble to save memory by reading and writing portions of it at a time.

There are several shortcomings to modifying bitmaps at run time using
GetDIBits() and SetDIBits(). The most obvious one is that the system bitmap must
be copied into the application's memory space, then back into system memory. The
process is wasteful and inefficient. If the entire bitmap is read during the
GetDIBits() call, there are two copies of the same data, thus wasting memory. If it is
broken down into regions in order to reduce the waste, then processing speed suf-
fers considerably. The solution offered by CreateDIBSection() is to create a bitmap
that can be accessed by both the system and the application. Figure 22-5 shows both
cases.

Although CreateDIBSection() provides a better alternative than GetDIBits() and
SetDIBits(), it is by no means the ultimate in high-performance graphics.
DirectDraw methods, discussed starting in Chapter 9, provide ways of accessing
video memory directly and of taking advantage of raster graphics hardware acceler-
ators.

In the following example, we create a DIB section, using the pointer returned by
the CreateDIBSection() call to fill the bitmap, and the bitmap handle to perform GDI
drawing functions on its memory space. The bitmap is 50 pixels wide and 255 scan
lines long. It is encoded in 32-bit true color format. The code starts by defining the
necessary data structures, initializing the variables, and allocating memory.

© 2003 by CRC Press LLC

Figure 22-5 Memory Image of Conventional and DIB Section Bitmaps

HDC aMemDC; // Memory DC
static HBITMAP aBitmap;
static BYTE* lpBits;

BITMAPINFOHEADER bi;
BITMAPINFOHEADER* lpbi;
HANDLE hDIB;
int shade;
static int BMScanLines; // Bitmap y-dimension
static int BMWidth; // Bitmap x-dimension
.
.
.
// Initialize size variables
BMScanLines = 255;
BMWidth = 50;
// Initialize BITMAPINFOHEADER structure
bi.biSize = sizeof(BITMAPINFOHEADER);
bi.biWidth = BMWidth;
bi.biHeight = BMScanLines;
bi.biPlanes = 1;
bi.biBitCount = 32;
bi.biCompression = BI_RGB;
bi.biSizeImage = 0;

APPLICATION
MEMORY

SPACE

VIDEO
MEMORY

SYSTEM
MEMORY

SPACE

GetDIBits()

DIB DDB
SetDIBits()

GDI operations
(via handle)

direct bit access
(via address)

DIB
SECTION

BitBlt()

© 2003 by CRC Press LLC

bi.biXPelsPerMeter = 0;
bi.biYPelsPerMeter = 0;
bi.biClrUsed = 0;
bi.biClrImportant = 0;

// Allocate memory for DIB
hDIB = GlobalAlloc (GMEM_FIXED, sizeof(BITMAPINFOHEADER));
// Initialize bitmap pointers
lpbi = (BITMAPINFOHEADER*) hDIB;
*lpbi = bi;

At this point everything is ready to call CreateDIBSection(). The function's gen-
eral form is as follows:

HBITMAP CreateDIBSection(
HDC hdc, // 1
CONST BITMAPINFO *pbmi, // 2
UINT iUsage, // 3
VOID *ppvBits, // 4
HANDLE hSection, // 5
DWORD dwOffset // 6

);

The first parameter is the handle to a device context associated with the DIB sec-
t ion. The second parameter is a pointer to a structure variable of type
BITMAPINFOHEADER, which holds the bitmap attributes. The first five members
of the BITMAPINFOHEADER structure are required; the other ones can often be
omitted, although it is usually a good idea to fill in the entire structure. The third pa-
rameter is either the constant DIB_PAL_COLORS or DIB_RGB_COLORS. In the first
case the bmiColors array member of the RGBQUAD structure in BITMAPINFO is a
set of 16-bit palette color indices. In the second case the bmiColors member is not
used and the colors are encoded directly in the bitmap. The fourth parameter is a
pointer to a pointer to type VOID that contains the location of the bitmap values.
This parameter is incorrectly documented in the Windows help files as a pointer to
type VOID. I f the parameter is not correct ly typecast to (VOID**) the
CreateDIBSection() call fails.

The fifth parameter is a handle to a file-mapping object. In file mapping, a physi-
cal file on disk is associated with a portion of the virtual address space of a process.
The file-mapping object is the mechanism that maintains this association. Its main
purpose is to share data between applications and to facilitate access to files. Al-
though file mapping is a powerful mechanism, it is outside the scope of this book
and is not discussed any further. If no file mapping is used, the fifth parameter is set
to NULL, and the sixth one, which sets the offset of the file mapping object, is set to
zero.

Following the current example, the call to CreateDIBSection() is coded as fol-
lows:

aBitmap = CreateDIBSection (hdc,
(LPBITMAPINFO)lpbi, // Pointer to

// BITMAPINFOHEADER
DIB_RGB_COLORS, // True color in RGB format
(VOID**) &lpBits, // Pointer to bitmap data
NULL, // File mapping object

© 2003 by CRC Press LLC

(DWORD) 0); // File mapping object offset
assert (aBitmap);
assert (lpBits);

The two assertions that follow the call ensure that a valid bitmap and pointer are
returned. If the call succeeds we now have a handle to a bitmap and its address in
system memory. Using the address, we can fill the bitmap. The following code frag-
ment uses the soft-coded bitmap parameters to fill the entire bitmap, scan line by
scan line, with increasing intensities of blue. The access to the bitmap is by means
of the pointer (lpBits) returned by the previous call.

// Fill the bitmap using 32-bit color data
// <--------- BMWidth * 4 -------->
// |
// | ... BMScanLines

shade = 0;
for (k = 0; k < BMScanLines; k++){ // Counts 255 lines

for (i = 0; i < BMWidth; i++){ // Counts 50 pixels
for(j = 0; j < 4; j++) { //Counts 4 bytes per pixel

lpBits[(k*(BMWidth*4))+(i*4)+0] = shade; // blue
lpBits[(k*(BMWidth*4))+(i*4)+1] = 0x0; // green
lpBits[(k*(BMWidth*4))+(i*4)+2] = 0x0; // red
lpBits[(k*(BMWidth*4))+(i*4)+3] = 0; // zero
};

};
shade++;

};

Since we have also acquired the handle to the bitmap, we can use GDI functions
to perform drawing operations on its surface. As described earlier in this chapter,
the GDI functions require that the bitmap be first selected into a memory device
context. The following code fragment shows one possible processing method:

aMemDC = CreateCompatibleDC (NULL); // Memory device handle
mapMode = GetMapMode (hdc); // Obtain mapping mode
SetMapMode (aMemDC, mapMode); // Set memory DC

// mapping mode
// Select the bitmap into the memory DC
oldObject = SelectObject (aMemDC, aBitmap);

Drawing operations can now take place, as follows:
// Draw on the bitmap
blackPenSol = CreatePen (PS_SOLID, 2, 0);
redPenSol = CreatePen (PS_SOLID, 2, (RGB (0xff, 0x0, 0x0)));
SelectPen (aMemDC, blackPenSol);
Polyline (aMemDC, rectsmall, 5); // Draw a rectangle
SelectPen (aMemDC, redPenSol);
Ellipse (aMemDC, 4, 4, 47, 47); // Draw a circle

You may be tempted to display the bitmap at this time; the display operation,
however, cannot take place until the memory device context has been deleted. In
the following instructions we re-select the original object in the memory device con-
text and then delete it. We also delete the pens used in the drawing operations.

// Erase bitmap and free heap memory
SelectObject (aMemDC, oldObject);
DeleteDC (aMemDC);
DeleteObject (redPenSol);

© 2003 by CRC Press LLC

DeleteObject (blackPenSol);

Displaying the bitmap can be performed by any of the methods already discussed.
In this code fragment we use the ShowBitmap() function developed earlier in the
chapter. A necessary precaution relates to the fact that some versions of Windows
NT place GDI calls that return a boolean value in a batch for later execution. In this
case, it is possible to attempt to display a DIB section bitmap before all the calls in
the GDI batch have been executed. In order to prevent this problem, it is a good idea
to flush the GDI batch buffer before displaying a DIB section bitmap, as shown in
the following code:

GdiFlush(); // Clear the batch buffer
ShowBitmap (hdc, Abitmap, 50, 50, SRCCOPY);

Now that you have finished displaying the bitmap, a tricky problem arises: how to
free the system memory space allocated by CreateDIBSection(). The solution is
easy. Since the bitmap resides in system memory, all we have to do in application
code is delete the bitmap; Windows takes care of freeing the memory. On the other
hand, if the BITMAPINFOHEADER structure was defined in heap memory, your
code must take care of freeing this memory space in the conventional manner. Pro-
cessing is as follows:

// Erase bitmap and free heap memory
// Note: deleting a DIB section bitmap also frees
// the allocated memory resources
DeleteObject (aBitmap); // Delete the bitmap
GlobalFree (hDIB);

Figure 22-6 is a screen snapshot of a program that executes the listed code. The
listing is found in the Bitmap Demo project folder on the book's software package

Figure 22-6 Screen Snapshot Showing a DIB Section Bitmap Manipulation

© 2003 by CRC Press LLC

22.4.5 Creating a Pattern Brush
In Chapter 21 we mentioned that applications can create a brush with a hatch pattern
different than the ones predefined in Windows. This is done by using a bitmap to define
the brush pattern. In Windows 95/98 the size of the bitmap cannot exceed 8-by-8 pixels,
but there is no size restriction in Windows NT. The function's general form is as fol-
lows:

�� #�� ������������$��%&�
�����'� ��
���	��

The function's only parameter is a handle to the bitmap that defines the brush.
The bitmap can be created with CreateBitmap(), CreateBitmapIndirect(), or
CreateCompatibleBitmap() functions. It can also be a bitmap drawn using Devel-
oper Studio bitmap editor, or any other similar utility, and loaded with the
LoadBitmap() function. The one type of bitmap that is not allowed is one created
with the CreateDIBSection() function. CreatePatternBrush() returns the handle to
the brush if it succeeds, and NULL if it fails.

Once the handle to the brush has been obtained, the pattern brush is selected into
the device context. Thereafter, all GDI drawing functions that use a brush use the
selected pattern brush. The following code fragment shows the creation of a pattern
brush from a bitmap resource named IDC_BITMAP5. The pattern brush is then used
to draw a rectangle.

static HBITMAP brushBM1; // Handle to a bitmap
static HBRUSH patBrush; // Handle to a brush
.
.
.
brushBM1 = LoadBitmap (pInstance,

MAKEINTRESOURCE (IDB_BITMAP5);
patBrush = CreatePatternBrush (brushBM1);
SelectBrush (hdc, patBrush);
Rectangle (hdc, 10, 10, 110, 160);
DeleteObject (patBrush);

In displaying solid figures that use a pattern brush, Windows sets the origin of the
brush bitmap to the origin of the client area. The SetBrushOrgEx() function is used
to reposition the brush bitmap in relation to the origin of the client area. This matter
was discussed in Chapter 7 in relation to brush hatch patterns.

22.5 Bitmap Transformations
In addition to manipulating bitmaps, Windows provides functions that transform the
bitmaps themselves. You have already seen that the BitBlt() function allows you to de-
fine a ternary raster operation code that determines how the source bitmap and a pat-
tern are combined to form the destination bitmap. In this section we discuss the
following transformations that are useful in bitmap programming:

• Painting a bitmap using a raster operation based on the brush selected in the device
context

• Stretching or compressing a bitmap according to the dimensions of a destination rect-
angle, a predefined stretch mode, and the selected ternary raster operation code

© 2003 by CRC Press LLC

Windows NT provides two powerful bitmap transforming functions named
MaskBlt() and PlgBlt(). Since the scope of this book includes functions that are
available only in Windows 95/98, these functions are not discussed.

22.5.1 Pattern Brush Transfer
A pattern brush transfer consists of transferring the pattern in the current brush into a
bitmap. The PatBlt() function is used in this case. If the PATCOPY raster operation
code is selected, as is usually the case, the brush pattern is copied to the destination
bitmap. If the PATINVERT raster operation code is used, then the brush and the desti-
nation bitmap are combined by performing a boolean XOR operation. The remaining
raster operation codes that are documented for the PatBlt() function with symbolic
names (DSTINVERT, BLACKNESS, and WHITENESS) ignore the brush and are use-
less in a pattern block transfer. The raster operation performed by PatBlt() is a binary
one since it combines a pattern and a destination. In theory, any of the raster opera-
tions codes listed in Appendix B that do not have a source operand can be used in
PatBlt(), although it may be difficult to find a useful application for most of them.

Note that there is a not-so-subtle difference between a rectangle filled with a pat-
tern brush, and a bitmap created by means of a pattern transfer. Although the results
can be made graphically identical by drawing the rectangle with a NULL pen, the
possibilities of further manipulating and transforming a bitmap are not possible
with a figure created by means of a GDI drawing function.

The following code fragment creates a blank bitmap in a memory device context
and fills it with a pattern brush. Since the processing is based on functions already
discussed, the code listing needs little comment.

static HBITMAP brushBM1; // Handle to a bitmap
static HBRUSH patBrush; // Handle to a brush
.
.
// Create the brush pattern bitmap from a resource
brushBM1 = LoadBitmap (pInstance,

MAKEINTRESOURCE (IDB_BITMAP5);
// Create a pattern brush
patBrush = CreatePatternBrush (patBM1);
// Create a memory device context
aMemDC = CreateCompatibleDC (NULL); // Memory DC
mapMode = GetMapMode (hdc); // Obtain mapping mode
SetMapMode (aMemDC, mapMode); // Set memory DC

// mapping mode
// Create the bitmap
bmBlank = CreateCompatibleBitmap (hdc, 300, 300);
oldObject = SelectObject (aMemDC, bmBlank);
// Select the pattern brush into the memory DC
SelectBrush (aMemDC, patBrush);
// Blit the pattern onto the memory DC
PatBlt (aMemDC, 0, 0, 300, 300, PATCOPY);
// Display the bitmap
BitBlt(hdc, 50, 50, 300, 300, aMemDC, 0, 0, SRCCOPY);
// Clean-up
SelectObject (aMemDC, oldObject);
DeleteDC (aMemDC);
DeleteObject (bmBlank);

© 2003 by CRC Press LLC

The demonstration program named Bitmap Demo, in the book's software pack-
age, displays a pattern bitmap using code very similar to the one listed.

22.5.2 Bitmap Stretching and Compressing
Occasionally, an application must fit a bitmap into a destination rectangle that is of dif-
ferent dimensions, and even of different proportions. In order to do this, the source
bitmap must be either stretched or compressed. One possible use of bitmap stretching
or compressing is adapting imagery to a display device that has a different aspect ratio
than the one for which it was created. The method can also be used to accommodate a
bitmap to a resizable window, as well as for producing intentional distortions, such as
simulating the effect of a concave or convex mirror, or other special visual effects.

The StretchBlt() function, one of the more elaborate ones in the API, allows
stretching or compressing a bitmap if this is necessary to fit it into a destination
rectangle. StretchBlt() is a variation of BitBlt(); therefore, it is used to stretch or
compress and later display the resulting bitmap. StretchBlt() is also used to reverse
(vertically) or invert (horizontally) a bitmap image. The stretching or compressing
is done according to the stretching mode attribute selected in the device context.
The stretch mode is selected by means of the SetStretchBltMode() function, which
has the following general form:

int SetStretchBltMode(
HDC hdc, // 1
int iStretchMode // 2

);

The first parameter is the handle to the device context to which the stretch mode
attribute is applied. The second parameter is a predefined constant that corre-
sponds to one of four possible stretching modes. All stretching modes have an old
and a new name. Table 22-4, on the following page, lists and describes the stretching
modes. The new, preferred names are listed first.

Note that, on many systems, the entire discussion on stretch modes is purely aca-
demic, since Microsoft has reported a Windows 95 bug in which the StretchBlt()
function always uses the STRETCH_DELETESCANS mode, no matter which one
has been selected by means of SetStretchBltMode(). The Microsoft Knowledge Base
article describing this problem is number Q138105. We have found no other
Microsoft Knowledge Base update regarding this matter.

The actual stretching or compression of the bitmap is performed by means of the
StretchBlt() function. The function's general form is as follows:

BOOL StretchBlt(
HDC hdcDest, // 1
int nXOriginDest, // 2
int nYOriginDest, // 3
int nWidthDest, // 4
int nHeightDest, // 5
HDC hdcSrc, // 6
int nXOriginSrc, // 7
int nYOriginSrc, // 8
int nWidthSrc, // 9

© 2003 by CRC Press LLC

int nHeightSrc, // 10
DWORD dwRop // 11

);

Table 22-4

Windows Stretching Modes

NAME DESCRIPTION

STRETCH_ANDSCANS
BLACKONWHITE Performs a logical AND operation using the color

values for the dropped pixels and the retained
ones. If the bitmap is a monochrome bitmap, this
mode preserves black pixels at the expense of
whiteones.

STRETCH_DELETESCANS
COLORONCOLOR Deletes the pixels. This mode deletes all dropped

pixel lines without trying to preserve their
information. This mode is typically used to preserve
color in a color bitmap.

STRETCH_HALFTONE
HALFTONE Maps pixels from the source rectangle into blocks

of pixels in the destination rectangle. The average
color over the destination block of pixels
approximates the color of the source pixels.
Windows documentation recommends that after
setting the HALFTONE stretching mode, an
application must call the SetBrushOrgEx() function
in order to avoid brush misalignment.

STRETCH_ANDSCANS
WHITEONBLACK Performs a logical OR operation using the color

values for the dropped and preserved pixels. If the
bitmap is a monochrome bitmap, this mode
preserves white pixels at the expense of black
ones.

The first parameter is the destination device context and the sixth parameter is
the source device context. The second and third parameters are the x- and
y-coordinates of the upper-left corner of the destination rectangle. The fourth and
fifth parameters are the width and height of the destination rectangle. The seventh
and eighth parameters are the x- and y-coordinates of the upper-left corner of the
source rectangle. The ninth and tenth parameters are the width and height of the
source rectangle. The eleventh parameter is one of the ternary raster operation
codes listed in Table 22-2 and in Appendix B.

Although the function's parameter list is rather large, it can be easily simplified.
Parameters 1 through 5 are the handle to the device context and the location and
size of the destination rectangle. Parameters 6 through 10 contain the same informa-
tion in regards to the source rectangle. The last parameter defines the raster opera-
tion code, which is usually set to SRCCOPY.

If the source and destination width parameters have opposite signs, the bitmap is
flipped about its vertical axis. In this case the left side of the original bitmap is dis-
played starting at the right edge. If the source and destination height parameters
have opposite signs the image is flipped about its horizontal axis. If both, the width

© 2003 by CRC Press LLC

and the height parameters have opposite signs, the original bitmap is flipped about
both axes during the transfer. Figure 22-7 shows the image changes in each case.

Figure 22-7 Horizontal and Vertical Bitmap Inversion with StretchBlt()

The following example takes an existing bitmap and stretches or compresses it to
fit the size of the client area. Code assumes an existing bitmap resource named
IDB_BITMAP2. The code starts by creating a bitmap from the resource and storing
its dimensions in a structure variable of type BITMAP. The dimensions of the client
area, which serves as a destination bitmap, are also retrieved and stored in a struc-
ture variable of type RECT.

BITMAP bm; // Storage for bitmap data

RECT rect; // Client area dimensions

static HBITMAP hstScope; // Handle for a bitmap

. . .

// Create bitmap from resource

hstScope = LoadBitmap (pInstance, MAKEINTRESOURCE (IDB_BITMAP2);

// Get bitmap dimensions into BITMAP structure variable

GetObject (hstScope, sizeof(BITMAP), &bm);

// Get client area dimensions

GetClientRect (hwnd, &rect);

orignal bitmap vertical flip

horizontal flip vertical and horizontal flip

© 2003 by CRC Press LLC

The StretchBlt() function requires two device contexts: one for the source bitmap
and another one for the destination. In this case we create a memory device context
and select the bitmap into it. This device context is the source rectangle. The code
also sets the stretch mode.

aMemDC = CreateCompatibleDC (hdc);
SelectObject (aMemDC, hstScope);
SetStretchBltMode (hdc, STRETCH_DELETESCANS);

All that is left is to display the bitmap using StretchBlt(). Once the bitmap is
blitted, the destination device context can be deleted. If the bitmap is not necessary,
it can also be erased at this time.

StretchBlt(hdc, // Destination DC
0, 0, rect.right, rect.bottom, // dest. dimensions
aMemDC, // Source DC
0, 0, bm.bmWidth, bm.bmHeight, // Source dimensions
SRCCOPY);

DeleteDC (aMemDC);

22.6 Bitmap Demonstration Program
The program named BMP_DEMO, located in the Bitmap Demo project folder of the
book's software package, is a demonstration of the bitmap operations and functions
discussed in this chapter. The Operations menu contains commands that correspond
to all the bitmap programming primitives, manipulations, and transformations dis-
cussed in the text.

© 2003 by CRC Press LLC

Part IV

DirectX Graphics

© 2003 by CRC Press LLC

Chapter 23

Introducing DirectX

Topics:
• Why was DirectX created

• 2D and 3D graphics

• DirectX components and features

• Obtaining and installing the DirectX SDK

• Overview of the DirectX software components

• Testing the SDK installation

In this chapter we start our discussion about graphics programming with DirectX. We
begin the chapter with a short review of Microsoft's reasons for creating the DirectX
package and describe its fundamental features. Then we look at obtaining, installing,
and testing the DirectX software.

23.1 Why DirectX?
Computer games and other high-performance graphics programs require interactive
processing, animation, and realistic object rendering, all of which rapidly consume
CPU cycles and video resources. Game programmers in particular have traditionally
pressed the boundaries of machine performance in order to improve the quality of
their products.

In the PC world the first computer games were developed in DOS. Because DOS
is a single-user single-task operating system, a DOS program can use any operation
that is valid in the machine's instruction set. In other words, a DOS application is in
total control of the machine hardware: it is “the god of the machine.” Because of this
power, a DOS program can accidentally (or intentionally) destroy files and re-
sources that are not its own, including the operating system itself.

As the PC evolved into a serious business platform, it became a major concern
that an application could destroy code, erase data belonging to other programs, or
create havoc with the operating system itself. In the business world a computer en-

© 2003 by CRC Press LLC

vironment that is intrinsically unsafe is intolerable. Who would ask a client to trust
its valuable business information and processing operations to such a machine? If
the PC were to be used in business, this situation had to be resolved.

The problem first had to be addressed in hardware. An operating system capable
of providing a safe and reliable environment requires hardware components that
support this protection. The 286 was the first Intel microprocessor that came
equipped with such hardware features. The 286 CPU allows the operating system to
detect and prevent access to restricted memory areas and to disallow instructions
that are considered dangerous to the integrity of other programs, or to the environ-
ment's stability. These special features made possible an operating system environ-
ment generically called “protected mode.” Protected mode functions were
expanded and enhanced in the 386, the 486, and in the various versions of the
Pentium.

In the mid eighties Microsoft and other companies started developing PC operat-
ing systems that would execute in protected mode. The results were several new op-
erating systems, of which Windows has been the only major survivor. Although safer
and more reliable, Microsoft Windows imposes many restrictions on applications. In
the original versions of Windows, games and other high-performance graphics appli-
cations could not access the hardware resources directly. This resulted in applica-
tions with much less performance and limited functionality. The natural
consequence of this situation was that game programmers continued to exercise the
craft in DOS. Windows users had to switch to the DOS mode in order to run games,
simulations, and other high-end graphical programs. In the PC this state-of-affairs
created a major contradiction: Windows was a graphical operating system in which
graphics applications would execute with marginal performance.

Microsoft attempted to remedy the situation by providing programmers with lim-
ited access to hardware and system resources. The goal was to allow applications
sufficient control of video hardware and other resources so as to improve perfor-
mance and control, and to do it in a way that does not compromise system stability.
The first effort in this direction was a product named WinG, in reference to Win-
dows for Games. WinG, which was first made available in 1994, required Windows
3.1 in Win32 mode. WinG's main feature was to allow game programmers to rapidly
transfer bitmaps from system memory into video memory. The result was a host of
new Windows games that executed with performance comparable to DOS. The im-
mediate success of WinG prompted Microsoft to develop a more elaborate product,
called the Game Software Development Kit, or Game SDK.

23.1.1 From the Game SDK to DirectX 8.1

The first version of the Game SDK made evident that the usefulness of direct access to
video memory and hardware extended beyond computer games. Many other multime-
dia applications, and other graphics programs that required high performance could
also benefit from these enhanced facilities. Consequently, the new version of the
Game SDK was renamed DirectX 2. Other versions later released were named DirectX
3, DirectX 5, DirectX 6, DirectX 7, and currently DirectX 8.1. Notice that no DirectX 4

706 Chapter Twenty-Three

© 2003 by CRC Press LLC

version exists. DirectX version 8.1 SDK, released in the year 2001, is the one discussed
in this book. A beta versions of DirectX 9 was released in May 2002.

The functionality of the DirectX is available to applications running in Windows
95, Windows 98, Windows Me, Windows 2000, and Windows XP. To a limited extent
DirectX is also available in the various versions of Windows NT. In the more recent
versions of Windows DirectX is furnished as part of the operating system software.
This means that applications running under Windows are able to execute programs
that use DirectX without the loading of additional drivers or other support software.
Each new version of DirectX is provided with a setup utility that allows upgrading a
compatible machine.

23.1.2 2D and 3D Graphics in DirectX

In previous versions of the DirectX SDK the 2D graphics interface was referred to as
DirectDraw, while 3D graphics were part of the Direct3D interface. Starting with
DirectX 8.1 DirectDraw and Direct3D were merged into a single interface. The
Microsoft documentation for DirectX 8.1 de-emphasizes the presence of a 2D and a 3D
component and refers to both of them as DirectX graphics. Furthermore, most of the
DirectX 8.1 SDK documentation and tutorials are about 3D, while the 2D topics, that
were previously discussed in great detail, are not included. It is difficult to ponder why
2D graphics topics were excluded from the DirectX 8.1 SDK documentation. One
could guess that the 3D element of DirectX has achieved such complexity that a simple
matter of space forced the documentation designers to leave out the 2D part. The deci-
sion may also be related to the fact that the DirectX 8.1 package includes the DirectX 7
documentation.

As a consequence of this attitude, Microsoft's DirectX 8.1 documentation often
equates DirectX graphics with Direct3D, as if 2D graphics no longer existed in
DirectX. Whatever reasons Microsoft had for leaving 2D graphics out of the SDK
documentation, the fact remains that, in practical programming, 2D graphics cannot
be ignored. In the first place, many graphics applications do not required 3D-level
modeling or rendering: sophisticated and powerful graphics can be obtained in 2D.
Often animations are easier to implement and show better performance in 2D than
in 3D graphics. Many successful computer games and other high-level graphics ap-
plications are implemented in 2D. Furthermore, most 3D applications rely heavily
on 2D graphics for rendering backgrounds, sprites, and other non-3D elements. An-
other reason for separating 2D and 3D graphics is that the learning curve for 3D
graphics is quite steep. 2D provides a reasonable introduction to a complex and
sometimes intimidating technology. For all these reasons, in this book we maintain
the distinction between the 2D and the 3D components of DirectX.

23.1.3 Obtaining the DirectX SDK

Several versions of the DirectX SDK are available for download, at no cost, on the
Microsoft web site located at:

�����������	�
��
�
��	�
���
�����

Introducing DirectX 707

© 2003 by CRC Press LLC

DirectX has grown in size during its evolution. The current version (8.1 at the
present time) takes up approximately 390 Mb. Downloading the SDK, even in com-
pressed format, can take considerable time online.

23.2 DirectX 8.1 Components
The DirectX 8.1 SDK includes the following components:

• DirectX Graphics combines the DirectDraw and Direct3D components of previous ver-
sions of DirectX. This single API can be used for either 2D or 3D graphics programming.
DirectX Graphics includes the Direct3DX utility library that simplifies many graphics
programming tasks.

• DirectX Audio combines the DirectSound and DirectMusic components of previous
DirectX versions. All audio programming is done with this single API.

• DirectPlay makes possible connecting applications over a modem link or a network.

• DirectInput provides support for input devices including joystick, mouse, keyboard,
and game controllers. It also provides support for feedback game devices.

• DirectShow provides capture and playback of multimedia streams.

• DirectSetup provides a simple installation procedure for DirectX. It simplifies the up-
dating of display and audio drivers and makes sure that there are no software or hard-
ware conflicts.

• AutoPlay allows creating a CD ROM disk that installs automatically once inserted in the
drive. AutoPlay is not unique to DirectX since it is part of the Microsoft Win32 API.

This book is concerned mostly with DirectX graphics. The other components of
DirectX are discussed only incidentally.

23.3 New Features in DirectX 8
The DirectX documentation lists the following new features for the SDK:

• Integration of DirectDraw and Direct3D into a single DirectX Graphics component.
This approach supposedly makes it easier to use and to support the latest graphics
hardware.

• DirectMusic and DirectSound are more integrated. Wave files and other resources can
now be loaded by the DirectMusic loader, and played through the DirectMusic perfor-
mance, synchronized with MIDI notes.

• DirectPlay has been updated to increase its capabilities and improve its ease-of-use.
DirectPlay now supports voice communication between players.

• DirectInput introduces a major new feature called action mapping. Action mapping en-
ables you to establish a connection between input actions and input devices. The con-
nection does not depend on the existence of particular device objects.

• DirectShow is now part of DirectX and has been updated.

• You can use the DirectX Control Panel Application to switch between the debug and re-
tail builds of DirectInput, Direct3D, and DirectMusic.

708 Chapter Twenty-Three

© 2003 by CRC Press LLC

• The DirectX 8.1 SDK includes several new sample programs with the corresponding
source code and development tools.

Version 8.1 of DirectX contains the following new features:

• Added new Direct3D samples (cull, lighting, volume fog, self-shadowing and enhanced
usage of D3DX in the samples).

• Continued improvement of the D3Dx documentation.

• SDK contains a graphics screensaver framework.

• A MView mesh utility, useful for previewing meshes, normals, etc.

• DirectX AppWizard for Visual C++ v6.0.

• DirectX error lookup tool providing error lookup for Directx 8.x interfaces only. There
is also an error lookup function you may use in your application.

The SDK screensaver framework is modeled after the graphics sample frame-
work. It provides multi-monitor support, a feature the standard graphics sample
framework does not privide.

23.3.1 Installing the DirectX SDK
DirectX 8.1 contains an installation utility that loads and sets up the software on the
target system. Microsoft recommends that any previous versions of the SDK be
uninstalled before the setup program is executed, but take into account that only the
most recent versions of the DirectX SDK are equipped with uninstall utilities. The SDK
installs to a default folder C:\DXSDK. Certain uncommon features of the SDK direc-
tory structure are designed for compatibility with Microsoft Developers Network
(MSDN) Platform SDK, which duplicates most of DirectX 8.1.

If the SDK is in a CD ROM the installation will begin automatically when the disk
is recognized. If not you can execute the install application located in the DirectX
main directory. Figure 23-1 shows the initial screen of the DirectX 8.1 installation
program.

Figure 23-1 DirectX 8.1 Installation Main Screen

Introducing DirectX 709

© 2003 by CRC Press LLC

To install the SDK you double-click on the Install DirectX 8.1 SDK option. The
software then presents the Microsoft license agreement, which the user must ac-
cept, and continues by offering three installations modes: complete, custom, and
runtime only. The first option installs all SDK files in your system and updates the
system-level support software. The second option allows choosing the SDK compo-
nents to be installed in your machine. This option displays a screen containing
check boxes for each installation component that can be selected, as shown in Fig-
ure 23-3.

Figure 23-2 DirectX 8.1 Custom Installation Screen

The custom installation option may allow you to save some hard-disk space by
excluding components that will not be used. For example, if you do not plan to de-
velop Visual Basic applications that use DirectX you may de-select these options, as
in Figure 23-2. If options not originally installed are needed later, you may run the
custom installation again.

As the DirectX installation continues, another screen is displayed which offers
the option of installing the debug or the retail version of the DirectX dynamic-link li-
braries (DLLs). This screen is shown in Figure 23-3.

Figure 23-3 DirectX 8.1 Retail or Debug Runtime Selector

710 Chapter Twenty-Three

© 2003 by CRC Press LLC

Selecting the debug version installs both debug and retail DLLs on your system.
The debug DLLs have additional code that displays error messages while your pro-
gram is executing. In this case errors are described to a greater detail. On the other
hand, the debug DLLs execute more slowly than the retail DLLs. Programmers work-
ing in Visual C++ can configure their system so that debug output is displayed in a
Window, in a second monitor, or even in another computer. You can toggle between
DirectX retail and debug system components in Direct3D and DirectInput by select-
ing the corresponding box in the DirectX Properties dialog box. This utility is acti-
vated by clicking the DirectX icon in the Windows Control Panel.

23.3.2 Compiler Support
DirectX 7 documentation states that the SDK is compatible with Microsoft Visual

C++ version 4.2 and later, as well as with Watcom 11.0 and Borland C Builder 3 and
4. However, documented compiler support in DirectX 8.1 is limited to Visual Studio
6.0 or higher. All sample programs in DirectX 8.1 were developed with Visual Studio
6.0. Visual C++ 6.0 project files (.dsp) are included in the sample code and demon-
stration programs contained in the package.

23.3.3 Accessing DirectX Programs and Utilities
You may inspect the various components of the SDK by navigating through the

Windows toolbar Start button, selecting Programs, then Microsoft DirectX 8.1 SDK,
as shown in Figure 23-4.

Figure 23-4 Navigating to the DirectX 8.1 Programs and Utilities

The DirectX executable files are signaled by the x-shaped DirectX logo or by a
custom icon. You can execute the programs by clicking the corresponding icon.

Introducing DirectX 711

© 2003 by CRC Press LLC

If you are planning on developing DirectX software it may be a good idea to cre-
ate a desktop item for the DirectX 8.1 documentation utility, which is actually the
Windows HTMLHelp viewer. This can be accomplished by right-clicking and drag-
ging the item named DirectX Documentation (Visual C++) from the program list
onto the desktop. When the right mouse button is released, a menu box with several
options is displayed. Select the option labeled Create Shortcut(s) Here. Figure 23-5
shows the DirectX 8.1 documentation using the HTMLHelp viewer utility.

Figure 23-5 DirectX 8.1 Documentation Utility

Table 23-1 lists the directory layout of the DirectX 8.1 CD ROM.

Table 23-1

DirectX 8.1 CD ROM Directory Layout

\Bin
\DXUtils

High level DirectX applications & tools.

\AppWizard
DirectX 8.1 application Wizard that can be plugged
into Microsoft Visual C++ 6.0. The AppWizard creates a minimal
C++ template application that optionally integrates Direct3D,
DirectInput, DirectMusic, DirectSound, and DirectPlay to work.

\Doc
Reference documentation for the DirectX 8.1 APIs. This
documentation must be viewed with Windows HTMLHelp.

\Essentls
\DMusProd (DirectMusic Producer)

The authoring tool for DirectMusic. Allows composers and sound
designers to use the interactive and variable resources of
DirectMusic along with the consistent sound performance of DLS.
The DirectMusic Producer setup program and all files are located
here.

(continues)

712 Chapter Twenty-Three

© 2003 by CRC Press LLC

Table 23-1

DirectX 8.1 CD ROM Directory Layout (continued)

\Extras
\Direct3D

Skinning exporter tools
\DirectShow

\DVDBoilerplate
Contains additional media that can be used with
DirectShow and the DirectShow Editing Services (DES) interfaces.

\Documentation
DirectX 7 HTMLHelp Documentation for English and Japanese.
Also contains DirectX 7 Documentation in Microsoft Word format.

\Symbols

Directories of DirectX 8.1 symbol files for Win9x, Win2000 and
WinXP (retail and debug for each).

\Include
DirectX 8.1 include files for DirectX core components.

\Lib
DirectX 8.1 library files for DirectX core components.

\License
Text versions of the DirectX SDK and End User License
Agreements and the Redistributable License Agreement.

\Redist
Redistributable versions of the DirectX 8.1 Runtime.

\Samples
Sample code and sample binaries. Most samples can be
accessed from the Start menu when installed via the downloaded
InstallShield setup.

\SDKDev
Contains the runtime installs that are installed with the SDK.
They are English only and contain both debug and retail
DirectX 8.1 system components that can be "switched" between
retail and debug without reinstalling.

\Suppport
Contains support tools required for the SDK installation.
The folder can be deleted following installation.

\System32
Contains support tools required for the SDK installation. This
folder can also be deleted following installation.

23.4 Testing the Installation
The DirectX SDK contains several diagnostic tools that provide information about the
DirectX components installed in the system and tests that the various DirectX compo-
nents are working properly. The easiest way to access the diagnostic utility is by dou-
ble-clicking on the DirectX propeller-shaped icon in the Windows Control Panel. The
DirectX diagnostic program, named directx, is located in the \bin\DXUtils folder
which is located in the DirectX installation directory, by default named DXSDK. Alter-
natively, the program can be executed by clicking the directx program icon. Figure
23-6 shows the initial screen of the DirectX Properties Dialog box.

Introducing DirectX 713

© 2003 by CRC Press LLC

Figure 23-6 DirectX Properties Dialog Box

The Properties Dialog box access to the following DirectX components:

• DirectMusic

• DirectPlay

• DirectSound

• DirectX

• Direct3D

• DirectDraw

• DirectInput

You can move to the different components by clicking the tabs. The DirectX Prop-
erties Dialog contains a button labeled DxDiag... (see Figure 23-6) which activates
the diagnostic function. It is the diagnostic utility that provides the most informa-
tion about the DirectX API components and drivers installed on the system. It also
enables you to test the system capabilities and to selectively enable and disable
some hardware acceleration features. The information provided by the diagnostic
tool can be saved to a text file for later reference. Clicking the DxDiag... button pro-
duces the screen shown in Figure 23-7, on the following page.

The display screen of the DirectX Diagnostic Tool utility changes according to the
system configuration. The one shown in Figure 23-10 corresponds to a machine
equipped with two video systems. Information regarding one of them is found in the
Display1 tab, and the other one in the Display2 tab. By clicking the Next Page button
you can visit each tab page in succession. Figure 23-8, on the following page, shows
the Display1 screen in one of the author's machines.

714 Chapter Twenty-Three

© 2003 by CRC Press LLC

Figure 23-7 DirectX Diagnostic Utility

Figure 23-8 DirectX Diagnostic Utility Display Test

The Display function of the DirectX Diagnostic Tool provides information about
the display device, the installed drivers, and the DirectX features available in the
hardware. It also provides tests for the supported hardware features. Notice that the
machine tested does not support AGP (Accelerated Graphics Port) texture accelera-
tion.

Introducing DirectX 715

© 2003 by CRC Press LLC

Clicking the corresponding buttons allows testing DirectDraw and Direct3D func-
tionality in the hardware. Figure 23-9 shows the results of the DirectDraw test on
the same machine.

Figure 23-9 Testing DirectDraw Functionality

The first note in the bottom window shows that no problems were detected with
the installed drivers or the hardware features. The Test Direct3D button performs
similar functions for the 3D features. It is usually a good idea to run all available
hardware tests, especially if the system is to be used in DirectX software develop-
ment.

716 Chapter Twenty-Three

© 2003 by CRC Press LLC

Chapter 24

DirectX and COM

Topics:
• Fundamentals of object orientation

• Review of C++ indirection

• COM in DirectX

• Creating the COM object

• Accessing the COM Object

The first hurdle in learning DirectX programming relates to understanding Microsoft's
Component Object Model (COM). The COM is a foundation for an object oriented sys-
tem, at the operating system level, which supports and promotes the reuse of inter-
faces. COM originated as a support for Windows object linking and embedding (OLE).
The COM has often been criticized as being difficult to understand and use. But as
DirectX programmers we have no choice in the matter: DirectX is based on COM.

The DirectX programmer deals with the COM only superficially. It is not neces-
sary for the programmer to know how to implement COM functionality, but just how
to use it. But even then, understanding COM requires knowledge of some of the fun-
damentals of object orientation and some notion of C++ indirection. We start with a
review of these concepts.

24.1 Object Orientation and C++ Indirection
This section is intended as a review of some C++ concepts on which the COM is based.
It can be skipped if you are already familiar the basics of object orientation, as well as
with pointers, double indirection, and virtual functions.

24.1.1 Indirection Fundamentals
One of the most unique features of C and C++ is their extensive use of indirection.
Other programming languages, such as Pascal, Ada, and PL/I, implement pointer vari-
ables, however, C and C++ do so in a unique way. This uniqueness is particularly evi-
dent in how C and C++ treat pointers to void, pointers to functions, pointers to

© 2003 by CRC Press LLC

objects, and pointers to pointers. In C++ the use of pointers is necessary in implement-
ing inheritance and runtime polymorphism. Only with a thorough understanding of
pointers will the C++ programmer be able to take advantage of all the power and flexi-
bility of object orientation.

The following short program uses pointers to transfer a string from one buffer
into another one.

#include <iostream.h>
main(){

char buffer1[] = "This is a test"; // buffer1 is initialized
char buffer2[20]; // buffer2 is reserved
char* buf1_ptr; // One pointer variable
char* buf2_ptr; // A second pointer variable

// Set up pointers to buffer1 and buffer2. Note that since array
// names are pointer constants, we can equate the pointer variables
// to the array name. However, we cannot say: buf1_ptr = &buffer1;

buf1_ptr = buffer1;
buf2_ptr = buffer2;

// Proceed to copy buffer1 into buffer2
while (*buf1_ptr) {

*buf2_ptr = *buf1_ptr; // Move character using pointers
buf1_ptr++; // Bump pointer to buffer1
buf2_ptr++; // Bump pointer to buffer2
}

*buf2_ptr = NULL; // Place string terminator

// Display both buffers to check program operation
cout << "\n\n\n"

<< buffer1 << "\n"
<< buffer2 << "\n\n";

return 0;
}

The code has several peculiarities, for example, the statements

char* buf1_ptr;
char* buf2_ptr;

declare that buf1_prt and buf2_ptr are pointer variables to variables of type char. If the
statements had been:

char *buf1_ptr;
char *buf2_ptr;

the results would have been identical since C and C++ allow this and other syntax vari-
ations. Placing the asterisk close to the data type seems to emphasize that the pointer
is a pointer to a type. However, if we were to initialize several variables simultaneously
we would have to place an asterisk before each variable name, either in the form:

����� ����	
��� � ����	
�
�

or in the form:

���� �����	
��� �����	
�
�

718 Chapter Twenty-Four

© 2003 by CRC Press LLC

Either syntax seems to favor the second style.

Once a pointer variable has been created, the next step is to initialize the pointer
variables (in this case buf_ptr1 and buf_ptr2) to the address of the first byte of the
data areas named buffer1 and buffer2. Someone familiar with the use of the & opera-
tor to obtain the address of a variable may be tempted to code:

�����	
� � ��������� �� ������� ��� ������

However, in C and C++ an array name is an address constant. Therefore, this ex-
pression is illegal for arrays, but legal and valid for any other data type. In the case
of an array we must initialize the pointer variable with an expression such as:

�����	
� � ��������

We again overload the * symbol when we need to address the characters pointed
to by the pointer variable. As is the case in the expressions:

while (*buf1_ptr)
{

*buf2_ptr = *buf1_ptr;
buf1_ptr++;
buf2_ptr++;

}
*buf2_ptr = NULL;

The process of accessing the value of the target variable by means of a pointer is
called dereferencing. The asterisk symbol (*) is also used in dereferencing a pointer.
In this case it precedes the name of the pointer variable and is sometimes called the
indirection operator. For example, if prt1 is a pointer to the integer variable var1,
which holds the value 22, then the following statement displays this value:

���
 �� �	
���

24.1.2 Pointers to Pointers
The concept of double indirection is familiar to most C/C++ programmers. In this case
a pointer variable is used to hold the address of another pointer variable. For example:

 !
 "�#��� �
$�

We can now create and initialize a pointer to the variable value1:

 !
 �	
� � �"�#����

and another pointer variable to hold the address of the first pointer:

 !
 ��		
� � �	
��

Now the value of the variable value1 can be accessed directly or by dereferencing the
pointer variable or the pointer to a pointer variable:

"�#��� � %$�

or

�	
� � %%�

or

DirectX and COM 719

© 2003 by CRC Press LLC

��		
� � &$�

In Hungarian notation the prefix p is usually assigned to simple pointer variables
and pp to pointers to pointers.

In COM functions are accessed through a pointer to an interface. To invoke the
function you use essentially the same syntax that you would to invoke a pointer to a
C++ function. For example, to invoke the IAnInterface::DoIt you would use the fol-
lowing syntax.

IAnInterface *pAnIface;

...

pAnIface->DoIt(...);

The need for a second level of indirection results from the fact that to use a func-
tion you must first obtain an interface pointer. In order to do so, you declare a vari-
able as a pointer to the desired interface, and pass the address of the pointer
variable to the method. In other words, what you pass to the method is the address
of a pointer. When the method returns, the variable (of type pointer to pointer) will
point to the requested interface. You use this pointer to call any of the interface's
functions.

24.1.3 Pointers to Functions

The Intel x86 family of microprocessors supports indirect jumps and calls. Indirect ac-
cess to code is achieved either through a register or memory operand, or through both
simultaneously. One commonly used technique of indirect access to code is by means
of a memory table which holds a set of addresses to various routines. An offset value is
added to the address of the start of the table to determine the destination for a particu-
lar jump or call.

C++ implements code indirection by means of pointers to functions. Since a func-
tion address is its entry point, this address can be stored in a pointer and used to call
the function. When these addresses are stored in an array of pointers, then the re-
sulting structure is called a call table. Jump and call tables are sometimes called
dispatch tables by C and C++ programmers.

The implementation of pointers to functions and dispatch tables in C and C++ re-
quires a special syntax. In the first place, a pointer to a function has a type that cor-
responds to the data type returned by the function and is declared inside
parentheses. For example, to declare a function pointer named fun_ptr, which re-
ceives two parameters of int type in the variables named x and y, and returns void,
you would code:

"� ' (���!�	
�) (!
 *� !
 +)�

In this special syntax, the parentheses have the effect of binding to the function
name, not to its data type. If you were to remove the parentheses, the result would
be a pointer to a function that returns type void. Note that the previous line creates
a function pointer that is not yet initialized. This pointer can be set to point to any
function that receives two int-type parameters and returns void. For example, if

720 Chapter Twenty-Four

© 2003 by CRC Press LLC

there was a function named Fun1 with these characteristics we could initialize the
function pointer with the statement:

��!�	
� � ��!��

C and C++ compilers assume that a function name is a pointer to its entry point,
thus the address of (&) operator is not used. Once the function pointer is initialized,
we can access the function Fun1 with the statement:

(���!�)(&� ,)�

In this case we are passing to the function the two integer parameters, in the conven-
tional manner.

24.1.4 Polymorphism and Virtual Functions

Run-time polymorphism is also called late or dynamic binding. This topic is at the core
of object-oriented programming since it provides a powerful mechanism for achieving
several very desirable properties: reusability, isolation of program defects, and the
component-based architecture previously discussed. The fundamental notion of dy-
namic binding is that the method to be executed is determined when the program runs,
not when it is compiled. Suppose a class hierarchy which includes a base class named
B and several derived classes named D1, D2, and D3 respectively. Also assume that
there is a method named M() in the base class, which is inherited and perhaps modified
in the derived classes. We now implement a pointer named ptr to the method in the
base class. In C++ we can access this method by means of the statement:

	
�-. /()�

However, in dynamic binding terms this does not imply that the method of the
base class is forcefully executed. Instead, which method is used depends on the ob-
ject referenced by the pointer variable. If ptr is currently pointing to method M() in
class D2, then it is this implementation of M() that is executed, not the one in the
base class.

In most modern object-oriented languages, methods are dynamically bound by
default. This is not the case with C++, where methods are statically bound by de-
fault. Dynamic binding in C++ is accomplished by means of virtual functions. A vir-
tual function is declared in the base class and redefined in one or more derived
classes. This means that the function declared virtual in the base class defines a gen-
eral type of methods and serves to specify the interface. Other functions with the
same name and interface can be implemented in the derived classes to override the
one in the base class. If the virtual function is accessed by means of its name, it be-
haves as any other function. However, when a function declared virtual in the base
class is accessed via a pointer, then the one executed depends on the object which
the pointer is referencing.

In C++ a pointer to an object in the base class can be set to point to an object in a
derived class. It is this mechanism that allows implementation of dynamic binding in
C++. The following short program shows how it is accomplished:

DirectX and COM 721

© 2003 by CRC Press LLC

//***
// Program name: virtual_1.cpp
// C++ program to illustrate virtual functions and run-time
// polymorphism
//***

#include <iostream.h>

//****************************
// classes
//****************************
// Base class
class BaseClass {
public:

virtual void DisplayMsg() {
cout << "Method in BaseClass executing\n" ;

}
};

// A derived class
class DerClass1 : public BaseClass {
public:

virtual void DisplayMsg() {
cout << "Method in DerClass1 executing\n" ;

}
};
// A second derived class
class DerClass2 : public BaseClass {
public:

virtual void DisplayMsg() {
cout << "Method in DerClass2 executing\n" ;

}
};

//****************************
// main()
//****************************
main() {

BaseClass *base_ptr; // Pointer to object of base class
BaseClass base_obj; // Object of BaseClass
DerClass1 der_obj1; // Object of DerClass1
DerClass2 der_obj2; // Object of DerClass2

// Access object of base class using base class pointer
base_ptr = &base_obj; // Pointer to base class object
base_ptr-> DisplayMsg();

// Access object of first derived class using base class pointer
base_ptr = &der_obj1; // Pointer to derived class object
base_ptr-> DisplayMsg();

// Access object of second derived class using base class pointer
base_ptr = &der_obj2; // Pointer to derived class object
base_ptr-> DisplayMsg();

return 0;
}

When the virtual_1 program executes, the following text messages are displayed:

722 Chapter Twenty-Four

© 2003 by CRC Press LLC

Method in BaseClass executing
Method in DerClass1 executing
Method in DerClass2 executing

During program execution (run-time) the base class pointer named base_ptr is
first set to the base class and the base class method is executed. The coding is as fol-
lows:

base_ptr = &base_obj;
base_ptr-> DisplayMsg();

Next, the same pointer is reset to the first derived class and the execution state-
ment is repeated:

base_ptr = &der_obj1;
base_ptr-> DisplayMsg();

The fact that the statement

��0��	
�-. � 0	#�+/01()�

executes different methods in each case proves that the decision regarding which
method executes is made at runtime, not at compile time, since two identical state-
ments generate the same object code. The program virtual_1 uses pointers to access
methods in the base and derived classes. A pointer to the base class is redirected to de-
rived classes at run time, thus achieving dynamic binding.

The program virtual_2, listed below, uses an array of pointers to the various func-
tions.

//***
// Program name: virtual_2.cpp
// C++ program to illustrate virtual functions and run-time
// polymorphism by means of an array of pointers
//***

#include <iostream.h>

//****************************
// classes
//****************************
// Base class
class BaseClass {
public:

virtual void DisplayMsg() {
cout << "Method in BaseClass executing\n" ;

}
};

// A derived class
class DerClass1 : public BaseClass {
public:

virtual void DisplayMsg() {
cout << "Method in DerClass1 executing\n" ;

}
};
// A second derived class
class DerClass2 : public BaseClass {

DirectX and COM 723

© 2003 by CRC Press LLC

public:
virtual void DisplayMsg() {

cout << "Method in DerClass2 executing\n" ;
}

};
//****************************
// main()
//****************************
main() {

BaseClass* ptr_list[3]; // Array of 3 pointers
BaseClass base_obj; // Object of BaseClass
DerClass1 der_obj1; // Object of DerClass1
DerClass2 der_obj2; // Object of DerClass2

// Initialize pointer array with objects
ptr_list[0] = &base_obj;
ptr_list[1] = &der_obj1;
ptr_list[2] = &der_obj2;

// Create variable to store user input
int user_input = 0;

// Prompt user for input
cout << "\nEnter a number from 1 to 3: ";
cin >> user_input;

// Test for invalid input
if(user_input < 1 || user_input > 3){

cout << "\ninvalid input\n" ;
return 1;

}

// Index into array of pointers using user input
ptr_list[user_input - 1]-> DisplayMsg();

return 0;
}

The program virtual_2.cpp selects the method to be executed using the user input
as an offset into a pointer array, by means of the statement:

	
��# 0
2�0��� !	�
 - �3-. � 0	#�+/01()�

The preceding programs (virtual_1.cpp and virtual_2.cpp) both use pointers to
access methods in the base and derived classes. In the first program (virtual_1.cpp)
a pointer to the base class is redirected to derived classes at run time, thus achiev-
ing dynamic binding. In the second program (virtual_2.cpp), three different pointers
are stored in an array at compile time, with the statements:

ptr_list[0] = &base_obj;
ptr_list[1] = &der_obj1;
ptr_list[2] = &der_obj2;

The program then requests input from the user and scales this value to use it as
an offset into the pointer array. The selection is done by means of the statement:

	
��# 0
2�0��� !	�
 - �3-. � 0	#�+/01()�

In the case of the program virtual_2.cpp, although the pointer to be used is not
known until program execution, the selection is not based on redirecting a base

724 Chapter Twenty-Four

© 2003 by CRC Press LLC

class pointer at run time. Therefore, it is not a true example of dynamic binding.
However, if we eliminate the virtual keyword from the code, then every valid user
input brings about the execution of the base version of the DisplayMsg() method.
This leads to the conclusion that the virtual keyword is doing something in the code,
although it is not producing dynamic binding.

Virtual functions, by themselves, do not guarantee dynamic binding since a vir-
tual function can be accessed by means of the dot operator. For example, if der_obj1
is an object of the class Der1Class, then the statement:

'�����4�5� 0	#�+/01()�

executes the corresponding method in this class. However, in this case the virtual at-
tribute is not necessary since the class is bound directly by its object.

The mechanism for selecting among two or more functions of the same name by
means of the virtual attribute is called overriding. It is different from the notion of
overloaded functions, since overloaded functions must differ in their data types or
number of parameters. Overridden functions, on the contrary, must have an identi-
cal interface. The prototypes of virtual functions must be identical in the base and in
the derived classes. If a function with the same name is defined with a different pro-
totype, then the compiler reverts to overloading and the function is bound statically.

The virtual keyword is not necessary in the derived classes, since the virtual at-
tribute is inherited. For this reason the class definition for DerClass1 could have
read as follows:

// A derived class
class DerClass1 : public BaseClass {
public:

void DisplayMsg() {
cout << "Method in DerClass1 executing\n" ;

}
};

The implicit virtual attribute is inherited; consequently, we may have to trace
through the entire inheritance tree in order to determine if a method is virtual or
not. For this reason we prefer to explicitly state the virtual attribute since it should
not be necessary to refer to the base class to determine the virtual or non-virtual na-
ture of a method.

Virtual functions exist in a class hierarchy that follows the order of derivation.
This concept is important since overriding a method in a base class is optional. If a
derived class does not contain a polymorphic method, then the next one in reverse
order of derivation is used.

24.1.5 Pure Virtual Functions
Virtual functions are implemented in the base class and possibly redefined in the de-
rived classes. However, what would happen if a polymorphic method were not imple-
mented in the base class? For instance, suppose that the class named BaseClass in the
program virtual_1.cpp was recoded as follows:

DirectX and COM 725

© 2003 by CRC Press LLC

class BaseClass
{
public:

virtual void DisplayMsg();
};

In a DOS based C++ compiler, if the method DisplayMsg() was not implemented
in the base class, the program would compile correctly but would generate a linker
error. That happens because there is no address for the method DisplayMsg() in the
base class since the method does not exist. Therefore, the statement:

��0��	
�-. � 0	#�+/01()�

cannot be resolved by the linker. However, there are occasions in which there is no
meaningful definition for a method in the base class. Consider the class structure
shown in Figure 24-1.

Figure 24-1 Abstract Class Structure

In the case of Figure 24-1 there is no possible implementation of the methods De-
fine(), Draw(), and Move() in the base class FigureGraphics. The implementations
are left to the subclasses. The method Draw() in the base class serves to define the
method name and the interface, but the implementation is left for the derived class
or classes: it is a pure virtual function.

In C++ a pure virtual function is declared in the following general form:

" �
��# ��
��!-
+	� ��!�
 �!-!�6�(���6�
��-# 0
) � $�

When a function is declared in the this manner, implementation must be provided
by all derived classes. A compiler error occurs if any derived class fails to provide
an implementation for a pure virtual function. Note that the case of the pure virtual
function is quite different from that of non-virtual functions, in which a missing im-
plementation is automatically replaced by the closest one in reverse order of deriva-
tion.

Pure virtual functions have two organizational effects. The first one is that the
base class serves to define a general interface that sets a model that all derived

726 Chapter Twenty-Four

Inititalization Rendering

FigureGraphics

Transformation

Define() Draw()

virtual Define()
virtual Draw()
virtual Move()

Move()

© 2003 by CRC Press LLC

classes must follow. The second one is that implementation in the derived classes is
automatically assured since the code does not compile otherwise.

Abstract Classes
C++ pure virtual functions furnish a mechanism whereby a base class is used to define
an interface by declaring the method's parameters and return type, while one or more
derived classes define implementations for the specific cases. A class that contains a
pure virtual function is designated an abstract class. The abstract class model satisfies
the "one interface, multiple methods" approach that is a core notion of object orienta-
tion. The programmer is able to create a class hierarchy that goes from the most gen-
eral to the more specific; from conceptual abstraction to implementation details. The
following short program shows a possible use of abstract classes.

//***
// Program name: virtual_3.cpp
// C++ program to illustrate a pure virtual function
//***

#include <iostream.h>

//****************************
// classes
//****************************
// Abstract base class
class GeoFigure {
private:

float dim1; // First dimension
float dim2; // Second dimension

public:
virtual float Area(float, float) = 0; // Pure virtual function

};

// derived class
class Rectangle : public GeoFigure {
public:

virtual float Area(float x, float y) {
return (x * y);
}

};

class Triangle : public GeoFigure {
public:

virtual float Area(float x, float y) {
return (x * y)/2;
}

};

class Circle : public GeoFigure {
public:

virtual float Area(float x, float y) {
return (x * x)* 3.1415;
}

};

//****************************
// main()
//****************************

DirectX and COM 727

© 2003 by CRC Press LLC

main() {
GeoFigure *base_ptr; // Pointer to the base class

Rectangle obj1; // Declare objects of derived classes
Triangle obj2;
Circle obj3;

// Polymorphically access methods in derived classes
base_ptr = &obj1; // Set base class pointer to Rectangle
cout << "\nRectangle area: " << base_ptr-> Area(5.1, 10);

base_ptr = &obj2; // Set base class pointer to Triangle
cout << "\nTriangle area: " << base_ptr-> Area(3.7, 11.22);

base_ptr = &obj3; // Set base class pointer to Circle
cout << "\nCircle area: " << base_ptr-> Area(3.22, 0);

return 0;
}

In program virtual_3.cpp you can note that the pure virtual function in the base
class defines the interface, which must be adhered to by all implementations in the
derived classes. In this manner the Area() method in the class Circle must preserve
the interface, which passes two parameters, although a single one suffices for calcu-
lating the area in the circle case.

In C++ it is not possible to declare an object of an abstract class, even if the class
contains other methods that are not virtual. For example, we modify the class
GeoFigure in the program virtual_3.cpp as follows:

class GeoFigure
{
private:

float dim1; // First dimension
float dim2; // Second dimension

public:
float GetDim1() { return dim1; }
virtual float Area(float, float) = 0; // Pure virtual function

};

The class now includes a nonvirtual function named GetDim1(). However, we still
cannot instantiate an object of class GeoFigure, therefore the statement:

7��� 1��� ��4*� �� ���87�� �9�98/8�9

would be rejected by the compiler. However, any method implemented in the base
class can be accessed by means of a pointer to an object of a derived class, in which
case the C++ rules for inheritance are followed. If a method has a unique name in the
base class, then it is executed independently of the object referenced. If the classes
constitute a simple inheritance hierarchy, then the selection is based on the rules for
overloading. If the classes contain non-pure virtual functions, overriding takes place.
If the class is an abstract class, then the derived classes must provide implementations
of the method declared to be pure virtual.

Virtual Function Table (vtable)

728 Chapter Twenty-Four

© 2003 by CRC Press LLC

A class with at least one pure virtual function is an abstract class. The class
GeoFigure in the program virtual_3.cpp is an abstract class since it contains the
pure virtual function named Area(). In Figure 9-3 the class FigureGraphics is also
abstract since it contains three pure virtual functions: Define(), Draw(), and Move().
In C++ the implementation of virtual functions is relatively consistent from one
compiler to another one. The mechanism takes advantage of the processor's capa-
bility of making a function call indirectly, that is, through a pointer to a function. In
implementation, virtual functions use indirect addressing to ensure the following
capabilities:

• Function calls are expressed in terms of member functions.

• Each class contains a table of pointers to the implementations.

• The indirect call syntax is the same as calls to any other member function.

For each class with at least one pure virtual function the compiler creates a table
of function pointers. This table is known as the vtable, the VTBL, or the v-table.
Each entry in the vtable contains the address of a function. For example, the class
FigureGraphics in Figure 9-3 could be defined as follows:

class FigureGraphics {
public:
virtual bool Define(double, double) = 0;
virtual bool Draw(int, int) = 0;
virual bool Move(int, int) = 0;

};

The C++ compiler now constructs a table that contains a pointer definition for
each virtual function in the class. This is the vtable for the class. Figure 24-2 shows
the virtual function table.

Figure 24-2 The Virtual Function Table (vtable)

The vtable exists at the class level. Each class contains a single vtable and every
object instantiated from the class is given a reference to the class vtable. This refer-
ence, which is one of the object's data members, is implemented as a pointer. As-
suming that the pointer to the vtable is named pVtable, then each object's pVtable

DirectX and COM 729

Define()

Draw()

Move()

vtable

base class

other classes

Implementation of Define()

Implementation of Draw()

Implementation of Move()

© 2003 by CRC Press LLC

member points to class' vtable. In regards to the class diagram in Figure 24-1 and
24-2 the code could be as follows:

FigureGraphics fig1; // Declare a class object
FigureGraphics *pFigs; // Declare a pointer to the base class
pFigs = &fig1; // Initialize pointer to base class object
pFigs->Define(); // Use pointer to access method

Notice that the pointer to the base class serves as a pointer to the vtable. With
some additional complications, the virtual function mechanism can be implemented
in standard C. The memory layout for the COM implementation of the compo-
nent-based model is identical to the one used for abstract base classes and virtual
functions in C++, as you will see in the sections that follow.

24.2 COM in DirectX Programming
Microsoft's Component Object Model (COM) is a foundation for an object oriented
system that attempts to improve on the C++ model. COM is described as an object
model at the operating system level, which supports and promotes the reuse of inter-
faces. The fundamental notion of the COM relates to the idea of a component-based ar-
chitecture.

24.2.1 COM Fundamentals
In order to understand the COM model consider a conventional program in which all
of its elements are defined when the application is compiled and linked. This type of
program is based on what has been called a monolithic architecture. If such a program
requires to be updated, it must be re-compiled and re-linked. This means that the user
will have to be provided with a new copy of the application software with every pro-
gram update. A more effective model considers the application as a set of individual
components. In this new model, called a component-based or component architec-
ture, each program element (or component) behaves as a mini-application. Each com-
ponent is, in fact, a unit of execution which is compiled and linked independently. The
application itself provides the interaction between its various components. Since
each component can be replaced independently, the application can be more easily
customized and updated. Figure 24-3 graphically represents a monolithic and a com-
ponent-based application.

Figure 24-3 Monolithic and Component-Based Applications

730 Chapter Twenty-Four

Application code

Monolithic architecture Component-based architecture

Component A

Component B

Component C

Component D

© 2003 by CRC Press LLC

For the COM model to work we must be able to replace a component without
breaking the application. Suppose that Component C in the program shown in Fig-
ure 9-3 has become obsolete and must be updated. In this case we must be able to
create a new component, say Component C New, that replaces the old Component
C. There are two requirements that make possible component replacement:

• Components must link to the application at runtime.

• Components must encapsulate the implementation details.

The first requirement results from the fact that if the components were to link
statically with the application, then the code would have to be re-compiled and we
would be back into the monolithic model. To have replaceable components it must
be possible to replace them at runtime, that is, the binding between the component
and the application code must be dynamic. The second requirement is a conse-
quence of the first one. In order to change a component dynamically, the new com-
ponent must connect with the application exactly in the same manner as the old
one. Otherwise the application itself would have to be changed.

One of the golden rules of object orientation is to program to an interface, not to
an implementation. In the COM model encapsulation is achieved by creating compo-
nents with different implementation but identical interfaces. If we refer to a pro-
gram or component that uses another component as a client, then we can say that a
client connects to a component through an interface. If the interface is not changed,
then a new component can be designed to replace an old one without breaking the
client. By the same token, another client with the same interface can use the same
component. Striving to design interfaces that do not change, while hiding the imple-
mentation details, is the basic task of the COM programmer. In other words, pro-
gramming to and interface, not to an implementation.

To isolate the component from the client's implementation details requires sev-
eral constraints:

• The component must be language neutral. That is, clients should be able to use compo-
nents coded in any computer language. This implies that a component is a binary entity
that is shipped ready-to-use.

• Components must be replaceable without breaking the client.

• Components must be relocatable on a network. That is, to the client a component on a
remote system appears identical to a local one.

Defining COM

COM is a protocol for building component-based applications. It defines components
that can be dynmically interchanged and clients that can use these components. In this
sense COM is a standard. The COM specification document, called the Component Ob-
ject Model Specification, was developed jointly by Microsoft Corporation and Digital
Equipment Corporation in 1995. The document is available on-line from the Microsoft
Web site at

�

	:��;;;56 ���0��
5��6��#�'�"�

DirectX and COM 731

© 2003 by CRC Press LLC

COM is not a computer language, an API, or a DLL, although COM uses DLLs to
implement dynamic linking. On the other hand, COM is not only a formal specifica-
tion since is does provide some component management services in the form of an
API. These services are furnished as a COM library. The purpose of the COM library
is to save developers time in the creation of components and clients. In short, COM
is a way of writing programs with reusable, replaceable components.

24.2.2 COM Concepts in DirectX

DirectX is presented to the programmer using the COM. From C++, the COM object ap-
pears as an abstract class. Access, in this model, is by means of the pointer to the
DirectX COM object. When using straight C, the function must pass the pointer to the
COM object as an additional parameter. In addition, the call must include a pointer to a
property of the COM object called the vtable. Since this book assumes C++ program-
ming, we use the simpler interface to the COM.

The bulk of the Microsoft DirectX run time is in the form of COM-compliant ob-
jects. For this reason DirectX developers need to have a basic understanding of
COM principles and programming techniques. There are two distinct flavors of
COM programming:

• Applications that use existing COM objects.

• Applications that implement new COM objects.

Using existing COM objects by application code is straightforward and uncompli-
cated. Creating COM objects, on the other hand, is a more complicated matter.
DirectX applications do not need to implement COM objects, but must deal with
those provided by DirectX. This means that DirectX developers are usually con-
cerned only with the easiest flavor of COM programming.

The COM Object

A COM object can be visualized as a black box that can be used by applications to per-
form one or more tasks. In DirectX COM objects are always implemented as DLLs. A
COM object, like a conventional DLL, contains methods that an application can call to
perform a specific task.

COM objects enforce stricter encapsulation that C++ objects. The public func-
tions of a COM objects are grouped into one or more interfaces. To use a function,
application code must first create the object and obtain the its interface.
Typically,the interface to a COM object contains a related set of methods that pro-
vide access to a particular DirectX feature. For example, the IDirect3D8 interface
contains methods that allow creating Direct3D objects, setting up the environment,
and obtaining device capabilities. Once enable you obtained the interface you can
access all its methods, but not those that are not part of IDirect3D8.

Although COM objects are typically contained in a DLL, you do not need to ex-
plicitly load the DLL or link to a static library in order to use a COM object. Each
COM object has a unique registered identifier that is used to create the object. COM
automatically loads the required DLL when the object is referenced.

732 Chapter Twenty-Four

© 2003 by CRC Press LLC

The COM Interface

The concepts of object and interface are at the core of the COM. Although in casual ref-
erence we sometimes refer to an object by the name of its interface, the concepts of
object and interface are unique and should not be confused. In this sense it is often
said that an object exposes several interfaces. An interface is described as a group of
methods that performs a set of related operations. To say that an object exposes an in-
terface is equivalent to stating that, in order to use a particular function, you must first
create the object and then obtain the interface.

All COM objects must expose the IUnknown interface, as well as at least one ad-
ditional interface. Some COM objects expose many interfaces and more than one
object might expose the same interface. The interface specifies the syntax of the
methods and their general functionality. A highly specialized interface is usually ex-
posed by a single object. Generally useful interfaces are often exposed by many ob-
jects. The most generally useful interface, named IUnknown, is exposed by all COM
objects.

COM requires that if an object exposes an interface, it must support every method
in the interface definition. For this reason you can call any function with the confi-
dence that it exists. How a particular function is implemented may vary from object
to object. For example, two object that perform the same calculation may use differ-
ent algorithms to obtain the result.

The COM specification requires that a published interface must not change once.
For this reason it is not possible to add a new function to an existing interface. In-
stead, you must create a new interface. Although it is not strictly required by the
standard, common practice is to have the new interface include all the of the old in-
terface's functions, plus the new function.

Interfaces can be implemented in several generations. Generally all generations
of an interface perform essentially the same overall task, but they may differ in im-
plementation details. Often, an object exposes every generation of interface. This al-
lows older applications to continue using the object's older interfaces, while newer
applications take advantage of the features of the newer interfaces. Family of inter-
faces usually have the same name, plus an integer indicating the generation. For ex-
ample, the original DirectDraw interface was named IDirectDraw. This interface
was later updated to IDirectDraw2, IDirectDraw4, and IDirectDraw7. Microsoft typi-
cally labels successive generations of DirectX interfaces with the corresponding
version number. For this reason the integer identifier may not be a dense set.

The GUID

To insure that every interface is unique it is assigned an identifier, called the IID. Every
new version or interface receives its own unique IID. Therefore the IID is permanently
linked to the interface. In the COM the IID is a 16-byte (128 bit) structure called the
Globally Unique Identifier (GUID). GUIDs are created so that no two GUIDs are the
same. COM uses GUIDS extensively for two primary purposes:

DirectX and COM 733

© 2003 by CRC Press LLC

• To uniquely identify a COM object.

• To uniquely identify a particular COM interface.

The term IID is used to request a particular interface from an object. An inter-
face's IID will be the same, regardless of which object exposes the interface.
DirectX documentation refers to objects and interfaces by a descriptive name, such
as IDirect3D8. Although descriptive names are useful, there is no guarantee that an-
other object or interface does not have the same name. The only unambiguous way
to refer to a particular object or interface is by its GUID.

Although GUIDs are structures, they are often expressed as an equivalent string.
The general format of the string form of a GUID is:

<��������-====->>>>-����-????????????@

In this format each letter corresponds to a hexadecimal integer. For example, the
string form of the IID for the IDirect3D8 interface is:

<���A8,��-�BCC-D�D$-E$B�-A,�8����A%�
@

In order to make the GUID identifier more difficult to mistype it is also provided
with a name. The customary naming convention is to prefix either IID_ or CLSID_ to
the descriptive name of the interface or object. For example, the name of the
IDirect3D8 interface's IID is IID_IDirect3D8.

The HRESULT Structure
All COM methods return a 32-bit integer called an HRESULT. Although the name
HRESULT seems to suggest a handle, it is essentially a structure that contains two sep-
arate pieces of information:

• Whether the method succeeded or failed.

• Information about the outcome of the operation.

The value returned as an HRESULT can normally be found in the function's docu-
mentation. Figure 24-4 shows the HRESULT bitmap.

Figure 24-4 HRESULT Bitmap

The most significant bit of HRESULT, called the severity bit, reports whether the
function succeeded or failed. The last 16 bits contain the return code, and the 15 bits
of the facility field provide additional information regarding the type and origin of
the return code. Applications usually need not look into these bit fields since mac-
ros are available for this purpose.

734 Chapter Twenty-Four

facility

severity bit

return code

031 30 16 15

© 2003 by CRC Press LLC

By convention, success codes have names that start with S_ , while failure codes
start with the E_ prefix. The two most commonly used codes are S_OK, to indicate
success, and E_FAIL, to indicate simple failure. Because COM functions can return
a variety of success or failure codes, you have to be careful how you test the
HRESULT value. Suppose a function is documented to return S_OK if successful.
However, since a function may also return other failure or success codes it is dan-
gerous to assume that it will always return E_FAIL if not successful. If you coded a
test assuming that failure is always associated with E_FAIL, then another error code
could be interpreted as a successful call. For example:

HRESULT res;
. . .
if(res != E_FAIL)

{
// Assume success

}
else

{
// Handle the failure

}

Applications that need detailed information on the outcome of the function call
need to test each relevant HRESULT value. To simplify processing it is recom-
mended that applications use the macros SUCCEEDED or FAILED to test
HRESULT. The SUCCEEDED macro returns TRUE for a success code and FALSE for
a failure code. The FAILED macro returns TRUE for a failure code and FALSE for a
success code. The following code fragment shows the use of the FAILED macro.

HRESULT res;
. . .
if(FAILED(res))

{
//Handle failure

}
else

{
//Handle success

}

Table 24-1 lists some frequently used error codes.

Table 24-1

HRESULT Frequently Used Error Codes

NAME MEANING

S_OK Function succeeded and returns boolean TRUE.
NOERROR Same as S_OK
S_FALSE Function succeeded and returns boolean FALSE.
E_UNEXPECTED Function failed unexpectedly.
E_NOTIMPL Function not implemented
E_NOINTERFACE Component does not support the interface. This

error code is returned by the QueryInterface() call.
E_OUTOFMEMORY Could not allocated required memory.
E_FAIL Unspecified failure.
E_INVALIDARG Invalid argument in function call

DirectX and COM 735

© 2003 by CRC Press LLC

A few COM methods return a simple integer as an HRESULT. These methods are
implicitly successful. In these cases the SUCCESS macro always returns TRUE. For
example, the IUnknown::Release method decrements an object's reference count by
one and returns the current reference count. In this case HRESULT always holds the
current reference count.

24.2.3 The IUnknown Interface

All COM objects support an interface called IUnknown. The IUnknown interface pro-
vides DirectX objects with the ability to retrieve other interfaces and with the control
of the object's lifetime. This is accomplished through the three methods of IUnknown:

• QueryInterface() allows the object to request pointers to a specific interface.

• AddRef() increments the object's reference count by 1.

• Release() decrements the object's reference count by 1.

• Reference Counting

Reference counting is a COM memory-management mechanism that allows an ob-
ject to destroy itself once it is no longer used. Each COM component maintains a ref-
erence count. The AddRef() and Release() methods manage the reference count.
AddRef() increments the reference count and Release() decrements it. When the ref-
erence count reaches 0, the object de-allocates itself and releases the memory it
used. For example, if you create a Microsoft Direct3D object, the object's reference
count is set to 1. Every time a function returns a pointer to an interface for that ob-
ject, the function should call AddRef(), using the pointer as an argument. The effect
of the AddRef() call is to increment the object's reference count. Each AddRef() call
is matched with a call to Release(). When an object's reference count reaches 0 it is
destroyed and all interfaces to it become invalid. The rules for reference counting
are as follows:

• Functions that return interfaces automatically call AddRef() before returning. This
means that when code obtains an interface through a COM function it does not need to
call AddRef().

• When application code is finished with an interface it should call Release() using the in-
terface pointer as an argument. This action decrements the reference count for the in-
terface. If as the result of the call to Release() the reference count became zero, the
object is automatically destroyed.

• If application code assigns an interface pointer to an interface pointer variable, it
should call AddRef() in order to increment the reference count.

Using QueryInterface()

The QueryInterface() method of IUknown is used to determine whether an object sup-
ports a specific interface. Furthermore, if an object supports an interface,
QueryInterface() returns a pointer to the interface. Code can then use the methods of
the interface by means of the interface pointer. If QueryInterface() is successful, it
calls AddRef() to increment the reference count. The application must call Release()
to decrement the reference count before destroying the pointer to the interface.

736 Chapter Twenty-Four

© 2003 by CRC Press LLC

24.3 Creating and Accessing the COM Object
COM objects can be created in several ways. The two most common methods used in
DirectX programming are:

• Directly, by passing the object's CLSID to the CoCreateInstance function. The function
will create an instance of the object, and it will return a pointer to an interface that you
specify.

• Indirectly, by calling a DirectX function that creates the object for you. In this case the
function creates the object and returns the interface to the object. When you create an
indirectly you cannot specify which interface should be returned.

24.3.1 Creating the COM Object

When an object is created directly it must be initialized by calling the CoInitialize()
function. However, the object's creation method will handle this task is the object is
created indirectly. In this case the caller passes the address of a variable that is to
serve as an interface pointer to the object creation method. The method then creates
the object and returns an interface pointer. The following code fragment calls the
IDirect3D8::CreateDevice() method to create a device object to represent a display
adapter. It returns a pointer to the object's IDirect3DDevice8 interface.

IDirect3DDevice8 *pd3dDevice = NULL;

...

if(FAILED(pD3D->CreateDevice(D3DADAPTER_DEFAULT,

3DDEVTYPE_HAL,

hWnd,

D3DCREATE_SOFTWARE_VERTEXPROCESSING,

&d3dpp,

&pd3dDevice)))

return E_FAIL;

The first four parameters of the CreateDevice() method provide information
needed to create the object, and the fifth parameter receives the interface pointer.

24.3.2 Using COM Objects

Once the COM object has been created, and the interface pointer has been obtained,
this pointer can be used to access any of the interface's methods. The syntax is the
same as that used to access a C++ method by means of a pointer. In the previous code
fragment we called the CreateDevice() methods to obtain a pointer to
IDirect3D8::CreateDevice. If the call succeeded, we can now use the returned inter-
face pointer to access any method in IDirect3D8. For example, the method
GetAdapterCount() of IDirect3D8 returns the number of adapters in the system in a
variable of type UINT. Assuming that you have obtained a valid pointer with the
CreateDevice() call, you could now get the number of display adapters as follow:

UINT adapters;

. . .

adapters = pd3dDevice->GetAdapterCount();

DirectX and COM 737

© 2003 by CRC Press LLC

The COM Object's Lifetime

A COM object consumes system memory resources. When it is no longer needed, it
should be destroyed so that memory can be used for other purposes. In C++ you con-
trol the object's lifetime with the new and delete operators. COM objects cannot be
created or destroyed directly. The reason is that the same COM object may be used by
more than one application. If one application were to destroy the object, the others
may fail.

COM uses a system of reference counting to control an object's lifetime. An ob-
ject's reference count is the number of times one of its interfaces has been re-
quested. Each time an interface is requested, the reference count is incremented.
When an application releases an interface reference count is decremented. The ob-
ject remains in memory as long as it reference count is greater than zero. When the
reference count reaches zero, the object is automatically destroyed. This mecha-
nism ensures that code does not need to know about an object's reference count as
long as object interfaces are obtained and released correctly. In other words, an ob-
ject ensures its own appropriate lifetime. By the same token, when interfaces are
not properly released, the reference count will never reach zero, and the object will
remain in memory indefinitely. The result is usually a memory leak.

Manipulating the Reference Count

You have already seen that the appropriate processing consists of incrementing the
reference count whenever a new interface pointer is obtained, and decrementing it
whenever an interface is released. Recall that the reference count is incremented by a
call to IUnknown::AddRef. However, applications do not usually need to explicitly call
this method. If the interface pointer is obtained calling an object creation method, or
by calling IUnknown::QueryInterface, the call automatically increments the reference
count.

On the other hand, code must release all interface pointers, regardless of whether
you or the object incremented the reference count. This is done by calling
IUnknown::Release to decrement the reference count. A good programming prac-
tice is to initialize all interface pointers to NULL, and set them back to NULL when
they are released. In this manner the cleanup routine can test all interface pointers.
Those that are non-NULL are released before you terminate the application.

Problems with an objects reference count may originate in code that copies inter-
face pointers and then calls AddRef(). The following code fragment, taken from the
Microsoft DirectX 8 documentation, shows one possible way to handle reference
counting in such cases.

IDirectSoundBuffer8* pDSBPrimary = NULL;
IDirectSound3DListener8* pDSListener = NULL;
IDirectSound3DListener8* pDSListener2 = NULL;
...
//Create the object and obtain an additional interface.
//The object increments the reference count.
if(FAILED(hr = g_pDS->CreateSoundBuffer(&dsbd, &pDSBPrimary, NULL)))

return hr;

738 Chapter Twenty-Four

© 2003 by CRC Press LLC

if(FAILED(hr=pDSBPrimary->QueryInterface(IID_IDirectSound3DListener8,
(LPVOID *)&pDSListener)))

return hr;

//Make a copy of the IDirectSound3DListener8 interface pointer.
//Call AddRef to increment the reference count and to ensure that
//the object is not destroyed prematurely
pDSListener2 = pDSListener;
pDSListener2->AddRef();
...
//Cleanup code. Check to see if the pointers are still active.
//If they are, call Release to release the interface.
if(pDSBPrimary != NULL)
{

pDSBPrimary->Release();
pDSBPrimary = NULL;

}
if(pDSListener != NULL)
{

pDSListener->Release();
pDSListener = NULL;

}
if(pDSListener2 != NULL)
{

pDSListener2->Release();
pDSListener2 = NULL;

}

DirectX and COM 739

© 2003 by CRC Press LLC

Chapter 25

Introducing DirectDraw

Topics:
• 2D graphics in DirectX

• DirectDraw graphics fundamentals

• DirectDraw architecture

• Programming with DirectDraw

In this chapter we start discussing DirectDraw, which is the 2D component of DirectX.
Although DirectDraw was merged with Direct3D in DirectX 8, COM insures that
DirectDraw functionality continues to be available to applications.

25.1 2D Graphics and DirectDraw
In Chapter 23 we discussed that, in previous versions of the DirectX SDK, the 2D

graphics interface was referred to as DirectDraw. Starting with DirectX 8,
DirectDraw and Direct3D were merged into a single interface. However, in practical
programming, 2D graphics cannot be ignored for the following reasons:

• Many graphics applications do not required 3D modeling or rendering.

• Most 3D applications use 2D graphics extensively.

• Some types of animations are easier to implement and show better performance in 2D
than in 3D graphics.

• Many successful computer applications, including some successful and popular
games, are implemented entirely in 2D.

• The learning curve for 3D graphics is quite steep. Starting with 2D provides a reason-
able introduction to a complex and difficult technology.

DirectDraw is usually considered the most basic component of DirectX. It allows
an application to access display memory as well as some of the hardware functions
in the video card. The result is that a Windows program can obtain a high level of
graphics performance without sacrificing device independence and while maintain-
ing compatibility with the GDI. DirectDraw is implemented as a software interface

© 2003 by CRC Press LLC

to the card's video memory and graphics functions. Although its original intention
was merely to facilitate game development under Windows, many other types of
graphics applications can benefit from the higher degree of control and the perfor-
mance gains that it provides.

DirectDraw has been described as a display memory manager that also furnishes
access to some hardware acceleration features, as well as other graphics facilities
available on the video card. Unfortunately, there is no uniform set of graphics fea-
tures that all DirectDraw devices must provide. For this reason, the decision to use
DirectDraw also entails the burden of accommodating varying degrees of Direct
Draw functionality. DirectDraw provides services that allow querying the capabili-
ties of a particular video card as well as the level of hardware support. Most features
not supported by the hardware are emulated in software by DirectX, but at a sub-
stantial performance penalty.

A DirectDraw system implements its functionality both in hardware and in soft-
ware emulation, each one with its own capabilities. Applications can query
DirectDraw to retrieve the hardware and software capabilities of the specific imple-
mentation in the installed video card. DirectDraw is furnished as a 32-bit dynamic
link library named DDRAW.DLL.

25.1.1 DirectDraw Features

The following are the most important features of DirectDraw:

• Direct access to video memory

• Manipulation of multiple display surfaces

• Page flipping

• Back buffering

• Clipping

• Palette management

• Video system support information

25.1.2 Advantages and Drawbacks

The following are possible advantages of using DirectDraw:

1. DirectDraw provides direct access to video memory. Accessing video memory directly
allows the programmer to increase performance and obtain the highest degree of con-
trol. This feature also makes it easier to port some DOS graphics programs and rou-
tines into the Windows environment.

2. DirectDraw improves application performance by taking advantage of the hardware
capabilities in the video card. For example, if the video card supports hardware blits,
DirectDraw uses this feature.

3. DirectDraw provides hardware emulation to simulate features that are not supported
by the hardware.

742 Chapter Twenty-Five

© 2003 by CRC Press LLC

3. DirectDraw uses 32-bit flat memory addressing of video memory. This model is much
easier to handle by code than one based on the Intel segmented architecture.

4. DirectDraw supports page flipping with multiple back buffers while executing in
full-screen mode. This technique allows implementing very powerful animations.

5. In windowed mode, DirectDraw supports clipping, hardware-assisted overlays, image
stretching, and other graphics manipulations.

The major disadvantages of DirectDraw are:

1. Programming in DirectDraw is more complicated and difficult than using the Windows
GDI. Programs that do not need the additional performance or control provided by
DirectDraw may find little additional justification for using it.

2. The graphics functions emulated by DirectDraw are often slower than those in the
GDI.

3. Applications that rely on DirectDraw are less portable than those that do not.

25.2 Basic Concepts for DirectDraw Graphics
The following basic graphics concepts are extensively used in DirectDraw:

• Device-independent bitmaps

• Drawing surfaces

• Blitting

• Page flipping and back buffers

• Bounding rectangles

In this section we provide a brief review of these concepts, to serve as an intro-
duction to DirectDraw. Some of these topics are covered in more detail later in the
section on DirectDraw programming, later in the chapter.

25.2.1 Device-Independent Bitmaps
Windows and DirectX have adopted the device-independent bitmap (DIB) as its native
graphics file format. A DIB file contains the image's dimensions, the number of color
and the corresponding color values, and data describing the attributes of each pixel.
The DIB file also contains some additional parameters, such as information about file
compression and the image physical dimensions. DIB files usually have the .bmp file
extension, although the .dib extension is also used.

The Windows APIs contain many functions that can be used in loading and manip-
ulating DIB files. These functions can be used in DirectX applications. The following
function, taken from the Ddutil.cpp file that is furnished with the DirectX SDK, com-
bines Windows and DirectX functions to load a DIB onto a DirectX surface.

extern "C" IDirectDrawSurface * DDLoadBitmap(
IDirectDraw *pdd,

LPCSTR szBitmap,
int dx,
int dy)
{

Introducing DirectDraw 743

© 2003 by CRC Press LLC

HBITMAP hbm;
BITMAP bm;
DDSURFACEDESC ddsd;
IDirectDrawSurface *pdds;

//
// This is the Win32 part.
// Try to load the bitmap as a resource.
// If that fails, try it as a file.
//
hbm = (HBITMAP)LoadImage(

GetModuleHandle(NULL), szBitmap,
IMAGE_BITMAP, dx, dy, LR_CREATEDIBSECTION);

if (hbm == NULL)
hbm = (HBITMAP)LoadImage(

NULL, szBitmap, IMAGE_BITMAP, dx, dy,
LR_LOADFROMFILE|LR_CREATEDIBSECTION);

if (hbm == NULL)
return NULL;

//
// Get the size of the bitmap.
//
GetObject(hbm, sizeof(bm), &bm);

//
// Now, return to DirectX function calls.
// Create a DirectDrawSurface for this bitmap.
//
ZeroMemory(&ddsd, sizeof(ddsd));
ddsd.dwSize = sizeof(ddsd);
ddsd.dwFlags = DDSD_CAPS | DDSD_HEIGHT |DDSD_WIDTH;
ddsd.ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN;
ddsd.dwWidth = bm.bmWidth;
ddsd.dwHeight = bm.bmHeight;

if (pdd->CreateSurface(&ddsd, &pdds, NULL) != DD_OK)
return NULL;

DDCopyBitmap(pdds, hbm, 0, 0, 0, 0);

DeleteObject(hbm);

return pdds;
}

25.2.2 Drawing Surfaces
As the name implies, a drawing surface is a region of memory that receives video data
to be displayed on the screen. In Windows programming the drawing surface is associ-
ated with the device context. You obtain access to the drawing surface when you ob-
tain the handle to the device context by means of a function such as GetDC(). After the
application obtains the handle to the device context it can draw to the screen.

In this case the Windows GDI provides an abstraction layer to allow a standard
Windows applications to access the screen. But GDI was not designed for high per-

744 Chapter Twenty-Five

© 2003 by CRC Press LLC

formance graphics. GDI uses system memory to provide access to the video buffer,
not the much faster video memory. In addition, GDI has no facilities to take advan-
tage of special hardware features in the video card. This makes the GDI interface
too slow for most games and multimedia applications.

DirectDraw, on the other hand, uses drawing surfaces that are defined in actual
video memory. Furthermore, DirectDraw allows the programmer with the base ad-
dress of the video buffer, which allows direct access to video memory. Applications
that use DirectDraw can write directly to the memory on the video card, which re-
sults in very fast rendering. The fact that DirectDraw uses a 32-bit flat memory
model simplifies programming.

Drawing surfaces are covered in greater detail in the context of DirectDraw pro-
gramming, later in this chapter.

25.2.3 Blitting

The term blit stands for "bit block transfer." A blit consists of transferring a block of
data from one location in memory to another. In computer graphics blitting usually
consists of transferring an image between storage locations, from a storage location
to video memory, or from video memory to a storage locations. Blits are also used in
implementing sprite-based animation.

25.2.4 Page Flipping and Back Buffers

Page flipping is a technique often used in game and multimedia software. Page flipping
is reminiscent of the animation achieved in some children’s books that contain slightly
different images on consecutive pages. By using your thumb to rapidly flip through the
pages, the object and characters in the images appear to move. In software page flip-
ping a series of DirectDraw surfaces are set up with slightly varying images. The image
is animated when these surfaces are rapidly flipped to the screen.

In DirectDraw flipping techniques the first surface is usually referred to as the
primary surface, while the other surfaces are called back buffers. The application
blits the image to a back buffer, then flips the primary surface so that the back
buffer appears on screen. While the system is displaying the image, the software is
updating the back buffer with the next image. The process continues for the dura-
tion of the animation.

DirectDraw animation through page flipping can consists of a single pair of sur-
faces, that is, a primary surface and a single back buffer. More complicated schemes
based on several back buffers allow producing more sophisticated effects.

25.2.5 Bounding Rectangles

Windows GDI uses a simplification for defining screen objects in terms of a rectangle
that tightly binds it. This rectangle is called the bounding rectangle. By definition, the
sides of the bounding rectangle are parallel to the sides of the screen. This allows de-
fining the bounding rectangle by two points: one located at the top-left corner and the
other one at the bottom-right corner. The Windows RECT structure provides a conve-

Introducing DirectDraw 745

© 2003 by CRC Press LLC

nient way of storing the coordinates of the points that define the bounding rectangle.
The RECT structure is defined as follows:

typedef struct tagRECT {

LONG left; // x coordinate of top-left corner
LONG top; // y coordinate of top left corner
LONG right; // x coordinate of bottom-right corner
LONG bottom; // y coordinate of bottom-right corner

} RECT;

For example, a RECT structure can be initialized as follows:

RECT aRect;
. . .
aRect.left = 10;
aRect.top = 20;
aRect.right = 100;
aRect.bottom = 200;

Or as follows:

���� ����� � 	
��
��
���
����

In either case the left and top members are the x- and y-coordinates of a bounding
rectangle's top-left corner. Similarly, the right and bottom members make up the co-
ordinates of the bottom-right corner. Figure 25-1 shows a visualization of the bound-
ing rectangle.

Figure 25-1 DirectDraw Bounding Rectangle

746 Chapter Twenty-Five

screen

bounding rectangle

top-left corner

bottom-right corner

bound object

© 2003 by CRC Press LLC

25.3 DirectDraw Architecture

The architecture of DirectDraw is defined by the following elements:

• The DirectDraw interface

• The DirectDraw hardware abstraction layer (HAL)

• The DirectDraw hardware emulation layer (HEL)

25.3.1 DirectDraw Interfaces

DirectDraw provides services through COM-based interfaces. The various versions of
this interface are named IDirectDraw, IDirectDraw2, IDirectDraw4, and
IDirectDraw7. Note that the numbers of the DirectDraw interfaces are discontinuous.
IDirectDraw3, IDirectDraw5, and IDirectDraw6 do not exist, although DirectDraw3 it
is erroneously mentioned in some Microsoft documents. These interfaces to
DirectDraw correspond to different releases of the Game SDK and of DirectX. Since
DirectDraw disappeared in DirectX 8 it is safe to assume that IDirectDraw7 will be the
last implementation.

Programs can gain access to DirectDraw by means of the DirectDrawCreate()
function or by the CoCreateInstance() COM function. In this book we use
DirectDrawCreate() which is the easiest and more common one. Later in this chap-
ter we discuss how a program can query at runtime which of the three DirectDraw
interfaces is available.

25.4.1 DirectDraw Objects

As mentioned in Chapter 24, DirectX APIs are implemented as instances of COM ob-
jects. Communication with these objects is by means of the methods in each interface;
for example, if IDirectDraw7 is the interface, the method SetDisplayMode() is ac-
cessed as follows:

����������������������������

You already know that COM interfaces are derived from a base class called
IUnknown. The following DirectDraw object types are currently defined:
DirectDraw, DirectDrawSurface, DirectDrawPalette, DirectDrawClipper, and
DirectDrawVideoPort. Figure 25-2, on the following page, shows the object compo-
sition of the DirectDraw interface.

The DirectDraw objects are described as follows:

• DirectDraw is the basic object of all applications. It is considered to represent the dis-
play adapter card. The corresponding COM object is named IDirectDraw. This is the
first object created by a program and it relates to all other DirectDraw objects. A call to
DirectDrawCreate() creates a DirectDraw object. If the call is successful, it returns a
pointer to either IDirectDraw, IDirectDraw2, or IDirectDraw4 interfaces.
IDirectDraw7 objects are created by calling IDirectDrawCreateEx().

Introducing DirectDraw 747

© 2003 by CRC Press LLC

• DirectDrawSurface object, sometimes called a "surface," represents an area in mem-
ory. The COM object name is IDirectDrawSurface. This object holds the image data to
be displayed, or images to be moved to other surfaces. Applications usually create a
surface by calling the IDirectDraw7::CreateSurface method of the DirectDraw object.
The surface object interfaces are named IDirectDrawSurface, IDirectDrawSurface2,
IDirectDrawSurface4, and IDirectDrawSurface7.

• DirectDrawPalette object, sometimes referred to as a "palette," represents a 16- or
256-color indexed palette. The palette object simplifies palette manipulations. It con-
tains a series of indexed RGB triplets that describe colors associated with values within
a surface. Palettes are limited to surfaces that use a pixel format of 8 bits or less. Palette
objects are usually associated with corresponding surface objects, whose color attrib-
utes the palette object defines. The DirectDrawPalette objects are created by calling
IDirectDraw7::CreatePalette method.

• DirectDrawClipper object, sometimes referred to as a "clipper," serves to prevent appli-
cations from drawing outside a predefined area. Clipper objects are usually convenient
when a DirectDraw application is displayed in a window. In this case the clipper object
prevents the application from drawing outside of its client area. A DirectDrawClipper
object is created by calling IDirectDraw7::CreateClipper.

• DirectDrawVideoPort object was introduced in DirectX 5. The object represents the
video-port hardware present in some systems. It allows direct access to the frame
buffer without intervention of the CPU or the PCI bus.

Figure 25-2 DirectDraw Object Types

748 Chapter Twenty-Five

IUnknown

DirectDrawSurface

DirectDrawPalette

DirectDrawClipper

DirectDraw

DirectDrawVideoPort

© 2003 by CRC Press LLC

25.4.2 Hardware Abstraction Layer (HAL)

DirectDraw ensures device independence by implementing a Hardware Abstraction
Layer, or HAL. The HAL is provided by the video card manufacturer, board manufac-
turer, or OEM, according to Microsoft's specifications. However, applications have no
direct access to the HAL, but to the interfaces exposed by DirectDraw. It is this indi-
rect access mechanism that ensures HAL consistency and reliability.

In Windows 95/98, device manufacturer implements the HAL in both 16-bit and
32-bit code. Under Windows NT the HAL is always in 32-bit code. It can be furnished
as part of card's display driver or a separate DLL. The HAL contains de-
vice-dependent code. It performs no emulation and provides no programmer acces-
sible services. The only point of contact between an application and the HAL is
when the application needs to query DirectDraw to find out what capabilities are di-
rectly supported.

25.4.3 Hardware Emulation Layer (HEL)

DirectDraw emulates in software those basic features that are not supported through
the HAL. The Hardware Emulation Layer (HEL) is the part of DirectDraw that pro-
vides this functionality. Applications do not access the HEL directly. Whether a given
functionality is provided through hardware features, or through emulation, is trans-
parent to an application using DirectDraw. Code must specifically query DirectDraw
to determine the origin of a given functionality. The IDirectDraw7::GetCaps() method,
discussed later in this chapter, furnishes this information.

Unfortunately, some combinations of hardware-supported and emulated func-
tions may lead to slower performance than pure emulation. DirectDraw documenta-
tion cites an example in which a display device driver supports DirectDraw but not
stretch blitting. When the stretch blit function is emulated in video memory, a no-
ticeable performance loss occurs. The reason is that video memory is often slower
than system memory; therefore, the CPU is forced to wait when accessing video
memory surfaces. Cases like this make evident one of the greatest drawbacks of
DirectDraw, which is that applications must provide alternate processing for hard-
ware dependencies.

25.4.4 DirectDraw and GDI

Several Windows graphics components lay between the application code and the
video card hardware. Figure 25-3, on the following page, shows the relations between
the various Windows graphics components.

The right-hand side of Figure 25-3 shows that an application can access the Win-
dows video functions through the GDI, which, in turn, use the Display Device Inter-
face. On the left-hand side an application accesses the video functions through
DirectDraw. DirectDraw, in turn, uses the Hardware Abstraction Layer and the
Hardware Emulation Layer to provide the necessary functionality. The horizontal ar-
row connecting the HAL and the DDI indicates that applications that use
DirectDraw can also use the GDI functions, since both channels of video card ac-
cess are open simultaneously.

Introducing DirectDraw 749

© 2003 by CRC Press LLC

Figure 25-3 Relations between Windows Graphics Components

25.5 DirectDraw Programming Essentials

There are several topics that relate specifically to DirectDraw programming. Under-
standing these fundamental concepts is a prerequisite to successful DirectDraw pro-
gramming. These following are core topics of DirectDraw programming:

• Cooperative levels

• Display modes

• Palettes

• Clippers

25.5.1 Cooperative Levels

Cooperative levels refers to the relationship between DirectDraw and Windows. A
DirectDraw program can execute full-screen, with exclusive access to the display re-
sources, or it can execute in a window, sharing video resources with other running
programs. In this last case the DirectDraw application and the other Windows pro-
grams executing concurrently must cooperate in their use of the video resources.
When a DirectDraw application requests and obtains total control of the video func-

750 Chapter Twenty-Five

Video Card

Application

Hardware Abstraction Layer
(HAL)

Hardware Emulation Layer
(HEL)

Display Device Interface
(DDI)

Graphics Device Interface
(GDI)

DirectDraw

© 2003 by CRC Press LLC

tions it is said to execute in exclusive mode. DirectDraw applications that do not exe-
cute in exclusive mode are usually referred to as windowed DirectDraw programs.

The SetCooperativeLevel() function is used by an application to set cooperative
level. The predefined constants DDSCL_FULLSCREEN and DDSCL_EXCLUSIVE al-
low the application to execute full-screen and to ensure control of the display mode
and the palette. In this case the DirectDraw program has almost exclusive control of
the video resources. The use of this function is described later in this chapter.

DirectDraw cooperative levels have the following additional features:

• A DirectDraw application can be enabled to use a non-standard VGA resolution known
as Mode X. Mode X, which executes in 320 by 240 pixels in 256 colors, was a very popu-
lar mode with DOS game programmers.

• DirectDraw applications that execute in exclusive mode can be prevented from re-
sponding to CTRL + ALT + DEL keystrokes.

• A DirectDraw application can be enabled to minimize or maximize itself.

Microsoft considers the normal cooperative level the one in which the
DirectDraw application cooperates as a windowed program. However, DirectDraw
applications that execute in windowed mode are not able to change the display
mode or perform page flipping. Display mode control and page flipping are essential
to many high-performance graphics programs, especially those that use animation.
For this reason many high-performance DirectDraw programs execute in exclusive
mode.

25.5.2 Display Modes

Display modes date back to the first PC graphics video system. By the time the VGA
was released (1987) there were 18 different display modes. A display mode is a hard-
ware configuration of the video system registers and hardware that enables a particu-
lar resolution and color depth. Display modes are described in terms of their pixel
width, height, and bit depth. For example, VGA mode 18H has a resolution of
640-by-480-by-4. This means that it displays 640 pixel columns and 480 pixel rows in 16
colors. The last digit of the mode specification, in this case 4, is the number of bits used
in the pixel color encoding. In VGA mode 18H the color range is 16, which is the maxi-
mum number of combinations of the 4 binary digits used to encode the color.

Palletized and Nonpalletized Modes

PC display modes are often classified as palletized and nonpalletized. In palletized dis-
play modes each color value is an index into an associated color table, called the pal-
ette. The bit depth of the display mode determines the number of colors in the palette.
For example, in a 4-bit palletized mode, such as VGA mode 18H, each pixel attribute is
a value in the range 0 to 15. This makes possible a palette with 16 entries. The actual
colors displayed depend on the palette settings. The programmer can select and
change the pallet colors at any time, thus selecting a sub-range of displayed colors.
However, when the palette is changed, all displayed objects are shown with the new
settings.

Introducing DirectDraw 751

© 2003 by CRC Press LLC

Nonpalletized display modes, on the other hand, encode pixel colors directly. In
nonpalletized modes the bit depth represents the total number of color attributes
that can be assigned to each pixel. There is no look up table to define the color at-
tributes.

The higher the resolution and the color depth of a display mode, the more video
memory that is required to encode the pixel data. Since not all video adapters con-
tain the same amount of memory, not all of them support the same video modes. The
DirectDraw EnumDisplayModes() function is used to list all the display modes sup-
ported by a device, or to confirm if a particular display mode is available in the
video card.

Applications using DirectDraw can call the SetDisplayMode() function. The pa-
rameters passed to the call describe the dimensions, bit depth, and refresh rate of
the mode to be set. A fifth parameter indicates special options for the given mode.
Currently this parameter is used only to differentiate between Mode 13H, with 320
by 200 resolution and 16 colors, and VGA Mode X, also with 320 by 200 resolution
but in 256 colors. Although an application can request a specific display mode reso-
lution and bit depth, it cannot specify how the pixel depth is achieved by the hard-
ware. After a mode is set, the application can call GetDisplayMode() to determine if
the mode is palletized and to examine the pixel format. In other words, DirectDraw
reserves the right to implement a particular color depth in a palletized or
nonpalletized mode.

DirectDraw programs that do not execute in exclusive mode allow other applica-
tions to change the video mode. At the same time, an application can change the bit
depth of the display mode, only if it has exclusive access to the DirectDraw object.
DirectDraw applications that execute in exclusive mode allow other applications to
allocate DirectDrawSurface objects, and to use DirectDraw and GDI services. For
the same reason, applications that execute at the exclusive cooperative level are the
only ones that can change the display mode or manipulate the palette.

A DirectDraw application can explicitly restore the display hardware to its origi-
nal mode by calling the RestoreDisplayMode(). A DirectDraw exclusive mode appli-
cation that sets the display mode by calling SetDisplayMode() can automatically
restore the original display mode by calling RestoreDisplayMode().

DirectDraw supports all screen resolutions and pixel depths that are available in
the card's device driver. Thus, a DirectDraw application can change to any mode
supported by the display driver, including 24- and 32-bit true-color modes.

25.5.3 Surfaces

A DirectDraw surface is a linear memory area that holds image data. A surface can re-
side in display memory, which is located in the video card, or in system memory. Appli-
cations create a DirectDraw surface by calling the IDirectDraw7::CreateSurface()
function. The call can create a single surface object, a complex surface-flipping chain,
or a three-dimensional surface. The IDirectDrawSurface interface allows an applica-
tion to indirectly access memory through blit functions, such as Blt() and BltFast(). In

752 Chapter Twenty-Five

© 2003 by CRC Press LLC

addition, a surface provides a device context to the display, which can be used with
GDI functions.

IDirectDrawSurface surface functions can be used to directly access display
memory. The Lock() function retrieves the address of an area of display memory
and ensures exclusive access to this area. This operation is said to "lock" the sur-
face. A primary surface is one in which the display memory area is mapped to the
video display. Alternatively, a surface can refer to a nondisplayed area. In this case
the surface is called an off-screen or overlay surface. Nonvisible buffers usually re-
side in display memory, but they can be created in system memory if DirectDraw is
performing a hardware emulation, or if it is otherwise necessary due to hardware
limitations. Surface objects that use a pixel depth of 8 bits or less are assigned a pal-
ette that defines the color attributes in the encoding. Figure 25-4 shows the sur-
face-based layout of video memory.

Figure 25-4 Visualization of Primary and Overlay Surfaces

Once a DirectDraw application receives a pointer to video memory it can use this
pointer to draw on the screen, with considerable gain in control and performance.
However, a program that accesses video memory directly must concern itself with
many details of the video system layout that are transparent at a higher program-
ming level. The first complicating factor is that video buffer mapping can be differ-
ent in two modes with the same resolution. This possible variation is related to the
fact that the video buffer is actually a storage for pixel attributes. If an attribute is
encoded in 8 bits, then the buffer requires 1 byte per pixel. If a pixel attribute is
stored in 24 bits, then the buffer requires 3 bytes per pixel.

Figure 25-5, on the following page, shows two video modes with different pixel
depths. In the 8-bits per pixel mode the fourth memory byte is mapped to the fourth
screen pixel. However, in the 24-bits per pixel mode it is the thirteenth to the fif-
teenth video memory bytes that are mapped to the fourth pixel. The calculations re-
quired to obtain the offset in video memory for a particular screen pixel are
different in each case.

Introducing DirectDraw 753

primary surface

VIDEO MEMORY

overlay surface

overlay surface

© 2003 by CRC Press LLC

Figure 25-5 Video Memory Mapping Variations

There is another complication in direct access programming: in display modes
the number of bytes in each video buffer row is not exactly the product of the num-
ber of pixels on the row by the number of bytes per pixel. For example, consider a
row of 400 pixels in which each pixel is mapped to 3 data bytes. In this case it would
be reasonable to expect that the pixel row would take up 700 bytes of video mem-
ory. However, due to video system design and performance considerations, some-
times it necessary to allocate a number of bytes in each buffer row that is a multiple
of some specific number. This determines that, in some display modes, there are
data areas that are not mapped to screen pixels.

Here is a real life example: a display mode with a resolution of 640 pixels per row
and a color depth of 24 bits per pixel requires 1,920 bytes to store the data corre-
sponding to a single row of screen pixels. However, the some video card designers
have assigned 2,560 bytes of video buffer space for each screen row, so that the
same buffer size can be used in a 32 bits per pixel mapping. The result is that in the
24-bit mode there is an area of 640 unmapped bytes at the end of each row.

This explains the difference between the terms pitch and width in regards to
video buffer data. While pitch describes the actual byte length of each row in the
video buffer, width refers to the number of pixels in each screen row. In program-
ming direct access operations it is important to remember that pitch and width can
have different values.

754 Chapter Twenty-Five

VIDEO DISPLAY
(screen pixels)

VIDEO MEMORY
(1 byte per pixel)

VIDEO MEMORY
(3 bytes per pixel)

© 2003 by CRC Press LLC

25.5.4 Palettes
A palette is a color look-up table. Palettes are a way of indirectly mapping pixel attrib-
utes. This scheme is useful when in extending the number of displayable colors in
modes with limited pixel depths. For example, a display mode with 4 bits per pixel nor-
mally allows representing 16 different color attributes. Alternatively, it is possible to
make each video buffer values serve as an index into a data structure called the pal-
ette. The actual pixel colors are defined in the palette. By changing the values stored in
the palette the application can map many 16-color sets to the display attributes. By
means of the palette mechanism the number of simultaneously displayable colors re-
mains the same, but the actual colors mapped to the video buffer values can be
changed by the application. Figure 25-6 shows how a palette provides an indirect map-
ping for the color attributes stored in the video buffer.

Figure 25-6 Palette-Based Pixel Attribute Mapping

In DirectDraw palettes are linked to surfaces. Surfaces that use a 16-bit or greater
pixel format do not use palettes, since this pixel depth allows encoding rich colors
directly. Therefore, the so-called real color modes (16 bits per pixel) and true color
modes (24 and 32 bits per pixel) are nonpalletized. Palettes are used in modes with
1, 2, 4, and 8 bits per pixel. In these cases the palette can have 2, 4, 16, or 256 entries.
In DirectDraw a palette must be attached to a surface with the same color depth. In
addition, it is possible to create palettes that do not contain a color table. In these
so-called index palettes, the palette values serve as an index into another palette's
color table.

Each palette entry is in the form of an RGB triplet that describes the color to be
used when displaying the pixel. The RGB values in the color table can be in 16- or
24-bit format. In 16 bit RGB format each palette entry is encoded in 5-6-5 form. This
means that the first 5 pixels are mapped to the red attribute, the second 6 pixels to
the green attribute, and the last 5 pixels to the blue attribute. This is the same map-
ping scheme used in the real color modes. In the 24-bit RGB palette format each of
the primary colors (red, green, and blue) is mapped to 8 pixels, as in the true color
modes.

Introducing DirectDraw 755

VIDEO DISPLAY

PALETTE

VIDEO
DATA

© 2003 by CRC Press LLC

An application creates a palette by calling IDirectDraw7::CreatePalette() func-
tion. At call time the application defines if the palette contains 2, 4, 16, or 256 entries
and provides a pointer to a color table used in initializing the palette. If the call is
successful, DirectDraw returns the address of the newly created DirectDrawPalette
object. This palette object can then be used to attach the palette to a DirectDraw
surface. The same palette can be attached to multiple surfaces. Once a palette is at-
tached to a surface, an application can call the GetPalette() and SetPalette() func-
tions to query or change the palette entries.

A type of animation is based on changing the appearance of a surface object by
modifying the palette attached to the surface that contains it. By repeatedly chang-
ing the palette, the surface object can be made to appear differently without actually
modifying the contents of video memory. Two different types of palette manipula-
tions can be used to for this. The first method is based on modifying the values in a
single palette. The second method is based on switching between several palettes.
Since palette modifications are not hardware intensive, either method often pro-
duces satisfactory results.

Historically, the need for palettes resulted from the memory limitations of the
original video systems used in the PC. In VGA the video space was on the order of a
few hundred kilobytes, while the low-end PCs of today are furnished with video
cards that have 2 or 4 Mb of on-board video memory. This abundance of video mem-
ory has made palettes less important. However, palletized modes allow interesting
animation effects, which are achieved by manipulating the color table data. For ex-
ample, an object can be made to disappear from the screen by changing to a palette
in which the object attributes are the same as the background. The object can then
be made to reappear by restoring the original palette.

25.5.5 Clipping

In DirectDraw clipping is a manipulation by which video output is limited to one or
more rectangular-shaped regions. DirectDraw supports clipping in applications that
execute in exclusive mode and windowed. The term "clippers" is often used to refer to
DirectDrawClipper objects. A single bounding rectangle is sometimes used to limit
the display to the application's client area. Several associated bounding rectangles are
called a clip list.

The most common use for a clipper is to define the boundaries of the screen or of
a rectangular window. A DirectDraw clipper can be used to define the screen area of
an application so as to ensure that a bitmap is progressively displayed as it moves
into this area. If a clipping area is not defined, then the blit fails because the destina-
tion drawing surface is outside the display limits. However, when the boundaries of
the video display area are defined by means of a clipper, DirectDraw knows not to
display outside this area and the blit succeeds. Blitting a bitmap to unclipped and
clipped display areas is shown in Figure 25-7.

756 Chapter Twenty-Five

© 2003 by CRC Press LLC

Figure 25-7 Clipping a Bitmap at Display Time

In Figure 25-7 shows how clipping makes it possible to display a bitmap that does
not entirely fit in the display area. The top of the illustration shows a blit operation
that fails because the source bitmap does to fit in the destination area. When clip-
ping is enabled it possible to display the bitmap of the automobile as it progressively
enters the screen area, instead of making it pop onto the screen all at once.

To implement clipping in DirectDraw you create a clipper with the screen rectan-
gle as its clip list. Once the clipper is created, trimming of the bitmap is performed
automatic. Clipper objects are also used to designate areas within a destination sur-
face. If the designated areas are tagged as writable, DirectDraw automatically crops
images that fall outside this area. Figure 25-8, on the following page, shows a dis-
play area with a clipper defined by two rectangles. When the text bitmap is blitted
onto the screen, only those parts that fall inside the clipper are displayed. The pixel
data is preserved in the screen areas not included in the clipper. In this case the clip
list consists of the two rectangles for which output is validated.

Introducing DirectDraw 757

B
lit failed

B
lit sucessful

BITMAP DISPLAY AREA (unclipped)

DISPLAY AREA (clipped)

© 2003 by CRC Press LLC

Figure 25-8 Clipper Consisting of Two Rectangular Areas

758 Chapter Twenty-Five

BITMAP OF TEXT MESSAGE

DISPLAY AREA

Clippers

Aa Bb Cc Dd Ee Ff Gg

Aa Bb Cc Dd Ee Ff Gg

© 2003 by CRC Press LLC

Chapter 26

Setting Up DirectDraw

Topics:
• Configuring Developer Studio

• Creating the DirectDraw object

• Obtaining the interface version

• Selecting the level of interaction

• Obtaining the hardware capabilities

• Obtaining and listing the display modes

DirectX applictions that use DirectDraw must first initialize the software and perform
a series of configuration tests. One of the most critical elements is to determine and se-
lect how the DirectX program cooperates with concurrent Windows applications. In
this chapter we describe the initialization and setup operations for DirectDraw pro-
gramming and develop code that serves as a template for creating DirectDraw pro-
grams.

26.1 Set-up Operations
DirectDraw programs must first set up the development system so that application
code can access the DirectDraw functions in DirectX. The first step is to include the
DirectDraw header file, named ddraw.h, which is part of the DirectX SDK as well as the
newer versions of Windows.

26.1.1 DirectDraw Header File

As newer versions of the DirectX SDK are installed, either directly or through operat-
ing system patches, it is possible to find several versions of the ddraw.h file on the
same computer. The DirectX programmer needs to make sure that the software under
development is using the most recent release of the DirectDraw header file. One way
to ensure this is use the Windows Explorer search feature to look for all files named
ddraw.h. Once the files are located, it is easy to rename or delete the older versions of
ddraw.h. Usually the date stamp and the file size serve to identify the most recent one.

© 2003 by CRC Press LLC

However, you cannot assume that the installation program for the operating system,
the SDK, or the development environment will do this for you.

In addition, the ddraw.h file must be located so that it is accessible to the devel-
opment software. This may require moving or copying the newest version of
ddraw.h to the corresponding include directory, as well as making certain that the
path in the development environment corresponds with this directory. In Visual C++
the directories searched by the development system can be seen by means of the
Options command in the Tools menu. In this case the Show directories for scroll box
should be set for include files. At this time you may enter, in the edit box, the path to
the DirectDraw include file and libraries. The edit is located at the bottom of the Di-
rectories window. While in this window, it is a good idea to drag the box to the top of
the list so that this directory is searched first. Figure 26-1 shows the Directories tab
for the Include files when DirectX is installed in the default drive and path.

Figure 26-1 Directories Tab (Include Files) in the Options Dialog Box

26.1.2 DirectDraw Libraries

Another software component necessary for DirectDraw programming is the ddraw.lib
library file. Here again, it is possible that duplicate versions of the software be present
in the system. It is necessary that all but the most recent one be eliminated. The same
process described for the Include files in the preceding section can be applied to the li-
brary files. Figure 26-2 shows the Directories tab for the library files.

760 Chapter Twenty-Six

© 2003 by CRC Press LLC

Figure 26-2 Directories Tab (Library files) in the Options Dialog Box

In addition to finding the newest version of the library, and installing it in the sys-
tem's library path, Visual C++ users must also make sure that the development envi-
ronment is set up to look for the DirectDraw libraries. To make sure of this you can
inspect the dialog box that is displayed when the Settings command is selected in
Developer Studio Project menu. The ddraw.lib and the dxguid.lib files must be listed
in both the Object/Library Modules and the Project Options windows of the Link tab
in the Project Settings dialog box, as shown in Figure 26-3.

Figure 26-3 Link Tab in Developer Studio Project Settings Dialog Box

Setting Up DirectDraw 761

© 2003 by CRC Press LLC

The ddraw.lib library contains the DirectDraw functions, and the dxguid.lib has
the identifiers required for accessing the various interface versions. If the Link tab
in the Project Settings dialog box does not show a reference to ddraw.lib and
dxguid.lib, you can manually insert the library names in the Object/library modules
edit box. The library names are automatically copied to the Project Options box.
Once access to the DirectDraw header file and the libraries are in place, the devel-
opment system is ready for use.

26.2 Creating the DirectDraw Object
To use DirectDraw an application must first create a DirectDraw object. The
DirectDraw object is actually a pointer to the DirectDraw interface as implemented in
the video card. Since this pointer provides access to all other DirectDraw functions, a
DirectDraw application can do little else without this object. To create the object you
use the DirectDrawCreateEx() function. This function creates a DirectDraw object
that supports a new set of Direct3D functions first released with DirectX 7. The func-
tion's general form is as follows:

HRESULT DirectDrawCreateEx (

GUID FAR lpGUID, // 1

LPVOID *lplpDD, // 2

REFIID iid // 3

IUnknown FAR *pUnkOutter, // 4

);

The first parameter (lpGUID) is a globally unique identifier (GUID) that repre-
sents the driver to be created. If this parameter is NULL then the call refers to the
active display driver. The newer versions of DirectDraw allow passing one of two
flags in this parameter. The flags control the behavior of the active display, as fol-
lows:

• DDCREATE_EMULATIONONLY: DirectDraw use only emulation. Hardware support
features are not be used.

• DDCREATE_HARDWAREONLY: DirectDraw object does not use emulated features. If
a hardware supported features is not avai lable the cal l returns
DDERR_UNSUPPORTED.

The second parameter (*lplpDD) is a pointer that the call initializes if it succeeds.
This is IDirectDraw7 interface pointer object returned by DirectDrawCreateEx().

The third parameter (iid) must be set to IID_DirectDraw7. Any other interface re-
turns an error.

The fourth parameter (*pUnkOutter) is provided for future compatibility with the
COM interface. At present it should be set to NULL.

The call returns DD_OK if it succeeds. If it fails, one of the following predefined
constants is returned:

• DDERR_DIRECTDRAWALREADYCREATED

• DDERR_GENERIC

762 Chapter Twenty-Six

© 2003 by CRC Press LLC

• DDERR_INVALIDDIRECTDRAWGUID

• DDERR_INVALIDPARAMS

• DDERR_NODIRECTDRAWHW

• DDERR_OUTOFMEMORY

On systems with multiple monitors, specifying NULL for the first parameter
causes the DirectDraw object to run in emulation mode. In these systems the call
must specify the device's GUID in order to use hardware acceleration.

26.2.1 Obtaining the Interface Version
You have seen that the COM requires that objects update their functionality by means
of new interfaces, rather than by changing methods within existing interfaces. The
purpose of this requirement is to keep existing interfaces static, so that older applica-
tions continue to be compatible with the newer interfaces.

The availability of various interfaces facilitates component updating, but it also
creates some coding complications. For example, currently the DirectDraw surface
object supports three dif ferent interfaces, named IDirectDrawSurface,
IDirectDrawSurface2, and IDirectDrawSurface4. Consistent with the COM require-
ment, each interface version supports all the methods of its predecessor, and adds
new ones for the new features. But there is no assurance that a host machine con-
tains the newest version of the interface. For this reason applications must query
DirectDraw to determine which interface or interfaces are available in the host,
then provide alternative processing routes for each case. The situation is further
complicated by the fact that, in some rare cases, a new interface may not support all
the functions provided in a previous one. The result is a return to device-dependent
programming that Windows was designed to avoid in the first place.

Once the DirectDraw application has used the DirectDrawCreateEx() function to
o b t a i n a p o i n t e r t o t h e D i r e c t D r a w o b j e c t , C O M p r o v i d e s t h e
IUnknown::QueryInterface method which allows finding out whether the object
supports other interfaces. If the call succeeds, QueryInterface() returns a pointer to
the interface requested as a parameter. It is through this pointer that code gains ac-
cess to the methods of the new interface. If the QueryInterface() function returns
any other value but S_OK call can assume that the interface is not available. Possi-
ble options in this case are to provide some sort of work-around for the missing
functionality, or to abort execution if the lack of processing capabilities in the host
machine cannot be remedied.

The QueryInterface() has the following general form:

HRESULT QueryInterface(
REFIID riid, // 1
LPVOID* obj, // 2
);

The first parameter (riid) is a reference identifier for the object being queried.
The calling code must know this unique identifier before the call is made. The sec-
ond parameter is the address of a variable that will contain a pointer to the new in-

Setting Up DirectDraw 763

© 2003 by CRC Press LLC

terface, if the call is successful. The return value is S_OK if the call succeeds or one
of the following error messages if it fails:

• E_NOINTERFACE

• E_POINTER

• DDERR_INVALIDOBJECT

• DDERR_INVALIDPARAMS

• DDERR_OUTOFMEMORY

T h e D D E R R R _ O U T O F M E M O R Y e r r o r m e s s a g e i s r e t u r n e d b y
IDirectDrawSurface2 and IDirectDrawSurface4 objects only. If, after making the
call, the application determines that it does not need to use the interface, it should
call the Release() function to free it.

Four IDirectDraw interfaces are implemented in DirectX . The corresponding ref-
erence identifiers are IID_DirectDraw, IID_DirectDraw2, IID_DirectDraw4, and
IID_DirectDraw7. It is not recommended that an application mix methods from two
or more interfaces since the results are sometimes unpredictable.

Microsoft attempts to ensure the portability of applications that commit to a spe-
cific DirectX implementation by furnishing an installation utility that upgrades the
host system to the newest components. In the DirectSetup element of DirectX there
are the diagnostics and installation programs, as well as the drivers and library files,
that serve to update a system to the corresponding version of the SDK. DirectSetup
also includes a ready-to-use installation utility that copies all the system compo-
nents to the corresponding directories of the client's hard drive and performs the
necessary modifications in the Windows registry. In the DirectX SDK Microsoft also
provides all the required project files for a sample installation application named
dinstall. The DirectX programmer can use the source code of the dinstall program as
a base on which to create a customized installation utility for DirectX.

The following code fragment shows how to determine the version of the
DirectDraw interface installed in the host system:

// Global variables for DirectDraw operations
HRESULT DDConnect;

// Interfaces pointers
LPDIRECTDRAW lpDD;
LPDIRECTDRAW lpDD2;
LPDIRECTDRAW lpDD4;
LPDIRECTDRAW lpDD7;
int dDLevel 0; // Implementation level
.
.
.
//*************************
// DirectDraw Init
//*************************
DDConnect = DirectDrawCreate (NULL,

&lpDD0,
NULL);

764 Chapter Twenty-Six

© 2003 by CRC Press LLC

// Querying the interface to determine most recent

// version

if(DDConnect == DD_OK)

{

DDLevel = 1; // Store level

lpDD = lpDD0; // copy pointer

DDConnect = lpDD0->QueryInterface(

IID_IDirectDraw2,

(LPVOID *) &lpDD2);

}

if(DDConnect == S_OK)

{

DDLevel = 2; // Update level

lpDD0->Release(); // Release old pointer

lpDD = (LPDIRECTDRAW) lpDD2;

DDConnect = lpDD->QueryInterface(

IID_IDirectDraw4,

(LPVOID *) &lpDD4);

}

if(DDConnect == S_OK)

{

DDLevel = 4; // Update level

lpDD2->Release(); // Release old pointer

lpDD = (LPDIRECTDRAW) lpDD4;

DDConnect = lpDD->QueryInterface(

IID_IDirectDraw7,

(LPVOID *) &lpDD7);

}

if(DDConnect == S_OK)

{

DDLevel = 7; // Update level

lpDD4->Release(); // Release old pointer

lpDD = (LPDIRECTDRAW) lpDD7;

}

// Note that the pointer returned is typecast into LPDIRECTDRAW.

Notice in the preceding code that when a valid object is found, the preceding one
is released by calling the Release() function. In Chapter 9 you saw that IUnknown
contains a function named AddRef() which increments the object's reference count
by 1 when an interface or an application binds itself to an object. Also that the Re-
lease() function decrements the object's reference count by 1 when it is no longer
needed. When the count reaches 0, the object is automatically de-allocated.
Normally, every function that returns a pointer to an interface calls AddRef() to in-
crement the object reference count. By the same token, the application calls Re-
lease() to decrement the object reference count. When an object's reference count
reaches 0, it is destroyed and all interfaces to it become invalid. In the previous sam-
ple code we need not call the AddRef() method since QueryInterface() implicitly
calls AddRef() when a valid object is found. However, the code must still call Re-
lease() to decrement the reference object count and destroy the pointer to the inter-
face.

Setting Up DirectDraw 765

© 2003 by CRC Press LLC

26.2.2 Interface Version Strategies
The preceding code fragment allows determining which DirectDraw interface version
is available in the host machine. If a DirectDraw interface is found, the pointer is used
to make a few calls to the DirectDraw interface. But notice that this scheme works
only in trivial applications, such as the DD Info project listed later in this chapter.
DirectDraw implements version-specific pointers for the different interfaces, of types
LPDIRECTDRAW, LPDIRECTDRAW2, LPDIRECTDRAW4, and LPDIRECTDRAW7.
Any substantial DirectDraw program will almost certainly generate errors when calls
are made with a pointer that is not of the version-specific type. In the preceding code
we have typecast the version-specific pointers to a generic pointer of type
LPDIRECTDRAW, for example, in the code fragment:

if(DDConnect == S_OK)
{

DDLevel = 7; // Update level
lpDD4->Release(); // Release old pointer
lpDD = (LPDIRECTDRAW) lpDD7;

}

The resulting pointer assumes the functionality of IDirectDraw.

Although programmers often wish to know what is the DirectX interface version
installed in the host machine, writing substantial application code that runs in sev-
eral possible interfaces can be a complicated matter. One problem often encoun-
tered is that function signatures change from one interface to another one. For
example, a function call in IDirectDraw may take three parameters and the same
function takes four parameters in IDirectDraw2. Accommodating the variations in
the different interfaces usually requires a considerable amount of contingency code.

A more practical strategy is to decide beforehand which is the lowest interface
version required by the application, then make sure that this version of the interface
is available in the host machine. The strategy usually works since the COM architec-
ture insures that the functionality of older versions of the interface is always main-
tained. For example, if you have decided that your application requires the
IDirectDraw7 interface, the following function can be used to test for the presence
of this interface level and to obtain the corresponding pointer.

// Global variable
LPDIRECTDRAW7 lpDD7; // Pinter to IDirectDraw7
.
.
.
//**
// Name: DD7Interface()
// Desc: Created DirectDraw object and finds
// DirectDraw7 interface
// PRE:
// Caller's code contains pointer
// variable:
// LPDIRECTDRAW7 lpDD7;
//
// POST:

766 Chapter Twenty-Six

© 2003 by CRC Press LLC

// returns 0 if no DirectDraw7 interface
// returns 1 if DirectDraw7 found
// Caller's pointer variable is
// initialized
//**
int DD7Interface()
{

HRESULT DDConnect;
LPDIRECTDRAW lpDD; // Pointer to DirectDraw

DDConnect = DirectDrawCreate (NULL,
&lpDD,
NULL);

if(DDConnect != DD_OK)
return 0;

// Atempt to locate DirectDraw4 interface
DDConnect = lpDD->QueryInterface(

IID_IDirectDraw7,
(LPVOID *) &lpDD7);

if(DDConnect != S_OK)
return 0;

lpDD->Release(); // Release old pointer
return 1;

}

The function DD7Interface(), listed previously is used by most of the DirectDraw
sample programs listed in this book.

26.2.3 Setting the Cooperative Level
A DirectDraw application can obtain almost exclusive control over the system hard-
ware resources, while a normal Windows application shares these resources with
other programs. One of the most critical of these resources is the video system. Con-
trol over the video system is necessary for implementing some types of interactive, an-
imated games and other high-performance graphics programs. But not all DirectDraw
programs need this special functionality. Some DirectDraw applications execute in a
window and behave like a normal Windows program. The SetCooperativeLevel() func-
tion is used to request a specific level of resource control and, at the same time, to es-
tablish the level of cooperation with other Windows applications.

The function SetCooperativeLevel() has slightly different implementations in the
DirectDraw, DirectDraw2, DirectDraw4, and DirectDraw7 interfaces. The following
discussion refers to IDirectDraw7::SetCooperativeLevel.

The basic decision that must be made at the time of calling SetCooperativeLevel()
is whether the application is to run full-screen, with exclusive access to the display
resources, or as a normal windowed program. DirectDraw cooperative levels also
have the following effects:

1. Enable DirectDraw to use of Mode X resolutions.

Setting Up DirectDraw 767

© 2003 by CRC Press LLC

2. Prevent DirectDraw from releasing exclusive control of the display or rebooting if the
user pressed CTRL+ALT+DEL.

3. Enable DirectDraw to minimize or maximize the application in response to user
events.

Table 26-1 l ists the predef ined constants that are recognized by the
SetCooperativeLevel() function.

Table 26-1

Cooperative Level Symbolic Constants

FLAG DESCRIPTION

DDSCL_ALLOWMODEX Allows the use of Mode X display modes. This
flag can only be used with the
DSCL_EXCLUSIVE and DDSCL_FULLSCREEN
modes.

DDSCL_ALLOWREBOOT Allows the CTRL+ALT+DEL keystroke to function
while in exclusive mode.

DDSCL_CREATEDEVICEWINDOW
DirectDraw is to create and manage a default
device window for this DirectDraw object. Focus
and device windows are multi-monitor functions
supported by Windows 98 and Windows 2000.

DDSCL_EXCLUSIVE Requests the exclusive level. Must be used with
DDSCL_FULLSCREEN.

DDSCL_FPUPRESERVE The calling application cares about the FPU
state and does not want Direct3D to modify it in
ways visible to the application. In this mode,
Direct3D saves and restores the FPU state
every time that it needs to modify the FPU state.

DDSCL_FPUSETUP Indicates that the DirectDraw application will
keep the math unit set up for single precision
and exceptions disabled, which is the best
setting for optimal Direct3D performance.

DDSCL_FULLSCREEN The exclusive-mode owner is responsible for the
entire primary surface. GDI is ignored. Must be
used with DDSCL_EXCLUSIVE.

DDSCL_MULTITHREADED
Requests multithread-safe DirectDraw behavior.
This causes Direct3D to take the global critical
section more frequently.

DDSCL_NORMAL Indicates a regular Windows application. Cannot
be used with the DDSCL_ALLOWMODEX,
DDSCL_EXCLUSIVE, or DDSCL_FULLSCREEN
flags. Applications executing in this mode cannot
perform page flipping or change the palette.

DDSCL_NOWINDOWCHANGES
DirectDraw is not allowed to minimize or restore
the application window.

DDSCL_SETDEVICEWINDOW
The hWnd parameter is the window handle of
the device window for this DirectDraw object.
DDSCL_SETFOCUSWINDOW
The hWnd parameter is the window handle of
the focus window for the DirectDraw object.
Cannot be used with the

768 Chapter Twenty-Six

© 2003 by CRC Press LLC

DDSCL_SETDEVICEWINDOW flag. Supported
by Windows 98 and NT 5.0 only.

The SetCooperativevel() function's general form is as follows:

HRESULT SetCooperativeLevel(
HWND hwnd, // 1
DWORD aDword // 2
);

The first parameter (hwnd) is the handle to the application window; however, if
an application requests DDSCL_NORMAL in the second parameter, it can use NULL
for the window handle. The second parameter (aDword) is one or more of the flags
defined by the symbolic constants listed in Table 26-1. The function returns DD_OK
if the call succeeds, or one of the following error messages:

• DDERR_EXCLUSIVEMODEALREADYSET

• DDERR_HWNDALREADYSET

• DDERR_HWNDSUBCLASSED

• DDERR_INVALIDOBJECT

• DDERR_INVALIDPARAMS

• DDERR_OUTOFMEMORY

The DDERR_EXCLUSIVEMODEALREADYSET message refers to the fact that
only one application can request the exclusive mode. If this message is received,
then there is another application that has been granted the exclusive mode and code
should provide alternative processing or an exit.

Full-screen applications receive the DDERR_NOEXCLUSIVEMODE return value
if they lose exclusive device access, as is the case when the user has pressed
ALT+TAB to switch to another program. In this event one possible coding alterna-
tive is to call TestCooperativeLevel() function in a loop, exiting only when it returns
DD_OK, indicating that exclusive mode is now available.

Applications that use the normal cooperative level (DDSCL_NORMAL flag) re-
ceive DDERR_EXCLUSIVEMODEALREADYSET if another application has taken ex-
clusive device access. In this case a windowed application can be coded to loop
until TestCooperativeLevel() returns DD_OK.

The two most common flag combinations used in the SetCooperativeLevel() call
are for programs that execute in exclusive mode and those that are windowed. The
following code fragment shows the call to SetCooperativeLevel() for a DirectDraw
application that requests exclusive mode:

LPDIRECTDRAW lpDD; // DirectDraw object
HWND hwnd; // Handle to the window
...
lpDD->SetCooperativeLevel(hwnd, DDSCL_EXCLUSIVE | DDSCL_FULLSCREEN);

For some unexplained reason two flags are required to set DirectDraw exclusive
mode: DDSCL_EXCLUSIVE and DDSCL_FULLSCREEN. In reality all exclusive
mode applications execute full screen so the second flag is actually redundant.

Setting Up DirectDraw 769

© 2003 by CRC Press LLC

To set the cooperative level to the normal mode the code can be as follows:

LPDIRECTDRAW lpDD; // DirectDraw object
...
lpDD->SetCooperativeLevel(NULL, DDSCL_NORMAL);

Note that exclusive mode applications pass the handle to the window parameter
(hwnd) so that Windows has a way of recovering from conditions that freeze the
otherwise disabled video system. This is not required for normal Windows programs
that use conventional recovery procedures.

26.2.4 Hardware Capabilities
Conventional Windows applications often ignore the specific configuration of the sys-
tem hardware; however, this is not the case in programs that use DirectDraw. Video
systems support DirectDraw to varying degrees of hardware compatibility and to
varying degrees of DirectDraw functionality. Most DirectDraw programs need to
know what level of DirectDraw hardware support is available in a particular machine,
as well as the amount of video memory available, before deciding if the code is com-
patible with the host, or how to proceed if a given functionality is not present.

In order to determine the supported hardware-accelerated features a DirectDraw
application can enumerate the hardware capabilities. In general, it is safe to assume
that most features that are not implemented in hardware are emulated by DirectX.
Notice, however, that there are a few cases in which this is not true. It is this emula-
t i o n t h a t m a k e s p o s s i b l e s o m e d e g r e e o f d e v i c e i n d e p e n d e n c e . T h e
IDirectDraw7::GetCaps function returns runtime information about video resources
and hardware capabilities. By examining these capabilities during the initialization
stage, an application can decide whether the available functionality is insufficient
and abort execution, or make other adjustments, in order to provide the best possi-
ble performance over varying levels of support.

It has been documented that, in some cases, a particular combination of hard-
ware supported features and emulation can result in worse performance than emu-
lation alone. For example, if the device driver does not support stretch blitting from
video memory, noticeable performance losses occur. The reason is that video mem-
ory is usually slower than system memory, which forces the CPU to wait when ac-
cessing video memory surfaces. For this reason, applications that use features not
supported by the hardware are usually better off creating surfaces in system mem-
ory, rather than in video memory.

The GetCaps() function returns the capabilities of the device driver for the hard-
ware (HAL) and for the hardware-emulation layer (HEL). The general form of the
GetCaps() function is as follows:

HRESULT GetCaps(
LPDDCAPS lpDDDriverCaps, // 1
LPDDCAPS lpDDHelCaps // 2
);

The first parameter (lpDDDriverCaps) is the address of a structure of type
DDCAPS that is filled with the capabilities of the hardware abstraction layer (HAL),

770 Chapter Twenty-Six

© 2003 by CRC Press LLC

as reported by the device driver. Code can set this parameter to NULL if the hard-
ware capabilities are not necessary. The second parameter (lpDDHelCaps) is the ad-
dress of a structure, also of type DDCAPS, that is filled with the capabilities of the
hardware emulation layer (HEL). This parameter can also be set to NULL if these ca-
pabilities are not to be retrieved. Code can only set one of the two parameters to
NULL, otherwise the call would be trivial. If the method succeeds, the return value
is DD_OK. If the method fails, the return value is one of the following error con-
stants:

• DDERR_INVALIDOBJECT

• DDERR_INVALIDPARAMS

The DDCAPS structure is a large one indeed: it contains 58 members in the
DirectDraw4 and DirectDraw7 versions. The structure is defined as follows:

typedef struct _DDCAPS {
DWORD dwSize; // size of structure DDCAPS
DWORD dwCaps; // driver-specific caps
DWORD dwCaps2; // more driver-specific caps
DWORD dwCKeyCaps; // color key caps
DWORD dwFXCaps; // stretching and effects caps
DWORD dwFXAlphaCaps; // alpha caps
DWORD dwPalCaps; // palette caps
DWORD dwSVCaps; // stereo vision caps
DWORD dwAlphaBltConstBitDepths;

// alpha bit-depth members
DWORD dwAlphaBltPixelBitDepths; // .
DWORD dwAlphaBltSurfaceBitDepths; // .
DWORD dwAlphaOverlayConstBitDepths; // .
DWORD dwAlphaOverlayPixelBitDepths; // .
DWORD dwAlphaOverlaySurfaceBitDepths; // .
DWORD dwZBufferBitDepths; // Z-buffer bit depth
DWORD dwVidMemTotal; // total video memory
DWORD dwVidMemFree; // total free video memory
DWORD dwMaxVisibleOverlays; // maximum visible overlays
DWORD dwCurrVisibleOverlays; // overlays currently visible
DWORD dwNumFourCCCodes; // number of supported FOURCC

// codes
DWORD dwAlignBoundarySrc; // overlay alignment

// restrictions
DWORD dwAlignSizeSrc; // .
DWORD dwAlignBoundaryDest; // .
DWORD dwAlignSizeDest; // .
DWORD dwAlignStrideAlign; // stride alignment
DWORD dwRops[DD_ROP_SPACE]; // supported raster ops
DWORD dwReservedCaps; // reserved
DWORD dwMinOverlayStretch; // overlay stretch factors
DWORD dwMaxOverlayStretch; // .
DWORD dwMinLiveVideoStretch; // obsolete
DWORD dwMaxLiveVideoStretch; // .
DWORD dwMinHwCodecStretch; // .
DWORD dwMaxHwCodecStretch; // .
DWORD dwReserved1; // reserved
DWORD dwReserved2; // .
DWORD dwReserved3; // .
DWORD dwSVBCaps; // system-to-video blit related

// caps
DWORD dwSVBCKeyCaps; // .

Setting Up DirectDraw 771

© 2003 by CRC Press LLC

DWORD dwSVBFXCaps; // .
DWORD dwSVBRops[DD_ROP_SPACE]; // .
DWORD dwVSBCaps; // video-to-system blit related caps
DWORD dwVSBCKeyCaps; // .
DWORD dwVSBFXCaps; // .
DWORD dwVSBRops[DD_ROP_SPACE]; // .
DWORD dwSSBCaps; // system-to-system blit related

// caps
DWORD dwSSBCKeyCaps; // .
DWORD dwSSBCFXCaps; // .
DWORD dwSSBRops[DD_ROP_SPACE]; // .
DWORD dwMaxVideoPorts; // maximum number of live video

// ports
DWORD dwCurrVideoPorts; // current number of live video

// ports
DWORD dwSVBCaps2; // additional system-to-video

// blit
// caps

DWORD dwNLVBCaps; // nonlocal-to-local video
// memory
// blit caps

DWORD dwNLVBCaps2; // .
DWORD dwNLVBCKeyCaps; // .
DWORD dwNLVBFXCaps; // .
DWORD dwNLVBRops[DD_ROP_SPACE];// .
DDSCAPS2 ddsCaps; // general surface caps

DDCAPS,FAR* LPDDCAPS;

Most applications are only concerned with a few of the capabilities of a
DirectDraw device. Table 26-2 lists some of the most often needed capabilities.

Table 26-2

Device Capabilities in the GetCaps() Function

DWCAPS MEMBER CONSTANTS:

DDCAPS_3D
Display hardware has 3D acceleration.

DDCAPS_ALPHA
Display hardware supports alpha-only surfaces.

DDCAPS_BANKSWITCHED
Display hardware is bank-switched. Therefore it is
very slow at random access operations to display
memory.

DDCAPS_BLT
Display hardware is capable of blit operations.

DDCAPS_BLTCOLORFILL
Display hardware is capable of color filling with
a blitter.

DDCAPS_BLTSTRETCH
Display hardware is capable of stretching during
blit operations.

DDCAPS_CANBLTSYSMEM
Display hardware is capable of blitting to or from
system memory.

DDCAPS_CANCLIP
Display hardware is capable of clipping with
Blitting.

(continues)

772 Chapter Twenty-Six

© 2003 by CRC Press LLC

Table 26-2

Device Capabilities in the GetCaps() Function (continued)

DWCAPS MEMBER CONSTANTS:

DDCAPS_CANCLIPSTRETCHED
Display hardware is capable of clipping while
stretch blitting.

DDCAPS_COLORKEY
System supports some form of color key in either
overlay or blit operations.

DDCAPS_GDI
Display hardware is shared with GDI.

DDCAPS_NOHARDWARE
No hardware support.

DDCAPS_OVERLAY
Display hardware supports overlays.

DDCAPS_OVERLAYCANTCLIP
Display hardware supports overlays but cannot
clip.

DDCAPS_PALETTE
DirectDraw is capable of creating and supporting
DirectDrawPalette objects for more surfaces than
the primary one.

DDCAPS_READSCANLINE
Display hardware is capable of returning the
current scan line.

DDCAPS_ZBLTS
Supports the use of z-buffers with blit
operations.

DWCAPS2 MEMBER CONSTANTS:

DDCAPS2_VIDEOPORT
Display hardware supports live video.

DDCAPS2_WIDESURFACES
Display surfaces supports surfaces wider than the
primary surface.

DWPALCAPS MEMBER CONSTANTS:

DDPCAPS_1BIT
Supports 2-color palettes.

DDPCAPS_2BIT
Supports 4-color palettes.

DDPCAPS_4BIT
Supports 16-color palettes.

DDPCAPS_8BIT
Supports 256-color palettes.

DDPCAPS_8BITENTRIES
Specifies an index to an 8-bit color index. This
field is valid only when used with the
DDPCAPS_1BIT, DDPCAPS_2BIT, or
DDPCAPS_4BIT capability.

DDPCAPS_ALPHA
Supports palettes that include an alpha component.

DDPCAPS_ALLOW256
Supports palettes with all 256 entries defined.

(continues)

Setting Up DirectDraw 773

© 2003 by CRC Press LLC

Table 26-2

Device capabilities in the GetCaps() Function (continued)

DWCAPS MEMBER CONSTANTS:

DDPCAPS_PRIMARYSURFACE
The palette is attached to the primary
surface. Changing the palette has an immediate
effect on the display unless the DDPCAPS_VSYNC
capability is specified and supported.

OTHER STRUCTURE MEMBERS:

DwVidMemTotal
Total amount of display memory.

DwVidMemFree
Amount of free display memory.

DwMaxVisibleOverlays
Maximum number of visible overlays or overlay
sprites.

DwCurrVisibleOverlays
Current number of visible overlays or overlay
sprites.

DwReservedCaps
Reserved. Prior to DirectX 6.0, this member
contained general surface capabilities.

DwMinOverlayStretch
DwMaxOverlayStretch

Minimum and maximum overlay stretch factors
multiplied by 1000. For example, 1.3 = 1300.

DwSVBCaps
Driver-specific capabilities for
system-memory-to-display-memory blits.

DwVSBRops
Raster operations supported for
display-memory-to-system-memory blits.

DwSSBCaps
Driver-specific capabilities for
system-memory-to-system-memory blits.

The following code fragment shows the processing required in order to read the
hardware capabilities using DirectDraw7::GetCaps. The code reads various capabili-
ties and displays the corresponding screen messages. After each message is dis-
played, the screen position is indexed by one or more lines. The project named DD
Info, in the book's software package, uses similar processing.

DDCAPS DrawCaps; // DDCAPS structure
LPDIRECTDRAW lpDD; // DirectDraw object
.
.
.
//**********************************
// DirectDraw hardware capabilities
//**********************************
DrawCaps.dwSize = sizeof (DrawCaps);
// Call to capabilities function

lpDD->GetCaps (&DrawCaps, NULL);
// Video memory

774 Chapter Twenty-Six

© 2003 by CRC Press LLC

strcpy (message, " Total Video Memory: ");
sprintf (message+strlen(" Total Video Memory: "),

"%i",DrawCaps.dwVidMemTotal);
TextOut (hdc, text_x, text_y, message, strlen (message));
text_y += tm.tmHeight+tm.tmExternalLeading;

// Free video memory
strcpy (message, " Free Video Memory: ");
sprintf (message+strlen(" Free Video Memory: "),

"%i",DrawCaps.dwVidMemFree);
TextOut (hdc, text_x, text_y, message, strlen (message));
text_y += tm.tmHeight+tm.tmExternalLeading;
text_y += tm.tmHeight+tm.tmExternalLeading;

// Video card hardware
strcpy (message,

" Video card hardware support as follows:");
TextOut (hdc, text_x, text_y, message, strlen (message));
text_y += tm.tmHeight+tm.tmExternalLeading;
text_x = 16;
if (DrawCaps.dwCaps & DDCAPS_NOHARDWARE)
{
strcpy (message, " No DirectDraw hardware support available");

TextOut (hdc, text_x, text_y, message, strlen (message));
text_y += tm.tmHeight+tm.tmExternalLeading;
return;

}
if (DrawCaps.dwCaps & DDCAPS_3D)
{

strcpy (message, " 3D support");
TextOut (hdc, text_x, text_y, message, strlen (message));
text_y += tm.tmHeight+tm.tmExternalLeading;

}
else
{

strcpy (message, " No 3D support");
TextOut (hdc, text_x, text_y, message, strlen (message));
text_y += tm.tmHeight+tm.tmExternalLeading;

}
if (DrawCaps.dwCaps & DDCAPS_BLT)
{

strcpy (message, " Hardware Bitblt support");
TextOut (hdc, text_x, text_y, message, strlen (message));
text_y += tm.tmHeight+tm.tmExternalLeading;

}
else
{

strcpy (message, " No hardware Bitblt support");
TextOut (hdc, text_x, text_y, message, strlen (message));
text_y += tm.tmHeight+tm.tmExternalLeading;

}
if (DrawCaps.dwCaps & DDCAPS_OVERLAY)
{

strcpy (message, " Hardware overlays supported");
TextOut (hdc, text_x, text_y, message, strlen (message));
text_y += tm.tmHeight+tm.tmExternalLeading;

}
else
{

strcpy (message, " No hardware overlays ");
TextOut (hdc, text_x, text_y, message, strlen (message));

Setting Up DirectDraw 775

© 2003 by CRC Press LLC

text_y += tm.tmHeight+tm.tmExternalLeading;
}

if (DrawCaps.dwCaps & DDCAPS_CANCLIP)
{

strcpy (message, " Clipping supported in hardware");
TextOut (hdc, text_x, text_y, message, strlen (message));
text_y += tm.tmHeight+tm.tmExternalLeading;

}
else
{

strcpy (message, " No hardware clipping support ");
TextOut (hdc, text_x, text_y, message, strlen (message));
text_y += tm.tmHeight+tm.tmExternalLeading;

}
if (DrawCaps.dwCaps & DDCAPS_BANKSWITCHED)
{

strcpy (message, " Memory is bank switched");
TextOut (hdc, text_x, text_y, message, strlen (message));
text_y += tm.tmHeight+tm.tmExternalLeading;

}
else
{

strcpy (message, " Memory not bank switched");
TextOut (hdc, text_x, text_y, message, strlen (message));
text_y += tm.tmHeight+tm.tmExternalLeading;

}
if (DrawCaps.dwCaps & DDCAPS_BLTCOLORFILL)

{
strcpy (message, " Color fill Blt support");
TextOut (hdc, text_x, text_y, message, strlen (message));
text_y += tm.tmHeight+tm.tmExternalLeading;

}
else
{

strcpy (message, " No Blt color fill support");
TextOut (hdc, text_x, text_y, message, strlen (message));
text_y += tm.tmHeight+tm.tmExternalLeading;

}
if (DrawCaps.dwCaps & DDCAPS_COLORKEY)
{

strcpy (message, " Color key hardware support ");
TextOut (hdc, text_x, text_y, message, strlen (message));
text_y += tm.tmHeight+tm.tmExternalLeading;

}
else
{

strcpy (message, " No color key support");
TextOut (hdc, text_x, text_y, message, strlen (message));
text_y += tm.tmHeight+tm.tmExternalLeading;

}
if (DrawCaps.dwCaps & DDCAPS_ALPHA)
{

strcpy (message, " Alpha channels supported");
TextOut (hdc, text_x, text_y, message, strlen (message));
text_y += tm.tmHeight+tm.tmExternalLeading;

}
else
{

strcpy (message, " No Alpha channels support");

776 Chapter Twenty-Six

© 2003 by CRC Press LLC

TextOut (hdc, text_x, text_y, message, strlen (message));

text_y += tm.tmHeight+tm.tmExternalLeading;

}

26.2.5 Display Modes

The DOS concept of a display mode has a different flavor in DirectDraw programming.
In DOS display modes are numbered, in DirectDraw a display mode is defined by its
resolution and color depth. Therefore, a DirectDraw display mode of 640 by 480 by 8
executes with a resolution of 640 pixel rows, 480 pixel columns, and encodes the pixel
attribute in 8 bits. Since 8 bits support 256 combinations, this mode supports a range of
256 colors. DirectDraw applications can obtain the available display modes. An appli-
cation that executes in exclusive mode can also set a display mode and restore the pre-
vious one when it concludes.

Not all devices support all display modes. To determine the display modes sup-
ported on a given system, an application can call EnumDisplayModes. The function
can be used to list all supported display modes, or to confirm that a single display
mode is available in the hardware. The function's general form is as follows:

HRESULT EnumDisplayModes(

DWORD dwFlags, // 1

LPDDSURFACEDESC2 lpDDSurfaceDesc, // 2

LPVOID lpContext, // 3

LPDDENUMMODESCALLBACK2 lpCallBack // 4

);

The first parameter (dwFlags) determines the function's options by means of two
flags: DDEDM_REFRESHRATES and DDEDM_STANDARDVGAMODES. The first
flag (DDEDM_REFRESHRATES) enumerates separately the modes that have differ-
ent refresh rates, even if they have the same resolution and color depth. The second
flag (DDEDM_STANDARDVGAMODES) enumerates Mode X and VGA Mode 13H as
different modes. This parameter can be set to 0 to ignore both of these options.

T h e s e c o n d p a r a m e t e r (l p D D S u r f a c e D e s c) i s t h e a d d r e s s o f a
DDSURFACEDESC2 structure. The structure is used to store the parameters of a
particular display mode, which can be confirmed or not by the call. This parameter
is set to NULL in order to request a listing of all available modes.

The third parameter (lpContext) is a pointer to an application-defined structure
that is passed to the callback function associated with EnumDisplayModes(). This
provides a mechanism whereby the application code can make local data visible to
the callback function. If not used, as is most often the case, then the third parameter
is set to NULL.

The fourth parameter (lpCallBack) is the address of a callback function, of proto-
type EnumModesCallback2(). This function is called every time a supported mode is
found. Applications use this callback function to provide the necessary processing
for each display mode reported by the call.

Setting Up DirectDraw 777

© 2003 by CRC Press LLC

The callback function, whose address your code supplies when it calls
EnumDisplayModes() must match the prototype for EnumModesCallback2(). Each
time that a supported mode is found, the callback function receives control. The
function's general form is:

HRESULT WINAPI EnumModesCallback(
LPDDSURFACEDESC2 lpDDSurfaceDesc2, // 1
LPVOID lpContext // 2
);

The first parameter (lpDDSurfaceDesc2) is the address of a DDSURFACEDESC2
structure that describes the display mode. The second one (lpContext) is the ad-
dress of the application-defined data structure, which may have been passed in the
third parameter of the EnumDisplayModes() function call. Code can examine the
values in the DDSURFACEDESC2 structure to determine the characteristics of each
available display mode.

The most important members of the DDSURFACEDESC2 structure are dwWidth,
dwHeight, and ddpfPixelFormat. The dwWidth and dwHeight hold the display
mode's dimensions. The ddpfPixelFormat member is a DDPIXELFORMAT structure
that contains information about the mode's bit depth and describes whether the dis-
p l a y m o d e i s p a l l e t i z e d o r n o t . I f t h e d w F l a g s m e m b e r c o n t a i n s t h e
D D P F _ P A L E T T E I N D E X E D 1 , D D P F _ P A L E T T E I N D E X E D 2 ,
DDPF_PALETTEINDEXED4, or DDPF_PALETTEINDEXED8 flag, then the display
mode's bit depth is 1, 2, 4, or 8 bits. In this case the pixel value is an index into the
corresponding palette. If dwFlags contains DDPF_RGB, then the display mode's bit
depth in the dwRGBBitCount member of the DDPIXELFORMAT structure is valid.

Applications that call EnumDisplayModes() usually do most of the processing in
the EnumModesCallback2() function. For example, a program can list all the
DirectDraw display modes on the screen by storing the display modes data in one or
more arrays each time the callback function receives control. When execution re-
turns to the caller, then all modes have been stored or a predetermined maximum
was reached. The calling code can now read the mode data from the arrays and dis-
play the values on the screen. In this case the callback function could be coded as
follows:

// Global variables for DirectDraw operations
HRESULT DDConnect;
DDCAPS DrawCaps;
// DirectDraw object
LPDIRECTDRAW lpDD;
int DDLevel = 0; // DirectDraw implementation
// DirectDraw modes data
int modesCount = 0; // Counter for DirectDraw modes
static int MAX_MODES = 60; // Maximum number of modes
DWORD modesArray[180]; // Array for mode data

// 3 parameters per mode
.
.
.
//***
// Callback function for EnumDisplayModes()
//***

778 Chapter Twenty-Six

© 2003 by CRC Press LLC

static WINAPI ModesProc(LPDDSURFACEDESC aSurface,
LPVOID Context)

{
static int i; // Index into array
i = modesCount * 3; // Set array pointer

// Store mode parameters in public array
// Note: code assumes that the dwRGBBitFormat member of
// the DDPIXELFORMAT structure contains valid data
modesArray[i] = aSurface->dwWidth;
modesArray[i + 1] = aSurface->dwHeight;
modesArray[i + 2] = aSurface->ddpfPixelFormat.dwRGBBitCount;
modesCount++; // Bump display modes counter
// Check for maximum number of display modes
if(modesCount >= MAX_MODES)

return DDENUMRET_CANCEL; // Stop mode listing

else
return DDENUMRET_OK; // Continue

}

The callback function, named ModesProc(), uses an array of type DWORD to
store the height, width, and color depth for each mode reported by DirectDraw. A
public variable named modesCount keeps track of the total number of modes. In
this case the calling code can be implemented in a function called DDModes, as fol-
lows:

//***
// DDModes - Obtain and list DD display modes
//***
void DDModes (HDC hdc)
{

TEXTMETRIC tm;
char message[255];
int j = 0; // Display buffer offset
int i = 0; // Modes counter
int x; // Loop counter

int text_x = 0;
int text_y = 0;
int cxChar;

GetTextMetrics (hdc, &tm);
cxChar = tm.tmAveCharWidth ;

// Test for no DirectDraw interface
if (DDLevel == 0) {

strcpy (message, "No DirectDraw interface");
TextOut (hdc, text_x, text_y, message, strlen (message));
return;

}
//*******************************
// if there is DirectDraw, obtain
// and list display modes
//*******************************
strcpy (message, " DirectDraw Display Modes");
TextOut (hdc, text_x, text_y, message, strlen (message));

Setting Up DirectDraw 779

© 2003 by CRC Press LLC

text_y += tm.tmHeight+tm.tmExternalLeading;

// Call EnumDisplayModes()
if(MODES_ON == 0){

MODES_ON = 1; // set switch
DDConnect = lpDD->EnumDisplayModes(0, NULL, NULL, ModesProc);

}

if (DDLevel != 0) {
strcpy (message, " Number of display modes: ");
sprintf (message+strlen(" Number of display modes: "),

"%i", modesCount);
TextOut (hdc, text_x, text_y, message, strlen (message));
text_y += tm.tmHeight+tm.tmExternalLeading;

// Format and display mode data
// First column
if(modesCount >= 20){

for(x = 0; x < 20; x++)
{

if(x >= modesCount)
break;

j = sprintf (message, " %d", modesArray[i*3]);
j += sprintf (message + j, " x %d", modesArray[i*3+1]);
j += sprintf (message + j, " x %d", modesArray[i*3+2]);
TextOut (hdc, text_x, text_y, message, strlen (message));
text_y += tm.tmHeight+tm.tmExternalLeading;
i++;

}
}
// Done if 20 or less modes
if(modesCount <= 20)
return;

// Display second column if more than 20 modes
text_x = cxChar * 20;
text_y = 2 * tm.tmHeight+tm.tmExternalLeading;

for(x = 0; x < 20; x++)
{

if((x + 20) >= modesCount)
break;

j = sprintf (message, " %d", modesArray[i*3]);
j += sprintf (message + j, " x %d", modesArray[i*3+1]);
j += sprintf (message + j, " x %d", modesArray[i*3+2]);
TextOut (hdc, text_x, text_y, message, strlen (message));
text_y += tm.tmHeight+tm.tmExternalLeading;
text_x = cxChar * 20;
i++;

}

// Done if 40 or less modes
if(modesCount <= 40)
return;

// Display third column if more than 40 modes
text_x = cxChar * 40;
text_y = 2 * tm.tmHeight+tm.tmExternalLeading;

for(x = 0; x < 20; x++)
{

if((x + 40) >= modesCount)

780 Chapter Twenty-Six

© 2003 by CRC Press LLC

break;
j = sprintf (message, " %d", modesArray[i*3]);
j += sprintf (message + j, " x %d", modesArray[i*3+1]);
j += sprintf (message + j, " x %d", modesArray[i*3+2]);
TextOut (hdc, text_x, text_y, message, strlen (message));
text_y += tm.tmHeight+tm.tmExternalLeading;
text_x = cxChar * 40;
i++;

}

return;
}

}

The processing calls EnumDisplayModes() in the statement:

��������� � �	��
��
������	����������� ����� ����� �����������

The first parameter is set to 0 to indicate that no special control flags are re-
quired. Therefore, the refresh rate is not taken into consideration and mode X is not
reported separately. The second parameter is NULL to indicate that no structure
data for checking against available modes is used. The NULL value for the third pa-
rameter relates to the fact that no user-defined data structure is being passed to the
callback function. The last parameter is the address of the callback function, in this
case the ModesProc() function previously listed. When the callback function re-
turns, the code tests for a return value of DD_OK, which indicates that the call was
successful, and then proceeds to display the header messages and to convert the
code data stored in ModesArray[] into ASCII strings for display.

26.3 The DD Info Project
The program named DD info.cpp, located in the DD Info project folder of the book's
software package, is a demonstration of the initialization and preparatory operations
for a DirectDraw application. The program starts by initializing DirectDraw. The pro-
gram's menu contains commands to read and display system hardware information
and to list the available display modes.

One of the first operations performed by the DD info program, which is the
source for the DD Info Project, is to determine which version of the DirectDraw in-
terface is installed in the target system. Then the code obtains and displays hard-
ware support, and lists the available display modes in whatever DirectDraw
interface is present.

Setting Up DirectDraw 781

© 2003 by CRC Press LLC

Chapter 27

DirectDraw Exclusive Mode

Topics:
• Programming DirectDraw in exclusive mode

• Developing WinMain() for exclusive mode

• Initializing for DirectDraw exclusive mode

• Using GDI functions

• A DirectDraw exclusive mode template

In Chapter 26 you saw how a DirectDraw application is configured and initialized. You
also learned the basics of DirectDraw architecture and developed a conventional win-
dowed program that uses DirectDraw functions. But the fundamental purpose of
DirectDraw programming is high-performance graphics. This requires a DirectDraw
program that executes in exclusive mode, which is made easier if we first develop a
code structure that can serve as a template for this type of application. The template
must perform two critical tasks: create a WinMain() function suited for DirectDraw
exclusive mode, and ensure access to the latest version of the DirectDraw interface.

27.1 WinMain() for DirectDraw
A WinMain() function DirectDraw programming in exclusive mode has some unique
features, since the program needs to perform several DirectDraw-specific
initializations that are not common in standard Windows. In this section we develop a
template for DirectDraw exclusive mode programming that includes a suitable ver-
sion of WinMain().

In addition to the usual Windows initializations, the DirectDraw-specific
WinMain() must perform the following operations:

• Obtain the DirectDraw interface and store the interface pointer.

• Confirm that the desired mode is available in the host machine.

• Set the cooperative level.

• Set the display mode.

© 2003 by CRC Press LLC

• Create the drawing surfaces. Most DirectDraw programs require at least one primary
surface.

• Obtain the DirectDraw device context if the program is to execute GDI functions.

The WinMain() function for DirectDraw exclusive mode creates the program win-
dow and performs Windows and DirectDraw-specific initialization and setup. The
following are the fundamental tasks to be performed by WinMain():

• Create and fill the WNDCLASS structure.

• Register the window class.

• Create the DirectDraw-compatible window.

• Set the window's show state.

• Provide a suitable message loop, according to the application type.

27.1.1 Filling the WNDCLASSEX Structure
The WINDCLASSEX structure contains window class information. There are not
many differences between the WNDCLASSEX structure that is used in conventional
Windows programming, and the one required for an exclusive mode DirectDraw appli-
cation. One difference that can be noted is that a DirectDraw window class does not
use a private device context; therefore, the CS_OWNDC constant is not present in the
style member of the WNDCLASSEX structure member. In the template file the struc-
ture is filled as follows:

WNDCLASSEX wndclass ;
wndclass.cbSize = sizeof (wndclass) ;
wndclass.style = CS_HREDRAW | CS_VREDRAW;
wndclass.lpfnWndProc = WndProc ;
wndclass.cbClsExtra = 0 ;
wndclass.cbWndExtra = 0 ;
wndclass.hInstance = hInstance ;
wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
wndclass.hbrBackground = (HBRUSH) GetStockObject

(GRAY_BRUSH) ;
wndclass.lpszMenuName = szAppName;
wndclass.lpszClassName = szAppName;
wndclass.hIconSm = LoadIcon (NULL, IDI_APPLICATION) ;

27.1.2 Registering the Window Class
The window class serves to define the characteristics of a particular window as well
as the address of the window procedure. Having filled the structure members, code
can now register the class, with the following call:

����������	��
��
���	����

27.1.3 Creating the Window
Once the WNDCLASSEX structure has been initialized, you can proceed to create the
window by means of the CreateWindowEx() function. Many combinations of parame-
ters can be used in the call, according to the characteristics desired for the specific ap-

784 Chapter Twenty-Seven

© 2003 by CRC Press LLC

plication window. In the case of a DirectDraw exclusive mode application, some of the
predefined values are meaningless.

The extended style WS_EX_TOPMOST defines a window that is placed above all
non-topmost windows. WS_EX_TOPMOST is usually the appropriate style for creat-
ing a DirectDraw exclusive mode application. The window style parameter should
be WS_POPUP. If the DirectDraw application is to execute full screen, which is al-
ways the case in exclusive mode, then the horizontal and vertical origins are set to
zero and the xsize and ysize parameters are filled using GetSystemMetrics(), which
returns the pixel size of the entire screen area. In the template file the structure is
filled as follows:

hWnd = CreateWindowEx(
WS_EX_TOPMOST, // Extended style
szAppName, // Application name
"DirectDraw Demo No. 2",
WS_POPUP, // Window style
0, // Horizontal origin
0, // Vertical origin
GetSystemMetrics(SM_CXSCREEN), // x size
GetSystemMetrics(SM_CYSCREEN), // y size
NULL, // Handle of parent
NULL, // Handle to menu
hInstance, // Application instance
NULL); // Additional data

if (!hWnd)
return FALSE;

27.1.4 Defining the Window Show State
CreateWindowEx() creates the window internally but does not display it. Code speci-
fies how the window is to be shown by calling ShowWindow(). Conventional Windows
programs first call ShowWindow() to set the show state, and then UpdateWindow() to
update the client area by sending a WM_PAINT message to the window procedure. It is
different in the case of a DirectDraw exclusive mode application. Since the
DirectDraw interface has not been yet established, no WM_PAINT message can be
sent at this point. This explains why the template file makes the call to the
ShowWindow() function, but not the one to UpdateWindow(). The code is as follows:

������
���
��
�� ����������

The first parameter (hwnd) is the handle to the window returned by
CreateWindowEx() function. The second parameter (iCndShow) is the window's
display mode. In this first call to ShowWindow() applications must use the value re-
ceived by WinMain().

27.1.5 Creating a Message Loop
At this point WinMain() can initialize DirectDraw and perhaps perform some prelimi-
nary display operations. The processing details in the case of the sample program are
discussed in the following section. The last step in WinMain() is the ever-present mes-
sage loop. In a standard DirectDraw exclusive mode application, the message loop is
no different than the one in a conventional windows program. In the context of anima-

DirectDraw Exclusive Mode 785

© 2003 by CRC Press LLC

tion programming, later in this book, we discuss a different type of message loop. The
present code is as follows:

while (GetMessage(&msg, NULL, 0, 0))
{

TranslateMessage(&msg);
DispatchMessage(&msg);

}
return msg.wParam;

}

27.2 DirectDraw Initialization
Exclusive mode applications often initialize DirectDraw in WinMain(). The reason is
that exclusive mode applications cannot perform display operations until they have
obtained the interface, set the cooperative level, and the display mode. If display oper-
ations are to be performed by means of GDI functions, then the application must also
obtain the device context. Note that DirectDraw programs can draw to the screen us-
ing both GDI and direct memory access methods.

Typically, the DirectDraw exclusive mode initialization includes the following
steps:

• Obtain the current interface. In DirectX 8 this is IDirectDraw7.

• Check that the desired display mode is available in the host machine.

• Set the cooperative level and display mode.

• Create the drawing surfaces. This usually means at least a primary surface, but often
other surfaces are also necessary.

• Display some initial screen text or graphics.

Screen display operations can be accomplished by means of conventional GDI
functions, by direct access to video memory, by DirectDraw specific functions, or by
a combination of these methods. Programs of greater complexity usually perform
other initialization, setup, and initial display functions at this time. The example
used in this chapter has minimal DirectDraw functionality. In the chapters that fol-
low we develop more complex DirectDraw programs.

A preliminary issue is to provide a mechanism whereby the DirectDraw applica-
tion can recover if a terminal condition is encountered during initialization and
setup. In our DirectDraw template program we have included a function named
DDInitFailed() that creates a message box with the corresponding diagnostic
prompt. When the user acknowledges by pressing the OK button, the terminal error
handler destroys the application window and returns control to the operating sys-
tem. The function is coded as follows:

//***************************************
// Name: DDInitFailed()
// Desc: This function is called if an
// initialization operation fails
//***************************************
HRESULT DDInitFailed(HWND hWnd, HRESULT hRet, LPCTSTR szError)
{

786 Chapter Twenty-Seven

© 2003 by CRC Press LLC

char szBuff[128];

sprintf(szBuff, szError);
ReleaseObjects();
MessageBox(hWnd, szBuff, "DirectDraw Demo No. 2", MB_OK);
DestroyWindow(hWnd);
return hRet;

}

The parameters for the DDInitFailed() function are the handle to the window, the
result code from the call the caused the failure, and a string pointer with the diag-
nostic text to be displayed in the message box. All DirectDraw initialization calls
performed in the template code test for a valid result code; and if no valid code is
found, they exit execution through the DDInitFailed() function. The same is true of
the DirectDraw examples used in the rest of the book.

27.2.1 Obtaining the Interface Pointer
In Chapter 26 we discussed suitable strategies for managing interface pointer ver-
sions. The first processing step is to obtain the DirectDraw object that corresponds to
the desired version of the interface. It is usually a good idea to store the pointer in a
global variable, which can be accessed by other program elements. The function
named DD7Interface() attempts to find the IDirectDraw7 object. It is coded as fol-
lows:

// Global data
LPDIRECTDRAW7 lpDD7; // Pointer to IDirectDraw7
.
.
.
//**
// Name: DD7Interface()
// Desc: Created DirectDraw object and finds
// DirectDraw7 interface
// PRE:
// Caller's code contains pointer
// variable:
// LPDIRECTDRAW7 lpDD7;
//
// POST:
// returns 0 if no DirectDraw7 interface
// returns 1 if DirectDraw7 found
// Caller's pointer variable
// is initialized
//**
int DD7Interface()
{

HRESULT DDConnect;
LPDIRECTDRAW lpDD; // Pointer to DirectDraw

DDConnect = DirectDrawCreate (NULL,
&lpDD,
NULL);

if(DDConnect != DD_OK)
return 0;

// Atempt to locate DirectDraw4 interface

DirectDraw Exclusive Mode 787

© 2003 by CRC Press LLC

DDConnect = lpDD->QueryInterface(
IID_IDirectDraw7,

(LPVOID *) &lpDD7);
if(DDConnect != S_OK)

return 0;

lpDD->Release(); // Release old pointer
return 1;

}

The above code releases the local pointer to DirectDraw if the IDirectDraw7
pointer is found. In this manner the application code need only be concerned with
releasing the object actually in use. Note that the pointer to the DirectDraw7 inter-
face pointer is defined globally, so that is can be seen throughout the application. In
WinMain() the call to the DD4Interface() function is as follows:

// Attempt to fetch the DirectDraw4 interface
hRet = DD7Interface();

if (hRet == 0)
return DDInitFailed(hWnd, hRet,

"QueryInterface() call failed");

If the IDirectDraw7 interface is not found, then the program exits through the
DDInitFailed() function previously described. In the template file the diagnostic
messages simply express the name of the failed function. In your own programs you
will probably substitute these text messages for more appropriate ones. For exam-
ple, the failure of the QueryInterface() call can be interpreted to mean that the user
needs to upgrade the host system to DirectX 7 or later version. A more detailed diag-
nostics may be advisable in some cases.

27.2.2 Checking Mode Availability
If the call succeeds, we have obtained a pointer to IDirectDraw7. This pointer can be
used in all DirectDraw function calls. The fact that we have a pointer to the version 7
of DirectDraw does not mean that the application will execute correctly. DirectDraw
programming sometimes introduces hardware dependencies that are not a found in
conventional Windows code.

Video display operations in DirectDraw are dependent upon the selected display
mode. Before you attempt to set a display mode, it is usually a good idea to investi-
gate if the desired mode is available in the host system. This gives code the opportu-
nity to select an alternative mode if the ideal one is not available, or to exit with a
diagnostic message if no satisfactory display mode is found.

In Chapter 26 we used of the EnumDisplayModes() function to list the display
modes available in a system. The same function can be used to query if a particular
mode is available. The code used in the template file is as follows:

//***
// Name: ModesProc
// Desc: Callback function for EnumDisplayModes()
//***
HRESULT WINAPI ModesProc(LPDDSURFACEDESC2 aSurface,

LPVOID Context)
{

788 Chapter Twenty-Seven

© 2003 by CRC Press LLC

static int i; // Index into array of mode data

i = modesCount * 3; // Set array pointer

if(modesCount >= MAX_MODES)
return DDENUMRET_CANCEL; // Stop mode listing

// Store mode parameters in public array
// Note: code assumes that the dwRGBBitFormat member if
// the DDPIXELFORMAT structure contains valid data
modesArray[i] = aSurface->dwWidth;
modesArray[i + 1] = aSurface->dwHeight;
modesArray[i + 2] = aSurface->ddpfPixelFormat.dwRGBBitCount;

modesCount++; // Bump display modes counter
return DDENUMRET_OK; // Continue

}

//***
// Name: hasDDMode
// Desc: Tests for mode availability
//***
// PRE:
// 1. Public variable modesArray[] to store mode data
// 2. Public int variable modesCount to store number of
// display modes
// 3. ModesProc() is an associated function that stores
// mode data in array and count modes
//
// POST:
// Returns 1 if mode is available
//***

int HasDDMode(DWORD pixWidth, DWORD pixHeight, DWORD pixBits)
{

static HRESULT DDConnect;

// Call EnumDisplayModes()
if(MODES_ON == 0)
{

MODES_ON = 1; // set switch
DDConnect = lpDD4->EnumDisplayModes(0,

NULL,
NULL,
ModesProc);

}
// Modes are now stored in modeArray[] as triplets encoding
// width, height, and pixel bit size
// Variable modesCount holds the total number of display modes
for(int x = 0; x < (modesCount * 3); x += 3)
{
if(modesArray[x]==pixWidth && modesArray[x+1]==pixHeight\
&& modesArray[x+2]==pixBits)
return 1;

}
return 0;

}

DirectDraw Exclusive Mode 789

© 2003 by CRC Press LLC

DirectDraw documentation states the EnumDisplayModes() function can be
passed the address of a DDSURFACEDESC2 structure, that is then checked for a
specific mode. We have found that this mode of operation is not always reliable. In
order to make sure that all available modes are checked, the HasDDMode() function
loads a predetermined number of modes into a global array variable, then searches
the array for the desired one.

In the WinMain() template, the call to the HasDDMode() function is coded as fol-
lows:

// Check for available mode (640 by 480 in 24-bit color)

if (HasDDMode(640, 480, 24) == 0)

return DDInitFailed(hWnd, hRet, "Display mode not available");

The code in the HasDDMode() function provides no alternative processing for the
case in which the desired true-color mode is not available in the system. In your own
programs you may call HasDDMode() more than once, and provide alternative pro-
cessing according to the best mode found. Here again, you should note that this pro-
gramming style creates device-dependencies that could bring about other
complications.

27.2.3 Setting Cooperative Level and Mode

If the desired mode is available, then the code must determine the cooperative level
and proceed to set the mode. Exclusive mode DirectDraw programs require the con-
stants DDSLC_EXCLUSIVE and DDSCL_FULLSCREEN. The processing is as follows:

// Set cooperative level to exclusive and full screen

hRet = lpDD7->SetCooperativeLevel(hWnd, DDSCL_EXCLUSIVE

| DDSCL_FULLSCREEN);

if (hRet != DD_OK)

return DDInitFailed(hWnd, hRet,

"SetCooperativeLevel() call failed");

// Set the video mode to 640 x 480 x 24

hRet = lpDD7->SetDisplayMode(640, 480, 24, 0, 0);

if (hRet != DD_OK)

return DDInitFailed(hWnd, hRet,

"SetDisplayMode() call failed");

27.2.4 Creating the Surfaces

In Chapter 25 you encountered the concept of DirectDraw surfaces. At that time we
defined a drawing surface as an area of video memory, typically used to hold image
data, and IDirectDrawSurface as a COM object in itself. Most DirectDraw7 applica-
tions require at least two types of COM objects: one, of type LPDIRECTDRAW7, is a
po in t e r t o t he Di rec t D r a w o b j ec t . The second one , o f type
LPDIRECTDRAWSURFACE4, is a pointer to a surface. All surface-related functions
use this second pointer type, while the core DirectDraw calls require the first one. Ap-
plications that manipulate several surfaces often cast a pointer for each surface. A
third type of object, called a DirectDraw palette object, is necessary for programs that
perform palette manipulations, while DirectDraw clipper objects are used in clipping
operations.

790 Chapter Twenty-Seven

© 2003 by CRC Press LLC

Before accessing a DirectDraw surface you must create it by means of a call to
the IDirectDraw7::CreateSurface. The call can produce a single surface object, a
complex surface-flipping chain, or a three-dimensional surface. The call to
CreateSurface() specifies the dimensions of the surface, whether it is a single sur-
face or a complex surface, and the pixel format. These characteristics are previ-
ously stored in a DDSURFACEDESC2 structure whose address is included in call's
parameters. The function's general form is as follows:

HRESULT CreateSurface(
LPDDSURFACEDESC2 lpDDSurfaceDesc, // 1
LPDIRECTDRAWSURFACE7 FAR *lplpDDSurface, // 2
IUnknown FAR *pkUnkOutter // 3
);

T h e f i r s t p a r a m e t e r i s t h e a d d r e s s o f a s t r u c t u r e v a r i a b l e o f t y p e
LPDDSURFACEDESC2. The CreateSurface() API requires that all unused members
of the structure be set to zero. In the code sample that follows you will see how this
is easily accomplished. The second parameter is the address of a variable of type
LPDIRECTDRAWSURFACE7 which is set to the interface address if the call suc-
ceeds. This is the pointer used in the calls that relate to this surface. Applications of-
ten store this pointer in a global variable so that it is visible throughout the code.
The third parameter is provided for future expansion of the COM. Presently, applica-
tions must set this parameter to NULL.

If the call succeeds, the return value is DD_OK. If it fails the following
self-explanatory error values can be returned:

• DDERR_INCOMPATIBLEPRIMARY

• DDERR_INVALIDCAPS

• DDERR_INVALIDOBJECT

• DDERR_INVALIDPARAMS

• DDERR_INVALIDPIXELFORMAT

• DDERR_NOALPHAHW

• DDERR_NOCOOPERATIVELEVELSET

• DDERR_NODIRECTDRAWHW

• DDERR_NOEMULATION

• DDERR_NOEXCLUSIVEMODE

• DDERR_NOFLIPHW

• DDERR_NOMIPMAPHW

• DDERR_NOOVERLAYHW

• DDERR_NOZBUFFERHW

• DDERR_OUTOFMEMORY

• DDERR_OUTOFVIDEOMEMORY

• DDERR_PRIMARYSURFACEALREADYEXISTS

DirectDraw Exclusive Mode 791

© 2003 by CRC Press LLC

• DDERR_UNSUPPORTEDMODE

DirectDraw always attempts to create a surface in local video memory. If there is
not enough local video memory available, then DirectDraw tries to use non-local
video memory. Finally, if no video memory is available at all, then the surface is cre-
ated in system memory. The call to CreateSurface() can explicitly request that a sur-
face be created in a certain type of memory. This is done by means of the
appropriate flags in the associated DDSCAPS2 structure. DDSCAPS2 structure is
part of DDSURFACEDESC2.

The primary surface is the one currently displayed on the monitor. It is identified
by the DDSCAPS_PRIMARYSURFACE flag. There is only one primary surface for
each DirectDraw object. The dimensions and pixel format of the primary surface
must match the current display mode. It is not necessary to explicitly enter these
values when calling CreateSurface(); in fact, specifying these parameters generates
an error even if they match the ones in the current display mode. In this template
program we create the simplest possible surface object, which is the one that corre-
sponds to a primary surface. The code is as follows:

// Global data
LPDIRECTDRAWSURFACE7 lpDDSPrimary = NULL; // DirectDraw primary
DDSURFACEDESC2 ddsd; // DirectDraw7 surface
.
.
.
// Create a primary surface
// ddsd is a structure of type DDSRUFACEDESC2
// First, zero all structure variables using the ZeroMemory()
// function

ZeroMemory(&ddsd, sizeof(ddsd));
// Now fill in the required members

ddsd.dwSize = sizeof(ddsd); // Structure size
ddsd.dwFlags = DDSD_CAPS ;
ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE;

hRet = lpDD7->CreateSurface(&ddsd, &lpDDSPrimary, NULL);
if (hRet != DD_OK)

return DDInitFailed(hWnd, hRet,
"CreateSurface() call failed");

If the call succeeds, we obtain a pointer by which to access the functions that re-
late to DirectDraw surfaces. The pointer, named lpDDSPrimary, is stored in a global
variable of type LPDIRECTDRAWSURFACE7. The surface pointer can be used to ob-
tain a DirectDraw device context, which allows using GDI graphics in the applica-
tion, or to lock the surface for direct access and retrieve its base address and pitch.

27.2.5 Using Windows GDI Functions
DirectDraw applications have access to the display functions in the GDI. As in conven-
tional Windows programming, access to GDI requires obtaining a handle to the Win-
dows device context. For example, an application can use a GDI function to display a
message on the screen. The DirectDrawSurface7 interface contains a function called
GetDC() that can be used for this purpose. This function is not the same one as
GetDC() in the general Windows API. Its general form is as follows:

792 Chapter Twenty-Seven

© 2003 by CRC Press LLC

������� �����
 ��� ��

The function's only parameter is the address of the handle to the device context
which is associated with the surface. If the call succeeds it returns DD_OK. If it fails
it returns one of the following error codes:

• DDERR_DCALREADYCREATED

• DDERR_GENERIC

• DDERR_INVALIDOBJECT

• DDERR_INVALIDPARAMS

• DDERR_INVALIDSURFACETYPE

• DDERR_SURFACELOST

• DDERR_UNSUPPORTED

• DDERR_WASSTILLDRAWING

N o t e t h a t t h e G e t D C () f u n c t i o n u s e s a n i n t e r n a l v e r s i o n o f t h e
IDirectDrawSurface7::Lock function to lock the surface. The surface remains
locked until the IDirectDrawSurface7::ReleaseDC function is called. In the template
program the code proceeds as follows:

static char szDDMessage1[] =
"Hello World -- Press <Esc> to end program";
. . .

// Display some text on the primary surface
if(lpDDSPrimary->GetDC(&hdc) != DD_OK)
return DDInitFailed(hWnd, hRet, "GetDC() call failed");

// Display screen message
SetBkColor(hdc, RGB(0, 0, 255)); // Blue background
SetTextColor(hdc, RGB(255, 255, 0)); // Yellow letters
TextOut(hdc, 120, 200, szDDMessage1, lstrlen(szDDMessage1));
lpDDSPrimary->ReleaseDC(hdc);

27.3 The DD Exclusive Mode Template
The project file named DD Exclusive Mode, in the book's software pckage, contains
the program DD Exclusive Mode.cpp which can be used as a template for developing
simple DirectDraw applications in exclusive mode. The code contains all of the sup-
port functions previously mentioned, that is, functions to find a DirectDraw7 interface
object, to test for availability of a particular display mode, to release objects, and to
handle terminal errors during DirectDraw initialization. The processing consists of
displaying a screen message using the text output GDI service. The code also includes
a skeletal window procedure to handle keyboard input, disable the cursor, and termi-
nate execution.

DirectDraw Exclusive Mode 793

© 2003 by CRC Press LLC

Chapter 28

Access to Video Memory

Topics:
• Programming memory-mapped video

• Using in-line assembly language

• Multi-language programming

• Developing direct access primitives

• Raster operations

The program DD Exclusive Mode, developed in Chapter 12, initializes DirectDraw, de-
fines the cooperative level, sets a display mode, and draws text on the screen using a
GDI function. The preliminary and setup operations performed by the DD Exclusive
Mode program are necessary in many DirectDraw applications. However, not much is
gained in performance and control by a DirectDraw application that is limited to the
GDI functions. The purpose of DirectX in general, and DirectDraw specifically, is to
provide a higher level of control and to improve graphics rendering speed. Neither of
these are achieved using the GDI services. Before an application can enjoy the advan-
tages that derived from the DirectDraw interface, it must gain access to video memory.
Once an application has gained access to video memory, the use of low-level code to
further optimize processing becomes an option. The second level of DirectDraw ad-
vantages, those that result from using the hardware features in the video card, are dis-
cussed in the chapters that follow.

28.1 Direct Access Programming
Graphics programming in DOS is based on video functions being mapped to a specific
area of system memory. The DOS graphics programmer determines the base address
to which the video system is mapped, and the pixel format used in the current display
mode. The code then proceeds to store pixel data in this memory area and the video
hardware takes care of automatically updating the display by reflecting the contents
of the memory region to which it is mapped. The process is simple, although in some
display modes manipulating the data can be relatively complicated.

© 2003 by CRC Press LLC

28.1.1 Memory-Mapped Video

The greatest difficulty of programming direct access to video memory in DOS is re-
lated to the segmented architecture of the Intel CPUs. The 16-bit internal architecture
of the original Intel microprocessors limits each addressable segment to 64 kilobytes.
Thus, a display mode with a resolution of 640 by 480 pixels, in which each pixel attrib-
ute is stored in 1 data byte, requires 307,200 bytes (640 x 480 x 1). Since each segment is
limited to 65,536 bytes, the screen memory data exceeds the span of a single segment.
In fact, 307,200 data bytes require five segments for storing the pixel information. This
forces the use of data splitting schemes, one of which is called memory banking. By
switching the segment mapping of a hardware element called the bank, it is possible to
assign several areas of system memory to the same segment. The programming ap-
pears complicated, but once the access routines are developed for a particular display
mode, the code can set any screen pixel to any desired color attribute by just passing
the pixel's screen column and row address and the desired color code.

Until the advent of DirectDraw, Windows graphics programmers had no way of
accessing video memory directly. Even if a Windows programmer had been able to
find the address to which the video display was mapped in a particular system, any
attempt to access this area of memory would generate a general protection fault.
DirectDraw solves both problems: it temporarily relaxes the operating system's ac-
cess restriction, and it provides information about the location and mapping of the
video system.

An additional advantage is that in Win32 video display area is defined in a flat
memory space. Once the base address of the video buffer is stored in a 32-bit regis-
ter, the entire video memory space can be accessed without any segment mapping
or memory banking scheme. In this case application code uses DirectDraw func-
tions to obtain the base address of video memory, and its bit-to-pixel mapping. With
this information, the DirectDraw program can proceed to perform display opera-
tions directly and in a straightforward manner.

Hi-Color Modes

The development of SuperVGA video cards, with more video memory than the stan-
dard VGA, made possible display modes with a much richer color range than had been
previously available. Modes that devote 16 bits or more for the color encoding of each
screen pixel are called the hi-color modes. Although no formal designation for these
mode has been defined, the 16-bit per pixel modes are usually called real-color modes,
and those with 24- and 32-bits per pixel are called true-color modes.

An adapter with 4Mb of video memory, which is common in today's desktop hard-
ware, allows several real-color and true-color modes. The screen snapshot Figure
11-4 corresponds to a video card with 4Mb of memory. In this case real-color and
true color modes are available up to a resolution of 1,600 by 1,200 pixels. The graph-
ics programmer working with current video system technology can safely assume
that most PCs support real-color and true-color modes with standard resolutions.
However, many laptop computers have a more limited range of video modes.

796 Chapter Twenty-Eight

© 2003 by CRC Press LLC

Palettes were developed mostly to increase the colors available in modes with
limited pixel depth. In Windows, all display modes with a resolution of 16-bits per
pixel or higher are nonpalletized. For general graphics programming the use of pal-
ette-independent display modes considerably simplifies program design and coding.
Programming today's video cards, with several megabytes of display memory, there
is little justification for using palletized modes. All real-color and true-color modes
are, by definition, nonpalletized. Figure 28-1 shows the mapping of video memory
bits to pixel attributes in a real-color mode.

Figure 28-1 Pixel Mapping in Real-Color Modes

Not all real-color modes use the same mapping. The fact that 16 bits cannot be ex-
actly divided into the three primary colors poses a problem. One possible solution is
to leave 1 bit unused and map each primary color to a 5-bit field. Another option is
to map the green color to a 6-bit field and the other two colors to 5-bit fields. This
scheme, sometimes called a 5-6-5 mapping, is justified by the fact that the human
eye is more sensitive to green than to red and blue. Figure 28-1 shows a 5-6-5
real-color mapping.

True-Color Modes

In the real color modes, the fact that the individual colors are not located at a byte
boundary introduces some programming complications. To handle this uneven map-
ping code must perform bitwise operations to set the corresponding fields to the re-
quired values. The true-color modes, on the other hand, use 8 bits for each primary
colors. This makes the direct access operations much easier to implement.

The name true-color relates to the idea that these modes are capable of reproduc-
ing a color range that is approximately equivalent to the sensitivity of the human
eye. In this sense it is sometimes said that the true color modes produce a rendition
that is of photographic quality. Two different mappings are used in the true-color
modes, shown in Figure 28-2.

Access to Video Memory 797

16 bits

red bluegreen

real-color mode
(5-6-5 mapping)

© 2003 by CRC Press LLC

Figure 28-2 Pixel Mapping in True-Color Modes

The 24-bit mapping, shown at the top of Figure 28-2, uses three consecutive bytes
to represent each of the primary colors. In the 32-bit mappings, at the bottom of Fig-
ure 28-2, there is an extra byte, which is unused, at the end of each pixel field. The
reason for the unused byte in the 32-bit true-color modes relates to the 32-bit archi-
tecture of the Intel CPUs, which is also the bus width of most video cards. By assign-
ing 4 bytes to encoding the color attribute it is possible to fill a pixel with a single
memory transfer. A low-level program running in an Intel machine can store the
pixel attribute in an extended machine register, such as EAX, and then transfer it
into video memory with a single move instruction. By the same token, a C or C++
program can place the value into a variable of type LONG and use a pointer to LONG
to move the data, also in a single operation. In other words, the 32-bit mapping
scheme sacrifices memory storage space for the sake of faster rendering.

798 Chapter Twenty-Eight

32 bits

red unusedblue green

32-bit true-color mode
(8-8-8-0 mapping)

24 bits

redblue green

24-bit true-color mode
(8-8-8 mapping)

© 2003 by CRC Press LLC

28.1.2 Locking the Surface
DirectDraw applications access the video buffer, or any surface memory area, by first
calling the Lock() function. Lock() returns a pointer to the top-left corner of the rect-
angle that defines the surface, as well as the surface pitch and other relevant informa-
tion necessary for accessing the surface. When calling Lock() the application can
define a rectangular area within the surface, or the entire surface. If the surface is a
primary surface, and the entire area is requested, then Lock() returns the base address
of the video buffer and the number of bytes in each buffer row. This last parameter is
called the surface pitch. When execution returns from the Lock() call the DirectDraw
application has gained direct access to video display memory.

The Lock() function is related to the surface; therefore, it is accessed, not by the
DirectDraw object, but by a surface object returned by the call to CreateSurface().
The use of the CreateSurface() function was discussed in Chapter 12. The general
form of the Lock() function is as follows:

HRESULT Lock(
LPRECT lpDestRect, // 1
LPDDSURFACEDESC2 lpDDSurfaceDesc, // 2
DWORD dwFlags, // 3
HANDLE hEvent // 4
);

The first parameter is a pointer to a RECT structure that describes a rectangular
area on the surface that is to be accessed directly. To lock the entire surface this pa-
rameter is set to NULL. If more than one rectangle is locked, they cannot overlap.
T h e s e c o n d p a r a m e t e r i s t h e a d d r e s s o f a s t r u c t u r e v a r i a b l e o f t y p e
DDSURFACEDESC2, which is filled with all the information necessary to access the
surface memory directly. The information returned in this structure includes the
base address of the surface, its pitch, and its pixel format. Applications should
never make assumptions about the surface pitch, since this value changes according
to the location of surface memory and even the version of the DirectDraw driver.
The third parameter contains one or more flags that define the function's mode of
operation. Table 28-1, on the following page, lists the constants currently imple-
mented in the IDirectDrawSurface4 interface.

The DDLOCK_NOSYSLOCK flag relates to the fact that while a surface is locked
DirectDraw usually holds the Win16Mutex (also known as the Win16Lock) so that
gaining access to surface memory can occur safely. The Win16Mutex in effect shuts
down Windows for the time that elapses between the Lock() and the Unlock() calls.
If the DDLOCK_NOSYSLOCK flag is present, and the locked surface is not a primary
surface, then the Win16Mutex does not take place. If a blit is in progress when
Lock() is called, the function returns an error. This can be prevented by including
the DDLOCK_WAIT flag, which causes the call to wait until a lock can be success-
fully obtained.

The fourth parameter to the Lock() call was originally documented to be a handle
to a system event that is triggered when the surface is ready to be locked. The new-
est version of the DirectDraw documentation states that it is not used and should al-
ways be set to NULL.

Access to Video Memory 799

© 2003 by CRC Press LLC

Table 28-1

Flags the IDirectDrawSurface7::Lock Function

FLAG MEANING

DDLOCK_DONOTWAIT
OIDirectDrawSurface7 interfaces, the default is
DDLOCK_WAIT. Use this flag to override the default
and use time when the accelerator is busy (as
denoted by the DDERR_WASSTILLDRAWING return
value).

DDLOCK_EVENT
Not currently implemented.

DDLOCK_NOOVERWRITE
New for DirectX 7.0. Used only with Direct3D
vertex-buffer locks. This flag can be useful to append
data to the vertex buffer.

DDLOCK_DISCARDCONTENTS
New for DirectX 7.0. Used only with Direct3D
vertex-buffer locks. Indicates that no assumptions are
made about the contents of the vertex buffer during
this lock. This enables Direct3D or the driver to
provide an alternative memory area as the vertex
buffer. This flag is useful to clear the contents of the
vertex buffer and fill in new data.

DDLOCK_OKTOSWAP
Obsolete. Replaced by DDLOCK_DISCARDCONTENTS.

DDLOCK_NOSYSLOCK
Do not take the Win16Mutex. This flag is ignored
when locking the primary surface.

DDLOCK_READONLY
The surface being locked will only be read.

DDLOCK_SURFACEMEMORYPTR
A valid memory pointer to the top-left
corner of the specified rectangle should be
returned. If no rectangle is specified, a pointer
to the top of the surface is returned. This is
the default and need not be entered explicitly.

DDLOCK_WAIT
Retries lock if it cannot be obtained because a
blit operation is in progress.

DDLOCK_WRITEONLY
The surface being locked will be write enabled.

Lock() returns DD_OK if it succeeds or one of the following error codes:

• DDERR_INVALIDOBJECT

• DDERR_INVALIDPARAMS

• DDERR_OUTOFMEMORY

• DDERR_SURFACEBUSY

• DDERR_SURFACELOST

• DDERR_WASSTILLDRAWING

800 Chapter Twenty-Eight

© 2003 by CRC Press LLC

When Lock() succeeds, the application can retrieve a surface memory pointer
and other necessary data and start accessing surface memory directly. Code can
continue to access surface memory until a call to the Unlock() function is made. As
soon as the surface is unlocked, the surface memory pointer becomes invalid. While
the lock is in progress, applications cannot blit to or from surface memory. GDI
functions fail when used on a locked surface.

28.1.3 Obtaining Surface Data
When the Lock() call returns DD_OK, the application can access the corresponding
members of the DDSURFACEDESC2 structure variable passed as a parameter. This
structure contains the data necessary for direct access. If application code knows the
display mode and its corresponding pixel format, then the two data elements neces-
sary for accessing the locked surface are its base address and the surface pitch. The
base address is returned in a structure member of type LPVOID, and the surface pitch
in a structure member of type LONG. Applications that plan to dereference the surface
pointer typically cast it into one that matches the surface's color format. For example,
a program that has set a 24-bit true-color mode is likely to access surface memory in
byte-size units. In this case the pointer can be cast into a variable of type LPBYTE. On
the other hand, an application executing in a 16-bit real-color mode typecasts the
pointer into a LPWORD type, and one that has set a 32-bit true-color mode may type-
cast into an LPLONG data type.

The following code fragment shows the use of the Lock() function in a routine
that fills a 50-by-50 pixel box in a 24-bit true-color video mode. The box is arbitrarily
located at screen row number 80 and pixel column number 300. The pixels are filled
with the red attribute by setting each third surface byte to 0xff and the other three
color bytes to 0x0.

LONG localPitch; // Local variable for surface pitch
LPBYTE localStart; // and for buffer start
LPBYTE lastRow; // Storage for row start
.
.
.
// Attempt to lock the surface for direct access
if (lpDDSPrimary->Lock(NULL, &ddsd, DDLOCK_WAIT, NULL)\

!= DD_OK)
DDInitFailed(hWnd, hRet, "Lock failed");

// Store video system data
vidPitch = ddsd.lPitch; // Pitch
vidStart = ddsd.lpSurface; // Buffer address

// ASSERT:
// Surface is locked. Global video data is as follows:
// vidPitch holds surface pitch
// vidStart holds video buffer start
// Copy to local variables typecasting void pointer

localPitch = vidPitch;
localStart = (LPBYTE) vidStart;

// Index to row 80
localStart = localStart + (80 * localPitch);

// Move right 300 pixels
localStart += (400 * 3);

Access to Video Memory 801

© 2003 by CRC Press LLC

// Display 50 rows, 50 times

for(int i = 0; i < 50; i++){

lastRow = localStart; // Save start of row

for(int j = 0; j < 50; j++) {

*localStart = 0x0; // blue attribute

localStart++;

*localStart = 0x0; // green attribute

localStart++;

*localStart = 0xff; // red attribute

localStart++;

}

localStart = lastRow + localPitch;

}

lpDDSPrimary->Unlock(NULL);

28.2 In-Line Assembly Language
The maximum advantages of direct access to video memory are realized when the
code is highly optimized, and the most dependable way to produce highly optimized
code is by programming in 80x86 assembly language. Although an entire DirectDraw
application can be coded in assembly language, this approach usually entails more dif-
ficulties and complications than can be justified by the relatively few advantages. On
the other hand, most C and C++ compilers provide in-line assemblers that allow em-
bedding assembly language code in a C or C++ program. The result is an
easy-to-produce multilanguage program with the advantages of both environments. It
is also possible to use an assembler program, such as MASM, to produce stand-alone
assembly language modules that can be incorporated with the application at link time.
Later in this chapter we discuss the development of assembly language modules that
can be used by a program developed in Visual C++.

A benefit of in-line assembly is that the low-level code can reference, by name,
any C++ language variable or function that is in scope. This makes it easy to access
program data and processing routines. In-line assembly also avoids many of the
complication and portability problems usually associated with parameter passing
conventions in multi-language programming. The resulting development environ-
ment has all the advantages of high-level programming, as well as the power and
flexibility of low-level code. Visual C++ and Borland C Builder support in-line as-
sembly.

On the other hand, in-line code cannot use assembler directives to define data
and perform other initialization and synchronization functions. Another advantage
of stand-alone assembler modules is that the code can be easily integrated into li-
braries and DLL files that can be ported to other applications.

DirectDraw made assembly language coding in Windows applications an attrac-
tive option. Direct access to video memory, made possible by DirectX, opens the
possibility of using assembly language to maximize performance and control. The
result is a DOS-like development environment. However, in conventional GDI pro-
gramming there is little justification for using low-level code.

802 Chapter Twenty-Eight

© 2003 by CRC Press LLC

28.2.1 The _asm Keyword
The _asm keyword is used in Visual C++ to produce assembly language instructions,
one at a time, or in blocks. When the compiler encounters the _asm symbol it invokes
the in-line assembler. The asembler, in turn, generates the necessary opcodes and in-
serts them into the object file. In this process the development system limits its action
to that of an assembler program; no modification of the coding takes place and no in-
terpretation or optimization effort is made. Thus, the programmer is certain that the
resulting code is identical to the source. The fact that no separate assembly or linking
is necessary considerably simplifies the development process.

Although the _asm keyword can precede a single instruction, it is more common
to use it to generate a block of several assembly language lines. Braces are used to
delimit the source block, as in the following example:

_asm
{

; Assembly language code follows:
PUSH EBX ; EBX to stack
MOV EAX,vidPitch ; vidPitch is a C variable
MOV EBX,80 ; Constant to register
MUL EBX ; Integer multiply
POP EBX ; Restore EBX

}

The second instruction of the preceding code fragment loads a variable defined in
C++ code into a machine register. Accessing high-level language variables is one of
the most convenient features of in-line assembly. Assembly language code can also
store results in high-level variables.

28.2.2 Coding Restrictions
There are a few rules and conventions that in-line assembly language code must fol-
low. Perhaps the most important one is to preserve the registers used by C++. A possi-
ble source of problems is when the C++ program is compiled with the _fastcall switch
or the /Gr compiler option. In these cases, arguments to functions are passed in the
ECX and EDX machine registers; therefore, they must be preserved by the assembly
language program section. The easiest way to avoid this concern is to make sure that
programs that use in-line assembly are not compiled with either of these options. In Vi-
sual C++ the compiler options can be examined by selecting the Settings command in
the Project Menu and then clicking on the C/C++ tab. The Project Options window in
this dialog box shows the compiler switches and options that are active. Make sure
that you inspect the settings for both the Release and the Debug options, as shown in
the Settings For: scroll box.

Programs that do not use the _fastcall switch or the /Gr compiler options can as-
sume that the four general purpose registers need not be preserved. Consequently,
EAX, EBX, ECX, and EDX are free and available to the assembly language code. In
regards to the pointer registers and the direction flag the Microsoft documentation
is inconsistent. Some versions of the Visual C++ Programmers Guide state that ESI
and EDI must be preserved, while other versions state the contrary. Regarding the
direction flag, the original Microsoft C++ compilers required that the flag be cleared

Access to Video Memory 803

© 2003 by CRC Press LLC

before returning, while the most recent manuals say that the state of the direction
flag must be preserved. In view of these discrepancies, and in fear of future varia-
tions, the safest approach is to use the general purpose registers freely (EAX, EBX,
ECX, and EDX) but to preserve all other machine registers and the direction flag.
This means that on entry to the routine the in-line assembly code must push on the
stack the registers that must be preserved, as well as the flags, and restore them be-
fore exiting the _asm block. This is the approach that we use in the book's sample
code. The processing in a routine that uses the ESI and EDI registers can be as fol-
lows:

_asm
{

PUSH ESI ; Save context
PUSH EDI
PUSHF
; Processing operations go here
; .
; .
; .
; Exit code
POPF ; Restore context
POP EDI
POP ESI

}

28.2.3 Assembly Language Functions
Often the low-level processing routines can be conveniently located in functions that
can be called by the C++ code. When the assembly code is not created by means of the
on-line feature of the compiler, that is, when it is written for a separate assembler, then
the assembly language routine and the C++ must interface following the calling con-
ventions adopted by the compiler. The usual procedure is that C++ places the parame-
ters in the stack at the time the call is made, and the assembly language routine
removes them from the stack making sure that the stack integrity is preserved. In this
case the assembly and the C++ code usually reside in separate files which are refer-
enced at link time.

For applications that use in-line assembly, the inter-language protocol is consid-
erably simplified by creating a C++ function shell to hold the assembly code. In this
case the use of the stack for parameter passing becomes almost unnecessary, since
the assembly code can reference the C++ variables directly. One possible drawback
is that the in-line assembler does not allow the use of the data definition directives
DB, DW, DD, DQ, and DT or the DUP operator. Therefore, the data elements used by
the assembly language code must be defined as C++ variables. The following exam-
ple is an assembly language routine to add three integers and return the sum to the
calling code. The processing is contained in a C++ function shell, as follows:,

int SumOf3(
int x,
int y,
int z)

{
int total; // C++ variable to hold sum

804 Chapter Twenty-Eight

© 2003 by CRC Press LLC

_asm
{
MOV EAX,x ; move first parameter to accumulator
ADD EAX,y ; add second parameter
ADD EAX,z ; and third parameter
MOV total,EAX ; store sum
}

return total;
}
The calling code could be as follows:

int aSum; // local variable for sum
. . .
aSum = SumOf3(10, 20, 30);

This example shows that the assembly language code can access the parameters
passed to the C++ function, as well as store data in a local variable that is also ac-
cessible to C++. This easy mechanism for sharing data is one of the major advan-
tages of in-line assembly.

28.3 Multi-Language Programming
Instead of using in-line assembly language, it is possible to develop entire assembly
language modules which can be accessed at link-time or at runtime. The topic of devel-
oping libraries and DLLs is outside the scope of this book. However, this section is
about developing independent modules using MASM, which can later be incorporated
into a C++ program. The development tools considered here are Microsoft's MASM
and Visual C++ version 6.0. The resulting program is developed partly in assembly lan-
guage and partly in C++. Therefore it is a case of multi-language programming.

28.3.1 Stand-Alone Assembler Modules
You have seen that one of the major limitations of in-line assembly is that it does not
permit the use of assembler directives. One of the consequences of this limitation is
that the programmer must declare all data as C++ variables and access this data from
the in-line assembler code. Another limitation is that it is not possible to create assem-
bly language procedures with in-line code. Therefore the assembly language routines
must be defined as C or C++ functions. In many cases it is possible to work around
these limitations, but not always. For example, the current version of Visual C++ does
not support10-byte floating-point variables in ANSI-IEEE extended format. Applica-
tions that manipulate floating point data using the math unit of the Pentium can often
benefit from the extended format. Among other reasons, for defining constants and
storing temporary results. Other uses of stand-alone assembly is in creating libraries
and DLLs that can be accessed by any application.

C++/Assembler Interface Functions

The transition between C++ and assembly language code is made easier by creating in-
terface routines that receive the C++ call, format the data for the low-level code, call
the low-level procedure, and re-format the results before returning to the caller. If
properly designed, the interface function makes the multi-language environment
transparent to the programmer. For example, imagine a low-level routine, coded in as-
sembly language, that performs matrix multiplication. The header of the low-level pro-
cedure is as follows:

Access to Video Memory 805

© 2003 by CRC Press LLC

_MUL_MATRICES PROC USES esi edi ebx ebp
; Procedure to multiply two matrices (A and B) for which a matrix
; product (A * B) is defined. Matrix multiplication requires that
; the number of columns in matrix A be equal to the number of
; rows in matrix B, as follows:
; A B
; R C r cr
; |______ = ______|
;
; Example:
;
; A=(2 by 3) B=(3 by 4)
; A11 A12 A13 B11 B12 B13 B14
; A21 A22 A23 B21 B22 B23 B24
; B31 B32 B33 B34
;
; The product matrix (C) will have 2 rows and 4 columns
; C=(2 by 4)
; C11 C12 C13 C14
; C21 C22 C23 C24
;
; In this case the product matrix is obtained as follows:
; C11 = (A11*B11)+(A12*B21)+(A13*B31)
; C12 = (A11*B12)+(A12*B22)+(A13*B32)
; C13 = (A11*B13)+(A12*B23)+(A13*B33)
; C14 = (A11*B14)+(A12*B24)+(A13*B34)
;
; C21 = (A21*B11)+(A22*B21)+(A23*B31)
; C22 = (A21*B12)+(A22*B22)+(A23*B32)
; C23 = (A21*B13)+(A22*B23)+(A23*B33)
; C24 = (A21*B14)+(A22*B24)+(A23*B34)
;
; On entry:
; ESI --> first matrix (A)
; EDI --> second matrix (B)
; EBX --> storage area for products matrix (C)
; AH = rows in matrix A
; AL = columns in matrix A
; CH = rows in matrix B
; CL = columns in matrix B
; EDX = number of bytes per entry
; Assumes:
; Matrix C is dimensioned as follows:
; Columns of C = columns of B
; Rows of C = rows of A
; On exit:
; Matrix C is the products matrix

; Note: the entries of matrices A, B, and C must be of type float
; and of the same data format
;
.
.
.
_MUL_MATRICES ENDP

The _MUL_MATRICES procedure requires that ESI and EDI point to the two mul-
tiplicand matrices stored in a valid ANSI/IEEE floating-point format. EBX points to
a storage area to hold the products matrix. AH and AL holds the row/column dimen-

806 Chapter Twenty-Eight

© 2003 by CRC Press LLC

sions of one source matrix, and CH and CL the dimensions of the other source ma-
trix. EDX holds the number of bytes in each matrix entry. This is usually called the
skip factor.

The interface routine uses in-line assembly and C++ code to format the data re-
ceived from the caller. Code can be as follows:

template <class A>
bool MulMatrices(A *matA, A *matB, A *matC,

int rowsA, int colsA,
int rowsB, int colsB)

{
// Perform matrix multiplication: C = A * B using low-level code
// defined in an assembly language module
// On entry:
// *matA and *matB are matrices to be multiplied
// *matC is matrix for products
// rowsA is number of the rows in matrix A
// colsA is number of columns in the matrix A
// rowsB is number of the rows in matrix B
// colsB is number of columns in the matrix B
// Requires:
// Matrices must be multiplication compatible
// All three matrices must be of the same float
// data type
// Asumes:
// Matrix C dimensions are the product of the
// columns of matrix B times the rows or matrix A
// Routine expects:
// ESI --> first matrix (A)
// EDI --> second matrix (B)
// EBX --> storage area for products matrix (C)
// AH = number of rows in matrix A
// AL = number of columns in matrix A
// CH = number of rows in matrix B
// CL = number of columns in matrix B
// EDX = horizontal skil factor
// On exit:
// returns true if matC[] = matA[] * matB[]
// returns false if columns of matA[] not = rows
// of matB[]. If so, matC[] is undefined

int eSize = sizeof(matA[0]);

// Test for valid matrix sizes:
// columns of matA[] = rows of matB[]
if(colsA != rowsB)

return false;

_asm
{

MOV AH,BYTE PTR rowsA
MOV AL,BYTE PTR colsA
MOV CH,BYTE PTR rowsB
MOV CL,BYTE PTR colsB
MOV ESI,matA // Address to ESI
MOV EDI,matB
MOV EBX,matC
MOV EDX,eSize // Horizontal skip

Access to Video Memory 807

© 2003 by CRC Press LLC

CALL MUL_MATRICES
}
return true;
}

Notice that the interface function, called MulMatrices(), calls the low-level proce-
dure _MUL_MATRICES. The C++ interface function uses C++ code to test that the
two matrices are multiplicationcompatible, in other words, that the number of col-
umns of the first matrix is equal to the number of rows of the second one. Code also
uses the sizeof operator on one of the matrix entries to determine the skip factor.
The data received as parameters by the interface function is moved to processor
registers. Notice that the skip factor, now in the C++ variable eSize, is moved into
the EDX register. The call to the low-level procedure is made in the statement:

���� ����������	

In this call the leading underscore is appended automatically by the C++ com-
piler. This makes it necessary to use the underscore symbol as the first character in
the name of an assembly language procedures that is to be called from C++.

Once the interface function has been defined, client code can ignore all the data
formatting details of the interface. The following code fragment shows the C++ data
definition and calling of the MulMatrices() interface function.

float matA[] = { 1.0, 2.0, 4.0,
2.0, 6.0, 0.0};

float matB[] = { 4.0, 1.0, 4.0, 3.0,
0.0,-1.0, 3.0, 1.0,
2.0, 7.0, 5.0, 2.0};

// Product matrix has rows of matA[] * columns of matB[]
// 2 * 4 = 8
float matAB[8];
bool result;
.
.
.
result = MulMatrices(matA, matB, matAB, 2, 3, 3, 4);
if(result)

// Success!
else

cout << "Invalid matrix size";

MASM Module Format
The assembly language modules compatible with Visual C++ and Win32 must follow a
specific protocol. For example, the module containing the _MUL_MATRICES proce-
dure, mentioned previously, is defined as follows:

PUBLIC _MUL_MATRICES
;

.486

.MODEL flat

.DATA
// Module data elements defined here
MAT_A_ROWS DB 0 ; Rows in matrix A

808 Chapter Twenty-Eight

© 2003 by CRC Press LLC

.

.

.
.CODE

// Low-level procedures coded here
_MUL_MATRICES PROC
.
.
.
_MUL_MATRICES ENDP
end

The first element in the module is the PUBLIC declaration of the procedures that
are to be accessed from outside the module. The .486 directive and the .MODEL flat
directive ensure that the code in Win32 compatible. In the Intel flat memory model
the segment registers are unnecessary since 32-bit registers can access the entire
code memory space.

The module is assembled normally. To facilitated debugging it is a good idea to
use the /Zi switch. For example, a module named test_1.asm is assembled with the
command:

��
� ��
��� ����

The resulting object file must be added to the Visual C++ project in which it is to
be used. This is done with Developer Studio Project/Add To Project/Files... com-
mand. At this point you may have to select the Files of type: All Files(*.*) option to
make the object file visible in the dialog box. The source file can also be added to
the project if it needs to be edited during development. Once added, the object and
assembler source files will be listed as Resource Files in Developer Studio File View
window.

C++ Module Format

The Visual C++ source files for multi-language programs must contain an external dec-
laration of the low-level functions that are to be accessed by code. For example, if the
C++ code is to call the procedure named _MUL_MATRICES, located in a separate ob-
ject file, the C++ source must contain the following statement:

������ ��� ���� ����������	
���

The remainder of the code is conventional C++.

If you use C++ interface functions, as suggested earlier in this chapter, it may be a
good idea to place the interface functions in a header file. The header file can be in-
corporated into the main C++ source with an #include statement.

28.3.2 Matrix Ops Project
The Matrix Ops project, located in the Chapter 13 directory in the book's software
package, is a demonstration of the multi-language programming techniques discussed
in this section. The project is developed as a Win32 Console Application, but the same
method can be followed to create a Win32 Application. The project contains the fol-
lowing source files:

Access to Video Memory 809

© 2003 by CRC Press LLC

1. Matrix Ops.cpp is the main C++ source file.

2. Matrix Ops.h is a header file with the C++ interface functions.

3. Mat_math.asm is the assembler source.

The low-level module mat_math.asm contains several procedures to perform ma-
trix mathematics. These include scalar addition, subtraction, multiplication, and di-
vision of rows and matrices, as well as matrix addition and multiplication. The C++
header file named Matrix Ops.h contains the interface functions for the low-level
code, as well as an auxiliary function to display a matrix. All of the functions in Ma-
trix Ops.h are defined as template functions. This is in order to facilitate its use with
matrices of different numeric types. The driver source is the file named Matrix
Ops.cpp. This module declares data for several test matrices and exercises all the
functions in the interface module.

28.4 Direct Access Primitives

An application that uses direct access to video memory can usually benefit from a few
primitive functions that perform the core processing operations. These primitives can
be coded in C++ or using in-line assembly. Most primitive routines are mode specific.
They assume that a particular display mode is available and has been selected. It is im-
possible to predict the specific functions and the number of primitives that are neces-
sary for a particular graphics program. This depends, among other factors, on what
portion of the processing is performed using direct access to video memory and on the
size and scope of the application. The resulting complexity can range from a few sim-
ple routines to a full-size, stand-along graphics package. In this section we consider
several direct access primitives that can be generally useful; they are:

• Lock a DirectDraw primary surface and store the video buffer's base address and pitch.

• Release a DirectDraw primary surface.

• Set an individual screen pixel at given coordinates and color attributes and to read the
attributes of a screen pixel located at given coordinates.

• Lock a DirectDraw primary surface, fill a pixel rectangle, at given coordinates, dimen-
sions, and color attributes, then release the surface.

• Lock a DirectDraw primary surface, draw a single-line box, at given coordinates, di-
mensions, and color attributes, then release the surface.

Many of the routines that access video memory directly must perform calcula-
tions to determine the offset of a particular pixel in the display surface. For exam-
ple, a call to fill a screen rectangle passes the address of its top-left corner as
parameters. The processing must convert this address, usually in column/row for-
mat, into a video memory offset. It is possible to develop a primitive function that
calculates this pixel offset, but this approach introduces a call-return overhead that
adversely affects performance. More often the address calculations are part of the
processing routine. Therefore, before attempting to develop the direct access primi-
tives, we take a closer look at the low-level operations necessary for calculating a
pixel addresses.

810 Chapter Twenty-Eight

© 2003 by CRC Press LLC

28.4.1 Pixel Address Calculations
A display mode's resolution, color depth, and pitch determine the location of each
pixel on the surface. For this reason, pixel address calculations are specific to a dis-
play mode. In the case of the hi-color modes, the variables that enter into the calcula-
tion of a pixel offset are the number of bytes per pixel and the surface pitch. In
addition, the horizontal and vertical resolution of the display mode can be used to
check for invalid input values, since it is the responsibility of direct access routines
not to read or write outside of the locked surface area. Figure 28-3 shows the parame-
ters that define the location of a screen pixel and the formula used for calculating its
offset.

Figure 28-3 Pixel Offset Calculation

28.4.2 Defining the Primary Surface
You have seen that the DirectDraw Lock() function is used to lock the surface so that it
can be accessed directly. The call also returns a pointer to the top-left corner of the
rectangle that defines the surface, as well as its pitch. When Lock() references to the
entire primary surface, the call returns the base address of the video buffer. The pitch,
in this case, is the number of bytes in each screen buffer row.

In addition, the Lock() call forces Windows to relax its normal protection over
video display memory. Normally, any instruction that attempts to access video mem-
ory immediately generates a protection violation exception and the application is
terminated. This is important to keep in mind while designing direct access func-
tions, since it is this feature that makes the Lock() call necessary if a previous
Lock() has been released. This is true even when the video buffer address and pitch
have been previously obtained and stored. On the other hand, the surface lock can
be retained during more than one access to video memory. Therefore, a routine that
sequentially sets several screen pixels need only call the Lock() function once. Once
the pixel sequence is set, then the lock can be released. Also recall that the Lock()

Access to Video Memory 811

x

offset = y pitch + (x bytes-per-pixel)

y

* *

© 2003 by CRC Press LLC

call requires a pointer to an IDirectDrawSurface object, which is usually obtained
by means of the CreateSurface() function. The following is a simple locking func-
tion for the entire primary surface:

// Global variables for surface pitch and base address
LONG vidPitch;
LPVOID vidStart;
.
.
.
//***
// Name: LockSurface
// Desc: Function to lock the entire DirectDraw primary surface
// and store the direct access parameters
//
// PRE:
// 1. First parameter is a pointer to DirectDraw surface
// 2. Video display globals have been declared as follows:
// LONG vidPitch; // Pitch
// LPVOID vidStart; // Buffer address
//
// POST:
// Returns 1 if call succeeds and 0 if it fails
//***
int LockSurface(

LPDIRECTDRAWSURFACE4 lpSurface)
{

// Attempt to lock the surface for direct access
if (lpSurface->Lock(NULL, &ddsd, DDLOCK_WAIT, NULL)\
!= DD_OK)
return 0; // Lock failed

// Store video system data
vidPitch = ddsd.lPitch; // Pitch
vidStart = ddsd.lpSurface; // Buffer address
return 1; // Surface locked

}

28.4.3 Releasing the Surface
Developing a function to release the locked surface is also convenient. In this case the
processing is based on the DirectDraw Unlock() functions. It may be a good idea to
have the routine that calls the Unlock() function also reset the access variables to
zero. This makes it easier to determine if a lock is being held, since a zero value is in-
valid for either variable. The routine itself tests one of these variables before attempt-
ing to release the lock.

//***
// Name: ReleaseSurface
// Desc: Function to release locked surface
// PRE:
// 1. Parameter is pointer to locked DirectDraw surface
// 2. Video display globals as follows:
// LONG vidPitch; // Pitch
// LPVOID vidStart; // Buffer address
//***
void ReleaseSurface(

LPDIRECTDRAWSURFACE4 lpSurface)
{

812 Chapter Twenty-Eight

© 2003 by CRC Press LLC

if(vidStart != 0) {
lpSurface->Unlock(NULL);
// Clear global variables
vidPitch = 0;
vidStart = 0;

}
return;

}

This version of the ReleaseSurface() function assumes that the object of the lock
was the entire surface.

28.4.4 Pixel-Level Primitives
Pixel-level operations are the lowest-level graphics routines available, which explains
why they are often considered device driver components, rather than primitives. In
theory, it is possible to perform any graphics operations by using a pixel read and a
pixel write routine.

The Windows GDI provides functions to set and read a single pixel. However, the
GDI functions are extremely slow. Direct access, pixel-level routines execute sev-
eral hundred times faster than the GDI counterparts. The pixel-level read and write
primitives could be coded as follows:

// Global variables for surface pitch and base address
LONG vidPitch;
LPVOID vidStart;
.
.
.
//***
// Name: DASetPixel
// Desc: Assembly language code to set a single screen pixel
// using direct access to the video buffer
//
// PRE:
// 1. Successful Lock() of surface
// Video display globals are stored as follows:
// LONG vidPitch; // Pitch
// LPVOID vidStart; // Buffer address
// 2. First and second parameters are the pixel coordinates
// 3. Last three parameters are pixel RGB attributes
// 4. Assumes true color mode 640 by 480 by 28
//
// POST:
// None
//***
void DASetPixel(

int xCoord,
int yCoord,
BYTE redAtt,
BYTE greenAtt,
BYTE blueAtt)

{
_asm
{

PUSH ESI ; Save context
PUSHF

Access to Video Memory 813

© 2003 by CRC Press LLC

MOV EAX,yCoord ; Row number to EAX
MUL vidPitch;
MOV EBX,EAX ; Store in EBX
MOV EAX,xCoord ; x coordinate
MOV CX,3
MUL CX ; 3 bytes per pixel
ADD EAX,EBX ; move right to x coordinate
MOV ESI,vidStart
ADD ESI,EAX

; Load color attributes into registers
MOV AL,blueAtt
MOV DH,greenAtt
MOV DL,redAtt

; Set the pixel
MOV [ESI],AL ; Set blue attribute
INC ESI
MOV [ESI],DH ; Set green
INC ESI
MOV [ESI],DL ; Set red
POPF ; Restore context
POP ESI
}

return;
}

//***
// Name: DAReadPixel
// Desc: Assembly language code to read a single screen pixel
// using direct access to the video buffer
//
// PRE:
// 1. Successful Lock() of surface
// Video display globals are stored as follows:
// LONG vidPitch; // Pitch
// LPVOID vidStart; // Buffer address
// 2. First and second parameters are the pixel coordinates
// values are returned in public variables named
// pixelRed, pixelGreen, and pixelBlue
// 3. Assumes true color mode 640 by 480 by 28
//
// POST:
// None
//***
void DAReadPixel(

int xCoord,
int yCoord)

{
_asm
{
PUSH ESI ; Save context
PUSHF
MOV EAX,yCoord ; Row number to EAX
MUL vidPitch
MOV EBX,EAX ; Store in EBX
MOV EAX,xCoord ; x coordinate
MOV CX,3
MUL CX ; 3 bytes per pixel
ADD EAX,EBX ; move right to x coordinate
MOV ESI,vidStart
ADD ESI,EAX

814 Chapter Twenty-Eight

© 2003 by CRC Press LLC

; Read and store pixel attributes
MOV AL,[ESI] ; Get blue attribute
INC ESI
MOV DH,[ESI] ; green
INC ESI
MOV DL,[ESI] ; and red
MOV pixelBlue,AL ; Store blue
MOV pixelGreen,DH ; green
MOV pixelRed,DL ; and red
POPF ; Restore context
POP ESI
}

return;
}

Filling a Rectangular Area
Filling a rectangular area with a particular color attribute is such a useful manipula-
tion that most applications that access memory directly can profit from such a primi-
tive. To define a screen rectangle you can use the coordinates of its diagonally
opposite corners, or the coordinates of one corner and the rectangle's dimensions.
The following listed function adopts the second approach. In addition, the routine
needs to know the values for the RGB color attributes to use in the fill. The code is as
follows:

//***
// Name: DARectangle
// Desc: Assembly language code to draw a rectangle on the screen
// using direct access to the video buffer
//
// PRE:
// 1. First parameter is pointer to surface
// 2. Second and third parameters are rectangle's x and y
// coordinates
// 3. Fourth parameter is rectangle width, in pixels
// 4. Fifth parameter is rectangle height, in pixels
// 5. Last three parameters are RGB attributes
// 6. Assumes true color mode is 640 by 480 by 24

// POST:
// Returns 1 if lock succeeded and 0 if it failed
//***
int DARectangle(

LPDIRECTDRAWSURFACE4 lpPrimary,
int yCoord,
int xCoord,
int width,
int height,
BYTE redAtt,
BYTE greenAtt,
BYTE blueAtt)

{
// Attempt to lock the surface for direct access
if (!LockSurface(lpPrimary))

return 0; // Lock failed

_asm
{

PUSH ESI ; Save context

Access to Video Memory 815

© 2003 by CRC Press LLC

PUSHF
MOV EAX,yCoord ; Row number to EAX
MUL vidPitch;
MOV EBX,EAX ; Store in EBX
MOV EAX,xCoord ; x coordinate
MOV CX,3
MUL CX ; 3 bytes per pixel
ADD EAX,EBX ; move right to x coordinate
MOV ESI,vidStart
ADD ESI,EAX
; Load color attributes into registers
MOV AL,blueAtt
MOV DH,greenAtt
MOV DL,redAtt
MOV EBX,height ; number of lines in rectangle

NEXT_LINE:
PUSH ESI ; Save start of line
MOV ECX,width ; x dimension of rectangle

SET_PIX:
MOV [ESI],AL ; Set blue attribute
INC ESI ; Next pixel
MOV [ESI],DH ; Set green
INC ESI ; Next pixel
MOV [ESI],DL ; Set red
INC ESI ; Next pixel
LOOP SET_PIX

; Pixel line is set
POP ESI
ADD ESI,vidPitch
DEC EBX
JNZ NEXT_LINE
POPF ; Restore context
POP ESI

}
ReleaseSurface(lpPrimary);
return 1; // Exit

}

Observe that the DARectangle() calls LockSurface() and ReleaseSurface() func-
tions previously developed. To improve performance, the function can be easily
modified to call Lock() and Unlock() directly.

Box-Drawing
Drawing a box is a little more complicated than filling a rectangle. The actual process-
ing can be based on two simple routines: one to draw a horizontal line and another one
to draw a vertical line. The core routine sets up the machine registers with the neces-
sary data and then calls the horizontal and vertical line routines to do the actual draw-
ing. Since there are other possible uses for the vertical and horizontal line drawing
operations they are coded as separate functions. The parameters to the box drawing
routine are the same as those for the rectangle fill. They include the pointer to the sur-
face, the box coordinates, its dimensions, and the color attributes. The code is as fol-
lows:

//***
// Name: DABox
// Desc: Assembly language code to draw a screen box with
// single-pixel wide lines, using direct access to the

816 Chapter Twenty-Eight

© 2003 by CRC Press LLC

// video buffer
//
// PRE:
// 1. First parameter is pointer to surface
// 2. Second and third parameters are the coordinates of the
// top-left corner of the box
// 3. Fourth parameter is box width, in pixels
// 4. Fifth parameter is box height, in pixels
// 5. Last three parameters are RGB attributes
// 6. True color mode is 640 by 480 by 24
//
// POST:
// Returns 1 if lock succeeds and 0 if it fails
//***
int DABox(

LPDIRECTDRAWSURFACE4 lpPrimary,
int xCoord,
int yCoord,
int width,
int height,
BYTE redAtt,
BYTE greenAtt,
BYTE blueAtt)

{
// Attempt to lock the surface for direct access
if (!LockSurface(lpPrimary))

return 0; // Lock failed

_asm
{

PUSH ESI ; Save context
PUSHF
MOV EAX,yCoord ; Row number to EAX
MUL vidPitch;

MOV EBX,EAX ; Store in EBX
MOV EAX,xCoord ; x coordinate
MOV CX,3
MUL CX ; 3 bytes per pixel
ADD EAX,EBX ; move right to x coordinate
MOV ESI,vidStart
ADD ESI,EAX
; Load color attributes into registers
MOV AL,blueAtt
MOV DH,greenAtt
MOV DL,redAtt
; Draw top horizontal line
MOV ECX,width ; x dimension of rectangle
CALL DAHorLine
; Draw bottom horizontal line
PUSH ESI ; Save top left corner address
PUSH EAX ; Save color
PUSH EDX
MOV EAX,height ; Number of lines to EAX
MUL vidPitch; ; Times the length of each line
ADD ESI,EAX ; Add to start
MOV ECX,width ; x dimension of rectangle
POP EDX ; Restore color
POP EAX
CALL DAHorLine ; Draw line

Access to Video Memory 817

© 2003 by CRC Press LLC

POP ESI ; Restore start of rectangle
; Draw left vertical line
MOV EBX,vidPitch ; Pitch to EBX
MOV ECX,height ; Pixel height of vertical line
CALL DAVerLine
; Draw right vertical line
; ESI holds address of top-left corner
PUSH EAX ; Save color
PUSH EDX
MOV EAX,width ; Number of lines to EAX
MOV CX,3 ; Pixels per line
MUL CX
ADD ESI,EAX ; Add to start
MOV ECX,height ; Line y dimensions
INC ECX ; One more pixel
POP EDX ; Restore color
POP EAX
CALL DAVerLine ; Draw line
POPF ; Restore context
POP ESI
}

ReleaseSurface(lpPrimary);
return 1; // Exit

}

//***
// Name: DAHorLine
// Desc: Assembly language support function for DABox()
// draws a horizontal pixel line
// PRE:
// ESI holds buffer address of start of line
// ECX hold pixel length of line
// AL = blue attribute
// DH = green attribute
// DL = red attribute
// POST:
// ECX is destroyed
// All others are preserved
//***

void DAHorLine()
{

_asm
{
PUSH ESI ; Save start of line

DRAW_HLINE:
MOV [ESI],AL ; Set blue attribute
INC ESI
MOV [ESI],DH ; Set green
INC ESI
MOV [ESI],DL ; Set red
INC ESI
LOOP DRAW_HLINE
POP ESI
}
return;

}

//***

818 Chapter Twenty-Eight

© 2003 by CRC Press LLC

// Name: DAVerLine
// Desc: Assembly language support function for DABox()
// draws a vertical pixel line
// PRE:
// ESI holds buffer address of start of line
// ECX hold pixel height of line
// EBX holds surface pitch
// AL = blue attribute
// DH = green attribute
// DL = red attribute
// POST:
// ECX is destroyed
// All others are preserved
//***

void DAVerLine()
{

_asm
{
PUSH ESI ; Save start of line

DRAW_VLINE:
PUSH ESI ; Save start address
MOV [ESI],AL ; Set blue attribute
INC ESI
MOV [ESI],DH ; Set green
INC ESI
MOV [ESI],DL ; Set red
POP ESI ; Restore start
ADD ESI,EBX ; Index to next line
LOOP DRAW_VLINE
POP ESI
}

return;
}

28.5 Raster Operations
Direct access to video memory, combined with low-level coding, provides the pro-
grammer with all the necessary elements to develop a powerful, DOS-like, graphics
toolkit. One of the many possibilities consists of using logical operations to combine
object and screen data. These are sometimes called raster operations, raster ops, or
mixes. A raster operation determines how two or more source images are combined to
produce a destination image. Arithmetic and logical operators are used to produce the
desired effect. The simplest one is to replace the destination with the source. This is
what takes place when you directly write a pixel value to the video screen. When the
MOV instruction writes a color value to the screen you are actually replacing the desti-
nation with the source, as follows:

��� 	
�!"��

In many cases a raster operation requires a read-modify-write sequence. For ex-
ample, you could increase the brightness of a specific pixel by adding a constant to
its value, as follows:

MOV AL,[ESI] ; Read pixel
ADD AL,20 ; Modify
MOV [ESI],AL ; Write

Access to Video Memory 819

© 2003 by CRC Press LLC

The problem with this type of processing is that the read-modify-write cycle takes
considerable processing time. For this reason some graphics processors perform
raster operations in hardware.

The Pentium CPU has several logical operators that allow combining foreground
and background data by means of a single instruction. For example, a logical AND
operation can be used to combine foreground bits (object data) and background
data. The result is that the background bits are preserved whenever the foreground
bit is zero, and vice versa. The object data is sometimes referred to as a mask. Thus,
code can overlay a white grid over an existing image by ANDing a mask consisting
of 1-bits in the solid portion of the grid and 0-bits in the transparent portion. The
Pentium logical opcodes are AND, OR, XOR, and NOT. For example, the following
operation ANDs the value in the AL register with the screen data contained in the
address pointed at by ESI:

�#$ 	
�!"��

In C++ programming the bitwise operators perform a similar action, at a much
greater processing cost. In the following sections we examine the XOR mix, which is
one of the most useful raster graphics operations.

28.5.1 XOR Animation
Animating a screen object usually requires erasing an image from its current screen
position and then redrawing it at a new location. Graphics programmers sometimes
call this sequence the "save-draw-redraw" cycle. The "save" element in this sequence is
determined by the fact that the original screen image must be preserved so that it can
later be restored to its original form. At the same time, if the object is not erased before
it is redrawn, its apparent movement leaves an undesirable image track on the display
surface. You can make an object appear to move laterally, left to right, by progressively
redrawing and erasing its screen image at consecutively larger x coordinates. To do
this in a conventional manner we have to perform a rather complex sequence of opera-
tions:

1. Save phase: preserve the screen image data in the area where the object is to be dis-
played.

2. Draw phase: draw the object.

3. Redraw phase: erase the object by restoring the original screen image.

Step 1 requires reading all data in the screen area that is to be occupied by the an-
imated object, while step 3 requires redisplaying the saved image. Both operations
are time-consuming, and in computer animation, time is always in short supply.

Several hardware and software techniques have been devised for performing the
save-draw-redraw cycle. In later chapters we explore DirectDraw animation tech-
niques that are powerful and versatile. These higher-level methods are based on flip-
ping surfaces containing images and on taking advantage of the hardware blitters
that are available in most video cards. Here we are concerned with the simplest pos-
sible approach to figure animation. This technique, which is made feasible by the
high performance obtained with direct access to video memory, is based on the
properties of the logical exclusive or XOR operation. Although it is theoretically

820 Chapter Twenty-Eight

© 2003 by CRC Press LLC

possible to perform XOR animation using high-level code, the most efficient and
powerful technique requires assembly language.

The action of the logical XOR can be described by saying that a bit in the result is
set if both operands contain opposite values. It follows that XORing the same value
twice restores the original contents, as in the following case:

10000001 <= original value ----|
XOR value => 10110011 |

--------- |
00110010 <= first result |

XOR value => 10110011
10000001 <= final result ------|

XOR, like all bitwise operations, takes place on a bit-by-bit basis. In this example
the final result (10000001) is the same as the original value.

Animation techniques can be based on this property of the bitwise XOR since it
provides a convenient and fast way for consecutively drawing and erasing a screen
object. The object is drawn on the screen by XORing it with the background data.
XORing a second time erases the object and restores the original background.
Therefore, the save-draw-redraw cycle now becomes an XOR-XOR cycle, which is
considerably faster and simpler to implement. The XOR method is particularly use-
ful when more than one animated object can coincide on the same screen position,
since it ensures that the original screen image is automatically preserved.

There are also disadvantages to using XOR in computer animation. The most im-
portant one is that the image itself is dependant upon the background attributes.
This is due to the fact that each individual pixel in the object is determined both by
the XORed value and by the destination pixel. The following XOR operation pro-
duces a red object (in RGB format) on a bright white screen background:

R G B
background => 1 1 1 (white)
XOR value => 0 1 1

result => 1 0 0 (red)

However, if the same XOR operation is applied over a black background the color
of the object is cyan, instead of red:

R G B
background => 0 0 0 (black)
XOR value => 0 1 1

result => 0 1 1 (cyan)

The property of the XOR operation that makes the object's color change as it
moves over different backgrounds can be at times an advantage, and at times a dis-
advantage. For example, an object displayed by conventional methods can disap-
pear as it moves over a background of its same color. If this object is XORed onto
the screen, it remains visible over most backgrounds. On the other hand, it may hap-
pen that the color of a graphics object is an important characteristic. In this case the

Access to Video Memory 821

© 2003 by CRC Press LLC

changes brought about by XOR display operations may not be acceptable. Figure
28-4 shows how the XOR operation changes the attributes of an object (circle) as it
is displayed over different backgrounds.

Figure 28-4 Visualizing the XOR Operation

28.5.2 XORing a Bitmap
One of the many possible uses of the XOR raster operation is to project a bitmap over
an existing background. The graphics programmer can take advantage of the auto-
matic draw-erase action of the XOR function to animate cursors and small sprites with
minimal processing. The main drawback has already been mentioned: the object's
color is partially determined by the background color. The following function XORs a
variable-size bitmap onto the video display, at any desired screen location. The func-
tion assumes a true-color display mode in 640 by 480 by 24 format.

// Cross-shaped bitmap for demonstrating the DAXorBitmap()
// function
// 2 by 8 Bitmap 0 1 2 3 4 5 6 7
BYTE mapData[] = { 0x00,0x00,0x00,0x7f,0x7f,0x00,0x00,0x00, // 0

0x00,0x00,0x00,0x7f,0x7f,0x00,0x00,0x00, // 1
0x00,0x00,0x00,0x7f,0x7f,0x00,0x00,0x00, // 2
0x7f,0x7f,0x7f,0x7f,0x7f,0x7f,0x7f,0x7f, // 3
0x7f,0x7f,0x7f,0x7f,0x7f,0x7f,0x7f,0x7f, // 4
0x00,0x00,0x00,0x7f,0x7f,0x00,0x00,0x00, // 5
0x00,0x00,0x00,0x7f,0x7f,0x00,0x00,0x00, // 6
0x00,0x00,0x00,0x7f,0x7f,0x00,0x00,0x00};// 7

. . .

//***
// Name: DAXorBitmap
// Desc: Assembly language code to XOR a bitmap onto the screen
// using direct access to the video buffer
//
// PRE:
// 1. First parameter is pointer to surface
// 2. Second and third parameters are x and y screen coordinates
// 3. Fourth parameter is bitmap width, in pixels
// 4. Fifth parameter is bitmap height, in pixels
// 5. Sixth parameter is pointer to bitmap
// 6. Assumes true-color mode 640 by 480 by 28
//

822 Chapter Twenty-Eight

© 2003 by CRC Press LLC

// POST:
// Returns 1 if call succeeds and 0 if it fails
//**
int DAXorBitmap(

LPDIRECTDRAWSURFACE4 lpPrimary,
int xCoord,
int yCoord,
int bmWidth,
int bmHeight,
LPBYTE bitMapPtr)

{
// Attempt to lock the surface for direct access
if (!LockSurface(lpPrimary))

return 0; // Lock failed

_asm
{
PUSH ESI ; Save context
PUSH EDI
PUSHF

MOV EAX,yCoord ; Row number to EAX
MUL vidPitch;
MOV EBX,EAX ; Store in EBX
MOV EAX,xCoord ; x coordinate
MOV CX,3
MUL CX ; 3 bytes per pixel
ADD EAX,EBX ; move right to x-coordinate
MOV EDI,vidStart
ADD EDI,EAX
MOV ESI,bitMapPtr ; Pointer to bitmap
MOV EBX,bmHeight ; number of lines in bitmap

NEXT_BM_LINE:
PUSH EDI ; Save start of line
MOV ECX,bmWidth ; x-dimension of bitmap

XOR_PIX_LINE:
MOV AL,[ESI] ; Bitmap data to AL
XOR [EDI],AL ; Set blue attribute
INC EDI
XOR [EDI],AL ; Set green
INC EDI
XOR [EDI],AL ; Set red
INC EDI
INC ESI ; Bitmap pointer to next byte
LOOP XOR_PIX_LINE

; End of line
POP EDI ; Pointer to start of line
ADD EDI,vidPitch ; Index to next line
DEC EBX ; EBX is Lines counter
JNZ NEXT_BM_LINE
; Done!
POPF ; Restore context
POP EDI
POP ESI

}
ReleaseSurface(lpPrimary);
return 1; // Exit

}

Access to Video Memory 823

© 2003 by CRC Press LLC

In this function a single bitmap attribute is XORed with all three background
colors. This keeps the bitmap small but limits the range of possible results. It would
be quite easy to modify the routine so that the bitmap contains a byte value for each
color attribute in a true-color mode.

28.6 Direct Access Project
The DD Access Demo project, located in the book's software package, is a demonstra-
tion of the direct access techniques discussed in this chapter. The program contains
all the functions listed in this chapter, plus some other ones not mentioned in the text.
It executes in exclusive, full-screen display mode. The text messages are displayed us-
ing GDI graphics and the geometrical figures using the direct access functions devel-
oped in this chapter. Color Figure 3 is a screen snapshot of the demo program. The
labels lists the program functions that perform the corresponding operations.

824 Chapter Twenty-Eight

© 2003 by CRC Press LLC

http://www.itknowledgebase.net/books/1232/color Insert.pdf

Chapter 29

Blitting

Topics:
• Surfaces revisited

• Image transparency

• Color keys

• Using Blt() and BltFast()

• Blit-time transformations

This chapter is about a fundamental mechanism for rendering bitmaps called a blit,
short for bit block transfer. The Windows GDI contains a blit function but DirectDraw
provides its own versions, in the form of two functions named Blt() and BltFast(). A
third variation, called BltBatch(), was announced but never implemented. Another
rendering technique is called an overlay. Overlays are like a transparent media which
can be placed over an image and then removed, restoring the original. Overlays have
been implemented inconsistently in the video hardware, and for this reason they are
not discussed.

29.1 Surface Programming
Before discussing DirectDraw blits, we must expand some of the notions related to
DirectDraw surfaces. The following are the fundamental notions introduced in this
section:

• The surface concept

• Primary and off-screen surfaces

• Enumerating surfaces

• Loosing and restoring surfaces

29.1.1 The DirectDraw Surface Concept
A DirectDraw surface is a linear area of video memory that holds image data. A
DirectDrawSurface is a COM object in itself, with its own interface, and this interface

© 2003 by CRC Press LLC

is referenced in all surface-related operations. The current interface is
IDirectDrawSurface7. Applications create a DirectDraw surface by calling the
CreateSurface() function. If the call is successful it returns a pointer to the surface. In
DirectX 7 this pointer is of type LPDIRECTDRAWSURFACE7. It is this pointer that is
used in calling the functions of the IDirectDrawSurface7 interface. Table 29-1 lists
these functions.

Table 29-1

Surface-Related Functions in DirectDraw

TYPE OR TOPIC FUNCTION NAME

Allocating memory Initialize()
IsLost()
Restore()

Attaching surfaces AddAttachedSurface()
DeleteAttachedSurface()
EnumAttachedSurfaces()
GetAttachedSurface()

Blitting Blt()
BltBatch() (not implemented in DirectX 6)
BltFast()
GetBltStatus()

Color keys GetColorKey()
SetColorKey()

Device contexts GetDC()
ReleaseDC()

Flipping Flip()
GetFlipStatus()

Locking surfaces Lock()
PageLock()
PageUnlock()
Unlock()

Textures GetLOD
GetPriority

SetLOD PetPriority
Overlays AddOverlayDirtyRect()

EnumOverlayZOrders()
GetOverlayPosition()
SetOverlayPosition()
UpdateOverlay()
UpdateOverlayDisplay()
UpdateOverlayZOrder()

Private data FreePrivateData()
GetPrivateData()
SetPrivateData()

Capabilities GetCaps()
Clipper GetClipper()

SetClipper()
Characteristics ChangeUniquenessValue()

GetPixelFormat()
GetSurfaceDesc()
GetUniquenessValue()
SetSurfaceDesc()

Miscellaneous GetDDInterface()

826 Chapter Twenty-Nine

© 2003 by CRC Press LLC

29.1.2 Surface Types

DirectDraw first attempts to create a surface in local video memory. If there is not
enough video memory available to hold the surface, then DirectDraw tries to use
non-local video memory, and finally, if no other option is available, it creates the sur-
face in system memory. Code can also explicitly request that a surface be created in a
certain type of memory by including the appropriate flags in the CreateSurface() call.
A typical DirectDraw application operates on several surfaces.

The primary surface is the one visible on the monitor and it is identified by the
DDSCAPS_PRIMARYSURFACE flag. There can be only one primary surface for each
DirectDraw object. The size and pixel format of the primary surface matches the
current display mode. For this reason, the surface dimensions, mode, and pixel
depth are not specified in the CreateSurface() call for a primary surface. In fact, the
call fails if these dimensions are entered, even if they match those of the display
mode.

Off-screen surfaces are often used to store bitmaps, cursors, sprites, and other
forms of bitmapped imagery. Off-screen surfaces can reside in video memory or in
system memory. For an off-screen surface to exist in video memory the total mem-
ory on the card must exceed the memory mapped to the video display. For example,
a video card with 2Mb of video memory (2,097,152 bytes), executing in mode with a
resolution of 640 by 480 pixels, at a rate of 3 bytes per pixel, requires 921,600 bytes
for storing the displayed image (assuming that there are no unused areas in the pixel
mapping). This leaves 1,175,552 bytes of memory on the video card which can be
used as off-screen memory.

A special type of off-screen surface is the back buffer. A back buffer can be cre-
ated if the amount of free video memory is sufficient to store a second displayable
image. In the previous example, it is possible to create one back buffer since the dis-
play area requires 921,600 bytes, and there are 1,175,552 bytes of additional video
memory available on the card. Back buffers, which are frequently used in animation,
are discussed in Chapter 15.

An off-screen surface is created with the CreateSurface() function. The call must
specify the surface dimensions, which means that it must include the DDSD_WIDTH
and DDSD_HEIGHT flags. The corresponding values must have been previously en-
tered in the dwWidth and dwHeight members of the DDSURFACEDESC2 structure.
The call must also include the DDSCAPS_OFFSCREENPLAIN flag in the DDSCAPS2
structure. If possible, DirectDraw creates a surface in display memory. If there is
not enough video memory available, it creates the surface in system memory. Code
c a n e x p l i c i t l y c h o o s e d i s p l a y o r s y s t e m m e m o r y b y e n t e r i n g t h e
DDSCAPS_SYSTEMMEMORY or DDSCAPS_VIDEOMEMORY flags in the dwCaps
member of the DDSCAPS2 structure. The call fails, returning an error, if DirectDraw
cannot create the surface in the specified location. Figure 29-1, on the following
page, shows different types of DirectDraw surfaces.

Blitting 827

© 2003 by CRC Press LLC

Figure 29-1 DirectDraw Surface Types

A surface is lost when the display mode is changed or when another application
receives exclusive mode privileges. The Restore() function can be used to recreate
lost surfaces and reconnect them to their DirectDrawSurface object. Applications
using the IDirectDraw7 interface can restore all lost surfaces by calling
RestoreAllSurfaces(). Note that restoring a surface does not reload bitmaps that
may have existed before the surface was lost. It is up to the application to recon-
struct the graphics on each of the surfaces.

When a surface is no longer needed it should be released by calling the Release()
function. Each surface must be explicitly released, since there is no call to release
all surfaces. However, if you implicitly created multiple surfaces with a single call to
IDirectDraw7::CreateSurface, you need only release the front buffer. In this case,
any pointers to back buffer surfaces are implicitly released and can no longer be
used. Explicitly releasing a back buffer surface doesn't affect the reference count of
the other surfaces in the chain.

828 Chapter Twenty-Nine

primary
surface

back
buffer

available for
off-screen
surfaces

SURFACES IN SYSTEM MEMORY

SURFACES IN VIDEO MEMORY

© 2003 by CRC Press LLC

29.1.3 Enumerating Surfaces
Applications often need to know if a surface that matches certain characteristics can
be created, or may need a list of the existing surfaces and their properties. The
IDirectDraw7 EnumSurfaces() function is used to enumerate surfaces. The function's
general form is as follows:

HRESULT EnumSurfaces(
DWORD dwFlags, // 1
LPDDSURFACEDESC2 lpDDSD, // 2
LPVOID lpContext, // 3
LPDDENUMSURFACESCALLBACK2 lpEnumCallback // 4
);

The first parameter is a combination of a search-type flag and a matching flag.
The search-type flag determines how the method searches for surfaces. Code can
search for surfaces that can be created by using the description in the second pa-
rameter, or it can search for existing surfaces that already match that description.
The matching flag determines whether the method enumerates all surfaces, those
that match, or those that do not match the description specified in the second pa-
rameter. Table 29-2 lists the search and matching flags used in the EnumSurfaces()
function.

Table 29-2

Flags in the EnumSurfaces() Function

FLAG FUNCTION NAME

SEARCH-TYPE FLAGS:
DDENUMSURFACES_CANBECREATED

Enumerates the first surface that can be
created and that meets the specifications in
the second parameter. This flag can only be
used with the DDENUMSURFACES_MATCH flag.

DDENUMSURFACES_DOESEXIST
Enumerates the already existing surfaces
that meet the specification in the second
Parameter.

MATCHING-TYPE FLAGS:
DDENUMSURFACES_ALL

Enumerates all of the surfaces that meet the
specification in the second parameter. This
Flag can only be used with the
DDENUMSURFACES_DOESEXIST search type flag.

DDENUMSURFACES_MATCH
Searches for any surface that matches the
specification in the second parameter.

DDENUMSURFACES_NOMATCH
Searches for any surface that does not match
the specification in the second parameter.

The second parameter to EnumSurfaces() is the address of a structure variable of
type DDSURFACEDESC2 that defines the characteristics of the surface. If the first
parameter includes the DDENUMSURFACES_ALL flag, then this second parameter
must be NULL.

Blitting 829

© 2003 by CRC Press LLC

The third parameter is the address of an application-defined structure that is
passed to each enumeration member.

The fourth parameter is the address of a cal lback funct ion, of type
lpEnumSurfacesCallback, that is called every time the enumeration procedure finds
a surface matching the predefined characteristics.

If the call succeeds the return value is DD_OK. If it fails, the return value may be
one of the following errors:

• DDERR_INVALIDOBJECT

• DDERR_INVALIDPARAMS

Implementing the callback function for EnumSurfaces() is very similar to the pro-
cessing described in Chapter 8 for the EnumDisplayModes() callback function. The
project DD Info Demo contained in the book's software package contains sample
code of the EdnumDisplayModes() callback.

Applications often need to know if a surface of certain characteristics is possible
before it attempts to create it. In this case it is possible to combine the
DDENUMSURFACES_CANBECREATED and DDENUMSURFACES_MATCH flags
when calling EnumSurfaces(). The DDSURFACEDESC2 structure variable is initial-
ized to contain the desired surface characteristics. If the characteristics include a
particular pixel format, then the DDSD_PIXELFORMAT flag must also be present in
the dwFlags member of the DDSURFACEDESC2 structure. In addition, the
DDPIXELFORMAT structure in the surface description must be initialized and the
flags set to the desired pixel format flags. These can be DDPF_RGB, DDPF_YUV, or
both. In order to specify surface dimensions, code must include the DDSD_HEIGHT
and DDSD_WIDTH flags in DDSURFACEDESC2. The dimensions are then specified
in the dwHeight and dwWidth structure members. If the dimensions flags are not in-
cluded, DirectDraw uses the dimensions of the primary surface.

The following code fragment shows a call to IDirectDraw7::EnumSurfaces to de-
termine if a 640-by-480-by-24-bit RGB surface is available in the card's video mem-
ory space:

// Public variables
DDSURFACEDESC2 ddsd;
int surfCount = 0;
. . .
// Determine if a surface of 640 by 480 pixels, in 24-bits
// RGB color can be created in video memory
ZeroMemory(&ddsd, sizeof(ddsd));
ddsd.dwSize = sizeof(ddsd);
ddsd.dwFlags = DDSD_CAPS |

DDSD_PIXELFORMAT |
DDSD_HEIGHT |
DDSD_WIDTH;

ddsd.ddpfPixelFormat.dwFlags = DDPF_RGB;
ddsd.ddpfPixelFormat.dwRGBBitCount = 24;
ddsd.ddsCaps.dwCaps = DDSCAPS_VIDEOMEMORY |

DDSCAPS_LOCALVIDMEM;
ddsd.dwHeight = 480;

830 Chapter Twenty-Nine

© 2003 by CRC Press LLC

ddsd.dwWidth = 640;
lpDD7->EnumSurfaces(

DDENUMSURFACES_CANBECREATED | DDENUMSURFACES_MATCH,
&ddsd, NULL,
SurfacesProc);

if (surfCount == 0)
DDInitFailed(hWnd, hRet,
"Surface not available");

. . .
//***
// Callback function for EnumSurfaces()
//***
HRESULT WINAPI SurfacesProc(LPDIRECTDRAWSURFACE7 aSurfPtr,

LPDDSURFACEDESC2 aSurface,
LPVOID Context)

{
surfCount++;
return DDENUMRET_OK; // Continue

}

Because the DDENUMSURFACES_MATCH flag is present in the call, the callback
function, in this case named SurfacesProc(), receives control only if a surface can
be created. In the preceding code sample each iteration of the callback function in-
crements the variable surfCount. This variable holds the number of similar surfaces
that can be created and its value is zero if no surfaces can be created. The calling
routine inspects this variable to determine the results of the EnumSurfaces() call.
The previous code fragment uses the DDInitFailed() function, developed in Chapter
13, to provide a terminal exit in case the surface cannot be created. In practice, an
application may take another action, such as creating the surface in system memory
instead of video memory. Note that the fourth parameter of EnumSurfaces() has to
be typecast into a type LPDDENUMSURFACESCALLBACK2, otherwise a compiler
error results.

The call to EnumSurfaces() attempts to create a temporary surface with the de-
sired characteristics; however, code should not assume that a surface is not sup-
ported just because it is not enumerated. DirectDraw attempts to create a
temporary surface with the memory constraints that exist at the time of the call.
This can result in a surface not being enumerated even when the driver actually sup-
ports it.

29.1.4 Restoring Surfaces
It is possible to free surface memory associated with a DirectDrawSurface object,
while the DirectDrawSurface objects representing these pieces of surface memory
are not re lea se d . I n t h i s c a s e s e v era l D i rec tDraw funct ions re turn
DDERR_SURFACELOST. Surfaces can be lost because the display mode was changed,
or because another application requested and obtained exclusive mode and freed all
of the currently allocated surface memory. The DirectDraw Restore() function recre-
ates these lost surfaces and reconnects them to their DirectDrawSurface object. If the
application uses more than one surface, code can call the RestoreAllSurfaces() func-
tion to restore all surfaces at once. However, restoring a surface does not reload any
imagery that may have previously existed in the surface.

Blitting 831

© 2003 by CRC Press LLC

29.1.5 Surface Operations

Most DirectDraw rendering operations relate to surfaces. The DirectX 7 SDK includes
a program named ddtest which allows experimenting with DirectDraw options such
as surfaces, blits, display modes, and capabilities, without actually writing code. Un-
fortunately, this program is not furnished in DirectX 8.

29.1.6 Transparency and Color Keys

In graphics programming you often need to display a new bitmap over an existing one.
For example, the bitmap of an airplane is to overlay a background of mountains, sky,
and clouds, contained in another bitmap. Since bitmaps are rectangular areas, the air-
plane bitmap is likely a rectangle that contains the image of the airplane. If we were to
display the airplane by simply projecting its rectangular bitmap over the background,
the result would be as shown in Color Figure 4.

The solution is to select the color of the framing rectangle of the airplane bitmap
so that it is different from the colors used in drawing the airplane. The software can
then be programmed to ignore the framing color while displaying the airplane
bitmap. The processing logic is as follows:

• If bitmap pixel is equal to framing color, then leave the background pixel undisturbed.

• Otherwise, replace background pixel with foreground image pixel.

The effect is similar to having the image of the airplane drawn on a sheet of trans-
parent plastic. The selection of a framing color, called the color key, plays an impor-
tant role in the result. If a color key can be found that is not present in the source
bitmap, then transparency is achieved perfectly. If not, some pixels of the fore-
ground image will not be shown. The greater the color range, the easier it is to find a
satisfactory color key. It is hard to imagine a 24-bit color bitmap (16.7 million col-
ors) that will not have a single color value that is absent in the image. Color Figure 5
shows the elements of transparency using a color key.

An alternative option is based on a color key located in the background image,
also called the destination. In this case the color key determines if the foreground
image pixel is used or not. The logic is as follows:

• If background pixel is the color key, then use foreground pixel over background.

• Otherwise, leave background undisturbed.

The result of using a destination color key is a window on which the foreground
image is displayed. Here again, the programmer must find an attribute for the color
key that is not used in the background.

DirectDraw supports both source and destination color keys. Application code
supplies either a single color, or a color range for source or destination color keying.
Source and destination color keys can be combined on different surfaces. For exam-
ple, a destination color key can be attached to a surface in order to create a window
on which the mountains, sky, and clouds are visible. Then a source color key can be
used in a second surface in order to display a bitmap transparently over this back-

832 Chapter Twenty-Nine

© 2003 by CRC Press LLC

http://www.itknowledgebase.net/books/1232/color Insert.pdf
http://www.itknowledgebase.net/books/1232/color Insert.pdf

ground. Color plate 4 shows transparency based on the simultaneous use of source
and destination color keys.

Color Figure 5 shows the manipulation of three different surfaces in implement-
ing source and destination color key transparency. Surface 1 contains a window in
which a destination color key has been defined. Surface 2 is a bitmap image. Surface
3 is a sprite representing an airplane in which the background is a source color key.
This sprite is transparently blitted onto the bitmap on surface 2, and then surface 2
is transparently blitted onto surface 1. The resulting image is shown at the bottom of
the illustration.

29.1.7 Selecting and Setting the Color Key
A DirectDraw color key is always associated with a surface. Code can set the color
keys for a surface when it is created, or afterward. To set a color key or keys when cre-
ating a surface you assign the desired color values to one or both of the ddckCKSrcBlt
and ddckCKDestBlt members of the DDSURFACEDESC2 structure. When
CreateSurface() is called, the color keys are automatically assigned. If the color key is
to be used in blitting, one or both of DDSD_CKSRCBLT or DDSD_CKDESTBLT must
be included in the dwFlags member.

The DirectDraw function SetColorKey() sets the color key for an existing
DirectDrawSurface object. The function's general form is as follows:

HRESULT SetColorKey(
DWORD dwFlags, // 1
LPDDCOLORKEY lpDDColorKey // 2
);

The first parameter is a flag that determines the type of color key to be used. Ta-
ble 29-3 lists the predefined constants used in this parameter.

Table 29-3

Constants Used in SetColorKey() Function

CONSTANT ACTION

DDCKEY_COLORSPACE The structure contains a color range. Not set if
the structure contains a single color key.

DDCKEY_DESTBLT The structure specifies a color key or color
space to be used as a destination color key for
blit operations.

DDCKEY_DESTOVERLAY The structure specifies a color key or color
space to be used as a destination color key for
overlay operations.

DDCKEY_SRCBLT The structure specifies a color key or color
space to be used as a source color key for blit
operations.

DDCKEY_SRCOVERLAY The structure specifies a color key or color
space to be used as a source color key for
overlay operations.

Color keys are used in two different types of DirectDraw bitmap display opera-
tions: blits and overlays. Because the specification of overlays were never defined in

Blitting 833

© 2003 by CRC Press LLC

http://www.itknowledgebase.net/books/1232/color Insert.pdf

DirectX, and because they are currently supported by few video cards, we do not
cover hardware overlays in this book.

The second parameter is the address of a structure variable of type
DDCOLORKEY structure that contains the new color key values for the
DirectDrawSurface object. If this value is NULL, then the existing color key is re-
moved from the surface.

If the call to SetColorKey() succeeds, the function returns DD_OK. If it fails, one
of the following error codes is returned:

• DDERR_GENERIC

• DDERR_INVALIDOBJECT

• DDERR_INVALIDPARAMS

• DDERR_INVALIDSURFACETYPE

• DDERR_NOOVERLAYHW

• DDERR_NOTAOVERLAYSURFACE

• DDERR_SURFACELOST

• DDERR_UNSUPPORTED

• DDERR_WASSTILLDRAWING

The DDCOLORKEY Structure
The color key is described in a DDCOLORKEY structure. The structure is used for ei-
ther a source color key, a destination color key, or a color range. A single color key is
specified when both structure members have the same value. DDCOLORKEY is de-
fined in the Windows header files as follows:

typedef struct _DDCOLORKEY{
DWORD dwColorSpaceLowValue;
DWORD dwColorSpaceHighValue;

} DDCOLORKEY,FAR* LPDDCOLORKEY;

The member dwColorSpaceLowValue contains the low value (inclusive) of the
color range that is to be used as the color key. The member dwColorSpaceHighValue
contains the high value (also inclusive). Tthe color key is a single color, not a range,
when both members are assigned the same value.

Color keys are specified using the pixel format of the surface. If a surface is
palletized, then the color key is an index or a range of indexes. If the surface is a
16-bit color (hi-color), then the color key is a word-size value. If the surface's pixel
format is RGB or YUV, then the color key is specified in an RGBQUAD or YUVQUAD
structure, as in the following code fragments:

// Hi color mode is the single color key.
dwColorSpaceLowValue = 0xf011;
dwColorSpaceHighValue = 0xf011;

// RGB color 255,128,128 is the single color key.
dwColorSpaceLowValue = RGBQUAD(255,128,128);

834 Chapter Twenty-Nine

© 2003 by CRC Press LLC

dwColorSpaceHighValue = RGBQUAD(255,128,128);

// YUV color range used as a color key

dwColorSpaceLowValue = YUVQUAD(120,50,50);

dwColorSpaceHighValue = YUVQUAD(140,50,50);

The YUV format was developed to more easily compress motion video data. It is
based on the physics of human vision, which makes the eye is more sensitive to
brightness levels than to specific colors. The YUV acronym refers to a three-axes co-
ordinate system. The y-axis encodes the luminance component, while the u- and v-
axes encode the chrominance, or color, element. Although several different imple-
mentations of the YUV format are available, no one format is directly supported by
DirectDraw.

In the third example the YUV color range extends from 120-50-50 to 150-50-50. In
this case any pixel with a y value between 120 and 150, and u and v values of 50,
serve as a color key. Range values for color keys are often used when working with
video data or photographic images, since in this case, there are usually variations in
the background color values. Art work composed with draw or paint programs often
use single-key colors.

29.1.8 Hardware Color Keys

Transparency and color keys are supported by the HEL. Although you can always as-
sume that these functions are available, support for a color key range is not required.
Code should check the dwCKeyCaps member of the DDCAPS structure. The
DDCAPS_COLORKEY constant of the dwCaps member identifies some form of color
key support for either overlay or blit operations. The dwCKeyCaps member defines
the options listed in Table 29-4.

Table 29-4

Color Key Capabilities in the dwCKeyCaps Member of DDCAPS Structure

CONSTANT MEANING

DDCKEYCAPS_DESTBLT
Supports transparent blitting. Color key
identifies the replaceable bits of the
destination surface for RGB colors.

DDCKEYCAPS_DESTBLTCLRSPACE
Supports transparent blitting. Color space
identifies the replaceable bits of the
destination surface for RGB colors.

DDCKEYCAPS_DESTBLTCLRSPACEYUV
Supports transparent blitting. Color space
identifies the replaceable bits of the
destination surface for YUV colors.

DDCKEYCAPS_DESTBLTYUV
Supports transparent blitting. Color key
identifies the replaceable bits of the
destination surface for YUV colors.

(continues)

Blitting 835

© 2003 by CRC Press LLC

Table 29-4

Color Key Capabilities in DwcKeyCaps Member of DDCAPS Structure (continued)

CONSTANT MEANING

DDCKEYCAPS_DESTOVERLAY
Supports overlaying with color keying of the
replaceable bits of the destination surface
being overlaid for RGB colors.

DDCKEYCAPS_DESTOVERLAYCLRSPACE
Supports a color space as the color key for the
destination of RGB colors.

DDCKEYCAPS_DESTOVERLAYCLRSPACEYUV
Supports a color space as the color key for the
destination of YUV colors.

DDCKEYCAPS_DESTOVERLAYONEACTIVE
Supports only one active destination color key
value for visible overlay surfaces.

DDCKEYCAPS_DESTOVERLAYYUV
Supports overlaying using color keying of the
replaceable bits of the destination surface
being overlaid for YUV colors.

DDCKEYCAPS_NOCOSTOVERLAY
No bandwidth trade-offs for using the color key
with an overlay.

DDCKEYCAPS_SRCBLT Supports transparent blitting using the color
key for the source with this surface for RGB
colors.

DDCKEYCAPS_SRCBLTCLRSPACE
Supports transparent blitting using a color
space for the source with this surface for RGB
colors.

DDCKEYCAPS_SRCBLTCLRSPACEYUV
Supports transparent blitting using a color
space for the source with this surface for YUV
colors.

DDCKEYCAPS_SRCBLTYUV
Supports transparent blitting using the color
key for the source with this surface for YUV
colors.

DDCKEYCAPS_SRCOVERLAY
Supports overlaying using the color key for the
source with this overlay surface for RGB colors.

DDCKEYCAPS_SRCOVERLAYCLRSPACE
Supports overlaying using a color space as the
source color key for the overlay surface for RGB
colors.

DDCKEYCAPS_SRCOVERLAYCLRSPACEYUV
Supports overlaying using a color space as the
source color key for the overlay surface for YUV
colors.

DDCKEYCAPS_SRCOVERLAYONEACTIVE
Supports only one active source color key value
for visible overlay surfaces.

DDCKEYCAPS_SRCOVERLAYYUV
Supports overlaying using the color key for the
source with this overlay surface for YUV colors.

836 Chapter Twenty-Nine

© 2003 by CRC Press LLC

Some hardware support color ranges only for YUV pixel data, which is usually
video. The transparent background in video footage (the "blue screen" against which
the subject was photographed) might not be a pure color. For this reason a color
range in the key is desirable in this case.

29.2 The Blit
In the blit a rectangular block of memory bits, called the source, is transferred as a
block into a rectangular memory area called the destination. If the destination of the
transfer is screen memory, then the bitmapped image is immediately displayed. The
source and destination bit blocks can be combined logically or arithmetically, or a
unary operation can be performed on the source or the destination bit blocks.

GDI blits have extremely slow performance, thus, they are rarely used in
high-quality graphics. DirectDraw contains its own blit functions, which execute
considerably faster than the GDI blit. The DirectDraw blit functions are named Blt()
and BltFast(). They are both associated with DirectDraw surface objects. Microsoft
announced a third blit version, called BltBatch(), but it has not been implemented
and probably never will.

In DirectDraw blit operations usually take place from an off-screen surface onto
the back buffer or to the primary surface. Much of the processing time of a typical
DirectDraw application is spent blitting imagery. Also, the performance capability,
which is related to the band width of a particular blitter, determines the speed of the
video output. Figure 29-2 shows the most common forms of the DirectDraw blit op-
eration.

Figure 29-2 The DirectDraw Blit.

Blitting 837

primary
surface

back
buffer

off-screen surfaces

blit

blit

blit

blit

© 2003 by CRC Press LLC

Both blit functions, Blt() and BltFast(), operate on a destination surface, which is
referenced in the call, and receive the source surface as a parameter. It is possible
for both source and destination to be the same surface. In this case DirectDraw pre-
serves all source pixels before overwriting them. Blt() is more flexible, but BltFast()
is faster, especially if there is no hardware blitter. Applications can determine the
blitting capabilities of the hardware from the DDCAPS structure obtained by means
of the GetCaps() function. If the dwCaps member contains DDCAPS_BLT, the hard-
ware supports blitting.

29.2.1 BltFast()

BltFast requires a valid rectangle in the source surface. The pixels are copied from this
rectangle onto the destination surface. If the entire surface is to be copied, then the
source rectangle is defined NULL. BltFast() also requires x- and y-coordinates in the
destination surface. The source rectangle must fit within the destination surface. If
the source rectangle is larger than the destination the call fails and BltFast() returns
DDERR_INVALIDRECT. BltFast() cannot be used on surfaces that have an attached
clipper. Neither does it support stretching, mirroring, or other effects that can be per-
formed with Blt().

The function's general form is as follows:

HRESULT BltFast(

DWORD dwX, // 1

DWORD dwY, // 2

LPDIRECTDRAWSURFACE7 lpDDSrcSurface, // 3

LPRECT lpSrcRect, // 4

DWORD dwTrans // 5

);

The first and second parameters are the x- and y-coordinates to blit to on the des-
tination surface. The third parameter is the address of a IDirectDrawSurface7 inter-
face for the DirectDrawSurface object that is the source of the blit. The fourth
parameter is a RECT structure that defines the upper-left and lower-right points of
the rectangle on the source surface. The fifth parameter defines the type of blit, as
listed in Table 29-5.

Table 29-5

Type of Transfer Constants in BltFast()

CONSTANT ACTION

DDBLTFAST_DESTCOLORKEY
Transparent blit that uses the destination's color key.

DDBLTFAST_NOCOLORKEY
Normal copy blit with no transparency.

DDBLTFAST_SRCCOLORKEY
Transparent blit that uses the source's color key.

DDBLTFAST_WAIT
Does not produce a DDERR_WASSTILLDRAWING
message if the blitter is busy. Returns as soon
as the blit can be set up or another error
occurs.

838 Chapter Twenty-Nine

© 2003 by CRC Press LLC

If the call succeeds, BltFast() returns DD_OK. If it fails it returns one of the fol-
lowing self-explanatory values:

• DDERR_EXCEPTION

• DDERR_GENERIC

• DDERR_INVALIDOBJECT

• DDERR_INVALIDPARAMS

• DDERR_INVALIDRECT

• DDERR_NOBLTHW

• DDERR_SURFACEBUSY

• DDERR_SURFACELOST

• DDERR_UNSUPPORTED

• DDERR_WASSTILLDRAWING

BltFast() always attempts an asynchronous blit if it is supported by the hardware.
The function works only on display memory surfaces and cannot clip when blitting.
According to Microsoft, BltFast() is 10 percent faster than the Blt() method if there
is no hardware support, but there is no speed difference if the display hardware is
used. Figure 29-3 is a diagram showing the parameters and operation of the
BltFast() function.

Figure 29-3 The BltFast() Function

Blitting 839

lpDDSDestination-> BltFast(
dwX, dwY,
lpDDSrcSurface,
lpSrcRect,
dwTrans

);

source surface

transparency
type

destination surface

color
key

color
key

© 2003 by CRC Press LLC

29.2.2 Blt()

Like BltFast(), Blt() performs a bit block transfer from a source surface onto a destina-
tion surface, but Blt() is the more flexible and powerful of the two. Blt() allows a clip-
per to be attached to the destination surface, in which case clipping is performed if the
destination rectangle falls outside of the surface. Blt() can also scale the source image
to fit the destination rectangle. Scaling is disabled when both surfaces are of the same
size. The function's general form is as follows:

HRESULT Blt(

LPRECT lpDestRect, // 1

LPDIRECTDRAWSURFACE7 lpDDSrcSurface, // 2

LPRECT lpSrcRect, // 3

DWORD dwFlags, // 4

LPDDBLTFX lpDDBltFx // 5

);

The first parameter is the address of a RECT structure that defines the upper-left
and lower-right points of the source rectangle. If this parameter is NULL, the entire
destination source surface is used.

The second parameter is the address of the IDirectDrawSurface4 interface for the
DirectDrawSurface object that is the source of the blit.

The third parameter is the address of a RECT structure that defines the upper-left
and lower-right points of the source rectangle from which the blit is to take place. If
this parameter is NULL, then the entire source surface is used.

The fourth parameter is one or more flags that determine the valid members of
the associated DDBLTFX structure, which specifies color key information or re-
quests a special behavior. Three types of flags are currently defined: validation flags,
color key flags, and behavior flags. Table 29-6 lists the predefined constants for this
parameter.

Table 29-6

Flags for the Blt() Function

FLAGS MEANING

VALIDATION FLAGS:
DDBLT_COLORFILL The dwFillColor member of the DDBLTFX structure

is the RGB color that fills the destination
rectangle.

DDBLT_DDFX The dwDDFX member of the DDBLTFX structure
specifies the effects to use for the blit.

DDBLT_DDROPS The dwDDROP member of the DDBLTFX structure
specifies the raster operations (ROPS) that are
not part of the Win32 API.

DDBLT_DEPTHFILL The dwFillDepth member of the DDBLTFX structure
is the depth value with which to fill the
destination rectangle.

(continues)

840 Chapter Twenty-Nine

© 2003 by CRC Press LLC

Table 29-6

Flags for the Blt() Function (continued)

FLAGS MEANING

DDBLT_KEYDESTOVERRIDE
The ddckDestColorkey member of the DDBLTFX
structure is the color key for the destination
surface.

DDBLT_KEYSRCOVERRIDE
The ddckSrcColorkey member of the DDBLTFX
structure is the color key for the source
surface.

DDBLT_ROP
The dwROP member of the DDBLTFX structure is
the ROP for this blit. The ROPs are the same
as those defined in the Win32 API.

DDBLT_ROTATIONANGLE
The dwRotationAngle member of the DDBLTFX
structure is the rotation angle, in 1/100th of
a degree units, for the surface.

COLOR KEY FLAGS:
DDBLT_KEYDEST

The color key is associated with the
destination surface.

DDBLT_KEYSRC
The color key is associated with the source
surface.

BEHAVIOR FLAGS:
DDBLT_ASYNC

Blit asynchronously in the FIFO order received.
If no room is available in the FIFO hardware,
the call fails.

DDBLT_WAIT
Postpones the DDERR_WASSTILLDRAWING return
value if the blitter is busy, and returns as
soon as the blit can be set up or another error
occurs.

The fifth parameter is the address of a structure variable of type DDBLTFX that
defines special effects during the blit, including raster operation codes (ROP) and
override information. Because of their complexity, special effects during blit opera-
tions are discussed in a separate section. Figure 29-4, on the following page, shows
the parameters and operation of the Blt() function.

If the call succeeds, the return value is DD_OK. If it fails, the return value is one
of the following error codes:

• DDERR_GENERIC

• DDERR_INVALIDCLIPLIST

• DDERR_INVALIDOBJECT

• DDERR_INVALIDPARAMS

• DDERR_INVALIDRECT

Blitting 841

© 2003 by CRC Press LLC

Figure 29-4 The Blt() Function

• DDERR_NOALPHAHW

• DDERR_NOBLTHW

• DDERR_NOCLIPLIST

• DDERR_NODDROPSHW

• DDERR_NOMIRRORHW

• DDERR_NORASTEROPHW

• DDERR_NOROTATIONHW

• DDERR_NOSTRETCHHW

842 Chapter Twenty-Nine

lpDDSDestination-> Blt(
lpDestRect,
lpDDSrcSurface,
lpSrcRect,
dwFlags,
lpDDBltFx
);

source surface

transparency
type

fill

raster
ops.

stretch

mirror
[others]

clipper

color
key

color
key

destination surface

© 2003 by CRC Press LLC

• DDERR_NOZBUFFERHW

• DDERR_SURFACEBUSY

• DDERR_SURFACELOST

• DDERR_UNSUPPORTED

• DDERR_WASSTILLDRAWING

The Blt() function is capable of synchronous or asynchronous blits. Source and
destination can be display memory to display memory, display memory to system
memory, system memory to display memory, or system memory to system memory.
The default is asynchronous. The function supports both source and destination
color keys. If the source and the destination rectangles are not the same size, Blt()
performs the necessary stretching. Blt() returns immediately with an error if the
blitter is busy. If the code specifies the DDBLT_WAIT flag, then a synchronous blit
takes place and the call waits until the blit can be set up or until another error oc-
curs.

In the Blt() function there must be a valid rectangle in the source surface (or
NULL to specify the entire surface), and a rectangle in the destination surface to
which the source image is copied. Here again, NULL means the destination rectan-
gle is the entire surface. If a clipper is attached to the destination surface, then the
bounds of the destination rectangle can fall outside the surface and clipping is auto-
matically performed. If there is no clipper, the destination rectangle must fall en-
tirely within the surface or else the method fails with DDERR_INVALIDRECT.

29.3 Blit-Time Transformations
Several transformations can take place at blit-time. The most important ones are color
fills, scaling, mirroring, and raster operations. Other effects, such as rotation, are not
required by the HEL; therefore, they cannot be used if the hardware does not support
them. Applications that do not require any special blit-time transformations other
than scaling can pass NULL as in the fourth parameter of the Blt() function. Code can
determine the hardware support for blit-time transformations by calling GetCaps().

Applications that require a particular blit-time transformation must pass the cor-
responding value in one of the members of the DDBLTFX structure. The appropriate
flags must also be included in the fourth parameter to Blt(), which determines
which members of the structure are valid. Some transformations require only set-
ting a single flag, others require several of them.

The dwFlags member of DDBLTFX named DDBLTFX_NOTEARING can be used
when blitting images directly to the front buffer. The action of this flag is to time the
blit so that it coincides with the screen's vertical retrace cycle, thus minimizing the
possibility of tearing. Tearing and screen update timing are discussed in the context
of DirectDraw animation, in Chapter 16.

Applications that use surface color keys when calling BltFast() or Blt() must set
one or both of the DDBLTFAST_SRCCOLORKEY or DDBLTFAST_DESTCOLORKEY
flags in the corresponding function parameter. Alternatively, code can place the ap-

Blitting 843

© 2003 by CRC Press LLC

propriate color values in the ddckDestColorkey and ddckSrcColorkey members of
the DDBLTFX structure that is passed to the function in the lpDDBltFx parameter.
In this case it is also necessary to set the DBLT_KEYSRCOVERRIDE or
DDBLT_KEYDESTOVERRIDE flag, or both, in the dwFlags parameter. The resulting
action is that the selected color keys are taken from the DDBLTFX structure rather
than from the surface properties.

29.3.1 Color Fill Blit

A blit operation can be used to fill the entire surface, or a part of it, with a single color.
This can be used for creating backgrounds when using a destination color key, and for
clearing large screen areas. When Blt() is used to perform a color fill, the call must ref-
erence the DDBLT_COLORFILL flag. The following code fragment fills an entire sur-
face with the color blue. Code assumes that lpDDS is a valid pointer to an
IDirectDrawSurface7 interface.

HRESULT ddrval;

DDBLTFX ddbltfx;

.

.

.

ZeroMemory(&ddbltfx, sizeof(ddbltfx));

ddbltfx.dwSize = sizeof(ddbltfx);

ddbltfx.dwFillColor = ddpf.dwBBitMask; // Pure blue

ddrval = lpDDS->Blt(

NULL, // Destination is entire surface

NULL, // No source surface

NULL, // No source rectangle

DDBLT_COLORFILL, &ddbltfx);

if(ddrval != DD_OK)

// Error handler goes here

29.3.2 Blit Scaling

The Blt() function automatically scales the source image to fit the destination rectan-
gle. Blt() automatically re-scales the source image to fit the destination rectangle. If
resizing is not required, the source and destination rectangles should be exactly the
same size. Scaling must be implemented in the HEL, so it is always available. Some
video cards have hardware support for scaling operations. Hardware acceleration for
scaling can be detected by examining the flags that start with DDFXCAPS_BLT in the
dwFXCaps member of the DDCAPS structure for the device. For example, the
DDFXCAPS_BLTSTRETCHXN capability indicates integer shrinking support, and
DDFXCAPS_BLTSTRETCHX arbitrary stretching support. If a device has the first flag,
but not the second one, then it provides hardware support when the x-axis of the
source rectangle is being multiplied by a whole number, but not when the factor is
non-integral.

Applications can inspect the dwCXCaps member of the DDCAPS structure to de-
termine if hardware support is available and of which type. Table 29-7 lists the most
used predefined constants in the scaling capabilities flag.

844 Chapter Twenty-Nine

© 2003 by CRC Press LLC

Table 29-7

Scaling Flags for the Blt() Function

FLAG MEANING

DDFXCAPS_BLTALPHA
Supports alpha-blended blit operations.

DDFXCAPS_BLTARITHSTRETCHY
Arithmetic operations, rather than
pixel-doubling techniques, are used to stretch
and shrink surfaces along the y-axis.

DDFXCAPS_BLTARITHSTRETCHYN
Arithmetic operations, rather than
pixel-doubling techniques, are used to stretch
and shrink surfaces along the y-axis.
Stretching must be integer based.

DDFXCAPS_BLTSHRINKX
Arbitrary shrinking of a surface along the
x-axis (horizontally).

DDFXCAPS_BLTSHRINKXN
Integer shrinking of a surface along the
x-axis.

DDFXCAPS_BLTSHRINKY
Arbitrary shrinking of a surface along the
y-axis.

DDFXCAPS_BLTSHRINKYN
Integer shrinking of a surface along the
y-axis.

DDFXCAPS_BLTSTRETCHX
Arbitrary stretching of a surface along the
x-axis.

DDFXCAPS_BLTSTRETCHXN
Integer stretching of a surface along the
x-axis.

DDFXCAPS_BLTSTRETCHY
Arbitrary stretching of a surface along the
y-axis (vertically).

DDFXCAPS_BLTSTRETCHYN
Supports integer stretching of a surface along
the y-axis.

Scaling is automatically disabled when the source and destination rectangles are
exactly the same size. An application can use the BltFast() function, instead of Blt(),
in order to avoid accidental scaling due to different sizes of the source and destina-
tion rectangles.

Some video cards support arithmetic scaling. In this case the scaling operation is
performed by interpolation rather than by multiplication or deletion of pixels. For
example, if an axis is being increased by one-third, the pixels are recolored to pro-
vide a closer approximation to the original image than would be produced by dou-
bling every third pixel on that axis. Code has little control over the type of scaling
p e r f o r m e d b y t h e d r i v e r. T h e o n l y p o s s i b i l i t y i s t o s e t t h e D D B LT F-
X_ARITHSTRETCHY flag in the dwDDFX member of the DDBLTFX structure
passed to Blt(). This flag requests that arithmetic stretching be done on the y-axis.

Blitting 845

© 2003 by CRC Press LLC

Arithmetic stretching on the x-axis and arithmetic shrinking are not currently sup-
ported in the DirectDraw API, but a driver may perform them on its own.

29.3.3 Blit Mirroring
Mirroring is another blit-time transformation supported by the HEL. Applications can
assume that it is available even if it not supported in the hardware. Mirroring is defined
in the x-axis and the y-axis of the blit rectangle. Figure 29-5 shows mirroring along ei-
ther axis.

Figure 29-5 Bit-Time Mirroring Transformations

Table 29-8 lists the predefined constants used in mirroring transformations dur-
ing Blt().

Table 29-8

Mirroring Flags for the Blt() Function

FLAGS MEANING

DDBLTFX_MIRRORLEFTRIGHT
Mirrors on the y-axis. The surface is mirrored
from left to right.

DDBLTFX_MIRRORUPDOWN
Mirrors on the x-axis. The surface is mirrored
from top to bottom.

Applications sometimes need several versions of a symmetrical sprite, in which
the image faces in different directions. Rather than creating a bitmap for each im-
age, it is possible to generate them by mirroring the original. Hardware support for
m i r r o r i n g c a n b e d e t e r m i n e d b y t h e p r e s e n c e o f t h e D D F X C A P S-

846 Chapter Twenty-Nine

y mirrored x/y mirrored

original
surface

x mirrored

© 2003 by CRC Press LLC

_BLTMIRRORLEFTRIGHT and DDFCAPS_BLTMIRRORUPDOWN identifiers in the
dwFXCaps member of the DDCAPS structure.

29.3.4 Raster Operations
Blit-time transformations can include some of the standard raster operations (ROPs)
used by the GDI BitBlt() functions. At present only SRCCOPY (the default),
BLACKNESS, and WHITENESS are supported by the HEL. Hardware support for
other raster operations can be determined by examining the DDCAPS structure. Code
that uses any of the standard ROPS with the Blt method must set the corresponding
flag in the dwROP member of the DDBLTFX structure. The dwDDROP member of the
DDBLTFX structure is for specifying ROPs specific to DirectDraw. No such ROPs have
been defined at this time.

29.4 Blit-Rendering Operations
Many types of applications rely heavily on bitmaps; these include image processing,
simulations, virtual reality, artificial life, and electronic games. The real-color and
true-color modes make it possible to use bitmaps to encode images with
photo-realistic accuracy. The processing capabilities make possible the effective ma-
nipulation of bitmapped images. DirectDraw implements a new dimension of func-
tionality in bitmap processing and display operations. In DirectDraw bitmap
manipulations consist of four basic steps:

• Loading the bitmap into application memory

• Obtaining the bitmap data

• Moving the bitmap onto a DirectDraw surface

• Blitting the bitmap onto the video display

29.4.1 Loading the Bitmap
Loading a bitmap onto the application's memory space is an operation of GDI graph-
ics, not actually part of DirectDraw. The demonstration program DD Bitmap Blit, in
the book's software package, loads several bitmaps during WM_CREATE message
processing. In this case we used Developer Studio to define the bitmaps as program re-
sources, and then used LoadBitmap() to load them into the application's memory
space. Alternatively, instead of defining the bitmap as a program resource, we can use
LoadImage() to load the bitmap directly from the disk file in which it is stored. At this
time we can also perform certain preliminary checks to make sure that the DirectDraw
surface is compatible with the bitmap to be displayed. Note that the sample code re-
quires that the surface be nonpalletized. GetSurfaceDesc() is used to fill a
DDSURFACEDESC2 structure. The DDPIXELFORMAT structure, which is part of
DDSURFACEDESC2, contains two relevant values: the flag DDPF_RGB indicates that
the RGB data is valid, and the dwRGBBitCount member contains the number of RGB
bits per pixel. If the DDPF_RGB flag is set and dwRGBBitCount > 15 we can assume
that the surface is nonpalletized, and therefore, compatible.

Note that the LoadImage() function does not return palette information.
M i c r o s o f t K n o w l e d g e B a s e A r t i c l e Q 1 5 8 8 9 8 l i s t s t h e f u n c t i o n
LoadBitmapFromBMPFile() which uses the DIBSection's color table to create a pal-

Blitting 847

© 2003 by CRC Press LLC

ette. If no color table is present, then a half-tone palette is created. The source for
this function can be found in the MSDN Library that is part of Visual C++.

Once code has determined that a compatible surface is available, it can proceed
to load the bitmap. The general form of the LoadImage() function is as follows:

HANDLE LoadImage(

HINSTANCE hInst, // 1

LPCTSTR lpszName, // 2

UINT uType, // 3

int cxDesired, // 4

int cyDesired, // 5

UINT fuLoad // 6

);

The first parameter is a handle to an instance of the module that contains the im-
age to be loaded. In the case of an image contained in a file, this parameter is set to
zero.

The second parameter is a pointer to the image to load. If it is non NULL and the
sixth parameter (described later) does not include LR_LOADFROMFILE, then it is a
pointer to a null-terminated string that contains the filename of the image resource.

The third parameter is the image type. It can be one of the following constants:

• IMAGE_BITMAP

• IMAGE_CURSOR

• IMAGE_ICON

The fourth and fifth parameters specify the pixel width and height of the bitmap,
c u r s o r, o r i c o n . I f t h i s p a r a m e t e r i s z e r o a n d t h e s i x t h p a r a m e t e r i s
LR_DEFAULTSIZE, then the function uses the SM_CXICON or SM_CXCURSOR sys-
tem metric value to set the width. If this parameter is zero, and if LR_DEFAULTSIZE
is present in the sixth parameter, then the function uses the actual width and height
of the bitmap.

The sixth and last parameter is one or more flags represented by the predefined
constants listed in Table 29-9.

LoadImage() returns the handle of the newly loaded image if the call succeeds. If
the function fails, it returns NULL. Although the system automatically deletes all re-
sources when the process that created them terminates, applications can save mem-
ory by releasing resources that are no longer needed. DeleteObject() is used to
release a bitmap, DestroyIcon() for icons, and DestroyCursor() for cursor re-
sources.

The following function is used to load a bitmap into the application's memory
space and obtain its handle. In this case the code checks for a surface compatible
with a nonpalletized bitmap.

848 Chapter Twenty-Nine

© 2003 by CRC Press LLC

Table 29-9

Predefined Constants in LoadImage() Function

CONSTANT MEANING

LR_DEFAULTCOLOR Default flag. Does nothing.
LR_CREATEDIBSECTION

When the third parameter is IMAGE_BITMAP,
this flag causes the function to return a DIB
section bitmap rather than a compatible bitmap.
It is useful for loading a bitmap without mapping
it to the colors of the display device.

LR_DEFAULTSIZE
For cursor and icons the width or height values
are those specified by the system metric values,
but only if the fourth and fifth parameters are
set to zero. If this flag is not specified and
the fourth and fifth parameters are set to zero,
the function uses the actual resource size.

LR_LOADFROMFILE
Loads the image from the file specified by the
second parameter. If this flag is not specified,
lpszName is the name of the resource.

LR_LOADMAP3DCOLORS
Searches the color table for the image and
replaces the following shades of gray with the
corresponding 3D color:

Color RGB value Replaced with
Dk Gray RGB(128,128,128) COLOR_3DSHADOW
Gray RGB(192,192,192) COLOR_3DFACE
Lt Gray RGB(223,223,223) COLOR_3DLIGHT

LR_LOADTRANSPARENT
Retrieves the color value of the top-left pixel in
the image and replaces the corresponding entry
In the color table with the default window color
(COLOR_WINDOW). All pixels in the image that
use that entry become the default window color.
This value applies only to images that have
corresponding color tables.

LR_MONOCHROME
Converts the image to black and white pixels.

LR_SHARED
Shares the image handle if the image is loaded
multiple times. If LR_SHARED is not used, a
second call to LoadImage for the same
resource will load the image again and returns
a different handle. LR_SHARED should not be
used for images that have nonstandard sizes,
that may change after loading, or that are loaded
from a file. In Windows 95 and Windows 98
LoadImage() finds the first image with the
requested resource name in the cache,
regardless of the size requested.

LR_VGACOLOR
Use true VGA colors.

Blitting 849

© 2003 by CRC Press LLC

//***
// Name: DDLoadBitmap
// Desc: Loads a bitmap file into memory and returns its handle
//
// PRE:
// 1. Parameter 1 is pointer to a DirectDraw surface
// Parameter 2 is pointer to bitmap filename string
//
// POST:
// Returns handle to bitmap
//
// ERROR:
// All errors exit through DDInitFailed() function
//***

HBITMAP DDLoadBitmap(LPDIRECTDRAWSURFACE4 lpDDS,
LPSTR szImage)

{
HBITMAP hbm;
DDSURFACEDESC2 ddsd;

ZeroMemory(&ddsd, sizeof(ddsd));
ddsd.dwSize = sizeof(ddsd);

if (lpDDS->GetSurfaceDesc(&ddsd) != DD_OK)
DDInitFailed(hWnd, hRet,
"GetSurfaceDesc() call failed in DDLoadBitmap()");

// Test for compatible pixel format
if ((ddsd.ddpfPixelFormat.dwFlags != DDPF_RGB) ||

(ddsd.ddpfPixelFormat.dwRGBBitCount < 16))
DDInitFailed(hWnd, hRet,

"Incompatible surface in DDLoadBitmap()");

// Load the bitmap image onto memory
hbm = (HBITMAP)LoadImage(NULL, szImage,

IMAGE_BITMAP, 0, 0, LR_LOADFROMFILE);

if (hbm == NULL)
DDInitFailed(hWnd, hRet,
"Bitmap load failed in DDLoadBitmap()");

return hbm;
}

Note that in DDLoadBitmap() all errors are considered terminal and directed
through the DDInitFailed() function. This mode of operation can be changed if the
code is to provide alternate processing in these cases.

29.4.2 Obtaining Bitmap Information
In order to display and manipulate a bitmap, the processing routines usually require
information about its size and organization. The GDI GetObject() function is used for
this purpose. This function fills a structure of type BITMAP, defined as follows:

typedef struct tagBITMAP {
LONG bmType; // Must be zero
LONG bmWidth; // bitmap width (in pixels)
LONG bmHeight; // bitmap height (in pixels)

850 Chapter Twenty-Nine

© 2003 by CRC Press LLC

LONG bmWidthBytes; // bytes per scan line
WORD bmPlanes; // number of color planes
WORD bmBitsPixel; // bits per pixel color
LPVOID bmBits; // points to bitmap values array

} BITMAP;

The bmWidth member specifies the width, in pixels, of the bitmap, while
bmHeight specifies the height, also in pixels. Both values must be greater than zero.
The bmWidthBytes member specifies the number of bytes in each scan line. Win-
dows assumes that the bitmap is word aligned; therefore, this value must be divisi-
ble by 2. The member bmPlanes specifies the number of color planes. The member
bmBitsPixel specifies the number of bits required to indicate the color of a pixel.
The member bmBits points to the location of the bit values for the bitmap. It is a
long pointer to an array of char-size (1 byte) values.

How much of the information in the BITMAP structure is used depends on the
type of bitmap processing performed by the application. The direct access opera-
tions, described earlier, allow code to manipulate bitmap data directly. In this case
most of the BITMAP structure members are required in order to locate and access
the bitmap data. On the other hand, applications can use high-level functions to dis-
play bitmap. Such is the case with the BitBlt() GDI function and the DirectDraw
Blt() and BltFast() functions. When high-level functions are used, only the bmWidth
and bmHeight members are usually necessary.

29.4.3 Moving a Bitmap to a Surface
Blit operations in DirectDraw take place between surfaces. Therefore, a useful func-
tion is one that loads a bitmap onto a surface. The function, named DDBmapToSurf(),
copies a memory-resident bitmap, specified by its handle, into a DirectDraw surface.

//***
// Name: DDBmapToSurf
// Desc: Moves a bitmap to a DirectDraw Surface
// PRE:
// 1. Parameter 1 is pointer to a IDirectDraw7 surface
// Parameter 2 is handle to the bitmap
//
// POST:
// Bitmap is moved to surface
// Returns 1 if successful
// /
// ERROR:
// All errors exit through DDInitFailed() function
//***
HRESULT DDBmapToSurf(LPDIRECTDRAWSURFACE7 pdds,

HBITMAP hbm)
{

HDC hdcImage;
HDC hdc;
DDSURFACEDESC2 ddsd;
HRESULT hr = 1;
BOOL retValue;

if (hbm == NULL || pdds == NULL)
DDInitFailed(hWnd, hRet,

"Invalid surface or bitmap in DDBmapToSurf");

Blitting 851

© 2003 by CRC Press LLC

// Create compatible DC and select bitmap into it
hdcImage = CreateCompatibleDC(NULL);

if (!hdcImage)
DDInitFailed(hWnd, hRet,

"CreateCompatibleDC() failed in DDBmapToSurf");
SelectObject(hdcImage, hbm);

// Get size of surface
ddsd.dwSize = sizeof(ddsd);
ddsd.dwFlags = DDSD_HEIGHT | DDSD_WIDTH;
pdds->GetSurfaceDesc(&ddsd);

if ((hr = pdds->GetDC(&hdc)) != DD_OK)
DDInitFailed(hWnd, hRet,

"GetDC() failed in DDBmapToSurf");

retValue = BitBlt(hdc, 0, 0, ddsd.dwWidth, ddsd.dwHeight,
hdcImage, 0, 0, SRCCOPY);

// Release surface immediately
pdds->ReleaseDC(hdc);

if(retValue == FALSE)
DDInitFailed(hWnd, hRet,

"BitBlt() failed in DDBmapToSurf");

DeleteDC(hdcImage);
return hr;

}

29.4.4 Displaying the Bitmap
As previously mentioned, the BitBlt() GDI function provides a flexible, yet slow,
mechanism for displaying bitmaps. In the case of a DirectDraw application, executing
in exclusive mode, the device context must be obtained with the DirectDraw-specific
version of the GetDC() function. IDirectDrawSurface7::GetDC not only returns a
GDI-compatible device context, but also locks the surface for access. The following
function displays a bitmap using a DirectDraw device context:

//***
// Name: DDShowBitmap
// Desc: Displays a bitmap using a DirectDraw device context
//
// PRE:
// 1. Parameter 1 is pointer to a IDirectDraw7 surface
// Parameter 2 is handle to the bitmap
// Parameters 3 and 4 are the display location
// Parameters 5 and 6 are the bitmap dimensions
//
// POST:
// Returns TRUE if successful
//
// ERROR:
// All errors exit through DDInitFailed() function
//***

BOOL DDShowBitmap(LPDIRECTDRAWSURFACE7 lpDDS,
HBITMAP hBitmap,
int xLocation, int yLocation,
int bWidth, int bHeight)

852 Chapter Twenty-Nine

© 2003 by CRC Press LLC

{

HDC hdcImage = NULL;
HDC hdcSurf = NULL;
HDC thisDevice = NULL;

// Create a DC and select the image into it.
hdcImage = CreateCompatibleDC(NULL);
SelectObject(hdcImage, hBitmap);

// Get a DC for the surface.
if(lpDDS->GetDC(&hdcSurf) != DD_OK) {

DeleteDC(hdcImage);
DDInitFailed(hWnd, hRet,

"GetDC() call failed in DDShowBitmap()");
}

// BitBlt() is used to display bitmap
if (BitBlt(hdcSurf, xLocation, yLocation, bWidth,

bHeight, hdcImage, 0, 0, SRCCOPY) == FALSE) {
lpDDS->ReleaseDC(hdcSurf);
DeleteDC(hdcImage);

// Take terminal error exit
DDInitFailed(hWnd, hRet,

"BitBlt() call failed in DDShowBitmap()");
}

// Release device contexts
lpDDS->ReleaseDC(hdcSurf);
DeleteDC(hdcImage);
return TRUE;

}

The following code fragment shows the processing required for loading and dis-
playing a bitmap onto the primary surface, as implemented in the project named DD
Bmap Demo contained in the book's software package.

// Load bitmap named nebula.bmp
aBitmap = DDLoadBitmap(lpDDSPrimary, "nebula.bmp");

// Get bitmap data for displaying
GetObject(aBitmap, sizeof (BITMAP), &bMap1);

// Display bitmap
DDShowBitmap(lpDDSPrimary, aBitmap, 130, 50,

(int) bMap1.bmWidth,
(int) bMap1.bmHeight);

In Chapter 30 we examine bitmap rendering in greater detail and develop a
DirectDraw windowed application that displays a bitmap.

29.5 DD Bitmap Blit Project
The DD Bitmap Blit project, in the book's software package, is a demonstration of the
programming concepts and techniques discussed in this chapter. The program demon-
strates the display of a bitmap on the primary surface, the creation and use of
off-screen surfaces, and blitting bitmaps to and from off-screen surfaces.

Blitting 853

© 2003 by CRC Press LLC

Chapter 30

DirectDraw Bitmap Rendering

Topics:

• Loading a bitmap

• Obtaining bitmap data

• Moving the bitmap onto a surface

• Blitting the bitmap

• Developing a DirectDraw windowed application

Most graphics rendering consists of manipulating and displaying raster images. The
color richness and high definition of today's graphics cards allow using bitmaps to en-
code images with photo-realistic accuracy. The hardware features of the graphics en-
gines makes possible the effective manipulation of bitmapped images. DirectX
provides a new level of functionality in bitmap processing and rendering. Applications
that rely heavily on bitmaps include games, image processing, simulations, virtual re-
ality, and artificial life.

This chapter is devoted to bitmap rendering in the context of a DirectDraw win-
dowed application. In Chapter 16 we discuss manipulating and rendering bitmaps in
exclusive mode.

30.1 Bitmap Manipulations

In DirectX bitmap manipulations consist of four basic steps:

• Loading the bitmap into memory

• Obtaining the bitmap data necessary for displaying it on the screen

• Moving the bitmap onto a surface

• Blitting the bitmap

© 2003 by CRC Press LLC

30.1.1 Loading the Bitmap
In Chapter 29 you saw that loading a bitmap onto the application's memory space is an
operation of GDI graphics. In the program DD Bitmap Blit, developed in Chapter 14
and contained in the book's software package, we load several bitmaps during
WinMain() processing. The LoadBitmap() function is used to load the images into the
application's memory space. Alternatively, instead of defining the bitmap as a pro-
gram resource, we can use LoadImage() to load the bitmap directly from the disk file
in which it is stored. At this time we can also perform certain preliminary checks to
make sure that the DirectDraw surface is compatible with the bitmap to be displayed.
Note that the sample code requires that the surface be nonpalletized. The
GetSurfaceDesc() DirectDraw function is used to fill a DDSURFACEDESC2 structure.
The DDPIXELFORMAT structure, which is part of DDSURFACEDESC2, contains two
relevant values: the flag DDPF_RGB indicates that the RGB data is valid, and the
dwRGBBitCount member contains the number of RGB bits per pixel. If the
DDPF_RGB flag is set and dwRGBBitCount > 15 we can assume that the surface is
nonpalletized, and therefore, compatible.

Note that the LoadImage() function does not return palette information.
M i c r o s o f t K n o w l e d g e B a s e A r t i c l e Q 1 5 8 8 9 8 l i s t s t h e f u n c t i o n
LoadBitmapFromBMPFile() which uses the DIBSection's color table to create a pal-
ette. If no color table is present, then a half-tone palette is created. The source for
this function can be found in the MSDN Library that is part of Visual C++.

Once code has determined that a compatible surface is available, it can proceed
to load the bitmap. The general form of the LoadImage() function is as follows:

HANDLE LoadImage(
HINSTANCE hInst, // 1
LPCTSTR lpszName, // 2
UINT uType, // 3
int cxDesired, // 4
int cyDesired, // 5
UINT fuLoad // 6
);

The first parameter is a handle to an instance of the module that contains the im-
age to be loaded. In the case of an image contained in a file, this parameter is set to
zero.

The second parameter is a pointer to the image to load. If it is non NULL and the
sixth parameter (described later) does not include LR_LOADFROMFILE, then it is a
pointer to a null-terminated string that contains the filename of the image resource.

The third parameter is the image type. It can be one of the following constants:

• IMAGE_BITMAP

• IMAGE_CURSOR

• IMAGE_ICON

The fourth and fifth parameters specify the pixel width and height of the bitmap,
cursor, or icon. If the fourth parameter is zero and the sixth parameter is

856 Chapter Thirty

© 2003 by CRC Press LLC

LR_DEFAULTSIZE, then the function uses the SM_CXICON or SM_CXCURSOR sys-
tem metric value to set the width. If the fourth parameter is zero, and if
LR_DEFAULTSIZE is present in the sixth parameter, then the function uses the ac-
tual width and height of the bitmap. The sixth and last parameter is one or more
flags represented by the predefined constants listed in Table 30-1.

Table 30-1

Predefined Constants in LoadImage() Function

CONSTANT MEANING

LR_DEFAULTCOLOR Default flag. Does nothing.
LR_CREATEDIBSECTION

When the third parameter is IMAGE_BITMAP,
this flag causes the function to return a DIB
section bitmap rather than a compatible bitmap.
It is useful for loading a bitmap without mapping
it to the colors of the display device.

LR_DEFAULTSIZE For cursor and icons the width or height values
are those specified by the system metric values,
but only if the fourth and fifth parameters are
set to zero. If this flag is not specified and
the fourth and fifth parameters are set to zero,
the function uses the actual resource size.

LR_LOADFROMFILE Loads the image from the file specified by the
second parameter. If this flag is not specified,
lpszName is the name of the resource.

LR_LOADMAP3DCOLORS
Searches the color table for the image and
replaces the following shades of gray with the
corresponding 3D color:

Color RGB value Replaced with
Dk Gray RGB(128,128,128) COLOR_3DSHADOW
Gray RGB(192,192,192) COLOR_3DFACE
Lt Gray RGB(223,223,223) COLOR_3DLIGHT

LR_LOADTRANSPARENT
Retrieves the color value of the top-left pixel in
the image and replaces the corresponding entry in
the color table with the default window color
(COLOR_WINDOW). All pixels in the image that
Use that entry become the default window color.
This value applies only to images that have
corresponding color tables.

LR_MONOCHROME Converts the image to black and white pixels.
LR_SHARED Shares the image handle if the image is loaded

multiple times. If LR_SHARED is not used, a second
call to LoadImage for the same resource will load
the image again and returns a different handle.
LR_SHARED should not be used for images that
Have nonstandard sizes, that may change after
Loading, or that are loaded from a file.
In Windows 95/98 LoadImage() finds the
first image with the requested resource name in
the cache, regardless of the size requested.

LR_VGACOLOR Use true VGA colors.

DirectDraw Bitmap Rendering 857

© 2003 by CRC Press LLC

LoadImage() returns the handle of the newly loaded image if the call succeeds. If
the function fails, the return value is NULL. Although the system automatically de-
letes all resources when the process that created them terminates, applications can
save memory by releasing resources that are no longer needed. DeleteObject() is
used to release a bitmap, DestroyIcon() for icons, and DestroyCursor() for cursor
resources.

The following function is used to load a bitmap into the application's memory
space and obtain its handle. In this case the code checks for a surface compatible
with a nonpalletized bitmap.

//***
// Name: DDLoadBitmap
// Desc: Loads a bitmap file into memory and returns its handle
//
// PRE:
// 1. Parameter 1 is pointer to a DirectDraw surface
// Parameter 2 is pointer to bitmap filename string
//
// POST:
// Returns handle to bitmap
//
// ERROR:
// All errors exit through DDInitFailed() function
//***

HBITMAP DDLoadBitmap(LPDIRECTDRAWSURFACE7 lpDDS,
LPSTR szImage)

{
HBITMAP hbm;
DDSURFACEDESC2 ddsd;

ZeroMemory(&ddsd, sizeof(ddsd));
ddsd.dwSize = sizeof(ddsd);

if (lpDDS->GetSurfaceDesc(&ddsd) != DD_OK)
DDInitFailed(hWnd, hRet,
"GetSurfaceDesc() call failed in DDLoadBitmap()");

// Test for compatible pixel format
if ((ddsd.ddpfPixelFormat.dwFlags != DDPF_RGB) ||

(ddsd.ddpfPixelFormat.dwRGBBitCount < 16))
DDInitFailed(hWnd, hRet,

"Incompatible surface in DDLoadBitmap()");

// Load the bitmap image onto memory
hbm = (HBITMAP)LoadImage(NULL, szImage,

IMAGE_BITMAP, 0, 0, LR_LOADFROMFILE);

if (hbm == NULL)
DDInitFailed(hWnd, hRet,
"Bitmap load failed in DDLoadBitmap()");

return hbm;
}

858 Chapter Thirty

© 2003 by CRC Press LLC

Note that in DDLoadBitmap() all errors are considered terminal and directed
through the DDInitFailed() function. This mode of operation can be changed if the
code is to provide alternate processing in these cases.

30.1.2 Obtaining Bitmap Information
In order to display and manipulate a bitmap, the processing routines usually require
information about its size and organization. The GDI GetObject() function is used for
this purpose. The GetObject() function fills a structure of type BITMAP, defined as fol-
lows:

typedef struct tagBITMAP {
LONG bmType; // Must be zero
LONG bmWidth; // bitmap width (in pixels)
LONG bmHeight; // bitmap height (in pixels)
LONG bmWidthBytes; // bytes per scan line
WORD bmPlanes; // number of color planes
WORD bmBitsPixel; // bits per pixel color
LPVOID bmBits; // points to bitmap values array

} BITMAP;

The bmWidth member specifies the width, in pixels, of the bitmap, while
bmHeight specifies the height, also in pixels. Both values must be greater than zero.
The bmWidthBytes member specifies the number of bytes in each scan line. Win-
dows assumes that the bitmap is word aligned; therefore, this value must be divisi-
ble by 2. The member bmPlanes specifies the number of color planes. The member
bmBitsPixel specifies the number of bits required to indicate the color of a pixel.
The member bmBits points to the location of the bit values for the bitmap. It is a
long pointer to an array of char-size (1 byte) values.

How much of the information in the BITMAP structure is used depends on the
type of bitmap processing performed by the application. The direct access opera-
tions described in Chapter 13 allow code to manipulate bitmap data directly. If this
is the case, then most of the BITMAP structure members are required in order to lo-
cate and access the bitmap data. On the other hand, applications can use high-level
functions to display bitmap. Such is the case with the BitBlt() GDI function and the
DirectDraw Blt() and BltFast() functions. When high-level functions are used, only
the bmWidth and bmHeight members are usually necessary.

30.1.3 Moving a Bitmap onto a Surface
Blit operations in DirectDraw take place between surfaces. A useful function is one
that loads a bitmap onto a surface. The local function, named DDBmapToSurf(), cop-
ies a memory-resident bitmap, specified by its handle, into a DirectDraw surface.

//***
// Name: DDBmapToSurf
// Desc: Moves a bitmap to a DirectDraw Surface
// PRE:
// 1. Parameter 1 is pointer to a DirectDraw surface
// Parameter 2 is handle to the bitmap
//
// POST:
// Bitmap is moved to surface
// Returns 1 if successful

DirectDraw Bitmap Rendering 859

© 2003 by CRC Press LLC

// /
// ERROR:
// All errors exit through DDInitFailed() function
//***

HRESULT DDBmapToSurf(LPDIRECTDRAWSURFACE7 pdds,
HBITMAP hbm)

{
HDC hdcImage;
HDC hdc;
DDSURFACEDESC2 ddsd;
HRESULT hr = 1;
BOOL retValue;

if (hbm == NULL || pdds == NULL)
DDInitFailed(hWnd, hRet,

"Invalid surface or bitmap in DDBmapToSurf");

// Create compatible DC and select bitmap into it
hdcImage = CreateCompatibleDC(NULL);

if (!hdcImage)
DDInitFailed(hWnd, hRet,

"CreateCompatibleDC() failed in DDBmapToSurf");
SelectObject(hdcImage, hbm);

// Get size of surface
ddsd.dwSize = sizeof(ddsd);
ddsd.dwFlags = DDSD_HEIGHT | DDSD_WIDTH;
pdds->GetSurfaceDesc(&ddsd);

if ((hr = pdds->GetDC(&hdc)) != DD_OK)
DDInitFailed(hWnd, hRet,

"GetDC() failed in DDBmapToSurf");

retValue = BitBlt(hdc, 0, 0, ddsd.dwWidth, ddsd.dwHeight,
hdcImage, 0, 0, SRCCOPY);

// Release surface immediately
pdds->ReleaseDC(hdc);

if(retValue == FALSE)
DDInitFailed(hWnd, hRet,

"BitBlt() failed in DDBmapToSurf");

DeleteDC(hdcImage);
return hr;

}

30.1.4 Displaying the Bitmap
We have mentioned that the BitBlt() GDI function provides a flexible, yet slow, mecha-
nism for displaying bitmaps. In the case of a DirectDraw application, executing in ex-
clusive mode, the device context must be obtained with the DirectDraw-specific
version of the GetDC() function. IDirectDrawSurface7::GetDC not only returns a
GDI-compatible device context, but also locks the surface for access. The following
local function displays a bitmap using a DirectDraw device context:

860 Chapter Thirty

© 2003 by CRC Press LLC

//***
// Name: DDShowBitmap
// Desc: Displays a bitmap using a DirectDraw device context
//
// PRE:
// 1. Parameter 1 is pointer to a DirectDraw surface
// Parameter 2 is handle to the bitmap
// Parameters 3 and 4 are the display location
// Parameters 5 and 6 are the bitmap dimensions
//
// POST:
// Returns TRUE if successful
//
// ERROR:
// All errors exit through DDInitFailed() function
//***

BOOL DDShowBitmap(LPDIRECTDRAWSURFACE7 lpDDS,
HBITMAP hBitmap,
int xLocation,
int yLocation,
int bWidth,
int bHeight)

{

HDC hdcImage = NULL;
HDC hdcSurf = NULL;
HDC thisDevice = NULL;

// Create a DC and select the image into it.
hdcImage = CreateCompatibleDC(NULL);
SelectObject(hdcImage, hBitmap);

// Get a DC for the surface.
if(lpDDS->GetDC(&hdcSurf) != DD_OK) {

DeleteDC(hdcImage);
DDInitFailed(hWnd, hRet,

"GetDC() call failed in DDShowBitmap()");
}

// BitBlt() is used to display bitmap
if (BitBlt(hdcSurf, xLocation, yLocation, bWidth,

bHeight, hdcImage, 0, 0, SRCCOPY) == FALSE) {
lpDDS->ReleaseDC(hdcSurf);
DeleteDC(hdcImage);

// Take terminal error exit
DDInitFailed(hWnd, hRet,

"BitBlt() call failed in DDShowBitmap()");
}

// Release device contexts
lpDDS->ReleaseDC(hdcSurf);
DeleteDC(hdcImage);
return TRUE;

}

The following code fragment shows the processing required for loading and dis-
playing a bitmap onto the primary surface, as implemented in the project named DD
Bitmap In Window located in the Chapter 15 folder in the book's software package.

DirectDraw Bitmap Rendering 861

© 2003 by CRC Press LLC

// Load bitmap named hubble.bmp

aBitmap = DDLoadBitmap(lpDDSPrimary, "hubble.bmp");

// Get bitmap data for displaying

GetObject(aBitmap, sizeof (BITMAP), &bMap1);

// Display bitmap

DDShowBitmap(lpDDSPrimary, aBitmap, 130, 50,

(int) bMap1.bmWidth,

(int) bMap1.bmHeight);

30.2 Developing a Windowed Application
Exclusive mode provides the maximum power and functionality of DirectDraw. For
this reason most DirectDraw applications execute in exclusive mode. But this does
not preclude conventional windows programs from using DirectDraw functions in or-
der to obtain considerable gains in performance and to perform image manipulations
that are not possible in the GDI.

Running in a window usually means that the program can be totally or partially
obscured by another program, that it can lose focus, that surfaces may be unbound
from their memory assignments, and that the application window can be minimized
or resized by the user. Most of these circumstances, which are often ignored in ex-
clusive mode, require careful attention in windowed DirectDraw. In other words,
DirectDraw programming in windowed mode restores most of the device independ-
ence that is lost in exclusive mode, which means that windowed DirectDraw code
must use the conventional multitasking, message based, paradigm that is character-
istic of Windows. The following are the main differences between DirectDraw pro-
grams in exclusive and non-exclusive mode:

• Exclusive mode applications usually require window style WS_POPUP, while win-
dowed application use WS_THICKFRAME if they are resizeable. The combination
WS_SYSMENU, WS_CAPTION, and WS_MINIMIZEBOX is used if the window cannot
be resized by the user. WS_OVERLAPPEDWINDOW style includes WS_THICKFRAME.

• Exclusive mode programs use DDSCL_FULLSCREEN and DDSCL_EXCLUSIVE coop-
erative level, while windowed programs use DDSCL_NORMAL.

• Exclusive mode programs can use page flipping in implementing animation (animation
techniques are covered in Chapter 16), while windowed programs have very limited
flipping capabilities. This is one of the reasons why games and other anima-
tion-intensive applications usually execute in exclusive mode.

• Full-screen programs can set their own display mode, while windowed programs must
operate in the current desktop display mode. By the same token, exclusive mode pro-
grams can assume a particular display mode, while windowed programs must be de-
signed with sufficient flexibility to execute in several display modes.

• Exclusive mode applications may use clipping to produce specific graphics effects.
Windowed programs often rely on clipping to facilitate interaction with other programs
and with the Windows desktop.

862 Chapter Thirty

© 2003 by CRC Press LLC

• Exclusive mode programs can be switched to the background, but usually they cannot
be minimized or resized by the user. Windowed programs can be moved on the desktop,
resized, minimized, or obscured by other applications.

• Exclusive mode programs have direct control over the palette and can be designed for a
particular palette. Windowed programs must use the palette manager to make changes
and must accommodate palette changes made by the user or by other programs.

• Exclusive mode programs can display or hide the system cursor but cannot use sys-
tem-level mouse support, as is the case with the system menu or by the buttons on the
program's title bar.

• Exclusive mode programs must furnish most of the cursor processing logic. On the
other hand, DirectDraw windowed applications can make use of all the cursor and cur-
sor-related support functions in the Windows API.

• Exclusive mode applications must implement their own menus. Windowed applica-
tions can use the menu facilities in the API.

In summary, although windowed programs must address some specific issues in
using DirectDraw services, they do have almost unrestricted access to the function-
ality of a conventional application. Thus, a DirectDraw program that executes in a
windowed mode can have a title bar, resizeable borders, menus, status bar, sizing
grip, scroll bars, as well as most of the other GUI components. Although there is no
"standard" design for a DirectDraw windowed application, there are issues that are
usually confronted by a typical DirectDraw application when executing in win-
dowed mode. In the following sections we discuss the most important ones.

30.2.1 Windowed Mode Initialization
A DirectDraw windowed program can execute with so many variations that it is diffi-
cult to design a general template for it. The same abundance of options applies to the
initialization of a windowed application. However, there are certain typical initializa-
tion steps for DirectDraw windowed applications. The project named DD WinMode
Template, in the book's software package, contains a template file with minimal
initializations for a DirectDraw application in windowed mode.

The first step in WinMain() processing is defining and filling the WNDCLASSEX
structure variable and registering the window class. In the template file this is ac-
complished as follows:

// Defining a structure of type WNDCLASSEX
WNDCLASSEX wndclass ;
wndclass.cbSize = sizeof (wndclass) ;
wndclass.style = CS_HREDRAW | CS_VREDRAW;
wndclass.lpfnWndProc = WndProc ;
wndclass.cbClsExtra = 0 ;
wndclass.cbWndExtra = 0 ;
wndclass.hInstance = hInstance ;
wndclass.hIcon = LoadIcon (NULL, IDI_APPLICATION) ;
wndclass.hCursor = LoadCursor (NULL, IDC_ARROW) ;
wndclass.hbrBackground = (HBRUSH) GetStockObject

(WHITE_BRUSH) ;
wndclass.lpszMenuName = szAppName;
wndclass.lpszClassName = szAppName;

DirectDraw Bitmap Rendering 863

© 2003 by CRC Press LLC

wndclass.hIconSm = LoadIcon (NULL, IDI_APPLICATION) ;
// Register the class
RegisterClassEx(&wndclass);

Next, the code creates the window and defines its show state. In the case of a
resizeable window with the three conventional buttons and the system menu box in
the title bar we can use the WS_OVERLAPPEDWINDOW style. Since it is impossible
to predict in the template the window size and initial location, we have used
CW_USEDEFAULT for these parameters.

hWnd = CreateWindowEx(0, // Extended style
szAppName,
"DirectDraw Nonexclusive Mode Template",
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
CW_USEDEFAULT,
NULL, // Handle of parent
NULL, // Handle to menu
hInstance, // Application instance
NULL); // Additional data

if (!hWnd)
return FALSE;

ShowWindow(hWnd, nCmdShow);

The processing for creating a DirectDraw object and a primary surface is similar
to that used in exclusive mode programming. In the template we use the same sup-
port procedures previously developed. DD7Interface() attempts to find a
DirectDraw7 object and returns 1 if found and 0 if not. If the call is successful, a
global pointer variable named lpDD4, of type LPDIRECTDRAW7, is initialized.
DDInitFailed() provides a terminal exit for failed initialization operations. The pri-
mary surface is created by means of a call to CreateSurface(). The surface pointer is
stored in the public variable lpDDSPrimary. Code is as follows:

//*************************************
// Create DirectDraw object and
// create primary surface
//*************************************
// Fetch DirectDraw7 interface
hRet = DD7Interface();
if (hRet == 0)

return DDInitFailed(hWnd, hRet,
"QueryInterface() call failed");

// Set cooperative level to exclusive and full screen
hRet = lpDD7->SetCooperativeLevel(hWnd, DDSCL_NORMAL);
if (hRet != DD_OK)

return DDInitFailed(hWnd, hRet,
"SetCooperativeLevel() call failed");

//**********************************
// Create the primary surface
//**********************************
// ddsd is a structure of type DDSRUFACEDESC2
ZeroMemory(&ddsd, sizeof(ddsd)); // Fill structure with zeros
// Fill in other members
ddsd.dwSize = sizeof(ddsd);
ddsd.dwFlags = DDSD_CAPS ;
ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE;

864 Chapter Thirty

© 2003 by CRC Press LLC

hRet = lpDD7->CreateSurface(&ddsd, &lpDDSPrimary, NULL);
if (hRet != DD_OK)

return DDInitFailed(hWnd, hRet,
"CreateSurface() call failed");

30.2.2 Clipping the Primary Surface
Clipping is the DirectDraw operation by which output is limited to a rectangular area,
usually defined in a surface. DirectDraw supports clipping in both exclusive and win-
dowed modes. Since exclusive mode applications have control over the entire client
area, clipping is used mostly as a graphics output manipulation. Windowed applica-
tions, on the other hand, often share the display with the Windows desktop and with
other applications. In this case clipping is often used to ensure that the application's
output is limited to its own client area. Color Figure 7 shows the clipped execution of
two copies of a DirectDraw application on the Windows desktop. The application is
the DD Bitmap In Window program developed earlier in this chapter.

A clipper is used to define the program's screen boundaries in a DirectDraw win-
dowed application. The clipper ensures that a graphics object is not displayed out-
side the client area. Failure to define a clipper may cause the blit operation to fail
because the destination drawing surface could be the limits of the display surface.
When the boundaries of the primary surface are defined in a clipper, then
DirectDraw knows not to display outside of this area and the blit operation suc-
ceeds, as is the case in Color Figure 7. Recall that the Blt() function supports clip-
ping but that BltFast() does not.

Pixel coordinates are stored in one or more structures of type RECT in the clip
list. DirectDraw uses the clipper object to manage clip lists. Clip lists can be at-
tached to any surface by using a DirectDrawClipper object. The simplest clip list
consists of a single rectangle which defines the area within the surface to which a
Blt() function outputs. Figure 30-1 shows a DirectDraw surface with an attached
clipper consisting of a single rectangle.

Figure 30-1 Using a Clipper to Establish the Surface's Valid Blit Area.

DirectDraw Bitmap Rendering 865

DirectDraw surface

valid output area
defined by clipper

surface area protected by clipper

© 2003 by CRC Press LLC

http://www.itknowledgebase.net/books/1232/color Insert.pdf

DirectDraw's Blt() function copies data to the rectangles in the clip list only. Clip
lists consisting of several rectangles are often necessary in order to protect a spe-
cific surface area from output. For example, if an application requires a rectangular
area in the top-center of the screen to be protected from output, it would need to de-
fine several clipping rectangles. Figure 30-2 shows this case.

Figure 30-2 Multiple Clipping Rectangles

To manage a clip list, application code creates a series of rectangles and stores
them in a data structure of type RGNDATA (region data), described later in this sec-
tion. One of the members of RGNDATA is the RGNDATAHEADER structure, which
is used to define the number of rectangles that make up the region. The function
SetClipList() is called with the RGNDATA structure variable as a parameter. The
SetClipList() function has the following general form:

The IDirectDrawClipper::SetClipList method sets or deletes the clip list used by
t h e I D i r e c t D r a w S u r f a c e 7 : : B l t , I D i r e c t D r a w S u r f a c e 7 : : B l t B a t c h , a n d
IDirectDrawSurface7::UpdateOverlay methods on surfaces to which the parent
DirectDrawClipper object is attached.

HRESULT SetClipList(
LPRGNDATA lpClipList, // 1
DWORD dwFlags // 2
);

The first parameter is the address of a valid RGNDATA structure or NULL. If there
is an existing clip list associated with the DirectDrawClipper object and this value is
NULL, the clip list is deleted.

The second parameter is currently not used and must be set to 0.

The function returns DD_OK if it succeeds, or one of the following error codes:

866 Chapter Thirty

DirectDraw surface

clipping
rectangle

No. 1

clipping
rectangle

No. 2

clipping
rectangle

No. 3

protected
surface area

© 2003 by CRC Press LLC

• DDERR_CLIPPERISUSINGHWND

• DDERR_INVALIDCLIPLIST

• DDERR_INVALIDOBJECT

• DDERR_INVALIDPARAMS

• DDERR_OUTOFMEMORY

The RGNDATA structure used with this method has the following syntax:

typedef struct _RGNDATA {
RGNDATAHEADER rdh;
char Buffer[1];

} RGNDATA;

The third member of the RGNDATA structure is an RGNDATAHEADER structure
that has the following syntax:

typedef struct _RGNDATAHEADER {
DWORD dwSize;
DWORD iType;
DWORD nCount;
DWORD nRgnSize;
RECT rcBound;

} RGNDATAHEADER;

To delete a clip list from a surface, the SetClipList() call is made using NULL for
the RGNDATA parameter.

DirectDraw can automatically manage the clip list for a primary surface.
Attaching a clipper to the primary surface requires several steps. In the first place, a
clipper is a DirectDraw object in itself, which must be created using the
DirectDraw7 interface object. The CreateClipper() function is used in this step. The
function's general form is as follows:

HRESULT CreateClipper(
DWORD dwFlags, // 1
LPDIRECTDRAWCLIPPER FAR *lplpDDClipper, // 2
IInknown FAR *pUnkOuter // 3
);

The first and third parameters are not used in current implementations: the first
one should be set to zero and the third one to NULL. The second parameter is the ad-
dress of a variable of type LPDIRECTDRAWCLIPPER which is set to the interface if
the call succeeds; in this case the return value is DD_OK. If the call fails it returns
one of the following constants:

• DDERR_INVALIDOBJECT

• DDERR_INVALIDPARAMS

• DDERR_NOCOOPERATIVELEVELSET

• DDERR_OUTOFMEMORY

Once the clipper to the primary surface is created, it must be attached to the ap-
plication's window. This requires a call to the SetHWnd() function. The function's
general form is as follows:

DirectDraw Bitmap Rendering 867

© 2003 by CRC Press LLC

HRESULT SetHWnd(
DWORD dwFlags, // 1
HWND hWnd // 2
);

The first parameter must be set to zero in the current implementation.

The second parameter is the handle to the window that uses the clipper object.
This has the effect of setting the clipping region to the client area of the window and
ensuring that the clip list is automatically updated as the window is resized, cov-
ered, or uncovered. Once a clipper is set to a window, additional rectangles cannot
be added.

The clipper must be associated with the primary surface. This is done by means
of a call to the IDirectDrawSurface7::SetClipper function, which has the following
general form:

HRESULT SetClipper(
LPDIRECTDRAWCLIPPER lpDDClipper // 1

);

The function's only parameter is the address of the IDirectDrawClipper interface
for the DirectDrawClipper object to be attached to the DirectDrawSurface object. If
NULL, the current DirectDrawClipper object is detached.

SetClipper() returns DD_OK if it succeeds, or one of the following error codes:

• DDERR_INVALIDOBJECT

• DDERR_INVALIDPARAMS

• DDERR_INVALIDSURFACETYPE

• DDERR_NOCLIPPERATTACHED

When a clipper is set to a surface for the first time, the call to SetClipper() incre-
ments the reference count. Subsequent calls do not affect the clipper's reference
count. If you pass NULL as the lpDDClipper parameter, the clipper is removed from
the surface, and the clipper's reference count is decremented. If you do not delete
the clipper, the surface automatically releases its reference to the clipper when the
surface itself is released. The application is responsible for releasing any references
that it holds to the clipper when the object is no longer needed, according to the
COM rules.

The SetClipper() function is primarily used by surfaces that are being overlaid, or
surfaces that are blitted to the primary surface. However, it can be used on any sur-
face.

The code in the template program is as follows:
//**********************************
// Create a clipper
//**********************************
hRet = lpDD7->CreateClipper(0, &lpDDClipper, NULL);
if (hRet != DD_OK)

return DDInitFailed(hWnd, hRet,
"Create clipper failed");

868 Chapter Thirty

© 2003 by CRC Press LLC

// Associate clipper with application window
hRet = lpDDClipper->SetHWnd(0, hWnd);
if (hRet != DD_OK)

return DDInitFailed(hWnd, hRet,
"Clipper not linked to application window");

// Associate clipper with primary surface
hRet = lpDDSPrimary->SetClipper(lpDDClipper);

if (hRet != DD_OK)
return DDInitFailed(hWnd, hRet,

"Clipper not linked to primary surface");

30.3 Rendering in Windowed Mode
A simple rendering scheme in DirectDraw windowed mode programming consists of
storing a bitmap in an offscreen surface and then blitting it to the primary surface. It is
in the blitting stage that the windowed nature of the application introduces some con-
straints. The DirectDraw interface allows the program to access video memory di-
rectly, while the windowed nature of the application requires that video output be
limited to the application's client area. A terminal error occurs if a windowed program
attempts to display outside its own space. In GDI programming Windows takes care of
clipping video output. In DirectDraw programming these restrictions must be ob-
served and enforced by the application itself.

The most powerful rendering function for DirectDraw windowed applications is
Blt(). Figure 14-7 shows some of the controls and options available in this case.
DirectDraw windowed applications that use Blt() often create a destination surface
clipper, and manipulate the size and position of the source and destination rectan-
gles in order to achieve the desired effects. The BltFast() function can be used in
cases that do not require clippers or other output controls that are available in Blt().

30.3.1 Rendering by Clipping
The project named DD Bitmap In Window, in the book's software package, contains
two versions. Both versions display a bitmap of the Orion nebula images obtained by
the Hubble Space Telescope. The first program version corresponds to the source file
named DD Bitmap In Window.cpp. In this case the bitmap image is blitted to the entire
primary surface and a clipper is used to restrict which portion of the image is dis-
played in the application's window. Color Figure 8 shows the original bitmap
stretched to fill the primary surface.

The clipper, which in this case is the size of the application window, is attached to
the primary surface. Color Figure 7 shows two copies of the DD Bitmap In Window
program on the desktop. Each executing copy of the program displays the
underlaying portion of a virtual image according to the clipper, which is automati-
cally resized by Windows to the application's client area. This ensures that video
output is limited to the application's video space.

During initialization, the wndclass.style member of the WNDCLASSEX structure
is set to CS_HREDRAW and CS_VREDRAW so that the entire client area is redrawn
if there is vertical or horizontal resizing. The program design calls for creating an
initial application window of the same size as the bitmap. In order to obtain the

DirectDraw Bitmap Rendering 869

© 2003 by CRC Press LLC

http://www.itknowledgebase.net/books/1232/color Insert.pdf
http://www.itknowledgebase.net/books/1232/color Insert.pdf

bitmap dimensions, the code must load the bitmap into memory before creating the
application window. The processing is as follows:

// Global handles and structures for bitmaps
HBITMAP aBitmap;
BITMAP bMap1; // Structures for bitmap data
. . .
// Local data
RECT progWin; // Application window dimensions
//**************************************
// Load bitmap into memory
//**************************************

// Load the bitmap image into memory
aBitmap = (HBITMAP)LoadImage(NULL, "nebula.bmp",

IMAGE_BITMAP, 0, 0, LR_LOADFROMFILE);
if (aBitmap == NULL)

DDInitFailed(hWnd, hRet,
"Bitmap load failed in DDLoadBitmap()");

// Get bitmap data
GetObject(aBitmap, sizeof (BITMAP), &bMap1);
// Store bitmap in RECT structure variable
progWin.left = 0;
progWin.top = 0;
progWin.right = bMap1.bmWidth;
progWin.bottom = bMap1.bmHeight;

The bitmap dimensions are now stored in a structure of type RECT, with the vari-
able name progWin. But the application window is larger than the client area, since
it includes the title bar and the border. It is necessary to adjust the size by calling
AdjustWindowRectEx(). This function corrects the data stored in a RECT structure
variable according to the application's window style. Once the size has been ad-
justed, code can proceed to create the window, as follows:

//***
// Create a window with client area
// the same size as the bitmap
//***
// First adjust the size of the client area to the size
// of the bounding rectangle (this includes the border,
// caption bar, menu, etc.)
AdjustWindowRectEx(&progWin,

WS_OVERLAPPEDWINDOW,
FALSE,
0);

hWnd = CreateWindowEx(0, // Extended style
szAppName,
"DD Bitmap In Window",
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT, // x of initial position
CW_USEDEFAULT, // y of initial position
(progWin.right - progWin.left), // x size
(progWin.bottom - progWin.top), // y size
NULL, // Handle of parent
NULL, // Handle to menu
hInstance, // Application instance
NULL); // Additional data

870 Chapter Thirty

© 2003 by CRC Press LLC

if (!hWnd)
return FALSE;

ShowWindow(hWnd, nCmdShow);

In the call to CreateWindowEx() we used the default initial position and arbi-
trarily set the Windows dimension to that of the bitmap, the size of which is stored
in the progWin structure variables. The code now proceeds to create a DirectDraw
object and a primary surface in the conventional manner. Note that the cooperative
level in this case is DDSCL_NORMAL.

//*************************************
// Create DirectDraw object and
// create primary surface
//*************************************
// Fetch DirectDraw7 interface
hRet = DD7Interface();
if (hRet == 0)

return DDInitFailed(hWnd, hRet,
"QueryInterface() call failed");

// Set cooperative level to exclusive and full screen
hRet = lpDD7->SetCooperativeLevel(hWnd, DDSCL_NORMAL);
if (hRet != DD_OK)

return DDInitFailed(hWnd, hRet,
"SetCooperativeLevel() call failed");

// ddsd is a structure of type DDSRUFACEDESC2
ZeroMemory(&ddsd, sizeof(ddsd)); // Fill structure with zeros
// Fill in other members
ddsd.dwSize = sizeof(ddsd);
ddsd.dwFlags = DDSD_CAPS ;
ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE;

hRet = lpDD7->CreateSurface(&ddsd, &lpDDSPrimary, NULL);
if (hRet != DD_OK)

return DDInitFailed(hWnd, hRet,
"CreateSurface() call failed");

It is now time to create a clipper associated with the application window and at-
tach it to the primary surface, as described previously in this chapter. The surface
element tells DirectDraw which surface to clip. The window element defines the
clipping rectangle to the size of the application's client area. The processing is as
follows:

//**********************************
// Create a clipper
//**********************************
hRet = lpDD7->CreateClipper(0, &lpDDClipper, NULL);
if (hRet != DD_OK)

return DDInitFailed(hWnd, hRet,
"Create clipper failed");

// Associate clipper with application window
hRet = lpDDClipper->SetHWnd(0, hWnd);
if (hRet != DD_OK)

return DDInitFailed(hWnd, hRet,
"Clipper not linked to application window");

// Associate clipper with primary surface
hRet = lpDDSPrimary->SetClipper(lpDDClipper);
if (hRet != DD_OK)

DirectDraw Bitmap Rendering 871

© 2003 by CRC Press LLC

return DDInitFailed(hWnd, hRet,
"Clipper not linked to primary surface");

Although the bitmap has been loaded, it has not yet been stored in an offscreen
surface. Blt() requires that the bitmap be located on a surface, so this must be the
next step. Since speed is not a factor in this program, we create the surface in sys-
tem memory. This allows running several copies of the program simultaneously. The
code is as follows:

//**************************************
// Store bitmap in off screen surface
//**************************************
// First create an off-screen surface
// in system memory
ZeroMemory(&ddsd, sizeof(ddsd)); // Fill structure with zeros
// Fill in other members
ddsd.dwSize = sizeof(ddsd);
ddsd.dwFlags = DDSD_CAPS | DDSD_HEIGHT | DDSD_WIDTH;
ddsd.ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN |

DDSCAPS_SYSTEMMEMORY;
ddsd.dwHeight = bMap1.bmHeight;
ddsd.dwWidth = bMap1.bmWidth;
hRet = lpDD7->CreateSurface(&ddsd, &lpDDSOffscreen, NULL);
if (hRet != DD_OK)

return DDInitFailed(hWnd, hRet,
"Off Screen surface creation failed");

// Move bitmap to surface using DDBmapToSurf()function
hRet = DDBmapToSurf(lpDDSOffscreen, aBitmap);
if(hRet != DD_OK)

return DDInitFailed(hWnd, hRet,
"DDBMapToSurf() call failed");

// ASSERT:
// Bitmap is in offscreen surface -> lpDDSOffscreen

Finally, the bitmap stored in the offscreen surface can be blitted to the primary
surface using the clipper attached to the primary surface. The Blt() call is as fol-
lows:

//***********************************
// Blit the bitmap
//***********************************
// Update the window with the new sprite frame. Note that the
// destination rectangle is our client rectangle, not the
// entire primary surface.
hRet = lpDDSPrimary->Blt(NULL, lpDDSOffscreen, NULL,

DDBLT_WAIT, NULL);
if(hRet != DD_OK)

return DDInitFailed(hWnd, hRet,
"Blt() failed");

Since the window is resizeable, we must also provide processing in the
WM_PAINT message intercept. However, WM_PAINT is first called when the win-
dow is created; at this time the application has not yet performed the necessary ini-
tialization operations. To avoid a possible conflict we create a public switch
variable, named DDOn, which is not set until the application is completely initial-
ized. Another consideration is that the call to BeginPaint(), often included in
WM_PAINT processing, automatically sets the clipping region to the application's

872 Chapter Thirty

© 2003 by CRC Press LLC

update region. Since we are providing our own clipping, the call to BeginPaint() is
undesirable. In the sample program WM_PAINT message processing is as follows:

case WM_PAINT:
if(DDOn)

hRet = lpDDSPrimary->Blt(NULL, lpDDSOffscreen, NULL,
DDBLT_WAIT, NULL);

return 0;

30.3.2 Blit-Time Cropping
In the preceding section we saw the first variation of the DD Bitmap In Window pro-
gram. In this case the bitmap image is stretch-blitted to the entire primary surface. A
clipper that was previously attached to the primary surface automatically restricts
which portion of the image is displayed in the application's window. As you move the
application window on the desktop, or resize it, a different portion of the bitmap be-
comes visible.

An alternative option, which produces entirely different results, is blitting to a
destination rectangle in the primary surface which corresponds to the size of the ap-
plication's client area. Because the destination of the blit is restricted to the client
area there is no need for a clipper in this case, since the output is cropped by the
Blt() function. Figure 30-3 graphically shows the basic operation of the two versions
of the DD InWin Demo program.

Figure 30-3 Comparing the Two Versions of the DD Bitmap In Window Program

DirectDraw Bitmap Rendering 873

Original
bitmap

Original
bitmap

Primary surface

Primary surface

Processing in DD Bitmap In Window.cpp program

Processing in DD Bitmap In WindowB.cpp program

Clipper

© 2003 by CRC Press LLC

In the version DD Bitmap In WindowB.cpp the code proceeds as follows: The
WNDCLASSEX structure is defined similarly as in the first version of the sample
program except that , s ince the program window is not resizeable , the
CS_HREDRAW and CS_VREDRAW window style constants are not necessary. The
f ixed size of the program window also determines that the code uses
WS_SYSMENU, WS_CAPTION, and WS_MINIMIZEBOX as the window style con-
stants in both AdjustWindowRectEx() and CreateWindowEx() functions. Note that
a resizeable window requires the WS_THICKFRAME or WS_SIZEBOX styles. Also
note that the WS_OVERLAPPEDWINDOW style, used in the first version of the sam-
ple program, includes WS_THICKFRAME and therefore also produces a resizeable
window.

In the version DD Bitmap In WindowB.cpp the program window is made the same
size as the original bitmap, as is the case in the first version. In the first version the
size of the display area is arbitrary, since the program window is resizaeable. In the
second version the bitmap is displayed identically as is it stored. Therefore, the dis-
play area must match the size of the bitmap.

Much of the initialization and setup of the second version of the program is simi-
lar to the first one. The bitmap is loaded into memory and its size is stored in the
corresponding members of a RECT structure variable. The DirectDraw7 object and
the primary surface are created. In this case the clipper is not attached to the pri-
mary surface since it is not used. Then the off screen surface is created and the
bitmap is stored in it. Code is now ready to blit the bitmap from the offscreen sur-
face to the primary surface, but before the blit can take place it is necessary to de-
termine the screen location and the size of the application's client area. It is also
necessary to define the destination rectangle, which is the first parameter of the
Blt() function. One way to visualize the problem is to realize that, at this point, the
program window is already displayed, with a blank rectangle on its client area,
which is the same size as the bitmap. Also that the primary surface is the entire
screen. Figure 30-4 shows the application at this stage and the dimensions necessary
for locating the client area on the primary surface.

Figure 30-4 Locating the Blt() Destination Rectangle

874 Chapter Thirty

Primary surface

dx

dy

x

yApplication's
client area

© 2003 by CRC Press LLC

The GetClientRect() API function returns the coordinates of the client area of a
window. The function parameters are the handle of the target window and the ad-
dress of a variable of type RECT which holds the client area dimensions. The values
returned by GetClientRect() correspond to the x and y dimensions shown in Figure
30-5. Since the coordinates are relative to the application's window, the value re-
turned by the call for the upper-left corner of the rectangle is always (0,0). This
makes the left and top members of the RECT structure variable passed to the call al-
ways zero. Since you need the location of application's window in the primary sur-
face, the code must determine the values labeled dx and dy in Figure 30-5 and add
them to the coordinates stored in the RECT structure.

The ClientToScreen() function performs this operation. Its parameters are the
handle to the application's window and the address of a structure of type POINT
containing two coordinate values that are to be updated to screen coordinates.
ClientToScreen() actually performs an addition operation on the coordinate pair: it
calculates the distances labeled dx and dy in Figure 30-5 and adds these values to
those stored in the structure variable. Since the POINT structure contains two mem-
bers of type long, and the RECT structure contains four members, you can consider
that the RECT structure member holds two structures of type POINT. The code in
the sample program is as follows:

RECT clientArea; // For Blt() destination

. . .

// Obtain client rectangle and convert to screen coordinates

GetClientRect(hWnd, &clientArea);

ClientToScreen(hWnd, (LPPOINT) &clientArea.left);

ClientToScreen(hWnd, (LPPOINT) &clientArea.right);

// Blit to the destination rectangle

hRet = lpDDSPrimary->Blt(&clientArea, lpDDSOffscreen, NULL,

DDBLT_WAIT, NULL);

if(hRet != DD_OK)

return DDInitFailed(hWnd, hRet,

"Blt() failed");

Notice that the ClientToScreen() function is called twice. First, for the coordinate
pair that holds the top-left corner of the client area rectangle; these are the zero val-
ues returned by GetClientRect(). Then, for the coordinate pair of the bottom-right
corner of the client area rectangle, which correspond to the x and y dimensions in
Figure 30-4. Similar processing must be performed in the WM_PAINT message inter-
cept.

The project folder DD Bitmap In Window, in the Chapter 30 folder of the book's
software package, contains two versions of the source program.

DirectDraw Bitmap Rendering 875

© 2003 by CRC Press LLC

Chapter 31

DirectDraw Animation

Topics:
• Animation in real time

• Preventing surface tearing

• Obtaining a timed pulse

• Sprite animation

• Flipping techniques

• Multiple buffering

• Improving performance

This chapter is about real-time computer animation using the DirectDraw facility in
DirectX. Before DirectX, animation in Windows was considered somewhat of an oxy-
moron. DirectX provides mechanisms that make possible graphics rendering at a high
speed. One of these mechanisms is the storage of image data in so-called back buffers.
The back buffers and the display surface can be rapidly flipped to simulate screen
movement. The results are often a smooth and natural simulation of movement that
can be used in computer games, simulations, and in high-performance applications.

Palette animation techniques were popular and effective in DOS programming,
but the resolution and color depth of state-of-the-art video systems makes them un-
necessary. Overlays, although powerful and useful, were never well defined and are
supported inconsistently in the video hardware. Since overlay operations are not
emulated in the HEL, they can only be used if implemented in the hardware. For
these reasons neither palette animation nor overlays are discussed.

31.1 Animating in Real-Time
Computer animation is defined as the simulation of movement or lifelike actions by
the manipulation of digital objects. It is a complex field on which many books have
been written. Here we are concerned with real-time animation, rather than with com-
puter-assisted techniques. Real-time animation is found in arcade machines, simula-

© 2003 by CRC Press LLC

tors, trainers, electronic games, multimedia applications, and in interactive programs
of many kinds. In real-time animation the computing machine is both the image gener-
ator, and the display media.

Real-time animation is possible because of the physiology of the human eye. In
our vision system, a phenomena is called visual retention makes the image of an ob-
ject persist in the brain for a brief period of time after it no longer exists. Smooth an-
imation is achieved by consecutively displaying images at a faster rate than our
period of visual retention. The sequence of rapidly displayed images creates in our
minds the illusion a moving object.

Motion picture technology uses an update rate of 24 images per second. Televi-
sion is based on a slightly faster rate. In animation programming the number of im-
ages displayed in a time period is called the frame rate. The threshold rate, which is
subject variations in different individuals, is that at which the animation begins to
appear bumpy or jerky. In motion picture technology the threshold is about 17 im-
ages per second. In computer animations the threshold rate is considerably higher.

While the animator's principal concerns are usually speed and performance, too
much speed can lead to image quality deterioration. A raster scan display system is
based on scanning each horizontal row of screen pixels with an electron beam. The
pixel rows are refreshed starting at the top-left screen corner of the screen and end-
ing at the bottom-right corner, as shown in Figure 1.2. The electron beam is turned
off at the end of each scan line, while the gun is re-aimed to the start of the next one.
This period is called the horizontal retrace. When this process reaches the last scan
line on the screen, the beam is turned off again while the gun is re-aimed to the
top-left screen corner. The period of time required to re-aim the electron gun from
the right-bottom of the screen to the top-left corner is known as the vertical retrace
or screen blanking cycle. The fact that a CPU is capable of executing hundreds of
thousands of instructions per second makes it possiblefor the image in video mem-
ory to be modified before the video system has finished displaying it. The result is a
breaking of the image, known as tearing.

31.1.1 The Animator's Predicament

Computer animation is a battle against time. The animation programmer resorts to ev-
ery possible trick in order to squeeze the maximum performance. Because execution
speed is limited by the hardware, most of the work of the programmer-animator con-
sists of making compromises and finding acceptable levels of undesirable effects. The
animator often has to decide how small an image satisfactorily depicts the object, how
much tearing is acceptable, how much bumpiness can be allowed in depicting move-
ment, how little definition is sufficient for a certain scenery, or with how few colors
can an object be realistically represented.

31.2 Timed Pulse Animation
Representing movement requires a display sequence, executed frame-by-frame, that
creates the illusion of motion. Figure 31-1 shows several frames in the animation of a
stick figure of a walking person.

878 Chapter Thirty-One

© 2003 by CRC Press LLC

Figure 31-1 Stick Figure Animation

The real-time display of the frame-by-frame sequence requires a mechanism for
producing a timed pulse. Windows applications have several ways of generating a
timed pulse. One is based on a program loop that reads the value in a ticker register
and proceeds to update the frame whenever it matches or exceeds a predefined con-
stant. A second and more effective approach is to enable a system timer pulse,
which can be intercepted in a callback function or by a window message. In the fol-
lowing sections we discuss both methods. Other alternatives, sometimes called
high-resolution timers, are discussed in the context of performance tuning, later in
this chapter.

31.2.1 The Tick Counting Method
Windows maintains a counter with the number of milliseconds elapsed since the sys-
tem was started. This period, called the Windows time, is stored in a DWORD variable
that can be read by code. Two identical functions allow reading this counter:
GetCurrentTime() and GetTickCount(). Windows documentation states that
GetCurrentTime() is now obsolete and should not be used. GetTickCount(), which
takes no parameters, returns the number of milliseconds elapsed since Windows was
started. Application code can determine the number of milliseconds elapsed since the
last call by storing the previous value in a static or public variable, as in the following
function:

// Public variables for counter operation
DWORD thisTickCount; // New ticker value
DWORD lastTickCount; // Storage for old value
static DWORD TIMER_VALUE = 25; // Constant for time lapse
.
.
.
static void UpdateFrame()
{

thisTickCount = GetTickCount(); // Read counter
if((thisTickCount - lastTickCount) < TIMER_VALUE)

return;
else
{
// Frame update operations go here

DirectDraw Animation 879

© 2003 by CRC Press LLC

lastTickCount = thisTickCount; // Reset tick counts
}

return;
}

In order for the ticker counter reading method to produce a smooth animation,
the value in the ticker counter must be polled frequently. One possible approach is
to include the frame update function call as part of the application's message loop.
The processing logic can be expressed as follows: If the application is active, and no
other messages are waiting to be processed, then call the frame update routine.

The PeekMessage() function checks the thread's message queue without pausing
for a message to be received. The function's general form is as follows:

BOOL PeekMessage(
LPMSG lpMsg, // 1
HWND hWnd, // 2
UINT wMsgFilterMin, // 3
UINT wMsgFilterMax, // 4
UINT wRemoveMsg // 5
);

The first parameter points to an MSG structure variable that contains message in-
formation.

The second parameter is the handle to the window whose messages are being
checked. This parameter can be set to NULL to check messages for the current ap-
plication.

The third and the fourth parameters are used to specify the lowest and highest
value of the messages to be checked. If both parameters are set to 0, then all mes-
sages are retrieved.

The fifth parameter is one of two predefined constants: PM_REMOVE is used if
the message is to be removed from the queue, and PM_NOPREMOVE otherwise. The
call returns TRUE if a message is available, and FALSE if not available.

Another API function often used in message polling routines is WaitMessage().
This function, which takes no parameters, suspends thread execution and does not
return until a new message is placed in the queue. The result is to yield control to
other threads when the current one has nothing to do with its CPU cycles.
PeekMessage() and WaitMessage() can be combined with GetMessage() in the fol-
lowing message polling routine:

MSG msg; // Message structure variable
int appActive = 0; // Application active switch

// initialized to inactive
.
.
.
while(1)

{
if(PeekMessage(&msg, NULL, 0, 0, PM_NOREMOVE)) {

if(!GetMessage(&msg, NULL, 0, 0)
return msg.wParam;

880 Chapter Thirty-One

© 2003 by CRC Press LLC

TranslateMessage(&msg);
DispatchMessage(&msg);

}
else if (appActive)
{
// call to read ticker counter and/or update frame
// go here
}
else

WaitMessage();
}

In using this sample code the application must define when to set and reset the
appActive swtich. This switch determines if the frame update function is called, or if
the thread just waits for another message. The method just described, that is, read-
ing the Windows tick count inside a program loop, is usually capable of generating a
faster pulse than the system timer intercept, described in the following section. On
the other hand the system timer intercept is easier to implement and more consis-
tent with the Windows multitasking environment. Therefore, the system timer inter-
cept method is generally preferred.

31.2.2 System Timer Intercept
An alternative way of obtaining a timed pulse is by means of the Windows system
timer. The SetTimer() function is used to define a time-out value, in milliseconds.
When this time-out value elapses, the application gets control either at the
WM_TIMER message intercept or in an application-defined callback function that has
the generic name TimerProc(). Either processing is satisfactory and which one is se-
lected is a matter of coding convenience. SetTimer() has the following general form:

UINT SetTimer(
HWND hWnd, // 1
UINT nIDEvent, // 2
UINT uElapse, // 3
TIMERPROC lpTimerFunc // 4
);

The first parameter is the handle to the Window associated with the timer.

The second parameter is the timer number. This allows more than one timer per
application. The timer identifier is passed to the WM_TIMER intercept and to the
TimerProc().

The third parameter is the number of milliseconds between timer intercepts.

The fourth parameter is the address of the application's TimerProc(), if one is im-
plemented, or NULL if processing is to be done in the WM_TIMER message inter-
cept.

If the call succeeds, the return value is an integer identifying the new timer. Six-
teen timers are available to applications, so it is a good idea to check if a timer is ac-
tually assigned to the thread. Applications must pass this timer identifier to the
KillTimer() function to destroy a particular timer. If the function fails to create a
timer, the return value is zero. Once a system timer has been initialized, processing

DirectDraw Animation 881

© 2003 by CRC Press LLC

usually consists of calling the application's frame update function directly, since the
timer tick need not be checked in this case.

Notice that code cannot assume that system timer events will be generated at the
requested rate. The only valid assumption is that the events will be produced ap-
proximately at this rate, and not more frequently. According to the Windows docu-
mentation, the minimum time between events is approximately 55 milliseconds.

31.3 Sprites
A sprite is a rather small screen object, usually animated at display time. Sprites find
use in general graphics programming, but most frequently in games. Sprite animation
can be simple or complex. In the first case an object represented in a single bitmap is
animated by translating it to other screen positions. Alternatively, the sprite itself can
perform an intrinsic action, for example, a sprite representing a rotating wheel. In
complex animation both actions are performed simultaneously: a rocket moves on the
screen until it reaches a point where it explodes. Sprites are typically encoded in one
or more images that represent the object or its action sequence. The images can be
stored in separate bitmaps, or in a single one. Figure 31-2 shows the image set of a a
Pacman-like sprite.

Figure 31-2 Animation Image Set

When the eight images in the set of Figure 31-2 are rapidly displayed, the
Pacman-like sprite appears to close its mouth. If the image set is then re-displayed
in reverse order, the mouth will appear to open. The 16-image sequence simulates a
biting action. If the Pacman-like sprite is also moved on the screen, then the results
would be a of complex sprite animation.

Sprites often use color keys in order to achieve transparency. To automate sprite
source color keying some applications assume that the pixel at the top-left corner of
the bitmap is the color key. Later in this chapter we discuss the use of dynamic color
keys.

It is possible to encode each image of the sprite image set in separate bitmaps,
but this usually leads to many disk files and complicated file access operations. A

882 Chapter Thirty-One

© 2003 by CRC Press LLC

better approach is to store the entire sprite image set in a single bitmap, and then
use source rectangle selection capability of either the Blt() or BltFast() functions to
pick the corresponding image.

Many factors determine how a sprite is actually rendered. One of the most impor-
tant ones is if the application executes in exclusive mode or windowed. Exclusive
mode programs can use back buffers and flipping manipulations that considerably
increase performance, while windowed programs are much more limited in the
available rendering options. Other factors are the sprite's size, the number of images
in the set, and the required rendering speed. Programmers often have to juggle these
and other program elements in order to come up with a satisfactory animation.

31.3.2 Creating Sprites

Animated programs spend considerable resources in manipulating sprites and back-
grounds. The better the image quality of these objects, the better graphics that result.
Backgrounds are usually animated by panning and zooming transformations, dis-
cussed later in this chapter. In this case the programmer's effort is limited to creating a
few, relatively large images. But sprites are a more complicated matter, specially if the
sprite is to have internal action. In the case of sprites the individual images in the set
must be tied to a common point. Perhaps the most important factor in creating good
sprites is the sprite itself. For some time the creation of attractive sprites was consid-
ered some sort of black art. 3D graphics makes it possible to create solid sprites that
add a new dimension to the animation.

The animator often spends a large part of his time in designing, drawing, encod-
ing, and testing sprites. This is particularly true in 3D graphics. The process of sprite
design implies several apparently contradictory decisions, for instance:

• The higher the resolution the better the image quality, but it is more difficult to animate
a larger sprite.

• The more images in the sprite image set the smoother the animation, but it takes longer
to display a large sprite image set.

The details of how the sprite image sets are produced is more in the realm of
graphics design than in programming. The higher the quality of the drawing or paint
program used, and the more experienced and talented the sprite artist, the better
the resulting image set. The DD Sprite Animation project, included in the book's
software package, shows two rotating, meshed gears. The image set consists of 18
images. In each image the gears are rotated by an angle of 2.5 degrees. After 18 itera-
tions the gears have rotated through an angle of 45 degrees. Since the gears have
eight teeth each, the images are symmetrical after a rotation of 45 degrees. For this
reason this animation requires one-eighth the number of images that would be nec-
essary to rotate a non-symmetrical object by the same angle. Figure 31-3 shows the
image set for the DD Animation Demo program.

DirectDraw Animation 883

© 2003 by CRC Press LLC

Figure 31-3 The Sprite Image Set for the DD Sprite Animation Program

31.3.3 Sprite Rendering
The actual display of the sprite requires obtaining a timing pulse and blitting the image
onto the screen. In each case we must decide whether the rendering is done with Blt()
or BltFast(), with or without transparency, using source or destination color keys, or
applying any blit-time transformations. The sprite image sequence is usually stored in
a single bitmap, as in Figure 31-3, but it is also possible to store several bitmaps in dif-
ferent disk files and then read all of these files into a single surface. In either case the
result is a surface with multiple images. The program logic selects the corresponding
portion of the bitmap at blit time.

Displaying partial images stored in a contiguous memory area or surface is made
possible by the source area definition capabilities of both Blt() and BltFast(). A
structure of type RECT can be used to store the offset of the source rectangle in the
surface. If the sprite image set is stored in a rectangular bitmap, and the bitmap is
then loaded onto a surface, code can then select which of the images in the set is
displayed during each time-pulse iteration by assigning values to the corresponding
members of the RECT structure. For example, the bitmap image set in Figure 31-3
contains a sequence of 18 individual rotations of the gears. Each of these individual
bitmaps is often called an animation frame, or simply, a frame. Figure 31-4 shows
the image set partitioned into six rows and three columns. The dimensions labeled x
and y refer to the size of each frame in the set.

Given the pixel size of each image in the set, once the number of rows and col-
umns in the image set are known, code can determine the coordinates of the RECT
structure variable for each frame. The dotted rectangle in Figure 31-4 delimits each
frame. The members of a structure variable named rect, of type RECT, are calcu-
lated using the consecutive frame number and the number of columns in the bitmap.
The case illustrated shows frame number 8, of a bitmap with six columns and three
rows.

In the DD Sprite Animation program, the processing has been generalized so that
the code can be used to display any rectangular bitmap image set. This makes it use-
ful for experimenting with various image sets before deciding which one is better
suited for the purpose at hand. Code starts by creating global variables that define
the characteristics of the image set. Code is as follows:

// Constants identifying the bitmap image set
static char bmapName[] = {"gears.bmp"};

884 Chapter Thirty-One

© 2003 by CRC Press LLC

static int imageCols = 6; // Number of image columns
static int imageRows = 3; // Number of rows

// Variables, constants, handles, and structure for bitmaps
int frameCount = (imageCols * imageRows) - 1;
int bmapXSize; // Calculated x size of bitmap
int bmapYSize; // Calculated y size of bitmap
HBITMAP aBitmap;
BITMAP bMap1; // Structures for bitmap data

Figure 31-4 Partitioning the Sprite Image Set

In this case the programmer defines the name of the bitmap and states the num-
ber of image columns and rows. Code uses these values to calculate to number of
frames; this number is stored in the variable frameCount. The dimensions of the
bitmap are obtained after it is loaded into memory. The x dimension is stored in the
variable bmapXSize and the y dimension in bmapYSize. The bitmap dimensions are
also used in the sample program to define the size of the application window, all of
which is shown in the following code fragment

//**************************************

// Load bitmap into memory

//**************************************

// Load the bitmap image into memory

aBitmap = (HBITMAP)LoadImage(NULL, bmapName,

IMAGE_BITMAP, 0, 0, LR_LOADFROMFILE);

DirectDraw Animation 885

0

0

2

1

1

2 3 4 5

x

y

rect.top (2 times x)
rect.left (1 times y)

rect.bottom (rect.top + y)
rect.right (rect.left + x)

© 2003 by CRC Press LLC

if (aBitmap == NULL)
DDInitFailed(hWnd, hRet,
"Bitmap load failed in DDLoadBitmap()");

// Get bitmap data
GetObject(aBitmap, sizeof (BITMAP), &bMap1);

// Calculate and store bitmap and image data
bmapXSize = bMap1.bmWidth / imageCols;
bmapYSize = bMap1.bmHeight / imageRows;

// Store bitmap in RECT structure variable
progWin.left = 0;
progWin.top = 0;
progWin.right = bmapXSize;
progWin.bottom = bmapYSize;

//***
// Create window with client area
// the same size as the bitmap
//***
// First adjust the size of the client area to the size
// of the bounding rectangle (this includes the border,
// caption bar, menu, etc.)

AdjustWindowRectEx(&progWin,
WS_SYSMENU | WS_CAPTION,
FALSE,
0);

hWnd = CreateWindowEx(0, // Extended style
szAppName,
"Sprite Animation Demo",
WS_SYSMENU | WS_CAPTION,
CW_USEDEFAULT,
CW_USEDEFAULT,
(progWin.right - progWin.left),
(progWin.bottom - progWin.top),
NULL, // Handle of parent
NULL, // Handle to menu
hInstance, // Application instance
NULL); // Additional data

if (!hWnd)
return FALSE;

The actual display of the bitmap is performed by a local function named
BlitSprite(). The function begins by checking the tick counter. If the difference be-
tween the old and the new tick counts is smaller than the predefined delay, execu-
tion returns immediately. If it is equal to or larger than the delay, then the offset of
the next frame in the source surface is calculated and the bitmap is blitted by means
of the Blt() function. In this case the frame number counter is bumped; if this is the
last frame in the set, the counter is restarted. Execution concludes by updating the
tick counter variable. Coding is as follows:

//**************************************
// update animation frame
//**************************************
static void BlitSprite()
{

thisTickCount = GetTickCount();

886 Chapter Thirty-One

© 2003 by CRC Press LLC

if((thisTickCount - lastTickCount) < TIMER_VALUE)
return;

else
{
// Update the sprite image with the current frame.
bmapArea.top = ((frameNum / imageCols) * bmapYSize);
bmapArea.left = ((frameNum % imageCols) * bmapXSize);
bmapArea.bottom = bmapArea.top + bmapYSize;
bmapArea.right = bmapArea.left + bmapXSize;

hRet = lpDDSPrimary->Blt(&clientArea, lpDDSOffscreen,
&bmapArea, DDBLT_WAIT, NULL);

if(hRet != DD_OK)
DDInitFailed(hWnd, hRet, "Blt() failed");

// Update the frame counter
frameNum++;
if(frameNum > imageCount)

frameNum = 0;
lastTickCount = thisTickCount;
return;

}
}

Color Figure 9 is a screen snapshot of the DD Animation Demo program.

31.4 Page Flipping
Page flipping is a rendering technique frequently used in multimedia applications, sim-
ulations, and computer games. The process is reminiscent of the schoolhouse method
of drawing a series of images, each consecutive one containing a slight change. The
figures are drawn on a paper pad. By thumbing through the package you perceive an il-
lusion of movement. In the simplest version of computerized page flipping the pro-
grammer sets up two DirectDraw surfaces. The first one is the conventional primary
surface and the other one is back buffer. Code updates the image in the back buffer and
then flips the back buffer and the primary surface. The result is usually a clean and effi-
cient animation effect. Figure 31-5, on the following page, shows the sprite animation
by page flipping.

In Figure 31-5 we see that consecutive images in the animation set are moved
from the image set onto the back buffer. The back buffer is then flipped with the pri-
mary surface. In this illustration the arrows represent the flip operations. The back
buffers are shown in dark gray rectangles. The sequence of operations is: draw to
back buffer, flip, draw to back buffer, flip, and so on.

One limitation of multiple buffering and page flipping is that it can only be used in
DirectDraw exclusive mode. This is because flipping requires manipulating video
memory directly, which is not possible in a windowed environment. In the
DirectDraw flip operation it is the pointers to surface memory for the primary sur-
face and the back buffers that are swapped. In other words, flipping is actually per-
formed by switching pointers, not by physically copying data. By exception, when
the back buffer cannot fit into display memory, or when the hardware does not sup-
port flipping, DirectDraw performs the flip by copying the surfaces.

DirectDraw Animation 887

© 2003 by CRC Press LLC

http://www.itknowledgebase.net/books/1232/color Insert.pdf

Figure 31-5 Sprite Animation by Page Flipping

In programming a flip-based animation you should keep in mind that code need
only access the back buffer surface in order to perform the image updates. Every
time the DirectDraw Flip() function is called, the primary surface becomes the back
buffer and vice versa. The surface pointer to the back buffer always points to the
area of video memory not displayed, and the surface pointer to the primary surface
points to the video memory being displayed. If more than one back buffer is in-
cluded in the flipping chain, then the surfaces are rotated in circular fashion. The
case of a flipping chain with a primary surface and two back buffers is shown in Fig-
ure 31-6. In this case the flip operation rotates the surfaces as shown.

Initializing and performing flip animation consists of several well-defined steps.
In most cases the following operations are necessary:

• Creating a flipping chain.

888 Chapter Thirty-One

primary surface

back buffer

Sprite image set

© 2003 by CRC Press LLC

• Obtaining a back buffer pointer.

• Drawing to the back buffer.

• Flipping the primary surface and the back buffer.

Figure 31-6 Flipping Chain with Two Back Buffers

The first two steps of this sequence relate to initializing the flipping surfaces, and
the second two steps refer to flip animation rendering operations. Table 31-1 lists
the flipping-related functions in DirectDraw.

Table 31-1

Flipping-Related DirectDraw Functions

FUNCTION OBJECT ACTION

CreateSurface() IDIRECTDRAW7 Create surface and
Attached back buffers.

GetAttachedSurface() IDIRECTDRAWSURFACE7 Obtain back buffer
pointer.

Flip() IDIRECTDRAW7 Perform flipping.
GetFlipStatus() IDIRECDRAWSURFACE7 Indicates whether a

surface has concluded
flipping.

The function FlipToGDISurface(), which is rarely used in practice, is not dis-
cussed in this book.

31.4.1 Flipping Surface Initialization
Any DirectDraw surface can be constructed as a flipping surface, although most com-
monly the flipping surfaces consist of a primary surface and at least one back buffer.
The surfaces involved in the flipping are called the flipping chain. Creating the flipping
chair requires two DirectDraw functions: CreateSurface() is used to create both the
primary surface and the back buffer, and GetAttachedSurface() to obtain the back
buffer pointer. In the case of a flipping chain, the call to CreateSurface() must include
th e f lag DDSD_BACKBUF F E R C O UNT, which def ines the member
dwBackBufferCount, which in turn is used to set the number of back buffers in the

DirectDraw Animation 889

Back buffer 2

Primary surface

Back buffer 1

© 2003 by CRC Press LLC

chain. Other flags usually listed in the call are DDSCAPS_PRIMARYSURFACE,
DDSCAPS_FLIP, DDSCAPS_COMPLEX, and DDSCAPS_VIDEOMEMORY. The fol-
lowing code shows a call to CreateSurface() for a flipping chain consisting of a pri-
mary surface and a single back buffer:

DDSURFACEDESC2 ddsd;
.
.
.

// Create the primary surface with a back buffer
ZeroMemory(&ddsd, sizeof(ddsd)); // Fill structure with zeros

// Fill in other members
ddsd.dwSize = sizeof(ddsd);
ddsd.dwFlags = DDSD_CAPS | DDSD_BACKBUFFERCOUNT;
ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE |

DDSCAPS_FLIP |
DDSCAPS_COMPLEX |
DDSCAPS_VIDEOMEMORY;

ddsd.dwBackBufferCount = 1;
hRet = lpDD7->CreateSurface(&ddsd, &lpDDSPrimary, NULL);

If the call to CreateSurface() returns DD_OK, then the flipping chain surfaces
have been created. In order to use the flipping chain, code must first obtain the
pointer to the back buffer, since the call to CreateSurface() returns only the pointer
to the primary surface (in its second parameter). The GetAttachedSurface() func-
tion has the following general form:

HRESULT GetAttachedSurface(
LPDDSCAPS lpDDSCaps, // 1
LPDIRECTDRAWSURFACE7 FAR *lplpDDAttachedSurface // 2
);

The first parameter is a pointer to a DDSCAPS2 structure that contains the hard-
ware capabilities of the surface.

The second parameter is the address of a variable that is to hold the pointer, of
type IDIRECTDRAWSURFACE7, retrieved by the call. The retrieved surface
matches the description in the first parameter. If the function succeeds, it returns
DD_OK. If it fails it returns one of the following errors:

• DDERR_INVALIDOBJECT

• DDERR_INVALIDPARAMS

• DDERR_NOTFOUND

• DDERR_SURFACELOST

The following code fragment obtains the back buffer surface pointer for the pri-
mary surface previously described.

// Get back buffer pointer
ddscaps.dwCaps = DDSCAPS_BACKBUFFER;
hRet = lpDDSPrimary->GetAttachedSurface(&ddscaps,

&lpDDSBackBuf);

If the calls to CreateSurface() and GetAttachedSurface() are successful,
DirectDraw creates two attached surfaces in display memory, and the application

890 Chapter Thirty-One

© 2003 by CRC Press LLC

retrieves the pointers to each of these surfaces. The pointer to the back buffer sur-
face is used at draw time, and the pointer to the primary surface at flip time.
DirectDraw automatically switches the surface pointers, transparently to applica-
tion code.

31.4.2 The Flip() Function
Once the application has concluded drawing, and the frame timer count has expired,
the actual rendering is performed by calling DirectDraw Flip(). The Flip() function ex-
changes the surface memory of the primary surface and the back buffer. If more than
one back buffer is specified when the flip chain is created, then each call to Flip() ro-
tates the surfaces in a circular manner, as shown in Figure 31-6. When DirectDraw flip-
ping is supported by the hardware, as is the case in most current video cards, flipping
consists of changing pointers and no image data is physically moved. The function's
general form is as follows:

HRESULT Flip(
LPDIRECTDRAWSURFACE7 lpDDSurfaceTargetOverride, // 1
DWORD dwFlags // 2
);

The first parameter, sometimes called the target override, is the address of the
IDirectDrawSurface7 interface for any surface in the flipping chain. The default
value for this parameter is NULL, in which case DirectDraw cycles through the flip
chain surfaces in the order they are attached to each other. If this parameter is not
NULL, then DirectDraw flips to the specified surface instead of the next surface in
the flipping chain, thus overriding the default order. The call fails if the specified
surface is not a member of the flipping chain.

The second parameter specifies one of the predefined constants that control flip
options. The constants are listed in Table 31-2.

Table 31-2

DirectDraw Flip() Function Flags

FLAG ACTION

DDFLIP_EVEN Used only when displaying video in an overlay
surface. The new surface contains data from the even
field of a video signal. Cannot be used with the
DDFLIP_ODD flag.

DDFLIP_INTERVAL2
DDFLIP_INTERVAL3
DDFLIP_INTERVAL4 Indicate how many vertical retraces to wait between

each flip. The default is 1. DirectDraw returns
DERR_WASSTILLDRAWING until the specified
number of vertical retraces has occurred. If
DDFLIP_INTERVAL2 is set, DirectDraw flips on every
second vertical retrace cycle. If DDFLIP_INTERVAL3,
on every cycle, and so on.These flags are effective
only if DDCAPS2_FLIPINTERVAL is set in the
DDCAPS structure for the device.

(continued)

DirectDraw Animation 891

© 2003 by CRC Press LLC

Table 31-2

DirectDraw Flip() Function Flags (continued)

FLAG ACTION

DDFLIP_NOVSYNC DirectDraw performs the physical flip as close as
possible to the next scan line. Subsequent
operations involving the two flipped surfaces do
not check to see if the physical flip has finished,
that is, they do not return
DDERR_WASSTILLDRAWING.
This flag allows an application to perform flips at
a higher frequency than the monitor refresh rate.
The usual consequence is the introduction of
visible artifacts. If DDCAPS2_FLIPNOVSYNC is not
set in the DDCAPSstructure for the device,
DDFLIP_NOVSYNC has no effect.

DDFLIP_ODD Used only when displaying video in an overlay
surface. The new surface contains data from the odd
field of a video signal. This flag cannot be used
with the DDFLIP_EVEN flag.

DDFLIP_WAIT If the flip cannot be set up because the state of
the display hardware is not appropriate, then the
DDERR_WASSTILLDRAWING is immediately
returned and no flip occurs. Setting this flag causes
Flip() to continue trying if it receives the
DDERR_WASSTILLDRAWING. In this case the call
does not return until the flipping operation has been
successfully set up, or another error, such as
DDERR_SURFACEBUSY, is returned.

If the Flip() call succeeds, the return value is DD_OK. If it fails, one of the follow-
ing errors is returned:

• DDERR_GENERIC

• DDERR_INVALIDOBJECT

• DDERR_INVALIDPARAMS

• DDERR_NOFLIPHW

• DDERR_NOTFLIPPABLE

• DDERR_SURFACEBUSY

• DDERR_SURFACELOST

• DDERR_UNSUPPORTED

• DDERR_WASSTILLDRAWING

The Flip() function can be called only for surfaces that have the DDSCAPS_FLIP
and DDSCAPS_FRONTBUFFER capabilities. The first parameter is used in rare
cases, that is, when the back buffer is not the buffer that should become the front
buffer. In most cases this parameter is set to NULL. In its default state, the Flip()
function is always synchronized with the vertical retrace cycle of the video control-
ler. When working with visible surfaces, such as a primary surface flipping chain,
Flip() function is asynchronous, except if the DDFLIP_WAIT flag is included.

892 Chapter Thirty-One

© 2003 by CRC Press LLC

Applications should check if Flip() returns with a DDERR_SURFACELOST. If so,
code can make an attempt to restore the surface by means of the DirectDraw Re-
store() function, discussed in Chapter 15. If the restore is successful, the application
loops back to the Flip() call and tries again. If the restore is unsuccessful, the appli-
cation breaks from the while loop, and returns a terminal error.

31.4.3 Multiple Buffering
The call to Flip() can return before the actual flip operation takes place, because the
hardware waits until the next vertical retrace to actually flip the surfaces. While the
Flip() operation is pending, the back buffer directly behind the currently visible sur-
face cannot be locked or blitted to. If code attempts to call Lock(), Blt(), BltFast(), or
GetDC() while a flip is pending, the call fails and the function returns DDERR-
_WASSTILLDRAWING. The effect of the surface update time on the frame rate is
shown in Figure 31-7.

Figure 31-7 Surface Update Time and Frame Rate

Case A in Figure 31-7 shows an application with a relatively short surface update
time. In this case the rendering is finished well before the next vertical retrace cycle
starts. The result is that the image is updated at the monitor's refresh rate. In Case B
the rendering time is longer than the refresh cycle. In this case, the application's
frame rate is reduced to one-half the monitor's refresh rate. In such situations, any
attempt to access the back buffer during the period represented by the dark gray
rectangles results in DDERR_WASSTRILLDRAWING error message.

A possible way of improving the frame rate is by using two back buffers instead
of a single one. With two back buffers the application can draw to the back buffer
that is not immediately behind the primary surface, thereby reducing the wasted
t i m e s i n c e t h e b l i t s t o t h i s r e a r m o s t s u r f a c e a r e n o t s u b j e c t t o t h e
DDERR_WASSTILLDRAWING error condition. This is shown in case B in Figure
31-7.

DirectDraw Animation 893

vertical
retrace

start

CASE A

= drawing

= busy

1 2 3

CASE B

© 2003 by CRC Press LLC

Creating a flipping chain with two or more back buffers is no great programming
complication. DirectDraw takes care of flipping the surfaces and the application
draws using the same back buffer pointer. The middle buffer, or buffers, are ignored
by the code, which only sees the primary surface and a back buffer. The one draw-
back of multiple buffering is that each back buffer requires as much display memory
as the primary surface. Also the law of diminishing returns applies to back buffers:
the more back buffers the less increase in performance for each back buffer. Past a
certain limit, adding more back buffers will actually degrade performance.

Exclusive mode applications are sometimes forced to select lower resolutions or
color depths in order to make possible multiple back buffers. For example, in a
video system with 2Mb of video memory, executing in 640-by-480 pixels resolution
in 24-bit color can only create one back buffer, since the primary surface requires
921,600 bytes. By reducing the color depth to 16 bits, the sample application needs
only 614,400 bytes for the primary surface, and it can now create two back buffers in
display memory. The following code fragment shows the creation of a primary sur-
face with two back buffers:

//Global variables
LPDIRECTDRAWSURFACE7 lpDDSPrimary = NULL;
LPDIRECTDRAWSURFACE7 lpDDSBackBuf = NULL;
DDSURFACEDESC2 ddsd; // Surface description
HRESULT hRet;
. . .
// Create a primary surface with two back buffers
// ddsd is a structure of type DDSRUFACEDESC2

ZeroMemory(&ddsd, sizeof(ddsd)); // Fill structure with zeros
// Fill in other members

ddsd.dwSize = sizeof(ddsd);
ddsd.dwFlags = DDSD_CAPS | DDSD_BACKBUFFERCOUNT;
ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE |

DDSCAPS_FLIP |
DDSCAPS_COMPLEX |
DDSCAPS_VIDEOMEMORY;

ddsd.dwBackBufferCount = 2; // Two back buffers requested
hRet = lpDD4->CreateSurface(&ddsd, &lpDDSPrimary, NULL);
// At this point code can examine hRet for DD_OK and
// provide alternate processing if the surface creation
// call failed
// Get backbuffer pointer
ddscaps.dwCaps = DDSCAPS_BACKBUFFER;
hRet = lpDDSPrimary->GetAttachedSurface(&ddscaps,

&lpDDSBackBuf);
// At this point code can examine hRet for DD_OK and
// provide alternate processing if the back buffer pointer
// was not returned

31.5 Animation Programming
Exclusive mode applications that use flipping animation start by initializing
DirectDraw, setting a display mode, creating the flip chain, obtaining the correspond-
ing pointers to the front and back buffers, and setting up a timer mechanism that pro-
duces the desired beat. Once these housekeeping chores are finished, the real work
can begin, which consists of rendering the imagery to the back buffer, usually by
means of blits from other surfaces in video memory or off screen. The design and cod-

894 Chapter Thirty-One

© 2003 by CRC Press LLC

ing challenge in creating an animated application using DirectDraw can be broken
down into two parts:

1. Assign the minimum resources that will allow the program to perform satisfactorily.

2. Make the best use of these resources in order to produce the finest and smoothest ani-
mation possible.

31.5.1 Background Animation
A typical computer game or real-time simulation often contains two different types of
graphics objects: backgrounds and sprites. The backgrounds consist of larger bitmaps
over which the action takes place. For example, a flight simulator program can have
several background images representing different views from the cockpit. These may
include landscapes, seascapes, and views of airports and runways used during takeoff
and landing. A computer game that takes place in a medieval castle may use back-
grounds depicting the various castle rooms and hallways where the action takes place.
Sprites, on the other hand, are rather small, animated objects represented in two or
three dimensions. In the flight simulator program the sprites could be other aircraft
visible from the cockpit and the cabin instruments and controls that are animated dur-
ing the simulation. In the computer game, the sprites could be medieval knights that
do battle in the castle, as well as weapons and other objects used in the battle.

31.5.2 Panning Animation
The design and display of background images is relatively straightforward. The most
difficult part consists of creating the background imagery and using clipping and
blit-time rectangles to generate panning and zoom effects. The project named DD
Panning Animation in the book's software package, demonstrates panning animation
of a background bitmap. In the program the source rectangle has the same vertical di-
mension as the background bitmap, which is 480 pixels. The image bitmap is 1280 pix-
els wide and the source rectangle is one-half that size (640 pixels). This creates a
source window that can be moved 639 pixels to the right from its original position. The
white, dotted rectangle in Color Figure 10 represents the source rectangle within the
background bitmap.

The program DD Panning Animation, in the book's software package, demon-
strates panning animation. The logic is based on panning to right until the image
right border is reached, and then reverse the panning direction until the left border
is reached. The primary surface and a single back buffer are created and a clipper is
installed in both surfaces. The background bitmap, in this case a mountain range, is
stored in the file named image.bmp. This bitmap is twice as wide as the viewport;
therefore, the source rectangle can moved horizontally within the bitmap. The pan-
ning variables and the display routine are coded as follows:

// Global panning animation controls
RECT thisPan; // Storage for source rectangle
LONG panIteration = 0; // panning iteration counter
LONG panDirection = 0; // 1 = left, 0 = right
// Constants
LONG PAN_LIMIT_LEFT = 1;
LONG PAN_LIMIT_RIGHT = 639;
.

DirectDraw Animation 895

© 2003 by CRC Press LLC

http://www.itknowledgebase.net/books/1232/color Insert.pdf

.

.
//***
// Name: PanImage
// Desc: Update back with a source rectangle that
// is a portion of the background bitmap
// and flip to create a panning animation
//***
static void PanImage()
{

thisTickCount = GetTickCount();
if((thisTickCount - lastTickCount) < TIMER_VALUE)

return;

else
{

lastTickCount = thisTickCount;

// Bump pan iteration according to direction
if(panDirection == 1)

panIteration--;
else

panIteration++;

// Reset panning iteration counter at limits
if(panIteration == PAN_LIMIT_RIGHT)

panDirection = 1; // Pan left
if(panIteration == PAN_LIMIT_LEFT)

panDirection = 0;

// Set panning rectangle in source image
thisPan.left = panIteration;
thisPan.top = 0;
thisPan .right = 640 + panIteration;
thisPan.bottom = 480;

// Blit background bitmap to back buffer
hRet = lpDDSBackBuf->Blt(NULL,

lpDDSBackGrnd,
&thisPan,
DDBLT_WAIT,
NULL);

if(hRet != DD_OK){
DDInitFailed(hWnd, hRet,

"Blt() on background failed");
return;
}

// Flip surfaces
hRet = lpDDSPrimary->Flip(NULL, DDFLIP_WAIT);
if(hRet != DD_OK){

DDInitFailed(hWnd, hRet,
"Flip() call failed");

return;
}

return;
}

}

896 Chapter Thirty-One

© 2003 by CRC Press LLC

The local function named PanImage(), listed previously, performs the panning an-
imation. First it bumps and checks the ticker counter. If the counter has not yet ex-
pired, execution returns immediately. Code then checks the panDirection variable.
If the direction is 1, then panning is in the left-to-right cycle and the panIteration
variable is decremented. If not, then panning is right-to-left and the panIteration
variable is incremented. When either variable reaches the limit, as defined in the
constants PAN_LIMIT_LEFT and PAN_LIMIT_RIGHT, the panning direction is re-
versed. A structure variable named thisPan, of type RECT, is used to define the
source rectangle for the blit. The panIteration variable is used to define the offset of
the source rectangle within the image bitmap. Since panning takes place on the hori-
zontal axis only, and the display mode is defined in the code, then the image size can
be hard-coded into the thisPan structure members. Once the image is blitted onto
the back buffer, surfaces are flipped in the conventional manner.

31.5.3 Zoom Animation
Zooming is a background animation that can be implemented by manipulating the
source or destination rectangles, or both. This is possible due to the fact that both
Blt() and BltFast() perform automatic scaling when the source and destination areas
are of a different size. The simplest approach to zooming animation consists of reduc-
ing the area covered by the source rectangle and letting Blt() or BltFast() perform the
necessary adjustments. Color Figure 10 shows the initial and final source rectangles in
a zoom animation.

The program DD Zoom Animation.cpp, in the book's software package, demon-
strates zoom animation using an image of Mount Rushmore. The program action is
to zoom into a bitmap by changing the position and progressively reducing the di-
mensions and the source rectangle. When an arbitrary maximum zoom value is
reached, the process reverses and the source rectangle is made progressively larger
until it is restored to the original size. As in the panning animation demo program,
the primary surface and a single back buffer are created, and a clipper is installed in
both surfaces. The background image, which in this case is stored in the file im-
age.bmp, is then moved to an offscreen surface. This bitmap is the size of the
viewport. In the following code fragment we show the zoom controls and display op-
erations that are different from the panning animation, previously listed:

// Zoom animation controls
RECT thisZoom; // Storage for source rectangle
LONG zoomIteration = 0; // panning iteration counter
LONG zoomDirection = 0; // 1 = left, 0 = right
// Constants
LONG ZOOM_LIMIT_OUT = 1;
LONG ZOOM_LIMIT_IN = 200;
.
.
.
// Bump zoom iteration according to direction
if(zoomDirection == 1)

zoomIteration--;
else

zoomIteration++;

// Reset zoom iteration counter at limits

DirectDraw Animation 897

© 2003 by CRC Press LLC

http://www.itknowledgebase.net/books/1232/color Insert.pdf

if(zoomIteration == ZOOM_LIMIT_IN)
zoomDirection = 1; // Pan left

if(zoomIteration == ZOOM_LIMIT_OUT)
zoomDirection = 0;

// Set zoom rectangle in source image
thisZoom.left = zoomIteration;
thisZoom.top = zoomIteration;
thisZoom.right = 640 - zoomIteration;
thisZoom.bottom = 480 - ((zoomIteration * 3)/4);

Notice that the dimensioning of the source rectangle for zoom animation must
take into account the screen's aspect ratio, which is approximate 3:4. Therefore the
y coordinate of the end point of the source rectangle is changed at a rate slower
than the x coordinate. If both coordinates were reduced by the same amount, the re-
sulting images would be stretched along this axis during the zoom.

31.5.4 Animated Sprites
Sprites are often animated. An animated sprite can be a fuel gauge on the dashboard of
a race car simulation, a spaceship on a futuristic game, or a medieval warrior. De-
signing, encoding, and manipulating sprites require all the talents and skills of the ani-
mator. The project named DD Multi Sprite Animation, in the book's software package,
demonstrates sprite animation by simultaneously moving three screen objects at dif-
ferent speeds. Color Figure 12 is a screen snapshot of the demonstration program. The
three hot-air balloons are the sprites. During program execution the balloons rise at
different speeds. The largest balloon, which appears closer to the viewer, moves up
one pixel during every iteration of the frame counter. The balloon on the left moves ev-
ery second iteration and the one on the right every third iteration. The background is
fixed in this sample.

Controlling several sprites, simultaneously displayed, can be a challenge regard-
ing program design and data structures, but does not present any major program-
ming problems in DirectDraw. The program DD Multi Sprite Animation starts by
creating a primary surface and two back buffers. The use of a second back buffer
improves program execution in most machines. A clipper is then installed on both
surfaces. The clipper makes the animated objects appear to come into the display
area, and disappear from it, softly and pleasantly. The background image, which is
located in the bitmap named backgrnd.bmp, is stored in an offscreen surface. This
bitmap is the size of the viewport. The code creates three additional surfaces, one
for each of the sprites, and moves the sprite bitmaps into these surfaces. The sprite
surfaces are assigned a source color key to make the bitmap backgrounds transpar-
ent at display time. To ensure a smooth animation, all the surfaces in the sample pro-
gram are located in video memory.

Sprite control in the demo program is based on a structure of type SpriteCtrl de-
fined globally, as follows:

// Sprite control structure
struct SpriteCtrl
{

LONG startY; // Start x coordinate
LONG startX; // Start y coordinate

898 Chapter Thirty-One

© 2003 by CRC Press LLC

http://www.itknowledgebase.net/books/1232/color Insert.pdf

LONG bmapX; // Width of bitmap
LONG bmapY; // Height of bitmap
LONG iterMax; // Maximum iteration count
LONG skipFactor; // Display delay
LONG iteration; // Sprite iteration counter

} Sprite1, Sprite2, Sprite3;

Three structure variables, named Sprite1, Sprite2, and Sprite3 are allocated, one
for each animated object. The sprites are numbered left-to-right as they are dis-
played, as shown in Color Figure 11. Each structure variable contains the members
startX and startY that define the start coordinates for each sprite. The members
bmapX and bmapY store the bitmap dimensions, which are obtained as the bitmaps
are loaded from their files.

The sprite animation control is performed by the last three members of the
SpriteCtrl structure. The iterMax member stores the value of the iteration counter at
which the sprite is repositioned to the bottom of the screen. The skipFactor member
determines how many iterations are skipped at display time. This value is used to
slow down the smaller balloons. Sprite1 is assigned a skipFactor of 2. Sprite2, the
largest one, has skipFactor equal to 1. Sprite3, the smallest one, has a skipFactor of
3. The iteration member keeps track of the number of frame beats corresponding to
each sprite. The counters are reset when the iterMax value is reached for each
sprite. The range of the iteration counters are from 0 to iterMax. The code initializes
the structure members for each sprite, as follows:

//**
// Fill SpriteCtrl structure members for each sprite
//**
// Sprite1 is balloon bitmap in bMap1
// Resolution is 640 by 480 pixels
Sprite1.startY = 479; // Starts at screen bottom
Sprite1.startX = 70; // x for start position
Sprite1.bmapX = bMap1.bmWidth;
Sprite1.bmapY = bMap1.bmHeight;
Sprite1.skipFactor = 2;
Sprite1.iterMax = (480+(bMap1.bmHeight)) * Sprite1.skipFactor;
Sprite1.iteration = 50; // Init iteration counter
// Sprite2 is balloon bitmap in bMap2
Sprite2.startY = 479; // Starts at screen bottom
Sprite2.startX = 240; // x for start position
Sprite2.bmapX = bMap2.bmWidth;
Sprite2.bmapY = bMap2.bmHeight;
Sprite2.skipFactor = 1;
Sprite2.iterMax = 480+(bMap2.bmHeight);
Sprite2.iteration = 50; // Init iteration counter
// Sprite3 is balloon bitmap in bMap3
Sprite3.startY = 479; // Starts at screen bottom
Sprite3.startX = 500; // x for start position
Sprite3.bmapX = bMap3.bmWidth;
Sprite3.bmapY = bMap3.bmHeight;
Sprite3.skipFactor = 3;
Sprite3.iterMax = (480+(bMap3.bmHeight)) * Sprite3.skipFactor;
Sprite3.iteration = 20; // Init iteration counter

During initialization, the dimensions of each sprite are read from the correspond-
ing bmWidth and bmHeight members of the BITMAP structure for each sprite. This

DirectDraw Animation 899

© 2003 by CRC Press LLC

http://www.itknowledgebase.net/books/1232/color Insert.pdf

ensures that the code continues to work even if the size of a sprite bitmap is
changed. The maximum number of iterations for each sprite is calculated by adding
the number of screen pixels in the selected mode (480), to the bitmap pixel height,
and multiplying this sum by the sprite's skip factor. At display time the surface with
the background bitmap is first blitted to the back buffer. Then the code calls a local
function, named SpriteAction(), for each sprite. The FlipImages() function is coded
as follows:

//***
// Name: FlipImages
// Desc: Update back buffer and flip
//***

static void FlipImages()
{

thisTickCount = GetTickCount();
if((thisTickCount - lastTickCount) < TIMER_VALUE)

return;
else
{

lastTickCount = thisTickCount;

// Blit background bitmap to back buffer
hRet = lpDDSBackBuf->Blt(NULL,

lpDDSBackGrnd,
NULL,
DDBLT_WAIT,
NULL);

if(hRet != DD_OK){
DDInitFailed(hWnd, hRet,

"Blt() on background failed");
return;

}

// Animate sprites. Farthest ones first
SpriteAction(Sprite3, lpDDSBmap3);
SpriteAction(Sprite2, lpDDSBmap2);
SpriteAction(Sprite1, lpDDSBmap1);

// Flip surfaces
hRet = lpDDSPrimary->Flip(NULL, DDFLIP_WAIT);
if(hRet != DD_OK){

DDInitFailed(hWnd, hRet,
"Flip() call failed");

return;
}

return;
}

}

The actual display of the sprites is performed by the local function named
SpriteAction(). This function receives the SpriteCtrl structure variable for the sprite
being animated, and the pointer to the surface that contains the sprite image. The
code checks the iteration number for the sprite against the maximum count, to de-
termine if the iteration counter needs resetting. Then the position of the sprite is
calculated by dividing the current iteration number by the skip factor. This informa-

900 Chapter Thirty-One

© 2003 by CRC Press LLC

tion is stored in a RECT structure corresponding to the destination surface rectan-
gle and the Blt() function is called. SpriteAction() code is as follows:

//**
// Name: SpriteAction
// Desc: Animate a sprite according
// to its own parameters
// PRE:
// 1. Pointer to structure containing
// sprite data
// 2. Pointer to DirectDraw surface
// containing sprite bitmap
//***
void SpriteAction(SpriteCtrl &thisSprite,

LPDIRECTDRAWSURFACE4 lpDDSBmap)
{

RECT destSurf;
LONG vertUpdate;

thisSprite.iteration++;

if(thisSprite.iteration == thisSprite.iterMax)
thisSprite.iteration = 0;

vertUpdate = thisSprite.iteration / thisSprite.skipFactor;

// Set coordinates for balloon1 display
destSurf.left = thisSprite.startX;
destSurf.top = thisSprite.startY - vertUpdate;
destSurf.right = destSurf.left + thisSprite.bmapX;
destSurf.bottom = destSurf.top + thisSprite.bmapY;

// Use Blt() to blit bitmap from the off-screen surface
// (->lpDDSBitamp), onto the back buffer (->lpDDSBackBuf)
hRet = lpDDSBackBuf->Blt(&destSurf,

lpDDSBmap,
NULL,
DDBLT_WAIT | DDBLT_KEYSRC,
NULL);

if(hRet != DD_OK){
DDInitFailed(hWnd, hRet,

"Blt() on sprite failed");
return;

}
return;

}

After the background bitmap and all three sprites have been blitted onto the back
buffer, the code calls the Flip() function to render the results onto the primary sur-
face.

31.6 Fine-Tuning the Animation
In computer animation the greatest concern is to produce a smooth and uniform ef-
fect, with as little bumpiness, screen tearing, and interference as possible. Today's ma-
chines, with 1000 MHz and faster CPUs, video cards with graphics coprocessors and 8,
16, or more megabytes of video memory, high-speed buses, and DirectX software, can

DirectDraw Animation 901

© 2003 by CRC Press LLC

often produce impressive animations with straightforward code. For example, the DD
Multi Sprite Animation program, in the book's software package, smoothly animates
three sprites, even when running in a 200-MHz Pentium machine equipped with a
low-end display card and 2Mb of video memory.

In most cases the animation programmer is pushing graphics performance to its
limits. If the animator finds that the code can successfully manipulate three sprites,
then perhaps it can manipulate four, or even five. The rule seems to be: the more ac-
tion, and the faster the action, the better the animation. In this section we discuss
several topics that relate to improving program performance or to facilitating imple-
mentation.

31.6.1 High-Resolution Timers
Earlier in this chapter we explored two methods of obtaining the timed pulse that is
used to produce frame updates in an animation routine. One method is based on a mil-
liseconds counter maintained by the system, which can be read by means of the
GetTickCount() function. The other one sets an interval timer that operates as an
alarm clock. When the timer lapse expires the application receives control, either in a
message handler intercept or a dedicated callback function. Although both methods
are often used, processing based on reading the windows tick counter has consider-
ably better resolution than the alarm clock approach. Windows documentation states
that the resolution of the timer intercepts is approximately 55 milliseconds. This pro-
duces a beat of 18.2 times per second, which is precisely the default speed of the PC in-
ternal clock. In many cases this beat is barely sufficient to produce smooth and lifelike
animations.

There are several ways of improving the frequency and reliability of the timed
pulse. The multimedia extensions to Windows include a high-resolution timer with a
reported resolution of 1 millisecond. The multimedia timer produces more accurate
results because it does not rely on WM_TIMER messages posted on the queue. Each
multimedia timer has its own thread, and the callback function is invoked directly
regardless of any pending messages. To use the multimedia library code must in-
clude MMSYSTEM.H and make sure that WINMM.LIB is available and referenced at
link time. Several timer functions are found in the multimedia library. The most use-
ful one in animation programming is timeSetEvent(). This function starts an event
timer, which runs in its own thread. A callback function, defined in the call to
timeSetEvent() receives control every time the counter timer expires. The func-
tion's general form is as follows:

MMRESULT timeSetEvent(
UINT uDelay, // 1
UINT uResolution, // 2
LPTIMECALLBACK lpTimeProc, // 3
DWORD dwUser, // 4
UINT fuEvent // 5
);

The first parameter defines the event delay, in milliseconds. If this value is not in
the timer's valid range, then the function returns an error. The second parameter is
the resolution, in milliseconds, of the timer event. As the values get smaller, the res-

902 Chapter Thirty-One

© 2003 by CRC Press LLC

olution increases. A resolution of 0 indicates that timer events should occur with the
greatest possible accuracy. Code can use the maximum appropriate value for the
timer resolution in order to reduce system overhead. The third parameter is the ad-
dress of the callback function that is called every time that the event delay counter
expires. The fourth parameter is a double word value passed by Windows to the call-
back procedure. The fifth parameter encodes the timer event type. This parameter
consists of one or more predefined constants listed in Table 31-3.

Table 31-3

Event-Type Constants in TimeSetEvent() Function

VALUE MEANING

TIME_ONESHOT Event occurs once, after uDelay milliseconds.
TIME_PERIODIC Event occurs every uDelay milliseconds.
TIME_CALLBACK_FUNCTION

Windows calls the function pointed to by the
third parameter. This is the default.

TIME_CALLBACK_EVENT_SET
Windows calls the SetEvent() function to set
The vent pointed to by the third parameter.
The fourth parameter is ignored.

TIME_CALLBACK_EVENT_PULSE
Windows calls the PulseEvent() function to pulse
the event pointed to by the third parameter. The
fourth parameter is ignored.

Notice that the multimedia timers support two different modes of operation. In
one mode (TIME_ONESHOT) the timer event occurs but once. In the other mode
(TIME_PERIODIC) the timer event takes place every time that the timer counter ex-
pires. This mode is the one most often used in animation routines. If successful, the
call returns an identifier for the timer event. This identifier is also passed to the call-
back function. Once the timer is no longer needed, applications should call the
timeKillEvent() function to terminate it.

Despite its high resolution, it has been documented that the multimedia timer can
suffer considerable delays. One author states having recorded delays of up to 100
milliseconds. Applications requiring very high timer accuracy are recommended to
implement the multimedia timer in a 16-bit DLL.

The WIN32 API first made available a high-resolution tick counter. These coun-
ters are sometimes called performance monitors since they were originally intended
for precisely measuring the performance of coded rout ines . Using the
high-performance monitors is similar to using the GetTickCount() function already
described, but with a few special accommodations. Two Windows functions are as-
sociated with performance monitor counters: QueryPerformanceFrequency() re-
turns the resolution of the counter, which varies according to hardware.
QueryPerformanceCounter() returns the number of timer ticks since the system
was started. QueryPerformanceFrequency() can also be used to determine if
high-performance counters are available in the hardware, although the presence of
the performance monitoring function can be assumed in any Windows 95, 98, or ME,
Windows 2000, or NT machine.

DirectDraw Animation 903

© 2003 by CRC Press LLC

The function prototypes are identical for QueryPerformanceFrequency() and
QueryPerformanceCount(): the return type is of type BOOL and the only parameter
is a 64-bit integer of type LARGE_INTEGER. The general forms are as follows:

BOOL QueryPerformanceCounter(LARGE_INTEGER*);

BOOL QueryPerformanceFrequency(LARGE_INTEGER*);

Although it has been stated that the performance frequency on Intel-based PCs is
0.8 microseconds, it is safer for applications to call QueryPerformanceFrequency()
to obtain the correct scaling factor. The following code fragment shows this pro-
cessing:

_int64 TIMER_DELAY = 15; // Milliseconds

_int64 frequency; // Timer frequency

.

.

.

QueryPerformanceFrequency((LARGE_INTEGER*) &frequency);

TIMER_DELAY = (TIMER_DELAY * frequency) / 1000;

After executing, the TIMER_DELAY value has been scaled to the frequency of the
high-resolution timer. The QueryPerformanceCounter() can now be called in the
same manner as GetTickCount(), for example:

_int64 lastTickCount;

_int64 thisTickCount;

.

.

.

QueryPerformanceCounter((LARGE_INTEGER*) &thisTickCount);

if((thisTickCount - lastTickCount) < TIMER_DELAY)

return;

else {

lastTickCount = thisTickCount;

.

.

.

The DD Multi Sprite Animation program, in the book's software package, uses a
high-performance timer to produce the animation beat.

31.6.2 Dirty Rectangles

Color Figure 11 shows a background image overlayed by three sprites. During every it-
eration of the animation pulse, code redraws the background in order to refresh those
parts of the surface that have been overwritten by the sprites. The process is wasteful
since most of the background remains unchanged. In fact, only the portion of the back-
ground that was covered by the sprite image actually needs to be redrawn. Figure 31-8
shows the rectangular areas that actually need refreshing in producing the next ani-
mation iteration of the image, as shown in Color Figure 11. These are called the “dirty
rectangles.”

904 Chapter Thirty-One

© 2003 by CRC Press LLC

http://www.itknowledgebase.net/books/1232/color Insert.pdf

Figure 31-8 Dirty Rectangles in Animation

DirectDraw clipping operations can be used to identify the dirty rectangles. In
this case a clip list defines the areas that require refreshing, and these are the only
ones updated during the blit. The processing is simplified by the fact that the last po-
sition of the sprite, and its stored dimensions, can be used to determine the dirty
rectangles.

Whether the use of dirty rectangles actually improves performance depends on
several factors: the total image area covered by the dirty rectangles, the number of
rectangles, the processing overhead in calculating the rectangles and creating the
clip list, and, above all, the efficiency of the DirectDraw clipping operations of the
particular hardware. Unfortunately, in many cases, the screen update takes longer
with dirty rectangle schemes than without them. The most rational approach is to
develop the animation without dirty rectangles. If the results are not satisfactory,
then try the dirty rectangles technique. The comparative results can be assessed by
measuring the execution time in both case. Methods for measuring performance of
routines are discussed later in this section.

31.6.3 Dynamic Color Keys

It is difficult to image a sprite that can be transparently overlayed on a bitmapped
background without the use of a source color key. When we create our own sprites us-
ing draw or paint programs, and these sprites are stored in 24- or 32-bit color depth
bitmaps, the color key is usually known at coding time, or can be easily determined. If
there is any doubt, the sprite can be loaded into a bitmap editor in order to inspect the
RGB value of the background pixels. However, there are cases in which determining
the color key is more difficult. One of the complicating factors with color keys occurs

DirectDraw Animation 905

© 2003 by CRC Press LLC

when the color depth of the application's video mode does not coincide with that of
the sprite bitmap. This can a problem in the palletized display modes, particularly
when the palette changes during execution, or in applications that use several possi-
ble video modes.

One solution is to determine the bitmap's color key dynamically, that is, at
runtime. The method is based on the assumption that there is a fixed location in the
bitmap which is transparent at blit time. For example, the pixel at the bitmap's up-
per-left corner of the sprite image rectangle is typically part of the background.
Color Figure 13 shows the fixed location of the color key for one of the balloon
bitmaps used in the program DD Multi Sprite Animation contained in the book's
software package.

Once the relative location of a color key pixel has been determined, code can
load the bitmap onto a surface, and then read the surface data at the predefined po-
sition in order to obtain the color key. The manipulation is made possible by the di-
rect access to memory areas that is available in DirectDraw. Since the application
knows the color depth of the target surface, it can read the color key directly from
the surface. In this case you need not be concerned with how Windows converts a
pixel value in one color depth into another one, since the code is reading the result-
ing color key directly. The following code is used in the DD Multi Sprite Animation
program for dynamically loading the color key for Sprite1.

// Video display globals
LONG vidPitch = 0; // Pitch
LPVOID vidStart = 0; // Buffer address
// Color key data
DDCOLORKEY bColorKey;
WORD dynamicKey;
.
.
.

//***
// move first balloon bitmap to off-screen surface
//***
// Load the bitmap into memory
bal1Bitmap = (HBITMAP)LoadImage(NULL, "balloon1.bmp",

IMAGE_BITMAP, 0, 0, LR_LOADFROMFILE);
if (bal1Bitmap == NULL)

DDInitFailed(hWnd, hRet,
"Balloon1 bitmap load failed");

// Get bitmap dimensions to determine surface size
GetObject(bal1Bitmap, sizeof (BITMAP), &bMap1);

// Create the off-screen surface for bitmap in system memory
ZeroMemory(&ddsd, sizeof(ddsd)); // Fill structure with zeros

// Fill in other members
ddsd.dwSize = sizeof(ddsd);
ddsd.dwFlags = DDSD_CAPS | DDSD_HEIGHT | DDSD_WIDTH;
ddsd.ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN |

DDSCAPS_VIDEOMEMORY;
ddsd.dwHeight = bMap1.bmHeight;
ddsd.dwWidth = bMap1.bmWidth;
hRet = lpDD4->CreateSurface(&ddsd, &lpDDSBmap1, NULL);

if (hRet != DD_OK)

906 Chapter Thirty-One

© 2003 by CRC Press LLC

http://www.itknowledgebase.net/books/1232/color Insert.pdf

return DDInitFailed(hWnd, hRet,
"Off screen surface1 creation failed ");

// Move bitmap to surface using DDBmapToSurf()function
hRet = DDBmapToSurf(lpDDSBmap1, bal1Bitmap);

if(hRet != DD_OK)
return DDInitFailed(hWnd, hRet,

"DDMapToSurf() call failed");

//***
// read color key from loaded sprite
//***
// Attempt to lock the surface for direct access
if (!LockSurface(lpDDSBmap1))

return DDInitFailed(hWnd, hRet,
"Surface Lock failed ");

// Surface data is stored as follows:
// LONG vidPitch; // Pitch (not used here)
// LPVOID vidStart; // Buffer address
_asm
{

PUSH ESI ; Save context
PUSHF
MOV ESI,vidStart ; Left-top pixel address
; Read and store pixel attributes
MOV AX,[ESI] ; Get attribute
MOV dynamicKey,AX ; Store value in variable
POPF ; Restore context
POP ESI

}
ReleaseSurface(lpDDSBmap1);

// Set color key for balloon1 surface using values stored
// in variable dynamicKey
bColorKey.dwColorSpaceLowValue = dynamicKey;
bColorKey.dwColorSpaceHighValue = dynamicKey;

hRet = lpDDSBmap1->SetColorKey(DDCKEY_SRCBLT, &bColorKey);
if(hRet != DD_OK)

return DDInitFailed(hWnd, hRet,
"SetColorKey() for Balloon1 failed");

31.7 Measuring Performance
Programmers often need to know the execution time of a routine or function in order
to determine if it is suitable for an animation application. Several software engineer-
ing techniques allow estimating performance and efficiency of algorithms. These
methods, which are based on mathematical analysis, are usually difficult and
time-consuming. Alternatively, you can often obtain the necessary performance met-
rics of a routine by physically measuring its execution time.

In cases in which time-of-execution ranges from several seconds to several min-
utes it is often possible to measure it with a stopwatch. More often the time of exe-
cution is in the milliseconds order, in which case it may be possible to use the
computer's timing mechanisms to determine the time lapsed between the start and
the end of a processing routine or code segment. The QueryPerformanceCounter()
function, described previously, has a resolution in the order of one-millionth of a
second. In order to measure the execution time of a program segment, function, or

DirectDraw Animation 907

© 2003 by CRC Press LLC

routine we need to read the tick counter at the start and the end of the processing
routine, then subtract these values. The difference is the approximate execution
time.

Unfortunately, there are many complicating factors that can affect the accuracy
of this simple scheme. In the first place, the scheduler in a multitasking environ-
ment can interrupt a thread of execution at any time, thereby delaying it. Sometimes
the unit-boundary at which a data item is located in memory affects the time re-
quired for a memory fetch operation. Another consideration relates to the occa-
sional state of a memory cache, which can also change the fetch-time for data. This
means that the measurements should be repeated as many times as practicable in
order to obtain a more reliable value. Even with many repetitions the resulting num-
bers may not be accurate. However, for many practical programming situations the
data obtained in this manner is sufficient for a decision regarding which of two or
more routines is more suitable for the case at hand. The following code fragment
shows measuring the execution time of two routines:

// Timer data
_int64 startCount;
_int64 endCount;
_int64 timeLapse1; // First routine
_int64 timeLapse2; // Second routine
.
.
.
// First routine starts here
QueryPerformanceCounter((LARGE_INTEGER*) &startCount);
//
// First routine code
//
QueryPerformanceCounter((LARGE_INTEGER*) &endCount);
timeLapse1 = endCount - startCount;
. . .
// Second routine starts here
QueryPerformanceCounter((LARGE_INTEGER*) &startCount);
//
// Second routine code
//
QueryPerformanceCounter((LARGE_INTEGER*) &endCount);
timeLapse2 = endCount - startCount;

The variables timeLapse1 and timeLapse2 now hold the number of timer ticks
that elapsed during the execution of either routine. Code can display these values or
a debugger can be used to inspect the variables.

908 Chapter Thirty-One

© 2003 by CRC Press LLC

Chapter 32

Direct3D Fundamentals

Topics:
• Description and origins of Direct3D

• Retained mode and immediate mode

• Direct3D and COM

• Direct3D modules

• Basic elements of retained mode

• Rendering mathematics

• File formats

In this chapter we begin our discussion of Direct3D programming with the higher-level
functions, called retained mode. This chapter presents a smorgasbord of topics. The
glue that holds them together is the fact that they are all necessary in order to under-
stand and use Direct3D.

Before reading this chapter, make sure that you have grasped the material in Part
I of the book, which provides the necessary background in 3D graphics.

32.1 3D Graphics in DirectX
There is some confusion regarding the scope and application of 3D graphics. One rea-
son for this confusion is that 3D displays are not yet commercially available for the PC.
Devices that render solid images, on a three-dimensional screen, are still experimen-
tal. Therefore, in a strict sense, 3D graphics do not yet exist commercially. However,
systems capable of storing and manipulating images of solid objects and displaying
these objects on 2D media do exist. What we call 3D graphics in today's technology is
actually a 2D rendering of a 3D object.

Direct3D is the component of Microsoft's DirectX software development kit that
provides support for real-time, three-dimensional graphics, as available in today's
machines. 3D programming is a topic at the cutting edge of PC technology. But cut-
ting-edge infrastructures are rarely stable. Many of its features are undergoing revi-

© 2003 by CRC Press LLC

sions and redesigns, and there are still some basic weaknesses and defects.
Furthermore, the performance of 3D applications depends on a combination of
many factors, some of which are hidden in the software layers of the development
environment. In today's world 3D applications developers spend much of their time
working around the system's inherent weaknesses. Scores of video cards are on the
market, each one supporting its own set of features and functionality. Developing a
3D application that executes satisfactorily in most systems is no trivial task. The
bright side of it is that the rewards can be enormous.

32.1.1 Origin of Direct3D
Direct3D is described as a graphics operating system, although it would be less preten-
tious, and perhaps more accurate, to refer to it as a 3D graphics back end. Its core func-
tion is to provide an interface with the graphics hardware, thus insulating the
programmer from the complications and perils of device dependency. It also provides
a set of services that enable you to implement 3D graphics on the PC. In this sense it is
similar to other back ends, such as OpenGL and PHIGS. But Direct3D is also a provider
of low-level 3D services for Windows. In Microsoft's plan the low-level components of
Direct3D (immediate mode) serve and support its higher-level components (retained
mode) and those of other 3D engines (OpenGL).

In the beginning 3D was exclusively in the realm of the graphics workstation and
the mainframe computer. The standards were PHIGS (Programmer's Hierarchical
Interactive Graphics Systems), and GKS (Graphical Kernel System). During the
1980s it was generally accepted that the processing power required to manipulate
3D images, with its associated textures, lightning, and shadows, was not available
on the PC. However, some British game developers thought differently and created
some very convincing 3D games that ran on a British Broadcasting Corporation
(BBC) micro equipped with a 2MHz 6502 processor. This work eventually led Servan
Keondjian, Doug Rabson, and Kate Seekings to the founding of a company named
RenderMorphics and the development of the Reality Lab rendering engine for 3D
graphics. Their first 3D products were presented at the SIGGRAPH '94 trade show.

In February 1995, Microsoft bought RenderMorphics and proceeded to integrate
the Reality Lab engine into their DirectX product. The result was called Direct3D.
Direct3D has been one of the components of DirectX since its first version, called
DirectX 2. Other versions of the SDK, namely DirectX 3, DirectX 5, DirectX 6, and
currently, DirectX 7, also include Direct3D. The functionality of the Direct3D is
available to applications running in Windows 95/98 and Windows NT 3.1 and later.
The full functionality of DirectX SDK is part of Windows 98 and will also be found in
Windows NT 5.0 and Windows 2000. This means that applications running under
Windows 98 and later will be able to execute programs that use Direct3D without
the loading of additional drivers or other support software.

32.1.2 Direct3D Implementations
Direct3D is an application-programming interface for 3D graphics on the PC. The
other major 3D API for the PC is OpenGL, which is discussed in Part IV. Figure 32-1
shows the structure of the graphics development systems under Windows.

Figure 32-1 Windows Graphics Architecture

© 2003 by CRC Press LLC

Direct3D provides the API services and device independence required by devel-
opers, delivers a common driver model for hardware vendors, enables turnkey 3D
solutions to be offered by personal-computer manufacturers, and makes it easy for
end-users to add high-end 3D functions to their systems. Because the system re-
quires little memory, it runs well on most of the installed base of computer systems.

The 3D graphics services in Direct3D execute in real-time. The functions include
rendering, transformations, lighting, shading, rasterization, z-buffering, textures,
and transparent access to acceleration features available in the hardware. The
Direct3D architecture consists of two well-defined modes: a low-level one called im-
mediate mode, and a high-level one called retained mode. The term retained mode
originally referred to the images being preserved after rendering, but this notion is
no longer literally true.

32.1.3 Retained Mode

Retained mode was designed as a set of API for the high-level manipulation of 3D ob-
jects and managing 3D scenes. It is Microsoft's competition for OpenGL and other
high-level 3D development environments. It is implemented as a set of interrelated
COM objects that enable you to build and manipulate a 3D scene. Its intention was to
make it easy to create 3D Windows applications or to add 3D capabilities to existing
ones. The programmer working in retained mode can take advantage of its geometry
engine, which contains advanced 3D capabilities, without having to create object da-
tabases or be concerned with internal data structures. The application uses a single
call to load a predefined 3D object, usually stored in a file in .x format. The loaded ob-
ject can then be manipulated within the scene and rendered in real-time. All of this is
done without having to deal with the object's internals.

Retained mode is tightly coupled with DirectDraw, which serves as its rendering
engine, and is built on top of the immediate mode. OpenGL and other high-level sys-
tems exist at the same level as retained mode. Figure 32-2, on the following page,
shows the elements of this interface.

Figure 32-2 DirectX Graphics Architecture

Graphics Application

Display Hardware

GDI

DDI

OpenGL
(other 3D
engines)

DirectDraw/
Direct3D

HAL/HEL

© 2003 by CRC Press LLC

32.1.4 Immediate Mode

Direct3D immediate mode is a layer of low-level 3D API. Its original intention was to
facilitate the porting of games and other high-precision and high-performance graph-
ics applications to the Windows operating system. It allows access to hardware fea-
tures in the 3D chip and offers software rendering when the function is not available in
the hardware. The intention of immediate mode is to enable applications to communi-
cate with the 3D hardware in a device-independent manner and to provide maximum
performance.

In contrast with retained mode, immediate mode does not contain a graphics en-
gine. Code that uses immediate mode must provide its own routines to implement
object and scene management. This means that the effective use of immediate mode
requires considerable knowledge and skills in 3D graphics.

32.1.5 Hardware Abstraction Layer

In Figure 32-2 you see that both the Immediate and the Retained Modes of Direct3D are
built on top of the Hardware Abstraction Layer (HAL). It is this software layer that in-
sulates the programmer from the device-specific dependencies. The Hardware Emula-
tion Layer (HEL) provides support for those features that are not present in the
hardware. The combination of HEL and HAL ensure that the complete Direct3D func-
tionality is always available.

32.1.6 DirectDraw

DirectDraw is the Windows rendering engine for 2D and 3D graphics. DirectDraw
functions enable you to quickly compose images into front and back buffers, and to ap-
ply transformations, blitting, and flipping. The result is a capability of implementing
smooth animation as required in computer games and other multimedia and
high-performance graphics applications. DirectDraw functions can be used with im-
ages that originate in the Windows GDI, in Direct3D, or in OpenGL.

Graphics Application

Display Hardware

GDI

DDI

OpenGL
Direct3D

Retained Mode

HAL/HEL

DirectDraw

Direct3D Immediate Mode

© 2003 by CRC Press LLC

DirectDraw is implemented as an API layer that lies above the display hardware,
as shown in Figure 32-2. It enables the graphics programmer to take advantage of
the capabilities of graphics accelerators and coprocessors in a device-independent
manner. DirectDraw is a COM-based interface.

The following are the most important connections between DirectDraw and
Direct3D:

• IDirect3D, the interface to Direct3D, is obtained from a DirectDraw object by calling
the QueryInterface() method.

• Direct3DDevice, the low-level interface to the 3D renderer, is similar to
IDirectDrawSurface and is created by querying IDirectDrawSurface for a 3D device
GUID. The 3D renderer will also render to a 2D surface and recognizes all DirectDraw
2D functions.

• IDirect3DTexture, the texture manager in Direct3D, is an extension of
IDirectDrawSurface and is created by querying IDirectDrawSurface for an
IID_IDirect3DTexture interface. Code can access all DirectDraw surface functions on a
2D surface.

• A Direct3D z-buffer is a DirectDraw surface created with the DDSCAPS_ZBUFFER
flag. Code can use DirectDraw 2D functions in relation to z-buffers. Z-buffers are dis-
cussed later in this chapter.

32.1.7 OpenGL

OpenGL is an alternative 3D development environment that originated in graphics
workstations. Its main area of application is in programs that require precise 3D image
rendering, such as CAD/CAM, technical modeling and animation, simulations, scien-
tific visualization, and others. OpenGL is part of Windows NT and is available for Win-
dows 95 and 98. When installed, the system can execute programs that use the OpenGL
APIs. Because of its high level, OpenGL appears to the programmer as an alternative to
Direct3D retained mode.

32.1.8 Direct3D and COM

Like DirectDraw, Direct3D is based on Microsoft's Component Object Model (COM).
COM is an object-oriented system that exists at the operating system level. In COM an
interface is a group of related methods. COM's main purpose is to support and pro-
mote the reuse of interfaces. Direct3D is presented to the programmer using the Com-
ponent Object Model. The COM object is a data structure that contains a pointer to the
associated methods. Because it is not specific to C++, a program written in C, or even
in a non-C development system, can use APIs based on the COM protocol.

There are several ways of accessing the COM interface. In C++ the COM object
appears like an abstract class. In this case access is by means of the pointer to the
DirectDraw COM object, which then allows code to obtain the Direct3D COM ob-
ject. When programming in C the function must pass the pointer to the COM object
as an additional parameter. In addition, the call must include a pointer to a property
of the COM object called the vtable. In this book we use the simpler, C++ interface
to the COM.

© 2003 by CRC Press LLC

32.2 Direct3D Rendering
Direct3D uses a 3D rendering engine composed of three separate modules:

• Transformation Module. This module consists of four modifiable state registers:
viewport, viewing matrix, world matrix, and projection matrix. It supports arbitrary
projection matrices, and allows perspective and orthographic views. As the name im-
plies, the transformation module handles the geometrical transformations. It is also
called the Geometry Module.

• Lighting Module. This module calculates lighting and color information. It uses a
stack-like structure to maintain a record of the current lights. It supports ambient, di-
rectional, point, and spotlight light sources and two lighting models: monochromatic
and RGB.

• Rasterization Module. This module uses the output of the transformation and lighting
modules to render the scene. The rasterization module is the 3D renderer in Direct3D.
The scene description is based on an extensible display-list that supports both 2D and
3D primitives. Raster options such as wireframe, solid fill, and texture map are defined
in this module.

Figure 32-3 shows the modules of the Direct3D rendering engine and their inter-
action with the other modules and with the rest of the system.

Figure 32-3 Direct3D Rendering Modules

Together, these three modules form the Direct3D rendering pipeline. Direct3D is

furnished with one transformation module and a choice of two lighting and two

D
ir
e

c
t3

D
A

P
I

TRANSFORMATION
MODULE

Projection Matrix
World Matrix
Viewing Matrix
Viewport Description

Lighting States
Ambient Light
Materials
Color Information

Raster States
Textures
Transparency

LIGHTING
MODULE

Transformed
Vertices

Transformed and Lit
Vertices

to Frame Buffer

RASTERIZATION
MODULE

© 2003 by CRC Press LLC

rasterization modules. This ensures greater flexibility in lighting and rendering. For
example, a scene can be rendered more realistically by switching the lighting mod-
ule.

32.2.1 Transformation Module

The transformation module has four state registers: the viewport, the viewing matrix,
the world matrix, and the projection matrix. All four are modifiable by code. When-
ever one or more of the state registers are modified, they are recombined to form a
new transformation matrix. The transformation matrix defines the rotation and pro-
jection of a set of 3D vertices.

In Direct3D a display list is the name given to a set of 3D commands. The transfor-
mation module supports a number of different vertex types in the display list. The
D3DTLVERTEX structure is a transformed and lit vertex that contains screen coor-
dinates and colors. This structure contains the data and color information that is
used by the lighting module. The D3DLVERTEX structure is used when the model
contains data and color information only. Alternatively, the D3DHVERTEX structure
is used when the application uses model-coordinate data with clipping. When this
structure is used the transformations are performed in hardware. The D3DVERTEX
structure is used if the hardware supports lighting. This type of vertex can be trans-
formed and lit during rendering.

The transformation module contains two different types of methods: those that
set the state and those that use the transformation module directly to act on a set of
vertices. The second type of method is useful for testing bounding volumes or for
acting on a set of vectors. These operations are based on the current transformation
matrices. The structure used for all the direct transformation functions is
D3DTRANSFORMDATA. Geometrical transformations were discussed in Chapter 3
and are revisited later in this chapter.

32.2.2 Lighting Module

The lighting module maintains a stack-like structure representing the current lights,
as well as the ambient light level, and a material. When the module is used directly, the
input data includes a direction vector. If the light source is positional, as is the case
with point- and spotlights, then the input also contains light source position informa-
tion.

The monochromatic lighting model calculates the value for each light in a shade
of gray. It is also called the ramp model. The RGB model uses the color component
of light sources in order to produce more realistic and pleasant results. Internal
color representations are always based on a palette-based color ramp.

In the ramp mode each color is represented by an index into a look-up table that
can be located either in hardware or in software. Ramp modes use either 8- or 16-bit
indices. In the ramp mode the lighting module has no knowledge of the particular
color; it just works with a number of shades. Because color lights are treated as
white lights, the ramp mode is sometimes called the monochromatic mode. The
pre-calculated color ramps are divided into two sections. The first three-quarters of

© 2003 by CRC Press LLC

the ramp are the material's diffuse color. The values of this portion of the ramp
range from the ambient color to the maximum diffuse color. The last quarter of the
precalculated ramp encode the maximum diffuse color to the maximum specular
color of the material. At rendering time the shade value is scaled by the size of the
ramp and used as an index into the look-up table.

If the material does not have a specular component, the shade is calculated using
the diffuse component of the light intensity. In this case the value ranges from 0 (am-
bient light) to 1 (full intensity light). If the material has a specular component, then
the shade calculation combines both the specular and diffuse components of the
light according to the following equation

where s is the shade value, d is the diffusion, and sp is the specular value of the light.

Notice that the first term of the equation takes into account the first three quarters of
the ramp, which is equivalent to the material's diffuse color. The second term takes
into account the last quarter of the ramp, which corresponds with the material's dif-
fuse or specular color value.

Whether you use the RGB or the ramp color model depends mostly on the capa-
bilities of the hardware. Ramp color is faster in software, but the RGB model sup-
ports color lights and is as fast, or even faster, than the ramp model if there is a
hardware rasterizer.

32.2.3 Rasterization Module
The rasterization module is the one that draws the triangles, lines, and points to the
frame buffer. It responds only to execute calls. Instructions stored in the execute
buffer determine the mode of operation of the rasterization module.

Execute buffers is just another name for display lists. They consist of
self-contained, independent packets of information. The execute buffer contains a
vertex list followed by an instruction stream. The instruction stream consists of in-
dividual instructions, each one containing an operation code (opcode), followed by
the data. The instructions determine how the vertex list is lit and rendered. One of
the most common instructions is a triangle list, which consists of a list of triangle
primitives that reference vertices in the vertex list.

The size of the execute buffer is determined by the hardware. Usually, 64K is con-
sidered satisfactory. How caching is implemented by the video card influences the
best size for the buffer. The GetCaps() method can be used to retrieve the buffer
size.

In processing execute buffers the transformation module runs through the vertex
list, generating the transformed vertices. If clipping is enabled, the corresponding
clipping information is attached. If there is no vertex in view at this point, the entire

= × − +((1))s d s sp�

© 2003 by CRC Press LLC

buffer can be rejected. Otherwise, vertices are processed by the lighting module,
which adds color to them according to the lighting instructions in the execute
buffer. Finally, the rasterization module parses the instruction stream. Primitives
are rendered based on the generated vertex information.

The only geometric types that can be processed by the rasterization module are
triangles. The screen coordinates range from (0, 0) for the top left of the screen or
window device to width –1, height –1 for the bottom right of the device. The depth
values range from zero at the front of the viewing frustum to one at the back.
Rasterization is performed so that if two triangles that share two vertices are ren-
dered, no pixel along the line joining the shared vertices is rendered twice. The
rasterizer culls back facing triangles by determining the winding order of the three
vertices of the triangle. Only those triangles whose vertices are traversed in a clock-
wise orientation are rendered.

32.3 Retained Mode Programming
Retained mode programming consists of building 3D scenes out of components in
Direct3D. The retained mode programmer does not need to be concerned with the de-
velopment of geometrical primitives, or the structures of 3D objects and databases.
You can load, rotate, scale, light, translate, and otherwise manipulate a 3D object, in
real-time, using high-level API functions. In this section we discuss the core elements
of Direct3D retained mode. These are the building blocks that we use in the following
chapter to construct a Direct3D program.

32.3.1 Frames

A scene in Direct3D, sometimes called a scene graph, is a collection or hierarchy of
frames. The term frame relates to the notion of a frame of reference. It should not be
confused with that of single animation image, also called a frame. In retained mode the
role of a frame is to serve as a container for 3D objects, such as polygon meshes, lights,
and cameras. These objects have no meaning by themselves. For example, a cube can-
not be rendered until it is assigned a position within a frame, relative to a light and a
camera, and possibly a material, color, and texture.

Each scene contains a root or master frame and any number of child frames, each
of which can have other children of its own. It is a tree-like structure in which the
root frame has no parent frame and the leaf frames have no children. The root frame
is the highest level element of a 3D scene. Child frames inherit their characteristics
from the parent frames and are physically attached to the parent. When a frame is
moved, all the objects attached to it, including its child frames, move with it. For ex-
ample, a helicopter in a 3D scene may consist of several frames. One frame could
model the body, another one the lift rotor blades, and a third one the steering rotor
blades. In this case the rotor blades would be children frames to the helicopter
body. The helicopter is made to fly by rotating the blades in the main and tail rotors
and by translating the helicopter body frame. Because the rotors are child frames of
the helicopter body frame, the entire machine moves as a unit. Figure 32-4 shows
the frame hierarchy in this case.

Figure 32-4 Frame Hierarchy in a Scene

© 2003 by CRC Press LLC

Frame hierarchies in Direct3D are not rigid. Functions are available that enable
you to change the reference frame, regardless of the parent-child relationships origi-
nally established. This flexibility adds considerable power to retained mode.

Meshes

The mesh is the principal visual object of a scene and the cornerstone of retained
mode programming. Direct3D objects are made up of meshes. A mesh is described as a
set of faces, each of which consists of a simple polygon. This makes a mesh equivalent
to a set of polygons. Polygon meshes were discussed in Chapter 2.

The fundamental polygon type in Direct3D is the triangle. Retained mode applica-
tions can describe polygons with more than three vertices, but the system automati-
cally translates them into triangles when rendering them. Immediate mode
applications, on the other hand, are limited to triangles. Figure 32-5 shows two ver-
sions of the same mesh. The one at the top consists of 12 quadrilaterals. The one at
the bottom is made up of 24 triangles.

The principal objection to modeling with nontriangular polygons is that in a poly-
gon with more than three vertices it is possible for the vertices to lie on different
planes. In addition, polygons with more than three vertices can be concave. The tri-
angle is not only the simplest of polygons, but all the points in the surface of a trian-
gular polygon must lie on the same plane and any line drawn from two points in a
triangle is inside it. In other words, a figure defined by three vertices is coplanar and
convex. The renderer requires that polygons are convex and coplanar, so triangular
modeling facilitates rendering.

Figure 32-5 Quadrilateral and Triangular Meshes

body frame
(parent)

Helicopter Frame Hierachy main rotor
frame (child)

tail rotor
frame (child)

Scene Animation

© 2003 by CRC Press LLC

Most graphics systems, including Direct3D, model objects by means of polygon
meshes. Mesh information is stored in a database containing the vertices of each
polygon and their attributes, such as color, texture, and shading. A state-of-the-art
hardware-based renderer is capable of displaying hundreds of thousands to over
one million of these polygons in 1 second, and at the same time applying texture,
lighting and other effects.

Mesh Groups
The mesh group is an organizational concept used by Direct3D immediate mode. A
mesh group consists of a collection of polygons. Each group can have its own material,
color, texture, and rendering quality. Groups have no names and are not supported in
retained mode.

Faces
If a face is a polygon, and a mesh is a collection of faces, then building a mesh consists
of building the individual faces of which it is composed. Each face is a set of vertices. If
the face is a triangle, then it is defined by three vertices. A front face is one in which
vertices are defined in clockwise order. Figure 32-6 shows the front face of a triangular
polygon in the Direct3D's left-handed coordinate plane.

Figure 32-6 Front Face of a Triangular Polygon

+y

+x

Vertex 1

Vertex 2

Vertex3

+z

Front face

© 2003 by CRC Press LLC

Each face has a normal vector, perpendicular to the face. If the normal vector of a
face is oriented toward the viewer, that side of the face is its front. In Direct3D, only
the front side of a face is visible. For this reason, if the vertices of the polygon in Fig-
ure 32-7 had been defined in counterclockwise order, the polygon's face would not
be visible at rendering time. Face normals are used in Direct3D flat shading mode.
Vertex normals are used in Phong and Gouraud shading. Figure 32-7 shows the face
and vertex normals of a pyramidal object modeled with triangular polygons.

Figure 32-7 Vertex Normals and Face Normals in a Pyramid

32.3.2 Shading Modes

Direct3D documents three shading modes: flat, Gouraud, and Phong shading, but
Phong is not currently supported. These shading algorithms were described in Chap-
ter 4. In the flat shading mode the color of the first vertex of the polygon is duplicated
across all the pixels on the object's faces. The result is that each face is rendered in a
single color. Often the only way of improving the rendering is by increasing the num-
ber of polygons, which can be computationally expensive. An improvement to flat
shading is called interpolative or incremental shading. In this case each polygon is ren-
dered in more than one shade by interpolating, for the polygon interior points, the val-
ues calculated for the vertices or the edges. This type of shading algorithm is capable
of producing a more satisfactory shade rendering with a smaller number of polygons.
Direct3D describes two incremental shading methods, called Gouraud and Phong
shading. Phong is not yet supported.

In the Gouraud and Phong shade modes, vertex normals are used to give a more
satisfactory appearance to a polygonal object. In Gouraud shading, the color and in-
tensity of the polygon edges are interpolated across the polygon face (see Figure
4-30). In Phong shading, the system calculates the appropriate shade value for each
pixel. Because Gouraud shading is based on the intensity at the edges, it is possible
to completely miss a highlight or a spotlight that is contained within a face. Figure
32-8 shows two possible cases in which Gouraud shading renders erroneously.

+y

+x

face
normal

vertex
normal

+z

© 2003 by CRC Press LLC

Figure 32-8 Error in Gouraud Rendering

Phong shading is the most effective shading algorithm in use today. This method,
developed by Phong Bui-Toung is also called normal-vector interpolation. It is based
on calculating pixel intensities by means of the approximated normal vector at each
pixel point in the polygon. Phong shading improves the rendering of bright points
and highlights that are misrendered in Gouraud shading. The one objection to Phong
shading is that it takes considerably longer than Gouraud shading.

Interpolation of Triangle Attributes

At rendering time Direct3D interpolates the attributes of a triangle's vertices across
the triangle face. Color, specular reflection, fog, and alpha blending attributes are in-
terpolated. In interpolation the attributes are modified according to the current shade
mode, as previously described. The interpolation of color and specular attributes de-
pends on the color model. In the RGB model the red, green, and blue color components
are used in the interpolation. In the monochromatic model only the blue component of
the vertex color is taken into account. The alpha component of a color is treated as a
separate interpolant. This is because device drivers can implement transparency in
two different ways: by texture blending or by stippling.

32.3.3 Z-Buffers

One of the problems encountered by the renderer concerns the display of overlapping
polygons. Figure 32-9, on the following page, shows three triangles located between
the viewer and the display buffer. In this case the question is whether the pixel should
be rendered as dark gray, white, or light gray. The answer is obviously dark gray be-
cause the dark gray polygon is the one closest to the viewer.

Gouraud rendering error

Polygons with internal spotlights or highlights

© 2003 by CRC Press LLC

Figure 32-9 Rendering Overlapping Triangles

Several algorithms have been developed for eliminating hidden surfaces at ren-
dering time. One of the best known, attributed to Catmull, is called the z-buffer or
depth buffer method. Because of its simplicity of implementation and relative effi-
ciency it has become popular in 3D graphics.

Direct3D supports the z-buffer method for solving the so-called "polygon-on-top"
problem. In Direct3D the z-buffer is a rather large block of memory where the depth
value for each screen pixel is stored. Initially the depth value for a pixel is that of
the background. As each polygon is rendered, its depth value is examined. This is
the z-order. If its depth value is less than the one in the z-buffer, then the pixel is ren-
dered with the polygon's attribute. Otherwise it is ignored.

In Direct3D z-buffering can be turned on and off. The general rule is that
z-buffering improves performance when a screen pixel is set several times in suc-
cession. The average number of times a pixel is written to is called the scene over-
draw. Although overdraw is difficult to calculate exactly, it is possible to estimate it.
If the scene overdraw is less than 2, then best performance is achieved by turning
z-buffering off.

32.3.4 Lights

Earlier in this chapter we discussed the lighting module in Direct3D as well as the RGB
and ramp color models. In processing lights the lighting module uses information
about the light source, and the normal vectors of the polygon vertices, to determine
how to render the light source in each pixel.

The vertex normals are calculated from the face normals of the triangles adjacent
to that vertex. Face normals are perpendicular to the polygon face, as shown in Fig-
ure 32-10, on the following page. The angle between the vertex normals and the light
source determines how much light intensity and color are applied to the vertex. The
mathematical calculations are performed by the lighting module.

+y

+x

display buffer

-z

© 2003 by CRC Press LLC

Figure 32-10 Calculating the Vertex Normals

Lighting effects are used to improve the visual quality of a scene. Applications
can attach lights to a frame to represent a light source in a scene. In this case the at-
tached light illuminates the objects in the scene. The position and orientation for
the light is defined in the frame. Code can move and redirect a light source simply by
moving and reorienting the frame to which the light is attached.

Retained mode supports five types of light sources:

• ambient

• directional

• parallel point

• point

• spotlight

Ambient Light

An ambient light source illuminates the entire scene, regardless of the orientation, po-
sition, and surface characteristics of the objects. All objects are illuminated with
equal strength, therefore the position and orientation of the containing frame is incon-
sequential. Multiple ambient light sources can be combined within a scene.

Directional Light

A directional light source has a specific orientation, but no position. The light appears
to illuminate all objects with equal intensity, as if it were at an infinite distance from
the objects. Directional lighting is often used to simulate distant light sources, such as
the sun. It provides maximum rendering speed.

Parallel Pint Light

The parallel point light can be considered a variation of direction light. In this case the
orientation of the light is determined by the position of the light source. Whereas a di-

face
normals

vertex
normals

© 2003 by CRC Press LLC

rectional light source has orientation, but no position, a parallel point light source has
orientation and position. The parallel point light source has similar rendering-speed
performance to the directional source.

Point Light
A point light source radiates light equally in all directions. This makes it necessary to
calculate a new lighting vector for every face it illuminates, which makes the method
more computationally expensive than a parallel point light source. One advantage of
the point light source is that it produces a more faithful lighting effect. When visual fi-
delity is a concern, a point light source is the best option.

Spotlight
A spotlight is a cone-shaped light source with the light at the cone's vertex. Objects
within the cone are illuminated. The cone produces light of two degrees of intensity,
with a central brightly lit section called the umbra, and a surrounding dimly lit section
called the penumbra. In Direct3D the angles of the umbra and penumbra can be indi-
vidually specified. Figure 32-11 shows the umbra and the penumbra in spotlight illumi-
nation.

Figure 32-11 Umbra and Penumbra in Spotlight Illumination

32.3.5 Textures

A texture is an image, usually encoded in a 2D bitmap that can be applied to the face of
a polygon to improve its visual quality. Color Figure 14 is a coffee cup to which a red
marble texture has been applied.

Textures are usually stored in standard file formats, most commonly as a Win-
dows bitmap, PCX or GIF. Although any image can be used as a texture, not all im-
ages make good textures. Textures can be scaled at the time they are applied. Each
element of a texture is called a textel, which is a composite of the words texture and
pixel.

umbra
cone

penumbra
cone

© 2003 by CRC Press LLC

http://www.itknowledgebase.net/books/1232/color Insert.pdf

In its simplest implementation, sometimes called point mapping, the rendering
software looks up each pixel in a texture map and applies it to the corresponding
screen pixel. In most cases point sampling produces coarse effects that are unnatu-
ral and disturbing to the viewer. Satisfactory texturing requires that the distance be-
tween the object and the viewer be taken into account at the time of applying the
texture, in other words, that the texture be rendered perspectively.

The bilinear filtering method of texture rendering uses the weighted average of
four texture pixels. This results in more pleasant textures than those that result
from point mapping.

Direct3D supports five texture-rendering styles:

• Decals

• Texture colors

• Mipmaps

• Texture filters and blends

• Texture transparency

Decals
A decal is a texture applied directly to a scene. Decals are not rendered on a polygon
face, but as an independent object. They are rectangular in shape, the rectangle facing
the viewport, and they grow and shrink according to their distance from the viewer.
The fact that decals always appear facing the viewer considerably limits their useful-
ness.

The origin point of a decal is defined as an offset from the top-left corner of the
containing rectangle. The default origin is (0,0). In Direct3D an application can set
and retrieve the origin of a decal. When the decal is rendered, its origin is aligned
with its frame's position.

Texture colors
Direct3D code in retained mode can set and retrieve the number of colors that are used
to render a texture. Applications that use the RGB color model can encode textures in
8-, 24-, and 32-bit formats. In the ramp color model textures are represented in 8 bits.
However, code that uses the ramp model should be careful regarding the number of
texture colors. In this mode each color requires its own lookup table. If an application
uses hundreds of colors, the system must allocate and manipulate as many lookup ta-
bles.

Mipmaps
The term mipmap originates in the Latin expression multum in parvo, which can be
translated literally as many in few or many objects in a small space. This tex-
ture-rendering method, sometimes referred to as MIP maps, was described by L. Wil-
liams in 1983 and has since gained considerable favor.

In Direct3D a mipmap is a set of textures representing the same image at progres-
sively lower resolutions. Each image in the set is one-quarter the size of the preced-

© 2003 by CRC Press LLC

ing one, which makes the entire mipmap take up 4/3 the memory of the original
image. Mipmapping provides a computationally efficient way of improving the qual-
ity of rendered textures. Each scaled image in the mipmap is called a level. The im-
age at level 0 is at the same resolution as the original. Figure 32-12 is a diagram of
the mipmap structure.

Figure 32-12 Mipmap Structure

Mipmaps are created by the DirectDraw interface. Each mipmap level contains its
own front and back surfaces, which can be flipped in the conventional manner.
When the mipmap is created, code defines the number of levels, as well as the di-
mensions of the level 0 mipmap. Figure 32-13 shows the DirectDraw structure of a
mipmap consisting of 4 levels. In the DirectDraw implementation of mipmaps, each
level consists of a front and a back surface. As is the case with all mipmaps, succes-
sive levels have one-half the resolution of the preceding one, and one-quarter the
size.

Figure 32-13 Example of a DirectDraw Mipmap

R

R

R

G

G

G

B

B

B . . .

Front surface

LEVEL 0

LEVEL 1

LEVEL 2

LEVEL 3

512x512 256x256 128x128 64x64

Back surface

© 2003 by CRC Press LLC

Texture Filters and Blends

The elements of a texture (texels) rarely correspond to individual pixels in the original
image. Texture filtering is used to specify how to interpolate texels to pixels.

Direct3D supports six texture-filtering modes. They are:

• Nearest

• Linear

• Mip-nearest

• Mip-linear

• Linear-mip-nearest

• Linear-mip-linear

The nearest mode uses the texel with coordinates nearest to the desired pixel
value. The result is a point filter with no mipmapping. The linear mode uses a
weighted average of an area of 2-by-2 texels surrounding the desired pixel. This is
equivalent to bilinear filtering with no mipmapping. In the mip-nearest mode the
closest mipmap level is chosen and a point filter is applied. In the mip-linear mode
the closest mipmap level is chosen and a bilinear filter is applied. The lin-
ear-mip-nearest mode uses the two closest mipmap levels, and a linear blend is used
between point filtered samples of each level. In the linear-mip-linear mode the two
closest mipmap levels are chosen and then combined using a bilinear filter.

Texture blending consists of combining the colors of a texture with the colors of
the surface to which the texture is applied. If done correctly, the result is a translu-
cent surface. Because texture blending can result in unexpected colors, the color
white is often used for the material texture. There are a total of seven texture blend-
ing modes:

• Decal

• Modulate

• Decal-alpha

• Modulate-alpha

• Decal-mask

• Copy

• Add

Texture Transparency

Direct3D contains methods to directly produce transparent textures. In addition, im-
mediate mode programs can take advantage of DirectDraw support for color keys to
achieve transparency. By selecting a color key that contains a color or color range in
the texture, the material's color will show through the texture areas within the color
key range. The result is a transparent texture.

© 2003 by CRC Press LLC

Wraps

In Direct3D a wrap is a way of applying a texture to a face or mesh. Four kinds of wraps
are available:

• Flat

• Cylindrical

• Spherical

• Chrome

The flat wrap conforms to the faces of an object. The effect is sometimes com-
pared to stretching a piece of rubber over the object. The cylindrical wrap treats the
texture as if it were a sheet of paper wrapped around a cylinder. The left edge of the
texture rectangle is joined to the right edge. The object is then placed in the middle
of the cylinder and the texture is deformed inward onto the surface of the object.
The spherical wrap is similar to the cylindrical wraps, but in this case the wrapping
form is a sphere, instead of a cylinder. A chrome wrap allocates texture coordinates
so that the texture appears to be reflected onto the objects. The chrome wrap takes
the reference frame position and uses the vertex normals in the mesh to calculate
reflected vectors, which are based on an imaginary sphere that surrounds the mesh.
The resulting effect is that of the mesh reflecting whatever is wrapped on the
sphere.

Texture wrapping is a complex procedure in which a two-dimensional surface is
deformed to cover the surface of a three-dimensional object. The above analogies
are coarse simplifications that do not take into account many of the complexities of
wrapping. In practice, the results of wrapping operations are often different from
what was expected. This has led some to believe that, in most cases, the complica-
tions do not justify the results. The reader interested in the more specific details on
texture wrapping can refer to the article Texture Wrapping Simplified by Peter
Donnelly that appears in Microsoft Developers Network documentation. The article
includes a demonstration program for experimenting with texture wrapping opera-
tions.

32.3.6 Materials

Direct3D provides support for an object property called a material. A material deter-
mines how a surface reflects light. It has two components: an emissive property and a
specular property. The emissive property determines whether the material emits light.
This property is useful in modeling lamps, neon signs, or other light-emitting objects.
The specular property determines if and how the material reflects light.

Code controls the emission property of a material by defining the red, green, and
blue values for the emissive color. The specular property is also defined by the red,
green, and blue values of the reflected light and by a power setting. The default
specular color is white, but code can change it to any desired RGB value. The power
setting determines the size, and consequently the sharpness, of the reflected high-
lights. A small highlight makes an object appear shiny or metallic. A large highlight
gives a plastic appearance.

© 2003 by CRC Press LLC

32.3.7 User Visuals
A user-visual object is an application-defined data structure that can be added to a
scene and rendered, typically by means of a customized rendering module. For exam-
ple, an application can add sound as a user-visual object in a scene, and then render the
sound during playback. A user-visual object has no methods, but it does have a call-
back function that will be called by the renderer. The callback function is called twice:
when the object is rendered and when the object is told to render itself. This property
makes it possible for applications that execute in retained mode to use the user-visual
mechanism to provide a hook into Direct3D immediate mode.

32.3.8 Viewports
The viewport contains a camera reference frame that determines which scene is to be
rendered, as well as the viewing position and direction. Rendering takes place along
the z-axis of the camera frame, assuming the conventional Direct3D Cartesian plane
with the positive y-axis in the upward direction and the positive x-axis toward the
right.

Viewing Frustum
What the camera sees from the vantage point of a particular frame is called the viewing
frustum. The viewport uses a frame object as a camera. In the perspective viewing
mode, the viewing frustum is a truncated pyramid with its apex at the camera position.
The camera's viewing axis runs from the pyramid's apex to the center of the base, as
shown in Figure 32-14.

Figure 32-14 The Viewing Frustum

If we assume that the front clipping plane is at a distance D from the camera, and
the back clipping plane is at a distance F from the front clipping plane, then the
viewing angle A is determined by the formula

Viewing frustum
(objects in this area are visible)

Front
clipping

plane

Viewing
axis

Back
clipping

plane

© 2003 by CRC Press LLC

where h is one-half the height of the front clipping plane, if it is square. If the clipping
plane is rectangular, then h is one half the height or the width of the front clipping
plane, whichever is larger. The parameter h defines the field of view of the viewport.
The above formula can be used to calculate the value of h for a specific camera angle.
Figure 32-15 shows the viewport parameters.

Figure 32-15 Viewport Parameters

Direct3D retained mode applications can set or retrieve the front and the back
clipping planes, set the camera frame, as well as the viewport's field of view as de-
fined by the parameter h in Figure 32-15. Direct3D supports two projection types:
perspective and orthographic.

Transformations

In the context of Direct3D viewports, transformations are used to convert between
screen and world coordinates. Direct3D transformations are based on homogenous
coordinates as described in Chapter 3. The projection matrix, which is a combination
of a scaling and a translation transformation, produces a four-element homogenous
coordinate [x y z w]. The three-element homogeneous coordinates are derived by per-
forming x/w, y/w, and z/w operations, where x/w and y/w are the coordinates to be
used in the window and z/w is the depth. The depth ranges from 0 at the front clipping
plane to 1 at the back clipping plane. The projection matrix is defined as follows:

Front
clipping

plane

Back
clipping

plane

D

h

A

12
h

A Tan
D

−=

© 2003 by CRC Press LLC

In the above matrix the parameters h and D are as in Figure 32-15.

Picking

Direct3D supports the selection of an object by specifying its location in the viewport.
This operation, called picking, is typically based on the position of the mouse cursor.
Picking is accurate to the pixel; therefore it can be used in precise object selection by
technical applications. The drawback of the picking operation is that it involves con-
siderable processing, which may introduce a visible delay in the rendering.

To pick an object, code passes the x and y screen coordinates to the correspond-
ing method. Usually these coordinates are those of the mouse cursor at the time of
the pick action. The pick function returns either the closest object in the scene, or a
depth-sorted list, called the picked array, of the objects found at that location.

32.3.9 Animations and Animations Sets

In retained mode an animation provides a mechanism for adding behavior to a 3D
scene. An animation set consists of one or more animations and a time reference.

An animation is defined by a set of keys, which consists of a time value, an associ-
ated scaling operation, an orientation, or a position. A Direct3D animation object
defines how a transformation is modified according to the time value. The anima-
tion can be set to animate the position, orientation, and scaling of visuals, lights, or
viewport objects.

Applications can define position keys, rotation keys, and scale keys in the anima-
tion. Each key references a time value in zero-based arbitrary units. For example, if
an application adds a position key with a time value of 99, a new position key with a
time value of 49 would occur halfway between the beginning of the animation and
the first position key. An animation is driven by calling a method that sets its time
component. This call sets the visual object's transformation to the interpolated posi-
tion, orientation, and scale of the nearby keys. As with the methods that add anima-
tion keys, the time value is arbitrary and based on the positions of keys that the
application has already added. Rotation keys in an animation are based on quater-
nions. Quaternions, a mathematical structure that facilitates rotation transforma-
tions, are discussed later in this chapter.

A Direct3D animation set allows animation objects to be grouped together. The
result is that all the animations in the set share the same time parameter, which sim-

0 0 0

0 0 0

0 0 1
()

()
0 0 0

()

D
hF

D
hF

F
F D

F D
F D

 
 
 
 
 

− 
 − ×
 − 

© 2003 by CRC Press LLC

plifies the playback of complex sequences. Applications can add and remove anima-
tions to and from an animation set.

32.3.10 Quaternions
Direct3D retained mode supports a mathematical structure called a quaternion that
has found use in 3D animation. The quaternion is described as an extension to com-
plex numbers that describes both an orientation and a rotation in 3D space. In
Direct3D the quaternion consists of a vector that provides the orientation component
and a scalar, that defines the rotation component. This can be expressed as

where s is the rotation scalar of the quaternion and v is the orientation vector.

Quaternions provide a fast alternative to the matrix operations that are typically
used for 3D rotations. The quaternion can be visualized as an axis in 3D space, rep-
resented by a vector, and a rotation around that axis, represented by a scalar, as
shown in Figure 32-16.

Figure 32-16 Vector/Scalar Interpretation of the Quaternion

Two fundamental operations can be performed on quaternions: composition and
interpolation. Composition consists of combining quaternions. For example, the
composition of two quaternions, q1 and q2, in reference to an object in 3D space, is
interpreted to mean: rotate the object on the specified axis, by the rotation con-
tained in quaternion q1, and then rotate the object on the specified axis by the rota-
tion contained in quaternion q2. Quaternion interpolation is used to calculate a
smooth path from one axis and orientation to another.

A common problem in computer animation is the generation of in-between
frames that are necessary to simulate the smooth movement of an object from one
position to another one. For example, Figure 32-25 shows images of an F-111 jet.
The images at the top, called the key frames, represent the initial and final position
of the aircraft in a planned animation. To simulate this movement, it is necessary to

(,)q s v=

y

x

z

U

S

© 2003 by CRC Press LLC

generate a set of in-between images that produce a smooth transition from the start
frame to the end frame. Part of this image set, usually called the in-betweens, are
shown in the lower part of Figure 32-17.

Figure 32-17 In-Between Frames in Animation

Rendering the in-between frames in the case of Figure 32-17 consists of perform-
ing several rotations on the image data for the F-111 aircraft. Aircraft dynamics uses
three angles: the yaw refers to the vertical axis, the pitch to a horizontal axis
through the wings, and the roll through the fuselage axis. These angles are shown in
Figure 32-18.

Figure 32-18 Aircraft Dynamic Angles

Start frame

In-between frames

End frame

Yaw

Pitch

Roll

© 2003 by CRC Press LLC

Generating the animation image set in Figure 32-18 requires rotating the aircraft
along its yaw, pitch, and roll angles. Traditionally, rotations of 3D models have been
by means of independent coordinates called Euler angles. This approach, although
feasible, is computationally expensive because the composite rotation is based on
three individual rotations along the axes.

Quaternions provide a way of changing the orientation of the aircraft by perform-
ing a single rotation, that is a composite of the three primary ones along the yaw,
pitch, and roll angles. This is achieved by using composition and interpolation to-
gether. A composition is first used to go from the original to the final frame. The
smooth transition from the start frame to the end frame is then achieved through in-
terpolation. In Direct3D programming code determines an angle, called the slerp
value, that defines the position for the intermediate quaternion between two vec-
tors. For example, a slerp value of 0.5 creates a quaternion that is midway between
the two input quaternions. The quaternion method provides a much simpler and
computationally faster approach to calculating in-between images for animation.

32.4 Direct3D File Formats
The information that defines a 3D object must be stored in a special file format. You
cannot use the conventional BMP, GIF, or TIFF file types developed for 2D bitmaps for
a 3D image, although a 3D application may be capable of rendering a particular view of
a 3D object into one of the 2D file formats. Several 3D formats have been developed for
the PC; in fact, it seems that every 3D drawing program supports its own proprietary
format. What is worse, file conversion utilities that are relatively abundant for 2D im-
agery are difficult to develop for the 3D formats and, consequently, not always avail-
able.

Some of the 3D file formats have gained some level of prominence, usually pro-
portional to the muscle of its corporate sponsors. One of the first PC programs that
effectively used 3D was AutoCAD, a computer-assisted design application that en-
joys a lion's share of this market. The .dxf file format was designed by AutoCAD pri-
marily for the CAD environment. Its image handling capabilities are confined to 3D
faces and polylines, which makes it quite crude for 3D modeling and authoring ap-
plications. However, these limitations also imply an inherent simplicity and ease of
implementation, which have made the .dxf format quite popular. In many cases the
only way of moving image data between two 3D applications is by means of a .dxf
file, although the results usually leave much to be desired.

One of the leading 3D image editing programs is 3D Studio. The current version is
named 3D Studio MAX. The native file format for 3D Studio, named .3ds, comes
close to being the industry standard at the present time. Microsoft recognized this
hegemony by providing a utility, named conv3ds, that converts 3ds files into the for-
mat supported by Direct3D.

Direct3D supports a single file format called .x. It is used to store objects,
meshes, textures, and animation sets. It also supports animation sets, which allow
playback in real-time. The .x format supports multiple references to a single object
(such as a mesh) while storing the data for the object only once per file. Earlier ver-

© 2003 by CRC Press LLC

sions of Direct3D used a file format named .xof, which is now considered obsolete.
Direct3D retained mode uses the .x format for loading objects into an application
and for writing mesh information, constructed by the application, in real-time.

34.4.1 Description
The DirectX file format is a template-driven structure that allows the storage of
user-defined object, meshes, textures, animations, and animation sets. The format
supports multiple references to an object, such as a mesh. Multiple references allow
storing data only once per file. The format provides low-level data primitives as well as
application-defined higher level primitives via templates. The higher level primitives
include vectors, meshes, matrices and colors.

34.4.2 File Format Architecture
The DirectX file format is context-free. Its template-driven architecture does not de-
pend on any usage knowledge. The format is used in Direct3D retained mode to de-
scribe geometry data, frame hierarchies and animations.

Reserved Words
The following words are reserved for use by the DirectX format:

• ARRAY

• BYTE

• CHAR

• CSTRING

• DOUBLE

• DWORD

• FLOAT

• STRING

• TEMPLATE

• UCHAR

• UNICODE

• WORD

Header
The variable length header, which is compulsory, must be located at the beginning of
the data stream. Table 32-1, on the following page, lists the elements in the DirectX file
header.For example, the header

��� �������

corresponds to a file in text format. The code "xof" refers to the old extension for the .x
format and, when found in the header, indicates an .x file. The digits 0302 correspond
to the .x format version number, in this case 3.2. The digits 64 indicate that float-
ing-point numbers are encoded in 64-bit. Because no compression code is listed, the
file is not compressed.

© 2003 by CRC Press LLC

The header

��� ������	 ����

corresponds to an .x file in binary format, version 3.2, in which floating-point numbers
are encoded in 32-bits, uncompressed.

Table 32-1

DirectX File Header

TYPE SUB TYPE SIZE CONTENTS CONTENT MEANING

Magic number (required)
4 bytes "xof"

Version number (required)
Major number 2 bytes 03 Major version 3
Minor number 2 bytes 02 Minor version 2

Format type (required)
4 bytes "txt " Text file

"bin " Binary file
"com " Compressed file

Compression type:
required

If format is compressed
4 bytes "lzw "

"zip "
etc...

Float size (required)
4 bytes 0064 64-bit floats

0032 32-bit floats

Comments

Comments, which are only applicable in text files, may occur anywhere in the data
stream. A comment begins with either double slashes “//”, or a hash character “#”. The
comment runs to the next newline.

This is a comment.
// This is also a comment.

Templates

Templates are the basic element of the .x file format. A template contains no data but
defines the type and order of the data objects in the file. A template is similar to a struc-
ture definition. The general template format is as follows:

template <template-name> {
<UUID>
<member 1>;
<member 2>;
...
<member n>;
[open/close/restricted]
[...]
}

The template name is a string that must not begin with a digit. The underscore
character is allowed. UUID is the Windows universally unique identifier in OSF DCE

© 2003 by CRC Press LLC

format. The UUID is surrounded by angle brackets. The template members describe
the data elements to which the template refers. The member format is as follows:

����
�����
	�����

The primitive data types are listed in Table 32-2.

Table 32-2

Primitive Data Types for the .x File Format

TYPE SIZE

WORD 16 bits
DWORD 32 bits
FLOAT IEEE float
DOUBLE 64 bits
CHAR 8 bits
UCHAR 8 bits
BYTE 8 bits
STRING NULL terminated string
CSTRING Formatted C-string (currently unsupported)
UNICODE Unicode string (currently unsupported)

The template can contain any valid data type as an array. In this case the syntax is

�����
����
�����
	�����
����	���	
�������

where <dimension-size> can be either an integer or a named reference to another tem-
plate member whose value is then substituted. Arrays may be n-dimensional. In this
case n is determined by the number of paired square brackets trailing the statement.
For example:

array DWORD FixedArray[24];

array DWORD VariableArray[nElements];

array FLOAT Matrix8x8[8][8];

Templates may be open, closed, or restricted. These elements determine which
data types may appear in the immediate hierarchy of a data object. An open tem-
plate has no restrictions, a closed template rejects all data types, and a restricted
template allows a named list of data types.

Data

The actual data of the .x file is contained in the data objects. Data objects are format-
ted as follows:

<Identifier> [name] {

<member 1>;

...

<member n>;

}

The Identifier element is compulsory and must match a previously defined data
type or primitive. The name element is optional. The data members can be a data ob-
ject, which can be nested, a data reference to a previous data object, an integer,
float, or string list, in which the individual elements are separated by semicolons.

© 2003 by CRC Press LLC

Retained mode templates

The following templates are used by Direct3D retained mode:

• Template Name: Header

• Template Name: Vector

• Template Name: Coords2d

• Template Name: Quaternion

• Template Name: Matrix4x4

• Template Name: ColorRGBA

• Template Name: ColorRGB

• Template Name: Indexed Color

• Template Name: Boolean

• Template Name: Boolean2d

• Template Name: Material

• Template Name: TextureFilename

• Template Name: MeshFace

• Template Name: MeshFaceWraps

• Template Name: MeshTextureCoords

• Template Name: MeshNormals

• Template Name: MeshVertexColors

• Template Name: MeshMaterialList

• Template Name: Mesh

• Template Name: FrameTransformMatrix

• Template Name: Frame

• Template Name: FloatKeys

• Template Name: TimedFloatKeys

• Template Name: AnimationKey

• Template Name: AnimationOptions

• Template Name: Animation

• Template Name: AnimationSet

© 2003 by CRC Press LLC

Chapter 33

Direct3D Programming

Topics:
• Creating a Direct3D program

• Creating the objects

• Building the scene

• Rendering the scene

• Direct3D retained mode sample program

• Windowed retained mode coding template

We introduce Direct3D retained mode by developing a simple, windowed mode appli-
cation. In order to make clear the fundamentals of retained mode programming we
have stripped off everything that is not essential. The result is that the processing de-
scribed at this stage has minimal functionality: all we do in the code is render a static
image from a file in DirectX format. The code executes by performing four clearly dis-
tinct steps:

• Initializing the software interface. That is, creating the Direct3D and DirectDraw com-
ponents that are necessary to the program.

• Creating the objects. This implies creating the frames, meshes, lights, materials, and
other object that serve as parts of the scene.

• Building the scene from the individual component objects.

• Rendering the scene. In this step the viewport is cleared and the frame is rendered.

Each of these steps is explained in detail and packaged in its own function. All of
the coding comes together in the sample project 3DRM InWin Demo1 which is fur-
nished in the book's software package. We also include in this chapter a coding tem-
plate for windowed retained mode programming.

33.1 Initializing the Software Interface
Direct3D, as its parent DirectX, uses the Component Object Model (COM) interface
specification defined by Microsoft. COM is a standard for a component-based archi-

© 2003 by CRC Press LLC

tecture that aims at being language independent, reusable, upgradable, and transpar-
ent to application code. Whether you like or dislike COM, in Direct3D programming
you have no other option than to use it.

33.1.1 The IUnknown Interface
COM interfaces are derived from a general interface called IUnknown. All other COM
interfaces inherit from IUnknown, therefore IUnknown methods are always polymor-
phically visible to COM client code. This means that any object instantiated as a COM
object has access to the methods of IUnknown. There are three relevant methods in
IUnknown:

• The QueryInterface() method interrogates the object about the features it supports. If
the call is successful, it returns a pointer to the interface.

• AddRef() increments the object's reference count by 1 when an interface or another ap-
plication binds itself to the object. Application code rarely uses this function.

• Release() decrements the object's reference count by 1. When the count reaches 0, the
object is deallocated.

The reference count is a memory management technique that enables compo-
nents to self-destroy. It is based on keeping a tally of the number of interfaces allo-
cated to a COM object. Each time an interface is allocated, the reference count is
incremented. When client code is finished using an interface it decrements the refer-
ence count by calling the Release() method. If at any time the reference count goes
to zero, the interface object deletes itself. The AddRef() method is normally called
by the function, while the Release() method is called by your code. When
QueryInterface() successfully returns a pointer to an interface, it implicitly calls
AddRef to increment the reference count. This means that your application must
call the Release() method before destroying the pointer to the interface.

33.1.2 Direct3DRM Object
The word "object" in the context of Direct3D is not directly related to object orienta-
tion. When you hear the word object in the context of Direct3D you should not inter-
pret it as an "instance of a class," but in its generic and more conventional sense.
Textures, cameras, viewports, meshes, and many other elements of Direct3D are
loosely refered to as "objects". The common superclass of all these objects is the
Direct3DRMObject. Direct3DRMObject is instantiated as a COM object and can,
therefore, access the methods of the IUnknown interface.

Before an application can create the Direct3DRNObject it must first instantiate a
Direct3D retained mode object. This is achieved by calling Direct3DRMCreate().
The function's general form is as follows:

HRESULT Direct3DRMCreate(

LPIRECT3DRM FAR * lplpD3DRM // Address of interface

);

The function returns D3DRM_OK if it succeeds. In this case the pointer is valid
and can be used to access the interface. Any other return value indicates that the
function failed and that the pointer is invalid.

940 Chapter Thirty-Three

© 2003 by CRC Press LLC

33.1.3 Calling QueryInterface()

The pointer returned by Direct3DRMCreate() is a COM object and can therefore ac-
cess the IUnknown methods. Of these methods, QueryInterface() is the one usually
called first, since it provides information regarding whether a particular COM inter-
face is supported. The function's general form is as follows:

HRESULT QueryInterface(

REFIID riid, // 1

LPVOID* obp // 2

);

The first parameter is the reference to the unique identifier for the particular in-
terface. It is sometimes called the interface identifier, or IID. In DirectX program-
ming this parameter is passed to the call as a predefined constant. For example, in
the DD Info Demo program developed previously, we used cascaded calls to
QueryInterface() using different IIDs in order to determine the most recent version
of DirectDraw supported by the system. Code is as follows:

DDConnect = DirectDrawCreate (NULL,

&lpDD0,

NULL);

// Store pointer and continue if call succeeded

if(DDConnect == DD_OK) {

DDLevel = 1; // Store level

lpDD = lpDD0; // copy pointer

// Query the interface to determine most recent version

DDConnect = lpDD0->QueryInterface(

IID_IDirectDraw2,

LPVOID *) &lpDD2);

}

if(DDConnect == S_OK){

DDLevel = 2; // Update level

lpDD0->Release(); // Release old pointer

lpDD = lpDD2;

DDConnect = lpDD->QueryInterface(

IID_IDirectDraw4,

(LPVOID *) &lpDD4);

}

if(DDConnect == S_OK){

DDLevel = 4; // Update level

lpDD2->Release(); // Release old pointer

lpDD = lpDD4;

}

Notice that in the above code the call to QueryInterface() is first made with the
identifier IID_IDirectDraw2, then with IID_IDirectDraw4, to determine if either of
these newer version of DirectDraw is available. In this case the call Returns S_OK if
it succeeeds. If it fails QueryInterface returns E_NOINTERFACE or one of the fol-
lowing interface-specific error values listed in Table 33-1.

Direct3D Programming 941

© 2003 by CRC Press LLC

Table 33-1

Interface-Specific Error Values Returned by Queryinterface()

DIRECTX INTERFACE RETURNS (COMMENT)

DirectDraw DDERR_INVALIDOBJECT
DDERR_INVALIDPARAMS
DDERR_OUTOFMEMORY (IDirectDrawSurface2
only

DirectSound DSERR_GENERIC (IDirectSound and
IDirectSoundBuffer only)
DSERR_INVALIDPARAM

DirectPlay DPERR_INVALIDOBJECT
DPERR_INVALIDPARAMS

Direct3D Retained Mode D3DRM_OK (No error)
DRMERR_BADALLOC (Out of memory)
D3DRMERR_BADDEVICE (Device not
compatible)
D3DRMERR_BADFILE
D3DRMERR_BADMAJORVERSION
D3DRMERR_BADMINORVERSION
D3DRMERR_BADOBJECT
D3DRMERR_BADTYPE
D3DRMERR_BADVALUE
D3DRMERR_FACEUSED (Face already used
in a mesh)
D3DRMERR_FILENOTFOUND
D3DRMERR_NOTFOUND (Object not found)
D3DRMERR_UNABLETOEXECUTE

When the application is finished using the interface retrieved by a call to this
method, it must call the Release() method for that interface to free it.

The COM provides two macros, named SUCCEEDED and FAILED, which are de-
fined as follows:

#define SUCCEEDED(Status) ((HRESULT)(Status) >= 0)
#define FAILED(Status) ((HRESULT)(Status)<0)

These macros are a convenient way to check for the success or failure of any
COM function without having to deal with the specific error codes. We frequently
use these macros in our code samples.

In Direct3D retained mode programs the call to QueryInterface() uses the
IID_IDirect3DRM identifier. The call requires a Direct3DRM object. Code usually re-
leases the object after the interface has been validated since there is not further use
for it. The following code fragment is from a function listed later in this chapter.

// Create the Direct3DRM object.
LPDIRECT3DRM pD3DRMTemp;
HRETURN retval;
...
retval = Direct3DRMCreate(&pD3DRMTemp);
if (retval != D3DRM_OK)
{

942 Chapter Thirty-Three

© 2003 by CRC Press LLC

// Display error message here
return FALSE;

}
retval = pD3DRMTemp->QueryInterface(IID_IDirect3DRM3,

(void **)&lpD3DRM)))
if(retval != D3DRM_OK)
{

pD3DRMTemp->Release();
// Display error message here
return FALSE;

}
// Release the object
pD3DRMTemp->Release();

Creating the DirectDraw Clipper
We have mentioned that Direct3D is closely related to DirectDraw and uses much of its
functionality. At this point we are interested in creating a DirectDraw clipper object
that will determine which portion of the 3D scene is visible on the viewport. In a win-
dowed mode application all we need to do is to create a DirectDraw clipper object and
then to assign to it our application window as the clipping plane.

The DirectDraw clipper that we need for Direct3D must not be owned by a
D i r e c t D r a w o b j e c t . T h e D i r e c t D r a w A P I p r o v i d e a f u n c t i o n n a m e d
DirectDrawCreateClipper for this purpose. The resulting objects are known as
driver- independent DirectDrawClipper objects. Notice that the function
DirectDrawCreateClipper() is not equivalent to IDirectDraw::CreateClipper, which
creates a clipper owned by a specific DirectDraw object. The function's general
form is as follows:

HRESULT DirectDrawCreateClipper(
DWORD dwFlags, // 1
LPDIRECTDRAWCLIPPER FAR *lplpDDClipper, // 2
IUnknown FAR *pUnkOuter // 3
);

The first parameter is currently not implemented and must be set to zero. The
second parameter is the address of a pointer to be filled in with the address of the
new DirectDrawClipper object. The third parameter is provided for future COM fea-
tures but at the present time must be set to NULL. The function returns DD_OK if
successful, or one of the following error codes:

• DDERR_INVALIDPARAMS

• DDERR_OUTOFMEMORY

The object created by this function is not automatically released when an applica-
tion's objects are released. They should be explicitly released by application code,
although DirectDraw documentation states that they will be automatically released
when the application terminates.

33.1.4 The Clip List
In the context of Direct3D windowed applications a clip list is a series of rectangles
that delimit the visible areas of the surface. We have seen that a DirectDrawClipper ob-
ject can be attached to any surface and that a window handle can be attached to a

Direct3D Programming 943

© 2003 by CRC Press LLC

DirectDrawClipper object. In this case DirectDraw updates the DirectDrawClipper
clip list using the application window as a clipping plane. As the window changes, the
clip list is updated.

The call to DirectDrawCreateClipper() creates the clipper but does not define the
clip list. In order to do this, the application must use the pointer returned by
DirectDrawCreateClipper() to call SetHWnd(). The function's general form is as fol-
lows:

HRESULT SetHWnd(
DWORD dwFlags, // 1
HWND hWnd // 2
);

The first parameter is currently not used and should be set to 0. The second pa-
rameter is the handle to the window that will be used as a clipping place. The call re-
turns DD_OK if successful, or one of the following error codes:

• DDERR_INVALIDCLIPLIST

• DDERR_INVALIDOBJECT

• DDERR_INVALIDPARAMS

• DDERR_OUTOFMEMORY

The following code fragment creates a driver-independent DirectDrawClipper ob-
ject and then attaches to it the current window as a clipping plane.

HRESULT retval;
HWND hwnd;
. . .
// Create a DirectDrawClipper object

retval = DirectDrawCreateClipper(0, &lpDDClipper, NULL);
if (retval != DD_OK)
{

// Display error message here
return FALSE;

}
// Attach the program Window as a clipper
retval = lpDDClipper->SetHWnd(0, hwnd);
if (retval != DD_OK)
{

// Display error message here
return FALSE;

}

33.1.5 InitD3D() Function
The function InitD3D() in the 3DRM InWin Demo1 project, included in the book's soft-
ware package, performs the processing operations described in this section. A slightly
modified version of this function is included in the retained mode windowed coding
template described later in this chapter. Follows a listing of this function.

//**
// Name: InitD3D()
// Description: Initialize Direct3D interface
//**
BOOL InitD3D(HWND hwnd)

944 Chapter Thirty-Three

© 2003 by CRC Press LLC

{
HRESULT retval; // Return value

// Initialize the entire global variable structure to zero.
memset(&globVars, 0, sizeof(globVars));

// Create the Direct3DRM object.
LPDIRECT3DRM pD3DRMTemp;
retval = Direct3DRMCreate(&pD3DRMTemp);
if (FAILED(retval))
{

D3DError("Failed to create Direct3DRM.");
return FALSE;

}
if(FAILED(pD3DRMTemp->QueryInterface(IID_IDirect3DRM3,

(void **)&lpD3DRM)))
{

pD3DRMTemp->Release();
D3DError("Direct3DRM3 interface not found");
return FALSE;

}
pD3DRMTemp->Release();

// Create DirectDrawClipper object
retval = DirectDrawCreateClipper(0, &lpDDClipper, NULL);
if (FAILED(retval))
{

D3DError("Failed to create DirectDrawClipper object");
return FALSE;

}
// Attach the program Window as a clipper
retval = lpDDClipper->SetHWnd(0, hwnd);
if (FAILED(retval))
{

D3DError("Failed to set the window handle");
return FALSE;

}
return TRUE;
}

33.2 Building the Objects
At this point in the code, the Direct3D retained mode, windowed application has per-
formed the necessary initializations and is ready to start building the scene. In order to
do this, code must first create the objects that are used in the scene. Before we tackle
the details of object building there are a few housekeeping chores that need to be dis-
cussed.

To create the objects, and later, the scene itself, we need the pointer to returned
in the second parameter to the QueryInterface() call discussed previously. In the
code used in this chapter the pointer is publicly defined as follows:

�����������	�
�����	 �
����

By giving the pointer public visibility we are able to use it from several functions
without having to pass it as a parameter in each call.

Direct3D Programming 945

© 2003 by CRC Press LLC

In addition to the basic Direct3D retained mode pointer (lpD3DRM) just men-
tioned, we also need pointers to the specific objects and devices. For example, to
load a file in DirectX format into the scene we need to create a meshbuilder object
using the CreateMeshBuilder() function that is available in the IDirect3DRM inter-
face. The pointer of type LPDIRECT3DRM (stored in the named variable lpD3DRM
in these examples) provide access to the interface services in IDirect3DRM. The
CreateMeshBuilder() function takes as a parameter a variable of the type
LPDIRECT3DMESHBUILDER3. The returned pointer is then used to access the
Load() method. Other Direct3D objects, such as devices, scenes, cameras, lights,
frames, materials, and meshes also require pointers to their specific interfaces. In
the code samples that follow we require the following sub-set of interface-specific
pointers:

• LPDIRECT3DRMDEVICE3

• LPDIRECT3DRMFRAME3

• LPDIRECT3DRMMESHBUILDER3

• LPDIRECT3DRMLIGHT

• LPDIRECT3DRMMATERIAL2

Sometimes the same pointer type is used for referencing different types of ob-
jects, for example, the type LPDIRECT3DRMFRAME3 is used to access a scene, a
camera, a light, and a child frame.

Whether to make this pointers globally visible or not is mostly a matter of pro-
gramming style. The most common guideline is that if the pointer will be required in
several functions then it should be public. The problem with this rule is that at the
time we are developing code it is often difficult to predict if a pointer will be re-
quired in other functions. Our excuse for abusing public variables in the code sam-
ples presented in this book excuse is that, today, wasting a few bytes of memory at
runtime is not as important an issue as it was in the memory-starved systems of a
few years ago.

Direct3D retained mode applications frequently manipulate several objects, such
as frames, scenes, cameras, lights, and textures. In this case it is useful to create one
or more structures that define the individual pointers and variables and then
instantiate structure variables as required for different objects used in the code. An
additional benefit of using structures is that all the variables in the structure can be
cleared simultaneously by means of the memset buffer manipulation routine. The
following global structure and variables are used in the sample code listed in this
chapter and in the 3DRM InWin Demo1 program in the book's software package.

// Global variables
struct _globVars
{

LPDIRECT3DRMDEVICE3 aDevice; // Retained mode device
LPDIRECT3DRMVIEWPORT2 aViewport; // Direct3DRM viewport
LPDIRECT3DRMFRAME3 aScene; // Master frame
LPDIRECT3DRMFRAME3 aCamera; // Camera frame
BOOL isInitialized; // All D3DRM objects

// have been

946 Chapter Thirty-Three

© 2003 by CRC Press LLC

// been initialized.
} globVars;

LPDIRECT3DRM3 lpD3DRM = NULL; // Direct3DRM object manager
LPDIRECTDRAWCLIPPER lpDDClipper = NULL;

// DirectDrawClipper object
HWND hWnd;
char szXfile[] = "teapot.x" ; // File to load

Notice that the template _globVars includes a boolean variable that keeps track
of the application's initialization state, named isInitialized.

In addition to global variables Direct3D applications often require local ones, typ-
ically located inside the functions that perform object creation and scene building.
As we will see later in this chapter, the variables used in creating objects and build-
ing a scene can have local lifetime, as long as the resulting master frame and its
component object are global. In our code the master frame is stored in the global
structure variable globVars.aScene, listed previously.

33.2.1 Creating the Objects
The following objects are needed to create a simple, Direct3D scene:

• A device

• A master scene frame

• A camera frame

• A viewport

The functions to be used in creating these object have in common that their
names started with the word “create”, for example, CreateDeviceFromClipper(),
CreateFrame(), and CreateViewport. Once the objects are created they can be as-
sembled into a master scene. A global variable, in this case the structure variable
isInitialized, is used to record the fact that the master scene has been built.

Creating the Device

The term "device" in the context of Direct3D retained mode is equivalent to a "display
device." It can be visualized as the video memory area to which the scene is rendered.
In practice, a Direct3D device is always a DirectDraw surface. The viewport is a rect-
angular area within the device. We should also note that neither the device nor the
viewport are equivalent to the video buffer, which is the area directly mapped to the
display surface and shown on the screen.

In Direct3D the size of a device is defined when it is created and cannot be
changed. In order to change the size of the device you must destroy the old device
and create a new one with different dimensions. In Direct3D you can create a device
from Direct3D objects, from a surface, or from a DirectDraw clipper. For the mo-
ment we will be concerned with this last method.

Since the size of the device must be defined at the time it is created, code needs
to obtain the width and height of the client area. The GetClientRect() function can
be used for this purpose. When the call returns, the bottom member of the RECT

Direct3D Programming 947

© 2003 by CRC Press LLC

structure variable contains the height of the client area and the right member con-
tains the width.

The CreateDevicFromClipper() function of IDirect3DRM2 interface allows creat-
ing a device from a DirectDraw clipper object. Previously in this chapter we called
DirectDrawCreateClipper() and stored the resulting pointer in the variable
l p D D C l i p p e r . T h i s v a r i a b l e i s n o w n e e d e d t o c r e a t e t h e d e v i c e .
CreateDeviceFromClipper() has the following general form:

HRESULT CreateDeviceFromClipper(

LPDIRECTDRAWCLIPPER lpDDClipper, // 1

LPGUID lpGUID, // 2

int width, // 3

int height, // 4

LPDIRECT3DRMDEVICE * lplpD3DRMDevice // 5

);

The first parameter is the address of the DirectDrawClipper object, mentioned in
the preceding paragraph. The second parameter is a globally unique identifier
(GUID). Normally, this parameter is set to NULL. This forces the system to search
for a device with a default set of capabilities. This is the recommended way to create
a device in retained mode programming, since the method always works, even if the
user installs new hardware. Parameters 3 and 4 refer to the width and height of the
device and usual ly correspond with the values obtained by the cal l to
GetClientRect(). If the call succeeds, the fifth parameter will be filled with the ad-
dress of a pointer to an IDirect3DRMDevice interface.

The call returns D3DRM_OK if successful, or an error otherwise.

T h e f o l l o w i n g c o d e f r a g m e n t s h o w s c r e a t i n g a d e v i c e u s i n g t h e
CreateDeviceFromClipper() function

HWND hwnd; // Handle to the window

HRESULT retval; // Return value

RECT rc; // Storage for viewport dimensions

. . .

// Obtain size of client area

GetClientRect(hwnd, &rc);

retval = lpD3DRM->CreateDeviceFromClipper(lpDDClipper,

NULL, // Default device

rc.right,

rc.bottom,

&globVars.aDevice);

if (FAILED(retval))

{

// Display error message here

return FALSE;

}

948 Chapter Thirty-Three

© 2003 by CRC Press LLC

33.2.2 CreateObjects() Function
The function CreateObjects() in the 3DRM InWin Demo1 program, in the book's soft-
ware package, performs the processing operations discussed in this section. Follow-
ing is a code listing of this function.

//***
// Name: CreateObjects()
// Description: Create the device and the scene objects
//***
BOOL CreateObjects(HWND hwnd)
{

// Local variables
HRESULT retval; // Return value
RECT rc; // Bounding rectangle for main window
int width; // Device's width
int height; // Device's height

// Get client area dimensions
GetClientRect(hwnd, &rc);
// Create device from DirectDraw clipper
retval = lpD3DRM->CreateDeviceFromClipper(lpDDClipper,

NULL, // Default aDevice
rc.right, rc.bottom,
&globVars.aDevice);

if (FAILED(retval))
{

D3DError("Failed to create the D3DRM device");
return FALSE;

}

// Create the master scene
retval = lpD3DRM->CreateFrame(NULL, &globVars.aScene);
if (FAILED(retval))
{

D3DError("Failed to create the master scene frame");
return FALSE;

}
// Create the camera frame
retval = lpD3DRM->CreateFrame(globVars.aScene,

&globVars.aCamera);
if (FAILED(retval))
{

D3DError("Failed to create the camera frame");
return FALSE;

}

// Create the Direct3DRM viewport using the device, the
// camera frame, and the device's width and height.
width = globVars.aDevice->GetWidth();
height = globVars.aDevice->GetHeight();

retval = lpD3DRM->CreateViewport(globVars.aDevice,
globVars.aCamera, 0, 0,
width, height,
&globVars.aViewport);

if (FAILED(retval))
{

globVars.isInitialized = FALSE;
globVars.aDevice->Release();

Direct3D Programming 949

© 2003 by CRC Press LLC

return FALSE;
}
// Create the scene
if (!BuildScene(globVars.aDevice, globVars.aScene,

globVars.aCamera))
return FALSE;

// Record that global variables are initialized
globVars.isInitialized = TRUE;
return TRUE;

}

33.3 Master Scene Concepts
In Direct3D literature the notions of a scene and that of a frame sometimes overlap. A
frame may have a parent frame from which it inherits all its attributes, even dynamic
ones. For example, if a parent frame is rotating at a given rate, the resulting child frame
rotates identically. A scene, on the other hand, is described as a frame with no parent.
Some confusion results from the fact that you can create a scene (a frame with no par-
ent) and later on associate it with a parent frame, at which time is ceases to be a scene
and becomes a child frame. The CreateFrame() function of the IDirect3DRM2 inter-
face is used for creating both frames and scenes. The function's general form is as fol-
lows:

HRESULT CreateFrame(
LPDIRECT3DRMFRAME lpD3DRMFrame, // 1
LPDIRECT3DRMFRAME* lplpD3DRMFrame // 2
);

The first parameter is the address of the frame that serves as a parent. If this pa-
rameter is NULL, then a scene is created. The second parameter is the variable that
will be filled with a pointer to an IDirect3DRMFrame interface if the call succeeds.

The method returns D3DRM_OK if successful, or an error otherwise.

As previously discussed, we usually store the master scene in a global variable in
order to make it visible throughout the code. The following code fragment shows
the creation of a master scene.

// Create the master scene
retval = lpD3DRM->CreateFrame(NULL, &globVars.aScene);
if (FAILED(retval))
{

// Display error message here
return FALSE;

}

Notice that using NULL for the first parameter in the call to CreateFrame() en-
sures that the results are a scene, in other words, a frame with no parent.

33.3.1 The Camera Frame
In Direct3D retained mode the camera is implemented as a frame object. The camera
frame determines the viewing position and direction, since the viewport renders only
what is visible along the positive z-axis of the camera frame. In addition, the camera

950 Chapter Thirty-Three

© 2003 by CRC Press LLC

frame determines which scene is rendered. Later in this chapter we will set the cam-
era's position. For now, we need to create the camera frame, which we do by means of
the same CreateFrame() function that was used in creating the master scene in the
previous section. The one difference is that the camera frame is a child frame of the
master scene. Therefore, in this case, the first parameter passed to CreateFrame() re-
fers to the master scene, and the second one to the camera frame. The following code
fragment shows the processing.

// Create the camera frame
retval = lpD3DRM->CreateFrame(globVars.aScene,

&globVars.aCamera);
if (FAILED(retval))
{

// Display error message here
return FALSE;

}

33.3.2 The Viewport
The viewport defines the rectangular area into which the scene is rendered. In this
sense the viewport can be described as a 2D construct that is used in rendering 3D ob-
jects. Here again we should keep in mind that they viewport is not the video buffer, and
that rendering to the viewport does not display the image.

We have seen that the viewport uses the camera frame object to define which
scene is rendered as well as the viewing position and direction. A viewport is de-
fined in terms of its viewing frustum, as explained in Chapter 32. The viewport is
created by calling the CreateViewport() function of the IDirect3DRM interface. The
function's general from is as follows:

HRESULT CreateViewport(
LPDIRECT3DRMDEVICE lpDev, // 1
LPDIRECT3DRMFRAME lpCamera, // 2
DWORD dwXPos, // 3
DWORD dwYPos, // 4
DWORD dwWidth, // 5
DWORD dwHeight, // 6
LPDIRECT3DRMVIEWPORT* lplpD3DRMViewport // 7
);

The first parameter is the device on which the viewport is to be created. The sec-
ond parameter is the camera frame that defines the position and direction of the
viewport. Parameters 3 and 4 refer to the position of the viewport and parameters 5
and 6 to its dimension. All of these are expressed in device coordinates.

If the call succeeds, parameter 7 is the variable that will be filled with a pointer to
an IDirect3DRMViewport interface. The call returns D3DRM_OK if successful, or an
error otherwise.

The position of the viewport relative to the device frame is specific to the applica-
tion's design and the proposed rendering operations. However, the size of the
viewport must not be greater than that of the physical device, otherwise the call to
CreateViewport() fails. To make sure that the viewport is not larger than the physi-
c a l d e v i c e w e c a n u s e t h e G e t Wi d t h () a n d G e t H e i g h t () f u n c t i o n s , o f

Direct3D Programming 951

© 2003 by CRC Press LLC

IDirect3DRMDevice, to obtain the necessary dimensions. Note that the
IDirect3DRMViewport interface also has GetWidth() and GetHeight() methods that
retrieve the size of the viewport. At this time, since the viewport has not yet been
created we must use the functions of IDirect3DRMDevice. The following code frag-
ment shows obtaining the device size and then creating the viewport.

int width; // Storage for device size
int height;
. . .
// Obtain device size and store in local variables
width = globVars.aDevice->GetWidth();
height = globVars.aDevice->GetHeight();
// Create the viewport
retval = lpD3DRM->CreateViewport(globVars.aDevice,

globVars.aCamera,
0, 0,
width, height,
&globVars.aViewport);

if (FAILED(retval))
{

// Display error message here
globVars.isInitialized = FALSE;
globVars.aDevice->Release();
return FALSE;

}

33.4 Master Scene Components
Once all the global objects have been built (in this case the device, the scene, the cam-
era, and the viewport) we can proceed to build the master scene. In this example we
assume that the mesh object is stored in a file in Directx format, and that it is located in
the same directory as the executable code. In the case that we are following, the fol-
lowing steps are required:

• Creating a meshbuilder object and using it to load the mesh file

• Creating a child frame within the scene and adding the loaded mesh into the child frame

• Setting the camera position

• Creating the light frame

• Creating the lights used in illuminating the scene and attaching them to frames

• Creating a material and setting it in the mesh

• Setting the mesh color

• Releasing all local variables used in building the scene

In regards to this last step we must consider that in the process of building the
master scene we create and use a host of Direct3D retained mode objects, such as
meshes, cameras, lights, textures, and materials. Once the scene is created, the indi-
vidual objects that were used in building it are no longer needed, since they have be-
come part of the scene itself. For this reason, it is usually possible to limit the
lifetime of these objects to the process of scene creation. This means that the point-
ers and variables required for creating the objects can have local scope and visibil-

952 Chapter Thirty-Three

© 2003 by CRC Press LLC

ity. Also, that the individual objects can and should be released once they are
incorporated into the scene.

33.4.1 The Meshbuilder Object

As its name implies, the meshbuilder component is a tool for building meshes. The
meshbuilder itself cannot be rendered. In this chapter we use the meshbuilder object
to load a mesh previously stored in a file in Directx format. The meshbuilder functions
can be used to manually assemble 3D images. However, by far the most common way
of creating images is by using a 3D image editor program, such as 3D Studio Max.

The f i rs t s tep is to create the meshbui lder ob jec t by means of the
CreateMeshBuilder() function that is part of IDirect3DRM interface. The function
has the following general form:

HRESULT CreateMeshBuilder(

LPDIRECT3DRMMESHBUILDER* lplpD3DRMMeshBuilder // 1

);

The call's only parameter is the address of a pointer that is filled with the
IDirect3DRMMeshBuilder interface if the call is successful. The function returns
D3DRM_OK if it succeeds, or an error otherwise.

In the example that we are currently following we use the meshbuilder object's
Load() a file in DirectX format. The file is loaded into the meshbuilder itself and
takes the form of a mesh. Later in the code this mesh is stored in a frame. The
Load() function has the following general form:

HRESULT Load(

LPVOID lpvObjSource, // 1

LPVOID lpvObjID, // 2

D3DRMLOADOPTIONS d3drmLOFlags, // 3

D3DRMLOADTEXTURECALLBACK d3drmLoadTextureProc, // 4

LPVOID lpvArg // 5

);

The first parameter is the source to be loaded. It can be a file, a resource, a mem-
ory block, or a stream, depending on the source flags specified in the third parame-
ter. The second parameter is the object name or position. This parameter depends
o n t h e i d e n t i f i e r f l a g s s p e c i f i e d i n t h e t h i r d p a r a m e t e r . I f t h e
D3DRMLOAD_BYPOSITION flag is specified, the second parameter is a pointer to a
DWORD value that gives the object's order in the file. This parameter can be NULL.
The third parameter is a flag of type D3DRMLOADOPTIONS describing the load op-
tions. Table 33-2, on the following page, lists these flags.

The fourth parameter to the Load() function is used when loading textures that
require special formatting. In this case the specified callback function is called. This
parameter can be NULL. The fifth parameter is the address of a data structure
passed to the callback function in the fourth parameter. The function returns
D3DRM_OK if successful, or an error otherwise.

Direct3D Programming 953

© 2003 by CRC Press LLC

Table 33-2

Flags in the D3DRMLOADOPTIONS Type

FLAG ACTION

Flags modifying the first parameter (lpvObjSource):

D3DRMLOAD_FROMFILE The lpvObjSource parameter is interpreted
as a string representing a local file
name.

D3DRMLOAD_FROMRESOURCE
The lpvObjSource parameter is interpreted
as a pointer to a
D3DRMLOADRESOURCE structure.

D3DRMLOAD_FROMMEMORY
The lpvObjSource parameter is interpreted
as a pointer to a D3DRMLOADMEMORY
structure.

D3DRMLOAD_FROMURL The lpvObjSource parameter is interpreted
as a URL.

Flags modifying the second paramenter (lpvObjID):

D3DRMLOAD_BYNAME The lpvObjID parameter is interpreted as
a string.

D3DRMLOAD_BYGUID The lpvObjID parameter is interpreted as
a UUID.

Other flags:

D3DRMLOAD_FIRST The first progressive mesh found is
loaded. This is the default mode.

The following code fragment shows the creation of a meshbuilder object and its
use in loading a file in DirectX format.

char szXfile[] = "teapot.x" ; // DirectX file
LPDIRECT3DRMMESHBUILDER3 meshbuilder = NULL;
HRESULT retval;
. . .

// Create the meshbuilder object
retval = lpD3DRM->CreateMeshBuilder(&meshbuilder);

if (FAILED(retval))
// Meshbuilder creation error handler goes here

. . .
// Use meshbuilder to load a mesh from a DirectX file
retval = meshbuilder->Load(szXfile,

NULL,
D3DRMLOAD_FROMFILE,
NULL,
NULL);

if (FAILED(retval))
{

// Load error handler goes here
. . .

After this code executes the file named teapot.x is converted into a mesh which
becomes the meshbuilder object itself.

954 Chapter Thirty-Three

© 2003 by CRC Press LLC

33.4.2 Adding a Mesh to a Frame
Currently our mesh is stored in a meshbuilder object, which cannot be rendered. The
next step consists of creating a frame and loading the mesh into this frame. We have
previously used CreateFrame(). We now use this same method to create a child frame.
The coding is as follows:

LPDIRECT3DRMFRAME3 childframe = NULL;
. . .

// Create a child frame within the scene

retval = lpD3DRM->CreateFrame(aScene, &childframe);

if(FAILED(retval))

// Error in creating frame handler goes here

. . .

In Direct3D a visual object, or simply a visual, is one that is displayed when the
frame is in view. Meshes, textures, and even frames, can be visuals, although the
most common visual is the mesh. When a texture object is labeled as a visual it be-
comes a decal. In this example we use the AddVisual() function, of the
IDirect3DRMFrame interface, to add the mesh to the child frame as a visual.
AddVisual() has the following general form:

HRESULT AddVisual(
LPDIRECT3DRMVISUAL lpD3DRMVisual // 1
);

The function's only parameter is the address of a variable that represents the
Direct3DRMVisual object to be added to the frame.

The call returns D3DRM_OK if successful, or an error otherwise. The following
code fragment shows adding the mesh to the child frame.

// Add mesh into the child frame as a visual
retval = childframe->AddVisual(

(LPDIRECT3DRMVISUAL)meshbuilder);
if(FAILED(retval))
{

// Failed AddVisual() error handler goes here
}

Notice that we used the pointer returned by the CreateFrame() call, which in this
case is the variable childframe, of type LPDIRECT3DRMFRAME3, to access the
AddVisual() function. The meshbuilder object is passed as a parameter and the re-
sult is that the mesh is added to the frame, and therefore, to the scene.

33.4.3 Setting the Camera Position
Previously in this chapter we created the camera as a global object. The camera object
was stored in the variable named aCamera, of type LPDIRECT3DRMFRAME3, which
is a member of the globVars structure. The camera object was created with the follow-
ing statement:

// Create the camera frame

Direct3D Programming 955

© 2003 by CRC Press LLC

retval = lpD3DRM->CreateFrame(globVars.aScene,

&globVars.aCamera);

We have seen that the camera frame determines which scene is rendered and the
viewing position and direction. In Direct3D the viewport renders only what is visible
along the positive z-axis of the camera frame, with the up direction being in the di-
rection of the positive y-axis.

When a child frame is created, it is positioned at the origin of the parent frame,
that is, at coordinates (0,0,0). Applications can call the SetPosition() function of the
IDirect3DRMFrame interface, to set the position of a frame relative to a reference
point in the parent frame. To position the camera in its parent frame (the scene) we
call SetPosition() using the variable aCamera as an interface reference. The general
from of the SetPosition() function is as follows:

HRESULT SetPosition(

LPDIRECT3DRMFRAME lpRef, // 1

D3DVALUE rvX, // 2

D3DVALUE rvY, // 3

D3DVALUE rvZ // 4

);

The first parameter is the address of the parent frame that is used as a reference.
The second, third, and fourth parameters are the x, y, and z coordinates of the new
position for the child frame. The call returns D3DRM_OK if successful, or an error
otherwise.

The camera position determines what, if anything, is visible when the scene is
rendered. For example, changing the position of the camera along the z-axis makes
the objects in the scene appear larger or smaller (see Figure 33-1). The default posi-
tion of the camera frame at the scene origin may be so close to the viewing frustum
that a small portion of the object is visible. The following code fragment shows posi-
tioning of the camera frame so that it is located –7 units along the z-axis.

retval = aCamera->SetPosition(aScene,

D3DVAL(0), // x

D3DVAL(0), // y

-D3DVAL(7) // z

);

if (FAILED(retval))

// Camera position error handler goes here

There is no default lighting in Direct3D retained mode. The objects in a scene
without lights are invisible. In order to illuminate the scene, code must create the
light frame and position it in relation to the parent frame. Once this is done, one or
more lights can be added to the light frame and the scene illuminated. This means
that we will be dealing with two different types of objects: the light frame object,
which is of type LPDIRECT3DRMFRAME3, and one or more lights, which are of
type LPDIRECT3DRMLIGHT.

956 Chapter Thirty-Three

© 2003 by CRC Press LLC

Figure 33-1 Changing the Camera Position along the z-axis

33.4.4 Creating and Positioning the Light Frame
We start by creating the light frame which is attached to the scene as a parent frame.
Here again we use the CreateFrame() function, which is part of the IDirect3DRM3 in-
terface. The following code fragment shows the processing.

LPDIRECT3DRMFRAME3 lights = NULL;
. . .
// Create a light frame as a child of the scene frame
retval = lpD3DRM->CreateFrame(aScene, &lights);
if(FAILED(retval))
{

// Light frame creation error handler goes here
}

To set the position of the light frame we use the SetPosition() function of
IDirect3DRMFrame interface, as in the following code fragment.

// Position the light frame within the scene
retval = lights->SetPosition(aScene,

D3DVAL(5), // x
D3DVAL(0), // y
-D3DVAL(7)); // z

if(FAILED(retval))
{

// Light frame positioning error handler goes here
}

The position of the light frame is often related to the position of the camera
frame. Since our camera frame was located at coordinates (0,0,-7), we position the
light frame at the same y and z coordinates as the camera, but at a greater x coordi-
nate. The result is that the light or lights placed in this frame will appear to come
from the right of the camera and at the same vertical level (y coordinate) and dis-
tance from the object (z coordinate).

33.4.5 Creating and Setting the Lights
Now that we have a light frame, we are able to create one or more lights. There are two
methods in the IDirect3DRM interface that allow creating lights: CreateLight() and
CreateLightRGB(). CreateLight() requires that we specify the light color by referring a
structure of type D3DCOLOR, which is obtained by calling the macros D3DRGB or
D3DRGBA. CreateLightRGB() allows defining the light color directly. Because it is

Direct3D Programming 957

© 2003 by CRC Press LLC

easier to code, we will use CreateLightRGB() in the examples in this chapter. The
function's general form is as follows:

HRESULT CreateLightRGB(
D3DRMLIGHTTYPE ltLightType, // 1
D3DVALUE vRed, // 2
D3DVALUE vGreen, // 3
D3DVALUE vBlue, // 4
LPDIRECT3DRMLIGHT* lplpD3DRMLight // 5
);

The first parameter is one of the lighting types defined in the D3DRMLIGHTYPE
enumerated type. Table 33-3 lists the constants that enumerate the different light
types.

Table 33-3

Enumerator Constants in D3DRMLIGHTTYPE

CONSTANT DESCRIPTION

D3DRMLIGHT_AMBIENT Light is an ambient source
D3DRMLIGHT_POINT Light is a point source
D3DRMLIGHT_SPOT Light is a spotlight source
D3DRMLIGHT_DIRECTIONAL Light is a directional source
D3DRMLIGHT_PARALLELPOINT Light is a parallel point source

The second, third, and fourth parameters are the RGB color values for the light.
They are expressed in a D3DVALUE type, which is Direct3D's designation for a float
data type. The valid range is 0.0 to 1.0. A value of 0.0 indicates the maximum dim-
ness and a value of 1,0 the maximum brightness. The fifth parameter is the address
that will be filled by a pointer to an IDirect3DRMLight interface. The call returns
D3DRM_OK if successful, or an error otherwise.

The following code fragment shows creating a parallel point source light with a
slight bluish tint.

LPDIRECT3DRMLIGHT light1 = NULL;
. . .
// Create a bright parallel point light
// Color values are as follows:
// 0.0 = totally dim and 1.0 = totally bright
retval = lpD3DRM->CreateLightRGB(D3DRMLIGHT_PARALLELPOINT,

D3DVAL(0.8), // Red intensity
D3DVAL(0.8), // Green intensity
D3DVAL(1.0), // Blue intensity
&light1);

if(FAILED(retval))
{

// Light creation error handler goes here
}

With the above call to CreateLightRGB() we have created a parallel point type
light of a specific intensity and color composition. This light is stored in a variable
of type LPDIRECT3DRMLIGHT, in this case named light1. But not until the light is
attached to a frame will it illuminate the scene. The light frame created in the pre-
ceding section can be used at this time. The code is as follows:

958 Chapter Thirty-Three

© 2003 by CRC Press LLC

// Add light to light frame
retval = lights->AddLight(light1);
if(FAILED(retval))
{

// Light-to-frame attachment error handler goes here
}

Often the visual quality of a scene improves considerably if a dim, ambient light is
added. Non-ambient lights (directional, parallel-point, point, and spot lights) are
usually attached to a frame so that the light source can be positioned within the
scene. Ambient light sources have no position and, therefore, it is inconsequential to
which frame they are attached. Most often we attach ambient lights to the master
scene frame.

You create an ambient light using the same CreateLightRGB() or CreateLight()
method used for a non-ambient light. In this case the enumerator constant passed in
the first parameter (see Table 33-3) is D3DRMLIGHT_AMBIENT. For ambient lights
the values for the red, green, and blue component are usually in the lower part of the
range. Once created, the ambient light can be attached to any frame or to the master
scene. Either option produces identical results since the light uniformly illuminates
the scene independent of its position. The following code fragment shows creating a
dim, ambient light and attaching it to the master scene.

LPDIRECT3DRMLIGHT light2 = NULL;
. . .
// Create a dim, ambient light and attach it to the scene frame,
retval = lpD3DRM->CreateLightRGB(D3DRMLIGHT_AMBIENT,

D3DVAL(0.1), // Red value
D3DVAL(0.1), // Green value
D3DVAL(0.1), // Blue value
&light2);

if(FAILED(retval))
{

// Ambient light creation error handler goes here
}
// Attach ambient light to scene frame
retval = aScene->AddLight(light2);

if(FAILED(retval))
{

// Light attachment error handler goes here
}

Increasing the intensity of the ambient light often results in washed-out images.
Color Figure 15 shows three versions of a teapot images in which the intensity of the
ambient light has been increased from 0.1 to 0.8 for all three primary colors.

33.4.6 Creating a Material
The material property of an object determines how it reflects light. Two properties are
associated with a material: emissive and specular. The emissive property of a material
makes it appear to emit light and the specular property determines the sharpness of
the reflected highlights thus making the surface appear hard and metallic or soft and
plastic. The value of the specular property is defined by a power setting which deter-
mines the sharpness of the reflected highlights. A specular value of 5 gives a metallic
appearance and higher values give a more plastic appearance.

Direct3D Programming 959

© 2003 by CRC Press LLC

http://www.itknowledgebase.net/books/1232/color Insert.pdf

Applications set the emissive property of a material using the SetEmissive()
method of the IDirect3DRMMaterial interface. The function's general form is as fol-
lows:

HRESULT SetEmissive(
D3DVALUE *lpr, // 1
D3DVALUE *lpg, // 2
D3DVALUE *lpb // 3
);

The function's three parameters are the intensity settings for the red, green, and
blue components of the emitted light. The valid range for each color is 0.0 to 1.0. The
function returns D3DRM_OK if it succeeds or an error otherwise.

The emissive property is useful in simulating self-luminous objects such as neon
lights, radioactivity, or ghostly characters. The specular property of a material is
more commonly used than the emissive property. The specular property has a power
and a color component. The color component is set with the SetSpecular() function
if the IDirect3DRMMaterial interface. The general form for this function is as fol-
lows:

HRESULT SetSpecular(
D3DVALUE r, // 1
D3DVALUE g, // 2
D3DVALUE b // 3
);

The three parameters correspond to the value of the RGB color components for
the specular highlights. The function returns D3DRM_OK if it succeeds, or an error
otherwise.

The power setting for the specular property of a material can be defined when the
material is created or afterwards. In the first case you use the CreateMaterial()
method of the IDirect3DRM interface. To change the specular power of an existing
material you can use the SetSpecular() method of IDirect3DRMMaterial interface.
CreateMaterial() has the following general form:

HRESULT CreateMaterial(
D3DVALUE vPower, // 1
LPDIRECT3DRMMATERIAL * lplpD3DRMMaterial // 2
);

The first parameter is the sharpness of the reflected highlights, with a value of 5
corresponding to a metallic appearance. The second parameter is the address that
will be filled with a pointer to an IDirect3DRMMaterial interface. The function re-
turns D3DRM_OK if it succeeds, or an error otherwise.

Once a material is created it must be attached to a mesh or to a specific face of a
mesh. Retained mode provides two related functions, both of which are named
SetMaterial(). The function SetMaterial() of the IDirect3DRMFace interface
attaches the material to a specific face of a mesh. The SetMaterial() function of the
IDirect3DRMMeshBuilder interface attaches the material to all the faces of a mesh.
The latter function has the following general form:

960 Chapter Thirty-Three

© 2003 by CRC Press LLC

HRESULT SetMaterial(
LPDIRECT3DRMMATERIAL2 lpIDirect3DRMmaterial // 1
);

The function's only parameter is the address of IDirect3DRMMaterial interface
for the Direct3DRMMeshBuilder object, which is of type LPDIRECT3DMATERIAL2.
The function returns D3DRM_OK if it succeeds, or an error otherwise.

The following code fragment shows creating a material and assigning to it a spec-
ular power of 0.8. After the material is created, it is attached to an existing mesh.

LPDIRECT3DRMMATERIAL2 material1 = NULL;
. . .
// Create a material setting its specular property
retval = lpD3DRM->CreateMaterial(D3DVAL(8.0), &material1);
if(FAILED(retval))
{

// Failed material creation error handler goes here
}
// Set the material on the mesh
retval = meshbuilder->SetMaterial(material1);
if(FAILED(retval))
{

// Material attachment error handler goes here
}

33.4.7 Setting the Mesh Color
Meshes have no natural color. If we attempt to render a mesh without setting it to a
color attribute the result is an image in shades of gray, as shown in the top part of
Color Figure 16. Retained mode includes several methods to set the color of objects,
all of which are named SetColorRGB(). One of these methods belongs to the
Direct3DRMFace interface and is used to set the color of a mesh face. A second
SetColorRGB() function is part of IDirect3DRMFrame interface and serves to set the
color of a mesh contained in a mesh. In this case the material mode is set to
D3DRMMATERIAL_FROMFRAME. A third SetColorRGB() method is used to set the
color of a light. The fourth one belongs to the IDirect3DRMMeshBuilder interface and
is used to set all the faces of a mesh to a particular color attribute. This version of the
SetColorRGB() function has the following general form:

HRESULT SetColorRGB(
D3DVALUE red, // 1
D3DVALUE green, // 2
D3DVALUE blue // 3
);

The three parameters of this function determines the red, green, and blue color
components of the mesh. The function returns D3DRM_OK if it succeeds, or an er-
ror otherwise.

The following code fragment shows using the SetColorRGB() function referenced
by a meshbuilder object. In this case the color is set to bright green.

LPDIRECT3DRMMESHBUILDER3 meshbuilder = NULL;
. . .
// Set the mesh color (bright green in this case).

Direct3D Programming 961

© 2003 by CRC Press LLC

http://www.itknowledgebase.net/books/1232/color Insert.pdf

retval = meshbuilder->SetColorRGB(D3DVAL(0.0), // red
D3DVAL(0.7), // green
D3DVAL(0.0)); // blue

if(FAILED(retval))
{

// Mesh color setting error handler goes here
}

The lower image in Color Figure 16 shows the object rendered after the mesh is
assigned the color value (0.0,0.7,0.0).

33.4.8 Clean-Up Operations
Once the master scene has been built (usually by creating a meshbuilder and a mesh,
loading the mesh into a child frame, setting the camera position, creating and position-
ing the lights, and creating the mesh material and color) we can proceed to release all
the local objects used in the process. The individual objects are preserved in the scene
and will be rendered on the screen. The Release() function of the IUnknown interface,
mentioned earlier in this chapter, is used to deallocate the individual object and re-
duce the object count by one. The function's general form is as follows:

���
� ��
�������

The function returns the new reference count in a variable of type ULONG. The
COM object deallocates itself when its reference count reaches 0.

In reference to the code samples listed in this section, the clean-up operation is in
the following code fragment:

// Local variables
LPDIRECT3DRMFRAME3 lights = NULL;
LPDIRECT3DRMMESHBUILDER3 meshbuilder = NULL;
LPDIRECT3DRMLIGHT light1 = NULL;
LPDIRECT3DRMLIGHT light2 = NULL;
LPDIRECT3DRMMATERIAL2 material1 = NULL;
. . .
// Release local objects
lights->Release();
meshbuilder->Release();
light1->Release();
light2->Release();
material1->Release();

33.4.9 Calling BuildScene()
The BuildScene() Function in the 3DRM InWin Demo1 program in the book's software
package, performs all of the processing operations discussed in this section. Follow-
ing is a code listing of this function.

//***
// Name: BuildScene()
// Description: Create the scene
//***
BOOL BuildScene(LPDIRECT3DRMDEVICE3 aDevice,

LPDIRECT3DRMFRAME3 aScene,
LPDIRECT3DRMFRAME3 aCamera)

{

962 Chapter Thirty-Three

© 2003 by CRC Press LLC

http://www.itknowledgebase.net/books/1232/color Insert.pdf

// Local varaibles
LPDIRECT3DRMFRAME3 lights = NULL;
LPDIRECT3DRMMESHBUILDER3 meshbuilder = NULL;
LPDIRECT3DRMFRAME3 childframe = NULL;
LPDIRECT3DRMLIGHT light1 = NULL;
LPDIRECT3DRMLIGHT light2 = NULL;
LPDIRECT3DRMMATERIAL2 material1 = NULL;
HRESULT retval;

// Create the meshbuilder object
retval = lpD3DRM->CreateMeshBuilder(&meshbuilder);

if (FAILED(retval))
goto ERROR_EXIT;

// Use meshbuilder to load a mesh from a DirectX file
retval = meshbuilder->Load(szXfile, // Source

NULL,
D3DRMLOAD_FROMFILE, // Options
NULL, NULL);

if (FAILED(retval))
{

D3DError("Failed to load file.");
goto DIRECT_EXIT;

}

// Create a child frame within the aScene.
retval = lpD3DRM->CreateFrame(aScene, &childframe);
if(FAILED(retval))

goto ERROR_EXIT;

// Add mesh into the child frame as a visual
retval = childframe->AddVisual(

(LPDIRECT3DRMVISUAL)meshbuilder);
if(FAILED(retval))

goto ERROR_EXIT;
// Set up the camera frame position
retval = aCamera->SetPosition(aScene,

D3DVAL(0), // x
D3DVAL(0), // y
-D3DVAL(7)); // z

if (FAILED(retval))
{

D3DError("Failed to position the camera in the frame.");
goto DIRECT_EXIT;

}
// Create a light frame as a child of the scene frame
retval = lpD3DRM->CreateFrame(aScene, &lights);

if(FAILED(retval))
goto ERROR_EXIT;

// Position the light frame within the scene
retval = lights->SetPosition(aScene,

D3DVAL(5), // x
D3DVAL(0), // y
-D3DVAL(7)); // z

if(FAILED(retval))
goto ERROR_EXIT;

// Create a bright, parallel point light
// Color values are as follows:

Direct3D Programming 963

© 2003 by CRC Press LLC

// 0.0 = totally dim and 1.0 = totally bright
retval = lpD3DRM->CreateLightRGB(D3DRMLIGHT_PARALLELPOINT,

D3DVAL(0.8), // Red intensity
D3DVAL(0.8), // Green intensity
D3DVAL(1.0), // Blue intensity
&light1);

if(FAILED(retval))
goto ERROR_EXIT;

// Add light to light frame
retval = lights->AddLight(light1);
if(FAILED(retval))

goto ERROR_EXIT;

// Create a dim, ambient light and attach it to the scene
// frame,
retval = lpD3DRM->CreateLightRGB(D3DRMLIGHT_AMBIENT,

D3DVAL(0.2), // red
D3DVAL(0.2), // green
D3DVAL(0.2), // blue
&light2);

if(FAILED(retval))
goto ERROR_EXIT;

retval = aScene->AddLight(light2);
if(FAILED(retval))

goto ERROR_EXIT;

// Create a material setting its specular property
retval = lpD3DRM->CreateMaterial(D3DVAL(8.0), &material1);
if(FAILED(retval))

goto ERROR_EXIT;

// Set the material on the mesh
retval = meshbuilder->SetMaterial(material1);
if(FAILED(retval))

goto ERROR_EXIT;

// Set the mesh color (bright green in this case).
retval = meshbuilder->SetColorRGB(D3DVAL(0.0), // red

D3DVAL(0.7), // green
D3DVAL(0.0)); // blue

if(FAILED(retval))
goto ERROR_EXIT;

//******************************
// Function succeeds. Clean up
//******************************
childframe->Release();
lights->Release();
meshbuilder->Release();
light1->Release();
light2->Release();
material1->Release();
return TRUE;

//******************************
// Error exits
//******************************

964 Chapter Thirty-Three

© 2003 by CRC Press LLC

ERROR_EXIT:
D3DError("Failure building the scene");
DIRECT_EXIT:
childframe->Release();
lights->Release();
meshbuilder->Release();
light1->Release();
light2->Release();
material1->Release();
return FALSE;

}

33.5 Rendering Operations
To render is to convert image data into an actual image. In all the processing opera-
tions performed so far in this chapter, all we have done is manipulate data. Nothing has
been shown on the screen, or even formatted into a displayable construct.

In Chapter 32 you saw that Direct3D rendering takes place on three separate
modules, called the transformation, lighting, and rasterization modules. But when
programming in retained mode, the individual modules are not visible. Instead, the
rendering operation is conceptualized as consisting of four functions:

• The Move() function of the IDirect3DRMFrame interface applies the rotations and ve-
locities to all the frames in the hierarchy.

• The Clear() function of the IDirect3DRMViewport interface clears the viewport to the
current background color.

• The Render() function, of the IDirect3DRNFrame, renders the scene into the viewport.

• The Update() function of the IDirect3DRMDevice interface copies the rendered image
to the display surface.

33.5.1 Clearing the Viewport
In Direct3D retained mode the viewport is one of the objects of the IDirect3DRM inter-
face. It is defined as a rectangular area in the device space. The viewport extent is al-
ways measured in device units, which are pixels for the screen device. The viewport
origin is the offset of the viewport within the device space. Previously in this chapter
we created a viewport using the CreateViewport() function of the lpD3DRM interface.
At that time we assigned the viewport to a device frame and a camera frame. We also
defined the viewport origin by means of its position in the device frame, as well as its
extent.

Clearing the viewport is accomplished by calling the Clear() function if
IDirect3DRMViewport. The function's general form is as follows:

������� �
������

No parameters are necessary since the viewport to be cleared is the one calling
the function, as in the following code fragment:

// Global Structure
struct _globVars
{

Direct3D Programming 965

© 2003 by CRC Press LLC

. . .
LPDIRECT3DRMVIEWPORT2 aViewport; // Direct3DRM viewport

. . .
} globVars;

// Clear the viewport.
retval = globVars.aViewport->Clear(D3DRMCLEAR_ALL);
if (FAILED(retval))
{

// Viewport clearing error handler goes here
}

32.5.2 Rendering to the Viewport
In Chapter 32 a scene is organized in a tree-like structure that consists of a root, or
master frame, and any number of child frames. Child frames inherit their characteris-
tics from the parent frames to which they are physically attached. When a frame is
moved, all the child frames move with it. The parent frame and its child frames are
known as a frame hierarchy. In retained mode this frame hierarchy can we changed by
code.

The Render() function of the IDirect3DRMViewport interface renders a frame hi-
erarchy to a given viewport. The call renders the visual on a given frame and all of
its child frames. Frames above it on the hierarchy are not rendered or affected. This
mode of operation is sometimes described as being "state based", which means that
the state of the renderer is determined by the part of the frame tree currently being
traversed. The general form of the Frame() function is as follows:

HRESULT Render(
LPDIRECT3DRMFRAME lpD3DRMFrame // 1
);

The function's only parameter is the address of the variable that represents the
Direct3DRMFrame object at the top of the frame hierarchy to be rendered. The func-
tion returns D3DRM_OK if it succeeds, or an error otherwise. The following code
fragment shows a call to the Render() function.

// Global Structure
struct _globVars
{
. . .

LPDIRECT3DRMVIEWPORT2 aViewport; // Direct3DRM viewport
LPDIRECT3DRMFRAME3 aScene; // Master frame

. . .
} globVars;
. . .
// Render the scene
retval = globVars.aViewport->Render(globVars.aScene);
if (FAILED(retval))
{

// Rendering failure error handler goes here
}

In this case since the argument of the Render() call is the master frame, which de-
termines that all other frames attached to the master frame are rendered.

966 Chapter Thirty-Three

© 2003 by CRC Press LLC

33.5.3 Updating the Screen
We have now rendered the scene to the viewport, but nothing yet shows on the video
display. For this to happen we must call the Update() function of the
IDirect3DRMDevice interface. Update() copies the image in the viewport to the dis-
play surface. It also provides a system-level tick, called the heartbeat. This tick was
discussed in the context of DirectDraw animation. The general form of the Update()
function is as follows:

������� ���������

No parameters are necessary since the device is referenced in the call. Each time
Update() is called, the system optionally sends execution to an application-defined
callback function. Applications define the callback function by means of the
AddUpdateCallback() function of the IDirect3DRMDevice interface. The callback
function is convenient when the application needs to update scene data during each
beat of the renderer. The Update() function returns D3DRM_OK if it succeeds, or an
error otherwise.

33.5.4 RenderScene() Function
The RenderScene() function that is part of the 3DRM InWin Demo1 program in the
book's software package performs the processing operations discussed in this sec-
tion. Follows a code listing of this function.

//**
// Name: RenderScene()
// Description: Clear the viewport, render the frame, and
// update the window.
//**
static BOOL RenderScene()
{

HRESULT retval;

// Clear the viewport.
retval = globVars.aViewport->Clear(D3DRMCLEAR_ALL);
if (FAILED(retval))
{

D3DError("Clearing viewport failed.");
return FALSE;

}
// Render the aScene to the viewport.
retval = globVars.aViewport->Render(globVars.aScene);
if (FAILED(retval))
{

D3DError("Rendering scene failed.");
return FALSE;

}
// Update the window.
retval = globVars.aDevice->Update();
if (FAILED(retval))
{

D3DError("Updating device failed.");
return FALSE;

}
return TRUE;

}

Direct3D Programming 967

© 2003 by CRC Press LLC

33.6 Sample Project 3DRM InWin Demo1
The project named 3DRM InWin Demo1 contained in the Chapter 33 subfolder in the
book's software package, demonstrates the basic retained mode operations discussed
in this chapter. The program displays a file in DirectX format. The filename is con-
tained in a global string and can be edited by the user. The file furnished in the
workspace directory is named “teapot.x”. This is one of the 3D files that comes with
the DirectX SDK. Rendering is static since no animation is attempted at this point.
Color Figure 17 is a screen snapshot of the 3DRM InWin Demo1 program.

To facilitate reuse we have grouped the processing into four functions:

1. InitD3D() initializes the retained mode interface and creates a DirectDraw clipper ob-
ject based on the application window.

2. CreateObjects() creates the device and objects that form the 3D scene.

3. BuildScene() uses the objects created in the previous step to build the application's
main frame.

4. RenderScene() renders the scene to the viewport and displays it.

The functions were discussed in detail and are listed in previous sections of this
Chapter.

33.6.1 Windowed Retained Mode Coding Template
The project directory 3DRM InWin Template, located in the Chapter 33 directory in the
book's software package, contains a template program that could be useful in the ini-
tial stages of developing a Direct3D retained mode, windowed application. To use it
you can copy the template file named 3DRM InWin Template.cpp to your own
workspace. Then rename the file and edit it to suit your application. Alternatively you
can copy or rename the entire directory. When using the template file make sure that
you have referenced the libraries dxguid.lib, ddraw.lib, d3drm.lib, and winmm.lib. To
include these libraries you must edit the Object/Libraries modules windows on the
Link tab of Developer Studio Project Settings dialog box.

© 2003 by CRC Press LLC

Appendix A

Windows Structures

This appendix contains the structures mentioned in the text. Structures are listed in
alphabetical order.

BITMAP
typedef struct tagBITMAP { /* bm */

int bmType;
int bmWidth;
int bmHeight;
int bmWidthBytes;
BYTE bmPlanes;
BYTE bmBitsPixel;
LPVOID bmBits;

};

BITMAPCOREHEADER
typedef struct tagBITMAPCOREHEADER { // bmch

DWORD bcSize;
WORD bcWidth;
WORD bcHeight;
WORD bcPlanes;
WORD bcBitCount;

} BITMAPCOREHEADER;

BITMAPCOREINFO
typedef struct _BITMAPCOREINFO { // bmci

BITMAPCOREHEADER bmciHeader;
RGBTRIPLE bmciColors[1];

} BITMAPCOREINFO;

BITMAPFILEHEADER
typedef struct tagBITMAPFILEHEADER { // bmfh

WORD bfType;
DWORD bfSize;
WORD bfReserved1;
WORD bfReserved2;
DWORD bfOffBits;

} BITMAPFILEHEADER;

BITMAPINFO
typedef struct tagBITMAPINFO { // bmi

© 2003 by CRC Press LLC

BITMAPINFOHEADER bmiHeader;
RGBQUAD bmiColors[1];

} BITMAPINFO;

BITMAPINFOHEADER
typedef struct tagBITMAPINFOHEADER{ // bmih

DWORD biSize;
LONG biWidth;
LONG biHeight;
WORD biPlanes;
WORD biBitCount
DWORD biCompression;
DWORD biSizeImage;
LONG biXPelsPerMeter;
LONG biYPelsPerMeter;
DWORD biClrUsed;
DWORD biClrImportant;

} BITMAPINFOHEADER;

CHOOSECOLOR
typedef struct { // cc

DWORD lStructSize;
HWND hwndOwner;
HWND hInstance;
COLORREF rgbResult;
COLORREF* lpCustColors;
DWORD Flags;
LPARAM lCustData;
LPCCHOOKPROC lpfnHook;
LPCTSTR lpTemplateName;

} CHOOSECOLOR;

COLORADJUSTMENT
typedef struct tagCOLORADJUSTMENT { /* ca */

WORD caSize;
WORD caFlags;
WORD caIlluminantIndex;
WORD caRedGamma;
WORD caGreenGamma;
WORD caBlueGamma;
WORD caReferenceBlack;
WORD caReferenceWhite;
SHORT caContrast;
SHORT caBrightness;
SHORT caColorfulness;
SHORT caRedGreenTint;

} COLORADJUSTMENT;

CREATESTRUCT
typedef struct tagCREATESTRUCT { // cs

LPVOID lpCreateParams;
HINSTANCE hInstance;
HMENU hMenu;
HWND hwndParent;
int cy;
int cx;
int y;
int x;
LONG style;
LPCTSTR lpszName;

970 Appendix A

© 2003 by CRC Press LLC

LPCTSTR lpszClass;
DWORD dwExStyle;

} CREATESTRUCT;

DDBLTFX
typedef struct _DDBLTFX{

DWORD dwSize;
DWORD dwDDFX;
DWORD dwROP;
DWORD dwDDROP;
DWORD dwRotationAngle;
DWORD dwZBufferOpCode;
DWORD dwZBufferLow;
DWORD dwZBufferHigh;
DWORD dwZBufferBaseDest;
DWORD dwZDestConstBitDepth;

union
{

DWORD dwZDestConst;
LPDIRECTDRAWSURFACE lpDDSZBufferDest;

};
DWORD dwZSrcConstBitDepth;

union
{

DWORD dwZSrcConst;
LPDIRECTDRAWSURFACE lpDDSZBufferSrc;

};
DWORD dwAlphaEdgeBlendBitDepth;
DWORD dwAlphaEdgeBlend;
DWORD dwReserved;
DWORD dwAlphaDestConstBitDepth;

union
{

DWORD dwAlphaDestConst;
LPDIRECTDRAWSURFACE lpDDSAlphaDest;

};
DWORD dwAlphaSrcConstBitDepth;

union
{

DWORD dwAlphaSrcConst;
LPDIRECTDRAWSURFACE lpDDSAlphaSrc;

};
union
{

DWORD dwFillColor;
DWORD dwFillDepth;

LPDIRECTDRAWSURFACE lpDDSPattern;
};
DDCOLORKEY ddckDestColorkey;
DDCOLORKEY ddckSrcColorkey;
} DDBLTFX,FAR* LPDDBLTFX;

DDCAPS
typedef struct _DDCAPS{

DWORD dwSize;
DWORD dwCaps;
DWORD dwCaps2;
DWORD dwCKeyCaps;

Windows Structures 971

© 2003 by CRC Press LLC

DWORD dwFXCaps;
DWORD dwFXAlphaCaps;
DWORD dwPalCaps;
DWORD dwSVCaps;
DWORD dwAlphaBltConstBitDepths;
DWORD dwAlphaBltPixelBitDepths;
DWORD dwAlphaBltSurfaceBitDepths;
DWORD dwAlphaOverlayConstBitDepths;
DWORD dwAlphaOverlayPixelBitDepths;
DWORD dwAlphaOverlaySurfaceBitDepths;
DWORD dwZBufferBitDepths;

DWORD dwVidMemTotal;
DWORD dwVidMemFree;
DWORD dwMaxVisibleOverlays;
DWORD dwCurrVisibleOverlays;
DWORD dwNumFourCCCodes;
DWORD dwAlignBoundarySrc;
DWORD dwAlignSizeSrc;
DWORD dwAlignBoundaryDest;
DWORD dwAlignSizeDest;
DWORD dwAlignStrideAlign;
DWORD dwRops[DD_ROP_SPACE];
DDSCAPS ddsCaps;
DWORD dwMinOverlayStretch;
DWORD dwMaxOverlayStretch;
DWORD dwMinLiveVideoStretch;

DWORD dwMaxLiveVideoStretch;
DWORD dwMinHwCodecStretch;
DWORD dwMaxHwCodecStretch;
DWORD dwReserved1;
DWORD dwReserved2;
DWORD dwReserved3;
DWORD dwSVBCaps;
DWORD dwSVBCKeyCaps;
DWORD dwSVBFXCaps;
DWORD dwSVBRops[DD_ROP_SPACE];
DWORD dwVSBCaps;
DWORD dwVSBCKeyCaps;
DWORD dwVSBFXCaps;
DWORD dwVSBRops[DD_ROP_SPACE];
DWORD dwSSBCaps;
DWORD dwSSBCKeyCaps;

DWORD dwSSBCFXCaps;
DWORD dwSSBRops[DD_ROP_SPACE];
DWORD dwReserved4;
DWORD dwReserved5;
DWORD dwReserved6;

} DDCAPS,FAR* LPDDCAPS;

DDCOLORKEY
typedef struct _DDCOLORKEY{

DWORD dwColorSpaceLowValue;
DWORD dwColorSpaceHighValue;

} DDCOLORKEY,FAR* LPDDCOLORKEY;

DDPIXELFORMAT
typedef struct _DDPIXELFORMAT{

972 Appendix A

© 2003 by CRC Press LLC

DWORD dwSize;
DWORD dwFlags;
DWORD dwFourCC;

union
{

DWORD dwRGBBitCount;
DWORD dwYUVBitCount;
DWORD dwZBufferBitDepth;
DWORD dwAlphaBitDepth;

};
union
{

DWORD dwRBitMask;
DWORD dwYBitMask;

};
union
{

DWORD dwGBitMask;
DWORD dwUBitMask;

};
union
{

DWORD dwBBitMask;
DWORD dwVBitMask;

};
union
{

DWORD dwRGBAlphaBitMask;

DWORD dwYUVAlphaBitMask;
};
} DDPIXELFORMAT, FAR* LPDDPIXELFORMAT;

DDSCAPS2
typedef struct _DDSCAPS2 {

DWORD dwCaps; // Surface capabilities
DWORD dwCaps2; // More surface capabilities
DWORD dwCaps3; // Not currently used
DWORD dwCaps4; // .

} DDSCAPS2, FAR* LPDDSCAPS2;

DDSURFACEDESC2
typedef struct _DDSURFACEDESC2 {

DWORD dwSize;
DWORD dwFlags;
DWORD dwHeight;
DWORD dwWidth;
union
{

LONG lPitch;
DWORD dwLinearSize;

} DUMMYUNIONNAMEN(1);
DWORD dwBackBufferCount;
union
{

DWORD dwMipMapCount;
DWORD dwRefreshRate;

} DUMMYUNIONNAMEN(2);

Windows Structures 973

© 2003 by CRC Press LLC

DWORD dwAlphaBitDepth;
DWORD dwReserved;
LPVOID lpSurface;
DDCOLORKEY ddckCKDestOverlay;
DDCOLORKEY ddckCKDestBlt;
DDCOLORKEY ddckCKSrcOverlay;
DDCOLORKEY ddckCKSrcBlt;
DDPIXELFORMAT ddpfPixelFormat;
DDSCAPS2 ddsCaps;
DWORD dwTextureStage;

} DDSURFACEDESC2, FAR* LPDDSURFACEDESC2;

DIBSECTION
typedef struct tagDIBSECTION {

BITMAP dsBm;
BITMAPINFOHEADER dsBmih;
DWORD dsBitfields[3];
HANDLE dshSection;
DWORD dsOffset;

} DIBSECTION;

DIDATAFORMAT
typedef struct {

DWORD dwSize;
DWORD dwObjSize;
DWORD dwFlags;
DWORD dwDataSize;
DWORD dwNumObjs;
LPDIOBJECTDATAFORMAT rgodf;

} DIDATAFORMAT;

DIDEVCAPS
typedef struct {

DWORD dwSize;
DWORD dwDevType;
DWORD dwFlags;
DWORD dwAxes;
DWORD dwButtons;
DWORD dwPOVs;

} DIDEVCAPS;

DIDEVICEINSTANCE
typedef struct {

DWORD dwSize;
GUID guidInstance;
GUID guidProduct;
DWORD dwDevType;
TCHAR tszInstanceName[MAX_PATH];
TCHAR tszProductName[MAX_PATH];

} DIDEVICEINSTANCE;

DIDEVICEOBJECTDATA
typedef struct {

DWORD dwOfs;
DWORD dwData;
DWORD dwTimeStamp;
DWORD dwSequence;

} DIDEVICEOBJECTDATA;

DIJOYSTATE

974 Appendix A

© 2003 by CRC Press LLC

typedef struct DIJOYSTATE {
LONG lX;
LONG lY;
LONG lZ;
LONG lRx;
LONG lRy;
LONG lRz;
LONG rglSlider[2];
DWORD rgdwPOV[4];
BYTE rgbButtons[32];

} DIJOYSTATE, *LPDIJOYSTATE;

DIJOYSTATE2
typedef struct DIJOYSTATE2 {

LONG lX;
LONG lY;
LONG lZ;
LONG lRx;
LONG lRy;
LONG lRz;
LONG rglSlider[2];
DWORD rgdwPOV[4];
BYTE rgbButtons[128];
LONG lVX;
LONG lVY;
LONG lVZ;
LONG lVRx;
LONG lVRy;
LONG lVRz;
LONG rglVSlider[2];
LONG lAX;
LONG lAY;
LONG lAZ;
LONG lARx;
LONG lARy;
LONG lARz;
LONG rglASlider[2];
LONG lFX;
LONG lFY;
LONG lFZ;
LONG lFRx;
LONG lFRy;
LONG lFRz;
LONG rglFSlider[2];

} DIJOYSTATE2, *LPDIJOYSTATE2;

DIMOUSESTATE
typedef struct {

LONG lX;
LONG lY;
LONG lZ;
BYTE rgbButtons[4];

} DIMOUSESTATE;

DIPROPDWORD
typedef struct {

DIPROPHEADER diph;
DWORD dwData;

} DIPROPDWORD;

Windows Structures 975

© 2003 by CRC Press LLC

DIPROPHEADER
typedef struct {

DWORD dwSize;
DWORD dwHeaderSize;
DWORD dwObj;
DWORD dwHow;

} DIPROPHEADER;

DIPROPRANGE
typedef struct {

DIPROPHEADER diph;
LONG lMin;
LONG lMax;

} DIPROPRANGE;

DISPLAY_DEVICE
typedef struct _DISPLAY_DEVICE {

DWORD cb;
WCHAR DeviceName[32];
WCHAR DeviceString[128];
DWORD StateFlags;

} DISPLAY_DEVICE, *PDISPLAY_DEVICE, *LPDISPLAY_DEVICE;

DSETUP_CB_UPGRADEINFO
typedef struct _DSETUP_CB_UPGRADEINFO
{

DWORD UpgradeFlags;
} DSETUP_CB_UPGRADEINFO;

LOGBRUSH
typedef struct tag LOGBRUSH { /* lb */

UINT lbStyle;
COLORREF lbColor;
LONG lbHatch;

} LOGBRUSH;

LOGPEN
typedef struct tagLOGPEN { /* lgpn */

UINT lopnStyle;
POINT lopnWidth;
COLORREF lopnColor;

} LOGPEN;

LV_KEYDOWN
typedef struct tagLV_KEYDOWN {

NMHDR hdr;
WORD wVKey;
UINT flags;

} LV_KEYDOWN;

MONITORINFO
typedef struct tagMONITORINFO {

DWORD cbSize;
RECT rcMonitor;
RECT rcWork;
DWORD dwFlags;

} MONITORINFO, *LPMONITORINFO;

MONITORINFOEX
typedef struct tagMONITORINFOEX {

976 Appendix A

© 2003 by CRC Press LLC

DWORD cbSize;
RECT rcMonitor;
RECT rcWork;
DWORD dwFlags;
TCHAR szDevice[CCHDEVICENAME]

} MONITORINFOEX, *LPMONITORINFOEX;

MSG
typedef struct tagMSG { // msg

HWND hwnd;
UINT message;
WPARAM wParam;
LPARAM lParam;
DWORD time;
POINT pt;

} MSG;

NMHDR
typedef struct tagNMHDR {

HWND hwndFrom;
UINT idFrom;
UINT code;

} NMHDR;

PAINTSTRUCT
typedef struct tagPAINTSTRUCT { // ps

HDC hdc;
BOOL fErase;
RECT rcPaint;
BOOL fRestore;
BOOL fIncUpdate;
BYTE rgbReserved[32];

} PAINTSTRUCT;

POINT
typedef struct tagPOINT {

LONG x;
LONG y;

} POINT;

RECT
typedef struct tagRECT {

LONG left;
LONG top;
LONG right;
LONG bottom;

} RECT;

RGBQUAD
typedef struct tagRGBQUAD { // rgbq

BYTE rgbBlue;
BYTE rgbGreen;
BYTE rgbRed;
BYTE rgbReserved;

} RGBQUAD;

RGBTRIPLE
typedef struct tagRGBTRIPLE { // rgbt

BYTE rgbtBlue;
BYTE rgbtGreen;

Windows Structures 977

© 2003 by CRC Press LLC

BYTE rgbtRed;
} RGBTRIPLE;

RGNDATA
typedef struct _RGNDATA { /* rgnd */

RGNDATAHEADER rdh;
char Buffer[1];

} RGNDATA;

RGNDATAHEADER
typedef struct _RGNDATAHEADER { // rgndh

DWORD dwSize;
DWORD iType;
DWORD nCount;
DWORD nRgnSize;
RECT rcBound;

} RGNDATAHEADER;

SCROLLINFO
typedef struct tagSCROLLINFO { // si

UINT cbSize;
UINT fMask;
int nMin;
int nMax;
UINT nPage;
int nPos;
int nTrackPos;

} SCROLLINFO;
typedef SCROLLINFO FAR *LPSCROLLINFO;

SIZE
typedef struct tagSIZE {

int cx;
int cy;

} SIZE;

TBBUTTON
typedef struct _TBBUTTON { \\ tbb

int iBitmap;
int idCommand;
BYTE fsState;
BYTE fsStyle;
DWORD dwData;
int iString;

} TBBUTTON, NEAR* PTBBUTTON, FAR* LPTBBUTTON;
typedef const TBBUTTON FAR* LPCTBBUTTON;

TEXTMETRICS
typedef struct tagTEXTMETRIC { /* tm */

int tmHeight;
int tmAscent;
int tmDescent;
int tmInternalLeading;
int tmExternalLeading;
int tmAveCharWidth;
int tmMaxCharWidth;
int tmWeight;
BYTE tmItalic;
BYTE tmUnderlined;

978 Appendix A

© 2003 by CRC Press LLC

BYTE tmStruckOut;

BYTE tmFirstChar;

BYTE tmLastChar;

BYTE tmDefaultChar;

BYTE tmBreakChar;

BYTE tmPitchAndFamily;

BYTE tmCharSet;

int tmOverhang;

int tmDigitizedAspectX;

int tmDigitizedAspectY;

} TEXTMETRIC;

TOOLINFO

typedef struct { // ti

UINT cbSize;

UINT uFlags;

HWND hwnd;

UINT uId;

RECT rect;

HINSTANCE hinst;

LPTSTR lpszText;

} TOOLINFO, NEAR *PTOOLINFO, FAR *LPTOOLINFO;

WNDCLASSEX

typedef struct _WNDCLASSEX { // wc

UINT cbSize;

UINT style;

WNDPROC lpfnWndProc;

int cbClsExtra;

int cbWndExtra;

HANDLE hInstance;

HICON hIcon;

HCURSOR hCursor;

HBRUSH hbrBackground;

LPCTSTR lpszMenuName;

LPCTSTR lpszClassName;

HICON hIconSm;

} WNDCLASSEX;

Windows Structures 979

© 2003 by CRC Press LLC

Appendix B

Ternary Raster Operation Codes

This appendix describes the ternary raster-operation codes used by The Windows GDI
and DirectX. These codes determine how the bits in a source are combined with those
of a destination, taking into account a particular pattern.

The following abbreviations are used for the ternary operands and the boolean
functions:

• D = destination bitmap

• P = pattern (determined by current brush)

• S = sSource bitmap

• & = bitwise AND

• ~ = bitwise NOT (inverse)

• | = bitwise OR

• ^ = bitwise exclusive OR (XOR)

The most commonly used raster operations have been given special names in the
Windows include file, windows.h. The following table, taken from Developers Stu-
dio help files, lists all 256 ternary raster operations.

RASTER OP. ROP CODE BOOLEAN OPERATION COMMON NAME

00 00000042 0 BLACKNESS
01 00010289 ~(P|S|D) -
02 00020C89 ~(P|S)&D -
03 000300AA ~(P|S) -
04 00040C88 ~(P|D)&S -
05 000500A9 ~(P|D) -
06 00060865 ~(|P~(S^D)) -
07 000702C5 ~(P|(S&D)) -
08 00080F08 ~P&S&D -
09 00090245 ~(P|(S^D)) -
0A 000A0329 ~P&D -

© 2003 by CRC Press LLC

RASTER OP. ROP CODE BOOLEAN OPERATION COMMON NAME

0B 000B0B2A ~P(|(S&~D)) -
0C 000C0324 ~P&S -
0D 000D0B25 ~P|(~S&D)) -
0E 000E08A5 ~P|~(S|D) -
0F 000F0001 ~P -
10 00100C85 P&~(S|D) -
11 001100A6 ~(S|D) NOTSRCERASE
12 00120868 ~(S|~(P^D)) -
13 001302C8 ~(S|(P&D)) -
14 00140869 ~(D|~(P^S)) -
15 001502C9 ~(D|(P&S)) -
16 00165CCA P^(S^(D&~(P&S))) -
17 00171D54 ~(S^((S^P)&(S^D))) -
18 00180D59 (P^S)&(P^D) -
19 00191CC8 ~(S^D&~(P&S))) -
1A 001A06C5 P^(D|(S&P)) -
1B 001B0768 ~(S^(D&(P^S))) -
1C 001C06CA P^(S|(P&D)) -
1D 001D0766 ~(D^(S&(P^D))) -
1E 001E01A5 P^(S|D) -
1F 001F0385 ~(P&(S|D)) -
20 00200F09 P&~S&D -
21 00210248 ~(S|(P^D)) -
22 00220326 ~S&D -
23 00230B24 ~(S|(P&~D)) -
24 00240D55 (S^P)&(S^D) -
25 00251CC5 ~(P^(D&~(S&P))) -
26 002606C8 S^(D|((P&S)) -
27 00271868 S^(D|~(P^S)) -
28 00280369 D&(P^S) -
29 002916CA ~(P^(S^(D|(P&S)))) -
2A 002A0CC9 D&~(P&S) -
2B 002B1D58 ~(S^((S^P)&(P&D))) -
2C 002C0784 S^(P&(S|D)) -
2D 002D060A P^(S|~D) -
2E 002E064A P^(S|(P^D)) -
2F 002F0E2A ~(P&(S|~D)) -
30 0030032A P&~S -
31 00310B28 ~(S|(~P&D)) -
32 00320688 S^(P|S|D) -
33 00330008 ~S NOTSRCCOPY
34 003406C4 S^(P|(S&D)) -
35 00351864 S^(P|~(S^D)) -
36 003601A8 S^(P|D) -
37 00370388 ~(S&(P|D)) -
38 0038078A P^(S&(P|D)) -
39 00390604 S^(P|~D) -
3A 003A0644 S^(P^(S^D)) -
3B 003B0E24 ~(S&(P|~D)) -
3C 003C004A P^S -
3D 003D18A4 S^(P|~(S|D)) -
3E 003E1B24 S^(P|(~S&D)) -
3F 003F00EA ~(P&S) -
40 00400F0A P&S&~D -
41 00410249 ~(D|(P^S)) -
42 00420D5D (S^D)&(P^D) -

982 Appendix B

© 2003 by CRC Press LLC

RASTER OP. ROP CODE BOOLEAN OPERATION COMMON NAME

00431CC4 ~(S^(P&~(S&D))) -
44 00440328 S&~D SRCERASE
45 00450B29 ~(D|(P&~S)) -
46 004606C6 D^(S|(P&D)) -
47 0047076A ~(P^(S&((P^D))) -
48 00480368 S&(P^D) -
49 004916C5 ~(P^(D^(S|(P&D)))) -
4A 004A0789 D^(P&(S|D) -
4B 004B0605 P^(~S|D) -
4C 004C0CC8 S&~(P&D) -
4D 004D1954 ~(S^((P^S)|(S^D))) -
4E 004E0645 P^(D|(P^S)) -
4F 004F0E25 ~(P&(~S|D)) -
50 00500325 P&~D -
51 00510B26 ~(D|(~P&S)) -
52 005206C9 D^(P|(S&D)) -
53 00530764 ~(S^(P&(S^D))) -
54 005408A9 ~(D|~(P|S)) -
55 00550009 ~D DSTINVERT
56 005601A9 D^(P|S) -
57 00570389 ~(D&(P|S)) -
58 00580785 P^(D&(P|S)) -
59 00590609 D^(P|~S) -
5A 005A0049 P^D PATINVERT
5B 005B18A9 D^(P|~(S|D)) -
5C 005C0649 D^(P|(S^D)) -
5D 005D0E29 ~(D&(P|~S)) -
5E 005E1B29 D^(P|(S&~D)) -
5F 005F00E9 ~(P&D) -
60 00600365 P&(S^D) -
61 006116C6 ~(D^(S^(P|(S&D)))) -
62 00620786 D^(S&(P|D)) -
63 00630608 S^(~P|D) -
64 00640788 S^(D&(P|S)) -
65 00650606 D^(~P|S) -
66 00660046 S^D SRCINVERT
67 006718A8 S^(D|~(P|S)) -
68 006858A6 ~(D^(S^(P|~(S|D)))) -
69 00690145 ~(P^(S^D)) -
6A 006A01E9 D^(P&S) -
6B 006B178A ~(P^(S^(D&(S|P)))) -
6C 006C01E8 S^(P&D) -
6D 006D1785 ~(P^(D^(S&(P|D)))) -
6E 006E1E28 S^(D&(P|~S)) -
6F 006F0C65 ~(P&~(S^D)) -
70 00700CC5 P&~(S&D) -
71 00711D5C ~(S^((S^D)&(P^D))) -
72 00720648 S^(D|(P^S)) -
73 00730E28 ~(S&(~P|D)) -
74 00740646 D^(S|(P^D)) -
75 00750E26 ~(D&(~P|S)) -
76 00761B28 S^(D|(P&~S)) -
77 007700E6 ~(S&D) -
78 007801E5 P^(S&D) -
79 00791786 ~(D^(S^(P&(S|D)))) -
7A 007A1E29 D^(P&(S|~D)) -
7B 007B0C68 ~(S&~(P^D)) -

Ternary Raster Operation Codes 983

© 2003 by CRC Press LLC

RASTER OP. ROP CODE BOOLEAN OPERATION COMMON NAME

7C 007C1E24 S^(P&(~S|D)) -
7D 007D0C69 ~(D&~(S^P)) -
7E 007E0955 (P^S)|(S^D) -
7F 007F03C9 ~(P&S&D) -
80 008003E9 P&S&D -
81 00810975 ~((P^S)|(S^D)) -
82 00820C49 ~(P^S)&D -
83 00831E04 ~(S^(P&(~S|D))) -
84 00840C48 S&~(P^D) -
85 00851E05 ~(P^(D&(~P|S))) -
86 008617A6 D^(S^(P&(S|D))) -
87 008701C5 ~(P^(S&D)) -
88 008800C6 S&D SRCAND
89 00891B08 ~(S^(D|(P&~S))) -
8A 008A0E06 (~P|S)&D -
8B 008B0666 ~(D^(S|(P^D))) -
8C 008C0E08 S&(~P|D) -
8D 008D0668 ~S(^(D|(P^S))) -
8E 008E1D7C S^((S^D)&(P^D)) -
8F 008F0CE5 ~(P&~(S&D)) -
90 00900C45 P&~(S^D) -
91 00911E08 ~(S^(D&(P|~S))) -
92 009217A9 D^(P^(S&(P|D))) -
93 009301C4 ~(S^(P&D)) -
94 009417AA P^(S^(D&(P|S))) -
95 009501C9 ~(D^(P&S)) -
96 00960169 P^S^D -
97 0097588A P^(S^(D|~P|S))) -
98 00981888 ~(S^(D|~(P|S))) -
99 00990066 ~(S^D) -
9A 009A0709 (P&~S)^D -
9B 009B07A8 ~(S^(D&(P|S))) -
9C 009C0704 S^(P&~D) -
9D 009D07A6 ~(D^(S&(P|D))) -
9E 009E16E6 (S^(P|(S&D)))^D -
9F 009F0345 ~(P&(S^D)) -
A0 00A000C9 P&D -
A1 00A11B05 ~(P^(D|(~P&S))) -
A2 00A20E09 (P|~S)&D -
A3 00A30669 ~(D^(P|(S^D))) -
A4 00A41885 ~(P^(D|~(P|S))) -
A5 00A50065 ~(P^D) -
A6 00A60706 (~P&S)^D -
A7 00A707A5 ~(P^(D&(P|S))) -
A8 00A803A9 (P|S)&D -
A9 00A90189 ~((P|S)^D) -
AA 00AA0029 D -
AB 00AB0889 ~(P|S)|D -
AC 00AC0744 S^(P&(S^D)) -
AD 00AD06E9 ~(D^(P|(S&D))) -
AE 00AE0B06 (~P&S)|D -
AF 00AF0229 ~P|D -
B0 00B00E05 P&(~S|D) -
B1 00B10665 ~(P^(D|(P^S))) -
B2 00B21974 S^((P^S)|(S^D)) -
B3 00B30CE8 ~(S&~(P&D)) -
B4 00B4070A P^(S&~D) -

984 Appendix B

© 2003 by CRC Press LLC

RASTER OP. ROP CODE BOOLEAN OPERATION COMMON NAME

B5 00B507A9 ~(D^(P&(S|D))) -
B6 00B616E9 D^(P^(D|(P&D))) -
B7 00B70348 ~(S&(P^D)) -
B8 00B8074A P^(S&(P^D)) -
B9 00B906E6 ~(D^(S|(P&D))) -
BA 00BA0B09 (P&~S)|D -
BB 00BB0226 ~S|D MERGEPAINT
BC 00BC1CE4 S^(P&~(S&D)) -
BD 00BD0D7D ~((P^D)&(S^D)) -
BE 00BE0269 (P^S)|D -
BF 00BF08C9 ~(P&S)|D -
C0 00C000CA P&S MERGECOPY
C1 00C11B04 ~(S^(P|(~S&D))) -
C2 00C21884 ~(S^(P|~(S|D))) -
C3 00C3006A ~(P^S) -
C4 00C40E04 S&(P|~D) -
C5 00C50664 ~(S^(P|(S^D))) -
C6 00C60708 S^(~P&D) -
C7 00C707AA ~(P^(S&(P|D))) -
C8 00C803A8 S&(P|D) -
C9 00C90184 ~(S^(P|D)) -
CA 00CA0749 D^(P&(S^D)) -
CB 00CB06E4 ~(S^(P|(S&D))) -
CC 00CC0020 S SRCCOPY
CD 00CD0888 S|~(P|D) -
CE 00CE0B08 S|(~P&D) -
CF 00CF0224 S|~P -
D0 00D00E0A ~(^(S|(P^D))) -
D1 00D1066A P^(~S&D) -
D2 00D20705 ~(S^(P&(S|D))) -
D3 00D307A4 S^((P^S)&(P^D)) -
D4 00D41D78 (~(D&~(P&S)) -
D5 00D50CE9 P^(S^(D|(P&S))) -
D6 00D616EA ~(D&(P^S)) -
D7 00D70349 ~(D&(P&S)) -
D8 00D80745 P^(D&(P^S)) -
D9 00D906E8 ~(S^(D|(P&S))) -
DA 00DA1CE9 D^(P&~(S&D)) -
DB 00DB0D75 ~((P^S)&(S^D)) -
DC 00DC0B04 S|(P&~D) -
DD 00DD0228 S|~D -
DE 00DE0268 S|(P^D) -
DF 00DF08C8 S|~(P&D) -
E0 00E003A5 P&(D|S) -
E1 00E10185 ~(P^(S|D)) -
E2 00E20746 D^(S&(P^D)) -
E3 00E306EA ~(P^(S|(P&D))) -
E4 00E40748 S^(D&(P^S)) -
E5 00E506E5 ~(P^(D|(P&S))) -
E6 00E61CE8 S^(D&~(P&S)) -
E7 00E70D79 ~((P^S)&(P^D)) -
E8 00E81D74 S^((P^S)&*S^D)) -
E9 00E95CE6 ~(D^(S^(P&~(S&D)))) -
EA 00EA02E9 (P&S)|D -
EB 00EB0849 ~(P^S)|D -
EC 00EC02E8 S|(P&D) -
ED 00ED0848 S|(~(P^D) -

Ternary Raster Operation Codes 985

© 2003 by CRC Press LLC

RASTER OP. ROP CODE BOOLEAN OPERATION COMMON NAME

EE 00EE0086 S|D SRCPAINT
EF 00EF0A08 ~P|S|D -
F0 00F00021 P PATCOPY
F1 00F10885 P|(~(S|D) -
F2 00F20B05 P|(~S&D) -
F3 00F3022A P|~S -
F4 00F40B0A P|(S&~D) -
F5 00F50225 P|~D -
F6 00F60265 P|(S^D) -
F7 00F708C5 P|(~(S&D) -
F8 00F802E5 P|(S&D) -
F9 00F90845 P|~(S^D) -
FA 00FA0089 P|D -
FB 00FB0A09 P|~S|D PATPAINT
FC 00FC008A P|S -
FD 00FD0A0A P|S|~D -
FE 00FE02A9 P|S|D -
FF 00FF0062 1 WHITENESS

986 Appendix B

© 2003 by CRC Press LLC

Bibliography

�������� �	
��
� ��� ��� ���	�
 ���
������� ��������� ��� ���������� �
 ����
�����

������ �����

�������� ��	�� �� ���
��� ���
���� �� ��
��
���	��� ������
�� �!�����
 ���

��

��������"#���� ��$��

���!��� ���
��� ��
 ����� %�������� ������ ����
��� &������
� ������ ���$�

��'� %��� ��������
 ���� �

����"(������ ���$�

��������)���� � ����� ���� �� ���� (��� �	*������! ���+���� ���,�

��	��� -���� (������� ��� ������ ��� !����"� #$ %��� �������
�� &������
�

������ ���,�

������� ����� ��
 &���� #������ ����
��& '��& '(�& ��� ���)�
���
� *�

�

����"(������ ���$�

���!��� .���� /� !����"� ��� ��+
�, ��� �������� ��� ������-� '������
�� (����

)��	+� ���0�

������ ���+�������� '����� ������
� .���+���� -�� 1���� 2�� -������

��������� ��$,�

���+��� ����� �+�	� ��
�, ��������
� �� %��� �������
� ���� �� 3%) ������ ���,�

 !������ � �� ��
 (� 4� #���� ����	��� ������
�, ���������
�
 ����� (�����

�������� #���� �����

%���� %���
 �� ��� ������-� �	��� �� ��� .��
	
�� ������
� ������ ���
��!� &��

�

����"(������ ��$$�

 55���� ��� ��
 .�� ������� !����"� #/ ��0�
����-� .���+���� 4�*�'� ���$�

6������� ������
 6� ��� ������-� �	��� �� ��� ��� ��� ������ ���
��!� &��

�

����"(������ ��$$�

987
© 2003 by CRC Press LLC

6����� .���� %�� ��
���� ��� %���� 4����� 7� 6������ ��
 .��� � #	!���� ���1

�	��� ������
�, ����
��
�� ��� ���
��
�� �

����"(������ �����

)��

��� ��*� ������
� ��� ������ "��� ����
�2�� �

����(������ �����

)���*�	��� &���� 2� ������
� 3 ���������� -�� ��
���� �����

)�������� 6��
����� �� ��� �� ������� ������
�� 6�	���
������ &���������

��$��

#�����!���� 4������ ����	��� ������
�, � ��� ������ ������
�� -�� 1����

&�)���"#���� ��$8�

#����� %����
 ��
 &� ��	���� ������ ����	��� ������
�� ��������"#���� ��$9�

#����� %����
� ��
 &� ��	���� ������ ����	��� ������
�, � �������� 4����

�"

����� ��������"#���� �����

#�!!��� 4�)� ���������
� ��� ����	��� ������
�� ���*��
!�� ���0�

3�& ���+��������)�
���
�
 '������
�& �������
 ����	���� ���� ������ 3�&� ��$��

3�& ���+��������)�
���
�
 '������
�& �������
 (*����45� ���� ������ 3�&� ��$��

3�& ���+�������� �������
 (*����45 ��� �������
 ����	��� ���(�������
�)�
�1

��
�
 '������
�� ���� ������ 3�&� ��$��

3�& ���+��������)�
���
�
 '������
�& ������� ��� ��������� ���� ������ 3�&�

��$9�

3�& ���+��������)�
���
�
 '������
�& ������� ��� ��������� ��� ����� (+�*�1

���� ���� ������ 3�&� ��$9�

3�& ���+�������� ��� ����� (+�*���� .���"��� %���-� �	���� ���� ������

3�&� ���:�

3�& ���+�������� �������
 (*����45 .���"��� �������
�)�
���
�
 '������
� 1

����� (+�*������ ���� ������ 3�&� ���0�

7������ &������ '��
1)��� (����� * ���� ��� ������ 	��� ����
�� 6�7�

(��
����� �����

7����!���� ����� (� ��
 %����� &� ��������)�� � ��� ������ 8�� 	� ��

�������� #���� ���$�

7������� ���
��� %���� ���4��� � ��� ������-� '������
� �	���� -�� 1����

&�)���"#���� ��$$�

988 Bibliography

© 2003 by CRC Press LLC

7��
� .����� !��25 ���� ��0�
����-� �	��� "��� ����
�� 2� (����)��	+ ������

�����

7������ ����� .�)�� �"����� ��"�� �� ����
�2�4����
��� &�����!� ���$�

&��
��*���� ������ ��)�� ���
��
 �������* �� 9��	��� (�;� 6������ ��
 ����

��$0�

&������
� ���+�������� ��� ������-� �	��� �� ��
������ !����"� #$� &������
�

������ ���,�

&�����
� ���+��������)�� !����"� �������
� �	���
���� ��� (���"��� ���� ��

&������
� ������ ���,�

&������
� ���+�������� ����
�� $ (�: ��
	���������� ���$�

&������
� ���+�������� ����
�� 6 (�: ��
	���������� �����

&������
� ���+�������� ����
�� ; (�: ��
	���������� �����

&������
� ���+�������� ����
�� / (�: ��
	���������� 0:::�

&������ &���� (�
���� �� ����
��0� �%� ���� �� 4�*�'� �����

&������ ;������ ��
 ��� #������ '��
1)��� '������� � �� 7� ������ /�
�� �����

&������ ������� ((� ��& 8�� 	� � ��� ����0�����)���!� ���5������ ��,,�

<=��	���� &������� ����
��
�� ��)���� ����������
 ����	��� ���������� -������

���$�

���5��
� �������� ��� ������ !����"�� ����� �������� &������
� ������ �����

�������� ������ 7� ��
 �	���� 6�)����
� ����	��� ������
�,)�� ����
��
�� ��1

���� ��� ��� ��� (
���
�� 3������ ��� 6�������� ���
�� > ���������� �

������� ������ 21� .	��� ����
�� ��� ���������� (����� ���$�

������� ����� � ��
 .���+� &� -�������� !��25 ��� ������ � �

����"(������

�����

��
���
� 6���� � 333� ����1 ��
������ ������+	��� ��������� �+<�
� ����
�

3%) ������ �����

������� 4����� !����"� ��������� ������
�� &�)���"#���� ���8�

������� 4����� (���
��� �� ��������� ������
�� -�� 1���� &�)���"#���� ���0�

Bibliography 989

© 2003 by CRC Press LLC

������� 4����� (������ ������
� ��� ������ (�
����� -�� 1����

&�)���"#���� ���8�

�������� .���� ��
 �	
 4����� ������
� ��� ������ ��� ��� /$=>4�� ��
���

����� ��� & > ; ������ ���:�

�������� .�

���� ��0��
�� !����"�� ;���

������ &������
� ������ �����

��!������ %���� ������ ���� ��
������ �����& �����

����� &������ ��
 .���� ����� ����
�� ����
���� &�)���"#���� �����

4������ ��
 ��
 &�� 4������ ����	��� ������
�, (*����� ��� ���
�����

�

����(������ ��$��

4�����5� .	��� ��
 &���� �� ������� .� � '���
	���� ����� ������
��

&�)���"#���� �����

4�����5� .	��� ��
 &���� �� ������� (��
� ��� � ���
����� � ��� ������ �����

4�����5� .	��� ��
 &���� � ������� !����"� ������
� ��� ������ � & > ;

������ �����

4�����5� .	��� ��
 &���� �� ������� ����
�� 2� ������
� ��� ������ ��+
�� &

> ; ������ 0:::�

4����
�� #��*���� ���)�� ����
��� '������
�� (�
��� �������� &�)���"#����

���,�

4����
�� #��*���� !����"� #/ ��� ������ ���� ��� ���	�� %�� <�*����� ���$�

4����� ������
� !��25 ��� ������ ��� ��+
��(����)��	+ ������ ���9�

4����� &������ /�� ��� ������� ��
)��!��� ������� ����
�2� �����������
 '����1

��
�� -�� ��
���� �����

4	����)���!� ��
 4���� ������ ��0��
�� ��� ������-� �	��� �� (�������� -��

1���� 4���� > 4��	����� ���:�

;���+���� -�!��� 2� ������
� ��� ������ ��� !����"� #$� &������
� ������

���9�

;������� ����� ����
����" ��� ������� � & > ; ������ ���9�

;�	?����� 4���� .� � ���������
� !����"� ������
� ��� ������ � ��������)��	+

������ ���$�

;�	?����� 4���� �	���� 1�� � ����
�2� ��� ������ � ��������)��	+ ������ ���9�

990 Bibliography

© 2003 by CRC Press LLC

2 4�� (��� ��� ���(�?�������& .	�� 0� ���:� 4�� .���� ��� 2 4�� ���:�

2 4�� (��� ��� (�������& ������� =�5& <���*�� 00� ����� 4�� .���� ��� 2 4��

�����

2 4�� ��� �?�������� (�������& ������� =�7& &�� $� ���0� 4�� .���� ��� 2 4��

���0�

(�������� &���� ������
� ��� ������ �� ���� 4+���!��� ���$�

(���� ����� ��
 &��� (���� ��0��
�� ��������� ��� '�������)�
���@	��,

)����* ��� ���
��
�� �

����"(������ ���0�

(���� ����� ��
 6�*�� �������+��)�� ����	��� ��� �� �

����"(������ ���$�

(���	�� �������� !����"� #$ ���� (�: (����� * �	���� @	�� ���,�

1�	�!� &������ .� ������	
���� �� ������
� ��� ������ ��� !����"� #$, ��
���

������
� %��� ���� �� ���
��������� ���9�

A�������� ����� ��
������ ���	�
 ��� �"���-� ���	�
� ������� $�7� &������
�

������ �����

Bibliography 991

© 2003 by CRC Press LLC

	The PC Graphics Handbook
	Preface
	What Is in the Book
	Programming Environment
	The Book's Software

	Table of Contents
	Part I - Graphics Fundamentals
	Chapter 1
	PC Graphics Overview
	1.1 History and Evolution
	1.1.1 The Cathode-Ray Tube

	1.2 Short History of PC Video
	1.2.1 Monochrome Display Adapter
	1.2.2 Hercules Graphics Card
	1.2.3 Color Graphics Adapter
	1.2.4 Enhanced Graphics Adapter

	1.3 PS/2 Video Systems
	1.3.1 Video Graphics Array
	1.3.2 8514/A Display Adapter
	1.3.3 Extended Graphics Array

	1.4 SuperVGA
	1.4.1 SuperVGA Architecture
	1.4.2 Bank-Switched Memory
	1.4.3 256-Color Extensions

	1.5 Graphics Coprocessors and Accelerators
	1.5.1 The TMS340 Coprocessor
	1.5.2 Image Properties
	Brightness and Contrast
	Color
	Resolution
	Aspect Ratio

	1.6 Graphics Applications
	1.6.1 Computer Games
	1.6.2 Graphics in Science, Engineering, and Technology
	1.6.3 Art and Design
	1.6.4 Business
	1.6.5 Simulations
	1.6.6 Virtual Reality
	1.6.7 Artificial Life
	1.6.8 Fractal Graphics

	1.7 State-of-the-Art in PC Graphics
	1.7.1 Graphics Boards
	1.7.2 Graphics Coprocessors
	1.7.3 CPU On-Board Facilities

	1.8 3D Application Programming Interfaces
	1.8.1 OpenGL and DirectX

	Chapter 2
	Polygonal Modeling
	2.1 Vector and Raster Data
	2.2 Coordinate Systems
	2.2.1 Modeling Geometrical Objects

	2.3 Modeling with Polygons
	2.3.1 The Triangle
	2.3.2 Polygonal Approximations
	2.3.3 Edges
	2.3.4 Meshes

	Chapter 3
	Image Transformations
	3.1 Matrix-Based Representations
	3.1.1 Image Transformation Mathematics

	3.2 Matrix Arithmetic
	3.2.1 Scalar-by-Matrix Operations
	3.2.2 Matrix Addition and Subtraction
	3.2.3 Matrix Multiplication

	3.3 Geometrical Transformations
	3.3.1 Translation Transformation
	3.3.2 Scaling Transformation
	3.3.3 Rotation Transformation
	3.3.4 Homogeneous Coordinates
	3.3.5 Concatenation

	3.4 3D Transformations
	3.4.1 3D Translation
	3.4.2 3D Scaling
	3.4.3 3D Rotation
	3.4.4 Rotation about an Arbitrary Axis

	Chapter 4
	Programming Matrix Transformations
	4.1 Numeric Data in Matrix Form
	4.1.1 Matrices in C and C++
	4.1.2 Finding Matrix Entries

	4.2 Array Processing
	4.2.1 Vectors and Scalars
	Vector- by- Scalar Operations in C and C++
	Low- Level Vector- by- Scalar Operations
	Matrix- by- Scalar Operations

	4.2.2 Matrix-by-Matrix Operations
	Matrix Addition
	Matrix Multiplication

	Chapter 5
	Projections and Rendering
	5.1 Perspective
	5.1.1 Projective Geometry
	5.1.2 Parallel Projections
	5.1.3 Perspective Projections
	One- Point Perspective
	Two- Point Perspective
	Three- Point Perspective
	The Perspective Projection as a Transformation

	5.2 The Rendering Pipeline
	5.2.1 Local Space
	5.2.2 World Space
	5.2.3 Eye Space
	Backface Elimination or Culling

	5.2.4 Screen Space
	5.2.5 Other Pipeline Models

	Chapter 6
	Lighting and Shading
	6.1 Lighting
	6.1.1 Illumination Models
	6.1.2 Reflection
	Diffuse Reflection
	Specular Reflection
	Phong's Model

	6.2 Shading
	6.2.1 Flat Shading
	6.2.2 Interpolative Shading
	Gouraud Shading
	Phong Shading

	6.2.3 Ray Tracing

	6.3 Other Rendering Algorithms
	6.3.1 Scan-Line Operations
	Hidden Surface Removal
	Shadow Projections

	6.3.2 Z-Buffer Algorithm
	6.3.3 Textures

	Part II - DOS Graphics
	Chapter 7
	VGA Fundamentals
	7.1 The VGA Standard
	7.1.1 Advantages and Limitations
	7.1.2 VGA Modes

	7.2 VGA Components
	7.2.1 Video Memory
	Alphanumeric Modes
	Graphics Modes

	7.3 VGA Registers
	7.3.1 The General Registers
	7.3.2 The CRT Controller
	7.3.3 The Sequencer
	7.3.4 The Graphics Controller
	7.3.5 The Attribute Controller

	7.4 The Digital-to-Analog Converter (DAC)
	7.4.1 The DAC Pixel Address Register
	7.4.2 The DAC State Register
	7.4.3 The DAC Pixel Data Register

	Chapter 8
	VGA Device Drivers
	8.1 Levels of VGA Programming
	8.1.1 Device Drivers and Primitive Routines

	8.2 Developing the VGA Device Drivers
	8.2.1 VGA Mode 18 Write Pixel Routine
	Fine Grain Address Calculations
	Setting the Pixel
	Coarse Grain Address Calculations
	Setting the Tile

	8.2.2 VGA Mode 18 Read Pixel Routine
	8.2.3 VGA Mode 19 Write Pixel Routine
	Address Calculations
	Setting the Pixel

	8.2.4 VGA Mode 19 Read Pixel Routine

	8.3 Color Manipulations
	8.3.1 256-Color Mode
	Shades of Gray
	Summing to Gray Shades

	8.3.2 16-Color Modes
	Color Animation

	8.3.3 VGA1 Library Functions
	ES_ TO_ VIDEO (Assembly Language only)
	ES_ TO_ APA (Assembly Language only)
	PIXEL_ ADD_ 18 (Assembly Language only)
	WRITE_ PIX_ 18 (Assembly Language only)
	TILE_ ADD_ 18 (Assembly Language only)
	WRITE_ TILE_ 18 (Assembly Language only)
	READ_ PIX_ 18 (Assembly Language only)
	TWO_ BIT_ IRGB
	GRAY_ 256
	SUM_ TO_ GRAY
	SAVE_ DAC
	RESTORE_ DAC
	PIXEL_ ADD_ 19 (Assembly Language only)
	TILE_ ADD_ 19 (Assembly Language only)
	FREEZE_ DAC
	THAW_ DAC

	Chapter 9
	VGA Core Primitives
	9.1 Classification of VGA Primitives
	9.2 VGA Primitives for Set-Up, Control, and Query
	9.2.1 Selecting the VGA Write Mode
	Writing Data in the 256- Color Modes

	9.2.2 Selecting the Read Mode
	9.2.3 Selecting Logical Operation
	XOR Operations in Animation Routines

	9.2.4 System Status Operations
	9.2.5 Vertical Retrace Timing

	9.3 VGA Text Display Primitives
	9.3.1 BIOS Text Display Functions
	Text Block Display
	BIOS Character Sets

	9.3.2 A Character Generator
	Moving a BIOS Font to RAM
	Display Type
	Using a PCL Font

	9.4 Bit-Block and Fill Primitives
	9.4.1 Mode 18 Bitmap Primitives
	9.4.2 Mode 19 Bitmap Primitive
	Fill Primitives

	9.5 Primitive Routines in the VGA1 and VGA2 Modules
	9.5.1 Primitive Routines in the VGA1 Module
	SET_ MODE
	GET_ MODE
	TIME_ VRC
	SET_ WRITE_ MODE
	SET_ WRITE_ 256
	SET_ READ_ MODE
	LOGICAL_ MODE
	READ_ MAPS_ 18

	9.5.2 Primitive Routines in the VGA2 Module
	GRAPHIC_ TEXT
	FINE_ TEXT
	MULTI_ TEXT
	FINE_ TEXTHP
	READ_ HPFONT
	FONT_ TO_ RAM
	MONO_ MAP_ 18
	COLOR_ MAP_ 18
	COLOR_ MAP_ 19
	CLS_ 18
	CLS_ 19
	TILE_ FILL_ 18
	TILE_ FILL_ 19

	Chapter 10
	VGA Geometrical Primitives
	10.1 Geometrical Graphics Objects
	10.1.1 Pixel-Path Calculations
	10.1.2 Graphical Coprocessors
	The 80x87 as a Graphical Coprocessor
	Emulating the 80x87

	10.2 Plotting a Straight Line
	10.2.1 Insuring Pixel Adjacency
	10.2.2 Calculating Straight Lines Coordinates
	Bresenham's Algorithm
	An Alternative to Bresenham
	A Line by its Slope
	Displaying the Straight Line

	10.3 Plotting Conic Curves
	10.3.1 The Circle
	10.3.2 The Ellipse
	10.3.3 The Parabola
	10.3.4 The Hyperbola
	10.3.5 Displaying the Conic Curve

	10.4 Geometrical Operations
	10.4.1 Screen Normalization of Coordinates
	10.4.2 Performing the Transformations
	Translation
	Scaling
	Rotation
	Clipping

	10.5 Region Fills
	10.5.1 Screen Painting
	10.5.2 Geometrical Fills

	10.6 Primitive Routines in the VGA3 Module
	BRESENHAM
	LINE BY SLOPE
	CIRCLE
	ELLIPSE
	PARABOLA
	HYPERBOLA
	QUAD_ I
	QUAD_ II
	QUAD_ III
	QUAD_ IV
	DO_ 4_ QUADS
	ROTATE_ ON
	ROTATE_ OFF
	CLIP_ ON
	CLIP_ OFF
	INIT_ X87
	REGION_ FILL

	Chapter 11
	XGA and 8514/A Adapter Interface
	11.1 8514/A and XGA
	11.2 Adapter Interface Software
	11.2.1 Software Installation
	11.2.2 XGA Multi-Display Systems
	11.2.3 Operating Modes
	11.2.4 The XGA and 8514/A Palette
	11.2.5 Alphanumeric Support
	Font File Structure

	11.3 Communicating with the AI
	11.3.1 Interfacing with the AI
	C Language Support
	AI Entry Points
	Obtaining the AI Address
	Using the AI Call Mechanism
	AI Initialization Operations

	11.3.2 AI Data Conventions

	11.4 AI Concepts
	11.4.1 Pixel Attributes
	Mixes
	Color Compares
	Bit Plane Masking

	11.4.2 Scissoring
	11.4.3 Absolute and Current Screen Positions
	11.4.4 Polymarkers
	11.4.5 Line Widths and Types
	11.4.6 Bit Block Operations
	BitBLT Copy
	BitBLT Write
	BitBLT Read

	11.5 Details of AI Programming
	11.5.1 Initialization and Control Functions
	11.5.2 Setting the Color Palette
	11.5.3 Geometrical Functions
	Drawing Straight Lines
	Rectangular Fill
	Area Fill

	11.5.4 Raster Operations
	Polymarkers
	BitBLT

	11.5.5 Character Fonts
	11.5.6 Displaying Text
	Character String Operations
	Alphanumeric Operations

	Chapter 12
	XGA Hardware Programming
	12.1 XGA Hardware Programming
	12.1.1 XGA Programming Levels

	12.2 XGA Features and Architecture
	12.2.1 The XGA Graphics Coprocessor
	12.2.2 VRAM Memory
	Video Memory Apertures
	Data Ordering Schemes

	12.2.3 The XGA Display Controller

	12.3 Initializing the XGA System
	12.3.1 Locating the XGA Hardware
	POS register 2
	POS register 4
	12.3.2 Setting the XGA Mode
	12.3.3 Loading the XGA Palette

	12.4 Processor Access to XGA Video Memory
	12.4.1 Setting Screen Pixels
	12.4.2 Reading Screen Pixels
	12.4.3 Programming the XGA Direct Color Mode
	The Direct Color Palette
	Pixel Operations in Direct Color Mode

	12.5 Programming the XGA Graphics Coprocessor
	12.5.1 Initializing the Coprocessor
	Obtain the Coprocessor Base Address
	Obtain the Video Memory Address
	Select Access Mode

	12.5.2 Coprocessor Operations
	Synchronizing Coprocessor Access
	General Purpose Maps
	The Mask Map
	Pixel Attributes
	Pixel Masking and Color Compare Operations
	Mixes
	Pixel Operations

	12.5.3 PixBlt Operations
	Rectangular Fill PixBlt
	System Memory to VRAM PixBlt

	12.5.4 Line Drawing Operations
	Reduction to the First Octant
	Calculating the Bresenham Terms

	12.6 The XGA Sprite
	12.6.1 The Sprite Image
	Encoding of Sprite Colors and Attributes
	Loading the Sprite Image

	12.6.2 Displaying the Sprite

	12.7 Using the XGA Library
	12.7.1 Procedures in the XGA1.ASM Module
	OPEN_ AI
	CLOSE_ AI
	AI_ FONT
	AI_ COLOR
	AI_ CLS
	AI_ TEXT
	AI_ PALETTE
	AI_ COMMAND

	12.7.2 Procedures in the XGA2.ASM Module
	XGA_ MODE
	INIT_ XGA
	XGA_ PIXEL_ 2
	XGA_ CLS_ 2
	XGA_ OFF
	XGA_ ON
	XGA_ PALETTE
	DC_ PALETTE
	INIT_ COP
	COP_ RECT_ 2
	COP_ SYSVID_ 1
	COP_ SYSVID_ 8
	COP_ LINE_ 2
	SPRITE_ IMAGE
	SPRITE_ AT
	SPRITE_ OFF

	Chapter 13
	SuperVGA Programming
	13.1 Introducing the SuperVGA Chipsets
	13.1.1 SuperVGA Memory Architecture
	16 Color Extensions
	Memory Banks
	256 Color Extensions
	Pixel Addressing

	13.2 The VESA SuperVGA Standard
	13.2.1 VESA SuperVGA Modes
	13.2.2 Memory Windows

	13.3 The VESA BIOS
	13.3.1 VESA BIOS Services
	Sub- service 0 - System Information
	Sub- service 1 - Mode Information
	Sub- service 2 - Set Video Mode
	Sub- service 3 - Get Video Mode
	Sub- service 4 - Save/ Restore Video State
	Sub- service 5 - Switch Bank
	Sub- service 6 - Set/ Get Logical Scan Line
	Sub- service 7 - Set/ Get Display Start
	Sub- service 8 - Set/ Get DAC Palette Control

	13.4 Programming the SuperVGA System
	13.4.1 Address Calculations
	13.3.2 Bank Switching Operations
	13.4.3 Setting and Reading a Pixel
	13.4.4 VGA Code Compatibility

	13.5 Using the SuperVGA Library
	13.5.1 Procedures in the SVGA.ASM Module
	SVGA_ MODE
	VESA_ 105
	SVGA_ PIX_ 105
	SVGA_ CLS_ 105
	SVGA_ READ_ 105

	Chapter 14
	DOS Animation
	14.1 Graphics and Animation
	14.1.1 Physiology of Animation
	14.1.2 PC Animation
	14.1.3 Software Support for Animation Routines

	14.2 Interactive Animation
	14.2.1 Programming the Mouse
	14.2.2 The Microsoft Mouse Interface
	14.2.3 Checking Mouse Software Installation
	14.2.4 Sub-services of Interrupt 33H
	Sub- service 0 - Initialize Mouse
	Sub- service 5 - Check Button Press Status
	Sub- service 11 - Read Motion Counters
	Sub- service 12 - Set Interrupt Routine

	14.3 Image Animation
	14.3.1 Image Mapping and Panning
	Video and Image Buffers
	Viewport and Windows
	Panning

	14.3.2 Geometrical Transformations

	14.4 Imaging Techniques
	14.4.1 Retention
	14.4.2 Interference
	14.4.3 XOR Operations
	Programming the Function Select Bits

	14.4.4 Time-Pulse Animation
	Looping Techniques
	The System Timer
	Interference Problems

	14.4.5 The Vertical Retrace Interrupt
	VGA Vertical Retrace Interrupt
	XGA Screen Blanking Interrupt

	Chapter 15
	DOS Bitmapped Graphics
	15.1 Image File Encoding
	15.1.1 Raw Image Data
	15.1.2 Bitmaps in Monochrome and Color
	15.1.3 Image Data Compression
	Run- length Encoding
	Facsimile Compression Methods
	LZW Compression

	15.1.4 Encoders and Decoders

	15.2 The Graphics Interchange Format (GIF)
	15.2.1 GIF Sources
	15.2.2 The GIF File Structure
	Header
	Logical Screen Descriptor
	Global Color Table
	Image Descriptor
	Local Color Table
	Compressed Image Data
	Trailer
	GIF89a Extensions

	15.2.3 GIF Implementation of LZW Compression
	LZW Concepts
	The General LZW Algorithm
	The GIF Implementation
	LZW Code Size
	The GIF Image File
	GIF LZW Encoding
	GIF LZW Decoding

	15.3 The Tag Image File Format (TIFF)
	15.3.1 The TIFF File Structure
	The TIFF Header
	The TIFF Image File Directory (IFD)

	15.3.2 TIFF Tags for Bilevel Images
	OldSubFileType (tag code 00FFH)
	NewSubFileType (00FEH)
	ImageWidth (tag code 0100H)
	ImageLength (tag code 0101H)
	BitsPerSample (tag code 0102H)
	Compression (tag code 0103H)
	PhotometricInterpretation (tag code 0106H)
	Threshholding (tag code 0107H)
	StripsOffset (tag code 0111H)
	SamplesPerPixel (tag code 0115H)
	RowsPerStrip (tag code 0116H)
	StripByteCounts (tag code 0117H)
	XResolution (tag code 011AH)
	YResolution (tag code 011BH)
	PlanarConfiguration (tag code 011CH)
	ResolutionUnit (tag code 128H)

	15.3.3 Locating TIFF Image Data
	15.3.4 Processing TIFF Image Data
	TIFF PackBits Compression

	15.3.5 TIFF Software Samples

	15.4 The Hewlett-Packard Bitmapped Fonts
	15.4.1 PCL Character Encoding
	Font Descriptor
	Character Descriptor
	The PCL Bitmap

	15.4.2 PCL Bitmap Support Software

	Part III - Windows API Graphics
	Chapter 16
	Graphics Programming in Windows
	16.1 Windows at the API Level
	16.1.1 The Program Project
	Creating a Project

	16.2 Elements of a Windows Program
	16.2.1 WinMain()
	Parameters

	16.2.2 Data Variables
	16.2.3 WNDCLASSEX Structure
	16.2.4 Registering the Windows Class
	16.2.5 Creating the Window
	16.2.6 Displaying the Window
	16.2.7 The Message Loop

	16.3 The Window Procedure
	16.3.1 Windows Procedure Parameters
	16.3.2 Windows Procedure Variables
	16.3.3 Message Processing
	WM_ CREATE Message Processing
	WM_ PAINT Message Processing
	WM_ DESTROY Message Processing

	16.3.4 The Default Windows Procedure

	16.4 The WinHello Program
	16.4.1 Modifying the Program Caption
	16.4.2 Displaying Text in the Client Area
	16.4.3 Creating a Program Resource
	16.4.4 Creating the Icon Bitmap

	16.5 WinHello Program Listing

	Chapter 17
	Text Graphics
	17.1 Text in Windows
	17.1.1 The Client Area

	17.2 Device and Display Contexts
	17.2.1 The Display Context
	17.2.2 Display Context Types
	17.2.3 Window Display Context

	17.3 Mapping Modes
	17.3.1 Screen and Client Area
	17.3.2 Viewport and Window

	17.4 Programming Text Operations
	17.4.1 Typefaces and Fonts
	17.4.2 Text Formatting
	17.4.3 Paragraph Formatting
	17.4.4 The DrawText() Function

	17.5 Text Graphics
	17.5.1 Selecting a Font
	17.5.2 Drawing with Text

	Chapter 18
	Keyboard and Mouse Programming
	18.1 Keyboard Input
	18.1.1 Input Focus
	18.1.2 Keystroke Processing
	18.1.3 Determining the Key State
	18.1.4 Character Code Processing
	18.1.4 Keyboard Demonstration Program

	18.2 The Caret
	18.2.1 Caret Processing
	18.2.2 Caret Demonstration Program

	18.3 Mouse Programming
	18.3.1 Mouse Messages
	18.3.2 Cursor Location
	18.3.3 Double-Click Processing
	18.3.4 Capturing the Mouse
	18.3.5 The Cursor

	18.4 Mouse and Cursor Demonstration Program

	Chapter 19
	Child Windows and Controls
	19.1 Window Styles
	19.1.1 Child Windows
	19.1.2 Child Windows Demonstration Program
	19.1.3 Basic Controls
	19.1.4 Communicating with Controls
	19.1.5 Controls Demonstration Program

	19.2 Menus
	19.2.1 Creating a Menu
	19.2.2 Menu Item Processing
	19.2.3 Shortcut Keys
	19.2.4 Pop-Up Menus
	19.2.5 The Menu Demonstration Program

	19.3 Dialog Boxes
	19.3.1 Modal and Modeless
	19.3.2 The Message Box
	19.3.3 Creating a Modal Dialog Box
	19.3.4 Common Dialog Boxes
	19.3.5 The Dialog Box Demonstration Program

	19.4 Common Controls
	19.4.1 Common Controls Message Processing
	19.4.2 Toolbars and ToolTips
	19.4.3 Creating a Toolbar
	19.4.4 Standard Toolbar Buttons
	19.4.5 Combo Box in a Toolbar
	19.4.6 ToolTip Support

	Chapter 20
	Pixels, Lines, and Curves
	20.1 Drawing in a Window
	20.1.1 The Redraw Responsibility
	20.1.2 The Invalid Rectangle
	20.1.3 Screen Updates On-Demand
	20.1.4 Intercepting the WM_PAINT Message

	20.2 Graphics Device Interface
	20.2.1 Device Context Attributes
	20.2.2 DC Info Demonstration Program
	20.2.3 Color in the Device Context

	20.3 Graphic Objects and GDI Attributes
	20.3.1 Pens
	20.3.2 Brushes
	20.3.3 Foreground Mix Mode
	20.3.4 Background Modes
	20.3.5 Current Pen Position
	20.3.6 Arc Direction

	20.4 Pixels, Lines, and Curves
	20.4.1 Pixel Operations
	20.4.2 Drawing with LineTo()
	20.4.3 Drawing with PolylineTo()
	20.4.4 Drawing with Polyline()
	20.4.5 Drawing with PolyPolyline()
	20.4.6 Drawing with Arc()
	20.4.7 Drawing with ArcTo()
	20.4.8 Drawing with AngleArc()
	20.4.9 Drawing with PolyBezier()
	20.4.10 Drawing with PolyBezierTo()
	20.4.11 Drawing with PolyDraw()
	20.4.12 Pixel and Line Demonstration Program

	Chapter 21
	Drawing Figures, Regions, and Paths
	21.1 Closed Figures
	21.1.1 Area of a Closed Figure
	21.1.2 Brush Origin
	21.1.3 Object Selection Macros
	21.1.4 Polygon Fill Mode
	21.1.5 Creating Custom Brushes

	21.2 Drawing Closed Figures
	21.2.1 Drawing with Rectangle()
	21.2.2 Drawing with RoundRect()
	21.2.3 Drawing with Ellipse()
	21.2.4 Drawing with Chord()
	21.2.5 Drawing with Pie()
	21.2.6 Drawing with Polygon()
	21.2.7 Drawing with PolyPolygon()

	21.3 Operations on Rectangles
	21.3.1 Drawing with FillRect()
	21.3.2 Drawing with FrameRect()
	21.3.3 Drawing with DrawFocusRect()
	21.3.4 Auxiliary Operations on Rectangles
	21.3.5 Updating the Rectangle() Function

	21.4 Regions
	21.4.1 Creating Regions
	21.4.2 Combining Regions
	21.4.3 Filling and Painting Regions
	21.4.4 Region Manipulations
	21.4.5 Obtaining Region Data

	21.5 Clipping Operations
	21.5.1 Creating or Modifying a Clipping Region
	21.5.2 Clipping Region Information

	21.6 Paths
	21.6.1 Creating, Deleting, and Converting Paths
	21.6.2 Path-Rendering Operations
	21.6.3 Path Manipulations
	21.6.4 Obtaining Path Information

	21.7 Filled Figures Demo Program

	Chapter 22
	Windows Bitmapped Graphics
	22.1 Raster and Vector Graphics
	22.1.1 The Bitmap
	22.1.2 Image Processing
	22.1.3 Bitblt Operations

	22.2 Bitmap Constructs
	22.2.1 Windows Bitmap Formats
	22.2.2 Windows Bitmap Structures
	22.2.3 The Bitmap as a Resource

	22.3 Bitmap Programming Fundamentals
	22.3.1 Creating the Memory DC
	22.3.2 Selecting the Bitmap
	22.3.3 Obtaining Bitmap Dimensions
	22.3.4 Blitting the Bitmap
	22.3.5 A Bitmap Display Function

	22.4 Bitmap Manipulations
	22.4.1 Hard-Coding a Monochrome Bitmap
	22.4.2 Bitmaps in Heap Memory
	22.4.3 Operations on Blank Bitmaps
	22.4.4 Creating a DIB Section
	22.4.5 Creating a Pattern Brush

	22.5 Bitmap Transformations
	22.5.1 Pattern Brush Transfer
	22.5.2 Bitmap Stretching and Compressing

	22.6 Bitmap Demonstration Program

	Part IV DirectX Graphics
	Chapter 23
	Introducing DirectX
	23.1 Why DirectX?
	23.1.1 From the Game SDK to DirectX 8.1
	23.1.2 2D and 3D Graphics in DirectX
	23.1.3 Obtaining the DirectX SDK

	23.2 DirectX 8.1 Components
	23.3 New Features in DirectX 8
	23.3.1 Installing the DirectX SDK
	23.3.2 Compiler Support
	23.3.3 Accessing DirectX Programs and Utilities

	23.4 Testing the Installation

	Chapter 24
	DirectX and COM
	24.1 Object Orientation and C++ Indirection
	24.1.1 Indirection Fundamentals
	24.1.2 Pointers to Pointers
	24.1.3 Pointers to Functions
	24.1.4 Polymorphism and Virtual Functions
	24.1.5 Pure Virtual Functions
	Abstract Classes

	24.2 COM in DirectX Programming
	24.2.1 COM Fundamentals
	Defining COM

	24.2.2 COM Concepts in DirectX
	The COM Object
	The COM Interface
	The GUID
	The HRESULT Structure

	24.2.3 The IUnknown Interface
	Using QueryInterface()

	24.3 Creating and Accessing the COM Object
	24.3.1 Creating the COM Object
	24.3.2 Using COM Objects
	The COM Object's Lifetime
	Manipulating the Reference Count

	Chapter 25
	Introducing DirectDraw
	25.1 2D Graphics and DirectDraw
	25.1.1 DirectDraw Features
	25.1.2 Advantages and Drawbacks

	25.2 Basic Concepts for DirectDraw Graphics
	25.2.1 Device-Independent Bitmaps
	25.2.2 Drawing Surfaces
	25.2.3 Blitting
	25.2.4 Page Flipping and Back Buffers
	25.2.5 Bounding Rectangles

	25.3 DirectDraw Architecture
	25.3.1 DirectDraw Interfaces
	25.4.1 DirectDraw Objects
	25.4.2 Hardware Abstraction Layer (HAL)
	25.4.3 Hardware Emulation Layer (HEL)
	25.4.4 DirectDraw and GDI

	25.5 DirectDraw Programming Essentials
	25.5.1 Cooperative Levels
	25.5.2 Display Modes
	Palletized and Nonpalletized Modes

	25.5.3 Surfaces
	25.5.4 Palettes
	25.5.5 Clipping

	Chapter 26
	Setting Up DirectDraw
	26.1 Set-up Operations
	26.1.1 DirectDraw Header File
	26.1.2 DirectDraw Libraries

	26.2 Creating the DirectDraw Object
	26.2.1 Obtaining the Interface Version
	26.2.2 Interface Version Strategies
	26.2.3 Setting the Cooperative Level
	26.2.4 Hardware Capabilities
	26.2.5 Display Modes

	26.3 The DD Info Project

	Chapter 27
	DirectDraw Exclusive Mode
	27.1 WinMain() for DirectDraw
	27.1.1 Filling the WNDCLASSEX Structure
	27.1.2 Registering the Window Class
	27.1.3 Creating the Window
	27.1.4 Defining the Window Show State
	27.1.5 Creating a Message Loop

	27.2 DirectDraw Initialization
	27.2.1 Obtaining the Interface Pointer
	27.2.2 Checking Mode Availability
	27.2.3 Setting Cooperative Level and Mode
	27.2.4 Creating the Surfaces
	27.2.5 Using Windows GDI Functions

	27.3 The DD Exclusive Mode Template

	Chapter 28
	Access to Video Memory
	28.1 Direct Access Programming
	28.1.1 Memory-Mapped Video
	Hi- Color Modes
	True- Color Modes

	28.1.2 Locking the Surface
	28.1.3 Obtaining Surface Data

	28.2 In-Line Assembly Language
	28.2.1 The _asm Keyword
	28.2.2 Coding Restrictions
	28.2.3 Assembly Language Functions

	28.3 Multi-Language Programming
	28.3.1 Stand-Alone Assembler Modules
	C++/ Assembler Interface Functions
	MASM Module Format
	C++ Module Format

	28.3.2 Matrix Ops Project

	28.4 Direct Access Primitives
	28.4.1 Pixel Address Calculations
	28.4.2 Defining the Primary Surface
	28.4.3 Releasing the Surface
	28.4.4 Pixel-Level Primitives
	Filling a Rectangular Area
	Box- Drawing

	28.5 Raster Operations
	28.5.1 XOR Animation
	28.5.2 XORing a Bitmap

	28.6 Direct Access Project

	Chapter 29
	Blitting
	29.1 Surface Programming
	29.1.1 The DirectDraw Surface Concept
	29.1.2 Surface Types
	29.1.3 Enumerating Surfaces
	29.1.4 Restoring Surfaces
	29.1.5 Surface Operations
	29.1.6 Transparency and Color Keys
	29.1.7 Selecting and Setting the Color Key
	The DDCOLORKEY Structure

	29.1.8 Hardware Color Keys

	29.2 The Blit
	29.2.1 BltFast()
	29.2.2 Blt()

	29.3 Blit-Time Transformations
	29.3.1 Color Fill Blit
	29.3.2 Blit Scaling
	29.3.3 Blit Mirroring
	29.3.4 Raster Operations

	29.4 Blit-Rendering Operations
	29.4.1 Loading the Bitmap
	29.4.2 Obtaining Bitmap Information
	29.4.3 Moving a Bitmap to a Surface
	29.4.4 Displaying the Bitmap

	29.5 DD Bitmap Blit Project

	Chapter 30
	DirectDraw Bitmap Rendering
	30.1 Bitmap Manipulations
	30.1.1 Loading the Bitmap
	30.1.2 Obtaining Bitmap Information
	30.1.3 Moving a Bitmap onto a Surface
	30.1.4 Displaying the Bitmap

	30.2 Developing a Windowed Application
	30.2.1 Windowed Mode Initialization
	30.2.2 Clipping the Primary Surface

	30.3 Rendering in Windowed Mode
	30.3.1 Rendering by Clipping
	30.3.2 Blit-Time Cropping

	Chapter 31
	DirectDraw Animation
	31.1 Animating in Real-Time
	31.1.1 The Animator's Predicament

	31.2 Timed Pulse Animation
	31.2.1 The Tick Counting Method
	31.2.2 System Timer Intercept

	31.3 Sprites
	31.3.2 Creating Sprites
	31.3.3 Sprite Rendering

	31.4 Page Flipping
	31.4.1 Flipping Surface Initialization
	31.4.2 The Flip() Function
	31.4.3 Multiple Buffering

	31.5 Animation Programming
	31.5.1 Background Animation
	31.5.2 Panning Animation
	31.5.3 Zoom Animation
	31.5.4 Animated Sprites

	31.6 Fine-Tuning the Animation
	31.6.1 High-Resolution Timers
	31.6.2 Dirty Rectangles
	31.6.3 Dynamic Color Keys

	31.7 Measuring Performance

	Chapter 32
	Direct3D Fundamentals
	32.1 3D Graphics in DirectX
	32.1.1 Origin of Direct3D
	32.1.2 Direct3D Implementations
	32.1.3 Retained Mode
	32.1.4 Immediate Mode
	32.1.5 Hardware Abstraction Layer
	32.1.6 DirectDraw
	32.1.7 OpenGL
	32.1.8 Direct3D and COM

	32.2 Direct3D Rendering
	32.2.1 Transformation Module
	32.2.2 Lighting Module
	32.2.3 Rasterization Module

	32.3 Retained Mode Programming
	32.3.1 Frames
	Meshes
	Mesh Groups
	Faces

	32.3.2 Shading Modes
	Interpolation of Triangle Attributes

	32.3.3 Z-Buffers
	32.3.4 Lights
	Ambient Light
	Directional Light
	Parallel Pint Light
	Point Light
	Spotlight

	32.3.5 Textures
	Decals
	Texture colors
	Mipmaps
	Texture Filters and Blends
	Texture Transparency
	Wraps

	32.3.6 Materials
	32.3.7 User Visuals
	32.3.8 Viewports
	Viewing Frustum
	Transformations
	Picking

	32.3.9 Animations and Animations Sets
	32.3.10 Quaternions

	32.4 Direct3D File Formats
	34.4.1 Description
	34.4.2 File Format Architecture
	Reserved Words
	Header
	Comments
	Templates
	Data
	Retained mode templates

	Chapter 33
	Direct3D Programming
	33.1 Initializing the Software Interface
	33.1.1 The IUnknown Interface
	33.1.2 Direct3DRM Object
	33.1.3 Calling QueryInterface()
	Creating the DirectDraw Clipper

	33.1.4 The Clip List
	33.1.5 InitD3D() Function

	33.2 Building the Objects
	33.2.1 Creating the Objects
	Creating the Device

	33.2.2 CreateObjects() Function

	33.3 Master Scene Concepts
	33.3.1 The Camera Frame
	33.3.2 The Viewport

	33.4 Master Scene Components
	33.4.1 The Meshbuilder Object
	33.4.2 Adding a Mesh to a Frame
	33.4.3 Setting the Camera Position
	33.4.4 Creating and Positioning the Light Frame
	33.4.5 Creating and Setting the Lights
	33.4.6 Creating a Material
	33.4.7 Setting the Mesh Color
	33.4.8 Clean-Up Operations
	33.4.9 Calling BuildScene()

	33.5 Rendering Operations
	33.5.1 Clearing the Viewport
	32.5.2 Rendering to the Viewport
	33.5.3 Updating the Screen
	33.5.4 RenderScene() Function

	33.6 Sample Project 3DRM InWin Demo1
	33.6.1 Windowed Retained Mode Coding Template

	Appendix A
	Windows Structures

	Appendix B
	Ternary Raster Operation Codes

	Bibliography

