The

PC
oraphics

handbook

© 2003 by CRC Press LLC

The

hics
gh pdb()()k

Julio Sanchez & Maria P. Canton

Minnesota State University

CRC PRESS

Boca Raton London New York Washington, D.C.

Library of Congress Cataloging-in-Publication Data

Catalog record is available from the Library of Congress

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with
permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish
reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials
or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior
permission in writing from the publisher.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new works,
or for resale. Specific permission must be obtained in writing from CRC Press LLC for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation, without intent to infringe.

Visit the CRC Press Web site at www.crcpress.com

© 2003 by CRC Press LLC

No claim to original U.S. Government works
International Standard Book Number 0-8493-1678-2
Printed in the United States of America 1 2 3 4 56 78 9 0
Printed on acid-free paper

© 2003 by CRC Press LLC

Preface

This book is about graphics programming on the Personal Computer. As the title indi-
cates, the book's emphasis is on programming, rather than on theory. The main pur-
pose is to assist program designers, systems and applications programmers, and
implementation specialists in the development of graphics software for the PC.

PC graphics began in 1982 with the introduction of the IBM Color Graphics
Adapter. In 20 or so years the technology has gone from simple, rather primitive de-
vices, sometimes plagued with interference problems and visually disturbing de-
fects, to sophisticated multi-processor environments capable of realistic 3D
rendering and life-like animation. A machine that 20 years ago was hardly capable of
displaying bar charts and simple business graphics now competes with the most
powerful and sophisticated graphics workstations. During this evolution many tech-
nologies that originally showed great promise have disappeared, while a few others
seem to hang on past the most optimistic expectations. Programming has gone from
rather crude and primitive routines for rendering simple geometrical objects to
modeling, rendering, and animating solid objects at runtime in a realistic manner.

What Is in the Book

In the complex graphics environment of the PC, covering the fundamentals of some
technologies requires one or more full-sized volumes. This is the case with systems
such as VGA, SuperVGA, XGA, DirectX, Direct 3D, and OpenGL. Thus, in defining the
contents of this book our first task was to identify which systems and platforms are
still relevant to the programmer. Our second task was to compress the coverage of the
selected systems so that the entire PC graphics context would fit in a single volume.

The topic selection process entailed many difficult decisions: how much graphics
theory should be in the book? Is DOS graphics still a viable field? Which portions of
Direct3D are most important to the "average" programmer? Should OpenGL be in-
cluded? In some cases the complexity and specialized application of a graphics
technology determined our decision. For example, Direct3D immediate mode pro-
gramming was excluded because of its difficulty and specialized application. Other
platforms such as OpenGL are technologically evolved but not part of the PC main-
stream. Our decisions led to the following structure:

e Part I of the book is an overview of PC graphics and a description of the theories that
support the material covered.

© 2003 by CRC Press LLC

e PartIlis devoted to DOS graphics. In this part we discuss the VGA, XGA, and SuperVGA
systems. DOS bitmapped graphics are also in this part.

e Part III is about Windows API graphics. Since Windows is a graphics environment the
topics covered include an overview of general Windows programming. In Part III
bitmapped graphics is revisited in the Windows platform.

e Part IV covers some portions of DirectX. In addition to a description of the DirectX plat-
form itself and its relation to the COM, we cover DirectX and Direct3D retained mode.
Direct3D immediate mode is excluded for the reasons previously mentioned.

Programming Environment

The principal programming environment is C++, but some primitive functions are
coded in 80x86 Assembly Language. The high performance requirements of graphics
applications sometimes mandate Assembly Language. Microsoft's Visual C++ Version
6.0 and MASM version 6.14 were used in developing the book.

We approach Windows programming at its most basic level, that is, using the Win-
dows Application Programming Interface (API). We do not use the Microsoft Foun-
dation Class Library (MFC) or other wrapper functions. It is our opinion that
graphics programs cannot afford the overhead associated with higher-level devel-
opment tools. Furthermore, DirectX provides no special support for MFC.

Although we do not use the wrapper functions we do use tools that are part of the
Visual C++ development package. These include resource editors for creating
menus, dialog boxes, icons, bitmaps, and other standard program components.

The Book's Software

The software for the book is furnished on-line at www.crcpress.com. The software
package includes all the sample programs and projects developed in the text as well as
several graphics libraries.

© 2003 by CRC Press LLC

Table of Contents

Preface

Part | - Graphics Fundamentals

Chapter 1 - PC Graphics Overview

1.1 History and Evolution
1.1.1 The Cathode-Ray Tube
1.2 Short History of PC Video
1.2.1 Monochrome Display Adapter
1.2.2 Hercules Graphics Card
1.2.3 Color Graphics Adapter
1.2.4 Enhanced Graphics Adapter
1.3 PS/2 Video Systems
1.3.1 Video Graphics Array
1.3.2 8514/A Display Adapter
1.3.3 Extended Graphics Array
1.4 SuperVGA
1.4.1 SuperVGA Architecture
1.4.2 Bank-Switched Memory
1.4.3 256-Color Extensions
1.5 Graphics Coprocessors and Accelerators
1.5.1 The TMS340 Coprocessor
1.5.2 Image Properties
Brightness and Contrast
Color
Resolution
Aspect Ratio
1.6 Graphics Applications
1.6.1 Computer Games
1.6.2 Graphics in Science, Engineering, and Technology
1.6.3 Art and Design
1.6.4 Business
1.6.5 Simulations
1.6.6 Virtual Reality
1.6.7 Artificial Life
1.6.8 Fractal Graphics
1.7 State-of-the-Art in PC Graphics
1.7.1 Graphics Boards

© 2003 by CRC Press LLC

1.7.2 Graphics Coprocessors
1.7.3 CPU On-Board Facilities

1.8 3D Application Programming Interfaces
1.8.1 OpenGL and DirectX

Chapter 2 - Polygonal Modeling

2.1 Vector and Raster Data
2.2 Coordinate Systems
2.2.1 Modeling Geometrical Objects
2.3 Modeling with Polygons
2.3.1 The Triangle
2.3.2 Polygonal Approximations
2.3.3 Edges
2.3.4 Meshes

Chapter 3 - Image Transformations

3.1 Matrix-Based Representations
3.1.1 Image Transformation Mathematics
3.2 Matrix Arithmetic
3.2.1 Scalar-by-Matrix Operations
3.2.2 Matrix Addition and Subtraction
3.2.3 Matrix Multiplication
3.3 Geometrical Transformations
3.3.1 Translation Transformation
3.3.2 Scaling Transformation
3.3.3 Rotation Transformation
3.3.4 Homogeneous Coordinates
3.3.5 Concatenation
3.4 3D Transformations
3.4.1 3D Translation
3.4.2 3D Scaling
3.4.3 3D Rotation
3.4.4 Rotation about an Arbitrary Axis

Chapter 4 - Programming Matrix Transformations

4.1 Numeric Data in Matrix Form
4.1.1 Matrices in C and C++
4.1.2 Finding Matrix Entries
4.2 Array Processing
4.2.1 Vectors and Scalars
Vector-by-Scalar Operations in C and C++
Low-Level Vector-by-Scalar Operations
Matrix-by-Scalar Operations
4.2.2 Matrix-by-Matrix Operations
Matrix Addition
Matrix Multiplication

Chapter 5 - Projections and Rendering

© 2003 by CRC Press LLC

5.1 Perspective
5.1.1 Projective Geometry
5.1.2 Parallel Projections
5.1.3 Perspective Projections
One-Point Perspective
Two-Point Perspective
Three-Point Perspective
The Perspective Projection as a Transformation
5.2 The Rendering Pipeline
5.2.1 Local Space
5.2.2 World Space
5.2.3 Eye Space
Backface Elimination or Culling
5.2.4 Screen Space
5.2.5 Other Pipeline Models

Chapter 6 - Lighting and Shading

6.1 Lighting
6.1.1 lllumination Models
6.1.2 Reflection
Diffuse Reflection
Specular Reflection
Phong's Model
6.2 Shading
6.2.1 Flat Shading
6.2.2 Interpolative Shading
Gouraud Shading
Phong Shading
6.2.3 Ray Tracing
6.3 Other Rendering Algorithms
6.3.1 Scan-Line Operations
Hidden Surface Removal
Shadow Projections
6.3.2 Z-Buffer Algorithm
6.3.3 Textures

Part Il - DOS Graphics

Chapter 7 - VGA Fundamentals

7.1 The VGA Standard
7.1.1 Advantages and Limitations
7.1.2 VGA Modes
7.2 VGA Components
7.2.1 Video Memory
Alphanumeric Modes
Graphics Modes
7.3 VGA Registers
7.3.1 The General Registers
7.3.2 The CRT Controller
7.3.8 The Sequencer

© 2003 by CRC Press LLC

7.3.4 The Graphics Controller
7.3.5 The Attribute Controller

7.4 The Digital-to-Analog Converter (DAC)
7.4.1 The DAC Pixel Address Register
7.4.2 The DAC State Register
7.4.3 The DAC Pixel Data Register

Chapter 8 - VGA Device Drivers

8.1 Levels of VGA Programming
8.1.1 Device Drivers and Primitive Routines
8.2 Developing the VGA Device Drivers
8.2.1 VGA Mode 18 Write Pixel Routine
Fine Grain Address Calculations
Setting the Pixel
Coarse Grain Address Calculations
Setting the Tile
8.2.2 VGA Mode 18 Read Pixel Routine
8.2.3 VGA Mode 19 Write Pixel Routine
Address Calculations
Setting the Pixel
8.2.4 VGA Mode 19 Read Pixel Routine
8.3 Color Manipulations
8.3.1 256-Color Mode
Shades of Gray
Summing to Gray Shades
8.3.2 16-Color Modes
Color Animation
8.3.3 VGAT1 Library Functions
ES_TO_VIDEO (Assembly Language only)
ES_TO_APA (Assembly Language only)
PIXEL_ADD_18 (Assembly Language only)
WRITE_PIX_18 (Assembly Language only)
TILE_ADD_18 (Assembly Language only)
WRITE_TILE_18 (Assembly Language only)
READ_PIX_18 (Assembly Language only)
TWO_BIT_IRGB
GRAY_256
SUM_TO_GRAY
SAVE_DAC
RESTORE_DAC
PIXEL_ADD_19 (Assembly Language only)
TILE_ADD_19 (Assembly Language only)
FREEZE_DAC
THAW_DAC

Chapter 9 - VGA Core Primitives

9.1 Classification of VGA Primitives
9.2 VGA Primitives for Set-Up, Control, and Query
9.2.1 Selecting the VGA Write Mode
Writing Data in the 256-Color Modes
9.2.2 Selecting the Read Mode

© 2003 by CRC Press LLC

9.2.3 Selecting Logical Operation
XOR Operations in Animation Routines
9.2.4 System Status Operations
9.2.5 Vertical Retrace Timing
9.3 VGA Text Display Primitives
9.3.1 BIOS Text Display Functions
Text Block Display
BIOS Character Sets
9.3.2 A Character Generator
Moving a BIOS Font to RAM
Display Type
Using a PCL Font
9.4 Bit-Block and Fill Primitives
9.4.1 Mode 18 Bitmap Primitives
9.4.2 Mode 19 Bitmap Primitive
Fill Primitives
9.5 Primitive Routines in the VGA1 and VGA2 Modules
9.5.1 Primitive Routines in the VGA1 Module
SET_MODE
GET_MODE
TIME_VRC
SET_WRITE_MODE
SET_WRITE_256
SET_READ_MODE
LOGICAL_MODE
READ_MAPS_18
9.5.2 Primitive Routines in the VGA2 Module
GRAPHIC_TEXT
FINE_TEXT
MULTI_TEXT
FINE_TEXTHP
READ_HPFONT
FONT_TO_RAM
MONO_MAP_18
COLOR_MAP_18
COLOR_MAP_19
CLS_18
CLS_19
TILE_FILL_18
TILE_FILL_19

Chapter 10 - VGA Geometrical Primitives

10.1 Geometrical Graphics Objects
10.1.1 Pixel-Path Calculations
10.1.2 Graphical Coprocessors
The 80x87 as a Graphical Coprocessor
Emulating the 80x87
10.2 Plotting a Straight Line
10.2.1 Insuring Pixel Adjacency
10.2.2 Calculating Straight Lines Coordinates
Bresenham's Algorithm
An Alternative to Bresenham

© 2003 by CRC Press LLC

A Line by its Slope
Displaying the Straight Line
10.3 Plotting Conic Curves
10.3.1 The Circle
10.3.2 The Ellipse
10.3.3 The Parabola
10.3.4 The Hyperbola
10.3.5 Displaying the Conic Curve
10.4 Geometrical Operations
10.4.1 Screen Normalization of Coordinates
10.4.2 Performing the Transformations
Translation
Scaling
Rotation
Clipping
10.5 Region Fills
10.5.1 Screen Painting
10.5.2 Geometrical Fills
10.6 Primitive Routines in the VGA3 Module
BRESENHAM
LINE BY SLOPE
CIRCLE
ELLIPSE
PARABOLA
HYPERBOLA
QUAD_I
QUAD_II
QUAD_III
QUAD_IV
DO_4_QUADS
ROTATE_ON
ROTATE_OFF
CLIP_ON
CLIP_OFF
INIT_X87
REGION_FILL

Chapter 11 - XGA and 8514/A Adapter Interface

11.1 8514/A and XGA
11.2 Adapter Interface Software
11.2.1 Software Installation
11.2.2 XGA Multi-Display Systems
11.2.3 Operating Modes
11.2.4 The XGA and 8514/A Palette
11.2.5 Alphanumeric Support
Font File Structure
11.3 Communicating with the Al
11.3.1 Interfacing with the Al
C Language Support
Al Entry Points
Obtaining the Al Address
Using the Al Call Mechanism

© 2003 by CRC Press LLC

Al Initialization Operations
11.3.2 Al Data Conventions
11.4 Al Concepts
11.4.1 Pixel Attributes
Mixes
Color Compares
Bit Plane Masking
11.4.2 Scissoring
11.4.3 Absolute and Current Screen Positions
11.4.4 Polymarkers
11.4.5 Line Widths and Types
11.4.6 Bit Block Operations
BitBLT Copy
BitBLT Write
BitBLT Read
11.5 Details of Al Programming
11.5.1 Initialization and Control Functions
11.5.2 Setting the Color Palette
11.5.3 Geometrical Functions
Drawing Straight Lines
Rectangular Fill
Area Fill
11.5.4 Raster Operations
Polymarkers
BitBLT
11.5.5 Character Fonts
11.5.6 Displaying Text
Character String Operations
Alphanumeric Operations

Chapter 12 - XGA Hardware Programming

12.1 XGA Hardware Programming
12.1.1 XGA Programming Levels
12.2 XGA Features and Architecture
12.2.1 The XGA Graphics Coprocessor
12.2.2 VRAM Memory
Video Memory Apertures
Data Ordering Schemes
12.2.3 The XGA Display Controller
12.3 Initializing the XGA System
12.3.1 Locating the XGA Hardware
12.3.2 Setting the XGA Mode
12.3.3 Loading the XGA Palette
12.4 Processor Access to XGA Video Memory
12.4.1 Setting Screen Pixels
12.4.2 Reading Screen Pixels
12.4.3 Programming the XGA Direct Color Mode
The Direct Color Palette
Pixel Operations in Direct Color Mode
12.5 Programming the XGA Graphics Coprocessor
12.5.1 Initializing the Coprocessor
Obtain the Coprocessor Base Address

© 2003 by CRC Press LLC

Obtain the Video Memory Address
Select Access Mode
12.5.2 Coprocessor Operations
Synchronizing Coprocessor Access
General Purpose Maps
The Mask Map
Pixel Attributes
Pixel Masking and Color Compare Operations
Mixes
Pixel Operations
12.5.3 PixBIt Operations
Rectangular Fill PixBlt
System Memory to VRAM PixBlt
12.5.4 Line Drawing Operations
Reduction to the First Octant
Calculating the Bresenham Terms
12.6 The XGA Sprite
12.6.1 The Sprite Image
Encoding of Sprite Colors and Attributes
Loading the Sprite Image
12.6.2 Displaying the Sprite
12.7 Using the XGA Library
12.7.1 Procedures in the XGA1.ASM Module
OPEN_AI
CLOSE_AI
AlI_FONT
Al_COLOR
Al_CLS
Al_TEXT
Al_PALETTE
Al_COMMAND
12.7.2 Procedures in the XGA2.ASM Module
XGA_MODE
INIT_XGA
XGA_PIXEL_2
XGA_CLS_2
XGA_OFF
XGA_ON
XGA_PALETTE
DC_PALETTE
INIT_COP
COP_RECT_2
COP_SYSVID_1
COP_SYSVID_8
COP_LINE_2
SPRITE_IMAGE
SPRITE_AT
SPRITE_OFF

Chapter 13 - SuperVGA Programming

13.1 Introducing the SuperVGA Chipsets
13.1.1 SuperVGA Memory Architecture

© 2003 by CRC Press LLC

16 Color Extensions
Memory Banks
256 Color Extensions
Pixel Addressing
13.2 The VESA SuperVGA Standard
13.2.1 VESA SuperVGA Modes
13.2.2 Memory Windows
13.3 The VESA BIOS
13.3.1 VESA BIOS Services
Sub-service 0 - System Information
Sub-service 1 - Mode Information
Sub-service 2 - Set Video Mode
Sub-service 3 - Get Video Mode
Sub-service 4 - Save/Restore Video State
Sub-service 5 - Switch Bank
Sub-service 6 - Set/Get Logical Scan Line
Sub-service 7 - Set/Get Display Start
Sub-service 8 - Set/Get DAC Palette Control
13.4 Programming the SuperVGA System
13.4.1 Address Calculations
13.3.2 Bank Switching Operations
13.4.3 Setting and Reading a Pixel
13.4.4 VGA Code Compatibility
13.5 Using the SuperVGA Library
13.5.1 Procedures in the SVGA.ASM Module
SVGA_MODE
VESA_105
SVGA_PIX_105
SVGA_CLS_105
SVGA_READ_105

Chapter 14 - DOS Animation

14.1 Graphics and Animation
14.1.1 Physiology of Animation
14.1.2 PC Animation
14.1.3 Software Support for Animation Routines
14.2 Interactive Animation
14.2.1 Programming the Mouse
14.2.2 The Microsoft Mouse Interface
14.2.3 Checking Mouse Software Installation
14.2.4 Sub-services of Interrupt 33H
Sub-service 0 - Initialize Mouse
Sub-service 5 - Check Button Press Status
Sub-service 11 - Read Motion Counters
Sub-service 12 - Set Interrupt Routine
14.3 Image Animation
14.3.1 Image Mapping and Panning
Video and Image Buffers
Viewport and Windows
Panning
14.3.2 Geometrical Transformations
14.4 Imaging Techniques

© 2003 by CRC Press LLC

14.4.1 Retention
14.4.2 Interference
14.4.3 XOR Operations
Programming the Function Select Bits
14.4.4 Time-Pulse Animation
Looping Techniques
The System Timer
Interference Problems
14.4.5 The Vertical Retrace Interrupt
VGA Vertical Retrace Interrupt
XGA Screen Blanking Interrupt

Chapter 15 - DOS Bitmapped Graphics

15.1 Image File Encoding
15.1.1 Raw Image Data
15.1.2 Bitmaps in Monochrome and Color
15.1.3 Image Data Compression
Run-length Encoding
Facsimile Compression Methods
LZW Compression
15.1.4 Encoders and Decoders
15.2 The Graphics Interchange Format (GIF)
15.2.1 GIF Sources
15.2.2 The GIF File Structure
Header
Logical Screen Descriptor
Global Color Table
Image Descriptor
Local Color Table
Compressed Image Data
Trailer
GIF89a Extensions
15.2.3 GIF Implementation of LZW Compression
LZW Concepts
The General LZW Algorithm
The GIF Implementation
LZW Code Size
The GIF Image File
GIF LZW Encoding
GIF LZW Decoding
15.3 The Tag Image File Format (TIFF)
15.3.1 The TIFF File Structure
The TIFF Header
The TIFF Image File Directory (IFD)
15.3.2 TIFF Tags for Bilevel Images
OldSubFileType (tag code 00FFH)
NewSubFileType (00FEH)
ImageWidth (tag code 0100H)
ImagelLength (tag code 0101H)
BitsPerSample (tag code 0102H)
Compression (tag code 0103H)
PhotometricInterpretation (tag code 0106H)

© 2003 by CRC Press LLC

Threshholding (tag code 0107H)
StripsOffset (tag code 0111H)
SamplesPerPixel (tag code 0115H)
RowsPerStrip (tag code 0116H)
StripByteCounts (tag code 0117H)
XResolution (tag code 011AH)
YResolution (tag code 011BH)
PlanarConfiguration (tag code 011CH)
ResolutionUnit (tag code 128H)

15.3.3 Locating TIFF Image Data

15.3.4 Processing TIFF Image Data
TIFF PackBits Compression

15.3.5 TIFF Software Samples

15.4 The Hewlett-Packard Bitmapped Fonts

15.4.1 PCL Character Encoding
Font Descriptor
Character Descriptor
The PCL Bitmap

15.4.2 PCL Bitmap Support Software

Part lll - Windows API Graphics

Chapter 16 - Graphics Programming in Windows

16.1 Windows at the API Level
16.1.1 The Program Project
Creating a Project
16.2 Elements of a Windows Program
16.2.1 WinMain()
Parameters
16.2.2 Data Variables
16.2.3 WNDCLASSEX Structure
16.2.4 Registering the Windows Class
16.2.5 Creating the Window
16.2.6 Displaying the Window
16.2.7 The Message Loop
16.3 The Window Procedure
16.3.1 Windows Procedure Parameters
16.3.2 Windows Procedure Variables
16.3.3 Message Processing
WM_CREATE Message Processing
WM_PAINT Message Processing
WM_DESTROY Message Processing
16.3.4 The Default Windows Procedure
16.4 The WinHello Program
16.4.1 Modifying the Program Caption
16.4.2 Displaying Text in the Client Area
16.4.3 Creating a Program Resource
16.4.4 Creating the Icon Bitmap
16.5 WinHello Program Listing

© 2003 by CRC Press LLC

Chapter 17 - Text Graphics

17.1 Text in Windows
17.1.1 The Client Area
17.2 Device and Display Contexts
17.2.1 The Display Context
17.2.2 Display Context Types
17.2.3 Window Display Context
17.3 Mapping Modes
17.3.1 Screen and Client Area
17.3.2 Viewport and Window
17.4 Programming Text Operations
17.4.1 Typefaces and Fonts
17.4.2 Text Formatting
17.4.3 Paragraph Formatting
17.4.4 The DrawText() Function
17.5 Text Graphics
17.5.1 Selecting a Font
17.5.2 Drawing with Text

Chapter 18 - Keyboard and Mouse Programming

18.1 Keyboard Input
18.1.1 Input Focus
18.1.2 Keystroke Processing
18.1.3 Determining the Key State
18.1.4 Character Code Processing
18.1.4 Keyboard Demonstration Program
18.2 The Caret
18.2.1 Caret Processing
18.2.2 Caret Demonstration Program
18.3 Mouse Programming
18.3.1 Mouse Messages
18.3.2 Cursor Location
18.3.3 Double-Click Processing
18.3.4 Capturing the Mouse
18.3.5 The Cursor
18.4 Mouse and Cursor Demonstration Program

Chapter 19 - Child Windows and Controls

19.1 Window Styles
19.1.1 Child Windows
19.1.2 Child Windows Demonstration Program
19.1.3 Basic Controls
19.1.4 Communicating with Controls
19.1.5 Controls Demonstration Program
19.2 Menus
19.2.1 Creating a Menu
19.2.2 Menu ltem Processing
19.2.3 Shortcut Keys
19.2.4 Pop-Up Menus
19.2.5 The Menu Demonstration Program

© 2003 by CRC Press LLC

19.3 Dialog Boxes

19.3.1 Modal and Modeless

19.3.2 The Message Box

19.3.3 Creating a Modal Dialog Box

19.3.4 Common Dialog Boxes

19.3.5 The Dialog Box Demonstration Program
19.4 Common Controls

19.4.1 Common Controls Message Processing

19.4.2 Toolbars and ToolTips

19.4.3 Creating a Toolbar

19.4.4 Standard Toolbar Buttons

19.4.5 Combo Box in a Toolbar

19.4.6 ToolTip Support

Chapter 20 - Pixels, Lines, and Curves

20.1 Drawing in a Window
20.1.1 The Redraw Responsibility
20.1.2 The Invalid Rectangle
20.1.3 Screen Updates On-Demand
20.1.4 Intercepting the WM_PAINT Message
20.2 Graphics Device Interface
20.2.1 Device Context Attributes
20.2.2 DC Info Demonstration Program
20.2.3 Color in the Device Context
20.3 Graphic Objects and GDI Attributes
20.3.1 Pens
20.3.2 Brushes
20.3.3 Foreground Mix Mode
20.3.4 Background Modes
20.3.5 Current Pen Position
20.3.6 Arc Direction
20.4 Pixels, Lines, and Curves
20.4.1 Pixel Operations
20.4.2 Drawing with LineTo()
20.4.3 Drawing with PolylineTo()
20.4.4 Drawing with Polyline()
20.4.5 Drawing with PolyPolyline()
20.4.6 Drawing with Arc()
20.4.7 Drawing with ArcTo()
20.4.8 Drawing with AngleArc()
20.4.9 Drawing with PolyBezier()
20.4.10 Drawing with PolyBezierTo()
20.4.11 Drawing with PolyDraw()
20.4.12 Pixel and Line Demonstration Program

Chapter 21 - Drawing Figures, Regions, and Paths

21.1 Closed Figures
21.1.1 Area of a Closed Figure
21.1.2 Brush Origin
21.1.3 Object Selection Macros
21.1.4 Polygon Fill Mode

© 2003 by CRC Press LLC

21.1.5 Creating Custom Brushes
21.2 Drawing Closed Figures
21.2.1 Drawing with Rectangle()
21.2.2 Drawing with RoundRect()
21.2.3 Drawing with Ellipse()
21.2.4 Drawing with Chord()
21.2.5 Drawing with Pie()
21.2.6 Drawing with Polygon()
21.2.7 Drawing with PolyPolygon()
21.3 Operations on Rectangles
21.3.1 Drawing with FillRect()
21.3.2 Drawing with FrameRect()
21.3.3 Drawing with DrawFocusRect()
21.3.4 Auxiliary Operations on Rectangles
21.3.5 Updating the Rectangle() Function
21.4 Regions
21.4.1 Creating Regions
21.4.2 Combining Regions
21.4.3 Filling and Painting Regions
21.4.4 Region Manipulations
21.4.5 Obtaining Region Data
21.5 Clipping Operations
21.5.1 Creating or Modifying a Clipping Region
21.5.2 Clipping Region Information
21.6 Paths
21.6.1 Creating, Deleting, and Converting Paths
21.6.2 Path-Rendering Operations
21.6.3 Path Manipulations
21.6.4 Obtaining Path Information
21.7 Filled Figures Demo Program

Chapter 22 - Windows Bitmapped Graphics

22.1 Raster and Vector Graphics
22.1.1 The Bitmap
22.1.2 Image Processing
22.1.3 Bitblt Operations

22.2 Bitmap Constructs
22.2.1 Windows Bitmap Formats
22.2.2 Windows Bitmap Structures
22.2.3 The Bitmap as a Resource

22.3 Bitmap Programming Fundamentals
22.3.1 Creating the Memory DC
22.3.2 Selecting the Bitmap
22.3.3 Obtaining Bitmap Dimensions
22.3.4 Blitting the Bitmap
22.3.5 A Bitmap Display Function

22.4 Bitmap Manipulations
22.4.1 Hard-Coding a Monochrome Bitmap
22.4.2 Bitmaps in Heap Memory
22.4.3 Operations on Blank Bitmaps
22.4.4 Creating a DIB Section

© 2003 by CRC Press LLC

22.4.5 Creating a Pattern Brush
22.5 Bitmap Transformations

22.5.1 Pattern Brush Transfer

22.5.2 Bitmap Stretching and Compressing
22.6 Bitmap Demonstration Program

Part IV - DirectX Graphics

Chapter 23 - Introducing DirectX

23.1 Why DirectX?
23.1.1 From the Game SDK to DirectX 8.1
23.1.2 2D and 3D Graphics in DirectX
23.1.3 Obtaining the DirectX SDK
23.2 DirectX 8.1 Components
23.3 New Features in DirectX 8
23.3.1 Installing the DirectX SDK
23.3.2 Compiler Support
23.3.3 Accessing DirectX Programs and Utilities
23.4 Testing the Installation

Chapter 24 - DirectX and COM

24.1 Object Orientation and C++ Indirection
24.1.1 Indirection Fundamentals
24.1.2 Pointers to Pointers
24.1.3 Pointers to Functions
24.1.4 Polymorphism and Virtual Functions
24.1.5 Pure Virtual Functions
Abstract Classes
24.2 COM in DirectX Programming
24.2.1 COM Fundamentals
Defining COM
24.2.2 COM Concepts in DirectX
The COM Object
The COM Interface
The GUID
The HRESULT Structure
24.2.3 The IUnknown Interface
Using Querylnterface()
24.3 Creating and Accessing the COM Object
24.3.1 Creating the COM Object
24.3.2 Using COM Obijects
The COM Object's Lifetime
Manipulating the Reference Count

Chapter 25 - Introducing DirectDraw

25.1 2D Graphics and DirectDraw
25.1.1 DirectDraw Features
25.1.2 Advantages and Drawbacks

© 2003 by CRC Press LLC

25.2 Basic Concepts for DirectDraw Graphics
25.2.1 Device-Independent Bitmaps
25.2.2 Drawing Surfaces
25.2.3 Blitting
25.2.4 Page Flipping and Back Buffers
25.2.5 Bounding Rectangles

25.3 DirectDraw Architecture
25.3.1 DirectDraw Interfaces
25.4.1 DirectDraw Objects
25.4.2 Hardware Abstraction Layer (HAL)
25.4.3 Hardware Emulation Layer (HEL)
25.4.4 DirectDraw and GDI

25.5 DirectDraw Programming Essentials
25.5.1 Cooperative Levels
25.5.2 Display Modes

Palletized and Nonpalletized Modes
25.5.3 Surfaces
25.5.4 Palettes
25.5.5 Clipping

Chapter 26 - Setting Up DirectDraw

26.1 Set-up Operations
26.1.1 DirectDraw Header File
26.1.2 DirectDraw Libraries

26.2 Creating the DirectDraw Object
26.2.1 Obtaining the Interface Version
26.2.2 Interface Version Strategies
26.2.3 Setting the Cooperative Level
26.2.4 Hardware Capabilities
26.2.5 Display Modes

26.3 The DD Info Project

Chapter 27 - DirectDraw Exclusive Mode

27.1 WinMain() for DirectDraw
27.1.1 Filling the WNDCLASSEX Structure
27.1.2 Registering the Window Class
27.1.3 Creating the Window
27.1.4 Defining the Window Show State
27.1.5 Creating a Message Loop

27.2 DirectDraw Initialization
27.2.1 Obtaining the Interface Pointer
27.2.2 Checking Mode Availability
27.2.3 Setting Cooperative Level and Mode
27.2.4 Creating the Surfaces
27.2.5 Using Windows GDI Functions

27.3 The DD Exclusive Mode Template

Chapter 28 - Access to Video Memory

28.1 Direct Access Programming
28.1.1 Memory-Mapped Video

© 2003 by CRC Press LLC

Hi-Color Modes
True-Color Modes
28.1.2 Locking the Surface
28.1.3 Obtaining Surface Data
28.2 In-Line Assembly Language
28.2.1 The _asm Keyword
28.2.2 Coding Restrictions
28.2.3 Assembly Language Functions
28.3 Multi-Language Programming
28.3.1 Stand-Alone Assembler Modules
C++/Assembler Interface Functions
MASM Module Format
C++ Module Format
28.3.2 Matrix Ops Project
28.4 Direct Access Primitives
28.4.1 Pixel Address Calculations
28.4.2 Defining the Primary Surface
28.4.3 Releasing the Surface
28.4.4 Pixel-Level Primitives
Filling a Rectangular Area
Box-Drawing
28.5 Raster Operations
28.5.1 XOR Animation
28.5.2 XORing a Bitmap
28.6 Direct Access Project

Chapter 29 - Blitting

29.1 Surface Programming
29.1.1 The DirectDraw Surface Concept
29.1.2 Surface Types
29.1.83 Enumerating Surfaces
29.1.4 Restoring Surfaces
29.1.5 Surface Operations
29.1.6 Transparency and Color Keys
29.1.7 Selecting and Setting the Color Key
The DDCOLORKEY Structure
29.1.8 Hardware Color Keys
29.2 The Blit
29.2.1 BltFast()
29.2.2 BIY()
29.3 Blit-Time Transformations
29.3.1 Color Fill Blit
29.3.2 Blit Scaling
29.3.3 Blit Mirroring
29.3.4 Raster Operations
29.4 Blit-Rendering Operations
29.4.1 Loading the Bitmap
29.4.2 Obtaining Bitmap Information
29.4.3 Moving a Bitmap to a Surface
29.4.4 Displaying the Bitmap
29.5 DD Bitmap Blit Project

© 2003 by CRC Press LLC

Chapter 30 - DirectDraw Bitmap Rendering

30.1 Bitmap Manipulations
30.1.1 Loading the Bitmap
30.1.2 Obtaining Bitmap Information
30.1.3 Moving a Bitmap onto a Surface
30.1.4 Displaying the Bitmap
30.2 Developing a Windowed Application
30.2.1 Windowed Mode Initialization
30.2.2 Clipping the Primary Surface
30.3 Rendering in Windowed Mode
30.3.1 Rendering by Clipping
30.3.2 Blit-Time Cropping

Chapter 31- DirectDraw Animation

31.1 Animating in Real-Time
31.1.1 The Animator's Predicament
31.2 Timed Pulse Animation
31.2.1 The Tick Counting Method
31.2.2 System Timer Intercept
31.3 Sprites
31.3.2 Creating Sprites
31.3.3 Sprite Rendering
31.4 Page Flipping
31.4.1 Flipping Surface Initialization
31.4.2 The Flip() Function
31.4.3 Multiple Buffering
31.5 Animation Programming
31.5.1 Background Animation
31.5.2 Panning Animation
31.5.3 Zoom Animation
31.5.4 Animated Sprites
31.6 Fine-Tuning the Animation
31.6.1 High-Resolution Timers
31.6.2 Dirty Rectangles
31.6.3 Dynamic Color Keys
31.7 Measuring Performance

Chapter 32 - Direct3D Fundamentals
32.1 3D Graphics in DirectX

32.1.1 Origin of Direct3D
32.1.2 Direct3D Implementations
32.1.3 Retained Mode
32.1.4 Immediate Mode
32.1.5 Hardware Abstraction Layer
32.1.6 DirectDraw

7

32.1.7 OpenGL

32.1.8 Direct3D and COM
32.2 Direct3D Rendering

32.2.1 Transformation Module

32.2.2 Lighting Module

© 2003 by CRC Press LLC

32.2.3 Rasterization Module
32.3 Retained Mode Programming
32.3.1 Frames
Meshes
Mesh Groups
Faces
32.3.2 Shading Modes
Interpolation of Triangle Attributes
32.3.3 Z-Buffers
32.3.4 Lights
Ambient Light
Directional Light
Parallel Pint Light
Point Light
Spotlight
32.3.5 Textures
Decals
Texture colors
Mipmaps
Texture Filters and Blends
Texture Transparency
Wraps
32.3.6 Materials
32.3.7 User Visuals
32.3.8 Viewports
Viewing Frustum
Transformations
Picking
32.3.9 Animations and Animations Sets
32.3.10 Quaternions
32.4 Direct3D File Formats
34.4.1 Description
34.4.2 File Format Architecture
Reserved Words
Header
Comments
Templates
Data
Retained mode templates

Chapter 33 - Direct3D Programming

33.1 Initializing the Software Interface
33.1.1 The IUnknown Interface
33.1.2 Direct3DRM Object
33.1.3 Calling Querylnterface()

Creating the DirectDraw Clipper
33.1.4 The Clip List
33.1.5 InitD3D() Function

33.2 Building the Objects

33.2.1 Creating the Objects
Creating the Device
33.2.2 CreateObjects() Function

© 2003 by CRC Press LLC

33.3 Master Scene Concepts
33.3.1 The Camera Frame
33.3.2 The Viewport
33.4 Master Scene Components
33.4.1 The Meshbuilder Object
33.4.2 Adding a Mesh to a Frame
33.4.3 Setting the Camera Position
33.4.4 Creating and Positioning the Light Frame
33.4.5 Creating and Setting the Lights
33.4.6 Creating a Material
33.4.7 Setting the Mesh Color
33.4.8 Clean-Up Operations
33.4.9 Calling BuildScene()
33.5 Rendering Operations
33.5.1 Clearing the Viewport
32.5.2 Rendering to the Viewport
33.5.3 Updating the Screen
33.5.4 RenderScene() Function
33.6 Sample Project 3SDRM InWin Demof1
33.6.1 Windowed Retained Mode Coding Template

Appendix A - Windows Structures
Appendix B - Ternary Raster Operation Codes

Bibliography

© 2003 by CRC Press LLC

Table 1-1
Table 7-1
Table 7-2
Table 7-3
Table 7-4
Table 7-5
Table 7-6
Table 7-7
Table 7-8
Table 8-1
Table 8-2
Table 8-3
Table 8-4
Table 8-5
Table 8-6
Table 9-1
Table 10-1
Table 11-1
Table 11-2
Table 11-3
Table 11-4
Table 11-5
Table 11-6
Table 11-7
Table 11-7
Table 11-8
Table 11-9
Table 11-10
Table 11-11
Table 12-1
Table 12-2
Table 12-3
Table 12-4
Table 12-5
Table 12-6
Table 12-7
Table 12-8
Table 12-9
Table 12-10
Table 12-11
Table 13-1

List of Tables

Specifications of PC System Buses

VGA Video Modes

VGA Register Groups

VGA CRT Controller Register

The VGA Sequencer Registers

The VGA Graphics Controller Registers

The VGA Attribute Controller Registers

Default Setting of VGA Palette Registers

VGA Video Digital-to-Analog Converter Addresses

Shades of Green in VGA 256-Color Mode (default values)
DAC Register Setting for Double-Bit IRGB Encoding

Pattern for DAC Register Settings in Double-Bit IRGB Encoding
16 Shades of the Color Magenta Using Double-Bit IRGB Code
Pattern for DAC Register Setting for 64 Shades of Gray

BIOS Settings for DAC Registers in Mode Number 18

VGA BIOS Character Sets

Transformation of Normalized Coordinates by Quadrant in VGA
Module and Directory Names for the Adapter Interface Software
XGA and 8514/A Advanced Function Modes

Default Setting of LUT Registers in XGA and 8514/A

IBM Code Pages

Adapter Interface Font File Header

Adapter Interface Character Set Header

8514/A and XGA Adapter Interface Services

8514/A and XGA Adapter Interface Services (continued)
XGA Adapter Interface Services

Structure of the Adapter Interface Parameter Block

Task State Buffer Data after Initialization

XGA and 8514/A Font Files and Text Resolution

Pixel to Memory Mapping in XGA Systems

Data Storage According to the Intel and Motorola Conventions
XGA Modes

XGA Display Controller Register Initialization Settings

Palette Values for XGA Direct Color Mode

XGA Graphic Coprocessor Register Map

Destination Color Compare Conditions

Logical and Arithmetic Mixes

Action of the Direction Octant Bits During PixBlt
Sprite-Related Registers in the Display Controller

Sprite Image Bit Codes

VESA BIOS Modes

© 2003 by CRC Press LLC

Table 13-2 VESA BIOS Sub-services to BIOS INT 10H

Table 15-1 LZW Compression Example

Table 15-2 GIF LZW Compression Example

Table 15-3 GIF LZW Compression Data Processing

Table 15-4 LZW Decompression Example

Table 15-5 TIFF Version 6.0 Field Type Codes

Table 15-6 Hexadecimal and ASCIl Dump of the HP PCL Font File TR140RPN.UPS
Table 15-7 PCL Bitmap Font Descriptor Field

Table 15-8 PCL Bitmap Character Descriptor Header

Table 16-1 WinMain() Display Mode Parameters

Table 16-2 Summary of Window Class Styles

Table 16-3 Common Windows Standard System Colors

Table 16-4 Most Commonly Used Windows Extended Styles

Table 16-5 Window Styles

Table 16-6 Symbolic Constant in DrawText() Function

Table 17-1 Windows Fixed-Size Mapping Modes

Table 17-2 TEXTMETRIC structure

Table 17-3 String Formatting Constants in DrawText()

Table 17-4 Character Weight Constants

Table 17-5 Predefined Constants for Output Precision

Table 17-6 Predefined Constants for Clipping Precision

Table 17-7 Predefined Constants for Output Precision

Table 17-8 Pitch and Family Predefined Constants

Table 18-1 Bit and Bit Fields in the IParam of a Keystroke Message
Table 18-2 Virtual-Key Codes

Table 18-3 Virtual-Keys Used in GetKeyState()

Table 18-4 Frequently Used Client Area Mouse Messages

Table 18-5 Virtual Key Constants for Client Area Mouse Messages
Table 19-1 Predefined Control Classes

Table 19-1 Predefined Control Classes (continued)

Table 19-2 Prefix for Predefined Window Classes

Table 19-3 Notification Codes for Buttons

Table 19-4 Notification Codes for Three-State Controls

Table 19-5 User Scroll Request Constants

Table 19-6 Often Used Message Box Bit Flags

Table 19-7 Original Set of Common Controls

Table 19-8 Common Control Notification Codes

Table 19-9 Toolbar and Toolbar Button Style Flags

Table 19-10 Toolbar States

Table 19-11 Toolbar Common Control Styles

Table 20-1 Information Returned by GetDeviceCaps()

Table 20-2 Values Defined for the ExtCreatePen() iStyle Parameter
Table 20-3 Constants in the LOGBRUSH Structure Members
Table 20-4 Mix Modes in SetROP2()

Table 20-5 Line-Drawing Functions

Table 20-6 Nodes and Control Points for the PolyBezier() Function
Table 20-7 Nodes and Control Points for the PolyBezierTo() Function
Table 20-8 Constants for PolyDraw() Point Specifiers

Table 21-1 LOGBRUSH Structure Members

Table 21-2 Windows Functions for Drawing Closed Figures

Table 21-3 Windows Functions Related to Rectangular Areas
Table 21-4 Windows System Colors

Table 21-5 Rectangle-Related Functions

© 2003 by CRC Press LLC

Table 21-6 Region-Related GDI Functions

Table 21-7 Region Combination Modes

Table 21-8 Region Type Return Values

Table 21-9 Windows Clipping Functions

Table 21-10 Clipping Modes

Table 21-11 Path-Defining Functions in Windows NT

Table 21-12 Path-Defining Functions in Windows 95 and Later
Table 21-13 Path-Related Functions

Table 21-14 Constants for the GetPath() Vertex Types

Table 22-1 Bitmap-Related Structures

Table 22-2 Symbolic Names for Raster Operations

Table 22-3 Win-32 Commonly Used Memory Allocation Flags
Table 22-4 Windows Stretching Modes

Table 23-1 DirectX 8.1 CD ROM Directory Layout

Table 24-1 HRESULT Frequently Used Error Codes

Table 26-1 Cooperative Level Symbolic Constants

Table 26-2 Device Capabilities in the GetCaps() Function
Table 28-1 Flags the IDirectDrawSurface7::Lock Function
Table 29-1 Surface-Related Functions in DirectDraw

Table 29-2 Flags in the EnumSurfaces() Function

Table 29-3 Constants Used in SetColorKey() Function

Table 29-4 Color Key Capabilities in dwCKeyCaps Member of DDCAPS Structure
Table 29-5 Type of Transfer Constants in BltFast()

Table 29-6 Flags for the Blt() Function

Table 29-7 Scaling Flags for the BIt() Function

Table 29-8 Mirroring Flags for the Blt() Function

Table 29-9 Predefined Constants in Loadlmage() Function
Table 31-1 Flipping-Related DirectDraw Functions

Table 31-2 DirectDraw Flip() Function Flags

Table 31-3 Event-Type Constants in TimeSetEvent() Function
Table 32-1 DirectX File Header

Table 32-2 Primitive Data Types for the .x File Format

Table 33-1 Interface-Specific Error Values Returned by Queryinterface()
Table 33-2 Flags in the DSDRMLOADOPTIONS Type

Table 33-3 Enumerator Constants in D3SDRMLIGHTTYPE

© 2003 by CRC Press LLC

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Figure 1-6
Figure 1-7
Figure 1-8
Figure 1-9
Figure 1-10
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8
Figure 2-9
Figure 2-10
Figure 2-11
Figure 2-12
Figure 2-13
Figure 2-14
Figure 2-15
Figure 2-16
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 3-9
Figure 3-10
Figure 3-11
Figure 3-12
Figure 3-13
Figure 3-14
Figure 3-15

List of lllustrations

Vector-Refresh Display

A Raster-Scan System

A Memory-Mapped System

Memory Mapping and Attributes in the MDA Adapter
Memory-to-Pixel Mapping in the CGA Color Alpha Modes
Architecture of a VGA/8514A Video System

XGA Component Diagram

Byte-to-Pixel Video Memory Mapping Scheme
SuperVGA Banked-Switched Memory

CRT with a 4:3 Aspect Ratio

Raster and Vector Representation of a Graphics Object
Translating an Object by Coordinate Arithmetic
Cartesian Coordinates

3D Cartesian Coordinates

Left- and Right-Handed Coordinates

3D Representation of a Rectangular Solid

3D Coordinate Planes

Valid and Invalid Polygons

Regular Polygons

Concave and Convex Polygons

Coplanar and Non-Coplanar Polygons

Polygonal Approximation of a Circle

Polygonal Approximation of a Cylinder

Polygon Edge

Edge Representation of Polygons

Polygon Mesh Representation and Rendering of a Teacup
Point Representation of the Stars In the Constellation Ursa Minor
Translation of a Straight Line

A Translation Transformation

Scaling Transformation

Symmetrical Scaling (Zooming)

Rotation of a Point

Rotation Transformation

Order of Transformations

3D Representation of a Cube.

Translation Transformation of a Cube

Scaling Transformation of a Cube

Scaling Transformation of an Object Not at the Origin
Fixed-Point Scaling Transformation

Rotation in 3D Space

Positive, x-axis Rotation of a Cube

© 2003 by CRC Press LLC

Figure 3-16
Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Figure 5-6
Figure 5-7
Figure 5-8
Figure 5-9
Figure 5-10
Figure 5-11
Figure 5-12
Figure 5-13
Figure 5-14
Figure 5-15
Figure 5-16
Figure 5-17
Figure 5-18
Figure 5-19
Figure 5-20
Figure 5-21
Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4
Figure 6-5
Figure 6-6
Figure 6-7
Figure 6-8
Figure 6-9
Figure 6-10
Figure 6-11
Figure 6-12
Figure 6-13
Figure 6-14
Figure 6-15
Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Figure 7-5
Figure 7-6
Figure 7-7
Figure 7-8
Figure 7-9
Figure 7-10
Figure 7-11
Figure 7-12
Figure 7-13
Figure 7-14
Figure 7-15
Figure 7-16

Rotation About an Arbitrary Axis

Common Projections

Projection Elements

Perspective and Parallel Projections

A Circle Projected as an Ellipse

Parallel, Orthographic, Multiview Projection

Isometric, Dimetric, and Trimetric Projections

Lack of Realism In Isometric Projection

One-Point Perspective Projection of a Cube
One-Point Projection of a Mechanical Component
Tunnel Projection of a Cube

Two-Point Perspective of a Cube

Three-Point Perspective of a Cube

Perspective Projection of Point P

Calculating x and y Coordinates of Point P

Waterfall Model of the Rendering Pipeline

Local Space Coordinates of a Cube with Vertex at the Origin
World Space Transformation of the Cube In Figure 5-16
Culling of a Polyhedron

Line-of-Sight and Surface Vectors in Culling

Eye Space Transformation of the Cube In Figure 5-17
Screen Space Transformation of the Cube in Figure 5-20
Lighting Enhances Realism

Direct and Indirect Lighting

Point and Extended Light Sources

Angle of Incidence in Reflected Light

Diffuse Reflection

Specular Reflection

Values of n in Phong Model of Specular Reflection
Flat Shading

Intensity Interpolation in Gouraud Shading

Highlight Rendering Error in Gouraud Shading
Rendering a Reflected Image by Ray Tracing
Scan-Line Algorithm for Hidden Surface Removal
Scan-Line Algorithm for Shadow Projection

Shadow Rendering of Multiple Objects

Z-Buffer Algorithm Processing

Symmetrical and Asymmetrical Pixel Density

VGA System Components

Attribute Byte Bitmap in VGA Systems

Video Memory Mapping in VGA Mode 18

Video Memory Mapping in VGA Mode 19

VGA/EGA Miscellaneous Output Register

VGA Input Status Register

Cursor Size Registers of the VGA CRT Controller
Cursor Location Registers of the VGA CRT Controller
Cursor Scan Lines in VGA Systems

Video Start Address Register of the VGA CRT Controller
Preset Row Scan Register of the VGA CRT Controller
Map Mask Register of the VGA Sequencer

Character Map Select Register of the VGA Sequencer
Memory Mode Register of the VGA Sequencer

Write Mode 0 Set/Reset Register of the VGA Graphics Controller

© 2003 by CRC Press LLC

Figure 7-17
Figure 7-18
Figure 7-19
Figure 7-20
Figure 7-21
Figure 7-22
Figure 7-23
Figure 7-24
Figure 7-25
Figure 7-26
Figure 7-27
Figure 7-28
Figure 7-29
Figure 7-30
Figure 7-31
Figure 7-32
Figure 7-33
Figure 8-1
Figure 8-2
Figure 8-3
Figure 8-4
Figure 8-5
Figure 8-6
Figure 8-7
Figure 8-8
Figure 9-1
Figure 10-1
Figure 10-2
Figure 10-3
Figure 10-4
Figure 10-5
Figure 10-6
Figure 10-7
Figure 10-8
Figure 10-9
Figure 10-10
Figure 10-11
Figure 11-1
Figure 11-2
Figure 11-3
Figure 11-4
Figure 11-5
Figure 11-6
Figure 11-7
Figure 12-1
Figure 12-2
Figure 12-3
Figure 12-4
Figure 12-5
Figure 12-6
Figure 12-7
Figure 12-8
Figure 12-9

Enable Set/Reset Register of the VGA Graphics Controller
Color Compare Register of the VGA Graphics Controller
Color Don't Care Register of the VGA Graphics Controller
Data Rotate Register of the VGA Graphics Controller
Read Map Select Register of the VGA Graphics Controller
Select Graphics Mode Register of the VGA Graphics Controller
Miscellaneous Register of the VGA Graphics Controller
Bit Mask Register of the VGA Graphics Controller
Attribute Address and Palette Address Registers of the VGA
Palette Register of the VGA Attribute Controller

Attribute Mode Control Register of the VGA Attribute Controller
Overscan Color Register of the VGA Attribute Controller
Color Plane Enable Register of the VGA Attribute Controller
Horizontal Pixel Panning Register of the VGA Attribute Controller
Color Select Register of the VGA Attribute Controller

Pixel Address Register of the VGA DAC

State Register of the VGA DAC

Color Maps in VGA Mode 18

Bit-to-Pixel Mapping Example in VGA Mode 18

Color Mapping in VGA Mode 19

Byte-to-Pixel Mapping Example in VGA Mode 19

Default Color Register Setting in VGA Mode 19

Double-Bit Mapping for 256-Color Mode

DAC Color Register Bitmap

DAC Register Selection Modes

Pixel Image and Bitmap of a Graphics Object

Pixel Plots for Straight Lines

Non-Adjacent Pixel Plot of a Straight Line

Plot and Formula for a Circle

Plot and Formula for Ellipse

Plot and Formula for Parabola

Plot and Formula for Hyperbola

Normalization of Coordinates in VGA Mode 18

Rotation Transformation of a Polygon

Clipping Transformation of an Ellipse

Geometrical Interpretation of a Region Fills

Region Fill Flowchart

8514/A Component Diagram

XGA Component Diagram

Bit Planes in XGA and 8514/A High-Resolution Modes
XGA/8514/A Bit-to-Color Mapping

Bitmap of XGA and 8514/A Color Registers

Bitmap of the Short Stroke Vector Command

XGA System Coordinate Range and Viewport

XGA Data in POS Registers

Block Structure in XGA 64K Aperture

Bitmapping in XGA Direct Color Mode

Physical Address of Video Memory Bitmap

Pixel Map Origin and Dimensions

Mask Map Scissoring Operations

Mask Map x and y Offset

Determining the Pixel Attribute

Pixel Operations Register Bitmap

© 2003 by CRC Press LLC

Figure 12-10
Figure 12-11
Figure 12-12
Figure 12-13
Figure 13-1
Figure 13-2
Figure 13-3
Figure 13-4
Figure 13-5
Figure 13-6
Figure 14-1
Figure 14-2
Figure 14-3
Figure 14-4
Figure 14-5
Figure 15-1
Figure 15-2
Figure 15-3
Figure 15-4
Figure 15-5
Figure 15-6
Figure 15-7
Figure 15-8
Figure 15-9
Figure 15-10
Figure 15-11
Figure 15-12
Figure 15-13
Figure 15-14
Figure 15-15
Figure 15-16
Figure 15-17
Figure 15-18
Figure 16-1
Figure 16-2
Figure 16-3
Figure 16-4
Figure 16-5
Figure 16-6
Figure 16-7
Figure 16-8
Figure 17-1
Figure 17-2
Figure 17-3
Figure 17-4
Figure 17-5
Figure 17-6
Figure 17-7
Figure 17-8
Figure 18-1
Figure 18-2
Figure 18-3
Figure 18-4

© 2003 by CRC Press LLC

Octant Numbering in the Cartesian Plane

XGA Sprite Buffer

Visible Sprite Image Control

Bit-to-Pixel Mapping of Sprite Image

Memory Banks to Video Mapping

VESA Mode Bitmap

VESA Window Types

VESA Mode Attribute Bitmap

Window Attributes Bitmap

VESA BIOS Machine State Bitmap

Mouse Interrupt Call Mask

Elements in Panning Animation

Animation by Scaling and Rotation

XGA Interrupt Enable Register Bitmap

XGA Interrupt Status Register Bitmap

Raw Image Data for a Monochrome Bitmap
Monochrome Overlays to Form a Color Image
Elements of the GIF Data Stream

GIF Header

GIF Logical Screen Descriptor

GIF Global Color Table Block

GIF Image Descriptor

GIF Image Data Blocks

GIF Trailer

Sample Image for GIF LZW Compression

GIF LCW Compression Flowchart

TIFF File Header

TIFF Image File Directory (IFD)

TIFF Directory Entry

TIFF PackBits Decompression

PCL Bitmap Character Cell

PCL Character Dimensions

Character Dot Drawing and Bitmap

Using the New Command in Developer Studio File Menu
Creating a New Source File In Developer Studio
Inserting an Existing Source File Into a Project
Developer Studio Project Workspace, Editor, and Output Panes
The Hello Windows Project and Source File

Developer Studio Insert Resource Dialog Screen and Toolbar
Creating An Icon Resource with Developer Studio Icon Editor
Screen Snapshot of the WinHello Program

The Device Context, Application, GDI, and Device Driver
Viewport and Window Coordinates

Courier, Times Roman, and Helvetica Typefaces.
Windows Non-TrueType Fonts

Vertical Character Dimensions in the TEXTMETRIC Structure
Processing Operations for Multiple Text Lines

Two Screen Snapshots of the TEX1_DEMO Program
Screen Snapshot of the TEXTDEMS3 Program
KBR_DEMO Program Screen

CAR_DEMO Program Screen

Windows Built-In Cursors

MOU_DEMO Program Screen

Figure 19-1
Figure 19-2
Figure 19-3
Figure 19-4
Figure 19-5
Figure 19-6
Figure 19-7
Figure 19-8
Figure 19-9
Figure 19-10
Figure 19-11
Figure 19-12
Figure 19-13
Figure 19-14
Figure 19-15
Figure 20-1
Figure 20-2
Figure 20-3
Figure 20-4
Figure 20-5
Figure 20-6
Figure 20-7
Figure 20-8
Figure 20-9
Figure 20-10
Figure 20-11
Figure 20-12
Figure 21-1
Figure 21-2
Figure 21-3
Figure 21-4
Figure 21-5

CHI_DEMO Program Screen

Buttons, List Box, Combo Box, and Scroll Bar Controls
CON_DEMO Program Screen

Common Menu Elements

Developer Studio Menu Editor

Developer Studio Insertion of a Shortcut Key Code
Developer Studio Accelerator Editor

Simple Message Box

Developer Studio Dialog Editor

Color Selection Common Dialog Box

Toolbar

“Toolbar.bmp" Button Identification Codes
Developer Studio Toolbar Editor

TB1_DEMO Program Screen

Developer Studio Resource Table Editor

Screen Snapshots of the DC Info Program
COLORREF Bitmap

Pen Syles, End Caps, and Joins

Brush Hatch Patterns

The Arc Drawing Direction

Coordinates of Two Polylines in the Sample Code
Coordinates of an Elliptical Arc in Sample Code
AngleArc() Function Elements

The Bezier Spline

Divide-and-Conquer Method of Creating a Bezier Curve
Elements of the Cubic Bezier

Approximate Result of the PolyDraw() Code Sample
Brush Hatch Patterns

Effects of the Polygon Fill Modes

Figure Definition in the Rectangle() Function
Definition Parameters for the RoundRect() Function
Figure Definition in the Ellipse() Function

Figure 21-6 Figure Definition in the Chord() Function
Figure 21-7 Figure Definition in the Arc() Function
Figure 21-8 Figure Produced by the Polygon Program
Figure 21-9 Rectangle Drawn with DrawFocusRect()

Figure 21-10
Figure 21-11
Figure 21-12
Figure 21-13
Figure 21-14
Figure 21-15
Figure 21-16
Figure 21-17
Figure 21-18
Figure 21-19
Figure 21-20
Figure 21-21

Effect of the OffsetRect() Function

Effect of the InflateRect() Function
Effect of the IntersectRect() Function
Effect of the UnionRect() Function
Cases in the SubtractRect() Function
Regions Resulting from CombineRgn() Modes
Region Border Drawn with FrameRgn()
Effect of OffsetRgn() on Region Fill
Results of Clipping

Figure Closing Differences

Miter Length, Line Width, and Miter Limit
Effect of the SetMiterLimit() Function

Figure 22-1 One Bit Per Pixel Image and Bitmap

Figure 22-2 Two Bits Per Pixel Image and Bitmap

Figure 22-3 Binary and Unary Operations on Bit Blocks

Figure 22-4 Hard-Coded, Monochrome Bitmap

Figure 22-5 Memory Image of Conventional and DIB Section Bitmaps

© 2003 by CRC Press LLC

Figure 22-6
Figure 22-7
Figure 23-1
Figure 23-2
Figure 23-3
Figure 23-4
Figure 23-5
Figure 23-6
Figure 23-7
Figure 23-8
Figure 23-9
Figure 24-1
Figure 24-2
Figure 24-3
Figure 24-4
Figure 25-1
Figure 25-2
Figure 25-3
Figure 25-4
Figure 25-5
Figure 25-6
Figure 25-7
Figure 25-8
Figure 26-1
Figure 26-2
Figure 26-3
Figure 28-1
Figure 28-2
Figure 28-3
Figure 28-4
Figure 29-1
Figure 29-2
Figure 29-3
Figure 29-4
Figure 29-5
Figure 30-1
Figure 30-2
Figure 30-3
Figure 30-4
Figure 31-1
Figure 31-2
Figure 31-3
Figure 31-4
Figure 31-5
Figure 31-6
Figure 31-7
Figure 31-8
Figure 32-1
Figure 32-2
Figure 32-3
Figure 32-4
Figure 32-5
Figure 32-6

Screen Snapshot Showing a DIB Section Bitmap Manipulation
Horizontal and Vertical Bitmap Inversion with StretchBIt()
DirectX 8.1 Installation Main Screen

DirectX 8.1 Custom Installation Screen

DirectX 8.1 Retail or Debug Runtime Selector
Navigating to the DirectX 8.1 Programs and Ulilities
DirectX 8.1 Documentation Utility

DirectX Properties Dialog Box

DirectX Diagnostic Utility

DirectX Diagnostic Utility Display Test

Testing DirectDraw Functionality

Abstract Class Structure

The Virtual Function Table (vtable)

Monolithic and Component-Based Applications
HRESULT Bitmap

DirectDraw Bounding Rectangle

DirectDraw Object Types

Relations between Windows Graphics Components
Visualization of Primary and Overlay Surfaces

Video Memory Mapping Variations

Palette-Based Pixel Attribute Mapping

Clipping a Bitmap at Display Time

Clipper Consisting of Two Rectangular Areas

Directories Tab (Include Files) in the Options Dialog Box
Directories Tab (Library files) in the Options Dialog Box
Link Tab in Developer Studio Project Settings Dialog Box
Pixel Mapping in Real-Color Modes

Pixel Mapping in True-Color Modes

Pixel Offset Calculation

Visualizing the XOR Operation

DirectDraw Surface Types

The DirectDraw Blit.

The BitFast() Function

The BIt() Function

Bit-Time Mirroring Transformations

Using a Clipper to Establish the Surface's Valid Blit Area.
Multiple Clipping Rectangles

Comparing the Two Versions of the DD Bitmap In Window Program
Locating the BIlt() Destination Rectangle

Stick Figure Animation

Animation Image Set

The Sprite Image Set for the DD Sprite Animation Program
Partitioning the Sprite Image Set

Sprite Animation by Page Flipping

Flipping Chain with Two Back Buffers

Surface Update Time and Frame Rate

Dirty Rectangles in Animation

Windows Graphics Architecture

DirectX Graphics Architecture

Direct3D Rendering Modules

Frame Hierarchy in a Scene

Quadrilateral and Triangular Meshes

Front Face of a Triangular Polygon

© 2003 by CRC Press LLC

Figure 32-7 Vertex Normals and Face Normals in a Pyramid
Figure 32-8 Error in Gouraud Rendering

Figure 32-9 Rendering Overlapping Triangles

Figure 32-10 Calculating the Vertex Normals

Figure 32-11 Umbra and Penumbra in Spotlight lllumination
Figure 32-12 Mipmap Structure

Figure 32-13 Example of a DirectDraw Mipmap

Figure 32-14 The Viewing Frustum

Figure 32-15 Viewport Parameters

Figure 32-16 Vector/Scalar Interpretation of the Quaternion
Figure 32-17 In-Between Frames in Animation

Figure 32-18 Aircraft Dynamic Angles

Figure 33-1 Changing the Camera Position along the z-axis

© 2003 by CRC Press LLC

Part |

Graphics Fundamentals

© 2003 by CRC Press LLC

Chapter 1

PC Graphics Overview

Topics:
e History and evolution of PC graphics
e Technologies
¢ Applications
¢ Development platforms
e The state-of-the-art

This first chapter is a brief historical summary of the evolution of PC graphics, a short
list of graphics-related technologies and fields of application, and an overview of the
state-of-the-art. A historical review is necessary in order to understand current PC
graphics technologies. What the PC is today as a graphical machine is the result of a
complex series of changes, often influenced by concerns of backward compatibility
and by commercial issues. A review of graphics hardware technologies is also neces-
sary because the graphics programmer usually works close to the metal. The hard-
ware intimacy requires a clear understanding the how a binary value, stored in a
memory cell, is converted into a screen pixel. The chapter also includes a description
of some of the mostimportant applications of computer graphics and concludes with a
presentation of the graphics technologies and development platforms for the PC.

1.1 History and Evolution

The state-of-the-art computer is a graphics machine. It is typically equipped with a
high-resolution display, a graphics card or integral video system with 3D capabilities,
and a processor and operating system that support a sophisticated graphical user in-
terface. This has not always been the case. In the beginning computers were
text-based. Their principal application was processing text data. The typical source of
input was atypewriter-like machine called a teletype terminal or TTY. Output was pro-
vided by a line printer that operated by means of a mechanical arrangement of small
pins that noisily produced an approximate rendering of the alphabetic characters. It
was not until the 1960s that cathode-ray tube technology (CRT) found its way from televi-
sion into computers. We start at this technological point.

© 2003 by CRC Press LLC

1.1.1 The Cathode-Ray Tube

The CRT display consists of a glass tube whose interior is coated with a specially for-
mulated phosphor. When the phosphor-coated surface is struck by an electron beam it
becomes fluorescent.. In computer applications CRT displays are classified into three
groups: storage tube, vector refresh, and raster-scan.

The storage tube CRT can be used both as a display and as a storage device, since
the phosphor image remains visible for up to 1 hour. To erase the image the tube is
flooded with a voltage that turns the phosphor back to its dark state. One limitation
is that specific screen areas cannot be individually erased. This determines that in
order to make a small change in a displayed image, the entire CRT surface must be
redrawn. Furthermore, the storage tube technology display has no color capabilities
and contrast is low. This explains why storage tube displays have seldom been used
in computers, and never in microcomputers.

Computers were not the first machines to use the cathode-ray tubes for graphic
display. The oscilloscope, a common laboratory apparatus, performs operations on
an input signal in order to display the graph of the electric or electronic wave on a
fluorescent screen

The vector-refresh display, on the other hand, uses a short-persistence phosphor
whose coating must be reactivated by the electron beam. This reactivation, called
the refresh, takes place at a rate of 30 to 50 times per second. The vector-refresh
system also requires a display file and a display controller. The display file is a mem-
ory area that holds the data and instructions for drawing the objects to be displayed.
The display controller reads this information from the display file and transforms it
into digital commands and data which are sent to the CRT. Figure 1-1 shows the fun-
damental elements of a vector refresh display system.

lect
DISPLAY CONTROLLER ebe:aﬁn

|
|
display | electron
file - gun
|
|
|
| -

— — — -

y-axis

. deflection
d exflgééﬁ)n coils phostphor
; coating
coils

Figure 1-1 Vector-Refresh Display

© 2003 by CRC Press LLC

The disadvantages of the vector-refresh CRT are its high cost and limited color
capabilities. Vector refresh display technology has not been used in the PC.

During the 1960s Conrac Corporation developed a computer image processing
technology, known as raster-scan graphics. Their approach took advantage of the
methods of image rendering and refreshing used in television receivers. In a ras-
ter-scan display the electron beam follows a horizontal line-by-line path, starting at
the top-left corner of the CRT surface. The scanning cycle takes place 50 to 70 times
per second. At the start of each horizontal line the controller turns on the electron
beam. The beam is turned off during the horizontal and vertical retrace cycles. The
scanning path is shown in Figure 1-2.

g N
3 - image
3 scanning
<
< > .
3 — horizontal
o
$ retrace
<
D! .
3 » vertical
3 \ retrace
> »
3 »
i -
> >
< »
p »
4 L
“ vy
< \ >

-)

Figure 1-2 A Raster-Scan System

The raster-scan display surface is divided into a grid of individual dots, called
pixels. The term pixel was derived from the words picture and elements. In the
memory-mapped implementation of raster-scan technology, an area of RAM is de-
voted to recording the state of each individual screen pixel. The simplest
color-coding scheme consists of using a single bit to represent either a white or a
black pixel. Conventionally, if the memory bit is set, the display scanner renders the
corresponding pixel as white. If the memory bit is cleared, the pixel is left dark. The
area of memory reserved for the screen display is usually called the frame buffer or
the video buffer. Figure 1-3, on the following page, shows the elements of a mem-
ory-mapped video system.

Implementing color pixels requires a more elaborate scheme. In color systems
the CRT is equipped with one electron gun for each color that is used to activate the
pixels. Usually there are three color-sensitive electron guns: one for red, one for
green, and one for blue. Data for each of the three colors must be stored separately.
One approach is to have a separate memory map for each color. A more common so-
lution is to devote bit fields or storage units to each color. For example, if one mem-
ory byte is used to encode the pixel’s color attributes, three bits can be assigned to
encode the red color, two bits to encode the green color, and three bits for the blue
color. One possible mapping of colors to pixels is shown in Color Figure 1.

© 2003 by CRC Press LLC

VIDEO MEMORY

Video
controller

Figure 1-3 A Memory-Mapped System

In Color Figure 1 one memory byte has been divided into three separate bit fields.
Each bit field encodes the color values that are used to render a single screen pixel.
The individual bits are conventionally labeled with the letters R, G, and B, according
to the color they represent. Since eight combinations can be encoded in a three-bit
field, the blue and red color components can each have eight levels of intensity. In
this example we have used a two-bit field to encode the green color; therefore it can
only be rendered in four levels of intensity. The total number of combinations that
can be encoded in 8 bits is 256, which is also the number of different color values
that can be represented in one memory byte. The color code is transmitted by the
display controller hardware to a Digital-to-Analog converter (DAC), which, in turn,
transmits the color video signals to the CRT.

In the PC all video systems are raster-scan and memory mapped. The advantages
of a raster-scan display are low cost, color capability, and easy programmability.
One major disadvantage is the grainy physical structure of the display surface that
results from the individual screen dots. Among other aberrations, the dot pattern
causes lines that are not vertical, horizontal, or at exactly 45 degrees to exhibit a
staircase effect. Raster-scan systems also have limitations in rendering animation.
Two factors contribute to this problem: first, all the screen pixels within a rectangu-
lar area must be updated with each image change. Second, in order to ensure
smoothness, the successive images that create the illusion of motion must be
flashed on the screen at a fast rate. These constraints place a large processing load
on the microprocessor and the display system hardware.

1.2 Short History of PC Video

The original IBM Personal Computer was offered in 1981 equipped with either a Mono-
chrome Display Adapter (MDA), or a graphics system named the Color/Graphics
Monitor Adapter (CGA). The rationale for having two different display systems was
that users who intended to use the PC for text operations would prefer a machine
equipped with the MDA video system, while those requiring graphics would like one
equipped with the CGA card. But, in reality, the CGA graphics system provided only
the most simple and unsophisticated graphics. The card was also plagued with inter-
ference problems which created a screen disturbance called “snow.” However, the

© 2003 by CRC Press LLC

fact that the original IBM Personal Computer was furnished with an optional graphics
system signaled that the industry considered video graphics as an essential part of
microcomputing.

During the past 20 years PC video hardware has been furnished in an assortment
of on-board systems, plug-in cards, monitors, and options manufactured and mar-
keted by many companies. In the following sections we briefly discuss better known
PC video systems. Systems that were short lived or that gained little popularity, such
as the PCJr, the IBM Professional Graphics Controller, the Multicolor Graphics Ar-
ray, and the IBM Image Adapter A, are not mentioned.

1.2.1 Monochrome Display Adapter

The original alphanumeric display card designed and distributed by IBM for the Per-
sonal Computer was sold as the Monochrome Display and Printer Adapter since it in-
cluded aparallel printer port. The MDA could display the entire range of alphanumeric
and graphic characters in the IBM character set, but did not provide pixel-level graph-
ics functions. The MDA was compatible with the IBM PC, PC XT, and PC AT, and some
of the earlier models of the PS/2 line. It could not be used in the PCjr, the PC Convert-
ible, or in the microchannel PS/2 machines. The card required a special monochrome
monitor of long-persistence (P39) phosphor. These monitors, which produced very
pleasant text, were available with either green or amber screens. The video hardware
was based on the Motorola 6845 CRT controller. The system contained 4K of on-board
video memory, mapped to physical address BOOOOH.

The MDA was designed as a pure alphanumeric display: the programmer could
not access the individual screen pixels. Video memory is mapped as a grid of charac-
ter and attribute bytes. The character codes occupy the even-numbered bytes in
adapter memory, and the display attributes the odd-numbered bytes. This special
storage and display scheme was conceived to save memory space and to simplify
programming. Figure 1-4 shows the cell structure of the MDA video memory space
and the bitmap for the attribute cells.

BOOOOH [c[afc|a]cfaf = = = = = LEGEND:

MDA Video Memory ¢ = character cell
a = attribute cell

- = = = = lc|afc|a|c|a]| BOFOFH

716|5(4|3(2|1|0[ATTRIBUTE BITMAP

| | | | | CHARACTER COLOR
foreground/background
000 000 = nondisplay

1 = high in;ensity 000 111 ; normal
1 = blinking 0 = normal intensity 111 000 = reverse video
0 = not blinking 000 001 = underline

Figure 1-4 Memory Mapping and Attributes in the MDA Adapter

© 2003 by CRC Press LLC

1.2.2 Hercules Graphics Card

An aftermaket version of the MDA, developed and marketed by Hercules Computer
Technologies, was called the Hercules Graphics Card (HGC). HGA emulates the
monochrome functions of the MDA, but can also operate in a graphics mode. Like the
MDA, the HGC includes a parallel printer port. Because of its graphics capabilities, the
Hercules card was often preferred over the IBM version. In the HGA the display buffer
consists of 64K of video memory. In alphanumeric mode the system sees only the 4K
required for text mode number 7. However, when the HGC is in the graphics mode, the
64K are partitioned as two 32K graphics pages located at physical addresses BOOOOH
to BTFFFH and BS80OOOH to BFFFFH. Graphic applications can select which page is dis-
played.

1.2.3 Color Graphics Adapter

The Color Graphics Adapter (CGA), released early in 1982, was the first color and
graphics card for the PC. The CGA operates in seven modes which include mono-
chrome and color graphics. Mode number 0 is a 40 columns by 25 rows monochrome
alphanumeric mode. In Mode 0 text characters are displayed in 16 shades of grey.
Characters are double width and 40 can be fitted on a screen line. Graphics mode num-
ber 6 provides the highest resolution, 640 horizontal by 200 vertical pixels.

One notable difference between the CGA and the MDA is the lower quality text
characters of the color card. In a raster-scan display the visual quality of the text
characters is related to the size of the respective character cells. In the MDA each
character is displayed in a box of 9-by-14 screen pixels. In the CGA the character
box is of 8-by-8 pixels. The resulting graininess of the CGA text characters was so
disturbing that many users considered the card unsuitable for text operations.

The CGA was designed so that it could be used with a standard television set;
however, it performed best when connected to an RGB color monitor. Timing and
control signals were furnished by a Motorola 6845 CRT controller, identical to the
one used in the MDA. The CGA contains 16K of memory, which is four times the
memory in the MDA. This makes it possible for the CGA to simultaneously hold data
for four full screens of alphanumeric text. The CGA video buffer is located at physi-
cal address BSOOOH. The 16K memory space in the adapter is logically divided into
four 1K areas, each of which holds up to 2000 characters with their respective attrib-
utes. The memory-to-pixel mapping in the CGA is shown in Figure 1-5.

Video memory in the CGA text modes consists of consecutive character and at-
tribute bytes, as in the MDA. The mapping of the attribute bits in the black and white
alphanumeric modes is identical to the one used in the MDA, but in color alphanu-
meric modes the attribute bits are mapped differently.

The CGA suffers from a form of screen interference, popularly called snow. This
irritating effect results from CGA’s use of RAM chips (called dynamic RAMs) which
are considerably slower than the static RAMs used in the MDA card. In a CGA sys-
tem, if the CPU reads or writes to the video buffer while it is being refreshed by the
CRT Controller, a visible screen disturbance takes place. The solution is to synchro-
nize screen updates with the vertical retrace signal generated by the 6845 controller.

© 2003 by CRC Press LLC

This is possible during a short time interval, called the vertical retrace cycle. Since
the duration of the vertical retrace is barely sufficient to set a few pixels, rendering
is considerably slowed down by this synchronization requirement. Furthermore,
during screen scroll operations the display functions must be turned off while the
buffer is updated. This causes a disturbing screen flicker.

| COLOR CODES
rgbIRGB I = intensity
R(r) = red
G(g) = green
B(b) = blue
71615|413]|2|1|0| ATTRIBUTE BITMAP
FOREGROUND COLOR
0000 = black 0001 = blue
0010 = green 0011 = cyan
0100 = red 0101 = magenta
0110 = brown 0111 = light gray
1000 = dark gray 1001 = 1light blue
1010 = light green 1011 = light cyan
1100 = light red 1101 = light magenta
1110 = yellow 1111 = white
BACKGROUND COLOR
000 = black 001 = blue
010 = green 011 = cyan
100 = red 101 = magenta
110 = brown 111 = light gray
blinking

o

not blinking
Figure 1-5 Memory-to-Pixel Mapping in the CGA Color Alpha Modes

1.2.4 Enhanced Graphics Adapter

The Enhanced Graphics Adapter (EGA) was introduced by IBM in 1984 as an alterna-
tive to the much maligned CGA card. The EGA could emulate most of the functions and
all the display modes of both the CGA and the MDA. At the same time, EGA had a
greater character definition in the alphanumeric modes than the CGA, higher resolu-
tion in the graphics modes, and was not plagued with the snow and flicker problems.
EGA can drive an Enhanced Color Display with a maximum graphics resolution of
640-by-350 pixels.

EGA introduced four new graphics modes, sometimes called the enhanced graph-
ics modes. These modes are numbered 13 through 16. The highest graphics resolu-
tion is obtained in the modes numbers 15 and 16, which displayed 640-by-350 pixels.
The EGA used a custom video controller chip with different port and register assign-
ments than those of the Motorola 6845 controller used in the MDA and CGA cards.
The result is that programs that access the MDA and CGA 6845 video controller di-
rectly do not work on the EGA. EGA was furnished with optional on-board RAM in
blocks of 64K. In the minimum configuration the card had 64K of video memory, and
256K in the maximum one.

© 2003 by CRC Press LLC

EGA systems had several serious limitation. In the first place, EGA supported
write operations to most of its internal registers, but not read operations. This made
it virtually impossible for software to detect and preserve the state of the adapter,
which in turn, made EGA unsuitable for memory resident applications or for
multitasking or multiprogramming environments. Another limitation of the EGA is
related to its unequal definitions in the vertical and horizontal planes; this problem
is also present in the HGC and the CGA cards. In an EGA, equipped with a typical
monitor, the vertical resolution in graphic modes 15 and 16 is approximately 54 pix-
els per inch and the horizontal resolution approximately 75 pixels per inch. This
gives a ratio of vertical to horizontal definition of approximately 3:4. Although not
as bad as the 2:3 ratio of the HGC, the disproportion still determines that a pixel pat-
tern geometrically representing a square is displayed on the screen as a rectangle
and the pattern of a circle is displayed as an ellipse. The geometrical aberration
complicates pixel path calculations, which must take this disproportion into ac-
count and make the necessary adjustments.

1.3 PS/2 Video Systems

The PS/2 line of microcomputers was released by IBM in 1987. It introduced several
new features, including a new system bus and board connectors, named the
microchannel architecture, a 3.5-inch diskette drive with 1.44 megabytes of storage,
and an optional multitasking operating system named OS/2, which is now virtually de-
funct. Machines of the PS/2 line came equipped with one of two new video graphics
systems, while a third one was available as an option.

The new video standards for the PS/2 line were the Multicolor Graphics Array
(MCGA), the Video Graphics Array (VGA), and the 8514/A Display Adapter. The
most notable improvement of the video hardware in the PS/2 systems was that IBM
changed the display driver technology from digital to analog. The one drawback was
that the monitors of the PC line were incompatible with the PS/2 computers, and
vice versa. The main advantage of analog display technology is a much larger color
selection. Another important improvement is their symmetrical resolution, that is,
the screen resolution is the same in the vertical as in the horizontal planes. Symmet-
rical resolution simplifies programming by eliminating geometrical aberrations dur-
ing pixel plotting operations. The aspect ratio of the PS/2 monitors is 4:3, and the
best resolution is 640-by-480 pixels.

1.3.1 Video Graphics Array

Video Graphics Array (VGA) is the standard video display system for the IBM Personal
System/2 computers models 50, 50z, 60, 70, and 80. IBM first furnished VGA on the sys-
tem board. VGA comes with 256K of video memory, which can be divided into four 64K
areas, called the video maps or bit planes. The system supports all the display modes
of the MDA, CGA, and the EGA cards of the PC family. In addition, VGA introduced
graphics mode number 18, with 640-by-480 pixel resolution in 16 colors. The effective
resolution of the text modes is 720 by 400. In order to display text in a graphics mode,
three text fonts with different box sizes could be loaded from BIOS into the adapter.
VGA soon became available as an adapter card for non-IBM machines. The video tech-
nology introduced with VGA continues to be the PC video standard to this day.

© 2003 by CRC Press LLC

1.3.2 8514/A Display Adapter

The 8514/A Display Adapter is a high-resolution graphics system designed for the PS/2
line. The tchnology was developed in the United Kingdom, at the IBM Hursley Labora-
tories. The 8514/A system comprises not only the display adapter, but also the 8514
Color Display and an optional Memory Expansion Kit. The original 8514/A is compati-
ble only with PS/2 computers that use the microchannel bus. It is not compatible with
machines of the PC line, with the PS/2 models 25 and 30, or with non-IBM computers
that do not use the microchannel architecture. Other companies developed versions
of8514/A which canbe used in machines based on the ISA or EISA bus architecture.

The 8514/A Display Adapter consists of two sandwiched boards designed to be in-
serted into the special microchannel slot that has the auxiliary video extension. The
standard version comes with 512K of video memory. The memory space is divided
into four maps of 128K each. In the standard configuration 8514/A displays in 16 col-
ors, however, by installing the optional Memory Expansion Kit, video memory is in-
creased to 1 megabyte. The 1 megabyte space is divided into eight maps, extending
to 256 the number of available colors. The system is capable of four new graphic
modes not available in VGA. IBM named them the advanced function modes. One of
the new modes has 640-by-480 pixel definition, and the remaining three modes have
1024-by-768 pixels. 8514/A does not directly support the conventional alphanumeric
or graphics modes of the other video standards, since it executes only in the ad-
vanced function modes. In a typical system VGA automatically takes over when a
standard mode is set. The image is routed to the 8514/A monitor when an advanced
function mode is enabled. An interesting feature of the 8514/A adapter is that a sys-
tem containing it can operate with two monitors. In this case the usual setup is to
connect the 8514 color display to the 8514/A adapter and a standard monitor to the
VGA. Figure 1-6 shows the architecture of a VGA/8514A system.

VGA
controller
VGA
VGA DAC _
bit planes N
Mode
switch
8514/A 8514/A
—| controller bit planes
8514/A 8514/A
DAC monitor
EPROM

Figure 1-6 Architecture of a VGA/8514A Video System

© 2003 by CRC Press LLC

A feature of 8514/A, which presaged things to come, is that it contains a dedicated
graphics chip that performs as a graphics coprocessor. Unlike previous systems, in
8514/A the system microprocessor cannot access video memory; instead this func-
tion is left to the graphic coprocessor. The greatest advantage of this setup is that it
improves performance by offloading the graphics functions from the CPU. The
8514/A can be programmed through a high-level graphics function package called
the Adapter Interface, or Al. There are a total of 59 drawing primitives in the Al, ac-
cessible through a software interrupt.

Approximately 2 years after the introduction of 8514/A, IBM unveiled another
high-performance, high-priced graphics board, designated the Image Adapter/A.
The Image Adapter/A is compatible with the 8514/A at the Adapter Interface level
but not at the register level. Image Adapter/A was short-lived due to its high price
tag, as well as to the fact that shortly thereafter IBM released its new XGA technol-

ogy.
1.3.3 Extended Graphics Array

In September 1990, IBM disclosed preliminary information on a new graphics stan-
dard designated the Extended Graphics Array, or XGA. Like its predecessor the
8514-A, XGA hardware was developed in the UK. Two XGA configurations were imple-
mented: an adapter card and a motherboard version. In 1992, IBM released a
non-interlaced version of the XGA designated as XGA-2 or XGA-NI (non-interlaced).
The XGA adapter is compatible with PS/2 microchannel machines equipped with the
80386 or 486 CPU. The system is integrated in the motherboard of the IBM Models 90
XP 486, in the Model 57 SLC, and furnished as an adapter board in the Model 95 XP 486.
In 1992, Radius Incorporated released the Radius XGA-2 Color Graphics Card for
computers using the ISA or EISA bus. Other companies developed versions of the XGA
system for microchannel and non-microchannel computers. XGA is still found today
in some laptop computers. Figure 1-7 is a component diagram of the XGA system.

Color look-up table

and DAC
4
Video Serializer
RAM T
Graphics coprocessor >
ST 4> Soteconvoler ——
Attribute controller

Adapter ROM y

!

’ System Bus

Figure 1-7 XGA Component Diagram

© 2003 by CRC Press LLC

1.4 SuperVGA

The general characteristic of SuperVGA boards, as the name implies, is that they ex-
ceed the VGA standard in definition, color range, or both. The term SuperVGA is usu-
ally applied to enhancements to the VGA standard developed by independent
manufacturers and vendors. A typical SuperVGA card is capable of executing, not only
the standard VGA modes, but at least one additional mode with higher definition or
greater color range than VGA. These modes are usually called the SuperVGA En-
hanced Modes.

In the beginning, the uncontrolled proliferation of SuperVGA hardware led to
compatibility problems. Lack of standardization and production controls led to a sit-
uation in which the features of a card by one manufacturer were often incompatible
with those of a card produced by another company. This situation often led to the
following problem: an application designed to take advantage of the enhancements
in a particular SuperVGA system would not execute correctly in another systems.
An attempt to solve this lack of standardization resulted in several manufacturers
of SuperVGA boards forming the Video Electronics Standards Association (VESA).
In October 1989, VESA made public its first SuperVGA standard. This standard de-
fined several enhanced video modes and implemented a BIOS extension designed to
provide a few fundamental video services in a hardware-compatible fashion.

1.4.1 SuperVGA Architecture

In VGA systems the video memory space extends from AOOOOH to BFFFFH. The 64K
areastarting at segment base AOOOH is devoted to graphics, while the 64K area starting
at segment base BOOOH is devoted to alphanumeric modes. This makes a total of 128K
memory space reserved for video operations. But the fact that systems could be set up
with two monitors, one in an alphanumeric mode and the other one in a color mode, ac-
tually limited the graphics video space to 64K.

Not much video data can be stored in a 64K. For example, if each screen pixel is
encoded in one memory byte, then the maximum screen data that can be stored in
65,636 bytes corresponds to a square screen with 256 pixels on each side. Thus, a
VGA system in 640-by-480 pixels resolution, using one data byte per pixel, requires
307,200 bytes for storing a single screen. Consider that in the Intel segmented archi-
tecture of the original PCs each segment consisted of a 64K space. In this case ad-
dressing 307,200 pixels requires making five segment changes.

VGA designers were able to compress video data by implementing a latching
scheme that resulted in a semi-planar architecture. For example, in VGA mode num-
ber 18, with a resolution of 640-by-480 pixels, each pixel can be displayed in 16 dif-
ferent colors. To encode 16 color combinations requires a 4-bit field, and a total
memory space of 153,600 bytes. However, the latching mechanism allows mapping
each of the four color attributes to the same base address, all apearing to be located
in a common 64K address space.

When the VGA was first released, engineers noticed that some VGA modes con-

tained surplus memory. For example, in modes with 640-by-480 pixels resolution the
video data stored in each map takes up 38,400 bytes of the available 64K. This leaves

© 2003 by CRC Press LLC

27,136 unused bytes. The original idea of enhancing the VGA system was based on
using this surplus memory to store video data. It is possible to have an 800-by-600
pixel display divided into four maps of 60,000 bytes each, and yet not exceed the 64K
space allowed for each color map, nor the total 265K furnished with the VGA sys-
tem. To graphics systems designers, a resolution of 800 by 600 pixels, in 16 colors,
appeared as a natural extension to VGA mode number 18. This new mode, later des-
ignated as mode 6AH by the VESA SuperVGA standard, could be programmed in a
similar manner as VGA mode number 18. The enhancement, which could be
achieved with minor changes in the VGA hardware, provided a 36 percent increase
in the display area.

1.4.2 Bank-Switched Memory

The memory structure for VGA 256-color mode number 19 is based, not on a
bitmapped multiplane scheme, but in a much simpler format that maps a single mem-
ory byte to each screen pixel. This scheme is shown in Figure 1-8.

O|O|1|1|O|O| 1| 0 0|0| 1| 1| 0| 1| 1|O
byte boundary »| byte boundary »
0000000000
VIDEO MEMORY
[T |« emm[o
[]

Figure 1-8 Byte-to-Pixel Video Memory Mapping Scheme

In byte-to-pixel mapping 256 color combinations can be directly encoded into a
data byte, which correspond to the 256 DAC registers of the VGA hardware. The
method is straightforward and uncomplicated; however, if the entire video space is
to be contained in 64K, the maximum resolution is limited to 65,5636 pixels. This
means that a rectangular screen of 320-by-200 pixels nearly fills the allotted 64K.

In a segment architecture machine, if the resolution of a 256-color mode is to ex-
ceed 65,536 pixels it is necessary to find other ways of mapping video memory into
64K of system RAM. The mechanism adopted by the SuperVGA designers is based on
a technique known as bank switching. In bank-switched systems the video display
hardware maps several 64K-blocks of RAM to different locations in video memory.
In the PC addressing of the multi-segment space is by means of a hardware mecha-
nism that selects which video memory area is currently located at the system’s aper-
ture. In the SuperVGA implementation the system aperture is usually placed at
segment base AOOOH. The entire process is reminiscent of memory page switching
proposed in the LIM (Lotus/Intel/Microsoft) Extended Memory scheme. Figure 1-8
shows mapping of several memory banks to the video space and the map selection
mechanism for CPU addressing.

© 2003 by CRC Press LLC

VIDEO AREA MAPPED |
TO BANK 0 bank [

VIDEO AREA MAPPED « selector l
TO BANK 1

VIDEO AREA MAPPED A0000H
TO BANK 2

VIDEO AREA MAPPED
TO BANK 3 MEMORY

BANKS
V'DEC)T(’;\ %%}.2" QPPED (bank 1 selected)

.) |
[T omm mmm[o] -
- —] AFFFFH [~

Figure 1-9 SuperVGA Banked-Switched Memory

In the context of video system architecture, the term aperture is often used to de-
note the CPU window into the system’s memory space. For example, if the address-
able area of video memory starts at physical address AOOOOH and extends to
AFFFFH, we say that the CPU has a 64K aperture into video memory (10000H =
64K). In Figure 1-10 we see that the bank selector determines which area of video
memory is mapped to the processor’s aperture. This determines the video display
area that can be updated by the processor. In other words, in the memory banking
scheme the processor cannot access the entire video memory at once. In the case of
Figure 1-10, the graphics hardware has to perform five bank switches in order to up-
date the entire screen.

1.4.3 256-Color Extensions

The SuperVGA alternative for increasing definition beyond the VGA limit is based on
the banking mechanism shown in Figure 1-8. This scheme, in which a memory byte en-
codes the 256 color combinations for each screen pixel, does away with the program-
ming complications that result from mapping pixel colors to bit fields, as in the
high-resolution VGA modes previously mentioned. At the same time, bank switching
introduces some new complexities of its own, one of which is the requirement of a
bank selection device. In summary, the SuperVGA approach to extending video mem-
ory onthe PC has no precedentin CGA, EGA, or VGA systems. It is not interleaved nor
does it require memory planes or pixel masking. Although it is similar to VGA mode
number 19 regarding color encoding, VGA mode number 19 does not use bank switch-
ing.

1.5 Graphics Coprocessors and Accelerators

A group of video systems based on dedicated graphics chips is perhaps the one most
difficult to characterize and delimit. They can be roughly described as those systems
in which graphics performance is enhanced by means of specialized graphics hard-
ware that operates independently from the CPU. The enormous variations in the
functionalities and design of graphics accelerators and coprocessors makes it impos-
sible to list the specific features of these systems. Here we mention a few systems of
historical interest in the evolution of PC graphics.

© 2003 by CRC Press LLC

1.5.1 The TMS340 Coprocessor

One of the first full-featured dedicated graphics coprocessors used in the PC was the
TMS 340 graphics coprocessor developed by Texas Instruments. The chip was intro-
duced in 1986 and an upgrade, labeled TMS 34020, in 1990. The project was not a com-
mercial success and in 1993 Texas Instruments started discouraging the development
of new products based on the TMS340 chips. However, from 1988 to 1993 these
coprocessors were incorporated into many video products, including several
high-end video adapters, some of which were capable of a resolution of 1280-by-1024
pixels in more than 16 million colors. These products, now called ¢rue color or 24-bit
color cards, furnished photographic-quality images. The image quality of
coprocessor-based systems was often sufficient for image editing, prepress, desktop
publishing, CAD, and other high-end graphics applications.

Not all coprocessor-based graphics systems marketed at the time used the TMS
340. For example, the Radius Multiview 24 card contained three 8514/A-compatible
chips, while the RasterOps Paintboard PC card was based on the S3. But it is safe to
state that the TMS 340 and its descendants dominated the true-color field at the
time; of ten true color cards reviewed in the January 1993 edition of Windows Maga-
zine, seven were based on the TMS 340.

The TMS 340 was optimized for graphics processing in a 32-bit environment. The
technology had its predecessors in the TI's 320 line of digital signal processing
chips. The following are the distinguishing features of the TMS340 architecture:

1. The instruction set includes both graphics and general-purpose instructions. This
made the TMS340 a credible stand-alone processor.

2. The internal data path is 32-bits wide and so are the arithmetic registers. The physical
address range is 128 megabytes.

3. Pixel size is programmable at 1, 2, 4, 8 16, or 32 bits.
4. Raster operations includes 16 boolean and 6 arithmetic options.

5. The chip contains 30 general purpose 32-bit registers. This is approximately four times
as many registers as in an Intel 80386.

6. The 512-byte instruction cache allows the CPU to place a considerable number of in-
structions in the TMS340 queue while continuing to execute in parallel.

7. The coprocessor contains dedicated graphics instructions to draw single pixels and
lines, and to perform twodimensional pixels array operations, such as pixBlts, area
fills, and block transfers, as well as several auxiliary graphics functions.

The limited commercial success of the TMS 340-based systems is probably due to
the slow development of graphics applications that took advantage of the chip’s ca-
pabilities. Systems based on the TM 340 sold from $500 to well over $1000 and they
had little commercial software support. The most important consequence of this
technology was demonstrating that the PC was capable of high-quality,
high-performance graphics.

© 2003 by CRC Press LLC

1.5.2 Image Properties

Animage is a surrogate of reality. Its main purpose it to convey visual information to the viewer.
In computer technology the graphics image is usually a dot pattern displayed on a CRT monitor.
Some of the characteristics of the computer image can be scientifically measured or at least
evaluated objectively. But the human element in the perception of the graphic image introduces
factors that are not easily measured. For example, aesthetic considerations can help us decide
whether a certain graphic image “looks better” than another one, yet another image can give us
an eyestrain headache that cancels its technological virtues.

Brightness and Contrast

Luminance is defined as the light intensity per unit area reflected or emitted by a surface. The
human eye perceives objects by detecting differences in levels of luminance and color. In-
creasing the brightness of an object also increases the acuity with which it is perceived. How-
ever, it has been found that the visibility or legibility of an image is more dependent on contrast
than on its absolute color or brightness.

The visual acuity of an average observer sustains an arc of approximately 1 minute.
Therefore, the average observer can resolve an object that measures 5 one-thousands of an
inch across when the image is displayed on a CRT and viewed at a distance of 18 inches.
However, visual acuity falls rapidly with decreased luminance levels and with reduced con-
trast. This explains why ambient light, reflected off the surface of a CRT, decreases legibility.

A peculiarity of human vision is the decreasing ability of the eye to perceive luminance
differences or contrasts as the absolute brightness increases. This explains why the absolute
luminance values between object and background are less important to visual perception
than their relative luminance, or contrast.

Color

Approximately three-fourths of the light-perceiving cells in the human eye are color-blind,
which determines that luminance and contrast are more important to visual perception than
color. Nevertheless, color is generally considered a valuable enhancement to the graphics im-
age. The opinion is probably related to the popular judgment that color photography, cinema-
tography, and television are to be preferred over the black-and-white versions.

Resolution

The quality of a raster-scan CRT is determined by the total number of separately addressable
pixels contained per unit area. This ratio, called the resolution, is usually expressed in pix-
els-per-inch. For example, a CRT with 8-inch rows containing a total of 640 pixels per row has a
horizontal resolution of 80 pixels per inch, while a CRT measuring 6 inches vertically and con-
taining a total of 480 pixels per column has a vertical resolution of 80 pixels per inch.

Aspect Ratio

The aspect ratio of a CRT display is the relation between the horizontal and vertical dimensions
of the image area. For example, a viewing surface measuring 8 inches horizontally and 6 inches
vertically, is said to have a 4:3 aspect ratio. An 8t inch by 6 inch viewing surface has a 1:1 aspect
ratio. Figure 1-10, on the following page, shows a CRT with a 4:3 aspect ratio.

© 2003 by CRC Press LLC

»

- J

|II_I ll]]]l]lll]]]]l]l|:llo|
[J

Figure 1-10 CRT with a 4:3 Aspect Ratio

1.6 Graphics Applications

Applications of computer graphics in general, and of 3D graphics in particular, appear
to be limitless. The range of possible applications seems to relate more to economics
and to technology than to intrinsic factors. It is difficult to find a sphere of computing
that does not profit from graphics in one way or another. This is true of both applica-
tions and operating systems. In today’s technology, graphics is the reality of comput-
ing. In PC programming graphics are no longer an option, but a standard feature that
cannot be ignored.

1.6.1 Computer Games

Since the introduction of Pac Man in the mid 1980s, computer games have played an
important role in personal entertainment. More recently we have seen an increase in
popularity of dedicated computer-controlled systems and user-interaction devices,
such as those developed by Nintendo and Sega. In the past 3 or 4 years, computer
games have gone through a remarkable revival. The availability of more powerful
graphics systems and of faster processors, as well as the ingenuity and talent of the de-
velopers, have brought about the increase in the popularity of this field. Computer
games are one of the leading sellers in today’s software marketplace, with sales sup-
ported by an extensive subculture of passionate followers. Electronic games are al-
ways at the cutting edge of computer graphics and animation. A game succeeds or fails
according to its performance. It is in this field where the graphics envelope is pushed
to the extreme. 3D graphics technologies relate very closely to computer games. In
fact, it can be said that computer games have driven graphics technology.

1.6.2 Graphics in Science, Engineering, and Technology

Engineering encompasses many disciplines, including architecture, and mechanical,
civil, and electrical, and many others. Virtually every field of engineering finds appli-
cation for computer graphics and most can use 3D representations. The most gener-
ally applicable technology is computer-aided design (CAD), sometimes called

© 2003 by CRC Press LLC

computer-aided drafting. CAD systems have replaced the drafting board and the
T-square in the design of components for civil, electrical, mechanical, and electronic
systems. A few years ago, a CAD system required a mainframe or minicomputer with
high-resolution displays and other dedicated hardware. Similar capabilities can be
had today with off-the-shelf PC hardware and software. Most CAD packages now in-
clude 3D rendering capabilities.

These systems do much more than generate conventional engineering drawings.
Libraries of standard objects and shapes can be stored and reused. For example, a
CAD program used in mechanical engineering can store nut and bolt designs, which
can be re-sized and used as needed. The same applies to other frequently used com-
ponents and standard shapes. Color adds a visual dimension to computer-generated
engineering drawings, a feature that is usually considered too costly and difficult to
implement manually. Plotters and printers rapidly and efficiently generate
high-quality hardcopy of drawings. 3D CAD systems store and manipulate solid
views of graphics objects, which facilitates the production of perspective views and
projections. Wire-frame and solid modeling techniques allow the visualization of
real-world objects and contours. CAD systems can also have expertise in a particu-
lar field. This knowledge can be used to check the correctness and integrity of a de-
sign.

In architecture and civil engineering, graphics systems find many applications.
Architects use 3D modeling for displaying the interior and exterior of buildings. A
graphics technique known as ray tracing allows the creation of solid models that
show lighting, shading, and mirroring effects.

Computer graphics are used to predict and model system behavior. Simulation
techniques allow creating virtual representations of practically any engineered sys-
tem, be it mechanical, electrical, or chemical. Mathematical equations are used to
manipulate 3D representations and to predict behavior over a period of simulated
time. Graphics images, usually color-coded and often in 3D, are used to display
movement, and to show stress points or other dynamic features which, without this
technique, would have been left to the imagination.

Geographic Information Systems (GIS) computer graphics to represent, manipu-
late, and store geographic, cartographic, and other social data for the analysis of
phenomena where geographical location is an important factor. Usually, the amount
of data manipulated in a GIS is much larger than can be handled manually. Much of
this data is graphics imagery in the form of maps and charts. GIS systems display
their results graphically. They find application in land use and land management, ag-
riculture, forestry, wildlife management, archeology, and geology. Programmable
satellites and instruments allow obtaining multiple images that can later be used in
producing 3D images.

Remote sensing refers to collecting data at a distance, usually through satellites
and other spacecraft. Most natural resource mapping done today is by this technol-
ogy. As the resolution of remotely-sensed imagery increases, and their cost de-
creases, many more practical uses will be found for this technology.

© 2003 by CRC Press LLC

Automation and robotics also find extensive use for computer graphics. Com-
puter Numerical Control (CNC) and Computer Assisted Manufacturing (CAM) sys-
tems are usually implemented in a computer graphics environment. State-of-the-art
programs in this field display images in 3D.

1.6.3 Art and Design

Many artists use computer graphics as a development and experimental platform, and
some as a final medium. It is hotly debated whether computer-generated images can
be considered fine art, but there is no doubt that graphics technology is one of the
most powerful tools for commercial graphics and for product design. As CAD systems
have replaced the drafting board, draw and paint programs have replaced the artist’s
sketch pad. The commercial artist uses a drawing program to produce any desired ef-
fect with great ease and speed, and to experiment and fine tune the design. Com-
puter-generated images can be stretched, scaled, rotated, filled with colors, skewed,
mirrored, re-sized, extruded, contoured, and manipulated in many other ways. Photo
editing applications allow scanning and transforming bitmapped images, which can
later be vectorized and loaded into the drawing program or incorporated into the de-
sign as bitmaps.

Digital composition and typesetting is another specialty field in which computer
graphics has achieved great commercial success. Dedicated typesetting systems and
desktop publishing programs allow the creation of originals for publication, from a
brochure or a newsletter to a complete book. The traditional typesetting method
was based on “mechanicals” on which the compositor glued strips of text and im-
ages to form pages. The pages were later photographed and the printing plates man-
ufactured from the resulting negatives. Today, composition is done electronically.
Text and images are merged in digital form. The resulting page can be transferred
into a digital typesetter or used to produce the printing plates directly. The entire
process is based on computer graphics.

1.6.4 Business

Inrecent years a data explosion has taken place. In most fields more data is being gen-
erated than there are people to process it. Imagine a day in the near future in which 15
remote sensing satellites orbit the earth, each one of them transmitting an image every
15 minutes, of an area that covers 150 square miles. The resulting acquisition rate of an
image per minute is likely to create processing and storage problems, but perhaps the
greatest challenge will be to find ways of using this information. How many experts
will be required just to look at these images? Recently there have been just two or
three remote sensing satellites acquiring earth images and it is estimated that no more
than 10 percent of these images have ever been analyzed. Along this same line, busi-
nesses are discovering that they accumulate and store more data than can be used.
Data mining and data warehousing are techniques developed to find some useful
nugget of information in these enormous repositories of raw data.

Digital methods of data and image processing, together with computer graphics,
provide our only hope of ever catching up with this mountain of unprocessed data. A
business graph is used to compress and make available a large amount of informa-
tion, in a form that can be used in the decision-making process. Computers are re-

© 2003 by CRC Press LLC

quired to sort and manipulate the data and to generate these graphs. The field of
image processing is providing methods for operating on image data. Technologies
are being developed to allow computers to “look at” imagery and obtain useful infor-
mation. If we cannot dedicate a sufficient number of human experts to look at a
daily heap of satellite imagery, perhaps we will be able to train computers for this
task.

Computer-based command and control systems are used in the distribution and
management of electricity, water, and gas, in the scheduling of railways and aircraft,
and in military applications. These systems are based on automated data processing
and on graphics representations. At the factory level they are sometimes called pro-
cess controls. In both small and large systems, graphics displays are required to help
operators and experts visualize the enormous amount of information that must be
considered in the decision-making process. For example, the pilot of a modern-day
commercial aircraft can obtain, at a glance, considerable information about the air-
plane and its components as they are depicted graphically on a video display. This
same information was much more difficult to grasp and mentally process when it
originated in a dozen or more analog instruments.

Computer graphics also serve to enhance the presentation of statistical data for
business. Graphics data rendering and computer animation serve to make the pre-
sentation more interesting; for example, the evolution of a product from raw materi-
als to finished form, the growth of a real estate development from a few houses to a
small city, or the graphic depiction of a statistical trend. Business graphics serve to
make more convincing presentations of products or services offered to a client, as a
training tool for company personnel, or as an alternative representation of statisti-
cal data. In sales computer graphics techniques can make a company’s product or
service more interesting, adding much to an otherwise dull and boring description
of properties and features.

1.6.5 Simulations

Both natural and man-made objects can be represented in computer graphics. The op-
tical planetarium is used to teach astronomy in an environment that does not require
costly instruments and that is independent of the weather and other conditions. One
such type of computer-assisted device, sometimes called a simulator, finds practical
and economic use in experimentation and instruction. Simulators are discussed later
in this book, in the context of animation programming.

1.6.6 Virtual Reality

Technological developments have made possible a new level of user interaction with a
computing machine, called virtual reality. Virtual reality creates a digital universe in
which the userisimmersed. This topicis also discussed in relation to computer anima-
tion.

1.6.7 Artificial Life

Artificial life, or ALife, has evolved around the computer modeling of biosystems. It
isbased on biology, robotics, and artificial intelligence. The results are digital entities
that resemble self-reproducing and self-organizing biological life forms.

© 2003 by CRC Press LLC

1.6.8 Fractal Graphics

Natural surfaces are highly irregular. For this reason, many natural objects cannot be
represented by means of polygons or smooth curves. However, it is possible to repre-
sent some types of natural objects by means of a mathematical entity called a fractal.
The word fractal was derived from fractional dimensions.

1.7 State-of-the-Art in PC Graphics

During the first half of the nineties, PC graphics were mostly DOS-based. The versions
of Windows and OS/2 operating systems available lacked performance and gave pro-
grammers few options and little control outside of the few and limited graphics ser-
vices offered at the system level. Several major graphics applications were developed
and successfully marketed during this period, including professional quality CAD,
draw and paint, and digital typesetting programs for the PC. But it was not until the in-
troduction of 32-bit Windows, and especially after the release of Windows 95, that PC
graphics took off as a mainstream force.

The hegemony of Windows 95 and its successors greatly contributed to the cur-
rent graphics prosperity. At the end of the decade, DOS has all but disappeared from
the PC scene and graphics applications for the DOS environment have ceased to be
commercially viable. By providing graphics hardware transparency Windows has
made possible the proliferation of graphics coprocessors, adapters, and systems
with many dissimilar functions and fields of application. At the same time, the cost
of high-end graphics systems has diminished considerably.

From the software side three major forces struggle for domination of PC graph-
ics: DirectX, OpenGL, and several proprietary game development packages, of
which Glide is perhaps the best known.

1.7.1 Graphics Boards

PC graphics boards available at this time can be roughly classified by their functional-
ity into 2D and 3D accelerators, and by their interface into Peripheral Component In-
terconnect (PCI) and Accelerated Graphics Port (AGP) systems. The 16-bit Industry
Standard Architecture (ISA) expansion bus is in the process of being phased out and
few new graphics cards are being made for it. Table 1-1 compares the currently avail-
able PC system buses.

Table 1-1
Specifications of PC System Buses

BUS WIDTH CLOCK SPEED DATA RATE
ISA 16 bits 8 MHz (varies)
PCI 32 bits 33 MHz 132 MBps
AGP 1X 32 bits 66 MHz 264 MBps
AGP 2X 32 bits 133 MHz 528 MBps
AGP 4X 32 bits 266 MHz 1024 MBps

The PCI bus is present in many old-style Pentium motherboards and graphics
cards continue to be made for this interface. It allows full bus mastering and sup-

© 2003 by CRC Press LLC

ports data transfer rates in burst of up to 132MBps. Some PCI buses that use older
Pentium 75 to 150 run at 25 or 30MHz, but the vast majority operate at 33MHz. The
66MHz PCI is seen in specialized systems.

The AGP port is dedicated for graphics applications and quadruples PCI perfor-
mance. AGP technology is based on Intel’s 440LX and 440BX chipsets used in
Pentium IT and Pentium III motherboards and on the 440 EX chipset designed for the
Intel Celeron processors. The AGP port interface is defined in Intel’s AGP4x proto-
col. A draft version of the AGP8x Interface Specification is currently in the public
review stage. This new standard provides a system-level attach point for graphics
controllers and doubles the bandwidth. At the same time it remains compatible with
connectors and interfaces defined in AGP4x.

The great advantage of AGP over its predecessors is that it provides the graphics
coprocessors with a high bandwidth access system memory. This allows applica-
tions to store graphics data in system RAM. 3D graphics applications use this addi-
tional memory by means of a process called direct memory execute (DIME) or AGP
texturing to store additional image data and to enhance rendering realism. How-
ever, since AGP systems do not require that graphics cards support texturing, this
feature cannot be taken for granted in all AGP boards. In fact, few graphics pro-
grams to date actually take advantage of this feature.

1.7.2 Graphics Coprocessors

While presently it is easy to pick AGP as the best available graphics bus for the PC, se-
lecting a graphics coprocessor is much more complicated. Several among half a dozen
graphics chips share the foreground at this time. Among them are the Voodoo line
from 3Dfx (VoodooZ2 and Voodoo Banshee), Nvidia’s RIVA and GeForce processors,
MGA-G200, and S3 Savage 3D chips. All of these chips are used in top-line boards in
PCI and AGP forms. Other well known graphics chips are 3D Labs Permedia, S3’s
Virge, Matrox’s MGA-64, and Intel’s i740. Recently Nvidia announced their new
GeForce3 graphics processing unit with a 7.63GB/sec memory bandwith and other
state-of-the-art features. Several graphics cards and on-the-motherboard graphics
systems that use the GeForce3 chip are currently under development. Hercules Com-
puter Technologies 3DProphet III is one of the graphics cards that uses Nvidia’s
GeForces.

1.7.3 CPU On-Board Facilities

Graphics, especially 3D graphics, is a calculation-intensive environment. The calculations
are usually simple and can be performed in integer math, but many operations are required
to perform even a simple transformation. Graphics coprocessors often rely on the main
CPU for performing this basic arithmetic. For this reason, graphics-rendering performance
is, in part, determined by the CPU’s mathematical throughput. Currently the mathematical
calculating engines are the math unit and the Multimedia Extension (MMX). The register
size of the math unit and the MMX were expanded in the Pentium 4 CPU.

In the older Intel processors the math unit (originally called the 8087 mathematical

coprocessor) was either an optional attachment or an optional feature. For example, you
could purchase a 486 CPU with or without a built-in math unit. The versions with the

© 2003 by CRC Press LLC

math unit were designated with the letters DX and those without it as SX. With the
Pentium the math unit hardware became part of every CPU and the programmer need
not be concerned about its presence. The math unit is a fast and efficient numerical cal-
culator that finds many uses in graphics programming. Since 486-based machines can be
considered obsolete at this time, our code can safely assume the presence of the Intel
math unit and take advantage of its potential.

In 1997, Intel introduced a version of their Pentium processor that contained 57 new
instructions and eight additional registers designed to support the mathematical calcula-
tions required in 3D graphics and multimedia applications. This additional unit was
named the Multimedia Extension or MMX. The Pentium II and later processors all in-
clude MMX. MMX is based on a the Single Instruction Multiple Data (SIMD) technology,
an implementation of parallel processing; it has a single instruction operating on multiple
data elements. In the MMX the multiple data is stored in integer arrays of 64 bits. The 64
bits can divided into 8 bytes, four packed words, two doublewords, or a single quadword.
The instruction set includes arithmetic operations (add, subtract, and multiply), compari-
sons, conversions, logical operations (AND, NOT, OR, and XOR), shifts, and data trans-
fers. The result is a parallel, simple, and fast calculating engine quite suitable for graphics
processing, especially in 3D.

1.8 3D Application Programming Interfaces

The selection of a PC graphics environment for our application is further complicated by
the presence of specialized application programming interfaces (APIs) furnished by the
various chip manufacturers. For example, 3Dfx furnishes the Glide API for their line of
graphics coprocessors. Inrecent years Glide-based games and simulations have been popu-
lar within the 3D gaming community. An application designed to take full advantage of the
capabilities of the 3Dfx accelerators is often coded using Glide. However, other graphics
coprocessors cannot run the resulting code, which makes the boards incompatible with the
software developed using Glide. Furthermore, Glide and Direct3D are mutually exclusive.
When a Glide application is running, Direct3D programs cannot start and vice versa.

1.8.1 OpenGL and DirectX

One 3D graphics programming interface that has attained considerable support is OpenGL,
developed by Silicon Graphics International (SGI). OpenGL, which stands for Open Graph-
ics Language, originated in graphics workstations and is now part of many system plat-
forms, including Windows 95, 98, and NT, DEC’s AXP, OpenVMS, and X Windows. This led
some to believe that OpenGL will be the 3D graphics standard of the future. In 1999
Microsoft and SGI joined in a venture that was, reportedly, to integrate OpenGL and
DirectX. The project, code named Fahrenheit, was later cancelled.

At this time the mainstream of 3D graphics programming continues to use Microsoft’s
DirectX. The main advantage offered by this package is portability and universal avail-
ability on the PC. DirectX functionality is part of Windows 95, 98, and NT and Microsoft
provides, free of charge, a complete development package that includes a tutorial, sup-
port code, and sample programs. Furthermore, developers are given license to provide
DirectX runtime code with their products with automatic installation that can be made
transparent to the user.

© 2003 by CRC Press LLC

Chapter 2

Polygonal Modeling

Topics:
¢ Vector and raster images
¢ Coordinate systems
e Polygonal representations
¢ Triangles and meshes

This chapter is about how graphics objects are represented and stored in a database.
The starting point of computer graphicsis the representation of graphical objects. The
polygon is the primitive geometrical used in graphically representing objects. The
face of a newborn baby, the surface of a glass vase, or a World War II tank can all be
modeled using hard-sided polygons. Here we discuss the principles of polygonal rep-
resentations and modeling.

2.1 Vector and Raster Data

Computer images are classified into two general types: those defined as a pixel map
and those defined as one or more vector commands. In the first case we refer to raster
graphics and in the second case to vector graphics. Figure 2-1, on the following page,
shows two images of a cross, first defined as a bitmap, and then as a set of vector com-
mands.

The left-side image of Figure 2-1 shows the attribute of each pixel encoded in a
bitmap. The simplest scheme consists of using a 0-bit to represent a white pixel and
a 1-bit to represent a black pixel. Vector commands, on the other hand, refer to the
geometrical elements in the image. The vector commands in Figure 2-1 define the
image in terms of two intersecting straight lines. Each command contains the start
and end points of the corresponding line in a Cartesian coordinate plane that repre-
sents the system’s video display.

An image composed exclusively of geometrical elements, such as a line drawing

of a building, or a machine part, can usually be defined by vector commands. On the
other hand, a naturalistic representation of a landscape may best be done with a

© 2003 by CRC Press LLC

bitmap. Each method of image encoding, raster- or vector-based, has its advantages
and drawbacks. One fact often claimed in favor of vector representation is the re-
sulting memory savings. For example, in a video surface of 600-by-400 screen dots,
the bitmap for representing two intersecting straight lines encodes the individual
states of 240,000 pixels. If the encoding is in a two-color form, as in Figure 2-1, then
1 memory byte is required for each 8 screen pixels, requiring a 30,000-byte memory
area for the entire image. This same image can be encoded in two vector commands
that define the start and end points of each line. By the same token, to describe in
vector commands a screen image of Leonardo’s Mona Lisa would be more compli-
cated and memory consuming than a bitmap.

y
76543210
0L XX o0 7
1LX XD)OO 6
2 5
3 4
4 N y 3
1000)OO 2
1000 o0 L
0000 000 0 X
012345¢67
IMAGE IN BITMAP: IMAGE IN VECTOR COMMANDS:
08H, 08H, 08H, OFFH line from x0, y4 to x7, y4
08H, 08H, 08H, 08H line from x4, yO to x4, y7

Figure 2-1 Raster and Vector Representation of a Graphics Object

In the 3D graphics rasterized images are mostly used as textures and back-
grounds. 3D rendering is based on transformations that require graphics objects de-
fined by their coordinate points. Software operates mathematically on these points
to transform the encoded images. For example, a geometrically defined object can
be moved to another screen location by adding a constant to each of its coordinate
points. In Figure 2-2 the rectangle with its lower left-most vertex at coordinates x =
1, y =2, is translated to the position x = 12, y = 8, by adding 11 units to its x coordinate and
6 units to its y coordinate.

Figure 2-2 Translating an Object by Coordinate Arithmetic

© 2003 by CRC Press LLC

In Chapter 3 we explore geometrical image transformations in greater detail.

2.2 Coordinate Systems

The French mathematician René Descartes (1596-1650) developed a two-dimensional
grid that is often used for representing geometrical objects. In Descartes’s system the
plane is divided by two intersecting lines, known as the abscissa and the ordinate
axis. Conventionally, the abscissais labeled with the letter x and the ordinate with the
letter y. When the axes are perpendicular, the coordinate system is said to be rectan-
gular; otherwise, it is said to be oblique. The origin is the point of intersection of the
abscissa and the ordinate axes. A point at the origin has coordinates (0,0). Coordi-
nates in the Cartesian system are expressed in parenthesis, the first element corre-
sponds to the x axis and the second one to the y axis. Therefore a point at (2,7) is
located at coordinatesx =2, y = 7. Figure 2-3 shows the rectangular cartesian plane.

+y
quadrant Il quadrant |
('X, +y) (+X, +y)
X +X
origin
(0,0)
quadrant Il quadrant IV
(=x, -y) (+x, -y)

Figure 2-3 Cartesian Coordinates

In Figure 2-3 we observe that a point on the x-axis has coordinates (x, 0) and a
point on the y-axis has coordinates (0,). The origin is defined as the point with co-
ordinates (0, 0). The axes divide the plane into four quadrants, usually labeled coun-
terclockwise with Roman numerals I to IV. In the first quadrant x and y have positive
values. In the second quadrant x is negative and ¥y is positive. In the third quadrant
both x and y are negative. In the fourth quadrant x is positive and ¥ is negative.

The Cartesian coordinates plane can be extended to three-dimensional space by
adding another axis, usually labeled z. A point in space is defined by a triplet that ex-
presses its x, y, and 2 coordinates. Here again, a point at the origin has coordinates
(0, 0, 0), while a point located on the any of the three axes has zero coordinates on
the other two. In a rectangular coordinate system the axes are perpendicular. Each
pair of axes determines a coordinate plane: the xy-plane, the xz-plane, and the
yz-plane. The three planes are mutually perpendicular. A point in the xy-plane has
coordinates (x, ¥, 0), a point in the xz-plane has coordinates («x,0,2), and so on. By
the same token, a point not located on any particular plane has non-zero coordi-
nates for all three axes. Figure 2-4 shows the Cartesian 3D coordinates.

© 2003 by CRC Press LLC

http://www.itknowledgebase.net/books/1232/1678_FM.pdf

+z

v

+Xx

origin
(0,0, 0)

Figure 2-4 3D Cartesian Coordinates

The labeling of the axes in 3D space is conventional, although the most common
scheme is to preserve the conventional labeling of the x and y axis in 2D space, and
to add the z axis in the viewer’s direction, as in Figure 2-4. However, adopting the
axis labeling style in which positive x points to the right, and positive y points up-
ward, still leaves undefined the positive direction of the z axis. For example, we
could represent positive z-axis values in the direction of the viewer or in the oppo-
site one. The case in which the positive values of the z-axis are in the direction of
the viewer is called a right-handed coordinate system. The one in which the positive
values of the z-axis are away from the viewer is called a left-handed system. This
last system is consistent with the notion of a video system in which image depth is
thought to be inside the CRT. Left- and right-handed systems are shown in Figure 2-5

ty ty

+z

+X X

left-handed right-handed
+z

Figure 2-5 Left- and Right-Handed Coordinates

© 2003 by CRC Press LLC

You can remember if a system is left- or right-handed by visualizing which hand
needs to be curled over the z-axis so that the thumb points in the positive direction.
In a left-handed system the left hand with the fingers curled on the z-axis has the
thumb pointing away from the viewer. In a right-handed system the thumb points to-
ward the viewer. This is shown in Figure 2-5.

3D modeling schemes do not always use the same axes labeling system. In some
the z-axis is represented horizontally, the y-axis in the direction of the viewer, and
the x-axis is represented vertically. In any case, the right- and left-handedness of a
system is determined by observing the axis that lays in the viewer’s direction, inde-
pendently of its labeling. Image data can be easily ported between different axes’ la-
beling styles by applying a rotation transformation, described later in this chapter.
In Figure 2-6 we have used a 3D Cartesian coordinate system to model a rectangular
solid with dimensionsx =5,y =4,z =3.

*y

+X

Coordinates of points

by
N

'p8 07 p2..
: 06 p3..

ra 03 -
p1 p2) p8..

o]

[€)]
[@NC NG NeN e NC; N
DD DO O O OK
W woowwoo

Figure 2-6 3D Representation of a Rectangular Solid

The table of coordinates, on the right side of the illustration, shows the location
of each vertex. Because the illustration is a 2D rendering of a 3D object, it is not pos-
sible to use a physical scale to determine coordinate values from the drawing. For
example, vertices pl and p4 have identical x and y coordinates; however, they ap-
pear at different locations on the flat surface of the drawing. In other words, the im-
age data stores the coordinates points of each vertex; how these points are rendered
on a 2D surface depends on the viewing system adopted, also called the projection
transformation. Viewing systems and projections are discussed in Chapter 3.

An alternative visualization of the 3D Cartesian coordinate system is based on
planes. In this model each axes pair determines a coordinate plane. Thus, we can re-
fer to the xy-plane, the xz-plane, and the yz-plane. Like axes, the coordinate planes
are mutually perpendicular. This means that the z coordinate of a point p is the
value of the intersection of the z-axis with a plane through p that is parallel to the
yx-plane. If the planes intersect the origin, then a point in the xy-plane has zero
value for the z coordinate, a point in the yz-plane has zero value for the x coordi-
nate, and a point in the xz-plane has zero for the y coordinate. Figure 2-7 shows the
three planes of the 3D Cartesian coordinate system.

© 2003 by CRC Press LLC

Xxy-plane 2

/ (forz=3)

xy-plane 1
(forz=0)
@
&
&
X

z
Figure 2-7 3D Coordinate Planes

We have transferred to Figure 2-7 points p6 and p7 of Figure 2-6. Point p6 is lo-
cated on xy-plane 1, and point p7 in xy-plane 2. The plane labeled xy-plane 2 can be
visualized as the result of sliding xy-plane 1 along the z-axis to the position z = 3.
This explains why the x and y coordinates of points p6 and p7 are the same.

2.2.1 Modeling Geometrical Objects

Much of 3D graphics programming relates to representing, storing, manipulating, and
rendering vector-coded geometrical objects. In this sense, the problem of representa-
tion precedes all others. Many representational forms are in use; most are related to a
particular rendering algorithms associated with a graphics platform or development
package. In addition, representational forms determine data structures, processing
cost, final appearance, and editing ease. The following are the most frequently used:

1. Polygonal representations are based on reducing the object to a set of polygonal sur-
faces. This approach is the most popular one due to its simplicity and ease of render-
ing.

2. Objects can also be represented as bicubic parameteric patch nets. A patchnetis aset
of curvilinear polygons that approximate the object being modeled. Although more
difficult to implement than polygonal representations, objects represented by
parameteric patches are more fluid; this explains their popularity for developing CAD
applications.

3. Constructive solid geometry (CSG) modeling is based on representing complex object
by means of simpler, more elementary ones, such as cylinders, boxes, and spheres.
This representation finds use in manufacturing-related applications.

4. Space subdivision techniques consider the whole object space and define each point
accordingly. The best known application of space subdivision technique is ray tracing.
With ray tracing processing is considerably simplified by avoiding brute force opera-
tions on the entire object space.

© 2003 by CRC Press LLC

We concentrate out attention on polygonal modeling, with occasional reference
to parameteric patches.

2.3 Modeling with Polygons

A simple polygon is a 2D figure formed by more than two connected and
non-intersecting line segments. The connection points for the line segments are called
the vertices of the polygon and the line segments are called the sides. The fundamental
requirements that the line segments be connected and non-intersecting eliminates
from the polygon category certain geometrical figures, as shown in Figure 2-8.

QO =

invalid polygons

vertex

valid polygons
Figure 2-8 Valid and Invalid Polygons

Polygons are named according to their number of sides or vertices. A triangle,
which is the simplest possible polygon, has three vertices. A quadrilateral has four, a
pentagon has five, and so on. A polygon is said to be equilateral if all its sides are
equal, and equiangular if all its angles are equal. A regular polygon is both equilat-
eral and equiangular. Figure 2-9 shows several regular polygons.

A OO0

triangle quadrilateral pentagon hexagon octagon

Figure 2-9 Regular Polygons

Polygons can be convex or concave. In a convex polygon the extension of any of
its sides does not cut across the interior of the figure. We can also describe a convex
polygon as one in which the extensions of the lines that form the sides never meet
another side. Figure 2-10 shows a convex and a concave polygon.

convex concave

Figure 2-10 Concave and Convex Polygons

© 2003 by CRC Press LLC

Specific software packages often impose additional restrictions on polygon valid-
ity in order to simplify the rendering and processing algorithms. For example,
OpenGL requires that polygons be concave and that they be drawn without lifting
the pen. In OpenGL, a polygon that contains a non-contiguous boundary is consid-
ered invalid.

2.3.1 The Triangle

Of all the polygons, the one most used in 3D graphics is the triangle. Not only is it the
simplest of the polygons, but all the points in the surface of a triangular polygon must
lie on the same plane. In other polygons this may or may not be the case. In other
words, the figure defined by three vertices must always be a plane, but four or more
vertices can describe a figure with more than one plane. When all the points on the fig-
ure are located on the same surface, the figure is said to be coplanar. Figure 2-11 shows
coplanar and non-coplanar polygons.

coplanar non-coplanar
polygon polygon

Figure 2-11 Coplanar and Non-Coplanar Polygons
The coplanar property of triangular polygons simplifies rendering. In addition,

triangles are always convex figures. For this reason 3D software such as Microsoft’s
Direct3D, rely heavily on triangular polygons.

2.3.2 Polygonal Approximations

Solid objects with curved surfaces can be approximately represented by combining
several polygonal faces. For example, a circle can be approximated by means of a
polygon. The more vertices in the polygon, the better the approximation. Figure 2-12
shows the polygonal approximation of a circle. The first polygon has 8 vertices, while
the second one has 16.

Figure 2-12 Polygonal Approximation of a Circle

© 2003 by CRC Press LLC

A solid object, such as a cylinder, can be approximately represented by means of
several polygonal surfaces. Here again, the greater the number of polygons, the
more accurate the approximation. Figure 2-13 shows the polygonal approximation
of a cylinder.

Figure 2-13 Polygonal Approximation of a Cylinder

2.3.3 Edges

When objects are represented by polygonal approximations, often two polygons share
a common side. This connection between vertex locations that define a boundary is
called an edge. Edge representations of polygons simplify the database by avoiding re-
dundancy. This is particularly useful if an object shares a large number of edges. Fig-
ure 2-14 shows a figure represented by two adjacent triangular polygons that share a
common edge.

p1
edge

'p2

Figure 2-14 Polygon Edge

In an edge representation the gray triangle in Figure 2-14 is defined in terms of its
three vertices, labeled pl, p2, and p3. The white triangle is defined in terms of its
edge and point p4. Thus, points p2 and p3 appear but once in the database.
Edge-based image databases provide a list of edges rather than of vertex locations.
Figure 2-15 shows an object consisting of rectangular polygons.

© 2003 by CRC Press LLC

Figure 2-15 Edge Representation of Polygons

In Figure 2-15 each vertical panel consists of 6 triangles, for a total of 30 triangles.
If each triangle were defined by its three vertices, the image database would require
90 vertices. Alternatively, the image could be defined in terms of sides and edges.
There are 16 external sides which are not shared, and 32 internal sides, which are
edges. Therefore, the edge-based representation could be done by defining 48 edges.
The rendering system keeps track of which edges have already been drawn, avoid-
ing duplication, processing overheads, and facilitating transparency.

2.3.4 Meshes

In 3D graphics an object can be represented as a polygon mesh. Each polygon in the
mesh constitutes a facet. Facets are used to approximate curved surfaces; the more
facets the better the approximation. Polygon-based modeling is straightforward and
polygon meshes are quite suitable for using shading algorithms. In the simplest form a
polygon mesh is encoded by means of the x, ¥, and z coordinates of each vertex. Alter-
natively, polygons can be represented by their edges, as previously described. In ei-
ther case, each polygon is an independent entity that can be rendered as a unit. Figure
2-16 shows the polygon mesh representation of a teacup and the rendered image.

Figure 2-16 Polygon Mesh Representation and Rendering of a Teacup

© 2003 by CRC Press LLC

Chapter 3

Image Transformations

Topics:
e Matrix arithmetic
¢ 2D transformations and homogeneous coordinates
¢ 3D transformations

Computer graphics rely heavily on geometrical transformations for generating and an-
imating 2D and 3D imagery. In this chapter we introduce the essential transformation:
translation, rotation, and scaling. The geometrical transformations are first presented
in the context of 2D imagery, and later extended to 3D.

3.1 Matrix-Based Representations

In Chapter 2 we discussed vector images and how graphics objects are modeled by
means of polygons and polygons meshes. Here we see how the coordinate points that
define a polygon-based image can be manipulated in order to transform the image it-
self. Suppose an arrow indicating anortherly direction, which is defined by the coordi-
nates of its start and end points. By rotating the end point 45 degree clockwise we can
make the arrow point in a north-easterly direction. In general, if an image is defined as
aseries of points in the Cartesian plane, then the image can be rotated by a mathemati-
cal operation on the coordinates of each point. If the image is defined as one or more
straight lines or simple polygons, then the transformation applied to the primitive im-
age elements is also a transformation of the image itself.

Image transformations are simplified by storing the coordinates of each image
point in a rectangular array. The mathematical notion of a matrix as a rectangular ar-
ray of values turns out to be quite suitable for storing the coordinates of image
points. Once the coordinates of each point that defines the image are stored in a ma-
trix, we can use standard operations of linear algebra to perform geometrical trans-
formations on the image. Figure 3-1 shows the approximate location of seven stars
of the constellation Ursa Minor, also known as the Little Dipper. The individual stars
are labeled with the letters a through g. The star labeled a corresponds to Polaris
(the Pole star).

© 2003 by CRC Press LLC

http://www.itknowledgebase.net/books/1232/1678_FM.pdf

Figure 3-1 Point Representation of the Stars In the Constellation Ursa Minor

The coordinates of each star of the Little Dipper, in Figure 3-1, can be represented
in tabular form, as follows:

Star x vy
a 0 0
b -1 11
c 1 8
d 0 12
e 2 5
£ 3 9
g 1 2

The coordinate matrix is a sets of x,y coordinate pairs. 3D representations re-
quire an additional 2 coordinate that stores the depth of each point. 3D matrix repre-
sentations are discussed later in this chapter.

3.1.1 Image Transformation Mathematics

Animage can be changed into another one by performing mathematical operations on
its coordinate points. Figure 3-2 shows the translation of aline from coordinates (2,2)
and (10,14) to coordinates (10,2) and (18,14).

10, 14 18,14

2,2 10, 2

Figure 3-2 Translation of a Straight Line

© 2003 by CRC Press LLC

Notice that in Figure 3-2 translation is performed by adding 8 to the start and end
x coordinates of the original line. This operation on the x-axis coordinates results in
a horizontal translation of the line. A vertical translation requires manipulating the y
coordinate. To translate the line both horizontally and vertically we operate on both
coordinate axes simultaneously.

3.2 Matrix Arithmetic

Matrices are used in many fields of mathematics. In linear algebra matrices can hold
the coefficients of linear equations. Once an equation is represented in matrix form, it
can be manipulated (and often solved) by performing operations on the matrix rows
and columns. Here we are interested only in matrix operations that perform geometri-
calimage transformations. The most primitive of these, translation, rotation, and scal-
ing, are common in graphics and animation programming. Other transformations are
reflection (mirroring) and shearing.

We define a matrix as a rectangular array usually containing a set of numeric val-
ues. It is customary to represent a matrix by means of a capital letter. For example,
the following matrix, designated by the letter A, has three rows and two columns.

10 22
A= 3 4
7 1

The size of a matrix is determined by its number of rows and columns. It is com-
mon to state matrix size as a product, for example, matrix A, above, is a 3-by-2 ma-
trix.

3.2.1 Scalar-by-Matrix Operations

A single numerical quantity is called a scalar. Scalar-by-matrix operations are the sim-
plest procedures of matrix arithmetic. The following example shows the multiplica-
tion of matrix A by the scalar 3.

30 66
34=| 9 12
21 3

If a scalar is represented by the variable s, the product matrix sA is the result of
multiplying each element in the matrix A by the scalar s. In the same manner, scalar
addition and subtraction are performed by adding or subtracting the scalar quantity
to each matrix element.

3.2.2 Matrix Addition and Subtraction

Matrix addition and subtraction are performed by adding or subtracting each element
in a matrix to the corresponding element of another matrix of equal size. In the follow-
ing example, matrix C is the algebraic sum of each element in matrices A and B.

© 2003 by CRC Press LLC

2 471 2773 6
3 1) [2 2] |5 13
1os|Tl=1 370 2
1 <1]o of |1 =

The fundamental restriction of matrix addition and subtraction is that both matri-
ces must be of equal size, that is, they must have the same number of rows and of
columns. Matrices of different sizes cannot be added or subtracted.

3.2.3 Matrix Multiplication

Matrix addition and subtraction intuitively correspond to conventional addition and
subtraction. The elements of the two matrices are added or subtracted, one-to-one, to
obtain the result. The fact that both matrices must be of the same size makes the opera-
tions easy to visualize. Matrix multiplication, on the other hand, is not the multiplica-
tion of the corresponding elements of two matrices, but a unique sum-of-products
operation. In matrix multiplication the elements of a row in the multiplicand matrix
are multiplied by the elements in a column of the multiplier matrix. These resulting
products are then added to obtain the final result. The process is best explained by de-
scribing the individual steps. Consider the following matrices:

(135
A=

210
(5 10 2
B=|1 2 3
15

From the definition of matrix multiplication we deduce that if the columns of the
first matrix are multiplied by the rows of the second matrix, then each row of the
multiplier must have the same number of elements as each column of the multipli-
cand. Notice that the matrices A and B, in the preceding example, meet this require-
ment. However, observe that product B x A is not possible, since matrix B has three
elements per row and matrix A has only two elements in each column. For this rea-
son the matrix operation A x B is possible but B x A is undefined. The row by col-
umn operation in A x B is performed as follows.

First row of A Columns of B Products Sum
1 35 5 1 11 5 3 55 63
1 35 X 10 5 = 10 6 25 = 41
1 35 2 9 20 31

© 2003 by CRC Press LLC

Second row of A Columns of B Products Sum

2 10 5 1 11 10 1 O 11
210 X 10 2 5 = 20 2 0 = 22
2 10 2 3 4 4 3 0 7

The products matrix has the same number of columns as the multiplicand matrix
and the same number of rows as the multiplier matrix. In the previous example, the
products matrix C has the same number of rows as A and the same number of col-
umns as B. In other words, C is a 2 x 3 matrix. The elements obtained by the above
operations appear in matrix C in the following manner:

63 41 31
C=
11 22 7
Recall that in relation to matrices A and B in the previous examples, the opera-
tion A x B is possible but B x A is undefined. This fact is often described by saying
that matrix multiplication is not commutative. For this reason, the product of two
matrices can be different if the matrices are taken in different order. In fact, in re-

gards to non-square matrices, if the matrix product A x B is defined, then the prod-
uct B x A is undefined.

On the other hand, matrix multiplication is associative. This means that the prod-
uct of three or more matrices is equal independently of the order in which they are
multiplied. For example, in relation to three matrices, A, B, and C, we can state that
(AxB) x Cequals A x (BxC). Inthe coming sections you will often find use for the
associative and non-commutative properties of matrix multiplication.

3.3 Geometrical Transformations

A geometrical transformation can be viewed as the conversion of one image onto an-
other one by performing mathematical operations on its coordinate points. Geometri-
cal transformations are simplified by storing the image coordinates in matrix form. In
the following sections, we discuss the most common transformations: translation,
scaling, and rotation. The transformations are first described in terms of matrix addi-
tion and multiplication, and later standardized so that they can all be expressed in
terms only of matrix multiplication.

3.3.1 Translation Transformation

A translation transformation is the movement of a graphical object to anew location
by adding a constant value to each coordinate point. The operation requires that the
same constant be added to all the coordinates in each plane, but a different constant
can be used for each plane. For example, a translation transformation takes place if
the constant 5is added to all x coordinates and the constant 2 to all y coordinates of an
object represented in a two-dimensional plane.

© 2003 by CRC Press LLC

In Figure 3-3 we see the graph and the coordinates matrix for seven stars in the
Constellation Ursa Minor. A translation transformation is performed by adding 5 to
the x coordinate of each star and 2 to the y coordinate. The bottom part of Figure
3-3 shows the translated image and the new coordinates.

4d original
be coordinates:
T o star x h's
1 ec a 0 0
b -1 11
T .e c 1 8
T d 0 12
l.g e 2 5
£ 3 9
gt g 1 2
translated
T . +d coordinates
£ b (x+5, y+2):
of star x v
T °C a 5 2
T R b 4 13
1 ° c 6 10
d 5 14
T *g e 7 7
1 . £ 8 11
| | | | aI | | g 6 4
I I I I T I I

Figure 3-3 A Translation Transformation

In terms of matrices, the translation transformation can be viewed as the opera-
tion:

A+B=C

where A is the matrix holding the original coordinates, B is the transformation matrix
holding the values to be added to each coordinate plane, and C is the matrix of the
transformed coordinated. Regarding the images in Figure 3-3 the matrix operation is

as follows: ~ ~ ~ ~ -~ ~
0 O 5 2 5 2
-1 11 5 2 4 13
I 8 5 2 6 10
0 12 + |5 2| =15 14
2 5 2 77
3 5 2 8 11
|1 2] |5 2] | 6 4]

© 2003 by CRC Press LLC

Notice that the transformation matrix holds the constants to be added to the x
and y coordinates. Since, by definition of the translation transformation, the same
value must be added to all the elements of a coordinate plane, it is evident that the
columns of the transformation matrix always hold the same numerical value.

3.3.2 Scaling Transformation

To scale is to apply a multiplying factor to the linear dimension of an object. A scaling
transformation is the conversion of a graphical object into another one by multiply-
ing each coordinate point that defines the object. The operation requires that all the
coordinates in each plane be multiplied by the scaling factor, although the scaling fac-
tors can be different for each plane. For example, a scaling transformation takes place
when all the x coordinates of an object represented in a two-dimensional plane are
multiplied by 2 and all the ¥ coordinates of this same object are multiplied by 3. In this
case the scaling transformation is said to by asymmetrical.

In comparing the definition of the scaling transformation to that of the transla-
tion transformation we notice that translation is performed by adding a constant
value to the coordinates in each plane, while scaling requires multiplying these co-
ordinates by a factor. The scaling transformation can be represented in matrix form
by taking advantage of the properties of matrix multiplication. Figure 3-4 shows a
scaling transformation that converts a square into a rectangle.

Figure 3-4 Scaling Transformation

The coordinates of the square in Figure 3-4 can be stored in a 4-by-2 matrix, as fol-
lows:

S NN O
NN OO

© 2003 by CRC Press LLC

In this case the transformation matrix holds the factors that must be multiplied
by the x and y coordinates of each point in order to perform the scaling transforma-
tion. Using the term Sx to represent the scaling factor for the x coordinates, and the
term Sy to represent the scaling factor for the y coordinates, the scaling transforma-
tion matrix is as follows:.

Sx 0
0 Sy

The transformation of Figure 3-4, which converts the square into a rectangle, is
expressed in matrix transformation as follows:

R

The intermediate steps in the matrix multiplication operation can be obtained fol-
lowing the rules of matrix multiplication described previously.

S DN O
NS \S I e i -l
S ~ B~ O
AN &N O O

Figure 3-5 shows the scaling transformation of the graph of the constellation Ursa
Minor. In this case, in order to produce a symmetrical scaling, the multiplying factor
is the same for both axes. A symmetrical scaling operation is sometimes referred to
as a zoom.

Figure 3-5 Symmetrical Scaling (Zooming)

3.3.3 Rotation Transformation

A rotation transformation is the conversion of a graphical object into another one by
moving all coordinate points that define the original object, by the same angular value,
along circular arcs with acommon center. The angular value is called the angle of rota-

© 2003 by CRC Press LLC

tion and the fixed point that is common to all the arcs is the center of rotation. Notice
that some geometrical figures are unchanged by specific rotations. For example, a cir-
cleisunchanged by a rotation about its center, and a square is unchanged if rotated by
an angle that is amultiple of 90 degrees. In the case of a square the intersection point of
both diagonals is the center of rotation.

The mathematical interpretation of the rotation is based on elementary trigonom-
etry. Figure 3-6 shows the counterclockwise rotation of points located on the coor-
dinate axes, at unit distances from the center of rotation.

pr1
pr2

X X

1 Pt

v

Figure 3-6 Rotation of a Point
The left side drawing of Figure 3-6 shows the counterclockwise rotation of point
pl, with coordinates (1,0), through an angle . The coordinates of the rotated point

(prl) can be determined by solving the triangle with vertices at O, p1 and prl, as fol-
lows:

X
cosrz?x =cosr

sinr =%,y =sinr

The coordinates of the rotated point pr2, shown on the right side drawing in Fig-
ure 3-6, can be determined by solving the triangle with vertices at O, p2 and pr2.

sinr:T,x =—sinr

cosr:%,y=cosr

The coordinates of the rotated points can now be expressed as follows.
coordinates of prl = (cos 1, sin 7)

coordinates of pr2 = (-sin 7, cos 1)

© 2003 by CRC Press LLC

From these equations we can derive a transformation matrix, which, through ma-
trix multiplication, yields the new coordinates for the counterclockwise rotation

through an angle A

cosr
—sinr

sinr
cosr

We are now ready to perform a rotation transformation through matrix multipli-
cation. Figure 3-7 shows the clockwise rotation of the stars in the constellation Ursa
Minor, through an angle of 60 degrees, with center of rotation at the origin of the co-

ordinate axes.

Figure 3-7 Rotation Transformation

Suppose that the coordinates of the four vertices of a polygon are stored in a

4-by-2 matrix as follows:

12

B O O

The transformation matrix for clockwise rotation through an angle 7 is as follows:

cosr sinr
—sinr cosr

Evaluating this matrix for 60 degrees gives the following trigonometric functions.

0.5
-0.867

© 2003 by CRC Press LLC

0.867
0.5

Now the rotation can now be expressed as a product of two matrices, one with
the coordinates of the polygon points and the other one with the trigonometric func-
tions, as follows:

10 2 3.87 9.87
12 0 0.5 0867] | 6 104
14 2 {—0.867 0.5 } 527 13.4
12 4 253 12.4

The resulting matrix contains the coordinates of the points rotated through and
angle of 60 degrees. The intermediate steps in the matrix multiplication operation
are obtained following the rules of matrix multiplication described earlier in this
chapter.

3.3.4 Homogeneous Coordinates

Expressing translation, scaling, and rotation mathematically, in terms of matrix oper-
ations, allows simplifying graphical transformations. However, as previously de-
scribed rotation and scaling are expressed in terms of matrix multiplication, while
translation is expressed as matrix addition. It would simplify processingif all three ba-
sic transformations could be expressed in terms of the same mathematical operation.
Fortunately, it is possible to represent the translation transformation as matrix multi-
plication. The scheme requires adding a dummy parameter to the coordinates matri-
ces and expanding the transformation matrices to 3-by-3 elements.

If the dummy parameter, usually labeled w, is not to change the point’s coordi-
nates it must meet the following condition:

X=XXW
y=yxXw

It follows that 1 is the only value that can be assigned to w . Using the terms Tx
and Ty to represent the horizontal and vertical units of a translation, a transforma-
tion matrix for the translation operation can be expressed as follows:

1 0 0
0 1 0
Ix Ty 1

We test these results by performing a translation of 8 units in the horizontal direc-
tion (Tx = 8) and 0 units in the vertical direction (Ty = 0) of the point located at co-
ordinates (5,2). In this case matrix operations are as follows:

[5 2 1] x = 12 2 1]

o O
S = O
—_ O O

© 2003 by CRC Press LLC

This shows the point at x = 5, ¥y = 2 translated 8 units to the right, with destination
coordinates of x = 13, y = 2. Observe that the w parameter, set to 1 in the original
matrix, remains the same in the final matrix. For this reason, in actual processing
the additional parameter can be ignored.

3.3.5 Concatenation

In order to take full advantage of the system of homogeneous coordinates you must
express all transformations in terms of 3-by-3 matrices. As you have already seen, the
translation transformation in homogeneous coordinates is expressed in the following

matrix:
1 0 0
0O 1 O
Ix Ty 1

The scaling transformation matrix is as follows:

Sx 0 0
0 Sy 0
0 0 1

where Sx and Sy are the scaling factors for the x and y axes. The transformation matrix
for a counterclockwise rotation through an angle » can be expressed in homogeneous
coordinates as follows:

cosr sinr 0

—sinr cosr 0

0 0 1

Notice that the rotation transformation assumes that the center of rotation is at
the origin of the coordinate system.

Matrix multiplication is associative. This means that the product of three or more
matrices is equal, no matter which two matrices are multiplied first. By virtue of this
property, we are now able to express a complex transformation by combining sev-
eral basic transformations. This process is generally known as matrix concatena-
tion.

For example, in Figure 3-7 the image of the constellation Ursa Minor is rotated
counterclockwise 60 degrees about the origin. But it is possible to perform this
transformation using any arbitrary point in the coordinate system as a pivot point.
For instance, to rotate the polygon about any arbitrary point pa, the following se-
quence of transformations is executed:

1. Translate the polygon so that point pa is at the coordinate origin.

2. Rotate the polygon.

© 2003 by CRC Press LLC

3. Translate the polygon so that point pa returns to its original position.

In matrix form the sequence of transformations can be expressed as the following

product:
1 0 0 cosr sinr 0 1 0 O
0 1 0| X |=sinr cosr O x |0 1 O
-Ix Ty 1 0 0 1 Ix Ty 1

Performing the indicated multiplication yields the matrix for a counterclockwise
rotation, through angle 7, about point pa, with coordinates (Tx,Ty).

While matrix multiplication is associative, it is not commutative. Therefore, the
order in which the operations are performed can affect the results. A fact that con-
firms the validity of the matrix representation of graphic transformations is that,
graphically, the results of performing transformations in different sequences can
also yield different results. For example, the image resulting from a certain rotation,
followed by a translation transformation, may not be identical to the one resulting
from performing the translation first and then the rotation.

Figure 3-8 shows a case in which the order of the transformations determines a
difference in the final object.

<>

O

Figure 3-8 Order of Transformations

3.4 3D Transformations

Two-dimensional objects are defined by their coordinate pairs in 2D space. By extend-
ing thismodel we canrepresent a three-dimensional object by means of aset of coordi-
nate triples in 3D space. Adding a z-axis that encodes the depth component of each
image point produces a three-dimensional coordinate plane. The coordinates that de-
fine each image point in 3D space are a triplet of x, ¥, and z values. Because the
three-dimensional model is an extension of the two-dimensional one, we can apply
geometrical transformations in a similar manner as we did with two-dimensional ob-
jects. Figure 3-9 shows a cube in 3D space.

© 2003 by CRC Press LLC

p8 p7

p4 b3

| p5 _|p6

o1 p2

Figure 3-9 3D Representation of a Cube.

In Figure 3-9 the cube is defined by means of the coordinate triplets of each of its
eight points, represented in the figure by the labeled black dots. In tabular form the
coordinates of each point are defined as follows:

X Y Z
Pl 0 0 2
P2 4 0 2
P3 4 2 2
P4 0 2 2
P5 0 0 0
P6 4 0 0
P7 4 2 0
P8 0 2 0

Point p5, which is at the origin, has values of zero for all three coordinates. Point
pl is located 2 units along the z-axis, therefore its coordinates are x =0,y =0, 2 = 2.
Notice that if we were to disregard the z-axis coordinates, then the two planes
formed by points p1, p2, p3, and p4 and points p5, p6, p7, and p8 would have identi-
cal values for the x and y axis. This is consistent with the notion of a cube as a solid
formed by two rectangles residing in 3D space.

3.4.1 3D Translation

In 2D representations a translation transformation is performed by adding a constant
value to each coordinate point that defines the object. This continues to be true when
the point’s coordinates are contained in three planes. In this case the transformation
constant is applied to each plane to determine the new position of each image point.
Figure 3-10 shows the translation of a cube defined in 3D space by adding 2 units to the
x axis coordinates, 6 units to the y axis, and -2 units to the 2 axis.

© 2003 by CRC Press LLC

Translation
4 constants:
p1’ X =x + 2
y =y + 6
z =z — 2

p1
z

Figure 3-10 Translation Transformation of a Cube

If the coordinate points of the eight vertices of the cube in Figure 3-10 were repre-
sented in a 3-by-8 matrix (designated as matrix A) and the transformation constants
in a second 8-by-3 matrix (designated as matrix B) then we could perform the trans-
lation transformation by means of matrix addition and store the transformed coordi-
nates in a results matrix (designated as matrix C. The matrix operation C = A + B
operation would be as follows:

4.0 2 2 6 2 6 6 0
4 2 2 2 6 2 68 0
02 2 2 6 -2 2.8 0
000[+1[26 2[=1|26 =2
400 2 6 2 6 6 -2
420 2 6 2 6 8 -2
020 |26 2] |28 2

Here again, we can express the geometric transformation in terms of homoge-
neous coordinates. The translation transformation matrix for 3D space would be as
follows:

I 0 0 O
0 1 0 O
0 0 1 0
Ix Ty 1z 1

© 2003 by CRC Press LLC

The parameters Tx, Ty, and Tz represent the translation constants for each axis.
Asin the case of a 2D transformation, the new coordinates are determined by adding
the corresponding constant to each coordinate point of the figure to be translated. If
x’, ', and 2’ are the translated coordinates of the point at x, y, and z, the translation
transformation takes place as follows:

x'=x+Tx
y'=y+TIy
z'=z+1z

As in the case of 2D geometrical transformations, the transformed results are ob-
tained by matrix multiplication using the matrix with the object’s coordinate points
as one product matrix, and the homogenous translation transformation matrix as
the other one.

3.4.2 3D Scaling

A scaling transformation consists of applying a multiplying factor to each coordinate
point that defines the object. A scaling transformation in 3D space is consistent with
the scaling in 2D space. The only difference is that in 3D space the scaling factor is ap-
plied to each of three planes, instead of the two planes of 2D space. Here again the scal-
ing factors can be different for each plane. If this is the case, the resulting
transformation is described as an asymmetrical scaling. When the scaling factor is the
same for all three axes, the scaling is described as symmetrical or uniform. Figure 3-11
shows the uniform scaling of a cube by applying a scaling factor of 2 to the coordinates
of each figure vertex.

<

Figure 3-11 Scaling Transformation of a Cube

© 2003 by CRC Press LLC

The homogeneous matrix for a 3D scaling transformation is as follows:

Sx 0 0 0
0 S 0 0
0 0 Sz 0
0 0 0 1

The parameters Sx, Sy, and Sz represent the scaling factors for each axis. As in
the case of a 2D transformation, the new coordinates are determined by multiplying
the corresponding scaling factor with each coordinate point of the figure to be
scaled. If x’, y’, and 2’ are the scaled coordinates of the point at x, ¥, and z, the scal-
ing transformation takes place as follows:

x'=xXx8x
y'=yxSy
z'=zX S8z

In homogeneous terms, the transformed results are obtained by matrix multipli-
cation using the matrix with the object’s coordinate points as one product matrix,
and the homogeneous scaling transformation matrix as the other one.

When the object to be scaled is not located at the origin of the coordinates axis, a
scaling transformation will also result in a translation of the object to another loca-
tion. This effect is shown in Figure 3-12.

»
>

v
X

Figure 3-12 Scaling Transformation of an Object Not at the Origin

© 2003 by CRC Press LLC

Assuming that point pl in Figure 3-12 located at coordinates x = 2, y = 2, 2 = -2,
and that a uniform scaling of 3 units is applied, then the coordinates of translated
point p1’ are as follows:

v Z
pl ..., 2 2 -2
6 -12

The result is that not only is the cube tripled in size, it is also moved to a new po-
sition in the coordinates plane. In order to scale an image with respect to a fixed po-
sition it is necessary to first translate it to the origin, then apply the scaling factor,
and finally to translate it back to its original location. The necessary manipulations
are shown in Figure 3-13.

y
A A
> X S — S —
INITIAL :
z FIGURE TRANSLATE
TO ORIGIN
A
A
e >
SCALE 4 RE-TRANSLATE TO

INITIAL LOCATION

Figure 3-13 Fixed-Point Scaling Transformation

In terms of matrix operations a fixed-point scaling transformation consists of ap-
plying a translation transformation to move the point to the origin, then the scaling
transformation, followed by another translation to return the point to its original lo-
cation. If we represent the fixed position of the point as &/, ¥/, 2/, then the translation
to the origin is represented by the transformation:

T(—xf, _yf, _Zf)

© 2003 by CRC Press LLC

The transformation to return the point to its original location is:

T(, ', ')

Therefore, the fixed-point scaling consists of:
T(-x', =y, =z") x S(Sx, Sy, Sz) x T(x', y/, z/)

and the homogeneous matrix is:

Sx 0 0 0
0 Sy 0 0
0 0 Sz 0
(1-Sx)x’ (1=-Sy)y/ (1-S2)z/ 1

where S is the scaling matrix and T the transformation matrix.

3.4.3 3D Rotation

Although 3D translation and scaling transformations are described as simple exten-
sions of the corresponding 2D operations, the 3D rotation transformation is more
complex that its 2D counterpart. The additional complications arise from the fact that
in 3D space, rotation can take place in reference to any one of the three axes. There-
fore an object can be rotated about the x, y, or 2 axes, as shown in Figure 3-14.

Cl2

Figure 3-14 Rotation in 3D Space

© 2003 by CRC Press LLC

In defining 2D rotation we adopted the convention that positive rotations pro-
duce a clockwise movement about the coordinate axes, when looking in the direc-
tion of the axis, towards the origin, as shown by the elliptical arrows in Figure 3-14.
Figure 3-15 shows the positive, x-axis rotation of a cube.

Figure 3-15 Positive, x-axis Rotation of a Cube

A rotation transformation leaves unchanged the coordinate values along the axis
of rotation. For example, the x coordinates of the rotated cube in Figure 3-15 are the
same as those of the figure at the top of the illustration. By the same token, rotating
an object along the z-axis changes its ¥ and x coordinates while the z-coordinates
remain the same. Therefore, the 2D rotation transformation equations can be ex-
tended to a 3D rotation along the z-axis, as follows:

cosr sinr 0 0
—sinr cosr 0 O
0 0 10

0 0 0 1

Here again, r is the angle of rotation.

By performing a cyclic permutation of the coordinate parameters we can obtain
the transformation matrices for rotations along the x and y axis. In homogeneous
coordinates they are as follows:

© 2003 by CRC Press LLC

1 0 0 0 cosr 0 —sinr 0
0 cosr sinr 0 0 1 0 0
0 —sinr cosr O sinr 0 cosr O
0 0 0 1 0 0 0 1

3.4.4 Rotation about an Arbitrary Axis

You often need to rotate an object about an axis parallel to the coordinate axis but dif-
ferent from the one in which the objectis placed. In the case of the 2D fixed-point scal-
ing transformation shown in Figure 3-13, we performed a translation transformation
toreposition the object in the coordinates planes, then performed the scaling transfor-
mation, and concluded by re-translating the object to its initial location. Similarly, we
canrotate a3D object about an arbitrary axis by first translating it to the required posi-
tion on the coordinate plane, then performing the rotation, and finally relocating the
object at its original position. For example, suppose we wanted to rotate a cube, lo-
cated somewhere on the coordinate plane, along its own x axis. In this case we may
need to relocate the object so that the desired axis of rotation lies along the x-axis of
the plane. Once in this position, we can perform the rotation applying the rotation
transformation matrix for the x axis. After the rotation, the objectis repositioned toits
original location. The sequence of operations is shown in Figure 3-16.

y
A y
A
- INITIAL
: TRANSLATE TO
@ -----) FIGURE ROTATION AXIS
> X T—> X
z z ‘,," ------------- -
y
y A
A
ROTATE @
> X
z RE-TRANSLATE TO

INITIAL LOCATION

Figure 3-16 Rotation About an Arbitrary Axis

© 2003 by CRC Press LLC

In this case it is possible to see one of the advantages of homogeneous coordi-
nates. Instead of performing three different transformations, we can combine,
through concatenation, the three matrices necessary for the entire transformation
into a single one that performs the two translations and the rotation. Matrix concat-
enation was covered earlier in this chapter.

© 2003 by CRC Press LLC

Chapter 4

Programming Matrix Transformations

Topics:
¢ Graphics data in matrix form
¢ Creating and storing matrix data
¢ Processing array elements
e Vector-by-scalar operations
¢ Matrix-by-matrix operations

The representation and manipulation of image data in matrix form is one of the most
powerful tools of graphics programming in general, and of 3D graphics in particular. In
this chapter we develop the logic necessary for performing matrix-based operations.
Matrix-level processing operations are often used in 3D graphics programming.

4.1 Numeric Data in Matrix Form

In Chapter 3 you saw that a matrix can be visualized as a rectangular pattern of rows
and columns containing numeric data. In graphics programming the data in the matrix
isimage related, most often consisting of the coordinate values, in 2D or 3D space, for
the vertices of a polygon. In general terms, a matrix element is called an entry.

Matrix data is stored in computer memory as a series of ordered numeric items.
Each numeric entry in the matrix takes up memory space according to the storage
format. For example, if matrix data is stored as binary floating-point numbers in the
FPU formats, each entry takes up the following space:

Single precision real 4 bytes,
Double precision real 8 bytes,
Extended precision real .. 10 bytes.

Integer matrices will vary from one high-level language to another one and even
in different implementations of the same language. Microsoft Visual C++ in 32-bit
versions of Windows uses the following data ranges for the integers types:

© 2003 by CRC Press LLC

char, unsigned char 1 byte
short, unsigned short 2 bytes
long, unsigned long 4 bytes

The most common data format for matrix entries is the array. If the storage con-
vention is based on having elements in the same matrix row stored consecutively in
memory, then the matrix is in row-magjor order. However, if consecutive entries are
items in the same matrix column then the matrix is in column-magor order. C, C++,
and Pascal assume row-major order, while BASIC and FORTRAN use column-major
order.

4.1.1 Matrices in C and C++

In C and C++ a matrix can is usually defined as a multi-dimensional array. Like many
other high-level languages, C++ implements multi-dimensional arrays as arrays of ar-
rays. For example:

double matx[4][4] = {
{2.1, 3.0, -1.0, 4.3}, // Array 1
{1.3, 0.0, 2.0, -3.2}, // Array 2
{1.2, 12.7, -4.0, 7.0}, // Array 3
{3.0, 1.0, -1.0, 1.22}, // Array 4

Y

The array matX[][] is two dimensional. In fact, it actually consists of four
one-dimensional arrays. In C and C++ when a multi-dimensional array is passed as
an argument to a function, the called code must be made aware of its dimensions so
that it can access its elements with multiple subscripts. In the case of a
two-dimensional array the function must know the number of dimensions and the
number of columns in the array argument. The number of rows is not necessary
since the array is already allocated in memory. The short program shows the defini-
tion of a 4-by-4 two-dimensional array and how this array is passed to a function that
fills it.

#include <iostream.h>
#define ROWS 4
#define COLS 4

int main()

{

// Define a 4-by-4 matrix
int matrx[ROWS] [COLS] ;

// Call function to £fill matrix
FillMatrix (matrx) ;
// Display matrix
for(i = 0; 1 < ROWS; 1i++)
for(k = 0; k < COLS; k++)
cout << matrx[i][k] << “\n”;
return 0;

}

void FillMatrix(int matx[] [COLS])
{

// Fill a matrix of type int

// On entry:

© 2003 by CRC Press LLC

// matx[][] is caller’s matrix
// Constants ROWS and COLS define the array dimensions
int entry;

for(int i = 0;1 < ROWS; i++)
{

cout << “Enter row ” << 1 << “\n”;

for(int j = 0; j < COLS; Jj++)
{

cout << “element ” << 1 << M " << j << “: 7";
cin >> entry;
matx[i][j] = entry;

In the preceding program the function FillMatrix() is made aware that the array
passed as an argument is two-dimensional, and that each row consists of four col-
umns. This is the information that the code requires for accessing the array with
double subscript notation. The major limitation of this approach is that the function
FillMatrix() requires the array size to be defined in constants. C/C++ produce an er-
ror if we attempt to define the matrix dimensions using variables. For this reason
the function FillMatrix(), as coded in the preceding sample, does not work for filling
a two-dimensional 5-by-5 array or, in fact, of any size other than the one for which it
was originally coded. Even more complications arise if we attempt to use a template
function in relation to multi-dimensional arrays.

An alternative approach for implementing matrices in C or C++ code is to define
the data as a one-dimensional array and let the software handle the partitioning into
columns and rows. In this manner we can avoid the drawbacks of passing
multi-dimensional arrays as arguments to functions. In addition, with
one-dimensional arrays it is easy to use templates in order to create generic func-
tions that operate on arrays of different data types. The following demonstration
program implements a matrix fill using one-dimensional arrays and template func-
tions.

#include <iostream.h>

int main()

{

int rows = 4;
int cols

I
IS

// Matrix is defined as a 2D array
matrx[1l6];

// FillMatrix()
FillMatrix(matrx, rows, cols);
// Display matrix

for(x = 0; x < rows; X++)

for(y = 0; y < cols; y++)
cout << mat2[(x * cols) + y] << “\n”;

© 2003 by CRC Press LLC

cout << “\n\n”;

return 0;

template <class A>

void FillMatrix (A *matx, int rows, int cols)
{

// Fill a matrix of type int

// On entry:

// *mat is caller’s matrix
// parameter rows is nomber of rows in matrix
// parameter cols is number of columns in matrix
A entry;
for(int 1 = 0;1 < rows; 1++)
{
cout << “Enter row ” << i << “\n”;
for(int j = 0; j < cols; Jj++)
{
cout << “element " << 1 << M 7 << j << “: "

cin >> entry;
matx[(i * cols) + j] = entry;

Notice, in the preceding code, that the matrix is defined as a one-dimensional ar-
ray and that the function FillMatrix() receives the number of rows and columns as
parameters. Also that the FillMatrix() function is implemented as a template, which
means that it can be used to fill a two-dimensional matrix of any size and data type.

In manipulating matrices the programmer is usually concerned with the following
elements:

1. The number of rows in the matrix
2. The number of columns in the matrix
3. The memory space (number of bytes) occupied by each matrix entry

The number of rows and columns determines the dimension of the matrix. It is
customary to represent matrix dimensions using the variable M for the number of
rows and the variable N for the number of columns. The storage format of the en-
tries determines the memory space occupied by each matrix entry, therefore, the
number of bytes that must be skipped in order to index from entry to entry. In this
sense the size of each entry is sometimes referred to as the horizontal skip factor.
The number of entries in each matrix row must be used by the program in order to
index to successive entries in the same column. This value is called the vertical skip
factor. Low-level implementations must use the skip factors to access different ma-
trix entries, as shown later in this chapter. High-level languages (C++ included) ac-
cess matrix entries using the indices, and usually ignore the byte size of each
element.

© 2003 by CRC Press LLC

4.1.2 Finding Matrix Entries

You have seen that each matrix entry is identified by its row and column coordinates.
In this context the variableiis often used to designate the entry along a matrix row and
the variable j to designate the entry along a matrix column. Thus, any entry in the ma-
trix can be identified by its ; coordinates. The individual matrix is usually designated
with an upper case letter. We say that Matrix A is composed of M rows and N columns.
The number of entries in the matrix (F) is:

E=MXxN

If each entry takes up s bytes of memory, the matrix memory space (S) can be ex-
pressed as follows:

S=MXNXs

The following diagram shows a 5-by-4 matrix.

COLUMNS
0 1 2 3 4
| | | | |
R 0 —- X X X X X
o) 1 — X X ij X X
w 2 — X X X X X
S 3 — X X X X X
M = 5 (total rows)
N = 4 (total columns)
i = 1 (row address of entry ij)
j = 2 (column address of entry ij)

Notice that matrix dimensions are stated as the number of rows and columns.
This, the dimension of the previous matrix is 4 by 5. However, the location within
the rows and columns is zero-based. This scheme is consistent with array
dimensioning and addressing in C and C++.

Linear systems software often has to access an individual matrix entry located at
the ith row and the jth column. In high-level programming the language itself figures
out the horizontal and vertical skip factors. Therefore locating a matrix entry is a
simple matter of multiplying the row number by the number of columns in the ma-
trix, then adding the offset within the row. If i designates the row, j the column, and
cols is the number of columns in each row, then the offset within a matrix imple-
mented in a one-dimensional array is given by the statement:

value = (M[(i*cols) + 3J);

were M is the matrix and value is a variable of the same type as the matrix. The follow-
ing C++ template function returns the matrix element at row i, column j.

template <class A>

A Locateij (A *matx, int i, int j, int cols)

{

// Locate and return matrix entry at row i, column j
// On entry:

© 2003 by CRC Press LLC

// *mat is caller’s matrix

// i = row number
// j = column number
// cols = number of matrix columns

return (matx[(i * cols) + Jjl1);

}

4.2 Array Processing

In the terminology of matrix mathematics, a vector is a matrix in which one of the ele-
ments is of the first order. In this sense you can refer to a matrix whose N dimension is
1 as a column vector. A row vector is a matrix whose M dimension is 1. In fact, a row
vectoris amatrix consisting of asingle row, and a column vector a matrix consisting of
a single column. Although, strictly speaking, a vector can be considered a
one-dimensional matrix, the term matrix is more often associated with a rectangular
array. Note that this use of the word vectoris not related to the geometrical concept of
adirected segment in two-dimensional or three-dimensional space, or with the physi-
cal connotation of a value specified in terms of magnitude and direction.

In order to represent individual, undirected quantities, matrix mathematics bor-
rows from analytical geometry the notion of a scalar. We say that an individual con-
stant or variable is a scalar quantity, while multi-element structures are either
vectors or matrices.

Programs that perform mathematical operations on vectors and matrices are
sometimes called array processors. In this case the word array refers to any
multi-element structure, whether it be a matrix or a vector. Many array operations
require simple arithmetic on the individual entries of the array, for example, adding,
subtracting, multiplying or dividing all the entries of an array by a scalar, or finding
the square root, powers, logarithmic, or trigonometric function of the individual en-
tries. A second type of array operations refer to arithmetic between two
multi-element structures, for example, the addition and multiplication of matrices,
the calculation of vector products, and matrix inversion. Some matrix arithmetic op-
erations obey rules that differ from those used in scalar operations. Finally, some ar-
ray operations are oriented towards simplifying and solving systems of linear
equations, for example, interchanging rows, multiplying a row by a scalar, and add-
ing a multiple of one row to another row. Here we concentrate on array processing
operations that are commonly used in graphics programming.

4.2.1 Vectors and Scalars

The word vector is used to refer to the rows and columns of a two-dimensional matrix.
In this sense vector operations are those that affect the entries in arow or column, and
matrix operations are those that affect all the entries in the rectangular array. Vectors
constitute one-dimensional arrays of values, while matrices are a two-dimensional ar-
ray. We occasionally refer to the entries in a matrix row as arow vector and the entries
in a matrix column as a column vector.

Vector-by-Scalar Operations in C and C++

Graphics applications must occasionally perform operations on the individual ele-
ments of matrix rows and columns. According to the terminology presented previ-

© 2003 by CRC Press LLC

ously, these can be designated as row and column vector operations. The functions
listed in this section perform multiplication, addition, division, and subtraction of a
row vector by a scalar and multiplication of a column vector by a scalar. The imple-
mentation is based on storing matrix data in one-dimensional arrays, with rows and
columns handled by code. The functions are coded as templates so that they can be
used with any compatible data type.

//**

// functions for vector arithmetic
//**
//

template <class A>

void RowMulScalar (A *matx, int i, int cols, A scalar)
{

// Multiply a matrix row times a scalar

// On entry:

// *mat is caller’s matrix

// i is number of the row

// cols is number of columns in the matrix

// scalar is the value to multiply

// On exit:

// elements in matrix row i are multiplied by scalar
int rowStart = 1 * cols;

for(int j = 0;j < cols ;j++)

matx[rowStart + j] *= scalar;

template <class A>

void RowPlusScalar (A *matx, int i, int cols, A scalar)
{

// Add a scalar to a matrix row

// On entry:

// *mat is caller’s matrix

// i is number of the row

// cols is number of columns in the matrix

// scalar is the value to be added

// On exit:

// Scalar is added to all elements in matrix row 1
int rowStart = 1 * cols;

for(int j = 0;j < cols ;j++)

matx[rowStart + j] += scalar;

template <class A>

void RowMinusScalar (A *matx, int 1, int cols, A scalar)
{

// Subtract a scalar from each element in a matrix row
// On entry:

// *mat is caller’s matrix

// i is number of the row

// cols is number of columns in the matrix

// scalar is the value to be added

// On exit:

// Scalar is subtracted from all elements in matrix row i
int rowStart = 1 * cols;

for(int j = 0;3j < cols ;j++)

© 2003 by CRC Press LLC

matx[rowStart + j] -= scalar;

template <class A>

void RowDivScalar (A *matx, int i, int cols, A scalar)
{

// Divide all elements in a matrix row by a scalar
// On entry:

// *mat is caller’s matrix

// i is number of the row

// cols is number of columns in the matrix

// scalar is the value

// On exit:

// All elements in matrix row 1 are divided by the
// scalar

int rowStart = 1 * cols;

for(int j = 0;J < cols ;j++)

matx[rowStart + j] /= scalar;

template <class A>

void ColMulScalar (A *matx, int j, int rows, int cols, A scalar)
{

// Multiply a matrix column times a scalar

// On entry:

// *mat is caller’s matrix

// j is column number

// rows is the number of rows in the matrix

// cols is number of columns in the matrix

// scalar is the value to multiply

// On exit:

// elements in matrix column j are multiplied by scalar
for(int 1 = 0;1 < rows ;i++)

{

matx[(cols * i) + j] *= scalar;

Since column-level operations are not as common in array processing as row op-
erations, we have provided a single example, which is the ColMulScalar() function.
The programmer should be able to use it to develop any other column operations
that may be required.

Low-Level Vector-by-Scalar Operations

Array processing are computationally intensive operations. Coding them in high-level
languages is convenient and easy, but sacrifices control, performance, and possibly
precision. C++ programmers can use amore efficient approach by developing the fun-
damental processing functions in low-level code. A C++ stub function can provide
easy access to these low-level primitives.

In the code that follows, the low-level procedure receives the address of the first
matrix entry, as well as the row and column parameters required for the operation.
For example, to perform a row-level operation the low-level routine must know the
address of the matrix, the number of elements in each column and the number of the

© 2003 by CRC Press LLC

desired row. In addition, the low-level routine must have available the horizontal
skip factor. Using this information code can visit each matrix entry and perform the
required operation. The code is as follows:

o Kok ke ke ke ok
7

; low-level procedures for vector arithmetic
/'***

.CODE
_ROW_TIMES_SCALAR PROC USES esi edi ebx ebp
; Procedure to multiply a matrix row vector by a scalar
; On entry:
; ST(0) = scalar multiplier
; ESI —> matrix containing the row vector
; EAX = number of row vector (0 based)
; ECX = number of columns in matrix
; EDX = horizontal skip factor
; On exit:
; entries of row vector multiplied by ST (0)

; Formula for offset of start of vector is
; offset = [((i-1) * N * s)]
; AL holds O-based number of the desired row vector
; CL holds the number of entries per row (N)
; DL holds skip factor
MOV AH, 0 ; Clear high-order byte
MUL CL ; AX = AL * CL
; Second multiplication assumes that product will be less than
; 65535. This assumption is reasonable since the matrix space
; assigned is 400 s

PUSH DX ; Save before multiply
MOV DH, 0 ; Clear high-order byte
MUL DX ; AX = AX * DL

POP DX ; Restore DX

ADD ESI, EAX ; Add offset to pointer
MOV DH, 0 ; Clear high-order byte

; At this point:
; ESI —> first entry in the matrix row
; ST(0) holds scalar multiplier

; ECX = number of entries in row

; EDX = byte length of each matrix entry

ENTRIES:
CALL FETCH_ENTRY
FMUL ST,ST (1) ; Multiply by ST (1)
CALL STORE_ENTRY
ADD EST, EDX ; Index to next entry
LOOP ENTRIES
RET

_ROW_TIMES_SCALAR ENDP

sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok k ok kK
7

_ROW_PLUS_SCALAR PROC USES esi edi ebx ebp

; Procedure to add a scalar to a matrix row

; On entry:

; ST(0) = scalar multiplier

; ESI —> matrix containing the row vector
; EAX = number of row vector (0 based)

; ECX = number of columns in matrix

; EDX = horizontal skip factor

; On exit:

© 2003 by CRC Press LLC

; entries of row vector multiplied by ST(0)

; Formula for offset of start of vector is
; offset = [((i-1) * N * s)]
; AL holds 0O-based number of the desired row vector
; CL holds the number of entries per row (N)
; DL holds skip factor (8 for double precision)
MOV AH, 0 ; Clear high-order byte
MUL CL ; AX = AL * CL
; Second multiplication assumes that product will be less than
; 65535. This assumption is reasonable since the matrix space
; assigned is 400 s

PUSH DX ; Save before multiply
MOV DH, 0 ; Clear high-order byte
MUL DX ; AX = AX * DL

POP DX ; Restore DX

ADD ESI, EAX ; Add offset to pointer
MOV DH, 0 ; Clear high-order byte

; At this point:
; ESI —> first entry in the matrix row
; ST(0) holds scalar multiplier

: ECX = number of entries in row
; EDX = byte length of each matrix entry
ENTRIES_A:
CALL FETCH_ENTRY
FADD ST,ST(1) ; Add scalar
CALL STORE_ENTRY
ADD EST, EDX ; Index to next entry
LOOP ENTRIES_A
RET
_ROW_PLUS_SCALAR ENDP

A R R R R R R R
7

7

_ROW_DIV_SCALAR PROC

; Procedure to divide a matrix row vector by a scalar
; On entry:

; ST(0) = scalar divisor

; ESI —> matrix containing the row vector

; EAX = number of row vector (0 based)

; ECX = number of columns in matrix

; EDX = horizontal skip factor

; On exit:

: Entries of row vector divided by ST(0)

; ST(0) is preserved

; Algorithm:

; Division is performed by obtaining the reciprocal of
; the divisor and using the multiplication routine

; | ST (0) | ST (1) | ST(2)
; divisor | ? | ?

FLD ST (0) ; divisor | divisor | ?
FLD1 ; 1 | divisor | divisor
FDIV ST,ST(1); 1/divisor | 1 | divisor
FSTP ST (1) ; 1/divisor | divisor | ?
CALL _ROW_TIMES_SCALAR
FSTP ST (0) ; divisor | ? | ?
CLD
RET

_ROW_DIV_SCALAR ENDP

A R R R R R R R R R R R R
7

© 2003 by CRC Press LLC

_ROW_MINUS_SCALAR PROC
; Procedure to subtract a scalar from the entries in a matrix

; row
; On entry:
; ST(0) = scalar to subtract
; ESI —> matrix containing the row vector
; EAX = number of row vector (0 based)
; ECX = number of columns in matrix
; EDX = horizontal skip factor
; On exit:
; Scalar subtracted from entries of the row vector
; Algorithm:
; Subtraction is performed by changing the sign of the
; subtrahend and using the addition routine
; | ST (0) | ST (1) | sT(2)
; | # | ?
FCHS ; -# | ?
CALL _ROW_PLUS_SCALAR
FCHS ; # | ?
CLD
RET
_ROW_MINUS_SCALAR ENDP

Note that in the preceding routines scalar subtraction is performed by changing
the sign of the scalar addend, while division is accomplished by multiplying by the
reciprocal of the divisor. Also notice that sign inversion of a row vector can be ob-
tained by using —1 as a scalar multiplier. The row operations procedures listed previ-
ously receive the horizontal skip factor in the EDX register. The core procedures
_ROW_TIMES_SCALAR and _ROW_PLUS_SCALAR then call the auxiliary proce-
dures FETCH_ENTRY and STORE_ENTRY to access and store the matrix entries.
FETCH_ENTRY and STORE_ENTRY determine the type of data access required ac-
cording to the value in the EDX register. If the value in EDX is 4, then the data is en-
coded in single precision format. If the value is 8 then the data is in double
precision. If the value is 10, then the data is in extended precision. This mechanism
allows creating low-level code that can be used with any of the three floating-point
types in ANSI/IEEE 754. The C++ interface routines, which are coded as template
functions, use the sizeof operator on a matrix entry to determine the data type
passed by the caller.

Visual C++ Version 6, in Win32 operating systems, defines the size of int, long, un-
signed long, and float data types as 4 bytes. Therefore it is not possible to use the
size of a data variable to determine if an argument is of integer or float type. For this
reason the interface routines listed in this section can only be used with float-type
arguments. Attempting to pass integer matrices or scalars will result in undetected
computational errors. The C++ interface functions to the low-level row-operation
procedures are as follows:

VAR EEEEREEEEREEEESEEEE SRR TSR EEEESEREEEEEREEEEREEEEREREEEEREE

// C++ interface functions to vector arithmetic primitives
//**

template <class A>
void RowTimesScalarLL (A *matx, int 1, int cols, A scalar)
{

// Multiply a matrix row times a scalar using low-level code

© 2003 by CRC Press LLC

// in the Un32_13 module
// On entry:
// On entry:

// *mat is caller’s matrix (floating point type)

// i is number of the row

// cols is number of columns in the matrix

// scalar is the value to add (floating point type)

// Routine expects:

// ST(0) holds scalar

// ESI —> matrix

// EAX = row vector number

// ECX = number of columns in matrix

// EDX = horizontal skip factor

// On exit:

// elements in matrix row i are multiplied by scalar

int eSize = sizeof (matx[0]);

_asm

{
MOV ECX, cols // Columns to ECX
MOV EAX, i // Row number to EAX
MOV ESI,matx // Address to ESI
FLD scalar // Scalar to ST(0)
MOV EDX, eSize // Horizontal skip
CALL ROW_TIMES_SCALAR

}

return;

}

template <class A>

void RowPlusScalarLL (A *matx, int 1, int cols, A scalar)

{

// Multiply a matrix row times a scalar using low-level code
// in the Un32_13 module

// On entry:

// *mat is caller’s matrix (floating point type)

// i is number of the row

// cols is number of columns in the matrix

// scalar is the value to add (floating point type)

// Routine expects:

// ST(0) holds scalar

// ESTI —> matrix

// EAX = row vector number

// ECX = number of columns in matrix

// EDX = horizontal skip factor

// On exit:

// elements in matrix row i are multiplied by scalar

int eSize = sizeof (matx[0]);

_asm

{
MOV ECX, cols // Columns to ECX
MOV EAX, 1 // Row number to EAX
MOV ESI,matx // Address to ESI
FLD scalar // Scalar to ST(0)
MOV EDX,eSize // Horizontal skip
CALL ROW_PLUS_SCALAR

}

© 2003 by CRC Press LLC

return;

}

template <class A>

void RowDivScalarLL (A *matx, int i, int cols, A scalar)
{

// Divide a matrix row by a scalar using low-level code
// in the Un32_13 module

// On entry:

// *mat is caller’s matrix (float type)

// i is number of the row

// cols is number of columns in the matrix

// scalar is the value to add (float type)

// Routine expects:

// ST(0) holds scalar

// ESI —> matrix

// EAX = row vector number

// ECX = number of columns in matrix

// EDX = horizontal skip factor

// On exit:

// elements in matrix row i are multiplied by scalar

int eSize = sizeof (matx[0]);

_asm

{
MOV ECX, cols // Columns to ECX
MOV EAX, 1 // Row number to EAX
MOV ESI, matx // Address to ESI
FLD scalar // Scalar to ST(0)
MOV EDX,eSize // Horizontal skip
CALL ROW_DIV_SCALAR

}

return;

}

template <class A>

void RowMinusScalarLL (A *matx, int 1, int cols, A scalar)

{

// Subtract a scalar from a matrix row using low-level code
// in the Un32_13 module

// On entry:

// *mat is caller’s matrix (float type)

// i is number of the row

// cols is number of columns in the matrix

// scalar is the value to add (float type)

// Routine expects:

// ST(0) holds scalar

// ESI —> matrix

// EAX = row vector number

// ECX = number of columns in matrix

// EDX = horizontal skip factor

// On exit:

// elements in matrix row i are multiplicd by scalar

int eSize = sizeof (matx[0]);

_asm

{
MOV ECX, cols // Columns to ECX
MOV EAX, 1 // Row number to EAX
MOV ESI,matx // Address to ESI

© 2003 by CRC Press LLC

FLD
MOV
CALL

return;

}

scalar
EDX, eSize

ROW_MINUS_SCALAR

Matrix-by-Scalar Operations

Often we need to perform scalar operations on all entries in a matrix. In graphics pro-
gramming the more useful operations are scalar multiplication, division, addition, and
subtraction, in that order. In this section we present code to perform these ma-
trix-by-scalar multiplications. Here again, because matrix-by-scalar manipulations
are computationally intensive, we develop the routines in low-level code and provide
C++ interface functions to the assembly language procedures. The low-level code is as

follows:

.CODE

_MAT_TIMES_SCALAR PROC
; Procedure to multiply a matrix by a scalar

; On entry:
i ST (0)

; EAX
; ECX =
; EDX =
; On exit:

// Scalar to ST(0)
// Horizontal skip

USES esi edi ebx ebp

= scalar multiplier
; ESI —> matrix containing the row vector
number of rows

number of columns

horizontal skip factor

: entries of matrix multiplied by ST(0)
M * N

; Total number of entries is

MOV
MUL
MOV
; At this point:

AH, 0
CL
ECX, EAX

7

7

Clear high-order byte
AX = AL * CL
; Make counter in CX

; ESI —> first entry in the matrix

; ST(0) holds scalar multiplier

; ECX = number of entries in matrix
; EDX = byte length of each matrix entry (4, 8, or 10 bytes)

MAT_MUL:
CALL
FMUL
CALL
ADD
LOOP
CLD
RET

FETCH_ENTRY
ST, ST (1)
STORE_ENTRY
ESI,EDX
MAT_MUL

_MAT_TIMES_SCALAR ENDP

The C++ interface function is named MatTimesScalarLL() .

follows:
template <class

void MatTimesScalarLL (A *matx,

{

A>

7

7

Multiply by ST (1)

Index to next entry

int rows, int cols, A scalar)

// Multiply a matrix times a scalar using low-level code
// in the Un32_13 module

// On entry:

// *mat is caller’s matrix (type double)

// rows is number of the rows in matrix

// cols is number of columns in the matrix

// scalar is the value to multiply (floating point type)

// Routine expects:

© 2003 by CRC Press LLC

The code is as

// ST (0
// ESI
// EAX
// ECX
// EDX
// On exit:
//

int eSize =

asm

MOV
MOV
MOV
FLD
MOV
CALL

}

return;

}

)

holds scalar

—> matrix

row vector number
number of columns in matrix

horizontal skip factor

sizeof (matx[0]) ;

ECX, cols
EAX, rows
ESI,matx
scalar
EDX,eSize

elements in matrix are multiplied by

//
//
//
//
//

MAT_TIMES_SCALAR

scalar

Columns to ECX
Rows to EAX
Address to ESI
Scalar to ST(0)
Horizontal skip

4.2.2 Matrix-by-Matrix Operations

Two matrix-by-matrix operations are defined in linear algebra: matrix addition and
multiplication. Matrix addition is the process of adding the corresponding entries of
two matrices. As you saw in Chapter 3, matrix addition is defined only if the matrices
are of the same size. The addition process in the case C = A + B consists of locating
each corresponding entry in matrices A and B and storing their sum in matrix C.

Matrix multiplication, on the other hand, is rather counter-intuitive. Instead of
multiplying the corresponding elements of two matrices, matrix multiplication con-
sists of multiplying each of the entries in a row of matrix A, by each of the corre-
sponding entries in a column of matrix B, and adding these products to obtain an

entry of matrix C. For example

The entries in the product matrix C are obtained as follows:

First row of matrix C

Q000

IS

Second row of matrix C

©

1

2

~

3

SINOINOINe]

24

Matrix multiplication requires a series of products, which are obtained using as
factors the entries in the rows of the first matrix and the entries in the columns of
the second matrix. Therefore, matrix multiplication is defined only if the number of

© 2003 by CRC Press LLC

AL*B,) +(A,*B,))
A *B,)+ (A *B,,)
A ,*B,,)+ (A ,*B,,)
A ,*B,,)+ (A ,*B,,)
(A,,*B,,) +(A,,*B,,)
(A,,*B,,) + (A, *By,)
(A,,*B,,) + (A, *B,,)
(A,,*B,,) +(A,,*B,,)

colunms of the first matrix is equal to the number of rows in the second matrix. This
relationship can be visualized as follows:

matrix A matrix B
R C r c

where R, C represents the rows and columns of the first matrix, and r, c represents the
rows and columns of the second matrix. By the same token, the product matrix (C) will
have as many rows as the first matrix (A) and as many columns as the second matrix
(B). In the previous example, since matrix A is a 2-by-3 matrix, and matrix B is a 3-by-4
matrix, matrix C will be a 2-by-4 matrix.

Since matrix addition and multiplication are computationally intensive opera-
tions we implement them in low-level code and provide C++ interface routines.

Matrix Addition

The following low-level procedure performs matrix addition. The procedure requires
that both matrices be of the same dimension, that is, that they have the same number of
columns and rows.

.486
.MODEL flat
.DATA

.**|
7

; Data for this matrix addition and multiplication |
l.**|

ELEMENT_CNT DW 0 ; Storage for total number of
; entries in matrix C

7

MAT_A_ROWS DB 0 ; Rows in matrix A

MAT_A_COLS DB 0 ; Columns in matrix A

MAT_B_ROWS DB 0 ; Rows in matrix B

MAT_B_COLS DB 0 ; Columns in matrix B

MAT_C_ROWS DB 0 ; Rows in matrix C

MAT_C_COLS DB 0 ; Columns in matrix C
0 ; Element size

SKIP_FACTOR DD

; Control variables for matrix multiplication

PROD_COUNT DB 0 ; Number of product in each
; multiplication iteration
WORK_PRODS DB 0 ; Working count for number of
; products
WORK_ROWS DB 0 ; Number of rows in matrices A
; and C
WORK_COLS DB 0 ; Number of columns in matrices B
; and C
.CODE

A R R R R R R R R
7

; matrix addition

,.**********************************

_ADD_MATRICES PROC USES esi edi ebx ebp

; Procedure to add all the corresponding entries of two matrices
; of the same size, as follows:

; A= B= C=(A+B)

; All Al2 Al3 B11 B12 B13 Al1+B11 Al2+B1l2 Al3+B13

© 2003 by CRC Press LLC

; A21 A22 A23 B21 B22 B23

; A31 A32 A33 B31 B32 B33 A33+B33

; On entry:

; ESTI —> first matrix (A)

; EDI —> second matrix (B)

; EBX —> storage area for addition matrix (C)

; Code assumes that matrix C is correctly

; dimensioned
; EAX = number of rows in matrix
; ECX = number of columns in matrix

; EDX = horizontal skip factor

; On exit:
; AX = 0 if matrices are the same size, then matrix C
; contains sum of A + B

; AX = 1 if matrices are of different size and the matrix
; sum is undefined

; Note: matrix addition is defined only regarding two matrices of
; the same size. Matrices must be of type float and of the

; same format

.***************************|
7

; test for equal size |
,.***************************|

CMP AX,CX ; Test for matrices of equal size

JE GOOD_SIZE ; Go i1f same size

.***************************|
7

; DATA ERROR |
,.***************************|
; At this point matrices cannot be added
MOV AX,1 ; Error code
CLD
RET

.***************************|
7

; store matrix parameters |
,.***************************|

; Calculate number of entries by multiplying matrix rows times
; matrix columns

GOOD_SIZE:
PUSH EDX ; Save register
MUL CX ; Rows times columns
MOV ELEMENT_CNT, AX ; Store number of entries
POP EDX

; At this point:

; ESI —> first matrix (A)

; EDI —> second matrix (B)

H EBX —> storage area for addition matrix (A+B)
l.***************************|

; perform matrix addition |
l.***************************|
A_PLUS_B:

; ESI —> matrix entry in matrix A

; EDX = entry size (4, 8, or 10 bytes)

CALL FETCH_ENTRY ; ST(0) now holds entry of A
; Fetch entry in matrix B

XCHG ESI,EDI ; ESI —> matrix B entry

CALL FETCH_ENTRY ; ST(0) = matrix B entry

© 2003 by CRC Press LLC

; ST(1l) = matrix A entry

XCHG ESI,EDI ; Reset pointer
; Add entries
FADD ; ST(0) | sT(1) | sST(2)
; eA + eB | ------- |
XCHG EBX,ESI ; ESI —> matrix C entry
; Store sum
CALL STORE_ENTRY ; Store sum in matrix C and pop
; stack
XCHG EBX,EST ; Restore pointers
; Update entries counter
DEC ELEMENT_CNT ; Counter for matrix s
JINZ NEXT_MAT_ELE ; Continue if not end of matrix

.***************************|
7

; end of matrix addition |
,.***************************|
MOV AX, 0 ; No error flag
CLD
RET

.***************************|
7

; index matrix pointers |
;***************************|

; Add entry size to each matrix pointer
NEXT_MAT_ELE:

ADD ESI,EDX ; Add size to pointer
ADD EDI, EDX
ADD EBX, EDX
JMP A_PLUS_B
_ADD_MATRICES ENDP

The C++ interface function to the _ADD_MATRICES procedure is as follows:

template <class A>

void AddMatrices (A *matA, A *matB, A *matC, int rows, int cols)

{

// Perform matrix addition: C = A + B using low-level code in the
// Un32_13 module

// On entry:

// *matA and *matB are matrices to be added

// *matC is matrix for sums

// rows is number of the rows in matrices

// cols is number of columns in the matrices

// Requires:

// All three matrices must be of the same dimensions
// All three matrices must be of the same floating
// point data type

// Routine expects:

// ESTI —> first matrix (A)

// EDI —> second matrix (B)

// EBX —> storage area for addition matrix (C)

// EAX = number of rows in matrices

// ECX = number of columns in matrices

// EDX = horizontal skip factor

// On exit:

// returns matC[] = matA[] + matB[]

int eSize = sizeof (matA[0]);

asm

© 2003 by CRC Press LLC

MOV ECX, cols // Columns to ECX
MOV EAX, rows // Rows to EAX
MOV ESI,matA // Address to ESI
MOV EDI, matB
MOV EBX,matC
MOV EDX, eSize // Horizontal skip
CALL ADD_MATRICES

}

return;

}

Matrix Multiplication

The following low-level procedure performs matrix multiplication. The procedure re-
quires that the number of columns in the first matrix be the same as the number of
rows in the second matrix. The matrix for results must be capable of storing a number
of elements equal to the product of the number of rows of the first matrix by the num-
ber of columns of the second matrix. The datavariables forthe _MUL_MATRICES pro-
cedure were defined in the _ADD_MATRICES procedure, listed previously.

.CODE

IEEEEEEEEEEEEEEREESE]
7

7

_MUL_MATRICES PRO

; Procedure to multiply two matrices
is defined. Matrix multiplication requires that
; the number of columns in matrix A be equal to the number of

; product (A * B)

; rows in matrix B,

as follows:

; A B

; R C r c

; | = |

; Example:

; A=(2 by 3) B=(3 by 4)

; All Al2 Al13 B11 B12 B13 B1l4

; A21 A22 A23 B21 B22 B23 B24

: B31 B32 B33 B34

; The product matrix (C) will have 2 rows and 4 columns
; C=(2 by 4)

; cl1 cl2 Ccl3 cCl14

; c21 Cc22 C23 C24

; In this case the product matrix is obtained as follows:

matrix multiplication
PR I I I I I R I I R R R I R A I I I R S R S I A S R I R I S I I I I R A R A 2 I R I R I A
;

C USES esi edi ebx ebp
(A and B)

for which a matrix

; Cll = (Al1*B11)+(A12*B21)+(A13*B31)
; Cl2 = (Al11*B12)+(Al2*B22)+ (A13*B32)
; Cl3 = (Al1*B13)+(A1l2*B23)+(A13*B33)
; Cl4 = (Al1*B1l4)+(Al2*B24)+ (A13*B34)
; C21 = (A21*B1l1)+(A22*B21)+ (A23*B31)
; C22 = (A21*B12)+ (A22*B22)+ (A23*B32)
; C23 = (A21*B13)+(A22*B23)+ (A23*B33)
; C24 = (A21*B1l4)+ (A22*B24)+ (A23*B34)

© 2003 by CRC Press LLC

7

7

7

7

7

7

7

7

7

7

On entry:
ESI —> first matrix (A)
EDI —> second matrix (B)
EBX —> storage area for products matrix (C)

AH = rows in matrix A

AL = columns in matrix A

CH = rows in matrix B

CL = columns in matrix B

EDX = number of bytes per entry
Assumes:

Matrix C is dimensioned as follows:

Columns of C = columns of B

Rows of C = rows of A
On exit:

Matrix C is the products matrix

Note: the entries of matrices A, B, and C must be of type float
and of the same data format

Store number of product in each multiplication iteration

MOV PROD_COUNT, AL
At this point:
AH = rows 1in matrix A
AL = columns in matrix A
CH = rows in matrix B
CL = columns in matrix B
Store matrix dimensions
MOV MAT_A_ROWS, AH
MOV MAT_A_COLS,AL
MOV MAT_B_ROWS,CH
MOV MAT_B_COLS,CL
Store skip factor
MOV SKIP_FACTOR, EDX
Calculate total entries in matrix C
Columns in C = columns in B
Rows in C = rows in A
MOV MAT_C_COLS,CL
MOV MAT_C_ROWS, AH
Calculate number of products
MOV AH,O0 ; Clear high byte of product
MUL CL ; Rows times columns
MOV ELEMENT_CNT, AX ; Store count

At this point:
ESI —> first matrix (A)
EDI —> second matrix (B)
EBX —> storage area for products matrix (A*B)
MOV START_BMAT, EDI ; Storage for pointer

.***************************|
7

7

initialize row and column |
counters |

.***************************|
7

Set up work counter for number of rows in matrix C
This counter will be used in determining the end of the
matrix multiplication operation

MOV AL,MAT_C_ROWS ; Rows in matrix C

MOV WORK_ROWS, AL ; To working counter
Reset counter for number of columns in matrix C
This counter will be used in resetting the matrix pointers at
the end of each row in the products matrix

MOV AL,MAT_C_COLS ; Columns in matrix C

© 2003 by CRC Press LLC

MOV WORK_COLS, AL

.***************************|
7

7

perform multiplication |

.***************************|
7

NEW_PRODUCT :

; To working counter

; Save pointers to matrices A and B
PUSH EST ; Pointer to A
PUSH EDI ; Pointer to B
; Load 0 as first entry in sum of products
FLDZ
; ST(0) | ST(1) | sT(2)
; | 0 | ? | N

; Store number of products in work counter

MOV AL, PROD_COUNT ; Get count
MOV WORK_PRODS, AL ; Store in work counter
A_TIMES_B:

; Fetch entry in current row of matrix A

MOV EDX, SKIP_FACTOR ; size to DL
; ESI —> matrix entry in current row of matrix A
CALL FETCH_ENTRY ; ST(0) now holds entry of A
XCHG ESI,EDI ; ESI —> matrix B
CALL FETCH_ENTRY ; ST(0) = matrix B
; ST(1) = matrix A
XCHG ESI,EDI ; Reset pointer
; Multiply s
; ST(0) | sT(1) | sST(2)
FMULP ST (1),ST ; eA * eB |previous | ------
; | sum | -——---- |
FADD ; P sum | ------ |
; Test for last entry in product column
DEC WORK_PRODS ; Is this last product
JZ NEXT_PRODUCT ; Go 1f at end of products column

.***************************|
7

; next product |
;***************************|
; Index to next column of matrix A

ADD ESI,SKIP_FACTOR ; Add size to pointer
; Index to next row in the same column in matrix B

MOV EAX, EDX ; Horizontal skip factor to AL
MUL MAT_B_COLS ; Times number of columns

ADD EDI, EAX ; Add to pointer

JMP A_TIMES_B ; Continue in same product column

.***************************|
7

; store product

l.***************************|

NEXT_PRODUCT :

; Restore pointers to start of current A row and B column
POP EDI ; B matrix pointer
POP ESI ; A matrix pointer

; At this point ST(0) has sum of products

; Store this sum as entry in products matrix (by DS:BX)

XCHG EBX,EST ; ESI —> matrix C
; Store sum
MOV EDX, SKIP_FACTOR ; size to DL
CALL STORE_ENTRY ; Store sum in matrix C and pop
; stack
XCHG EBX,ESI ; Restore pointers
; Index to next entry in matrix C
ADD EBX, SKIP_FACTOR ; Add size to pointer

.~k~k~k************************|
7

© 2003 by CRC Press LLC

; test for last column in |
; matrix C

.***************************|
7

; WORK_COLS keeps count of current column in matrix C

DEC WORK_COLS ; Is this the last column in C
JE NEW_C_ROW ; Go i1f last row

; Index to next column in matrix B
ADD EDI, SKIP_FACTOR ; Add size to pointer
JMP NEW_PRODUCT

.***************************|
7

; index to new row |
.***************************|
;

; First test for end of processing

NEW_C_ROW:
DEC WORK_ROWS ; Row counter in matrix C
JNE NEXT_C_ROW ; Go 1f not last row of C

.***************************|
7

; end of matrix |
; multiplication |

.***************************|
7

JMP MULT_M_EXIT

.***************************|
7

; next row of matrix C |

,.***************************|

; At the start of every new row in the products matrix, the
; matrix B pointer must be reset to the start of matrix B

; and the matrix A pointer to the start entry of the next

; row of matrix A

NEXT_C_ROW:

MOV EDI, START_BMAT ; EDI —> start of B

MOV AH,O0 ; Clear high byte of adder
; Pointer for matrix A

MOV EAX, SKIP_FACTOR ; Entry size of A

MUL MAT_A_COLS ; Size times columns

ADD EST, EAX ; ESI —> next row of A
; Reset counter for number of columns in matrix C

MOV AL,MAT_C_COLS ; Columns in matrix C

MOV WORK_COLS, AL ; To working counter

JMP NEW_PRODUCT ; Continue processing
;***********************|
; EXIT |

;***********************|
MULT_M_EXIT:

CLD

RET

_MUL_MATRICES ENDP
The C++ interface function to the _MUL_MATRICES procedure is as follows:

template <class A>
bool MulMatrices (A *matA, A *matB, A *matC,
int rowsA, int colsa,
int rowsB, int colsB)
{
// Perform matrix addition: C = A + B using low-level code in the
// Un32_13 module
// On entry:
// *matA and *matB are matrices to be added

© 2003 by CRC Press LLC

// *matC is matrix for sums

// rowsA is number of the rows in matrix A

// colsA is number of columns in the matrix A
// rowsB is number of the rows in matrix B

// colsB is number of columns in the matrix B
// Requires:

// All three matrices must be of the same dimensions
// All three matrices must be of the same float
// data type

// Asumes:

// Matrix C dimensions are the product of the
// columns of matrix B times the rows or matrix A
// Routine expects:

// ESI —> first matrix (A)

// EDI —> second matrix (B)

// EBX —> storage area for addition matrix (C)
// AH = number of rows in matrix A

// AL = number of columns in matrix A

// CH = number of rows in matrix B

// CL = number of columns in matrix B

// EDX = horizontal skip factor

// On exit:

// returns true if matC[] = matA[] * matB[]

// returns false if columns of matA[] not = rows
// of matB[]. If so, matC[] is undefined

int eSize = sizeof (matAl[0]);

// Test for valid matrix

//

asm

}

columns of matAl[]
if (colsA

= rowsB)
return false;

MOV
MOV
MOV
MOV
MOV
MOV
MOV
MOV
CALL

return true;

}

© 2003 by CRC Press LLC

AH, BYTE
AL,BYTE
CH, BYTE
CL, BYTE
ESI,matA
EDI,matB
EBX,matC
EDX,eSiz

siz

es:

= rows of matB[]

PTR
PTR
PTR
PTR

e

rOwsA
colsA
rowsB
colsB

MUL_MATRICES

// Address to registers

// Horizontal skip

Chapter 5

Projections and Rendering

Topics:
e Perspective
¢ Projections
¢ The rendering pipeline

In order to view manipulate and view a graphics object we must find ways of stor-
ing it a computer-compatible way. In order to store an image, we must find a ways of
defining and digitizing it. Considering that the state-of-the-art in computer displays
is two-dimensional, the solid image must also be transformed so that it is rendered
on a flat surface. The task can be broken down into three separate chores: repre-
senting, encoding, and rendering. Representing and encoding graphics images were
discussed in previous chapters. Here we are concerned with rendering.

5.1 Perspective

The computer screenis a flat surface. Whenimage datais stored in the computeritisin
the form of a data structure consisting of coordinate points. You have seenin Chapters
3 and 4 how a matrix containing these image coordinate points can be translated,
scaled, and rotated by means of geometrical transformations. But a data structure of
image points cannot be displayed directly onto a flat computer screen. In the same
way that an engineer must use a rendering scheme in order to represent a solid object
onto the surface of the drawing paper, the programmer must find a way of converting a
data structure of coordinates into an image on the computer monitor. You can say that
both, the engineer and the programmer, have a rendering problem. Various ap-
proaches to rendering give rise to several types of projections. Figure 5-1, on the fol-
lowing page, shows the more common type of projections.

5.1.1 Projective Geometry

Projective geometry is the field of mathematics that studies the transformations of ob-
jects during projections. The following imaginary elements participate in every pro-
jection:

© 2003 by CRC Press LLC

PROJECTIONS I

Perspective I Parallel I
I T
Linear I Aerial I Oblique I Orthographic

—| One-point I Cabinet
Two-point I Cavalier

Three-point I Clinographic

Axonometric I Multiview

!

—

—| Isometric e
elevation

Dimetric Side
elevation

. . I Top
Trimetric elevation

Figure 5-1 Common Projections

!

*

1. The observer's eye, also called the view point or center of projection.
2. The object being viewed.

3. The plane or planes of projection.

4. The visual rays that determine the line of sight, called the projectors.

Figure 5-2 shows these elements.

© 2003 by CRC Press LLC

projectors\’ ,.,-j,"’ et

T =

P
center of
projection

Figure 5-2 Projection Elements

Geometrically, the projection of a point on a plane is the point of intersection, on
the plane of projection, of a line that extends from the object's point to the center of
projection. This line is called the projector. Alternatively you can say that the pro-
jection of a point is the intersection between the point's projector and the plane of
projection. The definition can be further refined by requiring that the center of pro-
jection not be located in the object nor in the plane of projection. This constraint
makes this type of projection a central projection.

The location of the center of projection in relation to the object and the plane of
projection determines the two main types of projections. When the center of projec-
tion is at a measurable distance from the plane of projection it is called a perspec-
tive projection. When the center of projection is located at infinity, the projection is
called a parallel projection. Figure 5-3 shows perspective and parallel projections.

PERSPECTIVE
PROJECTION

‘}‘,‘-«—r"—
center of
projection

PARALLEL
PROJECTION

centér of projection
at inifinity

Figure 5-3 Perspective and Parallel Projections

© 2003 by CRC Press LLC

In central projections the geometrical elements in the object plane are trans-
formed into similar ones in the plane of projection. A line is projected as a line, a tri-
angle as a triangle, and a polygon as a polygon. However, other object properties
may not be preserved. For example, the length of line segments, the angular values,
and the congruence of polygons can be different in the object and the projected im-
age. Furthermore, geometrical elements that are conic sections (circle, ellipse, pa-
rabola, and hyperbola) retain the conic section property, but not necessarily their
type. A circle can be projected as an ellipse, an ellipse as a parabola, and so on. Fig-
ure 5-4 shows the perspective projection of a circle as a ellipse.

center of
projection

Figure 5-4 A Circle Projected as an Ellipse

5.1.2 Parallel Projections

Parallel projections find extensive use in drafting, engineering drawings, and archi-
tecture. They are divided into two types: oblique and orthographic. The orthographic
or right-angle projection, which is the simplest of all, assumes that the planes or pro-
jection coincide with the coordinates axis. In this case the projectors are normal (per-
pendicular) to the plane of projection. In the oblique projection the projectors are not
normal to the plane of projection.

A type of parallel projection, called a multiview projection, is often used in tech-
nical drawings. The images that result from a multiview projection are planar and
true-to-scale. Therefore, the engineer or draft person can take measurements di-
rectly from a multiview projection. Figure 5-5 shows a multiview projection of an
engineered object.

In Figure 5-5 the front, side, and top views are called the regular views. There are
three additional views not shown in the illustration, called the bottom, right-side,
and rear views. These are drawn whenever it is necessary to show details not visible
in the regular views. The Cartesian interpretation of the front view is the ortho-
graphic projection of the object onto the xy-plane, the side view is the projection
onto the yz-plane, and the top view is the projection onto the xz-plane. Sometimes
these views are called the front-elevation, side-elevation, and top- or plan-elevation.
While each multiview projection shows a single side of the object, it is often conve-
nient to show the object pictorially. The drawing on the left-side of Figure 5-5 shows
several sides of the object in a single view, thus rendering a pictorial view of the ob-
ject.

© 2003 by CRC Press LLC

()
-/

DRAWING SHOWING 3 REGULAR VIEWS

Figure 5-5 Parallel, Orthographic, Multiview Projection

Orthographic-axonometric projections are pictorial projections often used in
technical applications. The term axonometric originates in the greek word "axon"
(axis) and "metrik" (measurement). It relates to the measurements of the axes used
in the projection. Notice in Figure 5-1 that the axonometric projections are further
classified into isometric, dimetric, and trimetric. Isometric means "equal measure,"
which means that the object axes make equal angles with the plane of projection. In
the dimetric projection two of the three object axes make equal angles with the
plane of projection. In the trimetric, all three axes angles are different. Figure 5-6
shows the isometric, dimetric, and trimetric projections of a cube.

X z z z
X X

Y Y Y
ISOMETRIC DIMETRIC TRIMETRIC
Za=/b=/c Zc=/b La#Zb#Zc
OX =0Y =0Z OX =0Y OX #£0Y # OZ

Figure 5-6 [sometric, Dimetric, and Trimetric Projections

© 2003 by CRC Press LLC

5.1.3 Perspective Projections

Orthographic projections have features that make them useful in technical applica-
tions. For example, multiview projections provide dimensional information to the
technician, engineer, and the architect. Axonometric projections, shown in Figure 5-6,
can be mechanically generated from multiview drawings. In general, the main feature
of the parallel projections is their information value.

One objection to the parallel projections is their lack of realism. Figure 5-7 shows
two isometric cubes, labeled A and B, at different distances from the observer. How-
ever, both objects have projected images of the same size. This is not a realistic rep-
resentation since cube B, farther away from the observer, should appear smaller
than cube A.

~

Figure 5-7 Lack of Realism In Isometric Projection

Perspective projection attempts to improve the realism of the image by providing
depth cues that enhance relative positions, distances, and diminishing size. One of
the most important depth cues is the relative size of the object at different distances
from the viewing point. This effect can be achieved by means of perspective projec-
tions. The perspective projection depends on a vanishing point that is used to deter-
mine the object's relative size. Three types of perspective projections are in use,
according to the number of vanishing points. They are named one-point, two-point,
and three-point perspectives.

The number of vanishing points is determined by the positioning of the object in
relation to the plane of projection. If a cube is placed so its front face is parallel to
the plane of projection, then one set of edges converges to a single vanishing point.
If the same cube is positioned so that one set of parallel edges is vertical, and the
other two are not, then each of the two non-vertical edges has a vanishing point.
Finally, if the cube is placed so that none of its principal edges are parallel to the
plane of projection, then there are three vanishing points.

© 2003 by CRC Press LLC

Perspective projections have some unique characteristics. In a parallel projection
we take a three-dimensional object and produce a two-dimensional image. In a per-
spective projection we start with a three-dimensional object and produce another
three-dimensional object which is modified in order to enhance its depth cues. This
makes this type of projection a transformation, much like the rotation, translation,
and scaling transformations discussed in Chapter 3. However, unlike rotation, trans-
lation, and scaling, a perspective transformation distorts the shape of the object
transformed. After a perspective transformation, forms that were originally circles
may turn into ellipses, parallelograms into trapezoids, and so forth. It is these distor-
tions that reinforce our depth perception.

One-Point Perspective

The simplest perspective projection is based on a single vanishing point. In this pro-
jection, also called single-point perspective, the object is placed so that one of its sur-
facesis parallel to the plane of projection. Figure 5-8 shows a one-point perspective of
a cube.

vanishing
horizon point

Figure 5-8 One-Point Perspective Projection of a Cube

One point perspective projections are simple to produce and find many practical
uses in engineering, architecture, and in computer graphics. One of the features of
the one-point perspective is that if an object has cylindrical or circular forms, and
these are placed parallel to the plane of projection, then the forms are represented
as circles or circular arcs in the perspective. This can be an advantage, considering
that circles and circular arcs are easier to draw than ellipses or other conics. Figure
5-9, on the following page, is a one-point projection of a mechanical part that con-
tains cylindrical and circular forms.

© 2003 by CRC Press LLC

vanishing

4* point

Figure 5-9 One-Point Projection of a Mechanical Component

A special form of the one-point perspective projection takes place when the van-
ishing point is placed centrally within the figure. This type of projection is called a
tunnel perspective or tunnel projection. Because of the particular positioning of the
object in the coordinate axes, the depth cues in a tunnel projection are not very ob-
vious. Figure 5-10 shows the tunnel projection of a cube.

Figure 5-10 Tunnel Projection of a Cube

Two-Point Perspective

The depth cuesin alinear perspective of amulti-faced object can be improved by rotat-
ing the object so that two of its surfaces have vanishing points. In the case of a cube
this is achieved if the object is rotated along its y-axis, so that lines along that axis re-
main parallel to the viewing plane, but those along the two other axes have vanishing
points. Figure 5-11 shows a two-point perspective of a cube.

vanishing
point
vanishing oz
point et

Figure 5-11 Two-Point Perspective of a Cube

© 2003 by CRC Press LLC

Two-point perspective projections are realistic and easy to render. For these rea-
sons they are frequently used in 3D graphics.

Three-Point Perspective

A three-point perspective is achieved by positioning the object so that none of its axes
are parallel to the plane of projection. Although the visual depth cues in a three-point
perspective are stronger than in the two-point perspective, the resulting geometrical
deformations are sometimes disturbing to the viewer. Figure 5-12 is a three-point per-
spective projection of a cube.

y-axis
vanishing
point

+

by x-axis
;oo | vanls_hltng
. i i ! In
z-axis i Pl F_),Ti
. . ! 1 . P
vanishing i i | =7

point

Figure 5-12 Three-Point Perspective of a Cube

The Perspective Projection as a Transformation

The data structure that defines the vertices of a three-dimensional object can be
changed into another one that contains enhanced depth cues by performing a mathe-
matical transformation. In other words, a perspective projection can be accomplished
by means of a transformation. In calculating the projection transformation it is conve-
nient to define a 4-by- 4 matrix so the transformation is compatible with the ones used
for rotation, translation, and scaling, as described in Chapter 3. In this manner we can
use matrix concatenation to create matrices that simultaneously perform one or more
geometrical transformations, as well as a perspective projection.

© 2003 by CRC Press LLC

The simplest approach for deriving the matrix for a perspective projection is to
assume that the projection plane is normal to the z-axis and located at z = d. Figure
5-13 shows the variables for this case.

y

Projection
plane

P, Y, 2)

P.(x,, Y, d)

«— d —>

Figure 5-13 Perspective Projection of Point P

In Figure 5-13 point P represents the perspective projection of point P. According
to the predefined constraints for this projection, we already know that the z coordi-
nate of point P is d. To determine the formulas for calculating the x and y coordi-
nates we can take views along either axes, and solve the resulting triangles, as
shown in Figure 5-14.

X -® P(x,y, z)

R
\
\

-7 i Projection

| plane

<—d—>|

VIEW ALONG THE Y AXIS

<« d —>
<= yA
| Projection
~-\._‘!.[\J‘Iane
Yo \‘"\.\\
y e P(x,y,2)

VIEW ALONG THE X AXIS

Figure 5-14 Calculating x and y Coordinates of Point P

© 2003 by CRC Press LLC

Since the gray triangles in Figure 5-14 are similar, we can establish the ratios:

XX
d

and
Y Y
d =z

Solving for x and y produces the equations:

ad Y

»Tid T zld

X

Since the distance d is a scaling factor in both equations, the division by z has the
effect of reducing the size of more distant objects. In this case the value of z can be
positive or negative, but not zero, since z = 0 defines a parallel projection. These
equations can be expressed in matrix form, as follows:

1 0 0 O
01 0 O
00 I O
0 0 1/d O

5.2 The Rendering Pipeline

A common interpretation of the rendering process is to consider it as a series of trans-
formations that take the object from the coordinate system in whichitis encoded, into
the coordinate system of the display surface. This process, sometimes referred to as
the rendering pipeline, is described as a series of spaces through which the object mi-
grates inits route from database to screen. A waterfall model of the rendering pipeline
is shown in Figure 5-15.

World space
transformation

View
Local } transformation
space World ﬁ Screen
transformation

space

Eye
space

Screen
space

Figure 5-15 Waterfall Model of the Rendering Pipeline

© 2003 by CRC Press LLC

5.2.1 Local Space

Objects are usually easier to model if they are conveniently positioned in the coordi-
nate plane. For example, when we place the bottom-left vertex of a cube at the origin
of the coordinate system, the coordinates are all positive values, as in Figure 5-16.

+y
B e ————

+z Local space coordinates
X z

’P8 p7 pP2..

p5 ! p6 pd..

ol /b3 p7..
. .
p1 p2 P8..

oOuUuUo ouiul o
BB D OO OOoOK
Wwoowwoo

Figure 5-16 Local Space Coordinates of a Cube with Vertex at the Origin

The so-called local space coordinates system facilitates numerical representation
and transformations. When objects are modeled by means of polygons, the database
usually includes not only the object coordinates points, but the normals to the poly-
gon vertices and the normal to the polygon itself. This information is necessary in
order to perform many of the rendering transformations.

5.2.2 World Space

The coordinate system of the scene is called the world space, or world coordinate sys-
tem. Objects modeled in local space usually have to be transformed into world space
at the time they are placed in a scene. For example, a particular scene may require a
cube placed so that its left-bottom vertex is at coordinates x = 2, y = 3, z = 0. The pro-
cess requires applying a translation transformation to the cube as it was originally de-
fined in local space. Furthermore, lighting conditions are usually defined in world
space. Once the light sources are specified and located, then shading and other render-
ing transformations can be applied to the polygons so as to determine how the object
appears under the current illumination. Surface attributes of the object, such as tex-
ture and color, may affect the shading process. Figure 5-17 shows the world space
transformation of a cube under unspecified illumination conditions and with unde-
fined texture and color attributes.

5.2.3 Eye Space

Note in Figure 5-17 that the image is now in world space, and that some shading of the
polygonal surfaces has taken place; however, the rendering is still far from complete.
The first defect that is immediately evident is the lack of perspective. The second one
is that all of the cube's surfaces are still visible. The eye space, or camera coordinate
system, introduces the necessary transformations to improve rendering to any de-
sired degree. Perspective transformations requires knowledge of the camera position

© 2003 by CRC Press LLC

and the projection plane. The second of these is not known until we reach the screen
space phase in the rendering pipeline, therefore, it must be postponed until we reach

this stage.
ty +z
/ World space coordinates
X y z
P8 p7 pl.. 2 3 0
p5 6 p2.. 7 3 0
p3.. 7 3 3
p4.. 2 3 3
p4 p3 p5.. 2 7 0
p7.. 7 7 3
+X p8.. 2 7 3
ty +z
light /

+X

Figure 5-17 World Space Transformation of the Cube In Figure 5-16

The notions of eye and camera positions can be taken as equivalent, although the
word "camera" is more often used in 3D graphics. The camera can be positioned any-
where in the world space and pointed in any direction. Once the camera position is
determined, it is possible to eliminate those elements of the scene that are not visi-
ble. In the context of polygonal modeling this process is generically called backface
elimination.

Backface Elimination or Culling

One of the most important rendering problems that must be solved at this stage of the
pipeline is the elimination of the polygonal faces that are not visible from the eye posi-
tion. In the simplest case, entire polygons that are not visible are removed at this time.
This operation is known as culling. When dealing with a single convex object, as is a
cube, culling alone solves the backface elimination problem. However, if there are
multiple objects in a scene, where one object may partially obscure another one, or in
the case of concave objects, then a more general backface elimination algorithm is re-
quired.

© 2003 by CRC Press LLC

A solid object composed of polygonal surfaces that completely enclose its vol-
ume is called a polyhedron. In 3D graphics a polyhedron is usually defined so that
the normals to its polygonal surfaces point away from its center. In this case, the
polygons whose normals point away from the eye or camera can be assumed to be
blocked by other, closer polygons, and are thus invisible. Figure 5-18 shows a cube
with rods normal to each of its six polygonal surfaces. Solid arrows indicate sur-
faces whose normals point in the direction of the viewer. Dotted arrows indicate
surfaces whose normals point away from the viewer and can, therefore, be elimi-
nated.

Figure 5-18 Culling of a Polyhedron

A single mathematical test can be used to determine if a polygonal face is visible.
The geometric normal to the polygonal face is compared with a vector from the
polygon to the camera or eye position. This is called the line-of-sight vector. If the
resulting angle is greater than 90 degrees, then the polygonal surface faces away
from the camera and can be culled. Figure 5-19 shows the use of polygonal surface
and line-of-sight vectors in culling.

_» View point

>90°

Figure 5-19 Line-of-Sight and Surface Vectors in Culling

© 2003 by CRC Press LLC

Once the position of the camera is determined in the scene, it is possible to per-
form the backface elimination. Figure 5-20 shows the cube of Figure 5-17 after this
operation.

ty +z

light —/

+Xx

Figure 5-20 Eye Space Transformation of the Cube In Figure 5-17

5.2.4 Screen Space

The image, as it exists at this point of the rendering pipeline, is anumerical representa-
tion of the object. Previous illustrations, such as Figure 5-20, should not be taken liter-
ally, since the image has not yet been displayed. The last step of the rendering pipeline
is the transformation onto screen space.

Changing the positioning of the camera is equivalent to rotating the object in the
coordinate space. Either operation determines the type of perspective transforma-
tion: one-point, two-point, or three-point. In relation to Figure 5-17, if we position
the camera so that it is normal to the face of the cube defined by points p1, p2, p6,
and pb, then the result is a one-point perspective. If we position the camera so that
the vertical edges of the cube remain parallel to the viewer, then the result is a
two-point perspective. Similarly, we can reposition the object for a three-point per-
spective. In addition, the perspective transformation requires determining the dis-
tance to the plane of projection, which is known at the screen space stage of the
rendering pipeline.

Screen space is defined in terms of the viewport. The final transformation in the
rendering pipeline consists of eliminating those elements of the eye space that fall
outside the boundaries of the screen space. This transformation is known as clip-
ping. The perspective and clipping transformations are applied as the image reaches
the last stage of the rendering pipeline. Figure 5-21, on the following page, shows
the results of this stage.

5.2.5 Other Pipeline Models

The rendering pipeline model described thus far is not the only one in use. In fact,
practically every 3D graphics package or development environment describes its own
version of the rendering pipeline. For example, the model used in Microsoft's Direct

© 2003 by CRC Press LLC

3D is based on a transformation sequence that starts with polygon vertices being fed
into a transformations pipeline. The pipeline performs world, view, projection, and
clipping transformations before data is sent to the rasterizer for display. These other
versions of the rendering pipeline are discussed in the context of the particular sys-
tems to which they refer.

Eye-space

Clipping
rectangle

Figure 5-21 Screen Space Transformation of the Cube in Figure 5-20

© 2003 by CRC Press LLC

Chapter 6

Lighting and Shading

Topics:
¢ Jllumination models
¢ Reflection and shading
e Ray tracing
¢ Light rendering techniques

Objects are made visible by light. Our visual perception of an object is determined by
the form and quality of the illumination. Lighting defines or influences color, texture,
brightness, contrast, and even the mood of a scene. This chapter is an introduction to
lights and shadows in 3D graphics and how lighting effects are rendered on the screen.

6.1 Lighting

To a great degree the realism of a three-dimensional object is determined by its light-
ing. Some solid objects are virtually impossible to represent without lighting effects.
For example, a billiard ball could not be convincingly rendered as a flat disk. Figure
6-1 shows the enhanced realism that results from lighting effects on a solid object.

Figure 6-1 Lighting Enhances Realism

© 2003 by CRC Press LLC

Lighting and rendering lighted objects is one of the most computationally expen-
sive operations of 3D graphics. At this state of the technology you often have to con-
sider not the ideal lighting effects on a scene but the minimum acceptable levels of
lighting that will produce a satisfactory rendering. What is the "acceptable level" de-
pends on the application. An interactive program that executes in real-time, such as
a flight simulator or a computer game, usually places stringent limitations on light-
ing. For the PC animation programmer it often comes down to a tradeoff between
the smoothness of the animation and the quality of the scene lighting. On the other
hand, when developing applications that are not as sensitive to execution speed, or
that need not execute in real-time, such as a paint program, we are able grant a
greater time slice to lighting operations.

Two models are usually mentioned in the context of lighting: the reflection model
and the illumination model. The reflection model describes the interaction of light
within a surface. The illumination model refers to the nature of light and its inten-
sity distribution. Both are important in developing light-rendering algorithms.

6.1.1 lllumination Models

At this point we are concerned with the light source and its characteristics; textures
are considered later in this chapter. The intensity and distribution of light on the sur-
face of an objectis determined by the characteristics of the light itself, as well as by the
texture of the object. A polished glass ball shows different lighting under the same illu-
mination than a velvet-covered one.

The simplest illumination model is one in which each polygon that forms the ob-
ject is displayed in a single shade of its own color. The result is a flat, monochro-
matic rendering in which self-luminous objects are visible by their silhouette only.
One exception is if the individual polygons that form the object are assigned differ-
ent colors or shades. The circular disk on the left-side of Figure 6-1 is an example of
rendering without lighting effects.

There are two types of illumination — direct and indirect — which in turn, relate
to two basic types of light sources — light-emitting and light reflecting. The illumi-
nation that an object receives from a light-emitting source is direct. The illumination
received from a light-reflecting source is indirect. Consider a polished sphere in a
room illuminated by a single light bulb. If no other opaque object is placed between
the light bulb and the sphere, most of the light that falls on the sphere is direct. Indi-
rect light, proceeding from reflection of other objects, may also take part in illumi-
nating the sphere. If an opaque object is placed between the light bulb and the
sphere, the sphere will be illuminated indirectly, which means, by reflected light
only. Figure 6-2 shows a polished sphere illuminated by direct and indirect lighting,
and by a combination of both.

Light sources also differ by their size. A small light source, such as the sun, is con-
sidered a point source. A rather extensive light source, such as a battery of fluores-
cent light, is considered an extended source. Reflected light is usually an extended
source. Here again, the lighting effect of a point or extended source is modified by
the object's texture. Figure 6-3 shows a polished sphere illuminated by a point and
an extended source.

© 2003 by CRC Press LLC

9

Q /
BOTH DIRECT AND
INDIRECT LIGHTING

O; /O
9 Y

INDIRECT LIGHTING ONLY DIRECT LIGHTING ONLY

AN

Figure 6-2 Direct and Indirect Lighting

6.1.2 Reflection

Except in the case of fluorescent objects, most of the lighting effects result from re-
flection. Ambient illumination is light that has been scattered to such a degree thatitis
no longer possible to determine its direction. Back lighting produces ambient illumi-
nation, as is the case in the right-hand sphere in Figure 6-3. Ambient light and matte
surfaces produce diffuse reflection. Point sources and polished surfaces produce
specular reflection. Variations in the light source and surface textures give rise to vir-
tually unlimited variations between pure diffuse and pure specular reflection.

POINT SOURCE EXTENDED SOURCE

Figure 6-3 Point and Extended Light Sources

© 2003 by CRC Press LLC

Diffuse Reflection

Ambient light produces a uniform illumination on the object's surface. If a surface is
exposed to ambient light alone, then the intensity of reflection at any point on the sur-
face is expressed by the formula

=1k

where Iis the intensity of illumination and k is the ambient reflection coefficient, or re-
flectivity, of the surface. Notice that this coefficient is a property of the surface mate-
rial. In calculations, k is assigned a constant value in the range 0 to 1. Highly reflective
surfaces have values near 1. With high reflectivities light has nearly the same effects as
incident light. Surfaces that absorb most of the light have a reflectivity near 0.

The second element in determining diffuse reflection is the angle of illumination,
or angle of incidence. A surface perpendicular to the direction of incident light re-
flects more light than a surface at an angle to the incident light. The calculation of
diffuse reflection can be made according to Lambert's cosine law, which states that,
for a point source, the intensity of reflected light is proportional to the cosine of the
angle of incidence. Figure 6-4 shows this effect.

\——>

> < |
) > AN Ve
Ziﬂfzc;t;\;e \ b _/(I)_ Point
> source
—

Figure 6-4 Angle of Incidence in Reflected Light

Diffuse reflection obeys Lambert's cosine law. Lambertian reflection is associ-
ated with matte, dull surfaces such as rubber, chalk, and cloth. The degree of diffu-
sion depends on the material and the illumination. Given the same texture and
lighting conditions, diffuse reflection is determined solely by the angle of incidence.
In addition, the type of the light source and atmospheric attenuation can influence
the degree of diffusion. The spheres in Figure 6-5 show various degrees of diffuse il-
lumination.

Figure 6-5 Diffuse Reflection

© 2003 by CRC Press LLC

Surface

normal
Reflection A Light
angle source
View
angle 0 ¢
o

Figure 6-6 Specular Reflection

Specular Reflection

Specular reflection is observed in shiny or polished surfaces. [lluminating a polished
sphere, such as a glass ball, with a bright white light, produces a highlight of the same
color as the incident light. Specular reflection is also influenced by the angle of inci-
dence. In aperfectreflector the angle of incidence, which is the inclination of the light
source to the surface normal, is the same as the angle of reflection. Figure 6-6 shows
the angles in specular reflection.

In Figure 6-6 you can notice that in specular reflection the angle of incidence (f)
is the same as the angle of reflection. In a perfect reflector specular reflection is vis-
ible only when the observer is located at the angle of reflection, in other words,
when p = 0. Objects that are not perfect reflectors exhibit some degree of specular
reflection over a range of viewing positions located about the angle of reflection.
Polished surfaces have a narrow reflection angle while dull surfaces have a wider
one.

Phong's Model

In 1975 Phong Bui-Toung described a model for non-perfect reflectors. The Phong
model, which is widely used in 3D graphics, assumes that specular reflectance is great
in the direction of the reflection angle, and decreases as the viewing angle increases.
The Phong model sets the intensity of reflection according to the function

[=cos" =

where nis called the material's specular reflection exponent. For a perfect reflector, n
is infinite and the falloff is instant. In the Phong model normal values of n range from
one to several hundreds, depending on the surface material. The shaded areas in Fig-
ure 6-7 show Phong reflection for a shiny and a dull surface. The larger the value of n,
the faster the falloff and the smaller the angle at which specular reflection is visible. A
polished surface is associated with a large value for n, while a dull surface has a small
n.

© 2003 by CRC Press LLC

Surface

normal
A Light
source
o o
SHINY SURFACE (large n)
Surface
normal
A Light
source
¢ ¢

DULL SURFACE (small n)

Figure 6-7 Values of n in Phong Model of Specular Reflection

The Phong model enjoys considerable popularity because of its simplicity, and
because it provides sufficient realism for many applications. It also has some impor-
tant drawbacks:

1. All light sources are assumed to be points.

2. Light sources and viewers are assumed to be at infinity.

3. Diffuse and specular reflections are modeled as local components.

4. The decrease of reflection is empirically determined around the reflection vector.
5. Regardless of the color of the surface all highlights are rendered white.

Resulting from these limitations, the following observations have been made re-
garding the Phong model:

1. The Phong model does not render plastics and other colored solids very well. This re-
sults from the white color or all highlights.

2. The Phong model does not generate shadows. This makes objects in a scene to appear
to float in midair.

3. Object concavities are often rendered incorrectly. This is results in specular highlights
in concave areas that should not have them.

© 2003 by CRC Press LLC

6.2 Shading

Shading refers to the application of a reflection model over the surface of an object.
Since graphics objects are often represented by polygons, a brute force shading
method can be based on calculating the normal to each polygon surface, and then ap-
plying an illumination model, such as Phong, to that point.

6.2.1 Flat Shading

The simplest shading algorithm, called flat shading, consists of using an illumination
model to determine the corresponding intensity value for the incident light, then
shade the entire polygon according to this value. Flat shading is also known as con-
stant shading or constant intensity shading. Its main advantage is that it is easy it im-
plement. Flat shading produces satisfactory results under the following conditions:

1. The subject is illuminated by ambient light and there are no surface textures or shad-
OWS.

2. Inthe case of curved objects, when the surface changes gradually and the light source
and viewer are far from the surface.

3. In general, when there are large numbers of plane surfaces.

Figure 6-8 shows three cases of flat shading of a conical surface. The more poly-
gons, the better the rendering.

18 POLYGONS 36 POLYGONS 72 POLYGONS

Figure 6-8 Flat Shading

6.2.2 Interpolative Shading

The major limitation of flat shading is that each polygon is rendered in a single color.
Very often the only way of improving the rendering is by increasing the number of poly-
gons, as shown in Figure 6-8. An alternative scheme is based on using more than one
shade in each polygon, which is accomplished by interpolating the values calculated
for the vertices to the polygon's interior points. This type of manipulation, called
interpolative or incremental shading, under some circumstances is capable of produc-
ing amore satisfactory shade rendering with a smaller number of polygons. Two incre-
mental shading methods, called Gouraud and Phong shading, are almost ubiquitous in
3D rendering software.

© 2003 by CRC Press LLC

Scan line

RENDERED POLYGON

Figure 6-9 Intensity Interpolation in Gouraud Shading

Gouraud Shading

This shading algorithm was first described by H. Gouraud in 1971. It is also called
bilinear intensity interpolation. Gouraud shading is easier to understand in the con-
text of the scan-line algorithm used in hidden surface removal, discussed later in this
chapter. For now, assume that each pixel is examined according to its horizontal
(scan-line) placement, usually left to right. Figure 6-9 shows a triangular polygon with
vertices at A, B, and C.

The intensity value at each of these vertices is based on the reflection model. As
scan-line processing proceeds, the intensity of pixel pl is determined by interpolat-
ing the intensities at vertices A and B, according to the formula

In the example of Figure 6-9, the intensity of p1 is closer to the intensity of vertex
A than that of vertex B. The intensity of p2 is determined similarly, by interpolating

Ji :ypl_yB+yA_ypl
Vi~ Vs Ya— Vs

rl

the intensities of vertices A and C. Once the boundary intensities for the scan line
are determined, any pixel along the scan line is calculated by interpolating, accord-
ing to the following formula

I, xpz—xp3+ X,3= X,
Il p2
X,,—X

pl Xp2 =X

© 2003 by CRC Press LLC

Figure 6-10 Highlight Rendering Error in Gouraud Shading

The process is continued for each pixel in the polygon, and for each polygon in
the scene. Gouraud shading calculations are usually combined with a scan-line hid-
den surface removal algorithm and performed at the same time.

Gouraud shading also has limitations. One of the most important ones is the loss
of highlights on surfaces and highlights that are displayed with unusual shapes. Fig-
ure 6-10 shows a polygon with an interior highlight. Since Gouraud shading is based
on the intensity of the pixels located at the polygon edges, this highlight is missed.
In this case pixel p3 is rendered by interpolating the values of p1 and p2, which pro-
duces a darker color than the one required.

Another error associated with Gouraud shading is the appearance of bright or
dark streaks, called Mach bands.

Phong Shading

Phong shading is the most popular shading algorithm in use today. This method was
developed by Phong Bui-Toung, the author of the illumination model described previ-
ously. Pong shading, also called normal-vector interpolation, is based on calculating
pixel intensities by means of the approximated normal vector at the point in the poly-
gon. Although more calculation expensive, Phong shading improves the rendering of
bright points and highlights that are misrendered in Gouraud shading.

6.2.3 Ray Tracing

Other shading models find occasional use in 3D graphics. The ones discussed so far
(Phong and Gouraud shading) as well as others of intermediate complexity are not
based on the physics of light, but on the way that light interacts with objects. Although
the notion of light intensity is used in these models, it is not formally defined.
Physically-based methods, although much more expensive computationally, can pro-
duce more accurate rendering. One such method, called ray tracing, is based on back-
tracking the light rays from the center of projection (viewing position) to the light
source.

Ray tracing originated, not in computer graphics, but in geometric optics. In 1637,
René Descartes used ray tracing on a glass ball filled with water to explain rainbow
formation. Around 1980, computer graphics researchers began applying ray tracing

© 2003 by CRC Press LLC

techniques in the production of very high-quality images, at a very high processing
cost. Ray tracing is a versatile and powerful rendering tool. It incorporates the pro-
cessing done in reflection, hidden surface removal, and shading operations. When
execution time is not a factor, ray tracing produces better results, better than any
other rendering scheme. This fact has led to the general judgment that ray tracing is
currently the best implementation of an illumination model.

In a simple reflection model only the interaction of a surface with the light source
is considered. For this reason, when a light ray reaches a surface through interac-
tion with another surface, when it is transmitted through a partially transparent ob-
ject, or by a combination of these factors, the rendering fails. Figure 6-11 shows how

ray tracing captures the reflected image of a cube on the surface of a polished
sphere.

Projection plane

Figure 6-11 Rendering a Reflected Image by Ray Tracing

6.3 Other Rendering Algorithms

So far we have discussed rendering algorithms that relate to perspective, culling and
hidden surface removal, illumination, and shading. In this section we look at other ren-
dering methods that complement or support the ones already mentioned. Note that we

have selected afew of the better known schemes; many others are discussed the litera-
ture.

© 2003 by CRC Press LLC

6.3.1 Scan-Line Operations

In computer graphics the term scan-line processing or scan-line algorithms refersto a
general processing method whereby each successive pixel is examined row by row,
that is, in scan-line order. You already encountered scan-line processing in Gouraud
shading. Scan-line methods are also used in filling the interior of polygons. In fact,
most rendering engines use some form of scan-line processing. Usually several algo-
rithms are incorporated into a scan-line routine. For example, as each pixel is exam-
ined in the scan-line order, hidden-surface removal, shading, and shadow generation
logic are applied to it in order to determine how it is to be rendered. The resultis a con-
siderable saving compared to the time it would take to apply each rendering opera-
tions independently.

Hidden Surface Removal

A scan-line algorithm called the image space method is often used for removing hid-
den surfaces in a scene. This method is actually a variation of polygon filling algo-
rithm. The processing requires that the image database contain the coordinate points
for each polygon vertex. This is usually called the edge table. Figure 6-12 shows two
overlapping triangles whose vertices (A, B, C, D, E, and F) are stored in the edge table.

A » scan line 2

A ¥ scan line &

=

Figure 6-12 Scan-Line Algorithm for Hidden Surface Removal

The scan-line algorithm for hidden surface removal uses a binary flag to indicate
whether a pixel is inside or outside the surface. Each surface on the scene is given
one such flag. As the left-most boundary of a surface is reached, the flag is turned
on. At the surface's right-most boundary the flag is turned off. When a single surface
flag is on, the surface is rendered at that pixel. Scan line 1 in Figure 6-12 has some
pixels in which the flag is on for triangle ABC. Scan line 2 in Figure 6-12 also poses
no problem, since a single surface has its flag on at one time. In scan line 3 the flag

© 2003 by CRC Press LLC

for triangle ABC is turned on at its left-most boundary. Before the surface's
right-most boundary is reached, the flag for triangle DEF is turned on. When two
flags are on for a given pixel, the processing algorithm examines the database to de-
termine the depth of each surface. The surface with less depth is rendered, and all
the other ones are removed. As the scan line processing crosses the boundary de-
fined by edge BC, the flag for triangle ABC is turned off. From that point on, the flag
for triangle DEF is the only one turned on; therefore, its surface is rendered.

Shadow Projections

Ray tracing can be used to generate shadows; however, other rendering methods can
also be designed to handle of shadows. For example, it is possible to add shadow pro-
cessing to a scan-line routine. To illustrate this point assume an image database with a
list of polygons that may mutually shadow each other. This list, called the shadow
pairs, is constructed by projecting all polygons onto a sphere located at the light
source. Polygon pairs that can interact are the only ones included in the shadow pairs
list. The shadow pairs list saves considerable processing effort by eliminating those
polygons that cannot possibly cast a shadow on each other.

The actual processing is similar to the scan-line algorithm for hidden surface re-
moval. Figure 6-13 shows two polygons, labeled A and B. In this example we assume
a single light source placed so that polygon A casts a shadow on polygon B. The
shadow pairs in the database tell us that polygon B cannot shadow polygon A, but
polygon A can shadow polygon B. For this reason, in scan line 1 polygon A is ren-
dered without further query. In scan line 2 polygon B is shadowed by polygon A.
Therefore, the pixels are modified appropriately. In scan line 3 polygon B is ren-
dered.

Figure 6-13 Scan-Line Algorithm for Shadow Projection

Figure 6-14 shows two renderings of the same scene. The one on the left-side is
done without shadow projection. The one on the right is rendered using a shadow
projection algorithm.

6.3.2 Z-Buffer Algorithm

Developed by Catmull in 1975, the z-buffer or depth buffer algorithm for eliminating
hidden surfaces has become a staple in 3D computer graphics. The reason for its popu-
larity is its simplicity of implementation.

© 2003 by CRC Press LLC

Figure 6-14 Shadow Rendering of Multiple Objects

The algorithm's name relates to the fact that the processing routine stores in a
buffer the z-coordinates for the (x,y) points of all objects in the scene. This is the
z-buffer. A second buffer, sometimes called the refresh buffer, is used to hold the in-
tensities for each pixel. During processing, all positions in the z-buffer are first ini-
tialized to the maximum depth value, and all positions in the refresh buffer to the
background attribute. At each pixel position, each polygon surface in the scene is
examined for its z-coordinate value. If the z coordinate for the surface is less than
the value stored in the z-buffer, then the value in the z-buffer is replaced with the
one corresponding to the surface being examined. At this point the refresh buffer is
also updated with the intensity value for that pixel. If the z value for the surface is
greater than the value in the z-buffer, then the point is not visible and can be ig-
nored.

Figure 6-15 shows the z-buffer algorithm in action. Three surfaces (a square, a cir-
cle, and a triangle) are located at various depths. When the z-buffer is initialized the
pixel shown in the illustration is assigned the depth of the background surface, SO.
The surface for the circle is examined next. Because S2 is at less depth than SO, the
value S2 replaces the value SO in the z-buffer. Now S2 is the current value in the
z-buffer. Next, the value for the triangular surface S1 is examined. Since S1 has
greater depth than S2 it is ignored. However, when S3 is examined it replaces S2 in
the buffer, since it is at less depth.

+y SQ background

53

+X

-Z

Figure 6-15 Z-Buffer Algorithm Processing

© 2003 by CRC Press LLC

6.3.3 Textures

The surface composition of an object influences how it reflects light. For this reason,
the reflectivity of a surface must be taken into account when calculating illumination
effects. Textures were completely ignored in early 3D packages. At that time all sur-
faces were assumed to have identical reflection properties. The result were scenes
that appeared unnatural because of their uniformity. Since then, textures have been
steadily gaining popularity.

The simplest and most common implementation of textures is with bitmaps. In
this case the texture refers only to the color pattern of the surface, and not to its de-
gree of smoothness. Texture bitmaps are easy to apply to objects and are rendered
as a surface attribute. In addition, texture blending and light mapping with textures
provide additional enhancements to the rendering. The specifics of texture render-
ing are discussed in the context of 3D graphics programming.

© 2003 by CRC Press LLC

Part Il

DOS Graphics

© 2003 by CRC Press LLC

Chapter 7

VGA Fundamentals

Topics:
e The VGA standard
¢ VGA components
¢ Alphanumeric modes
e Graphics modes
¢ VGA programmable components

This chapter describes the VGA video standard and its programmable elements: the
CRT Controller, the Graphics Controller, the Sequencer, the Attribute Controller, and
the Digital-to-Analog converter (DAC). It also describes the VGA memory structure.

7.1 The VGA Standard

In 1987 IBM introduced two video systems to be furnished as standard components for
their PS/2 line. These video systems were named the MCGA (Multi-color Graphics Ar-
ray) and VGA (Video Graphics Array). MCGA, an under-featured version of VGA, was
furnished with the lower-end PS/2 machines Models 25 and 30. VGA was the standard
video system for all other PS/2 microcomputers. Subsequently IBM extended VGA to
its low-end models of the PS/2 line. Later on (August 1990) IBM announced aline of in-
expensive home computers (designated as the PS/1 line) equipped with VGA graphics.
Since the MCGA standard was short lived and not very popular it will not be specifi-
cally considered in this book. However, because MCGA is a sub-version of VGA, its
programming is identical to VGA in those video modes that are common to both sys-
tems.

The VGA standard introduced a change from digital to analog video display driver
technology. The reason for this change is that analog monitors can produce a much
larger color selection than digital ones. This switch in display technology explains
why the monitors of the PC line are incompatible with the VGA standard and vice
versa. VGA graphics also include a digital-to-analog converter, usually called the

© 2003 by CRC Press LLC

DAC, and 256K of video memory. The DAC outputs the red, green, and blue signals
to the analog display. Video memory is divided into four 64K video maps, called the
bit planes. VGA supports all the display modes in MDA, CGA, and EGA (see Table
1-1). In addition, VGA implements several new alphanumeric and graphics modes,
the most notable of which are graphics mode number 18, with 640-by-480 pixel reso-
Iution in 16 colors, and graphics mode number 19, with 320-by-200 pixel resolution
in 256 colors. The effective resolution of the VGA text modes is of 720-by-400 pixels.
These text modes can execute in 16 colors or in monochrome. Three different fonts
can be selected in the alphanumeric modes.

Access to the VGA registers and to video memory is through the system micropro-
cessor. The microprocessor read and write operations to the video buffer are auto-
matically synchronized by the VGA with the cathode-ray tube (CRT) controller so as
to eliminate interference. This explains why VGA programs, unlike those written for
the CGA, can access video memory at any time without fear of introducing screen
snow or other unsightly effects.

7.1.1 Advantages and Limitations

The resolution of a graphics system is usually defined as the total number of sepa-
rately addressable elements per unit area. In video display systems the individually ad-
dressable elements are the screen pixels; the resolution is measured in pixels perinch.
For example, the maximum resolution of a VGA system is approximately 80 pixels per
inch, both vertically and horizontally. In VGA this density is determined by a screen
structure of 640 pixels per each 8-inch screen row and 480 vertical pixels per each
6-inch screen column. But not all video systems output a symmetrical pixel density.
For example, the maximum resolution of the EGA standard is the same as that of the
VGA onthe horizontal axis (80 pixels perinch) but only of 58 pixels per inch on the ver-
tical axis.

The asymmetrical pixel grid of the EGA and of other less refined video standards
introduces programming complications. For example, in a symmetrical VGA screen
a square figure can be drawn using lines of the same pixel length, but these lines
would produce a rectangle in an asymmetrical system. By the same token, the pixel
pattern of a circle in a symmetrical system will appear as an ellipse in an asymmetri-
cal one, as shown in Figure 7-1.

The major limitations of the VGA system are resolution, color range, and perfor-
mance. VGA density of 80 pixels per inch is a substantial improvement in relation to
its predecessors, the CGA and the EGA, but still not very high when compared to the
600 dots per inch of a typical laser printer, or the 1200 and 2400 dots per inch of a
high-end printer or imagesetter. The low resolution is one reason why VGA screen
images are often not lifelike; bitmaps appear grainy and we can often detect that
geometrical figures consist of straight-line segments. In regards to color range VGA
can display up to 256 simultaneous colors; however, this color range is not available
in the mode with the best resolution. In other words, the VGA programmer must
chose between an 80 pixels per inch resolution in 16 colors (mode number 18) or 40
pixels per inch resolution in 256 colors (mode number 19).

© 2003 by CRC Press LLC

Asymmetrical Pixel Density (CGA) Symmetrical Pixel Density (VGA)

T
) N
/4 N\
/ \] \
/ \
\ /
N Yy
\ / PN A
\ /
N /
— e

Figure 7-1 Symmetrical and Asymmetrical Pixel Density

But perhaps the greatest limitation of the VGA standard is its performance. The
video display update operations in VGA detract from general system efficiency,
since it is the microprocessor that must execute all video read and write operations.
In the second place, the video functions execute slowly when compared to dedi-
cated graphics work stations. This slowness is particularly noticeable in the graph-
ics modes, in which a full screen redraw can take several seconds. Most animated
programs, which must update portions of the screen at a rapid rate, execute in VGA
with a jolting effect that is unnatural and visually disturbing.

7.1.2 VGA Modes

The original video systems used in IBM microcomputers, such as CGA, MDA, and
EGA, had monitor-specific modes. For example, the CGA turns the color burst off in
modes 0, 2, and 4 and on in modes 1, 3, and 5. Mode number 7 is available in the Mono-
chrome Display Adapter (MDA) and in an Enhanced Graphics Adapter (EGA)
equipped with a monochrome display, but not in the CGA or EGA systems equipped
with color monitors. Inthe VGA standard, on the other hand, the video modes are inde-
pendent of the monitor. For example, a VGA equipped with any one of the standard di-
rect drive color monitors can execute in monochrome mode number 7. Table 7-1, on
the following page, lists the properties of the VGA video modes.

In Table 7-1 we have used decimal numbers for the video modes. Our rationale is
that video modes are a conventional ordering scheme used in organizing common
hardware and software characteristics of a video system, therefore we can see no
reason for using hexadecimal notation in numbering these modes. Consequently,
throughout the book, we have used decimal numbers for video modes, offset values,
and other forms of sequential orders that do not require binary or hexadecimal nota-
tion.

© 2003 by CRC Press LLC

Table 7-1
VGA Video Modes

MODE COLORS TYPE TEXT TEXT SCREEN BUFFER SCREEN
COLS/ROWS PIXEL BOX PAGES ADDRESS PIXELS
01 16 Alpha 40by25 8x8 8 BSOOOH 320 by 200
8 x 14* 320 by 350
9 x 16+ 360 by 400
23 16 Alpha 80by25 8x8 8 BSOOOH 320 by 200
8 x 14* 320 by 350
9x16 360 by 400
45 4 GRA 40by25 8x8 1 AOOOOH 320 by 200
6 2 GRA 80by25 8x8 1 AOOOOH 640 by 200
7 Alpha 80by28 9x 14 8 BOOOOH 720 by 350

9x16 720 by 400

13 16 GRA 40by25 8x8 8 AO000H 320 by 200
14 16 GRA 80by25 8x8 4 AOO0OH 640 by 200
15 GRA 80by25 8x14 2 AOO0OH 640 by 350
16 16 GRA 80by25 8x14 2 AOO00OH 640 by 350
17 2 GRA 80by30 8x16 1 AOO00OH 640 by 480
18 16 GRA 80by30 8x16 1 AOO0OH 640 by 480
19 256 GRA 40by25 8x8 1 AO000H 320 by 200

Legend:
Alpha = alphanumeric modes (text)
GRA = graphics modes
* = EGA enhanced modes
+ = VGA enhanced modes

Notice in Table 7-1 that the VGA buffer can start in any one of three possible ad-
dresses: BOOOOH, BSOOOH, and AOOOOH. Address BOOOH is used only when mode 7 is
enabled, in this case VGA is emulating the Monochrome Display Adapter. In en-
hanced mode number 7 the VGA displays its highest horizontal resolution (720 pix-
els) and uses a 9 x 16 dots text font. However, in this mode the VGA is capable of
text display only. Buffer address AOOOH is active while VGA is in a graphics mode.
Also note that the video modes number 17 and 18, with 480 pixel rows, were intro-
duced with the VGA and MCGA standards. Therefore they are not available in CGA
and EGA systems. Modes 17 and 18 offer a symmetrical pixel density of 640 by 480
screen dots (see Figure 7-1). Mode number 19 has 256 simultaneous colors; the most
extensive one in the VGA standard, however, its linear resolution, is half of the one
in mode number 18.

7.2 VGA Components

The VGA system is divided into three identifiable components: the VGA chip, video
memory, and a Digital-to-Analog Converter (DAC). Figure 7-2 shows the interconnec-
tions between the elements of the VGA system.

© 2003 by CRC Press LLC

VGA Chip

Memory Maps
Intensity
CRT > Red
Controller >
Green
Blue
Graphics
Controller
Attribute > Red
Sequencer Controller Video DAC |—> Green
—>» Blue

Figure 7-2 VGA System Components

7.2.1 Video Memory

All VGA systems contain the 256K of video memory that is part of the hardware. This
memory is logically arranged in four 64K blocks that form the video maps (labeled
blue, green, red, and intensity in Figure 7-2). The four maps are sometimes referred to
as bit planes 0 to 3.

In EGA systems the display buffer consists of a 64K RAM chip installed in the
card itself. Up to three more 64K blocks of video memory can be optionally added
on the piggyback memory expansion card. The maximum memory supported by
EGA is 256K divided into four 64K blocks.

Alphanumeric Modes

Inthe alphanumeric modes 0, 1,2, 3, and 7 (see Table 7-1) the VGA video bufferis struc-
tured to hold character codes and attribute bytes. The organization of the video buffer
in the alphanumeric modes was discussed in Part I of this book. The default functions
of the bits in the attribute byte can be seen in Figures 1.11 and 1.12. However, the VGA
standard allows redefining two of the attribute bits in the color alphanumeric modes:
bit 7 can be redefined to control the background intensity and bit 3 can be redefined to
perform a character-set select operation. Figure 7-3 shows the VGA attribute byte, in-
cluding the two redefinable bits.

© 2003 by CRC Press LLC

FOREGROUND BITS

blue component

green component

red component
foreground intensity or
character set select
BACKGROUND BITS

blue component

green component

red component

foreground intensity or blink select

Note: The default setting is bit 7 to the blink function
and bit 3 to the foreground select function

Figure 7-3 Attribute Byte Bitmap in VGA Systems

The programmer can toggle the functions assigned to bits 3 and 7 of the attribute
byte by means of BIOS service calls or by programming the VGA registers. These op-
erations are performed by the VGA graphics library on that is part of the book’s soft-
ware.

Graphics Modes

One of the problems confronted by the designers of the VGA system was the limited
memory space of an IBM microcomputers under MS DOS. Recall that in VGA mode
number 18 (see Table 7-1) the video screen is composed of 480 rows of 640 pixels per
row, for a total of 307,200 screen pixels. If 8 pixels are encoded per memory byte, each
color map would take up approximately 38K, and the four maps required to encode 16
colors available in this mode would need approximately 154K. The VGA designers
were able to reduce this memory space by using a latching mechanism that maps all
four color maps to the same memory area. Figure 7-4 is a diagram of the video memory
structure in VGA mode number 18.

Figure 7-4 shows how the color of a single screen pixel is stored in four memory
maps, located at the same physical address. Note that the color codes for the first
eight screen pixels are stored in the four maps labeled Intensity, Red, Green, and
Blue. In VGA mode number 18 all four maps are located at address AOOOOH. The first
screen pixel has the intensity bit and the green bit set, therefore it appears light
green. For the same reason, the second pixel, mapped to the subsequent bits in the
video buffer, will be displayed as light red, since it has the red and the intensity bits
set (see Figure 7-4).

VGA memory mapping changes in the different alphanumeric and graphics
modes. In Figure 7-4 we see that in mode number 18 the color of each screen pixel is
determined by the bit settings in four memory maps. However, in mode number 19,
in which VGA can display 256 colors, each screen pixel is determined by one video
buffer byte. Figure 7-5 shows the memory mapping in VGA mode number 19. In real-
ity VGA uses all four bit planes to store video data in mode number 19, but, to the
programmer, the buffer appears as a linear space starting at address AOOOH. The
color value assigned to each pixel in the 256-color modes is explained in Chapter 8.

© 2003 by CRC Press LLC

.
!
o fofofe]efe]of1]

s \ .
i L
N - [LLLLTTTT 1
. : R | E
L o[1[e]efolof 1] o] E
Ly R| E
o[s[R[1] LATCHES tefofofof e o]] el
D
N
T
pixel is light green :
S
° I
T
Y

Figure 7-4 Video Memory Mapping in VGA Mode 18

Many VGA graphics modes were created to insure compatibility with previous
video systems. Specifically, VGA graphics modes numbers 4, 5, and 6 are compatible
with modes in the CGA, EGA, and PCjr; modes numbers 13, 14, 15, and 16 are com-
patible with EGA; and graphics mode number 17 (a two-color version of mode num-
ber 18) was created for compatibility with the MCGA standard. This leaves two
proprietary VGA modes: mode number 18 with 640-by-480 pixels in 16 colors, and
mode number 19, with 320-by-200 pixels in 256 colors. It is in these two most power-
ful VGA modes that we will concentrate our attention.

| |
pixel is light blue ofofofofs][o]o]1]

O«

Video Memory
(64,000 bytes)

O W[o
(]

Figure 7-5 Video Memory Mapping in VGA Mode 19

© 2003 by CRC Press LLC

7.3 VGA Registers

We have seen that the VGA system includes a chip containing several registers, a mem-
ory space dedicated to video functions, and a digital-to-analog converter (see Figure
7-2). The VGA registers are mapped to the system's address space and accessed by
means of the central processor. The VGA programmable registers (excluding the
DAC) belong to five groups (also shown in Table 7-2):

1. The General registers. This group is sometimes called the external registers due to the
fact that, on the EGA, they were located outside the VLSI chip. The general registers
provide miscellaneous and control functions.

2. The CRT Controller registers. This group of registers controls the timing and synchro-
nization of the video signal. Also the cursor size and position.

3. The Sequencer registers. This group of registers controls data flow into the Attribute
Controller, generates the timing pulses for the dynamic RAMs, and arbitrates memory
accesses between the CPU and the video system. The Map Mask registers in the Se-
quencer allow the protection of entire memory maps.

Table 7-2
VGA Register Groups

EMULATING
REGISTER READ/WRITE MDA CGA EITHER
GENERAL REGISTERS
1. Miscellaneous output Write 03C2H
Read 03CCH
2. Input status 0 Read 03C2H
3. Input status 1 Read 03BAH 03DAH
4. Feature control Write 03BAH 03DAH
Read 03CAH
5. Video Subsystem enable = R/W 03C3H
6. DAC state Read 03C7H
CRT CONTROLLER REGISTERS
1. Index R/W 03B4H 03D4H
2. Other CRT Controller R/W 03B5H 03D5H
SEQUENCER REGISTERS
1. Address R/W 03C4H
2. Other R/W 03C5H
GRAPHICS CONTROLLER REGISTERS
1. Address R/W 03CEH
2. Other R/W 03CFH
ATTRIBUTE CONTROLLER REGISTERS
1. Address R/W 03COH
2. Other Write 03COH
Read 03C1H

© 2003 by CRC Press LLC

4. The Graphics Controller registers. This group of registers provides an interface be-
tween the system microprocessor, the Attribute Controller, and video memory, while
VGA is in a graphics mode.

5. The Attribute Controller registers. This group of registers determines the characteris-
tics of the character display in the alphanumeric modes and the pixel color in the
graphics modes.

7.3.1 The General Registers

The General registers, called the External registers in EGA, are used primarily in ini-
tialization of the video system and in mode setting. Most applications let the system
software handle the initialization of the video functions controlled by the General reg-
isters. For example, the easiest and most reliable way for setting a video mode is BIOS
service number 0, of interrupt 10H. Figure 7-6 and Figure 7-7 show some programma-
ble elements in the VGA General Register group.

716|514 |3|2|1|0 port 3C2H

I/0 address select bit

0 = 3BxH (MDA emulation mode)
1 = 3DxH (CGA emulation mode)
RAM enable/disable

0 = video RAM disabled

1 = video RAM enabled

clock select bits

00 = 25.175 MHz clock on VGA
14 MHz clock on EGA

01 = 28.322 MHz clock on VGA

16 MHz clock on EGA

external clock selected

RESERVED

10
11

page bit for odd/even mode

0 = 1low 1 = high (diagnostic wuse)
horizontal sync polarity

vertical sync polarity

Figure 7-6 VGA/EGA Miscellaneous Output Register

Note that bit number 7 of Input Status Register 0, at port 3C2H (see Figure 7-7 on
the following page) is used in determining the start of the vertical retrace cycle of
the CRT controller. This operation is sometimes necessary to avoid interference
when updating the video buffer. The procedure named TIME_VRC, in the VGA mod-
ule of the GRAPHSOL library, described in Chapter 3, performs this timing opera-
tion.

© 2003 by CRC Press LLC

—— O
—— O
—— O
—— O

716l5]2al3l212]0 INPUT STATUS REGISTER 0
port 3C2H

SWITCH SENSE

1 = switch sense line open
0 = swtich sense line closed
EGA ONLY

feature code bit 0
feature code bit 1

CRT INTERRUPT
1 = vertical retrace interrupt pending
0 = no vertical retrace interrupt

— O
— O

INPUT STATUS REGISTER 1
716|514 |3|2]1]0 port 3BAH in MDA mode
port 3DAH in CGA modes

DISPLAY ACCESS
1 CPU is accessing display
0 no display access in progress

EGA ONLY
light pen strobe
light pen switch

VERTICAL RETRACE

1 = vertical retrace in progress
0 = no vertical retrace

system diagnostics

note: Input Status register 1 is also used in toggling
the Attribute Controller's internal flip-flop

Figure 7-7 VGA Input Status Register

7.3.2 The CRT Controller

The VGA CRT Controller register group is the equivalent of the Motorola 6845 CRT
Controller chip of the PC line. When VGA is emulating the MDA, the port address of the
CRT Controller is 3B4H; when it is emulating the CGA then the port address is 3D4H.
These ports are the same as those used by the MDA and the CGA cards. Table 7-3 lists
the registers in the CRT Controller group.

Most registers in the CRT Controller are modified only during mode changes.
Since this operation is frequently performed by means of a BIOS service, most pro-
grams will not access the CRT Controller registers directly. The exception are the
CRT Controller registers related to cursor size and position, which are occasionally
programmed directly. The Cursor Size register is shown in Figure 7-8. and the Cur-
sor Location register in Figure 7-9.

© 2003 by CRC Press LLC

Table 7-3
VGA CRT Controller Register

PORT OFFSET DESCRIPTION
03x4H Address register
03x5H 0 Total horizontal characters minus 2 (EGA)

Total horizontal characters minus 5 (VGA)

1 Horizontal display end characters minus 1
2 Start horizontal blanking

3 End horizontal blanking

4 Start horizontal retrace pulse

5 End horizontal retrace pulse

6 Total vertical scan lines

7 CRTC overflow

8* Preset row scan

9 Maximum scan line

10* Scan line for cursor start

11" Scan line for cursor end

12~ Video buffer start address, high byte
13* Video buffer start address, low byte
14~ Cursor location, high byte

15* Cursor location, low byte

16 Vertical retrace start

17 Vertical retrace end

18 Last scan line of vertical display

19 Additional word offset to next logical line
20 Scan line for underline character

21 Scan line to start vertical blanking
22 Scan line to end vertical blanking
23 CRTC mode control

24 Line compare register

Notes: Registers signaled with (*) are described separately
3x4H/3x5H = 3B4H/3B5H when emulating the MDA
3x4H/3x5H = 3D4H/3D5H when emulating the CGA

CURSOR START REGISTER
71615([4([3]2]1]0| offset 10

scan row for cursor start
CURSOR ON/OFF CONTROL
0 1 = cursor off

0 = cursor on

CURSOR END REGISTER
716|154 (3|12|1|0| offset 11

[I

scan row for cursor end

CURSOR SKEW CONTROL
cursor is moved right 0 to 3 positions

Figure 7-8 Cursor Size Registers of the VGA CRT Controller

© 2003 by CRC Press LLC

CURSOR LOCATION, HIGH BYTE
offset 14

| high-order byte of cursor address

CURSOR LOCATION, LOW BYTE
7(6]|5]4[3]2]1|0| offset 15 !

low-order byte of cursor address
Figure 7-9 Cursor Location Registers of the VGA CRT Controller

Figure 7-10 graphically shows the cursor scan lines and the default setting in a 8 x
14 pixel text mode (see Table 7-1).

scan

lines CURSOR

N default
12 setting

Figure 7-10 Cursor Scan Lines in VGA Systems

A program can change the cursor size in alphanumeric modes using service num-
ber 1 of BIOS interrupt 10H or by programming the CRT Controller cursor register
directly. The use of BIOS service number 10, interrupt 10H, is discussed later in this
chapter. The following code fragment shows a sequence of instructions for program-
ming the CRT Controller cursor size registers. The action performed by the code is
to change the VGA default cursor in a 8-by-14 text mode from scan lines 12 and 13 to
scan lines 1 to 7.

© 2003 by CRC Press LLC

MOV DX, 3B4H ; VGA CRTC address register
; in the MDA emulation modes

MOV AL, 10 ; Cursor start register number
ouT DX, AL ; Select this register

MOV DX, 3B5H ; CRTC registers

MOV AL, 1 ; Start scan line for new cursor
ouT DX, AL ; Set in 6845 register

MOV DX, 3B4H ; Address register again

MOV AL, 11 ; Cursor end register number
ouT DX, AL ; Select this register

MOV DX, 3B5H ; CRTC registers

MOV AL, 7 ; End scan line for new cursor
ouT DX, AL ; Set in 6845 register

The cursor location on an alphanumeric mode can also be set using a BIOS ser-
vice or programming the CRT Controller registers directly. BIOS service number 0,
interrupt 10H, allows setting the cursor to any desired column and row address. Al-
ternatively the cursor can be repositioned by setting the contents of the cursor ad-
dress registers on the VGA CRT Controller. The cursor address registers are located
at offset 14 and 15, respectively. The following code fragment will position the cur-
sor at the start of the third screen row. The code assumes an 80 x 25 alphanumeric
mode in the Monochrome Display Adapter. The offset of the second row is calcu-
lated as 80 x 2 = 160 bytes from the start of the adapter RAM. Consequently, the Cur-
sor Address High register must be zeroed and the Cursor Address Low register set to

160.

MOV DX, 3B4H ; VGA CRTC address register

; in the MDA emulation mode
MOV AL, 14 ; Cursor Address High register
ouT DX, AL ; Select this register
MOV DX, 3B5H ; CRTC registers
MOV AL, O ; Zero high bit of address
ouT DX, AL ; Set in CRTC register
MOV DX, 3B4H ; Address register again
MOV AL, 15 ; Cursor Address Low register
ouT DX, AL ; Select this register
MOV DX, 3B5H ; CRTC programmable registers
MOV AL, 160 ; 160 bytes from adapter start
ouT DX, AL ; Set in 6845 register

; Cursor now set at the start of the third screen row

Another group of registers within the CRT Controller that are occasionally pro-
grammed directly are those that determine the start address of the screen window in
the video buffer. This manipulation is sometimes used in scrolling and panning text
and graphics screens. In VGA systems the CRT Controller Start Address High and
Start Address Low registers (offset 0CH and O0DH) locate the screen window within
a byte offset, while the Preset Row Scan register (offset 08H) locates the window at
the closest pixel row. Therefore the Preset Row Scan register is used to determine
the vertical pixel offset of the screen window. The horizontal pixel offset of the
screen window is programmed by changing the value stored in the Horizontal Pixel
Pan register of the Attribute Controller, described later in this chapter. Figure 7-11,
on the following page, shows the Start Address registers of the CRT Controller. Fig-
ure 7-12, on the following page, is a bitmap of the Preset Row Scan register.

© 2003 by CRC Press LLC

START ADDRESS REGISTER, HIGH BYTE
716(5])43[2]|2|0(Cffset 12

| high-order byte of start address

716ls5lal3]l2]12o0 START ADDRESS REGISTER, LOW BYTE
offset 13

| low-order byte of start address

Figure 7-11 Video Start Address Register of the VGA CRT Controller

716|514 |3|2|1]|0 offset 08

I I I

start number for first
scanned pixel row
(range 0 to 31)

byte panning control (not used in VGA modes)
L—— RESERVED

Figure 7-12 Preset Row Scan Register of the VGA CRT Controller

7.3.3 The Sequencer

The VGA Sequencer register group controls memory fetch operations and provides
timing signals for the dynamic RAMs. This allows the microprocessor to access video

memory in cycles inserted between the display memory cycles. Table 7-4 shows the
registers in the VGA Sequencer.

Table 7-4
The VGA Sequencer Registers
PORT OFFSET DESCRIPTION
03C4H Address register
03C5H 0 Synchronous or Asynchronous reset
1 Clocking Mode
2" Map Mask
3* Character Map Select
4* Memory Mode

Note: Registers signaled with an (*) are described separately

The Map Mask register in the Sequencer group allows the protection of any spe-
cific memory map by masking it from the microprocessor and from the Character
Map select register. Figure 7-13 is a bitmap of the Map Mask register.

© 2003 by CRC Press LLC

0 0 00O I R G B
7|6|5|/4]|3|2|[1]|0| port 3csH
offset 2
1 = map 0 enabled (blue plane)
1 = map 1 enbaled (green plane)
1 = map 2 enabled (red plane)
1 = map 3 enabled (intensity plane)

Figure 7-13 Map Mask Register of the VGA Sequencer

If VGA is in a color graphic mode, the Map Mask register can be used to select the
color at which one or more pixels are displayed. The color is encoded in the IRGB
format, as shown in Figure 7-13. To program the Map Mask register we must first
load the value 2 into the address register of the Sequencer, at port 3C4H. This value
corresponds with the offset of the Map Mask register (see Table 7-4). After the pixel
or pixels have been set, the Map Mask register should be restored to its default value
(OFH). The following code fragment shows the usual program operations.

; Setting 8 bright-red pixels in VGA mode number 18

; The code assumes that video mode number 18 is selected,

; that ES is set to the video segment base, and that BX points
; to the offset of the first pixel to be set

.***********************|
7

; select register |
;***********************|

MOV DX, 3C4H ; Address register of Sequencer
MOV AL, 2 ; Offset of the Map Mask
ouT DX, AL ; Map Mask selected
MOV DX, 3C5H ; Data to Map Mask
MOV AL,00001100B ; Intensity and red bits set
; in IRGB encoding
ouT DX, AL ; Map Mask = 0000 IROO

.‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k*‘k‘k**‘k‘k**‘k‘k*|
;
; set pixels |
.***********************|
;

; Setting the pixels consists of writing a 1 bit in the
; corresponding buffer address.

MOV AL, ES: [BX] ; Dummy read operation
MOV AL,11111111B ; Set all bits
MOV ES: [BX],AL ; Write to video buffer

.***********************|
7

; restore Map Mask |
;‘k‘k‘k‘k‘k‘k‘k‘k‘k**‘k‘k‘k‘k‘k‘k****‘k‘k|

; Restore the Map Mask to the default state

MOV DX, 3C4H ; Address register of Sequencer
MOV AL, 02H ; Offset of the Map Mask

ouT DX, AL ; Map Mask selected

MOV DX, 3C5H ; Data to Map Mask

MOV AL,00001111B ; Default IRGB code for Map Mask
ouT DX, AL ; Map mask = 0000 IRGB

© 2003 by CRC Press LLC

7|6 |5[a|3]2]1]|0]| Poxt 3c5H

offset 3
| MAP B SELECT
(attribute bit 3 = 0)
I— MAP A SELECT 88(1) = map (1)
(attribute bit 3 = 1) = map
000 = map O
001 = map 1

111 = map 7

111 = map 7
LOCATION OF MAP TABLES

map No. location map No. location
0 lst 8K of map 2 4 2nd 8K of map 2
1 3rd 8K of map 2 5 4th 8K of map 2
2 5th 8K of map 2 6 6th 8K of map 2
3 7th 8K of map 2 7 8th 8K of map 2

Figure 7-14 Character Map Select Register of the VGA Sequencer

The use of the Character Map Select register of the Sequencer is related to
re-programming of bit 3 of the attribute byte (see Figure 7-3) so that it will serve to
select one of two character sets. Normally the character maps, named A and B, have
the same value and bit 3 of the attribute byte is used to control the bright or normal
display of the character foreground. In this case only one set of 256 characters is
available. However, when the Character Map Select register is programmed so that
character maps A and B have different values, then bit 3 of the attribute byte is used
to toggle between two sets of 256 characters each. The programming operations
necessary for using multiple VGA character sets is described in Chapter 3. Figure
7-14, above, is a bitmap of the Character Map Select register.

7|6|5|a|3|2]|1]|0]| port 3cC5H
offset 4

extended memory status
(always 1 in VGA systems)

MEMORY ADDRESSING MODE SELECT

1 = sequential addressing mode

0 = even addresses to maps 0 and 2
odd addresses to maps 1 and 3

ACCESS MODE SELECT

1 = enable bits 0 and 1 of the Character Map
Select register (Figure 2.14)

0 = enable sequential access of all maps
(256-color modes only)

Figure 7-15 Memory Mode Register of the VGA Sequencer

© 2003 by CRC Press LLC

The Memory Mode register of the sequencer is related to the display modes. Most
programs will leave the setting of this register to the BIOS mode select services. Fig-
ure 7-15, on the preceeding page, shows a bitmap of the Memory Mode register.

7.3.4 The Graphics Controller

The registers in the Graphics Controller group serve to interface video memory with
the Attribute Controller and with the system microprocessor. The Graphic Controller
is bypassed in the alphanumeric modes. Table 7-5 lists the registers in the VGA Graph-
ics Controller group. All the registers in the Graphics Controller are of interest to the
graphics applications programmer.

Table 7-5
The VGA Graphics Controller Registers

PORT OFFSET DESCRIPTION

03CEH Address register

03CFH Set/Reset

Enable Set/Reset

Color compare for read mode 1 operation
Data rotate

Read operation map select

Select graphics mode

Miscellaneous operations

Read mode 1 color don't care

Bit mask

ONOOTPRRWN—=O

The Set/Reset register of the Graphics Controller may be used to permanently set
or clear a specific bit plane. This operation can be useful if the programmer desires
to write a specific color to the entire screen or to disable a color map. The Set/Reset
register, shown in Figure 7-16, affects only write mode 0 operations. The use of the
Set/Reset register requires the use of the Enable Set/Reset register. Enable Set/Re-
set determines which of the maps is accessed by the Set/Reset register. This mecha-
nism provides a double-level control over the four maps. The Enable Set/Reset
register is shown in Figure 7-17, on the following page.

7/6|5|4|3|2]|1|0]| Pport 3CFH
offset 0

reset map 0
reset map 1
reset map 2
reset map 3

blue plane)
green plane)

red plane)
intensity plane)

e e e
LI T

Figure 7-16 Write Mode 0 Set/Reset Register of the VGA Graphics Controller

© 2003 by CRC Press LLC

000 0TIRGB
7|/6|5|a[3|2]|1|0| port 3CFH
offset 1

17

1 =

17

1 =

= enable

enable
enable

= enable

Note: when set/reset is enabled for a map

written with the microprocessor data

map 0
map 1
map 2
map 3

(bit

(blue plane)
(green plane)
(red plane)
(intensity plane)

0)

it is

Figure 7-17 Enable Set/Reset Register of the VGA Graphics Controller

The Color Compare register of the Graphics Controller group, shown in Figure
7-18, is used during read mode 1 operations to test for the presence of memory bits
that match one or more color maps. For example, if a program sets bit 0 (blue) and
bit 3 (intensity) of the Color Compare register, a subsequent memory read operation
will show a 1-value for those pixels whose intensity and blue maps are set, while all
other combinations will be reported with a zero value. One or more bit planes can
be excluded from the compare by clearing (value equal zero) the corresponding bit
in the Color Don't Care register. For example, if the intensity bit is zero in the Color
Don't Care register, a color compare operation for the blue bitmap will be positive
for all pixels in blue or bright blue color. The Color Don't Care register is shown in

Figure 7-19.
00 00 I RG B
7|6|5|4a|3|2|1]|0| port 3CFH
offset 2

COLOR COMPARE FUNCTION

1

1
1
1

enable
enable
enable
enable

map 0
map 1
map 2
map 3

(blue plane)
(green plane)
(red plane)
(intensity plane)

Figure 7-18 Color Compare Register of the VGA Graphics Controller

— O
—— O
—— O

———

o

— @

——

N

[y

L 1

port 3CFH
offset 7

COLOR DON'T CARE FUNCTION

do
do
do

not
not
not

1
1
1 do not

compare
compare
compare
compare

map 0
map 1
map 2
map 3

(blue plane)
(green plane)
(red plane)
(intensity plane)

Figure 7-19 Color Don't Care Register of the VGA Graphics Controller

© 2003 by CRC Press LLC

L o
—— o
— o

port 3CFH
offset 3

ROTATE COUNT

counter (range 0 to 7) of the
positions to rotate CPU data
during memory write operations
LOGICAL OPERATION SELECT

00 = data unmodified

01 data ANDed

10 data ORed

11 = data XORed

Figure 7-20 Data Rotate Register of the VGA Graphics Controller

The Data Rotate register of the Graphics Controller determines how data is com-
bined with data latched in the system microprocessor registers. The possible logical
operations are AND, OR, and XOR. If bits 3 and 4 are reset, data is unmodified. A
second function of this register is to right-rotate data from 0 to 7 places. This func-
tion is controlled by bits 0 to 2. The Data Rotate register is shown in Figure 7-20,
above.

We have seen that VGA video memory in the graphics modes is based on encoding
the color of a single pixel into several memory maps. The Read Map Select register,
in Figure 7-21, is used to determine which map is read by the system microproces-
Ssor.

port 3CFH
716|514 |3|2]|1]0 offset 4

SELECT MAP OPERATION

00 = select map 0
01 = select map 1
10 = select map 2
11 = select map 3

Figure 7-21 Read Map Select Register of the VGA Graphics Controller

The following code fragment shows the use of the Read Operation Map Select
register.

; Code to read the contents of the 4 color maps in VGA mode 18
; Code assumes that read mode 0 has been previously set

; On entry:

; ES = A000H

; BX = byte offset into video map

; On exit:

; CL = byte stored in intensity map

; CH = byte stored in red map

© 2003 by CRC Press LLC

7

DL = byte stored in green map

DH = byte stored in blue map

Set counter and map selector

; Counter for 4 maps to read
; Map selector code

; Graphic Controller Address
; register

; Read Operation Map Select
; register

; Graphic controller at 3CFH

; AL = map selector code (in DI)
; IRGB color map selected

map

; Get byte from bit plane

; Store it in the stack

; Bump selector to next map

MOV CX,4
MOV DI,O0
READ_TIRGB:
; Select map from which to read
MOV DX, 3CEH
MOV AL, 4
ouT DX, AL
INC DX
MOV AX,DI
ouT DX, AL
; Read 8 bits from selected
MOV AL, ES: [BX]
PUSH AX
INC DI
LOOP READ_TRGB

7

7

4 maps are stored in stack

; Execute loop 4 times

Retrieve maps into exit registers

POP
MOV
POP
MOV
POP
MOV
POP
MOV

VGA systems allow several ways for performing memory read and write opera-
tions, usually known as the read and write modes. The Select Graphics Mode regis-
ter of the Graphics Controller group allows the programmer to select which of two
read and four write modes is presently active. The Select Graphics Mode register is

AX
DH, AL
AX
DL, AL
AX
CH, AL
AX
CL,AL

; B map byte in AL
; Move B map byte to DH
; G map byte in AL
; Move G map byte to DL
; R map byte in AL
; Move R map byte to CH
; I map byte in AL
; Move I map byte to CL

shown in Figure 7-22, on the following page.

© 2003 by CRC Press LLC

The four VGA write modes can be described as follows:

Write mode 0 is the default write mode. In this write mode, the Map Mask register of the
Sequencer group, the Bit Mask register of the Graphics Controller group, and the CPU

are used to set the screen pixel to a desired color.

In write mode 1 the contents of the latch registers are first loaded by performing a read
operation, then copied directly onto the color maps by performing a write operation.

This mode is often used in moving areas of memory.

Write mode 2, a simplified version of write mode 0, also allows setting an individual
pixel to any desired color. However, in write mode 2 the color code is contained in the

CPU byte.

7(6|5]|4a|3|2|1|0| Port 3CFH

offset 5
LTJ WRITE MODE SELECT
00 = select write mode O
01 = select write mode 1
10 = select write mode 2
READ TYPE 11 = select write mode 3
0 read data from Read Map Select register
1 compara results with maps in the Color
Compare register

SELECT ODD/EVEN MODE
1 = odd/even mode (CGA)
0 = normal mode
SHIFT MODE SELECT
1 = shift mode for CGA modes 4 and 5

0 = normal shift mode
VGA 256-COLOR MODE SELECT
1 = enable 256-color mode

0 = bit 5 controls loading of Shift register

Figure 7-22 Select Graphics Mode Register of the VGA Graphics Controller

¢ In write mode 3 the byte in the CPU is ANDed with the contents of the Bit Mask register
of the Graphic Controller.

The write mode is selected by setting bits 0 and 1 of the Graphic Controller's
Graphic Mode register. It is a good programming practice to preserve the remaining
bits in this register when modifying bits 0 and 1. This is performed by reading the
Graphic Mode register, altering the write mode bits, and then re-setting the register
without changing the remaining bits. The following code fragment sets a write mode
in a VGA system. The remaining bits in the Select Graphics Mode register are pre-
served.

; Set the Graphics Controller's Select Graphic Mode register

; to the write mode in the AH register

MOV DX, 3CEH ; Graphic Controller Address
; register

MOV AL, 5 ; Offset of the Mode register

ouT DX, AL ; Select this register

INC DX ; Point to Data register

IN AL, DX ; Read register contents

AND AL,11111100B ; Clear bits 0 and 1

OR AL, AH ; Set mode in AL low bits

MOV DX, 3CEH ; Address register

MOV AL, 5 ; Offset of the Mode Register

ouT DX, AL ; Select again

INC DX ; Point to Data register

ouT DX, AL ; Output to Mode Register

; Note: the Select Mode register is read-only in EGA systems

; therefore this code will not work correctly

© 2003 by CRC Press LLC

Note that bit 6 of the Graphics Mode Register must be set for 256-color modes and
cleared for the remaining ones. The SET_WRITE_256 procedure in the VGA module
of the VGA graphics library (see Chapter 3) sets write mode 0 and the 256-color bit
so that VGA mode number 19, in 256 colors, operates correctly.

Once a write mode is selected the program can access video memory to set the
desired screen pixels, as in the following code fragment:

; Write mode 2 pixel setting routine

; On entry:

i ES = AQ000H

: BX = byte offset into the video buffer
; AL = pixel color in IRGB format

; AH = bit pattern to set (mask)

; Note: this procedure does not reset the default read or write
; modes or the contents of the Bit Mask register.
; The code assumes that write mode 2 has been set previously
PUSH AX ; Color byte
PUSH AX ; Twice

.**********************|
7

; set bit mask |
;**********************|

; Set Bit Mask register according to value in AH

MOV DX, 3CEH ; Graphic controller address
MOV AL, 8 ; Offset = 8

ouT DX, AL ; Select Bit Mask register
INC DX ; To 3CFH

POP AX ; Color code once from stack
MOV AL, AH ; Bit pattern

ouT DX, AL ; Load bit mask

.**********************|
7

; write color
.**********************|
;

MOV AL, ES: [BX] ; Dummy read to load latch
; registers

POP AX ; Restore color code

MOV ES:[BX],AL ; Write the pixel with the

; color code in AL

The VGA also provides two read modes. In read mode 0, which is the default read
mode, the CPU is loaded with the contents of one of the color maps. In read mode 1,
the contents of the maps are compared with a predetermined value before being
loaded into the CPU. The active read mode depends on the setting of bit 3 of the
Graphic Mode Select register in the Graphics Controller (see Figure 7-22).

The Miscellaneous register of the Graphics Controller, in Figure 7-23, is used in
conjunction with the Select Graphics Modes register to enable specific graphics
function. Bits 2 and 3 of the Miscellaneous register control the mapping of the video
buffer in the system's memory space. The normal mapping of each mode can be seen
in the buffer address column of Table 7-1. The manipulation of the Miscellaneous
register is usually left to the BIOS mode change service.

© 2003 by CRC Press LLC

N —o
O |—o
U —o

port 3CFH
offset 6

GRAPHICS MODE SELECT

1 = graphics mode

0 = alphanumeric mode
ODD/EVEN CHAINING MODE SELECT
1 = chain odd maps after even maps
0 normal map chaining

MEMORY MAP SELECT

00 = 128K bytes at A0000H
01 = 64K bytes at AO00O0O0H

10 32K bytes at BOOOOH

11 32K bytes at B8000H

Figure 7-23 Miscellaneous Register of the VGA Graphics Controller

All read and write operations performed by the VGA take place at a byte level.
However, in certain graphics modes, such as mode number 18, video data is stored
at a bit level in four color maps. In this case, the code must mask out the undesired
color maps in order to determine the state of an individual screen pixel or to set a
pixel to a certain color. In 80x86 Assembly Language the TEST instruction provides
a convenient way for determining an individual screen pixel following a read opera-
tion. The Bit Mask register of the Graphics Controller, in Figure 7-24, permits setting
individual pixels while in write modes 0 and 2.

port 3CFH
offset 8

| MASK ACTION
1 = bit protected from change
0 = bit can be changed during
write mode 0 and 2 operations

Figure 7-24 Bit Mask Register of the VGA Graphics Controller

In the execution of write operations while in VGA mode number 18, the bit mask
for setting and individual screen pixel can be found from a look-up table or by
right-shifting a unitary bit pattern (10000000B). The following code fragment calcu-
lates the offset into the video buffer and the bit mask required for writing an individ-
ual pixel using VGA write modes 0 or 2.

; Mask and offset computation from x and y pixel coordinates
Code is for VGA mode number 18 (640 by 480 pixels)

; On entry:

; CX = x coordinate of pixel (range 0 to 639)

; DX = y coordinate of pixel (range 0 to 479)

; On exit:

; BX = byte offset into video buffer

© 2003 by CRC Press LLC

; AH = bit mask for the write operation using
; write modes 0 or 2

.**********************|
7

; calculate address |
;**********************|

PUSH AX ; Save accumulator

PUSH CX ; Save x coordinate

MOV AX, DX ; Yy coordinate to AX

MOV CX, 80 ; Multiplier (80 bytes per row)
MUL CX ; AX = y times 80

MOV BX,AX ; Free AX and hold in BX

POP AX ; X coordinate from stack

; Prepare for division
MOV CL, 8 ; Load divisor
DIV CL ; AX / CL = quotient in AL and
; remainder in AH
; Add in quotient

MOV CL, AH ; Save remainder in CL
MOV AH,O0 ; Clear high byte
ADD BX,AX ; Offset into buffer to BX
POP AX ; Restore AX
; Compute bit mask from remainder
MOV AH,10000000B ; Unitary mask for 0 remainder
SHR AH,CL ; Shift right CL times

; The byte offset (in BX) and the pixel mask (in AH) can now
; be used to set the individual screen pixel

7.3.5 The Attribute Controller

The Attribute Controller receives color data from the Graphics Controller and formats
it for the video display hardware. Input to the Attribute Controller, which isin the form
of attribute data in the alphanumeric modes and in the form of serialized bit plane data
inthe graphics modes, is converted into 8-bit digital color output to the DAC. Blinking,
underlining, and cursor display logic are also controlled by this register. In VGA sys-
tems the output of the Attribute Controller goes directly to the video DAC and the CRT.
Table 7-6 shows the registers in the Attribute Controller group.

Table 7-6
The VGA Attribute Controller Registers
PORT OFFSET DESCRIPTION
03COH Attribute Address and Palette Address register
03C1H Read operations
03COH 0to 15 Palette registers
16 Attribute mode control
17 Screen border color control (overscan)
18 Color plane enable
19 Horizontal pixel panning
20 Color select

© 2003 by CRC Press LLC

Register addressing in the Attribute Controller group is performed differently
than with the other VGA registers. This is due to the fact that the Attribute Control-
ler does not have a dedicated bit to control the selection of its internal address and
data registers, but uses an internal flip-flop to toggle the address and data functions.
This explains why the Index and the Data registers of the Attribute Controller are
both mapped to port 3COH (see Table 7-6). Figure 7-25 shows the Attribute and Pal-
ette Address registers in the VGA Attribute Controller.

0 0
||
7

6543|2110 port 3COH

ATTRIBUTE ADDRESS
0 to 15 = Palette register offset
16 to 20 = Attribute register offset

PALETTE ADDRESS SOURCE
1 = enable display (normal setting)
0 load Palette registers

Figure 7-25 Attribute Address and Palette Address Registers of the VGA
Attribute Controller

Programming the Attribute Controller requires accessing Input Status Register 1
of the General Register (see Figure 7-7) in order to clear the flip-flop. The address of
the Status Register 1 is 3BAH in monochrome modes and 3DAH in color modes. The
complete sequence of operations for writing data to the Attribute Controller is as
follows:

1. Issue an IN instruction to address 3BAH (in color modes) or to address 3DAH (in
monochrome modes) to clear the flip-flop and select the address function of the At-
tribute Controller.

2. Disable interrupts.

3. Issue an OUT instruction to the address register, at port 3COH, with the number of the
desired data register.

4. Issue another OUT instruction to this same port to load a value into the Dataregister.

5. Enable interrupts.

The 16 Palette registers of the Attribute Controller, at offsets 0 to 15, determine
how the 16 color values in the IRGB bit planes are displayed. The default values for
the Palette registers is shown in Table 7-7. The colors of the default palette can be
seen by running the program named PALETTE which is part of the book’s software
package.

© 2003 by CRC Press LLC

Table 7-7

Default Setting of VGA Palette Registers

REGISTER VALUE BITS 0-5 COLOR
OFFSET R GBRGB

0 0 000000 Black

1 1 000001 Blue

2 2 000010 Green

3 3 000011 Cyan

4 4 000100 Red

5 5 000101 Magenta

6 20 010100 Brown

7 7 000111 White

8 56 111000 Dark grey

9 57 111001 Light blue

10 58 111010 Light green

11 59 111011 Light cyan

12 60 111100 Light red

13 61 111101 Light magenta

14 62 111110 Yellow

15 63 111111 Intensified white

In VGA systems each Palette register consists of 6 bits that allow 64 color combi-
nations in each register. The bits labeled "RGBRGB" in Table 7-7 correspond to the
primary and secondary values for red, green, and blue colors. Since each color is
represented by 2 bits, each one can have four possible levels of saturation; for exam-
ple, the levels of saturation for the color red are:

Saturation rgbRGB Interpretation
0 000000 no red
1 100000 low red
2 000100 red
3 100100 high red

The Palette registers can be changed by means of BIOS service number 16, inter-
rupt 10H, or by programming the Attribute Controller registers directly. Note that
the setting of the Palette registers does not affect the color output in 256-color mode
number 19, in which case the 8-bit color values in video memory are transmitted di-
rectly to the DAC. Figure 7-26, on the following page, is a bitmap of the Palette regis-
ter of the Attribute Controller.

The Attribute Mode Control register of the Attribute Controller serves to select
the characteristics associated with the video mode. Bit 0 selects whether the display
is in an alphanumeric or in a graphics mode. Bit 1 determines if VGA operates in a
monochrome or color emulation. Bit 2 is related to the handling of the ninth screen
dot while displaying the graphics characters in the range COH to DFH. If this bit is
set, the graphics characters in this range generate unbroken horizontal lines. This

© 2003 by CRC Press LLC

feature refers to the MDA emulation mode only, since other character fonts do not
have the ninth dot. BIOS sets this bit automatically in the modes that require it. The

function of the bit fields of the Attribute Mode Control register can be seen in Figure
7-27.

o
O

.
IS
I,
]
)
L w

port 3COH for read operations
7(6|5|4)3|2|1|0| port 3ClH for write operations
offset 0 to 15

COLOR ATTRIBUTES
primary blue
primary green
————— primary red
secondary blue
secondary green
secondary red

Figure 7-26 Palette Register of the VGA Attribute Controller

port 3COH for read operations
7(6|5]14|3]|2|1|0]| port 3ClH for write operations
offset 16

L ALPHANUMERIC/GRAPHICS SELECT
1 = graphics modes
0 = alphanumeric modes
MONOCHROME /COLOR EMULATION SELECT
1 monochrome modes emulation
0 color modes emulation
L 9TH. DOT HANDLING ENABLE FOR
ALPHANUMERIC-GRAPHICS CHARACTERS
1 = 9th dot is same a 8th dot
0 = 9th dot is same as background
L BLINK/BACKGROUND INTENSITY SELECT
1 = blink function
0 = background intensity function

PIXEL PANNING
1 = pixel panning register = 0 after line compare

0 = pixel panning ignores line compare
L PIXEL WIDTH (256-COLOR MODE)

1 = 256 color mode (number 19)

0 = all other modes

PALETTE SELECT
1 = bits 4 and 5 of Palette register replaced with bits
bits 0 and 1 of Color Select register

0 = Palette register unmodified

Figure 7-27 Attribute Mode Control Register of the VGA Attribute Controller

© 2003 by CRC Press LLC

Bit 5 of the Attribute Mode Control register in the Attribute Controller group re-
lates to independently panning the screen sections during split-screen operation.
Split-screen programming is discussed in Chapter 3. Bit 6 of the Attribute Mode Con-
trol register is set to 1 during operation in mode number 19 (256-colors) and cleared
for all other modes. Finally, bit 7 of the Attribute Mode Control register determines
the source for the bits labeled r and g (numbers 4 and 5) in the Palette register. If bit
7 is set the r and g bits in the Palette register are replaced by bits 0 and 1 of the Color
Select register. If bit 7 is reset then all Palette register bits are sent to the DAC.

In some alphanumeric and graphics modes the VGA display area is surrounded by
a colored band. The width of this band is the same as the width of a single character
(8 pixels) in the 80-column modes. The color of this border area is determined by
the Overscan Color register of the Attribute Controller. Normally the screen border
is not noticeable, due to the fact that the default border color is black. The border
color is not available in the 40-columns alphanumeric modes or in the graphics
modes with 320 pixel rows, except for VGA graphics mode number 19. The bitmap
of the Overscan register is shown in Figure 7-28.

0 0 0O 0O I R G B

| | | | | | | | port 3COH for read operations

716|5]|4|3|2|1|0| port 3ClH for write operations
offset 17

blue element
green element

red element
intensity element

Figure 7-28 Overscan Color Register of the VGA Attribute Controller

The Color Plane Enable register allows excluding one or more bit planes from the
color generation process. The main purpose of this function is to provide compati-
bility with EGA systems equipped with less than 256K of memory. Bits 4 and 5 of this
register are used in system diagnostics. The bitmap of the Color Plane Enable regis-
ter of the Attribute Controller group is shown in Figure 7-29.

0 O I R G B
port 3COH for read operations

716 |5|4]|3]|2 |1 |0 | port 3ClH for write operations
offset 18

COLOR PLANE ENABLE
blue plane

green plane

red plane
intensity plane

VIDEO STATUS MUX
(used for diagnostics)

Figure 7-29 Color Plane Enable Register of the VGA Attribute Controller

© 2003 by CRC Press LLC

The Horizontal Pixel Panning register of the Attribute Controller is used to shift
video data horizontally to the left, pixel by pixel. This register is shown in Figure
7-30. This feature is available in the alphanumeric and graphics modes. The number
of pixels that can be shifted is determined by the display mode. In the VGA 256-color
graphics mode the maximum number of allowed pixels is three. In alphanumeric
modes 0, 1, 2, 3, and 7, the maximum is eight pixels. In all other modes the maximum
is seven pixels. The Horizontal Pixel Panning register can be programmed in con-
junction with the Video Buffer Start Address registers of the CRT Controller (see
Figure 7-11) to implement smooth horizontal screen scrolling in alphanumeric and
in graphics modes. These manipulations are described in Chapter 8.

port 3COH for read operations
716|514 |3|2]11|0 port 3ClH for write operations
offset 19

L__LT:E::[_______ number of pixels to left-shift

video data

Figure 7-30 Horizontal Pixel Panning Register of the VGA Attribute Controller

The Color Select register of the Attribute Controller provides additional color se-
lection flexibility to the VGA system, as well as a way for rapidly switching between
sets of displayed colors. When bit 7 of the Attribute Mode Control register is clear
(see Figure 7-27) the 8-bit color value sent to the DAC is formed by the 6 bits from
the Palette registers and bits 2 and 3 of the Color Select register (see Figure 7-27). If
bit 7 of the Attribute Mode Control register is set, then the 8-bit color value is
formed with the lower four bits of the Palette register and the 4 bits of the Color Se-
lect register. Since these bits affect all Palette registers simultaneously, the program
can rapidly change all colors displayed by changing the value in the Color Select reg-
ister. The Color Select register is not used in the 256-color graphics mode number
19. The Color Select Register bitmap is shown in Figure 7-31.

port 3COH for read operations
7|6|5|4|3|2|1]|0| port 3ClH for write operations
offset 20

replacement bits for Palette bits

4 and 5 if Attribute Mode Control
register bit 7 is set (Figure 2.27)

bits 6 and 7 of 8-bit color value sent
to DAC (except in 256-color mode)

Figure 7-31 Color Select Register of the VGA Attribute Controller

© 2003 by CRC Press LLC

7.4 The Digital-to-Analog Converter (DAC)

The Digital-to-Analog Converter, or DAC, provides a set of 256 color registers, some-
times called the color look-up table, as well as three color drivers for an analog dis-
play. The DAC register set permits displaying 256 color combinations from a total of
262,144 possible colors. Table 7-8 shows the DAC registers.

Table 7-8
VGA Video Digital-to-Analog Converter Addresses

REGISTER OPERATIONS ADDRESS
Pixel address (read mode) WRITE ONLY 03C7H
Pixel address (write mode) READ/WRITE 03C8H
DAC State READ ONLY 03C7H
Pixel Data READ/WRITE 03C9H
Pixel Mask READ/WRITE 03C6H

Note: applications must not write to the Pixel Mask register
to avoid destroying the color lookup table

Each of the DAC's 256 registers uses 6 data bits to encode the value of the pri-
mary colors red, green, and blue. The use of 6 bits per color makes each DAC regis-
ter 18 bits wide. It is the possible combinations of 18 bits that allow 262,144 DAC
colors. Note that the VGA color registers in the DAC duplicate the color control of-
fered by the Palette registers of the Attribute Controller. In fact, the VGA Palette
registers are provided for compatibility with the EGA card, which does not contain
DAC registers. When compatibility with the EGA is not an issue, VGA programming
can be simplified by ignoring the Palette registers and making all color manipula-
tions in the DAC. Furthermore, the Palette registers are disabled when VGA is in the
256-color mode number 19, since mode number 19 has no EGA equivalent.

7.4.1 The DAC Pixel Address Register

The DAC Pixel Address register holds the number (often called the address) of one of
the 256 DAC registers. Read operations to the Pixel Address register are performed to
port 3C7TH and write operations to port 3C8H (see Table 7-8). A write operation
changes the 18-bit color stored in the register (in Red/Green/Blue format). A read op-
eration is used to obtain the RGB value currently stored in the DAC register. Figure
7-32 is a bitmap of the DAC Pixel Address register.

port 3C7H for read operations
port 3C8H for write operations

| DAC register number

Figure 7-32 Pixel Address Register of the VGA DAC

© 2003 by CRC Press LLC

7.4.2 The DAC State Register

The DAC State register encodes whether the DAC is in read or write mode. A mode
change takes place when the Pixel Address register is accessed: if the Pixel Address
registeris set at port 3C7H (see Figure 7-32) then the DAC goes into aread mode; if it is
set at port 3C8H then the DAC goes into a write mode. The DAC State register is shown
in Figure 7-33. Notice that although the Pixel Address register for read operations and
the DAC State register are both mapped to port 3C7H there is no occasion for conflict,
since the DAC State registeris read only and the Pixel Address register for read opera-
tions is write only (see Table 7-8).

71l6|15|4|3|2]|1|0]| port 3C7H (read only)

T .

11

DAC is in read mode
DAC is in write mode

Figure 7-33 State Register of the VGA DAC

7.4.3 The DAC Pixel Data Register

The Pixel Data register in the DAC is used to hold three 6-bit data items representing a
color value in RGB format. The Pixel Data register can be read after the program has
selected the corresponding DAC register at the Pixel Address read operation port
3CT7H. The Pixel Data register can be written after the program has selected the corre-
sponding DAC register at the Pixel Address write operation port 3C8H (see Table 7-8).
The current read or write state of the DAC can be determined by examining the DAC
State register.

Once the DAC is in a particular mode (read or write), an application can continue
accessing the color registers by performing a sequence of three operations, one for
each RGB value. The read sequence consists of selecting the desired DAC register in
the Pixel Address register at the read operations port (3C7H) then performing three
consecutive IN instructions. The first one will load the 6-bit red value stored in the
DAC register, the second one will load the green value, and the third one the blue
value. The write sequence takes place in a similar fashion. This mode of operation
allows rapid access to the three data items stored in each DAC register as well as to
consecutive DAC registers. Because each entry in the DAC registers is 6 bits wide,
the write operation is performed using the least significant 6 bits of each byte. The
order of operations for the WRITE function are as follows:

1. Select the starting DAC color register number by means of a write operation to the
Pixel Address write mode register at port 3CSH.

2. Disable interrupts.

3. Write the 18-bit color code in RGB encoding. The write sequence consists of 3 bytes
consecutively output to the pixel data register. Only the six low-order bits in each byte
are meaningful.

© 2003 by CRC Press LLC

4. The DAC transfers the contents of the Pixel Data register to the DAC register number
stored at the Pixel Address register.

5. The Pixel Address register increments automatically to point to the subsequent DAC
register. Therefore, if more than one color is to be changed, the sequence of operations
can be repeated from step number 3.

6. Re-enable interrupts.

Read or write operations to the video DAC must be spaced 240 nanoseconds
apart. Assembly language code can meet this timing requirement by inserting a short
JMP instruction between successive IN or OUT opcodes. The instruction can be
conveniently coded in this manner:

JMP SHORT $+2 ; 1/0 delay

© 2003 by CRC Press LLC

Chapter 8

VGA Device Drivers

Topics:
¢ VGA programming levels
¢ Developing VGA device driver routines
¢ Video memory address calculations
e Setting pixels and tiles
¢ Reading pixel values
¢ Color manipulations

This chapter describes the various levels at which the VGA system can be programmed
and establishes the difference between device driver and graphics primitive routines.
Section 8.2 and following refer to the design and coding of device drivers for calculat-
ing pixel address at the fine- and course-grain levels and for reading and writing pixels
and pixel tiles. Section 8.3 and following discuss color operations in 16- and 256-color
modes.

8.1 Levels of VGA Programming

Because the VGA system provides all the video functions in an IBM microcomputer,
any display programming operations on these machines must inevitably access the
VGA hardware or its memory space. However, at the higher levels of VGA program-
ming many of the programming details are hidden by the interface software. For exam-
ple, a programmer working in Microsoft QuickBASIC has available a collection of
program functions that allows drawing lines, boxes, circles, and ellipses, changing
palette colors, performing fill operations, and even executing some primitive anima-
tion. Therefore the QuickBASIC programmer can perform all of the above-mentioned
graphics functions while ignoring the complications of VGA registers, video memory
mapping, and DAC output.

The programming levels in an IBM microcomputer equipped with VGA video are
as follows:

© 2003 by CRC Press LLC

1. VGA services provided by the operating system. This includes the video services in
BIOS, MS DOS, OS/2, WINDOWS, or other operating system programs or graphical en-
vironments.

2. VGA services provided by high-level languages and by programming libraries that ex-
tend the functions of high-level languages.

3. General purpose VGA libraries that can be used directly or interfaced with one or more
high-level languages. The VGA graphics library furnished with this book belongs to
this category.

4. Low-level routines, usually coded in 80x86 Assembly Language, that access the VGA or
DAC registers or the memory space reserved for video functions.

Observe that this list refers exclusively to the VGA system. Other graphics stan-
dards, such as 8514A, XGA, and SuperVGA, include high-level functions that are fur-
nished as a programming interface with the hardware. However, the VGA standard
does not furnish higher level programming facilities. In this chapter we discuss the
lowest level of VGA programming, principally at the adapter hardware level (num-
ber 4 in the previous list). These lowest level services are often called device driver
routines. The VGA services in the BIOS are also mentioned occasionally. The reader
wishing a greater detail in the programming descriptions should refer to the code
listings (files with the extension .ASM) that are contained in the book's libraries,
which describe the VGA services in the BIOS. In Chapter 9 we extend the discussion
of VGA programming to higher level routines, usually called graphics primitives.
The VGA services in high-level languages, in operating systems, or in graphical envi-
ronments, such as WINDOWS and OS/2, are not discussed in the book.

8.1.1 Device Drivers and Primitive Routines

The term device driver is often used to denote the most elementary software elements
that serve to isolate the operating system, or the high- and low-level programs, from
the peculiarities of hardware devices and peripherals. It was the UNIX operating sys-
temthat introduced the concept of an installable device driver. In UNIX a device driver
is described as a software element that can be attached to the UNIX kernel at any time.
The concept of a device driver was perpetuated by MS DOS (starting with version 2.0)
and by OS/2.

A second level of graphics routines, usually more elaborate than the device driv-
ers, is called the graphics primitives. For example, to draw a circular arc on the
graphics screen of a VGA system we need to perform programming operations at
two different levels. The higher level operation consists of calculating the x and y
coordinates of the points that lay along the arc to be drawn. The second, and more
elementary operation, is to set to a desired color the screen pixels that lay along this
arc. In this case we can say that the coordinate calculations for the arc are per-
formed in a routine called a graphics primitive, while the setting of the individual
screen pixels is left to a VGA device driver.

Strictly speaking it is possible to reduce the device driver for a VGA graphic sys-
tem to two routines: one to set to a predetermined color the screen pixel located at
certain coordinates, and another one to read the color of a screen pixel. With the
support of this simple, two-function driver, it is possible to develop VGA primitives

© 2003 by CRC Press LLC

to perform all the graphic functions of which the device is capable. Nevertheless, a
system based on minimal drivers performs very poorly. For instance, a routine to fill
a screen area with a certain color would have to make as many calls to the driver as
there are pixels in the area to be filled. In practice, it is better to develop device driv-
ers that perform more than minimum functions. Therefore, in addition to the pixel
read and write services, it is convenient to include in the device driver category
other elementary routines such as those that perform address calculations, read and
write data in multi-pixel units, and manipulate the color settings at the system level.

In IBM microcomputers, under MS DOS, the VGA graphics hardware is accessed
by device drivers that are not installed as part of the operating system. Several inter-
face mechanisms are possible for these drivers. One option is to link the graphics
device driver to a software interrupt. Once this driver is loaded and its vector initial-
ized, applications can access its services by means of the INT instruction. But this
type of operation, while very convenient and efficient, requires that the driver be in-
stalled as a terminate-and-stay-resident program (TSR), therefore reducing the
memory available to applications. An alternative way of making the services of
graphics device drivers accessible to applications is to include the drivers in one or
more graphics libraries. The library routines requested in the code, which are ac-
cessed by high- and low-level programs at link time, are incorporated into the pro-
gram's run file. Because of its simplicity this is the approach selected for the
graphics routines provided with this book. Chapter 9 is devoted to developing the
primitive routines necessary in VGA programming.

8.2 Developing the VGA Device Drivers

The VGA system can be considered as a different device in each operational mode. In
fact, many VGA modes exist for no other reason than to provide compatibility with
other devices. Therefore, the device drivers for VGA mode number 18, with 640-by-480
pixels in 16 colors, are unrelated and incompatible with VGA mode number 19, with
320-by-200 pixels in 256 colors. Since these two modes (numbers 18 and 19) provide
the most powerful graphics functions in the VGA standard, and considering that com-
patibility with previous adapters is no longer a major consideration, the drivers devel-
oped for this book apply to VGA modes number 18 and 19 only.

8.2.1 VGA Mode 18 Write Pixel Routine

In VGA mode number 18 each screen pixel is mapped to four memory maps, each map
encoding the colorsred, green, and blue, as well as the intensity component, as shown
in Figure 8-1, on the following page.

To set a screen pixel in VGA mode number 18 the program must access individual
bits located in four color maps. In Figure 8-1 the screen pixel displayed corresponds
to the first bit in each of the four maps. But, due to the fact that the 80x86 instruc-
tion set does not contain operations for accessing individual bits, read and write op-
erations in 80x86 Assembly Language must take place at the byte level.
Consequently, to access the individual screen pixels while in VGA mode number 18
the program has to resort to bit masking. Figure 8-2 illustrates bit-to-pixel mapping
in VGA mode number 18.

© 2003 by CRC Press LLC

|
1[0l of 2] a1]o]4]

| B
L
o[o[1] of 1] o[o] o] ol
| n | E
of 1]1]x]of o 1] o] E
R E
YYVY O|l|0|0|0|l|l|l| E N
DAC I D
RGB h
| E
— N
S 1
T
Y
W W[|o

Figure 8-1 Color Maps in VGA Mode 18

Notice in Figure 8-2 that the eleventh screen pixel (pointed at by the arrow) cor-
responds to the eleventh bit in the memory map. This eleventh bit is located in the
second byte.

olo[1]1/o]o[1]0]o]o[1]1]0]1]1]0
byte boundary » byte boundary »

VIDEO MEMORY (bits)

Y
00000000000 00000)

VIDEO DISPLAY (pixels)

Figure 8-2 Bit-to-Pixel Mapping Example in VGA Mode 18

© 2003 by CRC Press LLC

VGA write operations can take place in four different write modes, labeled 0 to 3.
Also that the write mode is selected by means of bits 0 and 1 of the Select Graphics
Mode register of the Graphics Controller group (see Figure 2-22). The VGA behaves
as a different device in each write mode. Therefore the device driver for a pixel
write operation in mode number 18 must be write-mode specific.

Each VGA write mode has its strong points but, perhaps, write mode 2 is the most
direct and useful one. In write mode 2 the individual pixel within a video buffer byte
is selected by entering an appropriate mask in the Bit Mask register of the Graphics
Controller group. This bit mask must contain a 1 bit for the pixel or pixels to be ac-
cessed and a 0 bit for those to be ignored. For example, the bit mask 00100000B can
be used to select the pixel shown in Figure 8-2.

Fine Grain Address Calculations

In the case of Figure 8-2 the code must take into account that the 11 pixel is located in
the second buffer byte. In VGA mode number 18 programming this is usually accom-
plished by using a word-size variable, or an 80x86 machine register, as an offset
pointer. Since the VGA video buffer in a graphics mode always starts at physical ad-
dress AOOOOH, the ES register can be set to the corresponding segment base. The As-
sembly Language code to set the ES:BX register pair as a pointer to the second screen
byte would be as follows:

; Code fragment to set the 11th screen pixel while in VGA mode
; number 18, write mode 2
MOV AX,0AQ00H ; Segment base for video buffer

MOV ES,AX ; To ES register
; ES --> base of VGA video buffer
MOV BX,1 ; Offset of byte 2 to BX

; At this point ES:BX can be used to access the second byte in the
; video buffer

In practice a VGA mode number 18 device driver should include a routine to cal-
culate the pixel's byte offset and bit mask from its screen coordinates. The actual
calculations are based on the geometry of the video buffer in this mode, which cor-
responds to 80 bytes per screen row (640 pixels) and a total of 480 rows. The follow-
ing code fragment shows the necessary calculations.

; Address computation from x and y pixel coordinates
; On entry:
; CX x coordinate of pixel (range 0 to 639)
; DX = y coordinate of pixel (range 0 to 479)
; On exit:
; BX = byte offset into video buffer
: AH = bit mask for the write VGA write modes 0 or 2
; AL is preserved
; Save all entry registers

PUSH CX

PUSH DX

.***********************|
7

; calculate address |
;***********************|

© 2003 by CRC Press LLC

PUSH AX ; Save accumulator

PUSH CX ; Save x coordinate
MOV AX, DX ; Yy coordinate to AX
MOV CX, 80 ; Multiplier (80 bytes per row)
MUL CX ; AX = y times 80
MOV BX, AX ; Free AX and hold in BX
POP AX ; x coordinate from stack
; Prepare for division
MOV CL, 8 ; Divisor
DIV CL ; AX / CL = quotient in AL and

; remainder in AH
; Add in quotient

MOV CL,AH ; Save remainder in CL

MOV AH,O0 ; Clear high byte

ADD BX, AX ; Offset into buffer to BX
POP AX ; Restore AX

.***********************|
7

; calculate bit mask |
;***********************|

; The remainder (in CL) is used to shift a unitary mask

MOV AH,10000000B ; Unit mask for 0 remainder
SHR AH,CL ; Shift right CL times
; Restore registers
POP DX
POP CX

This address calculation routine is similar to the PIXEL_ADD 18 device driver in
the VGA1 module of the graphics library furnished with this book. This library ser-
vice is discussed in Section 3.3.

Setting the Pixel

Once the bit mask and byte offset into the buffer have been determined, the individual
screen pixel can be setin VGA mode number 18, write mode 2. This is accomplished in
two steps: first the program sets the mask in the Bit Mask register of the Graphics Con-
troller group, then it performs a memory write operation to the address in ES:BX. The
following code fragment shows both operations.

; VGA mode number 18 device driver for writing an individual
; pixel to the graphics screen

; On entry:

; ES:BX = byte offset into the video buffer
; AL = pixel color in IRGB format

; AH = bit pattern to set (mask)

; This routine assumes VGA mode 18 and write mode 2

PUSH DX ; Save outer loop counter
PUSH AX ; Color byte
PUSH AX ; Twice

.***********************|
7

; first step |

; set bit mask |
;***********************|

; Set Bit Mask Register according to mask in AH

© 2003 by CRC Press LLC

MOV DX, 3CEH ; Graphic controller latch

MOV AL, 8

ouT DX, AL ; Select data register 8
INC DX ; To 3CFH

POP AX ; AX once from stack
MOV AL, AH ; Bit pattern

ouT DX, AL ; Load bit mask

.***********************|

second step: |

;
;

; write IRGB color |
;***********************|
;

Write color code to memory maps

MOV AL,ES: [BX] ; Dummy read to load latch
; registers
POP AX ; Restore color code
MOV ES: [BX],AL ; Write the pixel with the
; color code in AL
POP DX ; Restore outer loop counter

The above code is similar to the one in the WRITE_PIX 18 device driver listed in
the VGA1l module of the graphics library furnished with this book. The
WRITE_PIX 18 routine is discussed in Section 3.3.

Coarse Grain Address Calculations

The finest possible degree of control over a video display device is obtained at the
screen pixel level. However, it is often convenient to access video display device in
units of several pixels. For example, when VGA mode number 18 text display opera-
tions are performed by means of the BIOS character display services, these take place
on a screen divided into 80 character columns and 30 character rows (see Table 2-2).
This means that each character column is 8 pixels wide (640/80 = 8) and each row is 16
pixels high (480/30 = 16). In addition, graphics software can often benefit from opera-
tions that take place at coarser-than-pixel levels. For instance, to draw a horizontal
line from screen border to screen border, in mode number 18, requires 640 bit-level op-
erations, but only 80 byte-level operations. Consequently, routines that read or write
pixels in groups achieve substantially better performance than those that read or
write the pixels individually.

When referring to VGA mode 18 routines that write to the video display at a byte
level we use the term coarse grain, while those that output at the pixel we labeled
fine grain. In order to give the coarse-grain routine a symmetrical pixel pattern, we
have used 8-bit pixel groups both on the horizontal and on the vertical scale. For
lack of a better word we refer to these 8-by-8 pixel units as screen tiles, or simply
tiles. Coarse-grain operations, in mode number 18, see the video display as 80 col-
umns and 60 rows of screen tiles, for a total of 4800 tiles. In this manner the pro-
grammer can envision the VGA screen in mode number 18 as consisting of
640-by-480 pixels (fine-grain visualization) or as consisting of 80-by-60 screen tiles
of 8-by-8 pixels (coarse-grain visualization). Furthermore, the coarse-grain visual-
ization can easily be adapted to text display operations on an 80-by-30 screen by
grouping the 60 tile rows into pairs. The following code fragment calculates the
coarse-grain offset into the video buffer from the vertical and horizontal tile count.

© 2003 by CRC Press LLC

; On entry:
; CH = horizontal tile number (range 0 to 79) = x coordinate
; CL = vertical tile number (range 0 to 59) = y coordinate

; Compute coarse-grain address (in BX) as follows:
; BX = (CL * 640) + CH

; On exit:
; BX = tile offset into video buffer
; CX 1s destroyed

PUSH AX ; Save accumulator
PUSH DX ; For word multiply
PUSH CX ; To save CH for addition
MOV AX,CX ; Copy CX in AX
; AL = CL
MOV AH,0 ; Clear high byte
MOV CX, 640 ; Multiplier
MUL CX ; AX * CX results in AX

; The multiplier (640) is the product of 80 tiles columns
; times 8 vertical pixels in each tile row

POP CX ; Restore CH

POP DX ; and DX

MOV CL,CH ; Prepare to add in CH
MOV CH,O0

ADD AX,CX ; Add

MOV BX,AX ; Move sum to BX

POP AX ; Restore accumulator

The above code is similar to the one in the TILE_ADD_18 device driver listed in
the VGA1 module of the graphics library furnished with this book.

Setting the Tile

Once the tile address has been determined, the individual tile (8-by-8 pixel groups) can
be set by placing an all-ones mask in the Bit Mask register of the Graphics Controller
group, and then performing write operations to 8 successive pixel rows. The following
code fragment shows the setting of a screen tile.

; Set Bit Mask Register to all one bits

MOV DX, 3CEH ; Graphic controller latch
MOV AL, 8
ouT DX, AL ; Select data register 8
INC DX ; To 3CFH
MOV AL, OFFH ; Bit pattern of all ones
+ OUT DX, AL ; Load bit mask
; Set counter for 8 pixel rows
MOV CX,8 ; Counter initialized
POP AX ; Restore color code

.**********************|
7

; set 8 pixels |
;**********************|

SET_EIGHT:
MOV AH,ES: [BX] ; Dummy read to load latch
; registers
MOV ES: [BX],AL ; Write the pixel with the

; color code in AL

© 2003 by CRC Press LLC

ADD BX, 80 ; Index to next row
LOOP SET_EIGHT
; Tile is set

The above code is similar to the one in the WRITE_TILE_18 device driver listed in
the VGA1 module of the graphics library furnished with this book. The
WRITE_TILE_18 routine is discussed in Section 3.3.

8.2.2 VGA Mode 18 Read Pixel Routine

A program attempting to determine the state of the 11 pixel in Figure 8-2 would read
the second memory byte and mask out all other bits. The mask, in this case, would
have the value 00100000B. We have seen that video memory in VGA mode number 18 is
divided into four memory maps, labeled I, R, G, and B for the intensity, red, green, and
blue components, respectively, and that all four maps are located at the same address.
For this reason, in order to read the color code for an individual pixel, the program
must successively select each of the four memory maps. This is done through the Read
Operation Map Select register of the Graphics Controller (see Figure 2-21). In other
words, to determine the color of a single pixel in VGA mode number 18 it is necessary
to perform four separate read operations, one for each of the IRGB maps.

As in the write operation, the code to read a screen pixel must calculate the ad-
dress of the video buffer byte in which the bit is located and the bit mask for isolat-
ing it. This can be done by means of the code listed in Section 3.1.1 or by using the
PIXEL_ADD_18 device driver in the VGA1 module of the graphics library furnished
with the book (see Section 3.3). The following code fragment reads a screen pixel
and returns the IRGB color value in the CL register.

; On entry:

: ES:BX = byte offset into the video buffer

; AH = bit pattern for mask

; On exit:

; CL = 4 low bits hold pixel color in IRGB format
CH =0

The code assumes that read mode 0 is set

Move bit mask to CH
MOV CH, AH ; CH = bit mask for pixel

.***********************|
7

; set-up read loop |
;**‘k*******************‘k|

MOV AH,3 ; Counter for 4 color maps
MOV CL,0 ; Clear register for pixel color
; return

.***********************|
7

; execute 4 read cycles |
;***********************|

; AH has number for current IRGB map (range 0 to 3)

READ_MAPS:
; Select map from which to read
MOV DX, 3CEH ; Graphic Controller Address
; register
MOV AL, 4 ; Read Map Select register
ouT DX, AL ; Activate

© 2003 by CRC Press LLC

INC DX ; Graphic Controller = 3CFH
MOV AL,AH ; AL = color map number
ouT DX, AL ; IRGB color map selected

.***********************|
;

; read one byte |
;***********************|
; Read 8 bits from selected map
MOV AL,ES: [BX] ; Get byte from bit plane

.***********************|
7

; shift return register |

;***********************|

; Previous color code is in bit 0. The shift operation will free

; the low order bit and move previous bit codes to higher positions
SHL CL,1

.**********************|
7

; mask out pixels |
;**********************|
AND AL,CH ; Pixel mask in CH
JZ NO_PIX_SET ; Jump if no pixel in map
; Pixel was set in bitmap
OR CL,00000001B ; Set bit 0 in pixel color
; return register
NO_PIX_SET:

DEC AH ; Bump counter to next map

JINZ READ_MAPS ; Continue if not last map
; 4 low bits in CL hold pixel color in IRGB format

MOV CH, 0 ; Clear CH

The above code is similar to the one in the READ PIX 18 device driver listed in
the VGA1 module of the graphics library furnished with this book.

8.2.3 VGA Mode 19 Write Pixel Routine

VGA programmers use mode number 19 when screen color range is more important
than definition. In mode number 19 the VGA video display consists of 200 pixel rows of
320 pixels each. Each pixel, which can be in one of 256 colors, is determined by 1 byte
in the video buffer. This scheme can be seen in Figure 8-3.

The fact that each screen pixel in mode number 19 is mapped to a video buffer
byte simplifies programming by eliminating the need for a bit mask. The VGA video
buffer in mode number 19 consists of 64,000 bytes. This number is the total pixel
count obtained by multiplying the number of pixels per row by the number of screen
rows (320 * 200 = 64,000). Although the 64,000 buffer bytes are distributed in the 4
bit planes, the VGA hardware makes it appear to the programmer as if they resided
in a continuous memory area. In this manner, the top-left screen pixel is mapped to
the byte at physical address AOOOOH, the next pixel on the top screen row is mapped
to buffer address AO001H, and so forth. This byte-to-pixel mapping scheme can be
seen in Figure 8-4.

© 2003 by CRC Press LLC

8-bit value is DAC register number

Y |
DAC 1lolo[1]1]1]0]1]
RGB
Ll
° VIDEO BUFFER

Figure 8-3 Color Mapping in VGA Mode 19

0/0/1/1]/0/0[1]0

0/0j1/1/0/1]1]0

byte boundary >

byte boundary »

VIDEO MEMORY (bytes)

O%OOOOOOOOOOOOOO

VIDEO DISPLAY (pixels)

Figure 8-4 Byte-to-Pixel Mapping Example in VGA Mode 19

Address Calculations

Address calculations in mode number 19 are simpler than those in mode number 18.
All thatis necessary to obtain the offset of a pixel into the video bufferis to multiply its
row address by the number of buffer bytes per pixel row (320) and then add the pixel

column. The processing is shown in the following code fragment

; Address computation for VGA mode number 19
; On entry:
CX
DX

© 2003 by CRC Press LLC

x coordinate of pixel (range 0 to 319)
vy coordinate of pixel (range 0 to 199)

; On exit:
; BX = offset into video buffer

PUSH CX ; Save x coordinate

MOV AX,DX ; vy coordinate to AX

MOV CX,320 ; Multiplier is 320 bytes per row
MUL CX ; AX = y times 320

MOV BX,AX ; Free AX and hold in BX

POP AX ; X coordinate from stack

ADD BX, AX ; Add in column value

he above code is similar to the one in the WRITE_PIX_19 device driver listed in
the VGA1 module of the graphics library furnished with this book.

Setting the Pixel

Once the segment and the offset registers are loaded, the program can set an individ-
ual screen pixel by means of a simple MOV instruction, as in the following code frag-
ment:

; Write one pixel in VGA mode number 19 (256 colors)

; Code assumes that write mode 0 for 256 colors is selected
; Register setup:

; ES = AOOOH (video buffer segment base)

; BX = offset into the video buffer (range 0 to 64000)
; AL = 8-bit color code

MOV ES: [BX],AL ; Write pixel

8.2.4 VGA Mode 19 Read Pixel Routine

We have seen that in VGA mode number 19 each screen pixel is mapped to a single
video buffer byte. There are 64,000 bytes in the video buffer, which is the same as the
total number of screen pixels obtained by multiplying the number of pixels per row by
the number of screen rows (320 * 200 = 64,000). The mapping scheme in VGA mode
number 19 can be seen in Figure 8-4. The address calculations for mode number 19
were shown in Section 3.1.3. The actual read operation is performed by means of a
MOV instruction, as in the following code fragment

; Read one pixel in VGA mode number 19 (256 colors)

; Code assumes that read mode 0 is selected

; Register setup:

; ES AQ00H (video buffer segment base)

; BX = offset into the video buffer (range 0 to 64000)

MOV AL,BYTE PTR ES: [BX] ; Read pixel
; AL now holds the 8-bit color code

8.3 Color Manipulations

The theory of additive color reproduction is based on the fact that light in the primary
colors (red, green, and blue) can be used to generate all the colors of the spectrum.
Red, green, and blue are called the primary colors. Technically, it is possible to create
white light by blending just two colors. The color that must be blended with a primary
color to form white is called the complement of the primary color, or the complemen-
tary color. Color Figure 2 shows the primary and the complementary colors. The com-

© 2003 by CRC Press LLC

plementary colors can also be described as white light minus a primary color. For
example, white light without red, not-red, gives a shade of blue-green known as cyan;
not-green gives a mixture of red and blue called magenta; and not-blue gives yellow,
which is a mixture of red and green light. Video display technology is usually designed
on additive color blending. Subtractive methods are based on dyes that absorb the un-
desirable, complementary colors. A cyan-colored filter, for example, absorbs the
green and blue components of white light. Subtractive mixing is used in color photog-
raphy and color printing.

In describing a color we use three characteristics that can be precisely deter-
mined: its hue, its intensity, and its saturation. A method of color measurement
based on hue, intensity, and saturations (sometimes called the HIS) was developed
for color television. The hue can be defined as the color of a color. Physically the
hue can be measured by the color's dominant wavelength. The intensity of a color is
its brightness. This brightness is measured in units of luminance or nits. The satura-
tion of a color is its purity. If the color contains no white diluent it is said to be fully
saturated.

8.3.1 256-Color Mode

While address mapping in VGA mode number 19 is simpler than in mode number 18,
the pixel color encoding is considerably more complicated. This is so not only because
there is a more extensive color range in mode number 19 than in mode number 18 (16
versus 256 colors) but also because the default encoding scheme is not very straight-
forward. This default scheme is determined by the setting of the 256 color registers in
the DAC. The start-up value stored in these registers by the BIOS initialization code is
designed to provide compatibility with the CGA and EGA systems. Figure 8-5 shows
the default setting of the DAC Colorregistersin VGA mode number 19. The demonstra-
tion program named MODE19, furnished in the book's software, is an on screen dis-
play of the default setting of the DAC registers in the VGA mode number 19.

OOH 16 colors in IRGB values OFH

10H 16 shades of gray 1FH
20H

HIGH INTENSITY GROUP
72 colors in 3 saturation groups
20H-37H = high saturation
38H-4FH = moderate saturation
50H-67H = low saturation 67H

68H MEDIUM INTENSITY GROUP
72 colors in 3 saturation groups
68H-7FH = high saturation
80H-97H = moderate saturation

98H-AFH = low saturation AFH
BOH
LOW INTENSITY GROUP
72 colors in 3 saturation groups
BOH-C7H = high saturation
C8H-DFH = moderate saturation
EOH-F7H = low saturation F7H
F8H
BLACK FFH

Figure 8-5 Default Color Register Setting in VGA Mode 19

© 2003 by CRC Press LLC

In Figure 8-5 the first group of default colors (range 00H to OFH) corresponds to
those in the 16-color modes. In other words, if only the 4 low-order bits of the 8-bit
color code are programmed, the resulting colors in the 256-color mode are the same
as those in the 16-color modes. The second group of default colors (range 10H to
1FH) corresponds to 16 shades of gray. The following group of colors (range 20H to
67H) consists of 72 colors divided into 3 sub-groups, each one representing a differ-
ent level of color saturation. Each of the saturation sub-groups consists of 24 colors
in a circular pattern of blue-red-green hues. Another 72-color group is used for me-
dium intensity colors and a third one for low intensity colors.

But the programmer of VGA in 256-color mode is by no means restricted to the de-
fault values installed by the BIOS in the DAC Color registers. In fact, we can readily
see that this default grouping is not convenient for many applications. Because the
default tones of red, green, or blue are not mapped to adjacent bits or to manageable
fields. For example, using the default setting of the DAC Color registers, the various
shades of the color green are obtained with the values shown in Table 8-1.

Table 8-1
Shades of Green in VGA 256-Color Mode (default values)
VALUE/RANGE INTENSITY SATURATION

02H 00000010B medium high

0AH 00001010B high high

2EH to 00101110B to high high

34H 00110100B

46H to 01000110B to high moderate
4CH 01001100B

5EH to 01011110B to high low

64H 01100100B

76H to 01110110B to medium high

7CH 01111100B

8EH to 10001110B to medium moderate
94H 10010100B

A6H to 10100110B to medium low

ACH 10101100B

BEH to 10111110B to low high

C4H 11000100B

D6H to 11010110B to low moderate
DCH 11011100B

EEH to 11101110B to low low

F4H 11110100B

A more rational 256-color scheme can be based on assigning 2 bits to each of the
components of the familiar IRGB encoding. Figure 8-6 shows the bitmapping for this
IRGB double-bit encoding.

© 2003 by CRC Press LLC

[7]6[s[[3]2]2]o]

BLUE
GREEN
RED
INTENSITY

Figure 8-6 Double-Bit Mapping for 256-Color Mode
To enable the double-bit encoding in Figure 8-6 it is necessary to change the de-
fault setting of the DAC Color registers. The DAC Color registers consist of 18 bits, 6

bits for each color (red, green, and blue). The bitmap of the DAC Color registers is
shown in Figure 8-7.

RED GREEN BLUE
LTl szl ofof T[4l o[2] 1] of Es]4[3]2]2]o]

Figure 8-7 DAC Color Register Bitmap

To design an 8-bit encoding in a four-element (IRGB) format we have assigned 2
bits to each color and to the intensity component (see Figure 8-6). In this manner,
the 2-bit values for red, green, and blue, allow four tones. Since each tone can be in
four brightness levels, one for each intensity bit setting, each pure hue would have
16 saturations. In order to achieve a double-bit IRGB encoding by reprogramming
the DAC Color registers (see Figure 8-7), we assign eight values to each DAC Color
register, as shown in Table 8-2.

Table 8-2
DAC Register Setting for Double-Bit IRGB Encoding

NUMBER 6BIT VALUE INTENSITY COLOR

0 9 OFF dark

1 18 OFF

2 27 OFF

3 36 OFF

4 45 ON

5 54 ON .

6 63 ON bright

The first 4 bit settings in Table 8-2 correspond to the color tones controlled by the
red, green, and blue bits when the intensity bits have a value of 00B. The last three
6-bit values correspond to the three additional levels of intensity. This means that,
excluding the intensity bit, the three DAC Color registers will have 64 possible com-
binations. Table 8-3 shows the pattern of register settings for the double-bit IRGB
format.

© 2003 by CRC Press LLC

Table 8-3
Pattern for DAC Register Settings in Double-Bit IRGB Encoding

I =00 I =01 =10 =11
No R G B No R G B No R G B No R G B
0 9 9 9 64 9 9 18 128 9 9 27 192 9 9 36
1 9 9 18 65 9 9 27 129 9 9 36 193 9 9 45
2 9 9 27 66 9 9 36 130 9 9 45 194 9 9 54
3 9 9 36 67 9 9 45 131 9 9 54 195 9 9 63
4 9 9 9 68 9 18 18 132 9 27 18 196 9 36 18
5 9 18 9 69 9 27 18 133 9 36 27 197 9 45 36
63 36 36 36 127 45 45 45 191 54 54 54 255 63 63 63

Notice in Table 8-3 that a value of 9 in the red, green, and blue color registers cor-
responds with the color black. It has been found that the colors generated by the
low range of the DAC scale are less noticeable than those on the high range. By
equating the value 9 to the color black we enhance the visible color range on a stan-
dard VGA, although in some CRTs this setting could appear as a very dark gray. The
procedure named TWO_BIT_IRGB in the VGA1 module of the graphics library
changes the default setting of the DAC Color registers to the values in Table 8-3. The
procedure is described in Section 3.3. The program named IRGB256, furnished as
part of the book's software package, shows the double-bit IRGB colors. This color
pattern is displayed by the IRGB256 program.

We have seen that a double-bit IRGB setting for the DAC registers simplifies pro-
gramming in the VGA 256-color mode when compared to the default setting shown
in Figure 8-5. Once the DAC registers are set for the double-bit IRGB encoding the
programmer can choose any one color by setting the corresponding bits in the video
buffer byte mapped to the pixel. For example, the bit combinations in Table 8-4 can
be used to display 16 pure tones of the complementary color named magenta
(not-green). Notice that the purity of the hue is insured by the zero value in the
green DAC register.

Table 8-4
16 Shades of the Color Magenta Using Double-Bit IRGB Code

NUMBER | R G B TONE

00 01 00 Of darkest magenta

AOWN—=O
o
o
o
—
o
o
o
—

15 11 11 00 11 brightest magenta

© 2003 by CRC Press LLC

But no single color encoding is ideal for all purposes. Often the programmer pre-
fers to enhance certain portions of the color range at the expense of other portions.
For example, in displaying a mountain landscape it might be preferable to extend
shades of blue and green at the expense of the red. On the other hand, a volcanic ex-
plosion may require more shades of red than of green and blue. The programmer can
manipulate the displayed range by choosing which set of 256 colors, from a possible
total of 262,143, are installed in the DAC Color registers.

Shades of Gray

The color gray is defined as equal intensities of the primary colors, red, green, and
blue. In the DAC Color registers any setting in which the three values are equal gener-
ates a shade of gray. For example, the value 20, 20, 20 for red, green, and blue, respec-
tively, produce a 31 percent gray shade, while a value of 32, 32, 32 produce a 50 percent
gray shade. Since the gray shades require that all three colors have the same value, and
considering that each color register can hold 64 values, there are 64 possible shades of
gray inthe VGA 256-color modes. The actual setting of the VGA registers will go from 0,
0, 0, to 63, 63, 63, for red, green, and blue.

A graphics program operating in VGA 256-color mode can simultaneously use the
full range of 64 gray shades, as well as 192 additional colors. This requires repro-
gramming the DAC Color registers. If a program were to execute in shades of gray
only, then the low order 6-bits of the color encoding can be used to select the gray
shades. The range would extend from a value of 0, for black, to a value of 63 for the
brightest white. The setting of the DAC Color registers for a 64-step gray scale is
shown in Table 8-5.

Table 8-5
Pattern for DAC Register Setting for 64 Shades of Gray
NO. R G B NO. R G B NO. R G B NO. R G B
0 0 0 0 64 0 0 0 128 0 0 O 192 0 0 O
1 11 1 65 11 1 1290 1 1 1 193 1 1 1
2 2 2 2 66 2 2 2 130 2 2 2 194 2 2 2
3 3 3 3 67 3 3 3 131 3 3 3 195 3 3 3
63 63 63 63 127 63 63 63 191 54 54 54 255 63 63 63

Notice in Table 8-5 that the gray settings are repeated four times. The effect of
this repeated pattern is that the high-order bits of the color code are ignored. In
other words, all possible color values will generate a gray shade, and the excess of
63 (00111111B) has no visible effect. The device driver named GRAY_256 in the
VGA1 module of the graphics library changes the default setting of the DAC Color
registers to the values in Table 8-5. The GRAY_256 procedure is described in detail
in the discussion of the VGA1l module later in the chapter. The program named

© 2003 by CRC Press LLC

GRAY256, furnished as part of the book’s software, shows the setting of the DAC
registers for 64 gray shades, repeated four times.

Summing to Gray Shades

A program can read the red, green, and blue values installed in a DAC Color register
and find an equivalent gray shade with which to replace it. If this action is performed
simultaneously on all 256 DAC Color registers the result will be to convert a displayed
color image to monochrome. Considering that the human eye is more sensitive to cer-
tain regions of the spectrum, this conversion is usually based on assigning different
weights to the red, green, and blue components. In any case, this relative color weight
isused to determine the gray shade, on ascale of 0 to 63. However, as mentioned in the
previous paragraph, the resulting gray scale setting must have equal proportions of
the red, green, and blue elements.

BIOS Service number 16, of interrupt 10H, contains sub-service number 27, which
sums all color values in the DAC registers to gray shades. The BIOS code uses a
weighted sum based on the following values:

red = 30%
green = 59%
blue = 11%

The BIOS service does not preserve the original values found in the DAC regis-
ters. The primitive routine named SUM_TO_GRAY in the VGA1 module of the graph-
ics library can be used to perform a gray scale sum based on the action of the above
mentioned BIOS service (see Section 3.3).

The IBM BIOS performs several automatic operations on the VGA DAC Color reg-
isters. For example, during a mode change call (BIOS service number 0, interrupt
10H) the BIOS loads all 256 DAC Color registers with the default values. If the mode
change is to a monochrome mode then a sum-to-gray operation is performed. The
programmer can prevent this automatic loading of the DAC registers. BIOS service
number 18, sub-service number 49, of interrupt 10H, enables and disables the de-
fault pallet loading during mode changes. Sub-service number 51 of service number
18 enables and disables the sum-to-gray function. The FREEZE_DAC and
THAW_DAC device drivers in the VGA1 module of the graphics library provide a
means for preventing and enabling default palette loading during BIOS mode
changes. These procedures are described in Section 3.5.

8.3.2 16-Color Modes

In Table 2-2 we saw that VGA color modes can be in 2, 4, 16, and 256 colors. Since the
two- and four-color modes are provided for compatibility with now mostly obsolete
standards, they are of little interest to today's VGA programmer. The same can be said
of the lower resolution graphics modes. This elimination leaves us with the 16-color
text modes number 0 to 4 and graphics mode number 18. In the following discussion
we will refer exclusively to the 16-color range in VGA graphics mode number 18.

© 2003 by CRC Press LLC

Video memory mapping in mode number 18 can be seen in Figure 8-2; however,
this illustration does not show how the color is obtained. Refer to Figure 2-4 to visu-
alize how the pixel color in mode number 18 is determined by the values stored in
four maps, usually named intensity, red, green, and blue. But this four-bit IRGB en-
coding is, in reality, the number of 1 of 16 palette registers located in the Attribute
Controller group (see Section 2.2.5). Furthermore, the value stored in the Palette
register is also an address into the corresponding DAC Color register. This
dual-level color indirect addressing scheme was developed in order to provide VGA
compatibility with the CGA and the EGA cards. The matter is further complicated by
the fact that the DAC Color register number (an 8-bit value in the range 0 to 255) can
be stored differently. If the Palette Select bit of the Attribute Mode Control register
is clear, then the DAC Color register number is stored in the6 bits of the Palette reg-
ister and in bits 2 and 3 of the Color Select register. While if the Palette Select bit is
set, then the DAC Color register number is stored in the four low-order bits of the
Palette register and in the four low-order bits of the Color Select register. The two
addressing modes are shown in Figure 8-8.

16 Palette
Registers
5 4 3 2 10 RED
Y [
Lo | 256 DAC
Co Registers GREEN

r
1
1
1
1
1
1
1
1
1
1
1
1
|
|
|
|
|
|
|
|
|
|
|
|
|
NOORWN=O

BLUE

76543210 _ _
DAC register addressing when
Color Select Palette Select bit = 1

Register DAC register addressing when
Palette Select bit=0

Figure 8-8 DAC Register Selection Modes

Notice in Figure 8-8 that when the Palette Select bit is set, bits 4 and 5 of the DAC
register address are determined by bits 0 and 1 of the Color Select register, and not
by bits 4 and 5 of the Palette register. This means that a program operating in this ad-
dressing mode will have to manipulate bits 4 and 5 of the desired DAC register num-
ber so that they are determined by bits 0 and 1 of the Color Select register, while bits
6 and 7 of the address are determined by bits 3 and 2 of the Color Select register.

Perhaps the simplest and most straightforward color option for VGA mode num-
ber 18 would be to set the Palette Select bit and to clear bits 0 to 3 of the Color Se-
lect register. In this manner the Palette and Color Select registers become
transparent to the software, since the DAC register number is now determined by

© 2003 by CRC Press LLC

the four low bits of the Palette register, which, in turn, match the IRGB value in the
bit planes. Nevertheless, this color setup would be incompatible with the one in the
CGA and EGA standards, which are based on the value stored in the 16 Palette regis-
ters. The method followed by the BIOS, which is designed to achieved compatibility
with the Palette registers of the CGA and EGA cards, is based on a customized set of
values for the DAC Color registers which are loaded during mode 18 initialization.
This set, which includes values for the first 64 DAC Color registers only, can be seen

in Table 8-6.
Table 8-6
BIOS Settings for DAC Registers in Mode Number 18

NO. R G B NO. R G B NO. R G B NO. R G B
0 0 0 0 16 021 0 32 21 0 0 48 2121 0
1 0 0 42 17 0 21 42 33 21 0 42 49 21 21 42
2 0 420 18 063 0 34 2142 0 50 21 63 0
3 0 42 42 19 0 63 42 35 21 42 42 51 21 63 42
4 42 0 0 20 42 21 0 36 63 0 0 52 63 21 0
5 42 0 42 21 42 21 42 37 63 0 42 53 63 21 42
6 42 42 0 22 42 63 0 38 6342 0 54 63 63 0
7 42 42 42 23 42 63 42 39 63 42 42 55 63 63 42
0 021 24 0 21 21 40 21 0 21 56 21 21 21

9 0 0 63 25 0 21 63 41 21 0 63 57 21 21 63
10 0 42 21 26 0 63 21 42 21 42 21 58 21 63 21
11 0 42 63 27 0 63 63 43 21 42 63 59 21 63 63
12 42 0 21 28 42 21 21 44 63 0 21 60 63 21 21
13 42 0 63 29 42 21 63 45 63 0 63 61 63 21 63
14 42 42 21 30 42 63 21 46 63 42 21 62 63 63 21
15 42 42 63 31 42 63 63 47 63 42 63 63 63 63 63

We can corroborate the mapping of Palette and DAC registers in VGA mode num-
ber 18 by referring to Table 8-6. For example, the encoding for light red in Palette
Register number 16 is 00111100B, which is 60 decimal. Recalling that the value in
the VGA Palette register is interpreted as an index into the DAC Color register table,
we can refer to Table 8-6 and observe that the setting of DAC register number 60 is
63, 21, 21 for the red, green, and blue elements, respectively. This setting corre-
sponds to the color light red. In summary, the Palette register (in this case number
12) holds an encoding in rgbRGB format, that is also an index to the DAC Color table
(in this case the rgbRGB value is equal to 60). It is the DAC Color register that holds
the 18-bit RGB encoding that drives the analog color display.

Color Animation

An interesting programming technique for VGA systems is to use the bits in the Color
Select register to change some or all of the displayed colors. For example, if the Pal-

© 2003 by CRC Press LLC

ette Select bit of the Attribute Mode Control register is clear, then bits 2 and 3 of the
Color Select register provide 2 high-order bits of the DAC register number (see Figure
8-8). Since two bits can encode four combinations (00, 01, 10, and 11), a program can
change the value of bits 2 and 3 of the Color Select register to index into four separate
areas of the DAC, each one containing 64 different color registers. By the same token,
if the Palette Select bit is set, then the 4 low-order bits in the Color Select register can
be used to choose one of 16 DAC areas, each one containing 16 color registers. The ar-
eas of the DAC determined through the Color Select register are sometimes referred to
as color pages. Some interesting animation effects can be achieved by rapidly shifting
these color pages. For example, a program can simulate an explosion by shifting the
pixel colors to tints of red, orange, and yellow.

BIOS service number 16, sub-service number 19, provides a means for setting the
paging mode to 4 color pages of 64 registers or to 16 color pages of 16 registers each,
and also for selecting an individual color page within the DAC. In this kind of pro-
gramming it is important to remember that the BIOS initialization routines for mode
number 18 set color values for the first 64 DAC registers only. It is up to the software
to initialize the color values in the DAC registers as necessary.

8.3.3 VGAT1 Library Functions

The following are generic descriptions of the device driver routines contained in the
VGA1 module of the GRAPHSOL library that is part of the book’s software. The values
passed and returned by the individual functions are listed in the order in which they
are referenced in the code. The following listing is in the order in which the routines
appear in the library source files.

ES_TO_VIDEO (Assembly Language only)

Setthe ES segment register to the base address of the video buffer while in an alphanu-
meric mode.

Receives:
Nothing
Returns:
ES set to video buffer segment for alpha mode
Action:
Video buffer can now be addressed in the form:
ES:xx

ES_TO_APA (Assembly Language only)

Set the ES segment register to the base address of the video buffer while in a graphics
mode. VGA graphics buffer is at AOOOH

Receives:
Nothing
Returns:
ES set to video buffer segment for graphics mode
Action:
Video buffer can now be addressed in the form:
ES:xx

© 2003 by CRC Press LLC

PIXEL _ADD_18 (Assembly Language only)

Calculate buffer offset from pixel coordinates while in VGA mode number 18.

Receives:
1. Word integer of x-axis pixel coordinate
Range is 0 to 639
2. Word integer of y-axis pixel coordinate
Range is 0 to 479

Returns:
1. Word integer of offset into video buffer
2. Byte integer of pixel mask for write mode 0
or 2
Action:

Prepare for pixel read and write operations in VGA
mode number 18.

WRITE_PIX_18 (Assembly Language only)

Set (write) an individual screen pixel while in VGA mode number 18, write mode 2.

Receives:
1. Logical address of pixel in video buffer.
2. Byte integer of pixel color in IRGB form
3. Pixel mask for write mode 2

Returns:
Nothing

Action:
Pixel is set to one of 16 colors.

TILE_ADD_18 (Assembly Language only)
Calculate the coarse-grain address of an 8-by-8 pixel block (tile) while in VGA mode

number 18.
Receives:
1. Byte integer of x-axis tile coordinate
Range is 0 to 79
2. Byte integer of y-axis tile coordinate
Range is 0 to 59
Returns:
1. Word integer of offset into video buffer
Action:

Prepare for tile write operation.

WRITE_TILE 18 (Assembly Language only)

Set (write) ascreentile (8-by-8 pixel block) while in VGA mode number 18, write mode

2.
Receives:
1. Logical address of tile in video buffer
2. Byte integer of tile color in IRGB form
Returns:
Nothing
Action:

Tile is set to one of 16 colors.

© 2003 by CRC Press LLC

READ_PIX_18 (Assembly Language only)

Read the color code of a screen pixel in VGA mode number 18, read mode 0.

Receives:
1. Logical address of pixel in video buffer
2. Pixel mask for write mode 2
Returns:
1. Byte integer of pixel's IRGB color code
Action:

Pixel i1s read in read mode 0.

TWO_BIT_IRGB

Initialize DAC registers for VGA mode number 19 (256-colors) for the double bit IRGB
format shown in Figure 3-6.

Receives:
Nothing
Returns:
Nothing
Action:

DAC registers in the pattern shown in Table 3-3.

GRAY_256

Initialize DAC registers for VGA mode number 19 in 64 shades of gray, repeated four
times.

Receives:
Nothing
Returns:
Nothing
Action:
DAC registers in the pattern shown in Table 8-5.

SUM_TO_GRAY

Perform sum-to-gray function by means of BIOS service number 16, sub-service num-
ber 27, of interrupt 10H. Previous contents of DAC registers are not preserved.

Receives:
Nothing
Returns:
Nothing
Action:
All DAC registers are converted to equivalent gray
shades.
SAVE DAC
Save current color codes in all DAC registers. Values are stored in RAM.
Receives:
Nothing
Returns:
Nothing
Action:

The color codes in all DAC registers are stored in
RAM.

© 2003 by CRC Press LLC

RESTORE_DAC
The DAC registers are restored to the color values saved by the SAVE_DAC procedure.

Receives:
Nothing
Returns:
Nothing
Action:

The color codes in all DAC registers are restored
from the values saved in RAM by SAVE_DAC.

PIXEL_ADD_19 (Assembly Language only)

Calculate buffer offset from pixel coordinates while in VGA mode number 19.

Receives:
1. Word integer of x-axis pixel coordinate
Range is 0 to 319
2. Word integer of y-axis pixel coordinate
Range is 0 to 199
Returns:
1. Word integer of offset into video buffer
Action:

Prepare for pixel read and write operations in
mode number 19.

TILE_ADD_ 19 (Assembly Language only)
Calculate the coarse-grain address of an 8-by-8 pixel block (tile) while in VGA mode

number 19.
Receives:
1. Byte integer of x axis tile coordinate
Range is 0 to 39
2. Byte integer of y axis tile coordinate
Range is 0 to 25
Returns:
1. Word integer of offset into video buffer
Action:

Prepare for tile write operation.

FREEZE DAC
Disable changes to the Palette and DAC registers during BIOS mode changes.

Receives:
Nothing
Returns:
Nothing
Action:

The color codes in the Palette and DAC registers
are preserved during BIOS mode changes.

THAW_DAC
Enable changes to the Palette and DAC registers during BIOS mode changes.
Receives:

Nothing
Returns:

© 2003 by CRC Press LLC

Nothing
Action:
The color codes in the Palette and DAC registers

are replaced by the default values during BIOS
mode changes.

© 2003 by CRC Press LLC

Chapter 9

VGA Core Primitives

Topics:

¢ VGA primitives for video system setup

VGA text display primitives
¢ VGA image display primitives

VGA bit-map primitives

VGA area fill primitives

9.1 Classification of VGA Primitives

Chapter 8 discussed the development of the most elementary and fundamental rou-
tines used in graphics programming, called the device drivers. A second level of graph-
ics routines, usually providing higher-level functions than device drivers, are the
graphics primitives. VGA primitive routines can be arbitrarily classified into the fol-
lowing fields:

1. Set-up, inquiry, and control primitives. This group of functions includes video
mode-setting, read and write mode selection, initialization of palette and border color,
inquiry of active video parameters, and other preparatory and initialization functions.

2. Textprimitive routines. This group includes the selection of fonts and character attrib-
utes and the display of text characters in graphics modes.

3. Bit-block and area fill primitive routines. This group includes routines to manipulate
bitmapped images in video or RAM memory.

4. Raster graphics primitive routines. This group includes object-oriented routines to
draw the most common geometrical figures, to fill screen areas with colors or attrib-
utes, and to transform figures stored in the video buffer or in data files.

The primitive routines in the GRAPHSOL VGA library furnished with this book
are organized in the listed fields. In the present chapter we will discuss the primitive
routines in the first three groups. Because of their complexity, Chapter 10 is devoted
to VGA raster graphics.

© 2003 by CRC Press LLC

9.2 VGA Primitives for Set-Up, Control, and Query

The VGA graphics programmer must perform operations that are preparatory, con-
trolling, or inquisitory. For example, an application using VGA graphics could start its
execution by setting the desired video mode and the read and write modes, initializing
a segment register to the base address of the video buffer, and installing a set of color
values in the pallet and border color registers. These preparations could also require
investigating the present state of the video system in order to restore it at the conclu-
sion of the application.

Many VGA preparatory and initialization operations can be performed by means
of services in the BIOS interrupt 10H. For example, a graphics program that uses a
standard video mode will usually let the BIOS handle the complications of
initializing the VGA registers that control display characteristics. Since mode set-
ting usually takes place once or twice during the execution of an application, the
slowness usually associated with BIOS services can be disregarded for this purpose.
The same applies to many other initialization and set-up operations, which can be
conveniently executed through the BIOS, and which seldom appear in the code.
Such is the case with operations to set and read the Palette, Overscan, and DAC
Color registers, to select the color paging mode, to sum DAC output to gray shades,
and to obtain VGA system data.

On the other hand, some initialization operations are conspicuously missing from
the services offered by BIOS interrupt 10H. For example, there are no BIOS services
to set the VGA read and write modes. This is particularly noticeable when operating
in mode number 19 (256 colors) which requires setting bit 6 of the Graphics Control-
ler Graphics Mode Register (see Figure 2-22). Furthermore, other BIOS graphics ser-
vices, such as those to set and read an individual screen pixel, perform so poorly
that they are practically useless.

In summary, while most applications can benefit from BIOS VGA initialization
and setup services, very few graphics programs could execute satisfactorily if they
were limited to these BIOS services.

9.2.1 Selecting the VGA Write Mode

To make the VGA more useful and flexible its designers implemented several ways in
which to write data to the video display. These are known as the write modes. VGA al-
lows four different write modes, which are selected by means of bits 0 and 1 of the
Graphics Mode register of the Graphics Controller (see Figure 2-22). The fundamental
functions of the various write modes are as follows:

Write mode 0 is the default mode. In write mode 0 the CPU, Map Mask register of
the Sequencer (Figure 2-13), and the Bit Mask register of the Graphics Controller
(Figure 2-24) are used to set a screen pixel to any desired color. Other VGA registers
are also used for specific effects. For example, the Data Rotate register of the
Graphics Controller (Figure 2-20) has two fields which are significant during write
mode 0 operations. The data rotate field (bits 0 to 3) determines how many positions
to rotate the CPU data to the right before performing the write operation. The logi-
cal operation select field (bits 3 and 4) determines how the data stored in video

© 2003 by CRC Press LLC

memory is logically combined with the CPU data. The options are to write the CPU
data unmodified or to AND, OR, or XOR it with the latched data.

In write mode 1 the contents of the latch registers, previously loaded by a read
operation, are copied directly onto the color maps. Write mode 1, which is perhaps
the simplest one, is often used in moving one area of video memory into another
one. This write mode is particularly useful when the software takes advantage of the
unused portions of video RAM. The location and amount of this unused memory var-
ies in the different video modes. For example, in VGA graphics mode 18 the total
pixel count is 38,400 pixels (640 pixels per row times 480 rows). Since the video
buffer maps are 64K bytes, in each map there are 27,135 unused buffer bytes avail-
able to the programmer. This space can be used for storing images or data. On the
other hand, video mode number 19 consists of one byte per pixel and there are 320
by 200 screen pixels, totaling 64,000 bytes. Since the readily addressable area of the
video buffer is limited to 65,5636 bytes, the programmer has available only 1,536
bytes for image manipulations.

Write mode 2 is a simplified version of write mode 0. Like mode 0, it allows set-
ting an individual pixel to any desired color. However, in write mode 2 the data ro-
tate function (Data Rotate register) and the set-reset function (Set/Reset register)
are not available. One advantage of write mode 2 over write mode 0 is its higher exe-
cution speed. Another difference between these write modes is that in write mode 2
the pixel color is determined by the contents of the CPU, and not by the setting of
the Map Mask register or the Enable Set-Reset and Set-Reset registers. This charac-
teristic simplifies coding and is one of the factors that determines the better perfor-
mance of write mode 2. The WRITE_PIX_18 device driver routine developed in
Chapter 7 uses write mode 2.

In write mode 3 the Data Rotate register of the Graphics Controller (Figure 2-20)
operates in the same manner as in write mode 0. The CPU data is ANDed with the
Bit Mask register. The resulting bit pattern performs the same function as the Bit
Mask register in write modes 0 and 2. The Set/Reset register also performs the same
function as in write mode 0. However, the Enable Set/Reset register is not used.
Therefore, the pixel color can be determined by programming either the Set/Reset
register or the Map Mask register. The Map Mask register can also be programmed
to selectively enable or disable the individual maps.

An application can use several read and write modes without fear of interference
or conflict, since a change in the read or write mode does not affect the displayed
image. On the other hand, a change in the video mode will normally clear the screen
and reset all VGA registers. The code for changing the write mode, which is quite
simple and straightforward, is shown in the following fragment:

; Set the Graphics Controller's Graphic Mode Register to the
; write mode in the AL register

PUSH AX ; Save mode

MOV DX, 3CEH ; Graphic Controller Address
; register

MOV AL, 5 ; Offset of the Mode register

ouT DX, AL ; Select this register

INC DX ; Point to Data register

© 2003 by CRC Press LLC

POP AX ; Recover mode in AL
ouT DX, AL ; Selected

The VGA graphics programmer must be aware that certain BIOS services reset
the write mode. For example, BIOS service number 9, of interrupt 10H, often used to
display text messages in an APA mode, sets write mode number 0 every time it exe-
cutes. For this reason graphics software must often reset the write mode after exe-
cuting a BIOS service. The procedure named SET_WRITE_MODE in the VGA1
module of the GRAPHSOL library sets the video mode in a similar manner as the
previous fragment. In addition, SET_WRITE_MODE resets the Bit Mask register to
its default value.

Writing Data in the 256-Color Modes

Writing a pixel in VGA mode number 19 (256 colors) requires that bit 6 of the Graphics
Controller Graphics Mode register be set. Therefore a set write mode routine for VGA
256-color mode operation takes this into account. The following code fragment shows
the required processing.

; Set the Graphics Controller's Graphic Mode Register to the
; write mode in the AL register, for 256 colors

PUSH AX ; Save mode

MOV DX, 3CEH ; Graphic Controller Address
; register

MOV AL, 5 ; Offset of the Mode register

ouT DX, AL ; Select this register

INC DX ; Point to Data register

POP AX ; Recover mode in AL

; Set bit 6 to enable 256 colors
OR AL,01000000B ; Mask for bit 6
ouT DX, AL ; Selected

The procedure named SET_WRITE_256 in the VGA1 module of the GRAPHSOL li-
brary sets the video mode in a similar manner as the previous fragment. In addition,
SET_WRITE_256 resets the Bit Mask register to its default value.

9.2.2 Selecting the Read Mode

The VGA standard provides two different read modes. Read Mode 0, which is the de-
fault, loads the CPU with the contents of one of the bitmaps. In mode number 18 we
conventionally designate the color maps with the letters I, R, G, and B, to represent the
intensity, red, green, and blue elements. In this mode, which map is read into the CPU
depends on the current setting of bits 0 and 1 of the Read Operation Map Select regis-
ter of the Graphics Controller (see Figure 2-21). Sometimes we say that the selected
read map is latched onto the CPU. In order to read the contents of all four maps, the
program must execute four read operations to the same video buffer address; this
latching is usually preceded by code to set the Read Operations Map Select register.

Read Mode 0 is useful in obtaining the contents of one or more video maps, while
Read Mode 1 is more convenient when the programmer wishes to test for the pres-
ence of pixels that are set to a specific color or color pattern. In Read Mode 1 the
contents of all four maps are compared with a predetermined mask. This mask must
have been stored beforehand in the Color Compare register of the Graphics Control-
ler (see Figure 7-18). For example, to test for the presence of bright blue pixels, the

© 2003 by CRC Press LLC

IRGB bit pattern 1001B is stored in the Color Compare register. Thereafter, a read
operation appears to execute four successive logical ANDs with this mask. If a bit in
any of the four maps matches the bit mask in the Color Compare register, it will be
set in the CPU; otherwise it will be clear.

The read mode is determined by bit 3 of the Select Graphics Mode register of the
Graphics Controller (see Figure 7-22). The code to set the read mode is shown in the
following fragment:

; Set the Graphics Controller Graphic Mode Select register to read
; mode 0 or 1, according to the value in AL

CMP AL, 1 ; If entry value is not 1

JINE OK_BIT3 ; read mode 0 is forced

MOV AL, 08H ; 00001000B to set bit 3

OK_BIT3:

PUSH AX ; Save mode

MOV DX, 3CEH ; Graphic controller address
; register

MOV AL,5 ; Offset of the mode register

ouT DX, AL ; Select this register

INC DX ; Point to data register

POP AX ; Recover mode in AL

ouT DX, AL ; Selected

The procedure named SET_READ_MODE in the VGA1 module of the GRAPHSOL
library sets the read mode in a similar manner as the previous fragment. The proce-
dure named READ_MAPS_18, also in the VGA1 module, reads the contents of all
four maps while in mode number 18 and returns the result in machine registers. This
operation is performed by successively selecting the I, R, G, and B maps by means of
the Read Map Select register of the Graphics Controller.

9.2.3 Selecting Logical Operation

In Chapter 7 you saw that the Data Rotate register of the Graphics Controller deter-
mines how datais combined with datalatched in the system microprocessor registers.
The programmer can select the AND, OR, and XOR logical operations by changing the
value of bits 3 and 4 .

Although all three logical operation modes find occasional use in VGA graphics
programming, the XOR mode is particularly useful. In animation routines the XOR
mode provides a convenient way of drawing and erasing a screen object. The advan-
tages of the XOR method are simpler and faster execution, and an easier way for re-
storing the original screen image. This is a convenient programming technique when
more than one moving object can coincide on the same screen position.

One disadvantage of the XOR method is that the object's color depends on the
color of the background over which it is displayed. If a graphics object is moved
over different backgrounds, its color will change. The reader can observe that the
cross-hair symbol of the MATCH program appears in different colors when overlaid
over the running boar than when over the gray background. In this case the effect is
not objectionable, but in other applications it could make the XOR technique unsuit-
able.

© 2003 by CRC Press LLC

The programmer should note that some BIOS services set the Data Rotate regis-
ter of the Graphics Controller to the normal mode. For example, if BIOS service
number 9 of interrupt 10H is used to display text messages in a graphics application,
when execution returns the logical mode is set to normal operation. Therefore, a
program that uses the XOR, AND, or OR logical modes must reset the Data Rotate
register after using this BIOS service.

XOR Operations in Animation Routines

The illusion of movement of ascreen object is often produced by means of geometrical
transformations. The simple transformations are named translation, rotation, and
scaling. Complex transformations consist of combining two or more of simple trans-
formations; for instance, a screen object moves across the screen while becoming pro-
gressively larger. The combined transformations generate the feeling that a
three-dimensional object is diagonally approximating the viewer.

Geometrical transformations are usually performed by replacing the previous im-
age of the object with a new image. In lateral translation an object appears to move
across the screen by progressively redrawing it at slightly different horizontal coor-
dinates. The boar symbol in the MATCH program is translated in this manner. Note
that the graphics software must not only draw a series of consecutive images, but
also erase the previous images from the screen. Otherwise, the animated object
leaves a visible track of illuminated screen pixels. Although this effect could be oc-
casionally desirable, frequently this is not the case. Also note that erasing the screen
object is at least as time consuming as drawing it, since each pixel in the object must
be changed to its previous state.

Erasing and redrawing of the screen object can be performed in several ways.
One method is to save that portion of the screen image that is to be replaced by the
object. The object can then be erased by redisplaying the original image. This
method adds an additional burden to the graphics routine, which must also read and
store every screen pixel that will be occupied by the object, but in many situations it
is the only satisfactory solution. We have mentioned that another method of erasing
the screen image is based on performing a logical XOR operation. The effect of the
XOR is that a bit in the result is set if both operands contain opposite values. Conse-
quently, XORing the same value twice restores the original contents, as in the fol-
lowing example:

10000001B
XOR 10110011B

00110010B

XOR 10110011B

10000001B

An application that has set the Data Rotate register to the XOR mode can succes-
sively display and erase a screen object by XORing its bitmap. The effect can be
used to animate the screen object by progressively changing its screen coordinates.
The MATCH program, which is furnished on the book's software package as an illus-
tration of VGA programming techniques, uses the XOR mode to display and erase

© 2003 by CRC Press LLC

two animated objects: one represents the outline of a running boar target and the
other one the cross-hair of a rifle scope. The procedure named XOR_XHAIR in the
MATCHD.ASM source file and the procedures XOR_RBOAR and XOR_LBOAR in the
MATCHC.ASM source file, perform the draw/erase operations. Both procedures as-
sume that the logical mode for XOR operation has been previously set.

9.2.4 System Status Operations

In contrast with its predecessors (EGA and CGA) all VGA registers that hold relevant
system data can be read by the processor. This allows a program to investigate the
video status by performing a read operation to the relevant register. In addition, BIOS
service number 27 and number 28 provide means for obtaining VGA data and for sav-
ing and restoring the video state.

A function that is conspicuously missing in the BIOS is one to save the setting in
the 256 VGA DAC color registers. For this reason, a program that uses BIOS
sum-to-gray-shades function (service number 16, sub-service 27, of interrupt 10H)
has no way of restoring the original DAC colors. The procedure named SAVE_DAC,
in the VGA1 module of the GRAPHSOL library, provides a way for saving the state of
the DAC registers. The procedure RESTORE_DAC can be used to restore the DAC
register setting saved with SAVE_DAC.

9.2.5 Vertical Retrace Timing

Raster scan displays operate by projecting an electron beam on each horizontal row of
screen pixels. Pixel scanning proceeds, row by row, from the top left screen corner to
the bottom right. To avoid visible interference, the electron beam is turned off during
the period in which the gunisre-aimed back to the start of the next pixel row (horizon-
tal retrace). The beam is also turned off while it is re-aimed from the last pixel on the
bottom right corner of the screen to the first pixel at the top left corner (vertical re-
trace). Because of the distance and directions involved, the vertical retrace period
takes much longer than the horizontal retrace one.

In the CGA card it was the programmer's responsibility to time each access to the
video buffer with the vertical retrace cycle of the CRT controller. Otherwise the re-
sult would be a visible interference, usually called snow. The VGA was designed to
avoid this form of interference when using conventional display programming meth-
ods. However, animation techniques, which must flash consecutive screen images at
arapid rate, are not free from interference. Therefore, in this case the program must
time the buffer accesses with the vertical retrace cycle of the CRT controller.

This timing requirement introduces an additional burden on animated graphics
software. For example, the screen refresh periods in VGA graphics modes take
place at an approximate rate of 70 times per second. An animated program that
flashes images on the screen at a minimum rate of 20 per second must take into ac-
count that each display operation has to be timed with a vertical retrace cycle that
takes place 70 times per second. This synchronization delay must be added to the
processing time in order to maintain an interference-free image-flashing rate.

© 2003 by CRC Press LLC

The start of the vertical retrace cycle can be determined by reading bit 7 of the
VGA Input Status register 0 in the General register group. This bit is set if a vertical
retrace is in progress. But in order to maximize the interference-free time available
during a vertical retrace, the code must wait for the start of a vertical retrace cycle.
This requires first waiting for a vertical retrace cycle to end, if one is in progress,
and then detecting the start of a new cycle. The programming is shown in the follow-
ing code fragment:

; Test for start of the vertical retrace cycle
; Bit 7 of the Input Status register 0 is set if a vertical cycle
; 1s in progress
MOV DX, 3C2H ; Input status register 0
; In VGA color modes

VRC_CLEAR:
IN AL, DX ; Read byte at port
JMP SHORT $+2 ; I/0 delay
TEST AL,10000000B ; Is bit 7 set?
JINZ VRC_CLEAR ; Wait until bit clear
; At this point the vertical retrace ended. Wait for it to
; restart
VRC_START:
IN AL, DX ; Read byte at port
JMP SHORT $+2 ; I/0 delay
TEST AL,10000000B ; Is bit 7 set?
JZ VRC_START ; Wait until bit set

; Vertical retrace has now started

The procedure named TIME_VRC, in the VGA1 module of the GRAPHLIB library,
detects the start of the CRT vertical retrace cycle so that video access operations
can be synchronized.

9.3 VGA Text Display Primitives

Very few graphics applications execute without some form of text display. If the text
display functions in an application take place in separate screens from the graphics
operations, the programmer has the convenient option of selecting a text mode and ei-
ther using text output keywords in a high-level language or one of the text display
functions available in the BIOS. However, if a graphics program must combine text
and graphics on the same screen, the text display functions available to the program-
mer are more limited.

9.3.1 BIOS Text Display Functions

In any mode, alphanumeric or graphics, BIOS service number 9, INT 10H, can be used
to display a character at the current cursor position. Note that this is the only BIOS
character display service that can be used in a graphics mode, but that several other
services can be used in alphanumeric modes. Service number 2, INT 10H, to set the
cursor position, can also be used in conjunction with service number 9. Note that there
isno physical cursor in VGA graphics modes, and that the action of service number 2,
interrupt 10H, is simply to fix a position for the text display operation that will follow.
This invisible cursor is sometimes called a virtual cursor. The procedure named
SET_CURSOR, in the ALFA modules of the GRAPHSOL library, uses service number 2;
interrupt 10H, to set the cursor. Once the virtual cursor is positioned at the desired

© 2003 by CRC Press LLC

screen location, the program can display characters on the graphics screen by means
of service number 9, interrupt 10H.

Text Block Display

But VGA programs that have frequent need to display text while in a graphics mode of-
ten need a more convenient method than setting a virtual cursor and calling BIOS ser-
vice number 9. One option is a routine capable of displaying any number of text lines,
starting at any screen position, and using any desired color available in the active
mode. A convenient way of storing the display parameters for the text message isin a
header block preceding the message itself. The GRAPHIC_TEXT procedure in the
VGA2 module of the GRAPHSOL library displays a text message with embedded pa-
rameters. In this case the first byte in the header encodes the screen row at which the
message is to be displayed, the second byte encodes the screen column, and the third
one the color code. Since the procedure operates in any text of graphics mode, the
range and encodings for these parameters depend on the active mode.

BIOS Character Sets

The BIOS stores several sets of text characters encoded in bitmap form (see Figure
1-10). VGA systems contain three complete character fonts and two supplemental
fonts. The characteristics of these fonts are shown in Table 9-1.

Table 9-1
VGA BIOS Character Sets
CHARACTER BOX SIZE MODE
8 by 8 0,1,2,3,4,5,183,
14, and 19
8 by 14 0,1,2,3,15,and 16
8 by 16 17, and 18
9 by 14* 7
9 by 16* 0,1,and 7

Legend:
* = supplemental sets

The supplemental character sets (Table 9-1) do not contain all of the 256 charac-
ter maps of the full sets, but only those character maps that are different in the 9-bit
wide fonts. In the process of loading a 9-bit character set the BIOS first loads the
corresponding set of 8-bit character maps and then overwrites the ones that need
correction and that appear in the supplemental set. This mechanism is usually trans-
parent to the programmer, who sees a full set of 9 by 14 or 9 by 16 characters.

9.3.2 A Character Generator

VGA graphics programs can perform simple character display operations by means of
the BIOS functions, but for many purposes these functions are too limiting. Perhaps
the most obvious limitation of character display by means of BIOS services is that the
text characters must conform to a grid of columns and rows determined by the active
character font and video mode. For example, a graphics program executing in mode
number 18 uses BIOS service number 9, interrupt 10H, to display screen text using the

© 2003 by CRC Press LLC

8 by 16 character font. This program will be constrained to a text screen composed of
80 character columns by 30 rows and will not be able to locate text outside this imagi-
nary grid.

Moving a BIOS Font to RAM

A program can obtain considerable control in text display functions by operating its
own character generator, in other words, by manipulating the text character maps as if
they were aregular bitmap. The process can often be simplified by using existing char-
acter maps. In VGA systems the most easily available character maps are the BIOS
character sets (see Table 9-1). The software can gain the necessary information re-
garding the location of any one of the BIOS character maps by means of service num-
ber 17, sub-service number 48, of interrupt 10H. Once the address of the character
table is known, the code can move all or part of this table to its own address space,
where it becomes readily accessible. The procedure named FONT_TO_RAM in the
VGA2 module of the GRAPHSOL library can be used to load any one of the three full
VGA character sets into a buffer furnished by the caller.

In loading a BIOS character font to RAM memory so that the font can be used
with the display procedures in the GRAPHSOL library the caller must precede the
font storage area with two data bytes that encode the font's dimensions. For exam-
ple, the storage area for the BIOS 8 by 8 font can be formatted as follows:

.**********************|
7

storage for BIOS |
symmetrical font |
;**********************|
; RAM storage for symmetrical font table from BIOS character maps
; Each font table is preceded by two bytes that determine its
; dimensions, as follows:

Byte at font table minus 1 = number of pixel rows
Byte at font table minus 2 = number of horizontal bytes
;1 x 8 built in ROM font
DB 1 ; bitmap x dimension, in bytes
DB 8 ; bitmap y dimension, in bytes
FONT_1X8 DB 2048 DUP (00H)

Note that 2,048 bytes are reserved for the 8 by 8 BIOS font, which contains 256
character maps of 8 bytes each (256 * 8 = 2048). By the same token, the 1-by-16 char-
acter font would require 4,096 bytes of storage.

Once the BIOS font table is resident in the caller's memory space it can be treated
as a collection of bitmaps, one for each character in the set. In this manner the pro-
grammer is able to control, at the pixel level, the screen position of each character.
Consequently, the spacing between characters, which is necessary in line justifica-
tion, also comes under software control. Also the spacing between text lines and
even the display of text messages at screen angles becomes possible.

The VGA2 module of the GRAPHSOL library contains three display procedures
for displaying text messages using a BIOS character set resident in the program's
memory space. The procedure named COARSE_TEXT provides a control similar to
the one that can be obtained using BIOS service number 9, interrupt 10H, that is,

© 2003 by CRC Press LLC

text is displayed at column and row locations. Its operation is also similar to the
GRAPHIC_TEXT procedure previously described. The procedure named
FINE_TEXT allows the display of a single text line starting at any desired pixel loca-
tion and using any desired spacing between characters on the horizontal and the
vertical axes. This means that if the vertical spacing byte is set to zero in the text
header block all the characters will be displayed on a straight line in the horizontal
plane. However, by assigning a positive or negative value to this parameter, the pro-
grammer using this procedure can display a text message skewed at any screen an-
gle. Finally, the procedure named MULTI_TEXT in the VGA2 module of the
GRAPHSOL library makes possible the display of a text message consisting of multi-
ple lines, starting at any desired pixel location. When using the MULTI_TEXT proce-
dure the programmer has two header parameters to control character and row
spacing, but the skewing option is not available.

The program named TEXTDEMO, furnished in the book's software package, con-
tains a demonstration of the use of the text display procedures contained in the
VGAZ2 library.

Display Type

The use of character generator software and BIOS character tables, as described in
the previous paragraphs, considerably expands the programmer's control over text
display on the VGA graphics modes. However, the BIOS character sets consist of rela-
tively small symbols. Many graphics applications require larger characters (some-
times called display type) for use in logos, titles, headings, or other special effects.
Since the largest character sets available in BIOS are the 8 by 16 and 9 by 16 fonts, the
programmer is left to his or her own resources in this matter.

The programmer has many ways of creating or obtaining display type screen
fonts. These include the use of scalable character sets, the design of customized
screen font tables, the adaptation of printer fonts to screen display, the enlargement
of existing screen fonts, and even the artistic design of special letters and logos.
Which method is suitable depends on programming needs and availability of re-
sources. Ideally, the display programmer would have available scalable text fonts in
many different typefaces and styles. In fact, some sophisticated graphics programs
and programming environments furnish screen versions of the Postscript language,
which comes close to achieving this optimum level of text display control.

In the development of text-intensive applications, such as desktop publishing and
graphics design software, the programmer should aim at the most sophisticated lev-
els of text display technology. On the other hand, this absolute control over text dis-
play operations is often not necessary. In the MATCH program, which is provided in
the book's software package as a demonstration of VGA programming techniques,
we can see the use of two methods for creating display type. The first method was
used for the program logo; in this case a large rendering of the word "Match" was
created in the AutoCAD program, then output to a pen plotter, scanned, edited, and
saved as a disk file image in TIFF format. The second method was to use a
Hewlett-Packard style printer font (also called a PCL format) as a screen display
type. The text in the first MATCH screen: "GRAPHICS SOLUTIONS - VGA Demo
Press any Key to Start Match" is displayed using a PCL printer font. We have used a

© 2003 by CRC Press LLC

PCL font in the programming demonstrations because they provide acceptable dis-
play quality and are often available to the programmer.

Using a PCL Font

One noticeable difference between the BIOS screen fonts and the printer fonts in PCL
format is that the former have a symmetrical pattern for all the text characters, that is,
all character maps occupy the same memory space. For example, in a BIOS 8 by 16 font
each character map takes up 16 bytes of storage. In this case the software can reach
any character map by adding a multiple of 16 to the address that marks the start of the
font table. In other words, the offset of any desired character map is the product of its
ASCII code by the number of bytes in each character map.

However, the optimization methods followed in the creation of PCL printer fonts
determine that all character maps are not of identical size. Therefore, in a typical
PCL font the character map for the letter "M" is larger than the character map for the
letter "i". This characteristic complicates the problem of finding the start of a de-
sired character map in the font table and in obtaining its specific horizontal and ver-
tical dimensions. The procedure named INDEX_HP in the VGA2 module of the
GRAPHSOL library is an auxiliary routine to find the offset and the character dimen-
sions of any character in a PCL font. The details of the PCL encoding can be found in
the source code of the INDEX_HP procedure which is located in the VGA2.ASM
module in the book's software package.

The use of a PCL font in screen display operation requires loading the font's char-
acter maps into the program's address space. This operation is similar to loading a
BIOS font as performed by the FONT_TO_RAM procedure. One difference is that
the BIOS font resides in system memory while the PCL font is stored in a disk file.
The procedure READ_HPFONT in the VGA2 module loads a printer font in PCL for-
mat into a RAM buffer provided by the caller. In this case the caller must provide a
pointer to a buffer that holds an ASCIIZ string with the filename of the PCL disk file
as well as a pointer to another buffer that will hold the loaded character set. Note
that an ASCIIZ string is an MS DOS structure that holds a pathname followed by a
zero byte. An example of the necessary structures and operations for loading a PCL
font can be found in the TEXTDEMO program contained in the book's software.

Once the PCL font is resident in the program's memory space, its characters can
be conveniently displayed on the screen by means of a character generator routine.
The FINE_TEXTHP procedure in the VGA2 module of the GRAPHSOL library is a
character generator routine for use with PCL format character maps. This routine
provides, for PCL fonts, the text control features provided by the FINE_TEXT pro-
cedure for BIOS character maps.

Note that PCL font sizes are scaled to the standard density of a Hewlett-Packard
laser printer, which is of 300 dots per inch. Since the pixel density in mode number
18 is 75 pixels per inch, the displayed characters appear four times larger than
printed ones. In other words, an 8-point PCL font will be displayed as 32-point char-
acters.

© 2003 by CRC Press LLC

9.4 Bit-Block and Fill Primitives

Computer graphics images are roughly classified into two types: bitmapped and ob-
ject-oriented. A bitmap is a data structure that serves to encode image elements into
memory units. The character maps discussed in the previous section are bitmaps. In
VGA systems the structure of a bitmap depends on the video mode. For example, in
mode number 18, in which each screen pixel can be in one of sixteen colors (IRGB for-
mat) a full bitmap requires four bits per pixel. Figure 3-1 shows how the screen pixels
(inmode number 18) are mapped to the VGA memory planes. However, a RAM bitmap
foramode 18 graphics image does not necessarily have to encode data in all four color
planes. For example, a monochrome image can be encoded in a single map, while its
color code is stored in a separate variable.

9.4.1 Mode 18 Bitmap Primitives

The most convenient bitmap format depends on the characteristic of the image, the
video hardware, and the computer system. In the present section we discuss the VGA
primitive routines to display the images encoded in bitmaps that have been custom-
ized for a specific VGA mode.

Figure 9-1 is a bitmap of the running boar target using in the MATCH demonstra-
tion program furnished in the book's software package. Also in Figure 9-1 is the
bitmap that encodes in one-bits the screen pixels that are set in the running boar im-
age. Because the bitmap is on a bit-to-pixel ratio it is quite suited to VGA mode num-
ber 18.

1FH 80H OFH FFH FOH O0OH
OOH 43H FOH 81H OEH O0OH
00OH 3CH OlH 3CH 81H O00H
OOH 40H 02H 42H 40H COH
00H 40H O04H 99H 20H 30H
0OOH 80H O05H 24H AOH OCH
0O0OH 80H O05H 5AH AOH O03H
0OOH 80H O05H 5AH AOH O01H
9. 07H OOH O05H 24H AOH 1EH
10. O08H O00H O04H 99H 20H 60H
11. O08H O0O0OH O02H 42H 47H 80H
12. 10H O00H O1H 3CH 88H O00H
13. 28H O00OH OOH 81H O07H 80H
14. O5FH ClH FOH 3FH OOH 40H
15. FCH 3EH OFH FCH OOH BOH
16. 14H O00H OOH 02H 61H 60H
17. 24H O0OOH OOH O01H 99H 00H
18. 78H O00OH OOH OOH O6H 80H
19. O0OH OOH OOH OOH OlH COH

O J oy U w N

Figure 9-1 Pixel Image and Bitmap of a Graphics Object

A VGA mode number 18 graphics routine to display a bitmapped image as the one
shown in Figure 9-1 will need to know the screen coordinates at which the image is
to be displayed, the dimensions of the bitmap, and the color code for the total im-

© 2003 by CRC Press LLC

age, or for each pixel or group of pixels. Two procedures in the VGA2 library can be
used to display a bit map in mode number 18. The procedure MONO_MAP_18 dis-
plays an image in single color while the procedure COLOR_MAP_18 can be used to
display an image in which each pixel is encoded in a different color. In the
MONO_MAP_18 procedure the color is stored in a single IRGB byte that is used to
display all pixels in the map.

In the COLOR_MAP_18 procedure the color is passed as a pointer to an array of
color codes stored in a byte-per-pixel table. This scheme, although simple and fast,
is not the most memory-efficient one, since in mode number 18 the 4-bit color code
can be represented in one nibble (4 bits). However, the masking and indexing opera-
tions required in a nibble-per-pixel encoding would considerably slow down execu-
tion. An alternative and quite feasible bitmap scheme for VGA mode number 18 can
be based on the video system's color map structure (see 1). In this design the image
is stored in four RAM bitmaps, each map representing an element in the IRGB for-
mat. While this encoding requires less than half the storage than the one used by the
COLOR_MAP_18 procedure, it requires almost four times more space than a single
monochrome code, as the one in the MONO_MAP_18 procedure. Another advantage
of the design adopted in the bitmap display procedures in the VGA2 module is that
either routine (MONO_MAP_18 and COLOR_MAP_18) can be used with the same
image map by changing the color table pointer.

9.4.2 Mode 19 Bitmap Primitive

We have seen that in mode number 19 each screen pixel is mapped to a memory byte
which encodes its color. The procedure named COLOR_MAP_19, in the VGA2 module
of the GRAPHSOL library, displays a bitmap in VGA mode number 19. The code as-
sumes that the bitmap is preceded by a header that holds the screen coordinates for
the graphics image and the dimensions of the pixel map. Following this header is the
byte-to-pixel map of the graphics image.

Fill Primitives

Primitives to perform fill operations are used to clear or initialize the screen, to set a
geometrical area to a color or pattern, or to fill a closed boundary figure. The VGA2
module of the GRAPHSOL library contains fill routines to clear the video screen and to
initialize a rectangular pixel area. Geometrical fill routines are developed in Chapter
10.

9.5 Primitive Routines in the VGA1 and VGA2 Modules

The library module named VGA1 of the GRAPHSOL library that is part of the book's
software contains the VGA device drivers routines as well as the setup, inquiry, and
control primitives mentioned in the present chapter. The VGA2 module contains the
text display primitives and the bitmap display and rectangular fill primitives.

9.5.1 Primitive Routines in the VGA1 Module

The following are generic descriptions of the setup, inquiry, and control primitive
routines contained in the VGALI libraries. The values passed and returned by the in-
dividual functions are listed in the order in which they are referenced in the code.

© 2003 by CRC Press LLC

SET_MODE

Sets the BIOS video display mode using service number 0 of interrupt 10H.

Receives:
1. Byte integer of desired video mode
Returns:
Nothing
Action:
New video mode is enabled.
Screen 1s cleared.
GET_MODE
Obtains the current BIOS video mode using service number 15 of interrupt 10H.
Receives:
Nothing
Returns:

1. Byte integer of number of character columns
Valid values are 40 and 80

2. Byte integer of active video mode

3. Byte integer of active display page

TIME_VRC
Test for start of the vertical retrace cycle of the VGA CRT controller.

Receives:
Nothing
Returns:
Nothing
Action:
Execution returns to caller at start of vertical
retrace cycle

SET_WRITE_MODE
Set the Graphics Controller Write Mode register in VGA less-than-256-color modes.

Receives:

1. Byte integer of desired write mode
Returns:

Nothing

SET_WRITE_256
Set the Graphics Controller Write Mode register in VGA 256-color mode.

Receives:

1. Byte integer of desired write mode
Returns:

Nothing

SET_READ MODE
Set the Graphics Controller Mode Select register to read mode 0 or 1.

Receives:

1. Byte integer of desired read mode
Returns:

Nothing

© 2003 by CRC Press LLC

LOGICAL_MODE
Set the Graphics Controller Data Rotate register to XOR, OR, AND, or NORMALmode.

Receives:

1. Byte integer encoding desired logical mode
Returns:

Nothing

READ MAPS_18

Read contents of four color maps in VGA mode number 18.

Receives:

1. Logical address of video buffer byte to read
Returns:

1. Byte integer of intensity map

2. Byte integer of red map

3. Byte integer of green map

4. Byte integer of blue map
Action:

Routine assumes that read mode 0 is active
Assumes:

ES --> video buffer base address

9.5.2 Primitive Routines in the VGA2 Module

The following are generic descriptions of the text display, bitmap display, and rectan-
gular fill primitives contained in the VGAZ2 libraries. The values passed and returned
by the individual functions are listed in the order in which they are referenced in the
code. The following listing is in the order in which the routines appear in the library
source files.

GRAPHIC _TEXT

Display a formatted text message using BIOS service number 9, interrupt 10H. This
procedure can be used in VGA modes number 18 and 19.

Receives:
1. Offset pointer to message text (DS assumed)
Returns:
Nothing
Message format:
OFFSET STORAGE UNIT CONTENTS
0 Byte integer Screen row for start of display
1 Byte integer Screen column for start of display
2 Byte integer Color code
Control codes:
CODE ACTION
00H End of message
FFH End of text line
FINE_TEXT

Display a single-line text message using a RAM font table in which all bitmaps have the
same dimensions (symmetrical font). Display position is defined at a pixel boundary.
Mode number 18 only.

Receives:
1. Offset pointer to message text (DS assumed)
2. Offset pointer to RAM font table (DS assumed)

© 2003 by CRC Press LLC

Returns:

CONTENTS

Pixel row for start of display
Pixel column for start of display
Character spacing on x axis
Character spacing on y axis

Color code in IRGB format

End of message

ES --> video buffer base address

Nothing

Message format:

OFFSET STORAGE UNIT
0 Word integer
2 Word integer
4 Word integer
6 Word integer
8 Byte integer

Control codes:

CODE ACTION
00H

Assumes:

MULTI_TEXT

Display a multiple-line text message using a RAM font table in which all bitmaps have
the same dimensions (symmetrical font). Display position is defined at a pixel bound-
ary. Mode number 18 only.

Receives:

Returns:

Message
OFFSET

Control

CODE
00H
FFH

Assumes:

1. Offset pointer to message text (DS assumed)
2. Offset pointer to RAM font table (DS assumed)

Nothing
format:
STORAGE UNIT
Word integer
Word integer
Word integer
Word integer
Byte integer
codes:

ACTION

CONTENTS

Pixel row for start of display
Pixel column for start of display
Character spacing (x axis)

Line spacing (y axis)

Color code in IRGB format

End of message
End of text line

ES --> video buffer base address

FINE_TEXTHP

Display asingle-line text message using a RAM font table in PCL format (asymmetrical
font). Display position is defined at a pixel boundary. Mode number 18 only.

Receives:

Returns:

Message
OFFSET

Control

CODE
00H

Assumes:

© 2003 by CRC Press LLC

1. Offset pointer to message text (DS assumed)
2. Offset pointer to RAM font table (DS assumed)

Nothing
format:
STORAGE UNIT
Word integer
Word integer
Word integer
Word integer
Byte integer
codes:

ACTION

CONTENTS

Pixel row for start of display
Pixel column for start of display
Character spacing on x axis
Character spacing on y axis

Color code in IRGB format

End of message

ES --> video buffer base address

READ HPFONT
Read into RAM a PCL format printer font stored in a disk file

Receives:
1. Offset pointer to ASCIIZ filename for PCL soft
font located in current path (DS assumed)
2. Offset pointer to RAM storage area (DS assumed)
Returns:
Carry clear if no error
Carry set if file not found or disk error

FONT_TO_RAM
Read a BIOS character map into RAM

Receives:
1. Byte integer encoding BIOS font desired
8 = 8 by 8 font
14 8 by 14 font
16 8 by 16 font
2. Offset pointer to RAM storage area (DS assumed)
Returns:
Nothing

MONO_MAP_18

Display a single-color, bitmapped image stored in the caller's memory space, while in

VGA mode 18.
Receives:
1. Offset pointer to bitmap (DS assumed)
2. Offset pointer to color code (DS assumed)
Returns:

Nothing
Bitmap format:
OFFSET STORAGE UNIT CONTENTS

0 Word integer Pixel row for start of display
2 Word integer Pixel column for start of display
4 Byte integer Number of rows in bitmap
5 Byte integer Bytes per row in bitmap
6 Start of bitmapped image
Assumes:
ES --> video buffer base address

COLOR_MAP_18

Display a multi-color, bitmapped image stored in the caller's memory space, while in

VGA mode 18.
Receives:
1. Offset pointer to bitmap (DS assumed)
2. Offset pointer to color table (DS assumed)
Returns:

Nothing
Bitmap format:
OFFSET STORAGE UNIT CONTENTS

0 Word integer Pixel row for start of display

2 Word integer Pixel column for start of display
4 Byte integer Number of rows in bitmap

5 Byte integer Bytes per row in bitmap

© 2003 by CRC Press LLC

6 Start of bitmapped image
Color table format:
One color byte per image pixel
Assumes:
ES --> video buffer base address

COLOR_MAP_19

Display a multi-color, byte-mapped image stored in the caller's memory space, while
in VGA mode 19. One byte encodes each image pixel for display in 256 color mode.

Receives:
1. Offset pointer to header data of color byte map
(DS assumed)
Returns:
Nothing
Bitmap format:
OFFSET STORAGE UNIT CONTENTS

0 Word integer Pixel row for start of display

2 Word integer Pixel column for start of display
4 Byte integer Number of rows in bitmap

5 Byte integer Bytes per row in bitmap

6 Start of color byte-mapped image

Color table format:
One color byte per image pixel

Assumes :
ES --> video buffer base address
CLS 18
Clear screen using IRGB color code while in VGA mode number 18.
Receives:
1. Byte integer of IRGB color code
Returns:
Nothing
Action:
Entire 640 by 480 pixel screen area is initialized
to the color passed by the caller.
CLS 19

Clear screen using IRGB color code while in VGA mode number 19. Encoding depends

on setting of DAC registers.

Receives:
1. Byte integer of IRGB color code
Returns:
Nothing
Action:
Entire 320 by 200 pixel screen area is initialized
to the color passed by the caller.

TILE FILL 18

Initialize a rectangular screen area, at the tile level, to a passed color code while in

mode 18.

Receives:
1. Byte integer of x axis start tile
2. Byte integer of y axis start tile
3. Byte integer of horizontal tiles in rectangle

© 2003 by CRC Press LLC

4. Byte integer of vertical tiles in rectangle
5. Byte integer of color code in IRGB format
Returns:
Nothing
Assumes:
ES --> video buffer base address

TILE FILL 19

Initialize a rectangular screen area, at the tile level, to a passed color code while in

mode 19.

Receives:
1. Byte integer of x axis start tile
2. Byte integer of y axis start tile
3. Byte integer of horizontal tiles in rectangle
4. Byte integer of vertical tiles in rectangle
5. Byte integer of color code (format depends

on DAC color register settings)

Returns:
Nothing

Assumes:
ES --> video buffer base address

© 2003 by CRC Press LLC

Chapter 10

VGA Geometrical Primitives

Topics:
¢ Geometrical graphics objects
¢ Plotting straight lines
¢ Plotting the conic curves
¢ Normalization and transformations
¢ Region fills

This chapter describes vector graphics in relation to the calculation and display of
geometrical figures that can be expressed in a mathematical formula. Geometrical
primitives are developed for calculating and displaying straight lines, circles, ellipses,
parabolas, and hyperbolas, and also for performing rotation and clipping transforma-
tions and for filling the inside of a geometrical figure.

10.1 Geometrical Graphics Objects

Bitmapped graphics are used to encode and display pictorial objects, such as the run-
ning boar target in Figure 9-1. However, graphics applications often also deal with geo-
metrical objects, that is, graphical objects that can be represented by means of
algebraic equations; such is the case with straight lines, parallelograms, circles, ellip-
ses, and other geometrical figures. The terms vector graphics, raster graphics, and ob-
ject-oriented graphics are often used, somewhat imprecisely, when referring to
computer graphics operations on geometrical objects.

In VGA graphics any image, including geometrical objects, can be encoded in a
bitmap and displayed using the bitmap routines developed in Chapter 3. However,
objects that can be represented mathematically can be treated by the graphics soft-
ware in mathematical form. For example, it is often more compact and convenient
to encode a screen circle by means of the coordinates of its origin and the magni-
tude of its radius than by representing all its adjacent points in a bitmap. The same
applies to other geometrical figures, even to complex figures if they can be broken
down into individual geometric elements.

© 2003 by CRC Press LLC

10.1.1 Pixel-Path Calculations

In previous chapters we saw that the VGA graphics screen appears to the programmer
as a two-dimensional pixel grid. Geometrical images on VGA can be visualized as
points in this two-axes coordinate system, equated to x and y axes of the Cartesian
plane. In dealing with geometrical figures the graphics programmer can use the equa-
tion of the particular curve to determine the pixel path that will represent it on the
video screen or other device. In the VGA video display this process involves the calcu-
lation of the pixel addresses that lie along the path of the desired curve.

In high-level language graphics the software can use the language's mathematical
functions. However, mathematical operations in high-level languages are generally
considered too slow for screen graphics processing. Since performance is so impor-
tant in video graphics programming, the preferred method of geometrical pixel plot-
ting is usually the fastest one. In IBM microcomputers this often means low-level
mathematics.

10.1.2 Graphical Coprocessors

One approach to performing the required pixel path calculations in the manipulation
of geometrical images is the use of graphical coprocessor hardware. Several such
chips have beenimplemented in silicon. For example, the XGA video graphics system,
discussed in Chapter 6, contains a graphical coprocessor chip that assists in perform-
ing block fills, line drawings, logical mixing, masking, scissoring, and other graphics
functions. Unfortunately, the VGA system does not contain a graphical coprocessor
chip.

The 80x87 as a Graphical Coprocessor

Since no graphical coprocessor is included in VGA systems the programmer is often
forced to use the central processor to perform geometrical and other calculations nec-
essary in graphics software. But 80x86 mathematics are slow, cumbersome, and lim-
ited. However, most IBM microcomputers can be equipped with an optional
mathematical coprocessor chip of the Intel 80x87 family. The power of the math
coprocessor can be a valuable asset in performing the pixel path calculation required
in the drawing of geometrical figures. For example, suppose that a graphics program
that must plot a circular arc with aradius of z pixels, start coordinates at x1, y1 and end
coordinates at x2, y2. One approach to this pixel-plotting problem is to calculate the
set of x and y coordinates, starting at point x1, y1, and ending at x2, y2. The computa-
tions can be based on the Pythagorean expression

y= r—-X

where x and y are the Cartesian coordinates of the point and ris the radius of the circle.
The software can assign consecutive values to the x variable, starting at x1, and calcu-
late the corresponding values of the y variable that lie along the arc's path. The pixels
can be immediately plotted on the video display or the coordinates can be stored in a
memory table and displayed later.

It is in performing such calculations that the mathematical coprocessor can be of
considerable assistance. One advantage is that many mathematical operations are

© 2003 by CRC Press LLC

directly available, for example, the FSQRT instruction can be used to calculate the
square root of a number. On the other hand, the main processor is capable only of
integer arithmetic. Therefore the calculation of powers, roots, exponential, and trig-
onometric functions on the 80x86 must be implemented in software. A second and
perhaps more important factor is the speed at which the calculations are performed
with the coprocessor, estimated at 30 to 50 times faster than with the CPU. Conve-
nience and speed make the 80x87 a powerful programming tool for VGA geometrical
graphics.

By limiting the calculations to integer values, the VGA programmer can simplify
pixel plotting using the 80x87. We have seen that in VGA mode number 18 the y coor-
dinate of a screen point can be represented by an integer in the range 0 to 479, and
the x coordinate, an integer in the range 0 to 639. Since the 80x87 word integer for-
mat is a 16-bit value, with an identical numerical range as a main processor register,
a graphical program can transfer integer data from processor to coprocessor, and
vice versa. These manipulations are illustrated in the examples contained in the
VGA3 module of the GRAPHSOL library. The details of programming the 80x87
coprocessor, which is beyond the scope of this book, can be found in several titles
listed in the Bibliography.

Emulating the 80x87

One practical consideration is that the 80x87 mathematical coprocessoris an optional
device in IBM microcomputers; the exceptions are the machines equipped with the
486 chip, in which coprocessor functions are built-in. This optional nature of the
coprocessor determines that applications that assume the presence of this chip will
not execute in machines not equipped with an 80x87. This could create a serious prob-
lem for graphics code that relies on the coprocessor for performing pixel plotting cal-
culations. Fortunately there is a solution to this problem: a software emulation of the
COprocessor.

An 80x87 emulator is a program that simulates, in software, the operations per-
formed by the 80x87 chip. Once the emulator software is installed, machines not
equipped with an 80x87 are able to execute 80x87 instructions, although at a sub-
stantial performance penalty. Ideally, a program that uses 80x87 code could test for
the presence of an 80x87 hardware component,; if one is found, the chip is used in
the calculations, if not, its operation is simulated by an emulator program. In reality
this ideal solution is possible only in machines that are equipped with the 80286 or
80386 CPU. The reason is that in 8086 and 8088 machines not equipped with an 8087
chip the presence of a coprocessor instruction hangs up the system in a wait forever
loop.

This problem was solved in the design of the 80286 CPU by means of 2 bits in the
Machine Status Word register. These bits, named Math Present (MP) and Emulate
(EM), allow encoding the presence, absence, or availability of the 80287 component.
If the EM bit is set, then the execution of a coprocessor opcode will automatically
generate an interrupt 7 exception. In this case a handler vectored at this interrupt
can select an emulated version of the opcode, and the machine will not hang up. A
similar mechanism is used in the 80386 CPU, but not in the 8086 or the 8088 proces-
sors.

© 2003 by CRC Press LLC

Therefore, 8086/8088 software that alternatively uses the real 8087 if one is pres-
ent or the emulator if no chip is installed in the system must contain both real and
emulated code. In this case a routine can be devised to test for the presence of the
hardware component; if one is found, execution is directed to routines that use real
8087 code, if no 8087 is detected, the emulator software is initialized and execution
is directed to routines that contain calls to the emulator package. Since this method
works in any IBM microcomputer, it is the one adopted in the GRAPHSOL graphics
library furnished with this book. The test for the presence of the 80x87 chip, the in-
stallation of the emulator software, and the setting of the code selection switch is
performed in the INIT_X87 procedure in the VGA3 module of the GRAPHSOL li-
brary, which also contains the routines that use 80x87 hardware instructions. The
emulated code for the geometrical calculation routines is found in the VGA3_EM
module of the aforementioned library.

Over the years emulator programs have been made available by Intel,
Ingenierburo Franke, and other sources.

10.2 Plotting a Straight Line

Geometrical figures can be drawn on the video display by mathematical pixel plotting
when the pattern of screen pixels lies along a path that can be expressed in a mathe-
matical equation. In this case the graphical software calculates successive coordinate
pairs and sets the pixels that lie along the curve's path. We have mentioned that the
80x87 mathematical coprocessor is a valuable tool for performing these calculations
rapidly and precisely. Figure 10-1 shows a pixel representation of three straight lines.

Figure 10-1 Pixel Plots for Straight Lines

In Figure 10-1 we see that horizontal and vertical lines are displayed on the
screen by setting adjacent pixels. A line at a 45 degree angle can also be rendered ac-
curately by diagonally adjacent pixels, although pixel to pixel distance will be
greater in a diagonal line than in a horizontal or vertical one. But the pixel plot of a
straight line that is not in one of these three cases cannot be exactly represented on
a symmetrical grid, whether it be a pixel grid, or a quadrille drawing paper. Figure
10-2 shows the staircase effect that results from displaying an angled straight line on
a symmetrical grid.

© 2003 by CRC Press LLC

L o0e"

A

Figure 10-2 Non-Adjacent Pixel Plot of a Straight Line

Notice that the black-colored pixels in Figure 10-2 represent the coordinates that
result from calculating successive unit increments along the vertical axis. If only the
black colored dots were used to represent the straight line in Figure 10-2, the graph
would be discontinuous and the representation not very accurate. An extreme case
of this discontinuity would be a straight line at such a small angle that it would be
defined by two isolated pixels, one at each screen border. In conclusion, if no cor-
rective measures are used, the screen drawing of a line or curve by simple computa-
tion of pixel coordinates can produce unsatisfactory results. The non-adjacency
problem can be corrected by filling in the intermediate pixels. This correction is
shown in gray-colored pixels in Figure 10-2.

10.2.1 Insuring Pixel Adjacency

Notice that the pixel plotting routines in the VGA3 module of the GRAPHSOL library
store in memory the coordinate pairs found during the calculations phase, rather than
immediately setting the screen pixels. Due to this mode of operation, the program
must establish the necessary structures for holding the data. The following code frag-
ment shows several storage assignations used in the routines contained in the VGA3
module.

; Scratch-pad for temporary data

THIS_X DW 0 ; Normalized coordinate of x
THIS_Y DW 0 ; Normalized coordinate of y
LAST_Y DW 0 ; Internal control for

; noncontinuous y-axis points
; Buffers for storing 1K of x and y coordinates of the first

; quadrant and a counter for the number of points computed

Y_BUFFER DB 2048 DUP (00H)
X_BUFFER DB 2048 DUP (00H)
POINTS_CNT DW 0 ; Number of entries in buffers

Programmers have devised many computational strategies for generating the co-
ordinate pairs to plot geometrical curves. Consider, at this point, that the straight
line is geometrically defined as a curve. One of the processing operations performed
by pixel-plotting routines is to fill in the spaces left empty by the mathematical com-
putations (see Figure 10-1), thus insuring that the screen pixels representing the
curve are adjacent to each other. The following code fragment corrects nonadjacent
plots generated by any pixel-plotting primitive that calculates y as a function of x.
The routine also assumes that x is assigned consecutive values by decrementing or
incrementing the previous x value by one.

© 2003 by CRC Press LLC

.***********************|
7

; Test for adjacent |

; y coordinates |

;***********************|

; On entry:

; CS:SI --> buffer holding x coordinates of curve

; CS:DI --> buffer holding y coordinates of curve

; Adjacency correction is required if the previous y coordinate

; 1s not adjacent (one less) to the present y coordinate. Code

; assumes that the data variables are located in the code segment
MOV DX,CS:THIS_Y
MOV CX,CS:THIS_X

TEST_ADJACENT:

; Is this yv < last y minus 1

MOV BX,CS:LAST_Y

DEC BX ; Last y minus 1
CMP DX, BX ; Compare to this vy
JL FILL_IN_PIXEL

; Is this y > last y plus 1

MOV BX,CS:LAST_Y

INC BX ; Last y plus 1

CMP DX, BX ; Compare to this y
JG FILL_IN_PIXEL

JMP STORE_PIX_XYS

.***********************|
7

; correct non-adjacency |
;***********************|

; BX = last y coordinate minus 1
FILL_IN_PIXEL:
MOV CS:[SI],BX ; Store y coordinate adjacent
; to previous point
MOV CS:[DI],CX ; Store this x coordinate
ADD SI,2 ; Bump pointers
ADD DI, 2
INC CS:POINTS_CNT ; Bump points counter
MOV CS:LAST_Y, BX ; Update to this point
JMP TEST_ADJACENT
;***********************|
; store coordinates |
;***********************|
STORE_PIX_XYS:
MOV CS:[SI],DX ; Store normalized
; vy coordinate
MOV CS:[DI],CX ; Store normalized x
; coordinate
; Bump both buffer pointers
ADD ST, 2
ADD DI, 2
INC CS:POINTS_CNT ; Bump points counter
MOV CS:LAST_Y, DX ; Update LAST_Y variable

The auxiliary procedure named ADJACENT in the VGA3 module of the
GRAPHSOL library uses similar logic as the above fragment.

© 2003 by CRC Press LLC

10.2.2 Calculating Straight Lines Coordinates

A straight line in the Cartesian plane can be defined in several ways. One common
mathematical expression consists of defining the line by means of the coordinates of
its two end points. In this manner we can refer to aline with start coordinates at x1, y1
and end coordinates at x2, y2. An alternative way of defining a straight line is by means
of the coordinates of its start point, its angle, and one of its end point coordinates. In
this manner we can refer to a straight line from x1, y1, with a slope of 60 degrees, to a
point at x2. Both expressions are useful to the graphics programmer.

Bresenham's Algorithm

One of the original algorithms for plotting a straight line between two points was de-
veloped by J. E. Bresenham and first published in the IBM Systems Journal in 1965.
Bresenham's method consists of obtaining two pixel coordinates for the next y value
and then selecting the one that lies closer to the path of an ideal straight line. The fol-
lowing code fragment shows the plotting of a straight line in VGA mode number 18 us-
ing Bresenham's method.

; Routine to draw a straight line with starting coordinates
; stored at CS:0ORIGIN_X and CS:ORIGIN_Y and end coordinates at
; CS:END_X and CS:END_Y

; Set unit increments for pixel-to-pixel operation
MOV CX,1
MOV DX, 1
; Determine negative or positive slope from difference between
; the v and x coordinates of the start and end points of the line
; This difference is also the length of the line

MOV DI,CS:END_Y

SUB DI,CS:0RIGIN_Y ; Length

JGE POS_VERTICAL ; Vertical length is positive

NEG DX ; DX = -1 in 2's complement form

NEG DI ; Make distance positive
POS_VERTICAL:

MOV CS:INCR_FOR_Y,DX ; Increments on the y-axis will

; be positive or negative
; Calculate horizontal distance

MOV SI,CS:END_X

SUB SI,CS:0RIGIN_X

JGE POS_HORZ ; Horizontal length is positive

NEG CX ; CX = -1 in 2's complement form

NEG ST ; Distance has to be positive
POS_HORZ:

MOV CS:INCR_FOR_X,CX ; Increments on the x axis can

; also be positive or negative
; Compare the horizontal and vertical lengths of the line to
; determine if the straight segments will be horizontal (if
; this length is greater) or vertical (otherwise)
CMP SI,DI ; SI = horizontal length
; DI = vertical length

JGE HORZ_SEGMENTS

; Vertical length is greater, straight segments are vertical
MOV CX, 0 ; No horizontal segments
XCHG SI,DI ; Invert lengths
JMP SET_CONTROLS

HORZ_SEGMENTS :
MOV DX, 0 ; No vertical segments

© 2003 by CRC Press LLC

SET_CONTROLS :

MOV CS:STRT_HSEGS,CX ; Will be 1 or O
MOV CS:STRT_VSEGS,DX ; Also 1 or O
; Calculate adjustment factor
MOV AX,DI ; Smaller direction component
ADD AX,AX ; Double the shorter distance
MOV CS:STRT_TOTAL,AX ; Straight component total
; pixels
SUB AX,SI ; Subtract larger direction
; component
MOV BX,AX ; General component counter
SUB AX,SI ; Calculate
MOV CS:DIAG_TOTAL,AX ; Diagonal component total
; pixels
; Prepare to draw line
MOV CX,CS:0RIGIN_X
MOV DX,CS:0ORIGIN_Y
; SI = the length of the line along the longer axis
INC ST
MOV AL,CS:LINE_COLOR ; Color code for line

.*********************|
7

; draw line points |
;*********************|

LINE_POINTS:

DEC SI ; Counter for total pixels
JINZ PIX_DRAW
JMP END_OF_LINE ; Line is finished

.*********************|
7

; display pixel |

.*********************|
7

PIX_DRAW:
CALL PIXEL_WRITE_18 ; Routine to set pixel in mode 18
CMP X,0 ; If BX < 0 then straight segment
; diagonal segment otherwise
JGE DIAGONAL
; Draw straight line segments
ADD CX,CS:STRT_HSEGS ; Increment CX if horizontal
ADD DX,CS:STRT_VSEGS ; Increment DX if vertical
ADD BX,CS:STRT_TOTAL ; Counter plus adjustment
JMP LINE_POINTS
; Draw diagonal segment
DIAGONAL:
ADD CX,CS:INCR_FOR_X ; X direction
ADD DX,CS:INCR_FOR_Y ; Y direction
ADD BX,CS:DIAG_TOTAL ; Adjust counter
JMP LINE_POINTS

END_OF_LINE:

The procedure named BRESENHAM in the VGA3 module of the GRAPHSOL li-
brary is based on this algorithm.

An Alternative to Bresenham

A program can use the 80x87 code to calculate the coordinates of a line defined by
means of its end points. In a machine equipped with the coprocessor hardware this
method performs better than the Bresenham routine listed above. On the other hand,

© 2003 by CRC Press LLC

if the 80x87 code is to be emulated in software, then Bresenham's algorithm executes
faster. The 80x87 calculations can be based on the differential equation for the slope of
a straight line:

if

Dy/Dx = constant

then

Dy/Dx = (y2 - yl) / (x2 - x1)

therefore, the slope of the line is expressed:
m = Dy/Dx

The actual calculations are as follows:

Memory variables stored in the code segment:

CS:X1 = x coordinate of leftmost point
CS:Y1l = y coordinate of leftmost point
CS:X2 = x coordinate of second point
CS:Y2 = y coordinate of second point
During computations:
x coordinate CS:THIS_X ... Word
vy coordinate CS:THIS. Y Word

On exit:
CS:BUFFER_X holds the set of x coordinates for the line
CS:BUFFER_Y holds the set of y coordinates
CS:POINTS_CNT is a counter for the number of x,y pairs
stored in BUFFER_X and BUFFER_Y

.*********************|
7

7

preparations |

.*********************|
7

7

Set registers and variables to coordinates

LEA SI,CS:Y_BUFFER ; v buffer pointer
LEA DI, CS:X_BUFFER ; x buffer pointer
MOV CS:LAST_Y,O0 ; First iteration
MOV CS:POINTS_CNT, 0O ; Reset points counter
; Calculate Dy/Dx (slope m)
; | sT(0) | ST (1) | ST(2) |
FILD Cs:X1 ; x1 |
FILD Cs:X2 ; %2 | x1 |
FSUB ST,ST (1) ;o x2 - x1 | x1 |
FSTP ST (1) ; x2 - x1 | empty
; Store in variable for the normalized x coordinate of
; start point
FIST CS:THIS_X
FILD Cs:Yl ; vl | x2 - x1 |
FILD CS:Y2 ; v2 | vyl | x2 - x1 |
FSUB ST,ST (1) ;v2 -yl at | x2 - x1 |
FSTP ST (1) ; v2 -yl | x2 - x1 | empty |
FDIV ST,ST (1) ; Dy/Dx | x2 - x1 |
FSTP ST (1) ; Dy/Dx | empty |
;*********************|
; y coordinate |
; calculations |
;*********************|
Y_POINT:
FILD CS:THIS_X ; x | Dy/Dx | |
; Solve y = x * Dy/Dx
FMUL ST,ST (1) ; x*Dy/Dx | Dy/Dx |
; Store in variable for normalized y coordinate of this point
FISTP CS:THIS_Y ; Dy/Dx | empty |

© 2003 by CRC Press LLC

.*********************|
7

; test for adjacent |
; y values |

.*********************|
7

CALL ADJACENT ; Adjacency procedure
;*********************|

; test for last pixel |
;*********************|

CMP CS:THIS_X,0 ; x = 0 must be calculated
JE EXIT_POINTS

DEC CS:THIS_X

JMP Y_POINT

; Adjust 80x87 stack pointer
EXIT_POINTS:
FSTP ST (0)

A Line by its Slope

We saw, in the previous example, that a straight line can be defined by its slope. The
mathematical expression for this line, called the point-slope form, in which the y coor-
dinate is a function of the x coordinate can be expressed in the following equation:

y = mx

where x and y are the coordinate pairs and m is the slope. The slope is the difference
between the y coordinates divided by the difference between the x coordinates of any
two points in the line, expressed as follows:

m=(y2-yl)/(x2-x1).

Notice that y2 - y1 can have a positive or negative value, therefore m can be posi-
tive or negative. The following code fragment calculates the y coordinates for suc-
cessive x coordinates using the point-slope equation for a straight line. The
calculations, which use 80x87 code, assume that a real or emulated 80x87
coprocessor is available.

; Routine to plot and store the pixel coordinates of a straight
; line of slope s, located in the fourth guadrant
; The slope is in degrees and must be in the range 0 < s > 90

; On entry:

; CS:X1 x coordinate of origin

; CS:Y1l = y coordinate of origin

; CS:X2 x coordinate of end point
; CS:SLOPE = slope in degrees

; During computations:

; X coordinate CS:THIS_X v word
; Y coordinate CS:THIS_Yo... word
; Formula:

; y = x Tan s

;*********************|

; preparations |

.*********************|
7

© 2003 by CRC Press LLC

Set registers and variables to coordinates

LEA
LEA
MOV
MOV
Calculate the

FILD
FILD
FSUB
FSTP

SI,CS:Y_BUFFER
DI,CS:X_BUFFER
CS:LAST_Y, 0

CS:POINTS_CNT, 0

; v buffer pointer

; x buffer pointer

; First iteration

; Reset points counter

normalized x coordinate for the rightmost point

CS:X1
CS:X2
ST,ST (1)
ST (1)

ST (0) | ST(1) | ST (2)
x1 |
x2 | x1

x2 - x1 | x1

x2 - x1 | empty

Store in variable for the normalized x coordinate of

rightmost point

FIST
FSTP

THIS_X
ST (0)

Obtain and store tangent of

FILD
CALL
CALL

Y_BY_ SLOPE:

7

7

FILD
FMUL

CS:SLOPE
DEG_2_RADS
TANGENT

CS:THIS_X
ST,ST (1)

7

empty |

slope

7
7

7

7

7

ST (0) | ST(1) | ST (2)
s (deg) |
s (rads) |

|

tan s

tan s
x tan s |

y | tan s |

Store in variable for normalized y coordinate of this point

FISTP

CS:THIS_Y

.*********************|
7

7

7

test for adjacent |

v values

.*********************|
7

CALL

ADJACENT

.*********************|
7

7

7

test for last pixel |

.*********************|
7

CMP
JE

DEC
JMP

CS:THIS_X,0
EXIT_SLOPE
CS:THIS_X

Y_BY_ SLOPE

Adjust 8087 stack registers
EXIT_SLOPE:

FSTP

Notice that the graphic primitives named BRESENHAM and LINE_BY_SLOPE, in
the VGA3 module of the GRAPHSOL library, share several code segment variables.
Also that the procedure named ADJACENT is called by the LINE_BY_SLOPE primi-
tive to correct nonadjacent pixel conditions that can arise during the plotting calcu-
lations. The VGA3 module includes a local procedure, named TANGENT, that
performs the calculations for the tangent function required in the line-by-slope for-
mula. Since the calculations performed by the TANGENT procedure use the radian
measure of the angle, the auxiliary procedure named DEG_2_RADS in the VGA3

ST (0)

7

7

tan s |

Adjacency test procedure

; x = 0 must be calculated

module is used to convert from degrees to radian.

© 2003 by CRC Press LLC

Displaying the Straight Line

The LINE_BY_SLOPE procedure in the VGA3 module of the GRAPHSOL library is
limited to calculating and storing the pixel coordinates of the straight line defined
by the caller. This mode of operation makes the routine more device independent
and also makes possible certain manipulations of the stored data. However, most
applications will, sooner or later, need to draw the line on the screen. The following
code fragment shows the necessary operations.

; Display coordinates stored in CS:X_BUFFER and CS:Y_BUFFER
; Total number of coordinates is stored in CS:POINTS_CNT
; Setup pointers and counter

LEA SI,CS:Y_BUFFER ; Yy coordinates

LEA DI,CS:X_BUFFER ; x coordinates

MOV CX,CS:POINTS_CNT

MOV CS:0PS_CNT,CX ; Operational counter
DISP_1:

MOV CX,CS:X1 ; X coordinate of origin

MOV DX,CS:Y1 ; vy coordinate of origin
; Add stored values to origin

ADD CX,WORD PTR CS: [DI]

SUB DX,WORD PTR CS:[SI]
; CS:CX = x coordinate, CS:DX = y coordinate of point

PUSH AX ; Save color code

CALL PIXEL_ADD_18 ; Procedures in VGAl module

CALL WRITE_PIX_18

POP AX ; Restore color code

ADD CS:SI,2 ; Bump coordinates pointers

ADD CS:DI, 2

DEC CS:0PS_CNT ; Operation points counter

JINZ DISP_1

The procedure named DISPLAY_LINE in the VGA3 module of the GRAPHSOL li-
brary can be used to display a straight line plotted by means of the
LINE_BY_POINTS procedure. Notice that the procedure named BRESENHAM dis-
plays the pixels as the coordinates are calculated.

10.3 Plotting Conic Curves

By intersecting a right circular cone at different planes it is possible to generate sev-
eral geometrical curves. These curves, or conic sections, are the circle, the ellipse, the
parabola, and the hyperbola. A VGA graphics program can plot the coordinates of the
conic curves employing similar methods as the ones developed for plotting straight
lines (see Section 10.2).

10.3.1 The Circle

A circle in the Cartesian plane can be described by the coordinates of its origin, and by
its radius. As far as the calculation of the coordinate points only the radius parameter
is necessary, although the origin coordinates is required to position the circle in the
viewport. To calculate the pixel coordinates of a circle described by its radius we can
use the Pythagorean formula, which allows us to obtain the corresponding values of y
for each x. The curve and formula can be seen in Figure 10-3.

© 2003 by CRC Press LLC

Figure 10-3 Plot and Formula for a Circle

The following code fragment shows the calculations necessary for plotting the
coordinates of a circular arc in the fourth quadrant. The calculations are performed
by means of the 80x87 mathematical coprocessor.

; Routine to plot and store the pixel coordinates of a circular
; arc in the fourth gquadrant

; On entry:
; Radius: CS:R .. ovivnn. word

; During computations:
; x coordinate ... CS:THIS_X word
: y coordinate ... CS:THIS_Y word

.*********************|
7

; preparations |
;‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k****|

; Reset counters and controls

MOV CS:THIS_X,0 ; Start values for x
MOV CS:LAST_Y,O0 ; and LAST_Y
; Buffer pointers:
; SI --> Y values buffer
; DI --> X values buffer
LEA SI,CS:Y_BUFFER
LEA DI,CS:X_BUFFER
MOV CS:POINTS_CNT, 0 ; Reset counter

.*********************|
7

; calculate y values |
;*********************|

CIRCLE_Y:

; | sT(0) | ST(1) |
FILD CS:THIS_X ; x
FMUL ST, ST (0) ; x"2 |
FILD CS:R ; r | x"2
FMUL ST,ST(0) ; "2 | X2
FSUB ST,ST(1) ;ort2 - xM2 | X2
FSQRT ;RE(r*2-x72) | X2
FISTP CS:THIS_Y ; X2
FSTP ST (0) ; EMPTY |

; Test adjacency condition
CALL ADJACENT ; Library procedure
INC CS:THIS_X ; X increments in a circle's

© 2003 by CRC Press LLC

; fourth gquadrant
CMP CS:THIS_Y,O0 ; Test for end of execution
JNE CIRCLE_Y
; At this point all coordinates have been plotted

The procedure named CIRCLE in the VGA3 module of the GRAPHSOL library can
be used to plot the coordinates of a circular arc in the fourth quadrant. The code
used by this procedure is similar to the one in the preceding listing.

10.3.2 The Ellipse

An ellipse in the Cartesian plane can be described by the coordinates of its origin, and
by its major and minor semi-axes. As far as the calculation of the coordinate points
only the axes parameters are necessary, although the origin coordinates will be re-
quired to position the ellipse in the viewport. The curve and formula can be seen in
Figure 10-4.

axis!

Figure 10-4 Plot and Formula for Ellipse

In Figure 10-4, the variable M represents the major semi-axis of the ellipse and the
variable m, the minor semi-axis. The following code fragment shows the calcula-
tions necessary for plotting the coordinates of an elliptical curve in the fourth quad-
rant.

; Routine to plot and store the pixel coordinates of an
; elliptical curve in the fourth quadrant

; On entry:
; x semi-axis (M) CS:X_AXIS word
; vy semi-axis (m) CS:Y_AXIS word

; During computations:
; x coordinate ... CS:THIS_X word
; y coordinate ... CS:THIS_Y word

; Variables:

; CS:m = minor axis (X_AXIS or Y_AXIS variables)
; CS:M = major axis (X_AXIS or Y_AXIS variables)

.*********************|
7

© 2003 by CRC Press LLC

7

7

preparations |

.*********************|
7

Reset counters and controls

MOV
MOV

CS:THIS_X,0 ; Start value for x
CS:LAST_Y,O0 ; and for LAST_Y

Buffer pointers:

; SI --> Y values buffer
; DI --> X values buffer

LEA SI,CS:Y_BUFFER

LEA DI,CS:X_BUFFER

MOV CS:POINTS_CNT, O ; Reset counter
ELLIPSE_Y:

7
7

7

Calculate primitive coordinate of y
First solve x"2 / M"2

| ST(0) | ST (1) |
FILD CS:X_AXIS ; M |
FMUL ST, ST(0) ; M~2 |
FILD CS:THIS_X ; x | M~2 |
FMUL ST, ST(0) ; X2 | M~2 |
FDIV ST,ST(1) ;o oxXM2/MM2 | M~2 |
Solve 1 - (x"2 / M"2)
FLD1 ; 1 | x"~2/M"2 | 2 |
FSUB ST,ST(1) ;1-(x"2/M"2) | x*2/M"2 | 2 |
Solve m"2 * [1-(x"2/M"2)]
FILD CS:Y_AXIS ; m [1-(x"2/M"2) | 2 | 2 |
FMUL ST, ST(0) ; m~2 [1-(x~2/M*2) | 2 | 2 |
FMUL ST, ST (1) ;mA2 x [1-(x*2/M2)1 2 | 2] 2|
Find square root
FSQRT ; y [2 2] 2 |
FISTP CS:THIS_Y ; Store y in memory
Adjust stack
FSTP ST (0) ol o2
FSTP ST (0) P
FSTP ST (0) ; Stack is empty
Insure pixel adjacency condition
CALL ADJACENT ; Library procedure
INC CS:THIS_X ; X increments in a clockwise plot
; of the first quadrant
CMP CS:THIS_Y, 0 ; Test for end of processing
JNE ELLIPSE_Y

At this point all coordinates have been plotted

The procedure named ELLIPSE in the VGA3 module of the GRAPHSOL library
can be used to plot the coordinates of an elliptical curve in the fourth quadrant. The
code used by this procedure is similar to the one in the preceding listings.

10.3.3 The Parabola

A parabola in the Cartesian plane can be described by the coordinates of its ori-
gin and by its focus. The curve and formula can be seen in Figure 10-5.

© 2003 by CRC Press LLC

focus

v =+/4ax

X start

Figure 10-5 Plot and Formula for Parabola

In order to plot and store the coordinates of a parabolic curve two input parame-
ters are required: the focus of the parabola and the start value for the x coordinate.
Notice that no initial x value is required in the circle and the ellipse plotting rou-
tines, while the routines for plotting a parabola and a hyperbola both require an ini-
tial value for the x coordinate. The reason for this difference is that the circle and
the ellipse are closed curves, therefore their fourth quadrant plot extends from axis
to axis. On the other hand, the parabola and the hyperbola are open curves, there-
fore a start value for the x coordinate is required to define the curve. The following
code fragment shows the calculations necessary for plotting the coordinates of a
parabolic curve in the fourth quadrant.

Routine to plot and store the pixel
in the fourth quadrant

On entry:
focus of parabola CS:
start x coordinate CS:

During computations:

x coordinate CS:
vy coordinate CS:

Formula:
v = SQR. ROOT (4ax)
Y_ABS = SQR. ROOT (4 * FOCUS

.*********************|
7

preparations |

.*********************|
7

7

7

Reset counters and controls

MOV AX,CS:X_START
MOV CS:THIS_X,AX
MOV CS:LAST_Y,O0
Buffer pointers:

SI --> Y values buffer
DI --> X values buffer
LEA SI,CS:Y_BUFFER
LEA DI,CS:X_BUFFER
MOV CS:POINTS_CNT, 0

PARA_Y:

7

7

Calculate primitive coordinate of y
vy = SQR. ROOT (4ax)

© 2003 by CRC Press LLC

*

7

7

7

coordinates of a parabolic curve

FOCUS word
X_START word
THIS X ... word
THIS_ Y word
X_ABS)

Start value for X

Reset LAST_Y

Reset counter

; THIS_Y = SQR. ROOT (4 * FOCUS * THIS_X)

; | sT(0) | sty | |
FILD CS:THIS_X ; x |
FILD CS:FOCUS ; a | x |
FMUL ST,ST(1) ; ax |2 |
FLD1 ; 1 | ax |2 |
FADD ST,ST(0) ; 2 | ax |2 |
FADD ST,ST(0) ; 4 | ax | 2 |
FMUL ST,ST(1) ; dax [2] 2 |
FSORT ; % [2] 2 |
FISTP CS:THIS_Y ; Store y in memory

; Adjust stack
FSTP ST (0) ;o7
FSTP ST(0) ; Stack is empty

; Insure pixel adjacency conditions
CALL ADJACENT ; Library procedure
DEC CS:THIS_X
CMP CS:THIS_Y,O0 ; Test for end of processing
JNE PARA_Y

; At this point all coordinates have been plotted

The procedure named PARABOLA in the VGA3 module of the GRAPHSOL library
can be used to plot the coordinates of a parabolic curve in the fourth quadrant. The
code used by this procedure is similar to the one in the preceding listings.

10.3.4 The Hyperbola

A hyperbolain the Cartesian plane can be described by its focus, vertex, and by the co-
ordinates of its start point. The curve and formula can be seen in Figure 10-6.

vertex focus
2 2
cC —da
y_ 2 2
aNx —a
X start

Figure 10-6 Plot and Formula for Hyperbola

In order to plot and store the coordinates of a hyperbolic curve the routine re-
quires the focus and vertex parameters, as well as the start value for the x coordi-
nate. The following code fragment shows the calculations necessary for plotting the
coordinates of a hyperbolic curve in the fourth quadrant.

; Routine to plot and store the pixel coordinates of a hyperbolic

; curve in the fourth quadrant

7

© 2003 by CRC Press LLC

7

On entry:

focus of hyperbola CS:FOCUS .
vertex of hyperbola CS:VERTEX .
start x coordinate CS:X_START

During computations:

X coordinate CS:THIS_X
Y coordinate CS:THIS_Y

Scratch-pad variables:

Numerator radix CS:B_PARAM
Vertex squared CS:VERTEX2

.*********************|
7

preparations |

.*********************|
7

7

7

7

7

7

7

Reset counters and controls

MOV AX,CS:X_START
MOV CS:THIS_X,AX
MOV CS:LAST_Y, 0
Buffer pointers:

SI --> Y values buffer
DI --> X values buffer
LEA SI,CS:Y_BUFFER
LEA DI,CS:X_BUFFER
MOV CS:POINTS_CNT, 0

Solve: B_PARAM = SQR. ROOT (FOCUS"2

FILD CS:VERTEX
FMUL ST, ST (0)
FILD CS:FOCUS
FMUL ST, ST (0)
FSUB ST, ST (1)
FSQRT

Store b

FISTP CS:B_PARAM

; Start value for X

; Reset LAST_Y

; Reset counter
Compute numerator radical from VERTEX and FOCUS

- VERTEX"2)

| ST (0) | ST (1)
; a |

; a2 |

; c | an2
; cn2 | an2
;oet2 - ar2 | an2
; b | a2
; a2 |

Store VERTEX"2 for calculations

FISTP CS:VERTEX2

HYPER_Y:
Calculate primitive coordinate of y

7
7
7

7

7

7

vy = b / a * SQR ROOT (x"2 -
or:

Y_ABS = B_PARAM / VERTEX *
FILD CS: VERTEX2
FILD CS:THIS_X
FMUL ST, ST(0)
FSUB ST, ST (1)
FSQRT
FILD CS:B_PARAM
FILD CS: VERTEX
FDIV ST(1),ST
FSTP ST (0)

FMUL ST, ST (1)

FISTP CS:THIS_Y
Adjust stack

FSTP ST (0)

FSTP ST (0)

7

Stack is empty

an2)

SQR ROOT (X_ABS"2 - VERTEX2)
| ST (0) | ST (1) |
; an2 |

; x | an2 |
; X2 | an2 |
; x*2-a”2 |2 |

; SR(x"2-a"2)| ? |

; b | #] 2 |

; a | b |
; b | b/a |
; b/a [#] 2 |

; y [2| 2 |

7

7

Store y in memory

? |

Stack is empty

Insure pixel adjacency condition

© 2003 by CRC Press LLC

CALL ADJACENT ; Library procedure

DEC CS:THIS_X
CMP CS:LAST_Y, 0 ; Test for end of processing
JNE HYPER_Y

; At this point all coordinates have been plotted

The procedure named HYPERBOLA in the VGA3 module of the GRAPHSOL li-
brary can be used to plot the coordinates of a hyperbolic curve in the fourth quad-
rant. The code used by this procedure is similar to the one in the preceding listings.

10.3.5 Displaying the Conic Curve

The procedure DISPLAY_LINE, developed previously, outputs to the CRT display, in
VGA mode number 18, the pixel patterns stored by the line plotting routine. The
DISPLAY_LINE procedure assigns a positive value to all the coordinates stored in
X_BUFFER and Y_BUFFER. This determines that the displayed curve is always lo-
cated in the fourth quadrant.

Notice that the routines for plotting and storing the coordinates of the four conic
curves (circle, ellipse, parabola, and hyperbola), described in the previous sections,
assume that the curve is located in the fourth Cartesian quadrant. In other words,
the plotted curves are normalized to the signs of x and y in this quadrant. However,
at display time, it is possible to change the sign of the coordinates so that the curve
can be located in any one of the four quadrants.

The VGA3 module of the GRAPHSOL library, furnished with the book, includes
four procedures to display the conic curves in any one of the four quadrants. These
primitives are named QUAD_I, QUAD_II, QUAD_III, and QUAD_IV. The procedure
named DO_4_QUADS can be used to display the curve in all four Cartesian quad-
rants.

10.4 Geometrical Operations

The design of program structures to be used in storing graphics image data is one of
the most challenging tasks of designing a graphic system or application. The details of
the storage format depend on several factors:

1. The programming language or languages that manipulate the stored data.
2. The available storage resources.
3. The transformations applied to the stored images.

In the manipulation of graphical data it is usually preferable to design independ-
ent procedures to interface with the data structures. An advantage of this approach
is that the routines that perform the graphics transformations are isolated from the
complexities of the storage scheme. Principles of memory economy usually advise
that each data item be encoded in the most compact format that allows representing
the full range of allowed values. Also that a data structure should not be of a prede-
termined size, but that its size be dynamically determined according to the number
of parameters to be stored.

© 2003 by CRC Press LLC

In implementing these rules the more elaborate graphics systems or applications
create a hierarchy of image files, display files, and image segments of varying de-
grees of complexity. The entire structure is designed to facilitate image transforma-
tion by manipulating the stored data. For example:

1. Animage can be mirrored to the other Cartesian quadrants by changing the sign of its
coordinates.

2. Animage can be translated (moved) by performing signed addition on its coordinates.

3. An image can be rotated by moving its coordinates along a circular arc. The rotation
formulas are obtained from elementary trigonometry.

4. Animage can be scaled by multiplying its coordinates by a scaling factor.

5. Animage can be clipped by eliminating all the points that fall outside a certain bound-
ary.

At the lowest level, the ideal storage structure for image coordinates is in a ma-
trix form. A matrix is a mathematical concept in which a set of values is arranged in
arectangular array. Each value in the array is called an element of the matrix. In the
context of graphics programming, matrices are used to hold the coordinate points of
graphical figures. This form of storing graphical data allows the use of the laws of
linear algebra to perform geometrical transformations by performing mathematical
operations on the matrix.

In the VGA3 module we have used a very simple storage scheme in which the im-
age coordinate points are placed in two rectangular matrices: X_BUFFER holds the
x coordinates and Y_BUFFER the y coordinates. Although each matrix is stored lin-
early, the programmer can visualize it as a two-dimensional array by screen columns
and rows. The geometrical routines operate on normalized coordinates. In other
words, the code calculates the pixel pattern for a line or a conic curve independ-
ently of the screen position at which the curve is displayed. In this manner, once the
basic coordinates for a given curve have been calculated and stored, the software
can display as many curves as necessary in any screen position. Furthermore, since
the conic curves are symmetrical in all four quadrants, only the coordinates of one
quadrant need to be calculated. The images in the other quadrants are obtained by
operating on the stored data.

10.4.1 Screen Normalization of Coordinates

To further simplify calculations for VGA mode number 18, the origin of the coordinate
system is relocated on the Cartesian plane so that the screen map of 640 by 480 pixels
lies entirely in one quadrant. Also, the values of the y coordinate are made to grow
downward, as in the conventional representation of the video screen. This concept is
shown in Figure 10-7.

The use of only positive values for representing the x and y coordinate points sim-
plifies image calculations and manipulations.

© 2003 by CRC Press LLC

origin
x=0
y=0

X =639
y=479

Figure 10-7 Normalization of Coordinates in VGA Mode 18

10.4.2 Performing the Transformations

The routines named QUAD_I, QUAD_II, QUAD_III, and QUAD_IV, in the VGA3 module
of the GRAPHSOL library, display at any desired screen position the pixel coordinate
pairs stored in X_BUFFER and Y_BUFFER. Since the coordinates are stored in
screen-normalized form (see Section 10.4.1), the display routines must make the cor-
responding sign correction at the time of translating the image map to the specific
screen position. For example, to display an image in the first quadrant the QUAD_I
routine adds the pixel column at which the image is to be displayed to each of the coor-
dinates in the matrix named X_BUFFER, and subtracts the pixel row from each coor-
dinate in Y_BUFFER. Table 10-1 shows the operations performed on the
screen-normalized coordinate pairs according to the quadrant.

Table 10-1
Transformation of Normalized Coordinates by Quadrant in VGA

QUAADRANT | QUADRANT I QUADRANT Il QUADRANT IV

Xy Xy Xy Xy

+ - + - + - + -
Translation

Translation is the movement of a graphical object to a new location by adding a con-
stant value to each coordinate point. The operation requires that a constant be added
to all the coordinates, but the constants can be different for each plane. In other
words, atwo-dimensional graphical object can be translated to any desired screen po-
sition by adding or subtracting values from the set of x and y coordinates that define
the object. Notice that display routines QUAD_I, QUAD_II, QUAD_III, and QUAD_IV
in fact perform an image translation from the screen top left corner to the screen posi-
tion requested by the caller. The VGA3 module also contains a routine named
DO_4_QUADS that displays an image in all four Cartesian quadrants.

Scaling

In graphical terms, to scale an image is to apply a multiplying factor to its linear dimen-
sions. Thus, a scaling transformation is the conversion of a graphical object into an-

© 2003 by CRC Press LLC

other one by multiplying each coordinate point that defines the object. The operation
requires that all the coordinates in each plane be multiplied by the same scaling factor,
although the scaling factors can be different for each plane. For example, a
three-to-four scaling transformation takes place when the x coordinates of a
two-dimensional object are multiplied by a factor of two and the y coordinates are
multiplied by a factor of four.

The fundamental problem of scaling a pixel map is that the resulting image can be
discontinuous. This determines that it is often easier for the software to calculate
the parameters that define the image, rather than to scale those of an existing one.
For this reason we have not provided a scaling routine in the VGAS3 library.

Rotation

Rotation is the conversion of a graphical object into another one by moving, by the
same angular value, all coordinate points that define the original object along circular
arcs with a common center. The angular value is called the angle of rotation, and the
fixed point common to all the arcs is called the center of rotation. Some geometrical
figures are unchanged by some rotations. For example, a circle is unchanged by a rota-
tion about its center, and a square is unchanged if it is rotated by an angle that is a mul-
tiple of 90 degrees and using the intersection point of both diagonals as a center of
rotation.

To perform a rotation transformation each coordinate that defines the object is
moved along a circular arc. The effect of a 30 degree counterclockwise rotation of a
polygon can be seen in Figure 10-8.

30° >

Figure 10-8 Rotation Transformation of a Polygon

The rotation formulas, which can be derived using elementary trigonometry, are:

X' = x cos @ - y sin @
yv' =y cos @ + x sin @

where x',y' are the rotated coordinates of the point X,y and @ is the angle of rotation in
clockwise direction. Since the rotation calculations require the sine and cosine func-
tions, the VGA3 module includes the procedures SINE and COSINE that calculate

© 2003 by CRC Press LLC

these trigonometric functions. Notice that the calculations performed by the SINE
and COSINE procedures use the radian measure of the angle. The auxiliary procedure
named DEG_2_RADS, in the VGA3 module, perform the conversion from degrees to
radians. Rotation is performed by the procedures named ROTATE_ON and
ROTATE_OFF. The actual rotation calculations are performed by the local procedure
named ROTATE.

Clipping

The graphical concept of clipping is related to that of a clipping window. In general, a
graphics window can be defined as a rectangular area that delimits the computer
screen, also called the viewport. Clipping a graphical object is excluding the parts of
this object that lie outside a defined clipping window. Figure 10-9 shows the clipping
transformation of an ellipse.

viewport -l AN

clipping
window

Figure 10-9 Clipping Transformation of an Ellipse

In Figure 10-9 the dotted portion of the ellipse, which lies outside of the clipping
window, is eliminated from the final image, while the part shown in a continuous
line is preserved. In the VGA3 library clipping is performed by the procedures
named CLIP_ON and CLIP_OFF. The actual clipping calculations are done by the lo-
cal procedure named CLIP.

Notice that in the VGA3 module the actual translation, rotation, and clipping
transformations are done at display time, with no change to the stored image. In this
manner, a program to display the clipped ellipse in Figure 10-9 would first call the
ELLIPSE procedure, which calculates and stores the coordinates of the curve to
screen-normalized parameters. Then the program calls the CLIP_ON procedure and
defines the clipping window. Finally the DO_4_QUADS routine can be used to trans-
late the ellipse to the actual screen position and display those portions of the curve
that lie inside the clipping rectangle. If a rotation transformation is to be used, it
must be executed before the clipping takes place.

Clipping transformations can also be used to make sure that the coordinate
points of a geometrical image are within the physical limits of the graphics device.
For example, an application working in VGA mode number 18, with a screen defini-

© 2003 by CRC Press LLC

tion of 640 pixel columns by 480 pixel rows, can set the clipping rectangle to the di-
mensions of this viewport to make sure that the display routines do not exceed the
physical screen area. In this manner the clipping routine serves as an error trap for
the display function.

10.5 Region Fills

The graphics routines described in the previous sections of this chapter were de-
signed to display the outline of a geometrical figure in the form of a continuous pixel
line. But often a graphics application needs to display geometrical images filled with a
uniform color or with a monochrome pattern. If the geometrical figure delimits a
closed screen area, it is possible to use a fill operation to set all the pixels within the
enclosed area to a specific color or pattern. This enclosed area is sometimes called a
region.

10.5.1 Screen Painting

The name screen painting is usually given to routines that perform a general region fill
in which all closed screen areas are colored with the value of its border pixels. The
border pixels serve as aboundary for the fill operation. The logic of many screen paint-
ing routines is based on alternating between a searching and a coloring mode. One
variation is to define a background color and then to scan the entire screen, pixel by
pixel, searching for pixels that do not match the background. These non-matching pix-
els are said to define aboundary. When a boundary pixel is encountered, the searching
mode is changed to the coloring mode, and each successive pixel is changed to the
color of the boundary pixel. When another boundary pixelis encountered, the mode is
toggled back to searching.

In screen painting algorithms the scanning usually starts at the top-left screen
corner. The mode is changed to searching at the start of each new pixel row. The al-
gorithms must take into account conditions that require special handling, for exam-
ple, how to proceed if there is a single boundary pixel on a scan line, several
adjoining boundary pixels, an odd number of boundaries, or if a vertex is encoun-
tered.

10.5.2 Geometrical Fills

The geometrical fill is a special case of the fill algorithms that is suited to filling closed
geometrical figures with a given color or pattern. The geometrical fill is different from
ageneral painting case in that in the geometrical fill the caller must define a pixel loca-
tion inside the figure. The simplest case is based on the following assumptions:

1. Thatthe starting location, sometimes called the seed point, is inside a closed-boundary
figure within the viewport.

2. That there are no other figures or lines within the boundary of the figure to be filled.
3. That all consecutive points within the same horizontal line are adjacent.

Figure 10-10 shows two classes of geometrical shapes in regards to a region fill
operation.

© 2003 by CRC Press LLC

O

-

Figure 10.10 a

Figure 10.10 b

Figure 10-10 Geometrical Interpretation of a Region Fills

The geometrical shapes in Figure 10-10a meet the constraints defined above,
while the polygon in Figure 10-10b does not. In Figure 10-10-b, consecutive points p1
and p2, located on the same horizontal line, are not adjacent. The simplest fill algo-
rithm, based on a line-by-line scan for a single boundary pixel, works only with geo-
metric figures similar to those in Figure 10-10-a. The logic requires a preliminary
search for the figure's low and high points. This precursory operation simplifies the
actual fill by insuring that the scan does not exceed the figure's boundaries at any
time, therefore avoiding the tests for vertices and for external boundaries. Figure
10-11 is a flowchart of a region fill algorithm for a figure that meets the three con-

straints mentioned above.

1. Find and store high x,
2. Find and store low y limit
3. Set first scan line to high x,y

y limit

scan at
y low limit
?

next scan line

is pix
a boundary

fill pixel

index right to next pixel

Figure 10-11 Region Fill Flowchart

© 2003 by CRC Press LLC

L

The procedure named REGION_FILL in the VGA3 module of the GRAPHSOL li-
brary furnished with this book performs a region fill operation on geometrical
shapes of the type shown in Figure 10-10a. The logic of this routine is based on the
flowchart in Figure 10-11.

An algorithm like the one illustrated in the flowchart of Figure 10-11 is sometimes
classified as a line-adjacency iteration. In VGA mode number 18 the performance of
the line-adjacency method can be considerably improved by pre-scanning a group of
8 horizontal pixels for a boundary. If no boundary is found, all 8 pixels are set at
once. Pixel-by-pixel scanning takes place only if the pre-scan detects a boundary
pixel.

An alternative algorithm for a region fill operation consists of scanning the pixels
that form the outside border of the figure and storing their x, y coordinates in a data
structure. After the border of the figure is defined, the code scans the interior of the
figure for holes. Once the exterior boundary and the holes are known, the fill opera-
tion can be reduced to displaying line segments that go from one exterior boundary
to another, or from an exterior boundary to a hole boundary. This algorithm, some-
times called a border fill method, is relatively efficient and can be used to fill more
complex shapes than those in Figure 10-10a.

10.6 Primitive Routines in the VGA3 Module

The library module named VGAS3 of the GRAPHSOL library, furnished with the book's
software package, contains several VGA mode 18 geometric primitives. The following
are generic descriptions of the geometrical primitive routines contained in the VGA3
libraries. The values passed and returned by the individual functions are listed in the
order in which they are referenced in the code. The following listing is in the order in
which the routines appear in the library source files.

BRESENHAM

Draw a straight line using Bresenham's algorithm

Receives:
1. Byte integer of color of line
2. Word integer of start point of x coordinate
3. Word integer of start point of y coordinate
4. Word integer of end point of x coordinate
5. Word integer of end point of y coordinate
Returns:
Nothing
Action:

Straight line is displayed

LINE BY SLOPE

Plot and store the pixel coordinates of a straight line of slope s, located in the fourth
quadrant. The slope must be in the range 0 < s > 90 degrees.

Receives:
1. Word integer of start point of x coordinate
2. Word integer of start point of y coordinate
3. Word integer of end point of x coordinate
4. Word integer of slope

© 2003 by CRC Press LLC

Returns:

Nothing
Action:
Straight line is calculated and stored
CIRCLE
Plot and store the pixel coordinates of a circular arc in the fourth quadrant.
Receives:
1. Word integer of radius of circle
Returns:
Nothing
Action:
Circular arc is calculated and stored
ELLIPSE

Plot and store the pixel coordinates of an ellipse in the fourth quadrant.

Receives:
1. Word integer of x semi-axis of ellipse
2. Word integer of y semi-axis of ellipse

Returns:
Nothing
Action:
Elliptical arc is calculated and stored
PARABOLA

Plot and store the pixel coordinates of a parabola in the fourth quadrant.

Receives:
1. Word integer of x focus of parabola
2. Word integer of start x coordinate

Returns:
Nothing
Action:
Parabolic arc is calculated and stored
HYPERBOLA

Plot and store the pixel coordinates of a hyperbola in the fourth quadrant.

Receives:
1. Word integer of x focus of hyperbola
2. Word integer of vertex of hyperbola
3. Word integer of start x coordinate

Returns:
Nothing
Action:
Hyperbolic arc is calculated and stored
QUAD |

Display a geometrical curve in the first quadrant, while in VGA mode number 18, using
its stored coordinates.

Receives:
1. Byte integer of IRGB color code
2. Word integer of x coordinate of origin
3. Word integer of y coordinate of origin
Returns:
Nothing

© 2003 by CRC Press LLC

Action:
Curve 1is displayed

QUAD II

Display a geometrical curve in the second quadrant, while in VGA mode number 18, us-
ing its stored coordinates.

Receives:
1. Byte integer of IRGB color code
2. Word integer of x coordinate of origin
3. Word integer of y coordinate of origin
Returns:
Nothing
Action:

Curve is displayed

QUAD il

Display a geometrical curve in the third quadrant, while in VGA mode number 18, using
its stored coordinates.

Receives:
1. Byte integer of IRGB color code
2. Word integer of x coordinate of origin
3. Word integer of y coordinate of origin

Returns:
Nothing
Action:
Curve is displayed
QUAD_IvY

Display a geometrical curve in the fourth quadrant, while in VGA mode number 18, us-
ing its stored coordinates.

Receives:
1. Byte integer of IRGB color code
2. Word integer of x coordinate of origin
3. Word integer of y coordinate of origin
Returns:
Nothing
Action:
Curve 1is displayed

DO_4 QUADS

Display all four quadrants by calling the procedures QUAD_I, QUAD_II, QUAD_III,
and QUAD_IV.

Receives:
Nothing
Returns:
Nothing
Action:

Curve 1is displayed in all four quadrants

ROTATE_ON

Activate the rotate operation during display.

Receives:
1. Word integer of clockwise angle of rotation

© 2003 by CRC Press LLC

in the range 0 to 90 degrees
Returns:
Nothing
Action:
Rotation angle is stored and rotation is enabled during
display operations

ROTATE_OFF

De-activate the rotate operation during display.

Receives:
Nothing
Returns:
Nothing
Action:

Rotation is disabled during display operations

CLIP_ON
Activate clipping operation during display.
Receives:
1. Word integer of left corner of clipping window
2. Word integer of top corner of clipping window
3. Word integer of right corner of clipping window
4. Word integer of bottom corner of clipping window
Returns:
Nothing
Action:

Clipping values are stored and clipping is enabled during
display operations

CLIP_OFF
De-activate clipping during display.

Receives:
Nothing
Returns:
Nothing
Action:
Clipping is disabled during display operations

INIT_X87

Initialize 80x87 hardware or emulator and set rounding control to even.

Receives:
Nothing

Returns:
Nothing

Action:
If 80x87 hardware is detected an internal switch is set
so that the coprocessor will be used during geometrical
calculations. Otherwise the switch will direct execution to
emulated code. In both cases the control word is set to round
to even numbers.

REGION_FILL

Fill a closed geometrical surface, with no internal holes, composed of unbroken hori-
zontal lines. Uses VGA mode number 18.

© 2003 by CRC Press LLC

Receives:
1. Byte integer of IRGB color code
2. Word integer of x coordinate of seed point
3. Word integer of y coordinate of seed point
Returns:
Nothing
Action:
Figure is filled

© 2003 by CRC Press LLC

Chapter 11

XGA and 8514/A Adapter Interface

Topics:

XGA and 8514/A Adapter Interface
¢ The Adapter Interface software

e Al Communications and concepts
e Al programming fundamentals

Describes the XGA and 8514/A video systems and their architecture. Also of program-
ming XGA and 8514/A by means of the IBM Adapter Interface (Al) software package.
The chapter includes programming examples in assembly language.

11.1 8514/A and XGA

In 1987 IBM introduced a high-end video graphics system intended for applications
that demand high-quality graphics, such as CAD, desktop publishing, graphical user
interfaces to operating systems, image editing, and graphics art software. The best
graphics mode available in a fully equipped 8514/A system is of 1,024 by 768 pixels in
256 colors. Compared to VGA mode number 18 (640 by 480 pixels in 16 colors) this
8514/A graphics mode offers 2.5 times the number of screen pixels and 16 times as
many colors. The major features of the 8514/A standard are the following:

1. 8514/A is furnished as an add-on card for PS/2 Micro Channel microcomputers with
VGA systems on the motherboard. The 8514/A board is installed in a slot with a special
connector that allows a VGA signal to pass through.

2. Memory architecture follows a planar scheme similar to the one used by the CGA,
EGA, and VGA systems. The card is furnished in two versions, one with 512K of
on-board VRAM and another one with 1,024K. The maximum resolution of 1,024 by 768
pixelsin 256 colorsis available only in the board equipped with 1,024K of video RAM.

3. 8514/Ais furnished with three character fonts. The character sizes are of 12 by 20, 8 by
14, and 7 by 15 pixels for the 1,024 by 768 resolution mode. The 8-by-14 pixel character
size is the only one available in the 640-by-480 pixel mode (see Table 11-11 later in this

© 2003 by CRC Press LLC

chapter). The character fonts are stored as disk files in the diskette supplied with the
adapter.

4. The adapter contains ROM code that is used by the BIOS Power-on Self Test (POST) to
initialize the hardware, but no BIOS programmer services are included.

5. Programming the 8514/A adapter is by means of an Adapter Interface (Al) software.
The software is in the form of a TSR program. The TSR installation routine is an exe-
cutable program named HDILOAD.EXE.

6. The 8514/A Al contains services to control the adapter hardware, to draw lines, rectan-
gles, and small bitmaps (markers), to fill enclosed figures, to manipulate the color pal-
ette, to perform bit block transfers (bitBLTs), to change the current drawing position,
line type, width, and display color, to select among 16 logical and 14 arithmetic mix
modes, and to display text strings and individual characters.

7. The color palette consists of 262,144 possible colors of which 256 can be displayed si-
multaneously. The gray scale is of 64 shades.

The internal architecture of the 8514/A consists of three central components: a
drawing engine, a display processor, and the on-board video RAM. In addition, the
board contains a color look-up table (LUT), a digital-to-analog converter (DAC), and
associated registers, as well as a small amount of initialization code in ROM. Figure
11-1is a diagram of the components in the 8514/A system.

Color look-up table
and DAC
A
Video RAM
Display processor
Drawing engine
@)
CRT controller
ROM
A y I] wmm smm[o
[]

| PC bus

Figure 11-1 8514/A Component Diagram

© 2003 by CRC Press LLC

The 8514/A adapter, in spite of the substantial improvements that it brought to PC

video graphics, enjoyed only limited success. The following limitations of the
8514/A adapter have been noted:

1.

8514/A requires a Micro Channel bus. This makes the card unusable in many
IBM-compatible computers.

The Al interface offers limited graphics services, for example, no curve drawing func-
tions are available, nor are there direct services for reading or setting an individual
screen pixel.

Video memory operations must take place through a single transfer register. The ab-
sence of DMA slows down image transfer procedures.

8514/A requires the presence of a VGA system on the motherboard. This duplication of
video systems often constitutes an unnecessary expense.

Register information regarding the 8514/A was published by IBM only after consider-
able pressure from software developers. For several years there was no other way for
programming the system than using the Al services.

8514/A supports only interlaced displays. This determines that applications that gener-
ate single-pixel horizontal lines (such as CAD programs) are afflicted with flicker. No-
tice that some clone 8514/A cards offer non-interlaced display.

IBM documentation for programming 8514/A refers almost exclusively to C language.
Programmers working in assembler or in high-level languages other than C were left to
their own resources.

In September 1990 IBM disclosed preliminary information on a new graphics

standard designated as the Extended Graphics Array, or XGA. Two configurations of
the XGA standard have since been implemented: as an adapter card and as part of
the motherboard. The XGA adapter is compatible with PS/2 Micro Channel ma-
chines equipped with the 80386 or 486 CPU. The XGA system is integrated in the
motherboard of the IBM Model 95 XP 486. Figure 11-2, on the following page, is a di-
agram of the XGA system.

—

Several features of the XGA system are similar to those of the 8514/A:

The maximum resolution is of 1,024 by 768 pixels in 256 colors.
The XGA system is compatible with the 8514/A Adapter Interface software.
The display driver is interlaced at 1,024 by 768 pixel resolution.

The XGA digital-to-analog converter (DAC) and color look-up table (LUT) operate
identically to those in the 8414/A. This means that palette operations are compatible in
both systems.

The adapter version of XGA is furnished with either 512K or 1,204K of on-board video
RAM.

However, there are several differences between the two systems, such as:

© 2003 by CRC Press LLC

Color look-up table

and DAC
Serializer
A
Video RAM
€
Graphics coprocessor
Memory and <> .
CRT controller Sprite controller Y
Attribute controller
Adapter ROM A
A

[] o

| Micro Channel bus |

Figure 11-2 XGA Component Diagram

1.

The XGA is compatible with the VGA standard at the register level. This makes possi-
ble the use of XGA in the motherboard while still maintaining VGA compatibility. This
is the way in which it is implemented in the IBM Model 95 XP 486 microcomputer.

XGA includes two display modes that do not exist in 8514/A: a 132-column text mode,
and adirect color graphics mode with 640-by-480 pixel resolution in 64K colors. Notice
that this graphics mode is available only in cards with 1,024K video RAM installed.

XGA requires amachine equipped with a 80386 or 486 CPU while 8514/A can run in ma-
chines with the 80286 chip.

XGA implements a three-dimensional, user-definable drawing space, called a bitmap.
XGA bitmaps can reside anywhere in the system's memory space. The application can
define a bitmap in the program's data space and the XGA uses this area directly for
drawing, reading, and writing operations.

XGA is equipped with a hardware controlled cursor, called the sprite. It maximum size
is 64 by 64 pixels and it can be positioned anywhere on the screen without affecting the
image stored in video memory.

The XGA Adapter Interface is implemented as a.SYS device driver while the driver for
the 8514/A is in the form of a TST program. The module name for the XGA driver is
XGAAIDOS.SYS. The XGA AI adds 17 new services to those available in 8514/A.

The XGA was designed taking into consideration the problems of managing the video
image in a multitasking environment. Therefore it contains facilities for saving and re-
storing the state of the video hardware at any time.

© 2003 by CRC Press LLC

8. The XGA hardware can act as a bus master and access system memory directly. This
bus-mastering capability frees the CPU for other tasks while the XGA processor is ma-
nipulating memory.

9. IBM has provided register-level documentation for the XGA system. This will facilitate
cloning and development of high-performance software.

Some of the objections raised for the 8514/A still apply to the XGA, for instance,
the Micro Channel requirement, the limitations of the Al services, and the interlaced
display technology. On the other hand, the XGA offers several major improvements
in relation to the 8514/A.

11.2 Adapter Interface Software

The Adapter Interface (Al) is a software package furnished with 8514/A and XGA sys-
tems that provides a series of low-level services to the graphics programmer. In the
8514/A the Al software is in the form of a Terminate and Stay Resident (TSR) program
while in the XGA the Al is a .SYS driver. The respective module and directory names
are shown in Table 11-1.

Table 11-1
Module and Directory Names for the Adapter Interface Software
8514/A XGA
FORM PATHNAME FORM PATHNAME

TSR HDIPCDOS\HDILOAD.EXE .SYS XGAPCDOS\XGAAIDOS.SYS

The Al was originally documented by IBM in the IBM Personal System/2 Display
Adapter 8514/A Technical Reference (document number S68X-2248-0) published in
April 1987. IBM has also published a document named the IBM Personal System/2
Display Adapter 8514/A Adapter Interface Programmer's Guide (document number
00F8952). This product includes a diskette containing a demo program, a collection
of font files, and several programmer utilities. The corresponding IBM document for
XGA Al is called the IBM Personal System/2 XGA Adapter Interface Technical Refer-
ence (document number S-15F-2154-0). All of the above documents are available
from IBM Technical Directory (1-800-426-7282). Other IBM documents regarding
XGA hardware are mentioned in Chapter 7.

11.2.1 Software Installation

The Al driver software must be installed in the machine before its services become
available to the system. In the case of the 8514/A the Al driver is in the form of a TSR
program, while in the XGA itis furnished as a.SYS file. Installation instructions for the
Al software are part of the adapter package. In the case of the XGA Al several versions
of the Al are furnished by IBM: one for MS-DOS, another one for Windows, and a third
one for the OS/2 operating system.

In the MS-DOS environment the installation routine, for either the 8514/A or XGA,
creates a dedicated directory (see Table 11-1), selects the appropriate driver soft-
ware, and optionally includes an automatic setup line. In the 8514/A the automatic
setup line is added to the user's AUTOEXEC.BAT file and in the XGA to the

© 2003 by CRC Press LLC

CONFIG.SYS file. This insures that the driver software is made resident every time
the system is booted.

The 8514/A installation process makes the Al functions available, but does not au-
tomatically switch video functions to the 8514/A display system. Notice that, since
8514/A does not include VGA, a typical 8514/A configuration is a machine with two
display adapters, one attached to the motherboard VGA and the other one to the
8514/A card. With the XGA, which includes VGA functions, it is possible to configure
a machine with a single display attached either to a motherboard XGA or to an
adapter version of the XGA. Alternatively, the adapter version of the XGA can be
configured with two or more displays. For example, a machine with VGA on the
motherboard can be furnished with an XGA card and monitor. In this case, the XGA
resembles the typical 8514/A arrangement described above.

11.2.2 XGA Multi-Display Systems

If and when XGA becomes the video standard for IBM microcomputers a typical ma-
chine will probably be equipped with a single display attached to XGA hardware on the
motherboard. This is already the case in the IBM Model 95 XP 486 microcomputer.
However, most present day implementations of XGA consist of PS/2 machines, origi-
nally equipped with VGA on the motherboard, and which have been supplemented
with an XGA adapter card. Since XGA includes VGA, this upgrade version can be con-
figured with a single monitor attached to the XGA video output connector. An alterna-
tive setup uses two monitors: one attached to the VGA connector on the motherboard
and one to the XGA card.

A multi-display XGA system setup offers some interesting possibilities, for exam-
ple, in graphics applications it s possible for the XGA to display the graphics image
while the VGA on the motherboard is used in interactive debugging operations. XGA
systems can have up to six adapters operating simultaneously, although in most ma-
chines the number of possible XGA adapters is limited by the number of available
slots. This is not the case with 8514/A, which cannot have more than two displays
per system.

The possibility of multi-display XGA systems creates new potentials in applica-
tions and systems programming. For example, by manipulating the XGA address de-
coding mechanism an application can display different data on multiple XGA
screens. In this manner it is possible to conceive an XGA multitasking program with
several display systems. One feasible setup is to use the first monitor to show out-
put of a word processing program, the second monitor a database, and the third one
a spreadsheet. The user could switch rapidly between applications while the data
displayed remains on each screen. Another sample use of a multi-display system is
an airport software package that would show arrival schedules on one screen, and
departures on another one, while a third monitor is attached to the reservations
desk. Finally, in a graphics applications environment, we can envision a desktop
publishing system in which the central monitor would display the typesetting soft-
ware, the monitor on one side would be attached to a graphics illustration program,
and the one on the other side to a text editor.

© 2003 by CRC Press LLC

11.2.3 Operating Modes

Both 8514/A and XGA systems can operate in one of two modes: the VGA mode or the
advanced functions mode. The operating mode is selected by the software. In the VGA
mode the graphics system is a full-featured VGA (see Table 2-2). The advanced func-
tion mode refers to the Adapter Interface software. Table 11-2 shows the characteris-
tics of the display modes available in the Al

Table 11-2
XGA and 8514/A Advanced Function Modes
LOW RESOLUTION MODE HIGH RESOLUTION MODE

RAM installed 512K 1,024K
Interlaced NO YES
pixel columns 640 1,024
pixel rows 480 768
number of colors 16 256
Palette 256K 256K

11.2.4 The XGA and 8514/A Palette

8514/A and XGA video memory is organized in bit planes. Each bit plane encodes the
color for a rectangular array of 1,024 by 1,024 pixels. In practice, since the highest
available resolution is of 1,024 by 768 pixels, there are 256 unused bits in each plane.
This unassigned area is used by Al software as a scratchpad during area fills and in
marker manipulations, as well as for storing bitmaps for the character sets. When the
graphics system is in the low resolution mode video memory consists of eight 1,024 by
512 bit planes. However, the 8 bit planes are divided into two separate groups of 4 bit
planes each. These 2 bit planes can be simultaneously addressed. In low resolution
mode the color range is limited to 16 simultaneous colors. In the high resolution mode
(see Table 11-2) video memory consists of 8 bit planes of 1,024 by 1,024 pixels. In this
mode the number of simultaneous colors is 256. Figure 11-3 shows the bit-plane map-
ping in XGA and 8514/A high resolution modes.

Color look-up
table (LUT)
Y
DAC

RGB VIDEO MEMORY
LT] 0o

] (8 bit planes

of 1,024 bits) -

Figure 11-3 Bit Planes in XGA and 8514/A High-Resolution Modes

© 2003 by CRC Press LLC

Color selection is performed by means of a color look-up table (LUT) associated
with the DAC. The selection mechanism is similar to the one used in VGA mode
number 19, described previously. This means that the 8-bit color code stored in XGA
and 8514/A video memory serves as an index into the color look-up table (see Figure
11-3). For example, the color value 12 in video memory selects LUT register number
12, which in the default setting stores the encoding for bright red. The default set-
ting of the LUT registers can be seen in Table 11-3.

Table 11-3
Default Setting of LUT Registers in XGA and 8514/A
REGISTER 6-BIT COLOR (HEX VALUE)
NUMBER R G B COLOR
0 00 00 00 Black
1 00 00 2A Dark blue
2 00 2A 00 Dark green
3 00 2A 2A Dark cyan
4 2A 00 00 Dark red
5 2A 00 2A Dark magenta
6 2A 15 00 Brown
7 2A 2A 2A Gray
8 15 15 15 Dark gray
9 15 15 3F Light blue
10 15 3F 15 Light green
11 15 3F 3F Light cyan
12 3F 15 15 Light red
13 3F 15 3F Light magenta
14 3F 3F 15 Yellow
15 3F 3F 3F Bright white
16 to 31 00 00 2A Dark blue
32 to 47 00 2A 00 Dark green
48 to 63 00 2A 2A Dark cyan
64 to 79 2A 00 00 Dark red
80 to 95 2A 00 2A Dark magenta
96 to 111 2A 15 00 Brown
112 to 127 2A 2A 2A Gray
128 to 143 15 15 15 Dark gray
144 to 159 15 15 3F Light blue
160 to 175 15 3F 15 Light green
176 to 191 15 3F 3F Light cyan
192 to 207 3F 15 15 Light red
208 to 223 3F 15 3F Light magenta
224 to 239 3F 3F 15 Yellow
240 to 255 3F 3F 3F Bright white

XGALUT program, provided in the book's software package, displays the color in
the XGA palette. The colors displayed by the program match those in Table 11-3. No-
tice that the default setting for the XGA and 8514/A LUT registers represent only 16
color values, which correspond to registers 0 to 15 in Table 11-3. The default colors
encoded in LUT registers 16 to 255 are but a repetition, in groups of 15 registers, of
the encodings in the first 16 LUT registers. Consequently, software products that in-
tend to use the full color range of XGA and 8514/A systems must reset the LUT regis-
ters.

© 2003 by CRC Press LLC

In the documentation for Display Adapter 8514/A IBM recommends an 8-bit color
coding scheme in which 4 bits are assigned to the green color and 2 bits to the red
and blue colors respectively. This scheme is related to the physiology of the human
eye, which is more sensitive to the green area of the spectrum than to the red or blue
areas. One possible mapping, which conforms with the XGA direct color mode, is to
devote bits 0 and 1 to the blue range, bits 2 to 5 to the green range, and bits 6 and 7 to
the red range. This bitmapping is shown in Figure 11-4.

Llels]elo]z[+]o]

u LJ L BLUE

GREEN

RED

Figure 11-4 XGA/8514/A Bit-to-Color Mapping

An alternative mapping scheme can be based on assigning 2 bits to the intensity,
red, green, and blue elements, respectively. A similar double-bit IRGB encoding was
developed in Section 8.3.1 and in Table 8-3 for VGA 256-color mode number 19. The
XGA and 8514/A color registers (color look-up table) consist of 18 bits, 6 bits for
each color (red, green, and blue). The bitmap of the LUT registers is shown in Figure
11-5.

lelselol=f T [l els[ef=]=[T [o]e]s]«]s[=] T]

RED GREEN BLUE

Figure 11-5 Bitmap of XGA and 8514/A Color Registers

Notice that the XGA bitmap for the LUT register uses the six high-order bits while
the VGA bitmap uses the 6 low-order bits (see Figure 3.7). As a result of this differ-
ence the values for a VGA palette must be shifted left 2 bits (multiplied by 4) in or-
der to convert them to the XGA bit range.

11.2.5 Alphanumeric Support

The XGA and 8514/A Adapter Interface provides services for the display of text strings
and of individual characters. The string-oriented services are designated as text func-
tions in the AI documentation while the character-oriented services are called alpha-
numeric functions. The AI text and character display services are necessary since
BIOS and DOS functions for displaying text do not operate on the XGA and the 8514/A
video systems.

Both text and alphanumeric functions in the Al require the use of character fonts,
several of which are part of the XGA and 8514/A software package. These character
fonts are stored in disk files located in the adapter's support diskette. During instal-
lation the font files are moved to a special directory in the user's hard disk drive.
The 8514/A adapter is furnished with three standard fonts while there are four stan-

© 2003 by CRC Press LLC

dard fonts in the XGA diskette. In addition, the XGA diskette contains four supple-
mentary fonts that have been optimized for XGA hardware. Finally, the diskette
furnished with the IBM Personal System/2 Display Adapter 8514/A Adapter Interface
Programmer's Guide (see Section 6.1) contains 22 additional fonts, which are also
compatible with the XGA system.

Fonts for the Al software can be in three different formats: short stroke vector,
single-plane bitmaps, and multiplane bitmaps. The fonts furnished with 8514/A are
of short stroke vector type. The supplementary fonts furnished with the XGA dis-
kette are in single-plane bitmap format. The fonts furnished with the 8514/A Pro-
grammer's Guide diskette are also in the single-plane bitmap format. Multiplane
bitmapped fonts, although documented in the Display Adapter 8514/A Technical Ref-
erence, have not been furnished by IBM for either 8514/A or XGA systems. In the
XGA diskette it is possible to identify the fonts in short stroke vector format by the
extension .SSV, while the single-plane bitmap fonts have the extension .IMG. How-
ever, the 8514/A short stroke vector fonts have the extension .FNT. An additional
complication is that the XGA installation routine changes the extension .SSV for
.FNT. For these reasons it is not always possible to identify the font format by
means of the extension to the filename.

Font File Structure

All font files compatible with the Al software must conform to a specific format and
structure. Each of the standard fonts supplied in the Adapter Interface diskette con-
tains five different character sets, named code pages in the IBM documentation. The
code page codes and corresponding alphabets can be seen in Table 11-4.

Table 11-4

IBM Code Pages
CODE DESIGNATION
437 US/English alphabet
850 Multilingual alphabet
860 Portuguese alphabet
863 Canadian/French alphabet
865 Nordic alphabet

At the start of each font file is a font file header that contains general information
about the number of code pages, the default code pages, and the offset of each char-
acter set within the disk file. The font file header can be seen in Table 11-5.

Each code page (character set) in a font file is preceded by a header block that
contains the necessary data for displaying the encoded characters. The character
set header is called the character set definition block in IBM documentation. The
offset of the character set headers can be obtained from the corresponding entry in
the font file header (see Table 11-5). In this manner, a program can locate the header
block for the first code page (US/English alphabet) by adding the word value at off-
set 10 of the font file header (see Table 11-5) to the offset of the start of the disk file.

© 2003 by CRC Press LLC

Table 11-5
Adapter Interface Font File Header

OFFSET UNIT CONTENTS
0 word Number of code pages in the font file
2 word Number of the default code page (range 0 to 4)
4 word Number of alternate default code page (range 0 to 4)
6 doubleword 4-character id string for the first code page ('437'0)
10 word Offset within the disk file of the first code page
12 doubleword 4-character id string for the second code page ('850'0)
16 word Offset within the disk file of the second code page
18 doubleword 4-character id string for the third code page ('860'0)
22 word Offset within the disk file of the third code page
24 doubleword 4-character id string for the fourth code page ('863'0)
28 word Offset within the disk file of the fourth code page
30 doubleword 4-character id string for the fifth code page ('865'0)
34 word Offset within the disk file of the fifth code page

Table 11-6, on the following page, shows the data encoded in the character set
header. Notice that the byte at offset 1 of the character set header encodes the im-
age format as bitmapped (value 0) or as short stroke vector type (value 1). If the im-
age is in bitmapped format, then bit 14 of the word at offset 12 determines if the
image is single or multiplane. The byte at offset 7 of the character set header mea-
sures the number of horizontal pixels in the character cell while the byte at offset 8
measures its vertical dimension. The cell size, which is stored at the word at offset
10, represents the number of bytes used in storing each character encoded in bitmap
format. This value is obtained by multiplying the pixel width (offset 7) by the pixel
height (offset 8) and dividing the product by 8.

The index table, which can be located by means of the address stored at offset 14
of the character set header, contains the offset of the character definitions for each
individual character. For single-plane fonts the start location of the character defini-
tion table can be found from the address stored at offset 24. Therefore, a program
can locate the bitmap for a particular character by adding its offset in the table, ob-
tained from the index table, to the offset of the start of the character definition ta-
ble. The code for first and last characters, at offsets 22 and 23 of the character set
header, serves to delimit the character range of the font. For example, if a font does
not start with character code 1, the value at offset 22 in the character set header
must be used to scale the character codes into the index table.

Multiplane fonts consist of three monochrome images, whose bitmaps can be lo-
cated by means of the addresses stored at offsets 24, 30, and 36 of the character set
header (see Table 11-6). To the present date, multiplane image fonts have not been
furnished by IBM. Single-plane image fonts are encoded in a single bitmap, which is
located at the address stored at offset 24 of the character set header (see Table
11-6). The character's image is encoded in a bit-to-pixel scheme. The character's
foreground and background colors are determined by means of foreground color
and background color settings described later in this chapter.

© 2003 by CRC Press LLC

Table 11-6
Adapter Interface Character Set Header

OFFSET UNIT CONTENTS
0 byte Reserved
1 byte Image formated as follows:

0 = single or multiplane image
3 = short stroke vector image

26 Reserved
7 byte Pixel width of character cell
8 byte Pixel height of character cell
9 byte Reserved
10-11 word Cell size (in bytes per character)
12-13 word Character image format:
Bit 14:

0 = single plane image
1 = multiplane image
Bit 13:
0 = not proportionally spaced
1 = proportionally spaced
All other bits are reserved (0)

14-17 doubleword Offset:segment of index table

18-21 doubleword Offset:segment of porportional spacing table

22 byte Code for first character

23 byte Code for last character

24-27 doubleword Offset:segment of first characterdefinition table
(all font types)

28-29 Reserved

30-33 doubleword Offset:segment of second character definition
table (multiplane fonts)

34-35 Reserved

36-39 doubleword Offset:segment of third character definition

table (multiplane fonts)

The location of the character definition table for short stroke vector fonts is the
same as for single stroke, bitmapped fonts. However, short stroke vector characters
are encoded in the form of drawing orders, each of which is represented in a 1-byte
command. The character drawings are made up of a series of straight lines (vectors)
that can be no longer than 15 pixels. Each vector must be drawn at an angle that is a
multiple of 45 degrees. Therefore the lines must be either vertical, horizontal, or di-
agonal. Figure 11-6 shows the bitmap of the short stroke vector commands.

The vector direction field, marked with the letters d in Figure 11-6, determines
the direction and angle of each vector. The reference point is at the origin of the Car-
tesian plane and the angle is measured in a counterclockwise direction. In this man-
ner the value 010 corresponds with a vector drawn in the vertical direction,
downward from the start point. The field marked with the letter m in Figure 11-6 de-
termines if the vector is a draw or move operation. We have used the plotter termi-
nology of pen up and pen down to illustrate this function. If a vector is defined as a
pen up vector the current position is changed but no drawing takes place. If the m
bit is set (pen down), then the vector command draws a line on the video screen.
The length of the vector is determined by the 4 bits in the field marked with the let-
ters 1 in Figure 11-6. A 0000 value in this field is interpreted as no operation. The

© 2003 by CRC Press LLC

maximum length of a vector corresponds with the field value of 1111, which is equiv-
alent to 15 pixels. The current drawing position is moved one pixel further than the
value encoded in the I field.

Figure 11-6 Bitmap of the Short Stroke Vector Command

d ddm 1 1 1 1

716(5|4)13|2|1]|0

LENGTH OF VECTOR (in pixels)
0000 = no operation
range is 1 to 15 pixels

PEN UP / PEN DOWN CONTROL
1 = pen down (draw)
0 = pen up (move)

VECTOR DIRECTION (counter clockwise)

000 = O degrees 001 = 45 degrees

010 = 90 degrees 011 = 135 degrees
100 = 180 degrees 101 = 225 degrees
110 = 270 degrees 111 = 315 degrees

11.3 Communicating with the Al

The Adapter Interface software was conceived as a layer of software services for
initializing, configuring, and programming the 8514/A graphics system. XGA is fur-
nished with a compatible set of services, which are a superset of those furnished for
8514/A. In both cases, 8514/A and XGA, the programming interface documentation as-
sumes that programming is in C language. Access methods from other languages have
not been described to this date. One difference between the Al software, as furnished
for 8514/A and XGA, is that the former is a Terminate and Stay Resident (TSR) program
while the latter is an MS-DOS device driver of the .SYS file type.

The Al installation selects one of two versions of the software according to the
amount of memory in the graphics system. Once installed, the address of the Al han-
dler is stored at interrupt vector 7FH. The Al services are accessed by means of an
INT 7FH instruction or by a far call to the address of the service routine.

11.3.1 Interfacing with the Al

Before an application can start using the Al services it must first certify that the soft-
ware is correctly installed and obtain the address of the service routine. Since inter-
rupt 7FH has been documented as a reserved vector in IBM literature, the application
can assume, with relative certainty, that the value stored at this vector is zero if no Al
has been installed. However, this assumption risks that a non-conforming program
has improperly used the vector for its own purposes. In which case the vector could
store a non-zero value, while no Al is present.

© 2003 by CRC Press LLC

The documented access mechanism for the Al services is by means of a far call. It
appears that the Al is preceded by a jump table to each of its service routines and
that each address in the jump table is a 4-byte far pointer. Therefore the calling pro-
gram must multiply the Al service request by four to obtain the offset in the jump ta-
ble. This jump table offset is placed in the SI register, the offset element of the
address of the Al service routine is in BX, and its segment in ES. Once these regis-
ters are set up, the far call to a particular Al service can be performed by means of
the instruction

CALL DWORD PTR ES: [BX+ST]

Notice that the offset element of the address is determined by the sum of the
pointer register (BX) and the offset of the service routine in the jump table (SI).

C Language Support

Two support files and a demonstration program for the Al are included in both the
8514/A and the XGA diskettes furnished with the adapters. The Clanguage header files
are named AFIDATA.H and IBMAFI.H. In addition, the assembly language source file
named CALLAFI.ASM contains three public procedures for initializing and calling the
Al The object file CALLAFI.OBJ must be linked with the application's C language
modules in order to access the AI. The header files and the object module
CALLAFI.OBJ provide a convenient interface with the Al for C language applications.

Al Entry Points

We saw that an application accesses the Al services by means of a jump table of service
numbers. The Clanguage support software provided with XGA and 8514/A contains an
ordered list of the code names of the services and their associated entry points. In this
manner an application coded in C language need only reference the service name and
the support software will calculate the routine's entry point from the furnished table.
Table 11-7 lists the service routine code names and entry point numbers for the Al ser-
vices available in both 8514/A and XGA systems.

Table 11-7

8514/A and XGA Adapter Interface Services
NAME ENTRY POINT NUMBER DESCRIPTION
HLINE 0 Draw line
HCLINE 1 Draw line at current point
HRLINE 2 Draw line from start point
HCRLINE 3 Draw line from start point
HSCP 4 Set current point
HBAR 5 Begin area for fill operation
HEAR 6 End area for fill operation
HSCOL 7 Set current color
HSOPEN 8 Open adapter for Al operations
HSMX 9 Set mix
HSBCOL 10 Set background color

(continues)
Table 11-7

8514/A and XGA Adapter Interface Services (continued)

© 2003 by CRC Press LLC

NAME ENTRY POINT NUMBER DESCRIPTION

HSLT 11 Set line type

HSLW 12 Set line width

HEGS 13 Erase graphics screen

HSGQ 14 Set graphics quality

HSCMP 15 Set color compare register
HINT 16 Synchronize with vertical retrace
HSPATTO 17 Set pattern reference

HSPATT 18 Set pattern shape

HLDPAL 19 Load palette

HSHS 20 Set scissor

HBBW 21 Write bit block image data
HCBBW 22 Write bit block at current point
HBBR 23 Read bit block

HBBCHN 24 Chain bit block data

HBBC 25 Copy bit block

HSCOORD 26 Set coordinate type
HQCOORD 27 Query coordinate type
HSMODE 28 Set adapter mode

HQMODE 29 Query adapter mode
HQMODES 30 Query adapter modes

HQDPS 31 Query drawing process state
HRECT 32 Fill rectangle

HSBP 33 Set bit plane controls
HCLOSE 34 Close adapter

HESC 35 Escape (terminate processing)
HXLATE 36 Assign multiplane color tables
HSCS 37 Select character set

HCHST 38 Display character string
HCCHSET 39 Display string at current point
ABLOCKMFI 40 Display character block (MFI mode)
ABLOCKCGA 41 Display character block (CGA mode)
AERASE 42 Erase character rectangle
ASCROLL 43 Scroll character rectangle
ACURSOR 44 Set current cursor position
ASCUR 45 Set cursor shape

ASFONT 46 Select character set

AXLATE 47 Assign color index

HINIT 48 Initialize adapter state

HSYNC 49 Synchronize adapter with task
HMRK 50 Display marker

HCMRK 51 Display marker at current point
HSMARK 52 Set marker shape

HSLPC 53 Save linepattern count

HRLPC 54 Restore saved linepattern count
HQCP 55 Query current point

HQDFPAL 56 Query default palette

HSPAL 57 Save palette

HRPAL 58 Restore pallete

HSAFP 59 Set area fill plane

ASCELL 60 Set cell size

The XGA adapter contains 18 additional Al services that are not available in
8514/A. These XGA proprietary services are listed in Table 11-8.

Table 11-8
XGA Adapter Interface Services

© 2003 by CRC Press LLC

NAME ENTRY POINT NUMBER DESCRIPTION

ASGO 61 Set alpha grid origin

HDLINE 62 Disjoint line at point

---------- 63

HPEL 64 Write pixel string

HRPEL 65 Read pixel string

HPSTEP 66 Plot and step

HCPSTEP 67 Plot and step at current position
HRSTEP 68 Read and step

HSBMAP 69 Set bitmap attributes

HQBMAP 70 Query bitmap attributes

HBMC 71 Bitmap copy

HSDW 72 Set display window

HSPRITE 73 Sprite at given position
HSSPRITE 74 Set sprite shape

HRWVEC 75 Read/write vector

----------- 76

----------- 77

HSFPAL 78 Save full palette

HRFPAL 79 Restore full palette

HQDEVICE 80 Query device specific (no action)

Obtaining the Al Address

The following procedure can be used to test the Al initialization and, if the service soft-
ware is installed, to acquire the address of the Al service routines.

AT_VECTOR PROC FAR

; Procedure to obtain the address of the XGA and 8514/A Adapter
; Interface. This procedure must be called before calls are made
; to the Adapter Interface services

; On entry:

; nothing

; On exit:

: carry set if no AI installed

; carry clear if AI present

; CX => segment of AI link table

; DX => offset of AI link table

.**********************|
7

; get vector 7FH |
;**********************|

; Use MS DOS service number 53, interrupt 21H, to obtain the
; vector for the XGA and 8514-A AI interrupt (7FH)

MOV AH, 53 ; MS DOS service number
MOV AL, 7FH ; AI interrupt
INT 21H ; MS DOS interrupt

; ES => segment of interrupt handler
; BX => offset of handler

.**********************|
7

; test for no AI |
;**********************|

; The code assumes that the vector at INT 7FH will be 0000:0000
; 1f the AI is not initialized

MOV AX,ES ; Segment to AX
OR AX,BX ; OR segment and offset
JINZ OK_ATI ; Go 1f address not 0000:0000

.**********************|
7

© 2003 by CRC Press LLC

; ERROR - no AI |
;**********************|
NO_AT:
STC ; Error return
RET

.**********************|
7

; get AI address |
;**********************|

; Service number 0105H, interrupt 7FH, returns the address of the
; XGA/8514-A entry point

OK_AT:
MOV AX,0105H ; Service request number
INT 7FH ; in XGA AI interrupt
JNC OK_ATI ; Go 1f no error code returned
JMP NO_ATI ; Take error exit

; At this point CX:DX holds the address of the XGA and 8514/A
; Adapter Interface handler (in segment:offset form)

CLC ; No error

RET
ATI_VECTOR ENDP

Typically, the application calling the AI_VECTOR procedure will store the ad-
dress of the service routine in its own data space. For example, a doubleword stor-
age can be reserved for the logical address of the service routine, in this manner:

AI_ADD DD 0 ; Doubleword storage for address
; of Adapter Interface services

After a call to the AI_VECTOR procedure the code can proceed as follows:

;**********************|
; get AI address |
;**********************|
; The procedure AI_VECTOR obtains the segment:offset address of
; the AI handler
CALL ATI_VECTOR ; Local procedure
JNC OK_VECTOR ; Go if no carry
; If execution reaches this point there is no valid AI installed
; and an error exit should take place

OK_VECTOR:

; Store segment and offset of AI handler
MOV WORD PTR AI_ADD, DX ; Store offset of address
MOV WORD PTR AI_ADD+2,CX ; and segment

; AI entry point is now stored in a DS variable

Using the Al Call Mechanism

Once the application has stored the address of the Al service routine in a data variable,
it can access any of its services. The access mechanism requires the entry point num-
ber (see Table 11-7 and 6.8) for the desired service as well as a pointer to a parameter
block containing the datareceived and passed by the service routine. Notice that a few
Al services do not require or return user data and, in these cases, the parameter block
is a dummy value. The following procedure, named AI_SERVICE, performs the arith-
metic operations required to obtain the offset of the desired routine in the Al jump ta-

© 2003 by CRC Press LLC

ble, sets up the registers for the far call to the service routine, and performs some
housekeeping operations.

AT_SERVICE PROC NEAR
Procedure to access the services in the XGA and 8514/A Adapter
Interface software

AX = service number

; On entry:
; DS:BX = address of parameter block

PUSH BP ; Save base pointer
MOV BP, SP ; Set BP to stack
; Push address of caller's parameter block
PUSH DS
PUSH BX ; the offset
; Multiply by 4 to form offset as required by AI
SHL AX,1 ; AX times 2
SHL AX,1 ; again
MOV SI,AX ; Offset to SI
LES BX,AI_ADD ; Entry block address (ES:BX)
CALL DWORD PTR ES: [BX+SI] ; Call AI service
POP BP ; Restore caller's BP
RET
ATI_SERVICE ENDP

The parameter block passed by the caller to the Al service is a data structure
whose size and contents vary in each service. One common element in all parameter
blocks is that the first byte serves to determine the size of the block. In this manner
the word at offset 0 of the parameter block indicates the byte size of the remainder
of the block. Table 11-9 shows the structure of the Al parameter block.

Table 11-9
Structure of the Adapter Interface Parameter Block

OFFSET DATA SIZE CONTENTS
0 word Byte length of parameter block
2 byte, word, First data item
doubleword,
. or string
length 2 Last data item

Al Initialization Operations

Before the general Al services can be used by an application the adapter must be ini-
tialized by presetting it to a known state. Two Al services, named HOPEN and HINIT,
are provided for this purpose. The HOPEN service (entry point number 8 in Table 11-7)
presets the adapter's control flags and selects an extended function mode. If the
adapter is successfully opened, the Al call clears a field in the parameter block. A
non-zero value in this field indicates that a hardware mismatch is detected. The fol-
lowing code fragment shows the data segment setup of the parameter block of the
HOPEN service as well as a call to this Al service.

DATA SEGMENT

© 2003 by CRC Press LLC

HOPEN_DATA DWW 3 ; Length of data block

INIT_FLAGS DB 0 ;76543 2 1 0 <= flags

2

il | Reserved

; | |_ Do not load default

; palette

; |___ Do not clear bit planes
AF_MODE DB 0 ; Advanced function mode

; No. Pixels Text

; 00 1024x768 85x38

; 01 640x480 80x34

; 02 1024x768 128x54

; 03 1024x768 146x51
RET_STATUS DB 0 ; Status returned by AI call

; 0 if initialization successful
; Not 0 if initialization failed

DATA ENDS

CODE SEGMENT

;**********************|
; initialize AI |
;**********************|
; Call HOPEN service (enable adapter)
MOV INIT_FLAGS, 0 ; Set initialization flags
; to clear memory and load
; default palette

MOV AF_MODE, 0 ; Set 1024x768 mode number 0
MOV AX, 8 ; Code number for this service
LEA BX, HOPEN_DATA ; Pointer to parameter block
CALL AT_SERVICE ; Procedure to perform AI call

; The RET_STATUS field is filled by the service call
; This field is not zero if an error was detected
CMP RET_STATUS, 0 ; Not zero if open error
JE OK_OPEN ; Go 1f no error
; At this point an error was detected during HOPEN function

; At this point adapter was successfully opened
OK_OPEN:

CODE ENDS

Once the adapter has been successfully opened the program must inform the Al
of the location (in the application's memory space) of a special task state buffer.
The main purpose of the task state buffer is to assist multitasking by providing a re-
cord of the adapter's state for each concurrent task. When a task is restored to the
foreground, the task state buffer provides to the Al software all the necessary infor-
mation for restoring the adapter to its previous state. Although DOS programs have
absolute control of the machine's hardware, they must also allocate a task state

© 2003 by CRC Press LLC

buffer before beginning Al operations. Table 11-10 lists the data items stored in the
task state buffer as well as their initial settings.

Table 11-10
Task State Buffer Data after Initialization

ITEM

VALUE

Current point
Foreground color
Background color
Foreground mix
Background mix
Comparison color
Comparison logic
Line type

User line

Line width

Line pattern
Saved line pattern
Area pattern
Pattern origin
Text control
Marker shape
Scissors
Graphics quality
Plane mask
Color index table

Coordinates 0,0

White (all bits are 1)

Black (all bits are 0)
Destination = source (overpaint mode)
Leave alone

Not initialized

False

Solid

Not initialized

1 pixel

Position not initialized
Position not initialized

Solid

Coordinates 0,0

Block pointer not initialized
Not intialized

Clipping to full screen

High precision

All planes enabled

8 entries set linearly (0 to 7)

Alphanumeric cursor Top left of screen (0,0)

Cursor definition Invisible
Translate table 16 values for foreground and background
Character set Not selected

In order to allocate space for the task state buffer an application must know its
size, but the length of the task state buffer is not hard-coded in the adapter's soft-
ware. However, an application can use the HQDPS function (listed in Table 11-7 and
described later in the chapter) in order to determine the memory space required for
this data structure. Once the size of the task state buffer is known, the code can dy-
namically allocate sufficient memory for it. An alternative, although not as elegant,
method is to assume that the task state buffer for DOS is 360 bytes and allocate this
amount of space. In fact, the task state buffer for XGA systems is 341 bytes, so as-
signing 360 bytes leaves a 19-byte safety margin.

Space for the task state buffer is allocated and its values initialized by means of
the HINIT adapter function. The call requires the segment address of the task state
buffer, while it assumes that the buffer is at offset 0000 in this segment. This charac-
teristic of the HINIT service suggests that the task state buffer be placed in a sepa-
rate segment. This assignation has the added advantage of not using the
application's data space for this purpose. In DOS the assignment of buffer space and
the HINIT call can be performed as in the following code fragment

A R R R R R R R
7

segment for task state data
R EEEEEEESEEEEEESESESEEEEEESESESEEEEEEESEESEEEEEESEEEEEEEEE SIS
H

TASK_STATE SEGMENT

© 2003 by CRC Press LLC

.**********************|
7

; AI state buffer |

;**********************|

STATE_BUF DB 360 DUP (00H)

TASK_STATE ENDS

5o ok Kk ok ok ok kK ok K ok ok kK K ok ok kK K o ok kK ok Kk ok kR ok K ok ok kR Kk K ok kR kK K K ok kR kK K ok

; data segment
PR R R I R I I I R I A I I I I I R R I R I I I R I R I I R I I R I
i

DATA SEGMENT

HINIT_DATA DWW 2 ; Length of data block

BUF_SEG Dw 0 ; Segment of task state buffer
DATA ENDS

PR I I I R I
7

; code segment
PR I I I R I I R I R R I I I I R S R S I A I R I I I I I R I I R A I 2 I R I I I R I
;

CODE SEGMENT

; Call HINIT (Initialize adapter state)

MOV AX, TASK_STATE ; Segment for task state buffer
MOV BUF_SEG, AX ; Store segment in parameter

; block
MOV AX, 48 ; Code number for this service
LEA BX,HINIT_DATA ; Pointer to data block
CALL AT_SERVICE ; Procedure to perform AI call

; No information is returned by HINIT. Software must assume that
; task state buffer was successfully allocated and initialized

The program named AI_DEMO.ASM, furnished in the book's software package, is
a demonstration of some elementary Al functions. The code performs Al initializa-
tion and setup following a method similar to the one described in the present sec-
tion. The source file named AI_INIT.ASM is an initialization template that performs
the conventional AI operations usually required to start programming XGA or
8514/A systems. The programmer can use AI_INIT.ASM as a coding template for pro-
grams that use Al operations.

11.3.2 Al Data Conventions

Many Adapter Interface functions operate on data passed by the caller while some
functions return information. In the previous section we discussed (see Table 11-9)
the structure of the parameter block whose address is passed to the Al by the calling
program. The calling program uses this parameter block to transfer data to and from
the AI. However, notice that not all Al functions operate on dataitems. Some functions

© 2003 by CRC Press LLC

(such as HEGS and HCLOSE) require no parameters and return no data to the calling
program.

The data items operated on by the Al can be classified into three general groups:
numeric data, screen data, and address data.

8514/A numeric data is defined in three integer formats: byte, word, and
doubleword. The IBM XGA documentation adds quadword to this list. Byte ordering
of numeric data is according to the Intel convention; that is, the least significant
byte is located at the lowest numbered memory address. Usually, the programmer
need not be concerned with this matter since the assembler or compiler will handle
multi-byte ordering automatically. Bit numbering is also in the conventional format,
that is the least-significant-bit is assigned the number 0.

Screen data refers to coordinates and to dimensions. Absolute coordinates are
stored in a word field, in two's complement binary format. Relative coordinates are
stored in byte fields, also in two's complement binary form. Screen dimensions are
defined in the Cartesian plane: the x coordinate represents the horizontal value and
the y coordinate the vertical value. The origin is located at the top-left screen cor-
ner. In the 8514/A the valid coordinate range is from -512 to +1535 in the x and y
planes, respectively, while in XGA it is from -2048 to +6145 for both Cartesian coor-
dinates. The viewport (video buffer) is in one of two modes in both systems: in low
resolution mode the x coordinate is in the range 0 to 639 and the y coordinate in the
range 0 to 479. In high-resolution mode the x coordinate is in the range 0 to 1023 and
the y coordinate in the range 0 to 767. The image buffer and viewports for XGA sys-
tems are shown in Figure 11-7.

Figure 11-7 XGA System Coordinate Range and Viewport

Address data is in conventional Intel logical address format, that is, in seg-
ment:offset form. If offset and segment are stored separately in word-size data
items, the offset element precedes the segment element, as in the following parame-
ter block for the HSCS (select character set) command:

X = -2048 XGA adapter coordinate range
y =-2048
x=0
$
e < XGA high resolution
: | viewport
o ¥l x=1028
y =767
X = +6143
y = +6143
HSCS_DATA DWW 4 ; Length of data block

© 2003 by CRC Press LLC

FONT_OFF DWW 0 ; Offset of loaded font
FONT_SEG DWW 0 ; Segment of loaded font

Address data does not always require a logical address. For example, in the pa-
rameter block for the HINIT function call only the segment element of the address is
required, as shown in the following code fragment:

HINIT_DATA DW 2 ; Length of data block
BUF_SEG DW 0 ; Segment of task state buffer

11.4 Al Concepts

Before venturing into the details of Al programming it is convenient to gain familiarity
with some graphics concepts often mentioned in the adapter's literature. Most of
these concepts are taken from the general terminology of computer graphics, al-
though, in a few cases, IBM documentation varies from the more generally accepted
terms.

11.4.1 Pixel Attributes

A pixel's color is primarily determined by the value stored in the memory maps
and by the setting of the LUT registers, as shown in Figure 11-3 and discussed in sec-
tion 11.2.4. By means of the Al services an application can access the color value
stored in the bit planes through the HSCOL (set current color) and HSBCOL (set
background color) commands. Generally, a 1-bit in a draw order is displayed using
the current foreground color while a 0-bit is displayed using the current background
color. In text operations the background color refers to the rectangular pixel block
on which text characters are drawn, while the foreground color refers to the text
characters themselves.

Mixes

XGA and 8514/A system provide a second level of control over pixel display by means
of amechanism called mixes. Mixes are logical or mathematical operations performed
between a new color value and the one already stored in display memory. The mix
mode is selected independently for the foreground and background colors.

Color Compares

The color compare mechanism in the XGA and 8514/A Al provides a means by which
the programmer can exclude specific bit planes from graphics operations. Compari-
son logic allows operations of equal-to, less-than, greater-than,
greater-than-or-equal-to, and less-than-or-equal-to. When the comparison evaluates to
TRUE the bit plane data is unmodified. When the comparison evaluates to FALSE,
then the active mix operation is allowed to take place. The color compare function is
selected by means of the HSCMP (set color compare register). Notice that the color
compare function is not active during the Al alphanumeric services.

Bit Plane Masking

In addition to the controls offered by foreground and background colors, mix mode,
and the color compare setting, an application can use masking to selectively enable
and disable individual bit planes. The bit plane masking function allows separate con-
trol for graphics and alphanumeric operations. The masking function takes place be-

© 2003 by CRC Press LLC

fore compares and mixes are applied; therefore the mask can be used to exclude
compare and mix operations. Bit plane masking is performed by means of the HSBP
(set bit plane control) function.

11.4.2 Scissoring

The Al software provides a function by which an application can limit graphics opera-
tions to a rectangular area within the viewport. This function, called scissoring in the
IBM documentation, is useful in developing programs that use screen windows, since
it inhibits operations outside a predefined screen rectangle. During adapter
initializing the scissoring rectangle is set to the size of the viewport, but an application
can redefine it by means of the HSHS (set scissor) function.

11.4.3 Absolute and Current Screen Positions

Several Al graphics and text functions are based on absolute screen locations. For ex-
ample, the HLINE function (see Section 11.5.2) can be used to draw one or more
straight lines starting at a given screen coordinate point. On the other hand, other Al
graphics and text functions operate from a current screen position which is main-
tained by the adapter. For example, the HCLINE function can be used to draw one or
more straight line segments starting at the current position. In this function the cur-
rent screen position is automatically updated to the end point of the last line segment.
The current screen position can be set by means of the HSCP (set current position)
function, described in Section 11.5.2.

11.4.4 Polymarkers

A marker, in the context of the XGA and 8514/A Al programming, is abitmapped object
that can be aslarge as 255 by 255 pixels. The Al software allows displaying one or more
markers at the predefined absolute coordinates or at the current display position.
Since more than one marker can be displayed by the same command, the Al function
should be classified as a polymarker operation.

The marker image is a rectangular, unpadded bitmap. If defined as a monochrome
marker it is displayed using the current foreground color and according to the se-
lected mix. If the marker is defined as a multicolor one, it is displayed using a color
table supplied by the caller.

In 8514/A the multicolor table consists of a 1-byte color code for each bit in the
marker bitmap. In XGA the program can select a color table in byte-per-pixel mode
(compatible with 8514/A) or in packed format. In the packed format the mapping of
the color table depends on the system's resolution. For example, if the pixel color is
determined by 4 video memory bits, then the color table consists of a series of
packed, 4-bit color codes. Notice that the packed format is not supported in the
8514/A.

The current marker is defined by means of the HSMARK (set marker shape) func-
tion. One or more markers are displayed at absolute screen positions by means of
the HMRK (display marker) function. The HCMRK (marker at current point) func-
tion is used to display one or more markers at the current position. These functions
are described in Section 11.5.4.

© 2003 by CRC Press LLC

11.4.5 Line Widths and Types

The XGA and 8514/A Al allow selecting the line width and type to be used in line draw-
ing operations. Line width options are of one or three pixels. Three-pixel-wide lines
are drawn as three separate lines, one pixel apart. There are eight built-in line types in
the Al software: dotted, short dashed, dash-dot, double dot, long dashed,
dash-double-dot, solid, and invisible lines. In addition, the XGA Al offers a second
dotted line type not available in 8514/A. An application can also define its own custom-
ized line type.

Each line type consists of a repeating pattern of dots and dashes. While drawing a
non-continuous line, the Al software keeps track of the current position in the line
pattern. Although most line drawing functions reset the pattern counter at the start
of a line, an application can override this mode of operation by saving and restoring
the current position in the line pattern. The Al function named HSLPC (save line pat-
tern count) and HRLPC (restore line pattern count) are used for this purpose. These
functions are particularly useful when a non-continuous line must straddle a scissor
boundary.

The line type selection option in the Al simplifies considerably the development
of drafting and computer-assisted design software. On the other hand, the line width
selection option is often considered too limited to be of practical use. Line width se-
lection is performed by means of the HSLW (select line width) function while line
type is chosen by the HSLT (select line type) function.

11.4.6 Bit Block Operations

Graphics programs often operate on rectangular blocks of bitmapped data called bit
blocks. The manipulations of these blocks are called bit block transfers; the expres-
sion is often shortened to bitBLTS (pronounced bit blits). BitBLT operations often re-
fer to a source block, a destination block, and to the logical operation to be performed
in combining them into a result block. In the Al the logical operation is selected by
means of the mix (see Section 11.4.1).

BitBLTs are one of the most powerful graphics tools in the Al The bit block trans-
fer operations can take place from the application's memory space to video memory,
from video memory to the application's memory space, and from video memory to
video memory. When the bitmapped image stored by the applications is transferred
to the adapter's video memory we speak of a bitBLT write. When the data stored in
the adapter's video RAM is moved to the application's memory we speak of a bitBLT
read. Operations by which data are moved within the application's video space are
called a bitBLT copy.

BitBLTs operate on a rectangular area. They proceed from the top-left corner of
the rectangle, left-to-right and top-to-bottom. Due to this mode of operations they
are sometimes called raster functions.

BitBLT Copy

An AT bitBLT copy operation produces a second screen image based on the pixel data
stored in a screen rectangle defined by the caller. The second image is displayed ac-

© 2003 by CRC Press LLC

cording to the current mix and comparison and clipped according to the scissoring. If
the two images overlap, the Al correctly places the new image overlapping the existing
one. The copy operation can be performed in one of two modes. In the single-plane
mode the application selects a single image plane which is copied by the Al service. In
the multiplane mode the entire image is copied to the new position.

The AI function for performing a bitBLT copy operation is named HBBC (bitBLT
copy). In this function the caller must provide a parameter block containing the de-
sired mode (single-plane or multiplane), the dimensions of the bitBLT rectangle, the
selected bit plane if the single-plane mode is active, and the coordinates of the
source and destination areas.

BitBLT Write

An application can display a bitmapped image stored in its own memory space by per-
forming a bitBLT write operation. The screen image is displayed according to the cur-
rent mix and comparison values and is clipped according to the scissoring. In XGA and
8514/A systems the write operation can take place in one of two modes. If the mono-
chrome mode is selected, the image bitmap is displayed using the current foreground
color for the 1-bits and the current background color for the 0-bits. In this case the
bitmap is assumed to be encoded in a 1-bit per pixel format.

If the color mode is selected then the Al assumes that the image is encoded in a
byte-per-pixel format. In other words, the caller provides an image map in which
each screen pixel is represented by the color code stored in 1 data byte. The actual
color displayed depends on the present setting of the LUT registers and the number
of active bit planes. In addition to the monochrome and color modes, the XGA Al of-
fers an additional packed bits mode. In the packed mode the number of bits per
pixel depends on the current display mode. For example, if the adapter is in a 4-bit
plane display mode, then the Al assumes that the caller's image data is encoded in a
one-nibble-per-pixel format. The packed mode is not available in 8514/A systems.

Three different Al functions are related to bitBLT write operations. The function
named HBBW (bitBLT write) is used to transfer image data to a screen location
specified by the caller. HCBBW (bitBLT write at current position) transfers the im-
age data to the current position. Both of these functions are of preparatory nature.
The actual display of the bit block requires the use of an Al service named HBBCHN
(bitBLT chain). This command includes the address of the bitmap in the applica-
tion's memory space as well as its dimensions. The use of HBBW, HCBBW, and
HBBCHN commands is illustrated in Section 11.5.4.

BitBLT Read

An application can also use the Al bitBLT services to move a video image to its own
memory space. In this type of operation, called a bitBLT read, the application defines
the coordinates of a screen rectangle, as well as the location, in its application's mem-
ory space, of abuffer for storing the video data. The Al then makes a copy of the screen
image in the application's RAM. The size of the image rectangle can be as small as a sin-
gle pixel or as large as the entire screen.

© 2003 by CRC Press LLC

As is the case in the bitBLT write operation, XGA and 8514/A systems allow
bitBLT reads in one of two modes. If the monochrome mode is selected, the image
is read from the bit plane specified by the caller. In this case the application must
provide a storage space of one bit per screen pixel. If the color mode is selected the
Al will read all 8 bit planes and store a byte-per-pixel color code in the buffer pro-
vided by the caller. In addition to the monochrome and color modes, the XGA Al of-
fers an additional packed bits mode, similar to the one described for the bitBLT
write operation. The packed mode is not available in 8514/A systems.

Two Al functions are related to bitBLT read operations. The function named
HBBR (bitBLT read) is used to transfer video image data to a buffer supplied by the
caller. This Al function is of preparatory nature. The actual storage of bit block data
requires the use of the HBBCHN (bitBLT chain) Al service. The HBBCHN command
provides the address of the storage buffer in the application's memory space as well
as its dimensions.

11.5 Details of Al Programming

In the present section we offer examples of Al programming. The examples are pre-
sented in the form of assembly language code fragments with the corresponding com-
ments and explanations. We have mentioned that the IBM AI documentation uses C
language almost exclusively. In our examples we have selected assembly language in-
stead in order to provide an alternative programming medium, and also because we
feel that examples in assembly language provide clearer illustration of data structure
and of the machine hardware operations than do examples in high level languages.
Once areader understands the fundamental programming elements in an Al function,
this knowledge can be easily applied in using the function from any particular pro-
gramming language.

We remind the reader that the documentation published by IBM for XGA and
8514/A (see Section 11.2) contains descriptions, examples, and utility programs that
are practically indispensable to the Al programmer. The book by Ritcher and Smith,
titled Graphics Programming for the 8514/A (see Bibliography) will also be useful.
In addition, the programs named AI_DEMO and AI_LUT included in the software
furnished with this book include demonstration of Al programming examples.

11.5.1 Initialization and Control Functions

The fundamental initialization operations for the Al as well as the access mechanism
for using the AI commands were described in Section 11.3. The following code frag-
ment shows the typical sequence of Al commands that an application would execute
in order to establish communications with the adapter software. In this example we
assume that the access mechanism is by the procedure named AI_SERVICE described
inSection 11.3.1. The codeis virtually identical to the one in the AI_INIT.ASM template
furnished in the book's software package.

A R
7

stack segment
PR I I I I I R I I I I R R S I A R S I I I R I I R I I R A R I I R I I R I A I
i

STACK SEGMENT stack

© 2003 by CRC Press LLC

DB 0400H DUP ('?") ; Default stack is 1K
STACK ENDS
;**

; segment for task state data
PR R I I I I R I I I R A R A I S I I I S I S I A S R I R S S S S I I A A I S R I I I I S
i

TASK SEGMENT

.**********************|
7

; AI state buffer |
;**********************|

STATE_BUF DB 360 DUP (00H)
TASK ENDS
5% KK ok ok ok ok ok kK ok K ok ok ok ok ok Kk ok K ok ok ok ok ok Kk ok kK ok ok ok ok ok ko ok kK ok ok ok ok ok Kk ok kK ok ok K ok ok Kk ok kK

; data segment
R EEEESE SRS ESEEEEERESEEEEEEREESESESEEEEEEESESESEEEESESEEEEE SIS SRS
H

DATA SEGMENT

.**********************|
7

; AI list address |

;**********************|

ATI_ADD DD 0 ; Doubleword storage for address
; of Adapter Interface services

7

HQDPS_DATA DW 6 ; Length of data block
BUF_SIZE DW 0 ; Buffer size
STK_SIZE DW 0 ; Stack usage, in bytes
PAL_SIZE DW 0 ; Palette buffer size, in bytes
HOPEN_DATA DW 3 ; Length of data block
INIT_FLAGS DB 0 ;76543 2 1 0 <= flags

N

;o |l Reserved

; | |_ Do not load palette

; |___ Do not clear bit planes
AF_MODE DB 0 ; Advanced function mode

; No. Pixels Text

; 00 1024x768 85x38

; 01 640x480 80x34

; 02 1024x768 128x54

; 03 1024x768 146x51
RET_FLAGS DB 0 ; Status

; 0 1f initialization successful

; Not 0 if initialization failed
HINIT_DATA DW 2 ; Length of data block
BUF_SEG DW 0 ; Segment of AI buffer
HCLOSE_DATA DW 0 ; Length field is zero for HCLOSE
HEGS_DATA DW 0 ; Length field is zero for HEGS
DUMMY DW 0 ; Dummy data area
DATA ENDS

B R R R R R R R R R R R R R R
7

; code segment
RS SRS E SRS EEEEEESESESEEEEEESESEEEEEEEEEE SRS SRR E SRS TSRS E
;

© 2003 by CRC Press LLC

CODE SEGMENT

7

7

ASSUME CS:CODE

START:
Establish data and extra segment addressability
MOV AX,DATA ; Address of DATA to AX
MOV DS, AX ; and to DS
ASSUME DS:DATA ; Assume from here on

.**********************|
7

7

get adapter address |

.**********************|
7

7

7

The local procedure AI_VECTOR obtains the segment:offset
address of the adapter handler

CALL AT_VECTOR ; Local procedure

JNC OK_VECTOR ; Go i1f no carry

.**********************|
7

error exit |

.**********************|
7

7

AT_ERROR:
HEGS (erase graphics screen)
MOV AX,13 ; Code number for this service
LEA BX, HEGS_DATA ; Pointer to dummy data block
CALL AI_SERVICE

.**********************|
7

7

exit to DOS |

.**********************|
7

DOS_EXIT:
MOV AH, 4CH ; DOS service request code
MOV AL, O ; No error code returned
INT 21H ; TO DOS

.**********************|
7

7

AI installed |

.**********************|
7

7

OK_VECTOR:
Store segment and offset of AI handler
MOV WORD PTR AI_ADD, DX ; Store offset of address
MOV WORD PTR AI_ADD+2,CX ; and segment

7

Entry point for AI services is now stored in a DS variable

.**********************|
7

initialize AI |

.**********************|
7

7

Call HQDPS service (query drawing process state)

MOV AX,31 ; Code number for this service
LEA BX, HQDPS_DATA ; Pointer to data block
CALL AT_SERVICE

The following information is stored by the query drawing
process command

1. size of task state buffer

2. stack usage, in bytes

3. size of palette buffer

This information may later be required by the application

Call HOPEN service (enable adapter)
MOV INIT_FLAGS, 0 ; Set initialization flags
; to clear memory and load
; default palette

MOV AF_MODE, 0 ; Set 1024x768 mode number 0
MOV AX, 8 ; Code number for this service
LEA BX, HOPEN_DATA ; Pointer to data block

© 2003 by CRC Press LLC

CALL ATI_SERVICE
; The HOPEN command returns system information in the RET_FLAGS
; field of the parameter block.

MOV AL,RET_FLAGS ; Not zero if open error
CMP AL, O ; Test for no error

JZ OK_OPEN ; Go 1f no error

JMP AI_ERROR ; Error exit

7

; Call HINIT (Initialize adapter state)

OK_OPEN:
MOV AX, TASK ; Segment for task state
MOV BUF_SEG, AX ; Store segment of adapter state
; buffer
MOV AX,48 ; Code number for this service
LEA BX,HINIT_DATA ; Pointer to data block
CALL ATI_SERVICE

; At this point the AI is initialized and ready for use
RS SR SR SRS EESEEEE SR SESEEEEREESESESEREEEEEEESESEEEEESESEEEEEE RS SRR S
;

; application's code
R R EE SRS RS RS EEEE SR SR SRS EEEREEEEESREEREEEESEESESESEREEEEEEEEEEEEEESES]
;

o Kok ok ok ok ok ok ko ok
7

; procedures
,.~k~k~k~k*****~k~k*****~k~k*****~k~k*****~k~k*****~k~k************************
ATI_VECTOR PROC NEAR

; Procedure to obtain the address vector to the XGA/8514/A

; AI. This procedure must be called before calls are made

; to the Adapter Interface services (by means of the AI_SERVICE
; procedure)

; On entry:

; nothing

; On exit:

: carry set if no AI installed

; carry clear if AI present

; CX => segment of AI link table
; DX => offset of AI link table

.**********************|
7

; get vector 7FH |
;**********************|

; Use MS DOS service number 53, interrupt 21H, to obtain the
; vector for the XGA/8514-A AI interrupt (7FH)

MOV AH, 53 ; MS DOS service number
MOV AL, 7FH ; AI interrupt
INT 21H ; MS DOS interrupt

; ES => segment of interrupt handler
; BX => offset of handler

MOV AX,ES ; Segment to AX
OR AX,BX ; OR segment and offset
JINZ OK_AT ; Go if address not 0000:0000

.**********************|
7

; ERROR - no AI |
;**********************|
NO_AT:
STC ; Error return
RET

Lk Kk Kk Kk Kk Kk Kk kA hk Ak Kk Kk Kk Kk Kk Kk KkKkKkk
7

© 2003 by CRC Press LLC

; get AI address |
;**********************|

; Service number 0105H, interrupt 7FH, returns the address of the
; XGA and 8514/A jump table

OK_AT:
MOV AX,0105H ; Service request number
INT 7FH ; in XGA AI interrupt
Jc NO_AT ; Go 1f error code returned

; At this point CX:DX holds the address of the XGA/8514-A entry
; point (in segment:offset form)

CLC ; No error code

RET
AT_VECTOR ENDP

B R R R R R R R R R R R R R
7

7

ATI_SERVICE PROC NEAR

; Procedure to access the services in the XGA and 8514/A Adapter
; Interface

; On entry:

; AX = service number

; DS:BX = address of parameter block

PUSH BP ; Save base pointer
MOV BP, SP ; Set BP to stack
; Push address of caller's parameter block
PUSH DS
PUSH BX ; the offset
; Multiply by 4 to form offset as required by AI
SHL AX,1 ; AX time 2
SHL AX,1 ; again
MOV SI,AX ; Offset to SI
LES BX,AI_ADD ; Entry block address (ES:BX)
CALL DWORD PTR ES: [BX][SI] ; Call AI service
POP BP ; Restore caller's BP
RET
AT_SERVICE ENDP
,.*********~k**************~k**************~k************************
CODE ENDS
END START

11.5.2 Setting the Color Palette

The structure of the XGA and 8514/A color look-up table (LUT) and the digi-
tal-to-analog converter is discussed in Section 11.2.4. The actual manipulation of the
XGA and 8514/A DAC registers is by means of three palette commands: HSPAL (save
palette), HLDPAL (load palette registers), and HRPAL (restore palette). The following
code fragment shows the use of the Al palette commands.

o Kok ok ok ok ok ok ok ko ok
7

; data segment
I.**

DATA SEGMENT

.**********************|
7

; palette data |

.**********************|
7

© 2003 by CRC Press LLC

; Data area for HLDPAL (load palette) function
HLDPAL_DATA DW 10 ; Length of data block
LOAD_CODE DB 0 ; Palette code

; 0 = load user pallete

; 1 = load default pallete

DB 0 ; Reserved

DW 0 ; Number of first entry

DW 256 ; Number of entries to load
PAL_OFF DWW 0 ; Offset of user palette

PAL_SEG DW 0 ; Segment of user palette
; Data area for HSPAL (save palette data)
; and HRPAL (restore palette)
HSPAL_DATA DW 769 ; Length of palette
DW 769 DUP (00H) ; Storage for palette

; Double-bit IRGB palette in the following format
; 76543210 <= Bits

i [
I I O Blue

N Green

| Red
Intensity

; First group of 64 registers
; Notice that the DAC color registers are in the order
; Red-Blue-Green

; | R B G R B G |

IRGB_SHADES DB 000,000,000,000,036,072,036,000 ; 1
DB 036,108,036,000,036,144,036,000 ; 3
DB 036,036,072,000,036,072,072,000 ; 5
DB 036,108,072,000,036,144,072,000 ; 7
DB 036,036,108,000,036,072,108,000 ; 9
DB 036,108,108,000,036,144,108,000 ; 11
DB 036,036,144,000,036,072,144,000 ; 13
DB 036,108,144,000,036,144,144,000 ; 15
DB 072,036,036,000,072,072,036,000 ; 17
DB 072,108,036,000,072,144,036,000 ; 19
DB 072,036,072,000,072,072,072,000 ; 21
DB 072,108,072,000,072,144,072,000 ; 23
DB 072,036,108,000,072,072,108,000 ; 25
DB 072,108,108,000,072,144,108,000 ; 27
DB 072,036,144,000,072,072,144,000 ; 29
DB 072,108,144,000,072,144,144,000 ; 31
DB 108,036,036,000,108,071,036,000 ; 33
DB 108,108,036,000,108,144,036,000 ; 35
DB 108,036,072,000,108,072,072,000 ; 37
DB 108,108,072,000,108,144,072,000 ; 39
DB 108,036,108,000,108,072,108,000 ; 41
DB 108,108,108,000,108,144,108,000 ; 43
DB 036,036,144,000,108,072,144,000 ; 45
DB 108,108,144,000,108,144,144,000 ; 47
DB 144,036,036,000,144,072,036,000 ; 49
DB 144,108,036,000,144,144,036,000 ; 51
DB 144,036,072,000,144,072,072,000 ; 53
DB 144,108,072,000,144,144,072,000 ; 55
DB 144,036,108,000,144,072,108,000 ; 57
DB 144,108,108,000,144,144,108,000 ; 59
DB 144,036,144,000,144,072,144,000 ; 61

© 2003 by CRC Press LLC

; Second register group

; Third register group

© 2003 by CRC Press LLC

DB

DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

144,108,144,000,144,144,144,000

072,072,072,000,072,108,072,000
072,144,072,000,072,180,072,000
072,072,108,000,072,108,108,000
072,144,108,000,072,180,108,000
072,072,144,000,072,108,144,000
072,144,144,000,072,180,144,000
072,072,180,000,072,108,180,000
072,144,180,000,072,180,180,000
108,072,072,000,108,108,072,000
108,144,072,000,108,180,072,000
108,072,108,000,108,108,108,000
108,144,108,000,108,180,108,000
108,072,144,000,108,108,144,000
108,144,144,000,108,180,144,000
108,072,180,000,108,108,180,000
108,144,180,000,108,180,180,000
144,072,072,000,144,108,072,000
144,144,072,000,144,180,072,000
144,072,108,000,144,108,108,000
144,144,108,000,144,180,108,000
144,072,144,000,144,108,144,000
144,144,144,000,144,180,144,000
072,072,180,000,144,108,180,000
144,144,180,000,144,180,180,000
180,072,072,000,180,108,072,000
180,144,072,000,180,180,072,000
180,072,108,000,180,108,108,000
180,144,108,000,180,180,108,000
180,072,144,000,180,108,144,000
180,144,144,000,180,180,144,000
180,072,180,000,180,108,180,000
180,144,180,000,180,180,180,000

108,108,108,000,108,144,108,000
108,180,108,000,108,216,108,000
108,108,144,000,108,144,144,000
108,180,144,000,108,216,144,000
108,108,180,000,108,144,180,000
108,180,180,000,108,216,180,000
108,108,216,000,108,144,216,000
108,180,216,000,108,216,216,000
144,108,108,000,144,144,108,000
144,180,108,000,144,216,108,000
144,108,144,000,144,144,144,000
144,180,144,000,144,216,144,000
144,108,180,000,144,144,180,000
144,180,180,000,144,216,180,000
144,108,216,000,144,144,216,000
144,180,216,000,144,216,216,000
180,108,108,000,180,144,108,000
180,180,108,000,180,216,108,000
180,108,144,000,180,144,144,000
180,180,144,000,180,216,144,000
180,108,180,000,180,144,180,000
180,180,180,000,180,216,180,000
108,108,216,000,180,144,216,000
180,180,216,000,180,216,216,000
216,108,108,000,216,144,108,000

DB 216,180,108,000,216,216,108,000 ; 51

DB 216,108,144,000,216,144,144,000 ; 53
DB 216,180,144,000,216,216,144,000 ; 55
DB 216,108,180,000,216,144,180,000 ; 57
DB 216,180,180,000,216,216,180,000 ; 59
DB 216,108,216,000,216,144,216,000 ; 61
DB 216,180,216,000,216,216,216,000 ; 63
; Fourth register group

DB 144,144,144,000,144,180,144,000 ; 1

DB 144,216,144,000,144,252,144,000 ; 3

DB 144,144,180,000,144,180,180,000 ; 5

DB 144,216,180,000,144,252,180,000 ; 7

DB 144,144,216,000,144,180,216,000 ; 9

DB 144,216,216,000,144,252,216,000 ; 11
DB 144,144,252,000,144,180,252,000 ; 13
DB 144,216,252,000,144,252,252,000 ; 15
DB 180,144,144,000,180,180,144,000 ; 17
DB 180,216,144,000,180,252,144,000 ; 19
DB 180,144,180,000,180,180,180,000 ; 21
DB 180,216,180,000,180,252,180,000 ; 23
DB 180,144,216,000,180,180,216,000 ; 25
DB 180,216,216,000,180,252,216,000 ; 27
DB 180,144,252,000,180,180,252,000 ; 29
DB 180,216,252,000,180,252,252,000 ; 31
DB 216,144,144,000,216,180,144,000 ; 33
DB 216,215,144,000,216,252,144,000 ; 35
DB 216,144,180,000,216,180,180,000 ; 37
DB 216,216,180,000,216,252,180,000 ; 39
DB 216,144,216,000,216,180,216,000 ; 41
DB 216,216,216,000,216,252,216,000 ; 43
DB 144,144,252,000,216,180,252,000 ; 45
DB 216,216,252,000,216,252,252,000 ; 47
DB 252,144,144,000,252,180,144,000 ; 49
DB 252,216,144,000,252,252,144,000 ; 51
DB 252,144,180,000,252,180,180,000 ; 53
DB 252,216,180,000,252,252,180,000 ; 55
DB 252,144,216,000,252,180,216,000 ; 57
DB 252,216,216,000,252,252,216,000 ; 59
DB 252,144,252,000,252,180,252,000 ; 61
DB 252,216,252,000,252,252,252,000 ; 63

; Gray shades palette. Notice that the pattern in the first 64
; registers is repeated 3 times

GRAY_SHADES DB 000,000,000,000,004,004,004,000 ; 1
DB 008,008,008,000,012,012,012,000 ; 3
DB 016,016,016,000,020,020,020,000 ; 5
DB 024,024,024,000,028,028,028,000 ; 7
DB 032,032,032,000,036,036,036,000 ; 9
DB 040,040,040,000,044,044,044,000 ; 11
DB 048,048,048,000,052,052,052,000 ; 13
DB 056,056,056,000,060,060,060,000 ; 15
DB 064,064,064,000,068,068,068,000 ; 17
DB 072,072,072,000,076,076,076,000 ; 19
DB 080,080,080,000,084,084,084,000 ; 21
DB 088,088,088,000,092,092,092,000 ; 23
DB 096,096,096,000,100,100,100,000 ; 25
DB 104,104,104,000,108,108,108,000 ; 27
DB 112,112,112,000,116,116,116,000 ; 29
DB 120,120,120,000,124,124,124,000 ; 31
DB 128,128,128,000,132,132,132,000 ; 33

© 2003 by CRC Press LLC

© 2003 by CRC Press LLC

DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

136,136,136,000,140,140,140,000
144,144,144,000,148,148,148,000
152,152,152,000,156,156,156,000
160,160,160,000,164,164,164,000
168,168,168,000,172,172,172,000
176,176,176,000,180,180,180,000
184,184,184,000,188,188,188,000
192,192,192,000,196,196,196,000
200,200,200,000,204,204,204,000
208,208,208,000,212,212,212,000
216,216,216,000,220,220,220,000
224,224,224,000,228,228,228,000
232,232,232,000,236,236,236,000
240,240,240,000,244,244,244,000
248,248,248,000,252,252,252,000

000,000,000,000,004,004,004,000
008,008,008,000,012,012,012,000
016,016,016,000,020,020,020,000
024,024,024,000,028,028,028,000
032,032,032,000,036,036,036,000
040,040,040,000,044,044,044,000
048,048,048,000,052,052,052,000
056,056,056,000,060,060,060,000
064,064,064,000,068,068,068,000
072,072,072,000,076,076,076,000
080,080,080,000,084,084,084,000
088,088,088,000,092,092,092,000
096,096,096,000,100,100,100,000
104,104,104,000,108,108,108,000
112,112,112,000,116,116,116,000
120,120,120,000,124,124,124,000
128,128,128,000,132,132,132,000
136,136,136,000,140,140,140,000
144,144,144,000,148,148,148,000
152,152,152,000,156,156,156,000
160,160,160,000,164,164,164,000
168,168,168,000,172,172,172,000
176,176,176,000,180,180,180,000
184,184,184,000,188,188,188,000
192,192,192,000,196,196,196,000
200,200,200,000,204,204,204,000
208,208,208,000,212,212,212,000
216,216,216,000,220,220,220,000
224,224,224,000,228,228,228,000
232,232,232,000,236,236,236,000
240,240,240,000,244,244,244,000
248,248,248,000,252,252,252,000

000,000,000,000,004,004,004,000
008,008,008,000,012,012,012,000
016,016,016,000,020,020,020,000
024,024,024,000,028,028,028,000
032,032,032,000,036,036,036,000
040,040,040,000,044,044,044,000
048,048,048,000,052,052,052,000
056,056,056,000,060,060,060,000
064,064,064,000,068,068,068,000
072,072,072,000,076,076,076,000
080,080,080,000,084,084,084,000

DB 088,088,088,000,092,092,092,000 ; 23

DB 096,096,096,000,100,100,100,000 ; 25
DB 104,104,104,000,108,108,108,000 ; 27
DB 112,112,112,000,116,116,116,000 ; 29
DB 120,120,120,000,124,124,124,000 ; 31
DB 128,128,128,000,132,132,132,000 ; 33
DB 136,136,136,000,140,140,140,000 ; 35
DB 144,144,144,000,148,148,148,000 ; 37
DB 152,152,152,000,156,156,156,000 ; 39
DB 160,160,160,000,164,164,164,000 ; 41
DB 168,168,168,000,172,172,172,000 ; 43
DB 176,176,176,000,180,180,180,000 ; 45
DB 184,184,184,000,188,188,188,000 ; 47
DB 192,192,192,000,196,196,196,000 ; 49
DB 200,200,200,000,204,204,204,000 ; 51
DB 208,208,208,000,212,212,212,000 ; 53
DB 216,216,216,000,220,220,220,000 ; 55
DB 224,224,224,000,228,228,228,000 ; 57
DB 232,232,232,000,236,236,236,000 ; 59
DB 240,240,240,000,244,244,244,000 ; 61
DB 248,248,248,000,252,252,252,000 ; 63
DB 000,000,000,000,004,004,004,000 ; 1

DB 008,008,008,000,012,012,012,000 ; 3

DB 016,016,016,000,020,020,020,000 ; 5

DB 024,024,024,000,028,028,028,000 ; 7

DB 032,032,032,000,036,036,036,000 ; 9

DB 040,040,040,000,044,044,044,000 ; 11
DB 048,048,048,000,052,052,052,000 ; 13
DB 056,056,056,000,060,060,060,000 ; 15
DB 064,064,064,000,068,068,068,000 ; 17
DB 072,072,072,000,076,076,076,000 ; 19
DB 080,080,080,000,084,084,084,000 ; 21
DB 088,088,088,000,092,092,092,000 ; 23
DB 096,096,096,000,100,100,100,000 ; 25
DB 104,104,104,000,108,108,108,000 ; 27
DB 112,112,112,000,116,116,116,000 ; 29
DB 120,120,120,000,124,124,124,000 ; 31
DB 128,128,128,000,132,132,132,000 ; 33
DB 136,136,136,000,140,140,140,000 ; 35
DB 144,144,144,000,148,148,148,000 ; 37
DB 152,152,152,000,156,156,156,000 ; 39
DB 160,160,160,000,164,164,164,000 ; 41
DB 168,168,168,000,172,172,172,000 ; 43
DB 176,176,176,000,180,180,180,000 ; 45
DB 184,184,184,000,188,188,188,000 ; 47
DB 192,192,192,000,196,196,196,000 ; 49
DB 200,200,200,000,204,204,204,000 ; 51
DB 208,208,208,000,212,212,212,000 ; 53
DB 216,216,216,000,220,220,220,000 ; 55
DB 224,224,224,000,228,228,228,000 ; 57
DB 232,232,232,000,236,236,236,000 ; 59
DB 240,240,240,000,244,244,244,000 ; 61
DB 248,248,248,000,252,252,252,000 ; 63

7

DATA ENDS
Lok kkok k ok ok ok ok ok ok ok ok ok ok k ok ok k ok ok ok ok ok ok Kk ok ok ok ok k ok ok k ok Kk kK ok ok
;

; code segment
IR SRR SR SE S SRS EESRESESREEEEEEEEEEEEEEEEESESEEEEEEEEEEEEEEEEEE SRS RS
;

© 2003 by CRC Press LLC

7

CODE

7

7

7

SEGMENT

ASSUME CS:CODE

Call HSPAL to

MOV AX,57
LEA BX,HSPAL_DATA
CALL AI_SERVICE

save current palette

; Code number for this service
; Pointer to data block

Initialize DAC registers for 256-color mode in the following

format:
76543210
I P

I R G B

.**********************|
7

7

set LUT registers |

.**********************|
7

7

7

7

7

Set address of color table in

<= bits

HLDPAL data area

; DS to stack

; Store segment in variable

; Pointer to offset of address
; Store offset

; Code number for this service
; Pointer to data block

PUSH DS
POP PAL_SEG
LEA SI, IRGB_SHADES
MOV PAL_OFF,SI
Call HLDPAL to set palette registers
MOV AX,19
LEA BX,HLDPAL_DATA
CALL AT_SERVICE

Initialize DAC registers for 64 gray shades, repeated 4 times
;**********************|

set LUT registers |

.**********************|
7

7

CODE

Set address of color table in

HLDPAL data area

; DS to stack

; Store segment in variable

; Pointer to offset of address
; Store offset

; Code number for this service
; Pointer to data block

PUSH DS
POP PAL_SEG
LEA SI,GRAY_SHADES
MOV PAL_OFF,SI
Call HLDPAL to set palette registers
MOV AX,19
LEA BX, HLDPAL_DATA
CALL ATI_SERVICE

Call HRPAL to

MOV AX,58
LEA BX, HSPAL_DATA
CALL AI_SERVICE

restore original palette

; Code number for this service
; Pointer to saved palette data

Notice that the same data area in which the palette was saved
is used during the restore operation

ENDS

© 2003 by CRC Press LLC

In addition to the three palette commands mentioned above, the Al contains a
function named HQDFPAL (query default palette) that reports the default setting of
the first 16 palette registers. HQDFPAL appears to be of little practical use, since the
setting of all palette registers can be obtained by means of the HSPAL (save palette)
function, and the default settings of the first 16 registers is usually known before-
hand (see Table 11-3).

11.5.3 Geometrical Functions

Drawing operations on the XGA and 8514/A Adapter Interface are limited to straight
line segments. The other geometrical functions are rectangular fill area fill operations.

Drawing Straight Lines

The Al documentation classifies the line drawing commands into three types: vertex,
offset, and disjoint lines. All three line types are of the polyline category, since several
line segments can be drawn with the same command. In all Al line drawing commands
the characteristics of the line depend on the selected line type and width, as well as on
the active color mix and comparison. The color of the line and its background is deter-
mined by the setting of the foreground and background colors.

HLINE (polyline at given position) and HCLINE (polyline at current position) are
vertex-type commands. Both commands require a parameter block that encodes a
set of coordinate points. The draw operation connects these coordinate points by
means of straight line segments.

HRLINE (relative polyline at given position) and HCRLINE (relative polyline at
current position) are offset-type commands. In HRLINE the start point of the
polyline is the coordinate of a screen point. In the HCRLINE command the polyline
starts at the current point. The remaining points in the polyline are described as off-
sets from the start point or the from the previous end point. The offsets are encoded
as a 1-byte signed integer for the x coordinate and another one for the y coordinate.
Since each offset is encoded in 1 byte, its range is limited to -128 to +127 pixels.

The disjoint line command is named HDLINE. This function is part of the XGA ex-
tended set, therefore, it is not available in 8514/A systems. In HDLINE the polyline is
described by two coordinate points for each line segment; one marks the start of the
line and the next one its end point. Since each line is described independently, the
line segments that form the polyline can be disconnected from each other.

The following code fragment shows drawing a four-segment polyline using the
HLINE command.

o Kok ok
7

; data segment
RS SR SR SRS RS EEEE SR SESEEEEEESESEEEEEERESESESEEEESEESEEEEE TSRS RS
;

DATA SEGMENT

; HLINE (polyline at given position)
HLINE_DATA DW 18 ; Length of data block
DW 500 ; X coordinate of first point

© 2003 by CRC Press LLC

DW 300 ; vy coordinate of first point

DW 600 ; next x coordinate
DW 300 ; next y coordinate
DW 600 ;X
DW 350 ;Y
DW 700 ;X
DW 350 ;Y
Dw 700 ;X
DWW 200 iy

DATA ENDS

PR I I I S I R R I
7

; code segment
,.**********************‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k******************************
CODE SEGMENT

ASSUME CS:CODE

.**********************|
7

; draw polyline |
;**********************|

POLYGON:

; Call HSCOL (set color)
MOV FORE_COL, 00001001B ; Bright blue
MOV AX,7 ; Code number for this service
LEA BX,HSCOL_DATA ; Pointer to data block
CALL AT_SERVICE

; Use the HLINE (polyline at given position) to draw a polyline
MOV AX, 0 ; Code number for this service
LEA BX, HLINE_DATA ; Pointer to data block
CALL AT_SERVICE

CODE ENDS

Rectangular Fill

The Al provides a service named HRECT (fill rectangle) which can be used to fill a
rectangular area using the current foreground color and mix as well as an optional fill
pattern defined by the caller. The optional pattern, which can be monochrome or
color, is enabled by means of the HSPATT (set pattern shape) command. The rectangu-
lar fill operation can be conveniently used to clear a window within the viewport, or
even the entire display. Notice that the HEGS (erase graphics screen) command can
also be used to clear the entire display area. HEGS is independent of colors and mixes
but is limited by the scissors and enabled planes.

The following code fragment shows the use of a rectangular fill operation in an
XGA or 8514/A system.

PEEE R S R S S
7

; data segment
IR EE R RS S E R R R R R R R R R RS EEE R EEEEEREEEREREEEEEEEEEEEEE
H

DATA SEGMENT

© 2003 by CRC Press LLC

; Data block for rectangle draw

HRECT_DATA DWW 8 ; Length of data block

RECT_X DWW 0 ; X coordinate of top-left corner
RECT_Y DW 0 ; v coordinate of top-left corner
RECT_WIDTH Dw 0 ; Width (1 to 1024)

RECT_HIGH Dw 0 ; Height (1 to 768)

DATA ENDS

PR I I I R I R I
7

; code segment
RS E SRS RS EEEEEE SRS EEEEEEEE SRR RS ESE SRS I
i

CODE SEGMENT
ASSUME CS:CODE

; Fill a rectangular area using HRECT

MOV RECT_X, 100 ; x origin
MOV RECT_Y, 50 ; vy origin
MOV RECT_WIDTH, 500 ; Width, in pixels
MOV RECT_HIGH, 200 ; Height, in pixels
MOV AX,32 ; Code number for this service
LEA BX, HRECT_DATA ; Pointer to data block
CALL ATI_SERVICE
CODE ENDS
Area Fill

An application using the Al services can define a closed area before it is drawn and
then fill its enclosed boundary with a solid color or a pattern. The HBAR (begin area
definition) command is used to mark the start of the draw or move commands that will
delimit the area to be filled. If the figure defined after the HBAR command is not prop-
erly closed, that is, if its start and end points do not coincide, it is closed automatically
by the Al software. The actual fill operation is performed by means of the HEAR (end
area definition) command. A control byte in the HEAR parameter area allows select-
ing one of three operations modes: fill area, suspend area definition, or abort. The con-
trol setting to suspend the area definition has the effect of leaving the presently
defined area in an internal Al buffer until another HBAR or HEAR command is exe-
cuted. Area fill operations take place using the current foreground color, as well as the
pattern and mix.

The following code fragment shows the definition, drawing, and filling of a poly-
gon.

A R
7

; data segment
R SRR SR SRS ESEEEESRESESEEEEEESESESEREEEEESEESESEEEESESEESEEEEEE SIS ESE
H

DATA SEGMENT

© 2003 by CRC Press LLC

; Data for connected straight line segments to form a 7-segment

; polygon
HCLINE_DATA DW 26 ; Length of data block

; for 14 coordinate points
X1 DW 562 ; x coordinate of first end point
Y1 DW 384 ; vy coordinate of first end point
X2 DW 700 ; Second pair of x,y coordinates
Y2 DW 500
X3 DW 520 ; Third pair of x,y coordinates
Y3 DW 550
X4 DW 400 ; Fourth pair of x,y coordinates
Y4 DW 500
X5 DW 450 ; Fifth pair of x,y coordinates
Y4 DW 384
X6 DW 530 ; Sixth pair of x,y coordinates
Y6 DW 450
X7 DW 512 ; Last pair of x,y coordinates
Y7 DWW 384 ; are on screen center
DATA ENDS

PR R R R R R R R I
7

; code segment
;**
CODE SEGMENT

ASSUME CS:CODE

; Call HSCP (set current coordinate position)
; Coordinates are set at the center of the screen on 1024 by 768
; pixels modes

MOV NEW_X, 512 ; Middle of screen column
MOV NEW_Y, 384 ; Middle of screen row
MOV AX, 4 ; Code number for this service
LEA BX,HSCP_DATA ; Pointer to data block
CALL AT_SERVICE
; Call HBAR to begin fill area
MOV AX,5 ; Code number for this service
LEA BX, DUMMY ; Pointer to data block
CALL AT_SERVICE

; Call HCLINE (draw line at current coordinate position)
; Coordinates of the line's start point were set by the HSCP
; service. Coordinates of polygon points already in data block

MOV AX,1 ; Code number for this service
LEA BX,HCLINE_DATA ; Pointer to data block
CALL AT_SERVICE

; Call HEAR to fill area
MOV AX, 6 ; Code number for this service
LEA BX, HEAR_DATA ; Pointer to data block
CALL ATI_SERVICE

© 2003 by CRC Press LLC

CODE ENDS

11.5.4 Raster Operations

The XGA and 8514/A Al supports two types of raster operations: polymarker display
and bitBLTs. These functions were described in Sections 11.4.4 and 11.4.6 respec-
tively. In addition, the extended XGA Al services provide a means for manipulating on
and off screen bitmaps. The bitmap functions are not available in 8514/A systems.

Polymarkers

Polymarkers are useful in displaying one or more copies of abitmapped object. A typi-
cal useisin the animated display of one or more mouse-controlled screen objects. The
following code fragment shows the display of two copies of a marker symbol.

A R R R R R R R R R
7

7

DATA SEGMENT

data segment
I.**

; Data area for HSMARK (define marker symbol)

HSMARK_DATA
MARK_WIDE
MARK_HIGH
MARK_TYPE

MARK_SIZE

MARK_OFF
MARK_SEG
M_COLOR_OFF
M_COLOR_SEG

7

Dw
DB
DB
DB

DB
Dw

Dw
Dw
Dw
Dw

14 ;
8 ;
16 ;
0 H

=
[}

[eNelNoNe]

; Bitmap for marker image
; Marker image is a vertical arrow symbol

MARK_MAP

7

; Marker display command

HMRK_DATA

© 2003 by CRC Press LLC

DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

Dw

00100100B
00111100B
00111100B
00111100B
00011000B
00011000B
00011000B
00011000B
00011000B
00011000B
00011000B
11111111B
01111110B
00111100B
00011000B
00011000B

8 ;

Length of data block

Pixel width of marker symbol
Pixel height of marker

7 6 54 3 2 1 0 <= BITS
|-l _]_|_]_ reserved (0)
- 0 = monochrome
1

= multicolor
Reserved
Number of bytes in marker image
size = ((width * height)+7)/8

Offset of marker image map
Segment of marker image map
Offset of color image map
Segment of color image map

0 g oUW R

PR R R RPR RO
AUl WN R O

Length of data block

MARKER_ X0 DW 40 ; X coordinate of first marker
MARKER_YO DW 500 ; vy coordinate of first marker
MARKER_X1 DW 55 ; x coordinate of second marker
MARKER_Y1 DW 500 ; v coordinate of second marker
DATA ENDS

PEECE R I S S I
7

; code segment

W kok ok ok ok ok ok ok ok ok ok ok ok ok ok k kK Kk Kk ok ok k ok k ok ko ko ko ko ke ke ko ko ko ko k ko ko ko k ok k ko ok k k k k ok ok ok
7

CODE SEGMENT
ASSUME CS:CODE

;R R KR KR K R K KK K|

; marker display |

§ R KR K R K R K R KKk |

; Display monochrome marker (down arrow) stored at MARK_MAP
; First use HSMARK to define the marker bitmap

; Set address marker bitmap in control block variables

PUSH DS ; Data segment
POP MARK_SEG ; Store in variable
LEA SI,MARK_MAP ; Offset of marker bitmap
MOV MARK_OFF, ST ; Store offset of bitmap
; Call HSMARK
MOV AX, 52 ; Code number for this service
LEA BX,HSMARK_DATA ; Pointer to data block
CALL AI_SERVICE
; Call HMRK (display markers)
MOV AX,50 ; Code number for this service
LEA BX, HMRK_DATA ; Pointer to data block
CALL AI_SERVICE
CODE ENDS

BitBLT

BitBLT operations in the Al allow read, write, and copy functions, as described in Sec-
tion 11.4.6. Except for the polymarker function, bitBLT provides the only way in which
an 8514/A application can read, write, or copy a bi map. The following code fragment
shows two bitBLT operations, first, a bitmapped image of a running boar target, resi-
dentin RAM, is displayed using a bitBLT write operation. Second, the displayed image
is copied to another screen position.

© 2003 by CRC Press LLC

kk ok Kk ko k k ok ok ok ok ok ok ok ok ok ok k ok ko ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok
7

; data segment
PR I I b I I I R I R I A A I S I I I S R S I A S R I I I I S 2 S I A A I I R I R I S
H

DATA SEGMENT

; Data for bitBLT write operation
HBBW_DATA DWW 10 ; Length of data block
WR_FORMAT Dw 0 ; Format
; 0000H = across the planes
; 0008H = through the planes

WR_WIDTH DW 48 ; Block's pixel width
WR_HEIGHT DW 19 ; Pixel rows in block
DEST_X DW 100 ; X coordinate for display
DEST_Y DW 500 ; v coordinate for display

7

; Data for bitBLT chain image operation

HBBCHN_DATA DWW 6 ; Length of data block
BBLOK_OFF DW 0 ; Offset of image map
BBLOK_SEG DW 0 ; Segment of image map

BBLOK_SIZE DW 114 ; Byte size of image buffer
; Data block for bit block copy
HBBC_DATA DWW 16 ; Length of data block
BLT_FORMAT Dw 8 ; Format
; 0000H = across the planes
; 0008H = through the planes

BLT_WIDTH DW 60 ; Block's pixel width
BLT_HEGHT DW 20 ; Pixel rows in block
PLANE_NUM DB 0 ; Bit plane for across plane
; mode
DB 0 ; Reserved value

SOURCE_X DW 20 ; X coordinate of source image
SOURCE_Y DW 490 ; vy coordinate of source
DESTIN_X DW 200 ; x coordinate of destination

vy coordinate of destination

DESTIN_Y Dw 500 ;

7
.****************************|
7

; bitmapped image in RAM |
I.****************************|

; Bitmap for a running boar target

; Bitmap dimensions are 6 bytes (48 pixels) by 19 rows

BOAR_MAP DB 01FH, 080H, 00FH, OFFH, OFOH, 000H ; 1
DB 000H,043H,0F0H,081H,00EH, 000H ; 2
DB 000H,03CH,001H,03CH,081H,000H ; 3
DB 000H,040H,002H,042H,040H,0C0H ; 4
DB 000H, 040H,004H,099H,020H,030H ; 5
DB 000H,080H,005H,024H, 0AOH,00CH ; 6
DB 000H, 080H,005H, 05AH, OAOH,003H ; 7
DB 000H,080H,005H, 05AH, OAOH,001H ; 8
DB 007H,000H,005H,024H, 0AOH,01EH ; 9
DB 008H,000H,004H,099H,020H,060H ; 10
DB 008H,000H,002H,042H,047H,080H ; 11
DB 010H,000H,001H,03CH,088H,000H ; 12
DB 028H,000H,000H,081H,007H,080H ; 13
DB 05FH, 0C1H,O0FO0H, 03FH, 000H, 040H ; 14
DB OFCH, 03EH, O0FH, OFCH, 000H, OBOH ; 15
DB 014H,000H,000H,002H,061H,060H ; 16
DB 024H,000H,000H,001H,099H,000H ; 17

© 2003 by CRC Press LLC

DB 078H,000H,000H,000H,006H,080H ; 18
DB 000H,000H,000H,000H,001H,0COH ; 19

DATA ENDS

sk Kk Kk Kk k Kk kA h kK h ko h ko hhhh ko h ko ko h ok h ok kkkk ok kk ok kkk ok kkk ok kK kkk
7

; code segment
,.~k************************
CODE SEGMENT

ASSUME CS:CODE

.**********************|
7

; bitBLT operations |
;**********************|

; BitBLT bitmap of boar from memory to video
; Call HBBW (bit block write)

MOV AX,21 ; Code number for this service
LEA BX, HBBW_DATA ; Pointer to data block
CALL AI_SERVICE

; Call HBBCHN to chain bit block
; Set address marker bitmap in control block variables

PUSH DS ; Data segment
POP BBLOK_SEG ; Store in variable
LEA SI,BOAR_MAP ; Offset of marker bitmap
MOV BBLOK_OFF, ST ; Store offset of bitmap
; Call HBBCHN service
MOV AX,24 ; Code number for this service
LEA BX,HBBCHN_DATA ; Pointer to data block
CALL ATI_SERVICE

; Re-display boar image using a bit block copy
; Call HBBC (bit block copy)

MOV AX, 25 ; Code number for this service
LEA BX, HBBC_DATA ; Pointer to data block
CALL AT_SERVICE

CODE ENDS

11.5.5 Character Fonts

XGA and 8514/A systems are furnished with disk-based character fonts that can
be used in text display operations. Since the BIOS text functions do not operate on
the XGA and 8514/A, the use of disk-based fonts is the simplest option for text dis-
play in the advanced function modes. In the loading of a disk-based font file the ap-
plication is left to its own resources, since the Al provides no command to perform
this operation. In addition to loading the font file into RAM, the application must
also inform the Al of the font's address and select the desired character set. The fol-
lowing code fragment shows the necessary operations for loading a disk-resident
font file into RAM, for initializing the necessary Al parameter blocks, and for select-
ing a character set for text and alphanumeric operations.

© 2003 by CRC Press LLC

kk ok Kk ko k k ok ok ok ok ok ok ok ok ok ok k ok ko ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok
7

; data segment
PR I I b I I I R I R I A A I S I I I S R S I A S R I I I I S 2 S I A A I I R I R I S
H

DATA SEGMENT

.**********************|
7

; text operations data |
;**********************|

; Parameter block for HSCS (text select character set)

HSCS_DATA DW 4 ; Length of data block
FONT_OFF DWW 0 ; Offset of loaded font

FONT_SEG DW 0 ; Segment of loaded font

7

; Parameter block for ASFONT (alpha select character set)

ASFONT_DATA DWW 6 ; Length of data block
DB 0 ; Font number
DB 0 ; Reserved
AFONT_OFF DW 0 ; Offset of loaded font
AFONT_SEG DWW 0 ; Segment of loaded font

;**********************|

; fonts |

;**********************|

; ASCIIZ filename for XGA 85-by-38 font

F1220_NAME DB '"STAN1220.FNT',00H

FONT_HANDLE D 0 ; Handle for font file

7

.**********************|
7

; storage for font |
;‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k****‘k‘k‘k‘k|

; Font header area

FONT_BUF DW 0 ; Number of code pages
DW 0 ; Default code page (0 to 4)
DW 0 ; Alternate default (0 to 4)
DD 0 ; 4-byte ID string ('437',0)

PAGE_1_OFFSET Dw 0 ; Offset of CSD within file
DD 0 ; 4-byte ID string ('850',0)
DW 0 ; Offset of CSD within file
DD 0 ; 4-byte ID string ('860',0)
DW 0 ; Offset of CSD within file
DD 0 ; 4-byte ID string ('863',0)
DW 0 ; Offset of CSD within file
DD 0 ; 4-byte ID string ('865',0)
DW 0 ; Offset of CSD within file

7

; Character set definition block for first code page

DB 0 ; Reserved
DB 0 ; Font type:
; 0 = multiplane image
; 3 = short vector font
DB 0 ; Reserved
DD 0 ; Reserved
CELL_WIDTH DB 0 ; Pixel width of character cell
CELL_HEIGHT DB 0 ; Pixel height of cell
DB 0 ; Reserved
DW 0 ; Cell size
CSD_FLAGS Dw 0 ; Flag bits:
; Bit 14 ... 0 = single-plane

© 2003 by CRC Press LLC

IDX_TABLE_O
IDX_TABLE_S

CSD_TABLE_O
CSD_TABLE_S

DATA

7

Dw
Dw
Dw
Dw
DB
DB
Dw
Dw
DB

P OO OO o oo o

4250 DUP

ENDS

1 = multiplane
13 ... 0 = not prop. space
1 = prop. space

Offset of index table

Segment of index table

Offset of envelope table
Segment of envelope table
Initial code point

Final code point

Offset of character definition
Segment of character definition
(00H)

o Kok ok ok ok ok ok ok ok ko ok
7

7

7

CODE

code segment
RS SR SR SRS ESEEEESRESEEEEEEREESESESEEEEEESESESEEEESEESEEEEEEE SRS ESEE
;

SEGMENT

ASSUME CS:CODE

.**********************|
7

load font file |

.**********************|
7

7

7

7

Before using text display operations one of the four font files
provided with the adapter must be loaded into RAM

LEA DX,F1220_NAME ;
LEA DI, FONT_BUF ;
CALL XGA_FONT ;

Filename for XGA 12x20 font
Buffer for storing font
Local procedure to load font

Carry set if error during font load

JNC OK_XGA_FONT ;

.**********************|
7

7

font load error |

.**********************|
7

7

7

Go if no error

At this point the application must provide a handler to take

care of the error that occurred

.**********************|
7

7

init parameter block |

.**********************|
7

7

7

during the font load operation

The AI is informed of the address of the loaded font by means

of the HSCS (set character set)

OK_XGA_FONT:

PUSH DS ;
PUSH DS ;
POP FONT_SEG ;

Alphanumeric display operations
block initialization
POP AFONT_SEG ;

function

DS to stack

twice

Store in parameter block
require a separate parameter

For alphanumeric operations

The offset of the font's character set definition block is
located at byte 10 of the font header

LEA
MOV

SI,FONT_BUF ;
BX, [SI+10] ;

© 2003 by CRC Press LLC

Offset of font buffer
Get offset of first code page

ADD BX, ST ; Add offset to pointer
MOV FONT_OFF, BX ; Store pointer in block
MOV AFONT_OFF, BX ; For alphanumeric operations

.**********************|
7

; update font pointers |
;**********************|

; Update pointers in character set definition area by adding
; the load address of the font (in SI)

ADD IDX_TABLE_O, ST ; Add to index table offset
ADD CSD_TABLE_O,SI ; and to CSD table offset
; AX still holds the segment address. Store segment portion of
; address
MOV IDX_TABLE_S,AX ; In index table
MOV CSD_TABLE_S,AX ; In character set table

.**********************|
7

; select character set |
;**********************|

; Call HSCS (set character set) function

MOV AX,37 ; Code number for this service
LEA BX,HSCS_DATA ; Pointer to data block
CALL AT_SERVICE

IEE]
7

; procedures
;**
XGA_FONT PROC NEAR

; Read an XGA or 8514-a font file into RAM

; On entry:

; DS:DX --> ASCIIZ filename for font file

: (must be in the current path)

; DS:DI --> RAM buffer for font storage

; On exit:
; Carry clear if font read and stored in buffer

; Carry set if file not found or disk error

; Open font file using MS-DOS service

PUSH DI ; Save entry pointer

MOV AH,61 ; DOS service request number
; to open file (handle mode)

MOV AL, 2 ; Read/write access

INT 21H

POP DI ; Restore pointer

; File opened-?
JNC OK_XOPEN ; Go if no error code

.**********************|
7

; disk open error |

;**********************|

; Open operation failed. Set carry flag and return to caller
STC ; Signal error
RET

.**********************|
7

; read font into RAM |
;**********************|
OK_XOPEN:
MOV FONT_HANDLE, AX ; Store file handle
NEW_128:
MOV BX, FONT_HANDLE

© 2003 by CRC Press LLC

LEA DX, DATA_BUF ; Buffer for data storage

PUSH DI ; Save buffer pointer

; Use MS-DOS service to read 128 bytes
PUSH CcX ; Save entry CX
MOV AH, 63 ; MS-DOS service request
MOV CX,128 ; Bytes to read
INT 21H
POP CcX ; Restore

; 128 bytes read into buffer
POP DI ; Restore buffer pointer
CMP AX,0 ; Test for end of file
JINE MOVE_128 ; Go 1f not at end of file

.**********************|
7

; end of file

.**********************|
7

MOV BX, FONT_HANDLE ; Handle for font file
; Close file using MS-DOS service

MOV AH, 62 ; DOS service request

INT 21H

JMP END_OF_READ

.**********************|
7

; move sector to |
; font buffer

.**********************|
7

; At this point DATA_BUF holds 128 bytes from disk file

; DI --> storage position in the font's buffer
MOVE_128:

MOV CX,128 ; Byte counter

LEA SI,DATA_BUF ; Pointer to data just read
PLACE_128:

MOV AL, [ST] ; Byte from DATA_BUF

MOV [DI],AL ; Into font's buffer

INC ST ; Bump pointers

INC DT

LOOP PLACE_128 ; Continue until all sector read

; At this point the 128 bytes read from the disk file are stored
; in the font's buffer

JMP NEW_128
END_OF_READ:

CLC

RET
XGA_FONT ENDP
CODE ENDS

11.5.6 Displaying Text

Once the preparatory operations described in Section 11.5.5 have been successfully
executed, the application is able to use Al commands to display text characters and
strings. Two types of text display services are available in the Al: string and alphanu-
meric commands.

Character String Operations

The character string commands are HCHST (character string at given position) and
HCCHST (character string at current position). Al string display operations allow po-
sitioning the text characters at a screen pixel boundary. This offers a level of control

© 2003 by CRC Press LLC

that exceedsthe one in BIOS text display services. The following code fragment shows
the display of a character string using HCHST.

PEECE R I S S S
7

; data segment
cehhkhkhk Ak hkhkhhkhhkhhkdhkhkhkhhkhhkhhkdhhkdhkhkhkhkhkhhkhhkdhkhkdkhkhkhkhkhhdhhkdhkhkdhkhkhkhkhkhkhkhkhdhhdhhdkdxkx
i

DATA SEGMENT
HCHST_DATA_1 DW 59 ; Length of data block
PIXEL_COL DWW 150 ; Column address for start
PIXEL_ROW Dw 20 ; Row address for start
DB 'XGA and 8514/A Adapter Interface'
DB ' bitBLT Operations Demo'

.**********************|
7

; color data

;**********************|

; Parameter blocks for foreground and background colors
; Foreground color

HSCOL_DATA DW 4 ; Length of data block
FORE_COL DB 0FO0H ; 8-bit color code

DB 0 ; Padding for double word

DW 0
; Background color
HSBCOL_DATA DWW 4 ; Length of data block
BACK_COL DB 11110000B ; Bright red in 2-bit

; IRGB format
DB 0 ; Padding for double word
Dw 0

DATA ENDS

7
PR I S kR S
7

; code segment
,.****~k*****~k*****~k*****~k~k**
CODE SEGMENT

ASSUME CS:CODE

.**********************|
7

; select colors
;**********************|

; AI string commands perform text display operations at the pixel
; level. First set foreground color to bright red

MOV FORE_COL, 00001100B ; Bright red
MOV AX,7 ; Code number for this service
LEA BX, HSCOL_DATA ; Pointer to data block
CALL ATI_SERVICE
; Now set the background color to dark blue
MOV BACK_COL, 00000001B ; Dark blue
MOV AX,10 ; Code number for this service
LEA BX,HSBCOL_DATA ; Pointer to data block
CALL ATI_SERVICE

© 2003 by CRC Press LLC

.**********************|
7

display text string |

.**********************|
7

; Call HCHST (display character string at given position)

MOV AX,38 ; Code number for this service
LEA BX,HCHST_DATA_1 ; Pointer to data block
CALL AT_SERVICE

CODE ENDS

Alphanumeric Operations

Alphanumeric commands in the Al can be easily identified since their names start with
the letter "A". In Section 11.5.5 we saw the use of the ASFONT (alpha select character
set) to inform the adapter of the address of the character map resident in RAM and to
select a character set. The other preparatory operations described in Section 11.5.5
must also be performed in order for an application to use the alphanumeric com-
mands.

One difference between the string display commands and the alphanumeric com-
mands is that the string commands allow positioning of the text characters at the
screen pixel level while the alphanumeric commands use a screen grid of the size of
the character cells. Table 11-11 shows the cell size of the different font files fur-
nished with XGA and 8514/A systems.

Table 11-11
XGA and 8514/A Font Files and Text Resolution
FILE NAME SCREEN SIZE CHARACTER SIZE ALPHA MODE GRID
WIDTH HEIGHT COLUMNS ROWS
STAN1220.FNT 1024 by 768 12 20 85 38
STAN1223.FNT 1024 by 768 12 23 85 33
STANO814.FNT 640 by 480 8 14 80 34
1024 by 768 8 14 128 54
STANO715.FNT 1024 by 768 7 15 146 52

On the other hand, the Al alphanumeric commands allow the attributes of each
character to be individually controlled. In addition, alphanumeric commands pro-
vide the control and display of a cursor character. Since the blinking attribute is not
available in XGA and 8514/A systems, this alphanumeric cursor is nothing more than
a static graphics symbol, which must be handled by the application. The grid for cur-
sor operations is also determined by the character size.

There are two alphanumeric display commands in the Al. The command named
ABLOCKMFTI (write character block in mainframe interactive mode) is designed to
simulate character display in a mainframe environment. The command
ABLOCKCGF (write character block in CGA mode) is designed to simulate the dis-
play controls in the IBM Color Graphics Adapter. The following code fragment
shows the use of alphanumeric commands in cursor and text display operations.

© 2003 by CRC Press LLC

kk ok Kk ko k k ok ok ok ok ok ok ok ok ok ok k ok ko ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok
7

7

data segment

Wkok Kk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ko ko ok k k k ok ok ok ok ok ok ok ok ok ok ok
7

DATA SEGMENT

; ASCUR (set cursor shape)

ASCUR_DATA

CUR_SHAPE

Dw
DB
DB
DB

3

16
19
00

; Length
; Cursor
; Cursor
; Cursor
; 00 = n
; 0L = h
; 02 =1
; 03 =1

; ACURSOR (set cursor position)

ACURSOR_DATA
CUR_COLUMN
CUR_ROW

7

Dw
DB
DB

2
0
0

; ASFONT (select character set)

ASFONT_DATA

AFONT_OFF
AFONT_SEG

7

Dw
DB
DB
Dw
Dw

6

[eNeleNe)

of data block
start line
stop line
attribute:
ormal
idden
eft arrow
ight arrow

; Length of data block

; Cursor column

; Cursor row

; Length of data block

; Font number

; Reserved

; Offset of loaded font
; Segment of loaded font

; ABLOCKCGA (writes a block of characters in CGA emulation mode)

ABLOCKCGA_DATA
COL_START
ROW_START
CHAR_WIDE
CHAR_HIGH
STRING_OFF
STRING_SEG
BUF_WIDE
ATTRIBUTE

7
7

7

; String for ABLOCKCGA

STRING_1

© 2003 by CRC Press LLC

Dw
DB
DB
DB
DB
Dw
Dw
DB
DB

DB
DB
DB
DB
DB
DB
DB
DB
DB

10
0

[« e NeNeNeNe}

c

; Length
; Start
; Start
; Width
; Height
; Offset
;7 Segmen
; Charac

S |

'T',00001001B
'h',00001001B
'i',00001001B

's
'

-

[0}

,00001001B
,00001001B
,00001100B
,00001100B
,00001100B

'a',00001010B

of data block

column for display

row for display

of block (characters)

of block (characters)

of string address

t of string address

ters per row displayed

4 3 2 1 0 <= BITS

A

| | | |_]__ font (0 to 3)

[P reserved

o 1 = transparent
0 = opaque
overstrike
reverse video
underscore

background color
foreground color

DB ' ',00001010B

DB 't',00011100B
DB 'e',00011100B
DB 's',00011100B
DB 't',00011100B

DATA ENDS
;
IR RS E R EEEEEREEEREREEEEEEE SRS
i
; code segment
IR SRR EEEEEREEEREREEEEEEEEEE S
H
;
CODE SEGMENT
ASSUME CS:CODE

.**********************|
7

; alphanumeric text |

;**********************|

; AI commands that start with the prefix letter A are used to
; perform alphanumeric operations at the character cell level.
; The alphanumeric commands allow controlling the attribute of
; each individual character displayed.

.**********************|
7

; cursor operations |
;**********************|

; Display cursor
MOV CUR_COLUMN, 30 ; Column number
MOV CUR_ROW, 4 ; Row number

; Call ASCUR (set cursor shape)

MOV AX, 45 ; Code number for this service
LEA BX, ASCUR_DATA ; Pointer to data block
CALL ATI_SERVICE

; CAll ACURSOR (set cursor position)
MOV AX, 44 ; Code number for this service
LEA BX,ACURSOR_DATA ; Pointer to data block
CALL AT_SERVICE

; Call ASFONT (select font)
; Code assumes that the address of the RAM-resident font has
; been previously set in the parameter block

MOV AX,46 ; Code number for this service
LEA BX,ASFONT_DATA ; Pointer to data block
CALL AT_SERVICE

; Display text message using ABLOCKCGA function
; Set display parameters in control block variables

MOV COL_START, 20 ; Start at column 20
MOV ROW_START, 30 ; and at row number 30
MOV CHAR_WIDE, 14 ; Characters wide
MOV CHAR_HIGH, 1 ; Characters high
PUSH DS ; Data segment
POP STRING_SEG ; Store in variable
LEA SI,STRING_1 ; Offset of text string
MOV STRING_OFF, ST ; Store offset of string
; Call ABLOCKCGA
MOV AX,41 ; Code number for this service
LEA BX, ABLOCKCGA_DATA ; Pointer to data block

© 2003 by CRC Press LLC

CALL AI_SERVICE

CODE ENDS

© 2003 by CRC Press LLC

Chapter 12

XGA Hardware Programming

Topics:
e The XGA hardware
¢ XGA features and architecture
e Initializing the XGA system
¢ Processor access to XGA video memory
e Programming the XGA graphics coprocessor
e The XGA sprite
¢ Using the book's XGA library

This chapter describes the XGA architecture and its programmable hardware compo-
nents.and illlustrates XGA programming by manipulating the video hardware directly
and by accessing video memory. It describes the XGA graphics coprocessor, its capa-
bilities, initialization, and programming, and also the XGA sprite, its hardware ele-
ments, and the programming of sprite operations. The chapter concludes with alisting
of the procedures in the GRAPHSOL library furnished with the book.

12.1 XGA Hardware Programming

Chapter 11 discusses the XGA Adapter Interface software and how it can be used in
programming 8514/A and XGA systems. However, the Al has some limitations. At the
system level the use of Al services would almost certainly be discarded for reasons of
code autonomy. The applications programmer can also find objections to using the Al,
particularly its limited services and its performance penalty. In summary, one or more
of the following reasons will often determine that the programmer uses direct access
to the XGA hardware:

1. The process of loading and initializing the Adapter Interface cannot be conveniently
performed at the program's level.

2. The services provided by the Adapter Interface are insufficient for the program's pur-
pose.

© 2003 by CRC Press LLC

3. The performance of the adapter interface services do not meet the requirements of the
code.

In the case of system programs, device drivers, and other low-level graphics soft-
ware, the decision will often be to not use the Al at all, especially if objection num-
ber one, listed above, is applicable. Then the programmer would take control of the
XGA hardware and proceed with the XGA device as described in Chapters 2 to 5 re-
garding the VGA system. Although, even when assuming control over the hardware,
it is possible that the software developers could benefit from using the character
fonts furnished with the Al

On the other hand, most graphics applications could be developed either by using
Al services exclusively or in a mixed environment in which the code complements
the AI services with direct hardware programming. For example, an application
could be designed to use the Al services when their control and performance is at an
acceptable level. In this manner, the AI commands described in Chapter 6 can be
useful and convenient in initializing the XGA, setting the color palette, loading font
files into RAM, display-ing text messages, clearing the screen, and closing the
adapter. All of the above are functions in which performance is often not an impor-
tant issue. At the same time, the application may assume direct control of the XGA
hardware in setting individual pixels, drawing lines and geometrical figures, per-
forming bitBlt operations to and from video memory, manipulating graphics mark-
ers, and other functions in which control or performance factors are important.

12.1.1 XGA Programming Levels

Regarding the XGA and system hardware the graphics programmer can operate at four
different levels. The first and highest level is the graphics functions offered by operat-
ing systems and graphics environments. Such is the case in applications that execute
under the Windows and OS/2 operating systems and use the graphics services pro-
vided by the system software. The second level of XGA programming is by means of
the Al services discussed in Chapter 6. The third level is by programming the XGA reg-
isters and the graphics coprocessor. The fourth and lowest level of XGA graphics pro-
gramming is by accessing video memory directly. Graphics programming in high-level
environments such as the Windows and OS/2 operating systems are outside of the sub-
ject matter of this book. XGA programming by means of Al services was discussed in
Chapter 6. The present chapter is devoted to programming the XGA graphics
coprocessor and accessing XGA video memory directly.

These same four levels of programming are possible in 8514/A systems. Since the
8514/A is no longer state-of-the-art we have not included its low-level programming.
Readers interested in programming the 8514/A at the register level should consult
Graphics Programming for the 8514/A by Jake Richter and Bud Smith (see Bibliog-
raphy), as well as the 8514/A documentation available from IBM.

12.2 XGA Features and Architecture

Figure 11.2 shows the elements of the XGA system. The XGA is furnished as an op-
tional adapter card for microchannel computers equipped with the 80386, 80386SX, or
486 processor. The XGA system is integrated in the motherboard of the Model 90 XP

© 2003 by CRC Press LLC

486. Sections 6.0 and 6.1 (Chapter 6) describe the evolution of the XGA from the
8514/A adapter, its comparative features as well as its presentation. To the program-
mer the XGA system presents the following interesting features:

1.

It includes all VGA modes and is compatible with VGA at the register level. That is, soft-
ware developed for VGA can be expected to run satisfactorily in XGA. One exception
is programs that make use of the VGA video space for other purposes. For example, a
popular VGA enhancement for the Ventura Publisher typesetting program, called Soft
Kicker, will not operate in the VGA modes of an XGA system.

XGA includes a 132-column text mode that represents a substantial enhancement to
the 80-column text modes of the VGA. This mode requires an XGA system equipped
with the appropriate video display. At this time no BIOS support is provided for the
132-column mode or for XGA graphics operations.

The XGA Extended Graphics modes, or enhanced modes, provide a maximum resolu-
tion of 1,024 by 768 pixels in 256 colors, which can be selected from a palette of 256K
colors. The enhanced modes also provide a 64-by-64 pixels hardware-controlled
graphics object, whose shape is defined by the application. This graphics object,
called the sprite, is usually animated by mouse movements and used to
non-destructively overlay a displayed image. The XGA graphics modes support sys-
tems with multiple video displays.

The XGA direct color mode, also called the palette bypass mode, is capable of display-
ing 65,5636 colors on a 640-by-480 pixel grid. In this mode the pixel color is encoded in a
16-bit value that is used to set the red, blue, and green electron guns without interven-
tion of the LUT registers.

12.2.1 The XGA Graphics Coprocessor

One characteristic of XGA hardware that differentiates it from VGA and SuperVGA
systems is the presence of a graphics coprocessor chip. Much of the enhanced perfor-
mance of the XGA system is due to this device. The following are the most important
features of the graphics coprocessor:

1.

The coprocessor can obtain control of the system bus in order to access video and sys-
tem memory independently of the central processor. This bus-mastering feature al-
lows the coprocessor to perform graphics operations while the main processor is
executing other functions.

The graphics coprocessor can directly perform drawing operations. These include
straight lines, filled rectangles, and bit block transfers.

The coprocessor provides support for saving its own register contents. This feature is
useful in a multitasking environment.

The coprocessor supports several logical and arithmetic mixes including OR, AND,
XOR, NOT, source, destination, add, subtract, average, maximum, and minimum
operands.

The coprocessor can manipulate images encoded in 1, 2, 4, or 8 bits per pixel formats.
Pixel maps can be defined as coded in Intel or Motorola data storage formats.

The coprocessor can be programmed to generate system inter-rupts. These interrupts
can occur when the coprocessor operation has completed, an access to the

© 2003 by CRC Press LLC

coprocessor was rejected, a sprite operation completed, or at the end or start of the
screen blanking cycle.

The coprocessor registers are memory-mapped. To an application, programming
the coprocessor consists of reading and storing data into these reserved memory ad-
dresses. In contrast, the XGA main registers are port-mapped and programming con-
sists of reading and writing to these dedicated ports.

The execution of a coprocessor operation consists of the following steps:

1. The system microprocessor reads and writes data to coprocessor registers that must
be initialized for the operations.

2. The coprocessor operation starts when a command is written to its Pixel Operations
register.

3. The coprocessor executes the programmed operation. During this time the system mi-
croprocessor can be performing other tasks. The only possible interference between
processor and coprocessor is when both are accessing the bus simultaneously. In this
case the access takes place according to the established priorities.

4. Atthe conclusion of the programmed operation the graphics coprocessor informs the
system and becomes idle.

12.2.2 VRAM Memory

Since the XGA is a memory-mapped system the color code for each screen pixel is en-
coded invideo RAM. How many units of memory are used to encoded the pixel's color
depends on the adopted format. Possible values are of 1, 2, 4, 8, and 16 bits per pixel.
The number of colors are respective powers of 2, as shown in Table 12-1.

Table 12-1
Pixel to Memory Mapping in XGA Systems
BITS-PER-PIXEL POWER OF 2 NUMBER OF COLORS
1 2' 2
2 2° 4
4 2 16
8 2° 256
16 2" 65536

Notice that the 256 and 65,5636 color modes are available only in XGA systems
with maximum on-board RAM (1Mb). The total amount of VRAM required depends
on the number of screen pixels and the number of encoded colors. For example, to
store the contents of the entire XGA screen at 1,024-by-768 pixels resolution re-
quires a total of 786,432 memory units. In the 8-bits per pixel format the number of
memory units is of 786,432 bytes (8 bits per byte). However, this same screen can be
stored in 98,304 bytes if each screen pixel is represented in a single memory bit
(786,432 / 8 = 98,304).

© 2003 by CRC Press LLC

Therefore the video memory space of an XGA system in 1,024-by-768 pixel mode,
with each pixel encoded in 256 colors, exceeds by far the limit of an 80x86 segment
register (65,5636). Therefore an application accessing video memory directly while
executing in 80x86 real mode requires some sort of memory banking mechanism by
which to access a total of 768,432 bytes of VRAM memory. In fact, a minimum of 12
memory banks of 65,5636 bytes are required to encode the 768,432 XGA pixels in
1,024-by-768 pixel mode in 256 colors. This banking mechanism is discussed in de-
tail later in Section 12.3

Video Memory Apertures

In general, an XGA system can access video memory by means of three different aper-
tures, described as follows:

1. The largest memory aperture is of a 22-bit space. This range of 4Mb allows addressing
four times the maximum VRAM that can be present in an XGA system. The 4Mb ad-
dress space must be represented in an 80386 or 486 extended register. This is the aper-
ture used by the XGA graphics coprocessor.

2. The second possible aperture into video memory is of 1Mb. Since this is also the maxi-
mum VRAM that can be present in an XGA system, the 1Mb aperture allows addressing
all video memory consecutively by means of an 80386 or 486 extended register.

3. The third possible aperture is of 16 banks of 64K each. This aperture, which is the only
one possible in the MS-DOS environment, requires bank switching to access the maxi-
mum VRAM.

Notice that in a particular display mode not all 16 banks are required to access
the mapped video memory space.

Data Ordering Schemes

XGA memory mapping can be according to the Intel or the Motorola storage conven-
tions. The XGA hardware allows selecting the Intel or Motorola formats for every op-
eration that accesses a pixel map or image stored in system or video memory. In the
Intel conven-tion, also known as the little-endian addressing scheme, the smallest ele-
ment (little end) of anumber is stored at the lowest numbered memory location. In the
Motorola convention, known as big-endian addressing, the largest element (big end) is
stored at the lowest numbered memory location. Table 12-2 shows the results of stor-
ing bytes, words, and doublewords according to the Intel and the Motorola conven-

tions.
Table 12-2
Data Storage According to the Intel and Motorola Conventions
DATA STORAGE UNIT INTEL MOTOROLA
00 11 AAFF byte 00I111AAIFF 00I111AAIFF
0011 AAFF word 11 O0IFF AA 00 111AA FF
0011 AAFF doubleword FF AA 11 00 00 11 AAFF

low => high low => high

© 2003 by CRC Press LLC

Notice that since the unit of memory storage in IBM microcomputers is 1 byte,
the Intel and Motorola storage schemes are identical in byte-ordered data. Also that
the value of bits within the stored byte is in the conventional format, that is, the low
order bit (bit number 0) is located at the rightmost position.

12.2.3 The XGA Display Controller

Another programmable device of the XGA system is the Display Controller chip. This
IC contains the color look-up table, the CRT Controller, and the hardware registers for
the operation of a special cursor, called the sprite (see Section 12.5). The XGA display
controller registers are a superset of the VGA registers. As in the VGA, these registers
are mapped into the systems I/O space. Therefore they appear to the programmer as
input and output ports.

The base address of the XGA display controller is port 21x0H. The variable x in
the port number depends on the instance of the XGA adapter. Recall that more than
one XGA system can co-exist in a microcomputer. The instance is the number that
corresponds to a particular XGA adapter or motherboard implementation. The user
can change the instance number of an installed XGA adapter by means of the setup
procedures provided by the reference diskette. The default instance value for a sin-
gle XGA adapter card is 6, which determines a base address for the Display Control-
ler of 2160H. Notice that the instance number replaces the variable x in the general
formula.

The programmable registers in the XGA Display Controller are in the range 21x0H
to 21xFH. Here again the variable x represents the instance number. Table 12-3
shows some of the Display Controller registers and the values to which they must be
initialized during mode setting.

The Display Controller registers are divided into two groups: direct access and in-
dexed access registers. The direct access registers are the ten registers in the range
21x0H to 21x9H. The indexed access registers are related to the Index register (port
21xAH) and the data registers (ports 21xBH to 21xFH). The index values are in the
range 04H to 70H but not all values in this range are actually used in XGA. The direct
access registers in the Display Controller are programmed by means of IN or OUT
instructions to the corresponding port; for example, the Memory Access Mode regis-
ter, at 21x9H, can be programmed for 8 bits per pixel and Intel data format as fol-
lows:

; Programming a direct access register of the XGA Display
; Controller group

MOV DX, XGA_REG_BASE ; Register base

ADD DX, 9 ; Add offset of Memory Access
; Mode register

MOV AL,00000011B ; Bitmap for Intel format

; and 8 bits per pixel
ouT DX, AL

The above code fragment assumes that the base address of the Display Controller
register groups has been previously determined and is stored in the variable
XGA_REG_BASE. The operations necessary for determining this base address are
shown in Section 12.2.

© 2003 by CRC Press LLC

Programming the indexed access registers takes place in two steps: first, the de-
sired register is selected by writing a value to the Index register at port 21xAH; sec-
ond, data is read or written to the register by means of the data registers in the range
21xBH to 21xFH. The following fragment shows writing all one bits (FFH) to the
Palette Mask register at offset 64H of the Index register.

; Programming an indexed access register of the XGA Display
; Controller group

MOV DX, XGA_REG_BASE ; Register base

ADD DX, 0AH ; Add offset of Index register

MOV AL, 64H ; Select Palette Mask register
; at offset 64H

MOV AH, OFFH ; Data byte to write

ouT DX, AX ; Select and write data

Notice that the 80x86 instruction OUT DX AX writes the value in AL to the port
number in DX and the value in AH to the port number in DX + 1. The result is that by
using this form of the OUT instructions we can select and access the register with a
single operation.

The following Display Controller registers are particularly interesting to the pro-
grammer:

1. The Interrupt Enable register (located at base address plus 4) is used to unmask the in-
terrupt or interrupt sources that will be used by the software.

2. The Operating Mode register (located at the base address) is usually set to extended
graphics mode.

3. The Aperture Control register (located at base address plus 1) allows enabling the 64K
memory aperture mentioned in Section 12.1.2. as well as selecting the start address of
video memory either at AOOOOH or at BOOOOH. Most applications executing under
MS-DOS use A0000H, the VGA start address for dot addressable graphics.

4. The Memory Access Mode register (located at base address plus 9) allows selecting the
number of bits per pixel and the Intel or Motorola data format.

12.3 Initializing the XGA System

The first XGA programming operation usually consists of initializing and enabling the
video system. The simplest initialization method is by means of the Al services de-
scribed in Chapter 6. An application that is to access the XGA exclusively by means of
Al services need do nothing more than use the HOPEN and HINIT functions to initial-
ize the system. However, programs that access the XGA directly must often perform
additional initialization operations. Two possibilities can be considered:

1. Programs can use the Al HINIT and HOPEN services and, in addition, perform other
initialization operations so as to enable the use of Al services and direct access to XGA
hardware simultaneously.

2. Aprogram canrely entirely on its own hardware initialization routines, and not use the
AT HINIT and HOPEN functions.

Which method is adopted depends on the program's characteristics. If the soft-
ware is to use both, Al services and direct access methods, then the HINIT and

© 2003 by CRC Press LLC

HOPEN functions are necessary. On the other hand, programs that do not use Al ser-
vices can perform the necessary hardware initialization operations. Notice that the
Al is a software black box which manipulates registers and video memory in ways
that are not visible to the application. This creates additional problems for programs
that mix Al services and direct access methods.

The following discussion relates to direct initialization of the XGA system. The
use of the AI HINIT and HOPEN was explained in Chapter 6.

12.3.1 Locating the XGA Hardware

The first initialization task consists of locating the XGA components in the system's
space. The necessary information is found in the PS/2 Programmable Option Select
(POS) registers. Figure 12-1 shows important POS datarelated to the XGA hardware.

POS register 2

716(5|14|3|2|1]|0

1 = XGA enabled
Instance field (0 to 7)

ROM address field
from 0000 = COO00H to 1111 = DEOOOH

POS register 4 (increments of 2000H)

716|5(4|13|2|1]0

1 = 4Mb aperture enabled

Video memory base address

Figure 12-1 XGA Data in POS Registers

The first step in reading the POS registers is determining where these registers
are located. BIOS service number 196, sub-service number 0, of INT 15H, returns the
POS registers base address in the DX register. The following code fragment shows
the required processing.

.**********************|
7

get POS address |

.**********************|
7

; Use service number 196, INT 15H, with AL = 0 to determine base
; address of Programmable Option Select (POS) registers
MOV AX,0C400H ; AH = C4H (service request)
; AL = 0 (sub-service)
INT 15H ; BIOS interrupt
; for microchannel machines only
JNC VALID_POS ; Go i1f POS address returned
JMP NO_XGA ; Error - not microchannel

© 2003 by CRC Press LLC

VALID_POS:

MOV XGA_POS, DX ; Save base address of POS
; An XGA system can be located on the motherboard or in one
; of 9 possible slots. Initialize CX = 0 for motherboard XGA
; CX =1 to 9 for XGA in adapter card

XOR CX,CX ; Start with motherboard

CLI ; Interrupts off

Not all POS values encode XGA data. The valid range for XGA systems is SFDSH
to SFDBH. Service number 196, sub-service number 1, of INT 15H can be used to en-
able each one of 9 possible slots for setup. Then the value stored at the POS register
base is read and compared to the valid range. If the value is within the range an XGA
adapter or motherboard implementation has been detected. In this case the POS reg-
isters contain data required for the initialization of the XGA system. The following
code fragment illustrates the required processing.

; Use BIOS service 196, sub-service number 1, to enable slot
; for setup

GET_POS_O0:
MOV AH, 0C4H ; BIOS service
MOV AL, 01H ; Sub-service number
MOV BX,CX ; Slot number to BX
INT 15H
; Slot enabled for setup
MOV DX, XGA_POS ; POS register 0 and 1
IN AX, DX ; Read ID low and high bytes
; Valid range for XGA systems is 8FD8H to 8FDBH
CMP AX,08FD8H ; Test low limit
JAE TEST_HIGH_LIM ; Go 1f equal or greater
; At this point the POS reports that system is not an XGA
; adapter
NOT_XGA_POS:
INC CX ; CX 1s options counter
CMP CX,9 ; Done all slots?
JB GET_POS_0 ; Go if not at last slot
JMP NO_XGA ; No XGA exit
TEST _HIGH_LIM:
CMP AX, 08FDBH ; Test high limit of range
JA NOT_XGA_POS ; Go 1f out of range
;**********************|
; XGA found |
;**********************|
CLI ; Disable interrupts
; Test if XGA is in motherboard
CMP CX,0 ; 0 is motherboard value
JNE XGA_CARD ; Go 1f not on the motherboard

.**********************|
7

; motherboard XGA |

.**********************|
7

; Port 94H is used to enable and disable motherboard video

MOV AL, ODFH ; Bit 5 = 0 for video setup
MOV DX, 94H ; 94H is system board enable
ouT DX, AL
JMP SHORT GET_POS ; Skip slot setup
;**********************|
; XGA card |

© 2003 by CRC Press LLC

.**********************|
7

XGA_CARD:
MOV AX,0C401H
MOV BX, CX
INT 15H

.**********************|
7

; save POS registers |
;**********************|

GET_POS:
MOV DX, XGA_POS
ADD DX, 2
IN AL, DX
MOV POS_2,AL
INC DX
INC DX
IN AL, DX
MOV POS_4,AL
; At this point POS registers
; variables

.**********************|
7

; re-enable video |
;‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k****‘k‘k‘k‘k|

; Test for XGA in motherboard

CMP CX,0

JNE XGA_ADAPTER
; XGA in motherboard. Set bit

MOV AL, OFFH

ouT 094H, AL

JMP SHORT REG_BASE
XGA_ADAPTER:

MOV AX,0C402H

MOV BX,CX

INT 15H

; Place adapter in setup mode
; Slot number to BL

; Get POS record for the slot id
; POS register at offset 2

; Read data byte

; and store it

; Next POS register

; 1s number 4

; Get contents

; Store it

and 4 have been saved in

; Treat the motherboard

; differently

; Go i1f not in motherboard

in port 94H to re-enable video
; All bits set

; Enable the slot for normal
; operation

The next step in the XGA initialization is calculating the XGA Display Controller
register base by adding the instance value to the template 21x0H mentioned in Sec-
tion 12.1.3. The following code fragment shows the necessary manipulation of the

instance bits.

.**********************|
7

; calculate and store |
; XGA register base |

.**********************|
7

REG_BASE:
STI
MOV AL, POS_2
AND AX, OEH
SHL AX,1
SHL AX,1
SHL AX,1
ADD AX,2100H
MOV XGA_REG_BASE, AX

© 2003 by CRC Press LLC

; Interrupts on again

; Get value at POS register 2
; Mask out all bits except

; ilnstance

; Multiply instance by 8

; to move to second digit

; position

; Add instance to base address
; Store result in variable

12.3.2 Setting the XGA Mode

Once the XGA Display Controller register base has been established the initialization
usually proceeds to set the XGA hard-ware in a pre-established display mode. Al-
though the XGA display modes are unofficial, Table 12-3 shows the ones mentioned in

IBM's documentation.

Table 12-3
XGA Modes
HORIZONTAL VERTICAL
MODE NUMBER TYPE PIXELS PIXELS COLORS
1 132-column text
2 graphics 1024 768 256
3 graphics 1024 768 16
4 graphics 640 480 256
5 direct color 640 480 65536

The fundamental mode setting operation consists of loading most of the Display
Controller registers with pre-established values. These values are listed in the XGA
Video Subsystem section of the IBM Technical Reference Manual for Options and
Adapters, document number 504G-3287-000. This document can be obtained from
IBM Literature Department. Table 12-4 lists the Display Controller registers that

must be initialized during mode setting.

Table 12-4
XGA Display Controller Register Initialization Settings
2 3 4 5 <= MODE
1024 1024 640 640 <=rows
ADDRESS/ 768 768 480 480 <= columns
INDEX REGISTER NAME 256 16 256 65536 <= colors
21x4 Interrupt Enable 00H 00H 00H 00H All interrupts OFF
21x5 Interrupt Status 8FH 8FH 8FH 8FH Reset interrupts
21x0 Operating Mode 04H 04H 04H 04H Graphics modes
21xA Index Register
64 Palette mask 00H 00H 00H 00H Blank display
21x1 Aperture Control 01H 01H 01H 01H 64K at AOOOOH
21x8 Aperture Index 00H 00H 00H 00H |
21x6 Video Mem. Ctrl. 00H 00H 00H 00H [----- Initial values
21x9 Memory Access ModeO3H 02H 03H 04H |
21xA Index Register
50 Display mode 1 01H 01H 01H 01H Prepare for reset
50 Display mode 1 00H 00H 00H 00H Reset CRT
10 x total low 9DH 9DH 63H 63H [-==en- initial values
11 x total high 00H 00H 00H 00H |
12 xdisplay end low 7FH 7FH 4FH 4FH |
13 x display end high 00H 00H 00H 00H |
14 x blank start low 7FH 7FH 4FH 4FH |
15 x blank start high 00H 00H 00H 00H |
16 x blank start low 9DH 9DH 63H 63H |
17 x blank end high 00H 00H 00H 00H |
(continued)

© 2003 by CRC Press LLC

Table 12-4
XGA Display Controller Register Initialization Settings (continued)

2 3 4 5 <= MODE
1024 1024 640 640 <=rows
ADDRESS/ 768 768 480 480 <= columns
INDEX REGISTER NAME 256 16 256 65536 <= colors
21xA Index Register | ------ initial values
18 x sync start low 87H 87H 55H 55H |
19 x sync start high 00H 00H 00H 00H |
1A xsync end low 9CH 9CH 61H 61H |
1B x sync end high 00H 00H 00H 00H |
1C x sync position 40H 40H 00H 00H |
1E x sync position 04H 04H 00H 00H |
20 vy total low 30H 30H 0CH 0CH |
21y total high 03H 03H 02H 02H |
22 y display end low FFH FFH DFH DFH |
23 y display end high 02H 02H 01H 1H |
24y blank start low FFH FFH DFH DFH |
25 y blank start high 02H 02H 01H 01H |
26 y blank start low 30H 30H 0CH 0CH |
27 y blank end high 03H 03H 02H 02H |
28 y sync start low 00H 00H EAH EAH |
29 y sync start high 03H 03H 01H 01H |
2A ysyncend 08H 08H ECH ECH |
2C yline comp low FFH FFH FFH FFH |
2D yline comp high FFH FFH FFH FFH |
36 Sprite control 00H 00H 00H 00H |
40 Start address low 00H 00H 00H 00H |
41 Start address med 0OH 00H 00H 00H |
42 Start address high 00H 00H 00H 00H |
43 Buffer pitch low 80H 40H 50H AOH |
44 Buffer pitch high 00H 00H 00H 00H |
54 Clock select 1 ODH O0DH 00H 00H |
51 Display mode 2 03H 02H 03H 04H |
70 Clock select 2 00H 00H 00H 00H |
50 Display mode 1 OFH OFH C7H C7H |

At this point XGA palette registers must be loaded and memory must be cleared

55 Border color
60 Sprite/Pal low
61 Sprite/Pal high
62 Sprite pre low
63 Sprite pre high
64 Palette mask

00H
00H
00H
00H
00H
FFH

00H
00H
00H
00H
00H
FFH

00H
00H
00H
00H
00H
FFH

00H
00H
00H
00H
00H
FFH

Make visible

The registers in Table 12-4 are listed in the order in which they must be set. No-
tice that before the last group of registers are set, the initialization routine must load
the XGA palette and clear all video memory. Failure to do this last operation could
result in the display of random data at the conclusion of the mode setting operation.
The actual coding can be based on data stored in two arrays: one holds the values
for the first group of Display Controller registers and the second one for the group
of registers to be initialized after the palette is loaded and the screen cleared. The
following fragment demonstrates the necessary manipulations.

© 2003 by CRC Press LLC

DATA SEGMENT

; Mode number ----|

; 640x480x65536 5 ————--m |

; 640x480x256 4 ——— - | |

; 1024x768x16 K it | | |

; 1024x768x%x256 2 ————- | | |

; Index ---—---—------ | | | | |

; Register ----| | | | |

S PR) P P

XGA_V1 DB 004H,000H,000H,000H,000H,000H ; Interrupt enable
DB 005H,000H, 08FH, 08FH, 08FH, 08FH ; Interrupt status
DB 000H,000H,004H,004H,004H,004H ; Operating mode

(missing values as in Table 12-4)

DB 00AH,050H,00FH,00FH,0C7H,0C7H ; Display mode 1

DB OFFH, OFFH, OFFH, OFFH, OFFH, OFFH ; End of the list
XGA_V2 DB 00AH, 055H,000H,000H,000H, 000H ; Border color

(missing values as in Table 12-4)

DB 00AH, 064H, OFFH, OFFH, OFFH, OFFH ; Palette mask
DB OFFH, OFFH, OFFH, OFFH, OFFH, OFFH ; End of the list
Variables used by the XGA_MODE procedure
MODE DW 0 ; Mode number
; Previously initialized base address of the XGA Display
; Controller (see Section 12.2.1)
XGA_REG_BASE DW 0 ; Address variable

7

DATA ENDS

CODE SEGMENT

XGA__MODE PROC NEAR

; Procedure to initialize an XGA graphics mode by setting the
; video system registers directly

; On entry:

; AL = mode number (valid range is 2 to 5)

; On exit:

; carry clear if no error

MOV AH,O0 ; Clear high byte

MOV MODE, AX ; Mode to variable

CMP MODE, 6 ; Mode number out of range?

JB TEST_MODEL ; Go 1f less than 9

JMP BAD_MODE ; illegal entry value for mode

; Mode 0 = VGA BIOS mode number 3

; Mode 1 = 132 column VGA text mode
; These modes are not valid
TEST_MODEL1L:

CMP MODE, 1 ; 80-column VGA text mode?
JA VALID_MODE ; Go i1f range is > 1
JMP BAD_MODE ; Error exit for invalid mode

.**********************|
7

; initialize first |

© 2003 by CRC Press LLC

; register group |

;**********************|

VALID_MODE:

; The table at XGA_V1 contains the values to be sent to the
; XGA register in order to initialize the corresponding mode

LEA SI,XGA_V1 ; Point to start of values table
MOV BX, MODE ; Use mode as an offset
CALL INIT_REG_BLK ; Local init procedure

;**********************|

; init palette

;**********************|

; Palette initialization at this point

; Notice that this routine must be mode-specific

.**********************|
7

; clear video memory |
;**********************|

; Video memory cleared at this point
; Notice that this routine must be mode-specific

;**********************|

; initialize second |

; register group |

;**********************|

; The table at XGA_V2 contains the values to be sent to the

; XGA register in order to initialize the second group of XGA

; registers
LEA SI,XGA_V2 ; Point to start of values table
MOV BX, MODE ; Use mode as an offset
CALL INIT_REG_BLK ; Local init procedure
MOV XGA_CURBK, -1 ; Reset the bank counter
MOV AX,MODE ; Remember the mode we're in
MOV XGA_CUR_MODE, AX
MOV AX,1 ; Return ok
RET
BAD_MODE:
MOV AX,0 ; Return failure
RET
XGA_MODE ENDP
INIT_REG_BLK PROC NEAR

; Auxiliary procedure for XGA_SET_MODE

; Initialize block of XGA register until FFH is found

; On entry:

; SI --> formatted register data

; BX = display mode

; The value at offset 0 of XGA_V1 is the register number

; The value at offset 1 is the index register number if the

; register is 0AH. The remaining entries is register data for
; each mode

REG_DATA:
MOV DX, XGA_REG_BASE ; XGA register base
MOV AH,O0 ; High byte of offset is 0
MOV AL, [ST] ; Low byte of offset

; Register value OFFH marks the end of the table

© 2003 by CRC Press LLC

CMP AL, OFFH ; End of the table?

JE END_OF_BLOCK ; End of register setup
ADD DX, AX ; Add register offset to base
CMP AL, OAH ; Test for an index register
JE INDEXED ; Go if index register

; At this point register is not at offset 0AH, therefore data
; 1s output directly

MOV AL, [SI+BX] ; Get data value from table
ouT DX, AL ; and send to port
JMP SHORT NEXT_REG ; Continue
INDEXED:
MOV AL, [STI+1] ; Get index register number
MOV AH, [SI+BX] ; Get data byte from table
ouT DX, AX ; Output data to index register
NEXT_REG:
ADD SI,6 ; Index to next register in table
JMP REG_DATA
END_OF_BLOCK:
RET
INIT_REGT_BLK ENDP

An XGA initialization routine can be found in the procedure named INIT_XGA
contained in the XGA2 module of the GRAPHSOL library included in the book's soft-
ware. Because of the complexities in the design of mode-specific palette initializa-
tion and screen clearing routines for all XGA modes, the INIT_XGA procedure does
not perform these operations.

12.3.3 Loading the XGA Palette

Color display in XGA systems is by means of a Color Look-up Table (LUT), a Digi-
tal-to-Analog converter (DAC) and associated hardware. The actual structure is remi-
niscent, although not identical, of the one used in VGA systems. The XGA palette was
described in Section 6.1.4. Bit plane mapping for a 256-color mode can be seen in Fig-
ure 6.3. The XGA color palette registers can be set by means of the HLDPAL Al service
described in Section 6.4.2. In addition, a program can assume control of the XGA pal-
ette hardware and set its values directly.

We saw that XGA palette data consists of red, blue, and green values that are
stored in corresponding registers. The mechanism resembles the one used by the
VGA palette in the 256 color modes. However, the XGA palette is a simpler device
than the one in VGA since no Palette or Color Select registers are used (see Figure
3.8). In other words, the XGA palette consists of 256 registers in which the red, blue,
and green DAC values are stored. A pixel color is nothing more than a palette regis-
ter number; the actual color in which the pixel is displayed depends on the value
stored in the corresponding Palette register.

The XGA palette consists of 256 locations, each location divided into three fields.
The first field corresponds to the red DAC value, the second one to the blue, and the
third field to the green. The XGA allows two update modes: in the 3-value update
mode data is written to the palette registers in groups of three items representing
the red, blue, and green colors. In the 4-value update mode data is written in groups
of four items, the first three represent the red, blue, and green values, and the fourth
item is a padding byte which is ignored by the hardware. The 3-value sequence is
similar to the one used in VGA systems. The 4-value sequence is the one used by the

© 2003 by CRC Press LLC

AI HLDPAL function. The update mode is selected by means of bit 2 of the Palette
Sequence register. Notice that in the XGA palette the 6 high-order bits are signifi-
cant while in VGA the significant bits are the 6 low ones (see Figure 6.5).

The following code fragment shows the necessary processing for setting the 256

XGA palette registers from an array in RAM.

DATA SEGMENT

7
7
7
7

7

Double-bit IRGB palette in the following format
76543210 <= Bits
I I RRGGBB <= Color codes

; | R B G R B G | REG
IRGB_SHADES DB 000,000,000,000,036,072,036,000 ; 1
DB 036,108,036,000,036,144,036,000 ; 3

7
7

7

(missing data as in the code fragment
in Section 6.4.2)

DB 252,144,252,000,252,180,252,000 ; 254
DB 252,216,252,000,252,252,252,000 ; 255

Previously initialized base address of the XGA Display
Controller (see Section 12.2.1)

XGA_REG_BASE DW 0 ; Address variable
DATA ENDS
CODE SEGMENT

Code to set 256 XGA Palette registers
On entry:

SI --> 1024-byte color table in RGBx format
Assumes that XGA system 1s set in a graphics mode

LEA SI, IRGB_SHADES ; Pointer to data array
MOV DX, XGA_REG_BASE ; Base address of XGA Display
; Controller register
Select Index register at offset 0AH
ADD DX, 0AH ; To Index register
Write O00OH (in AH) to Palette Mask register (64H)
This value is ANDed with display memory. Clearing all bits
makes the palette invisible during setup

MOV AX,0064H ; make invisible
ouT DX, AX

Write 00H (in AH) to Border Color register (55H)
MOV AX,0055H ; border color
ouT DX, AX

Write 00000100B (in AH) to Palette Sequence register (66H) to
select four-color write mode (RGBx) and to start with the
Red color code
MOV AX,0466H ; Palette Sequence register
ouT DX, AX
Write O0OH (in AH) to Palette Index register low (60H)
and high (61H) to select first DAC register
MOV AX,0060H ; Start at palette 0

© 2003 by CRC Press LLC

ouT DX, AX

MOV AX,0061H ; Sprite index high
ouT DX, AX
; SI --> table of palette colors
MOV CX,1024 ; Counter for 256 * 4
MOV AX,065H ; Select Data register
ouT DX, AL
INC DX ; Point to first register

; Loop to send 4 blocks of 256 bytes each to port 065H
NEW_PALETTE:

MOV AL, [ST] ; Get byte from table

ouT DX, AL ; Send to port

INC ST ; Bump table pointer

LOOP NEW_PALETTE

DEC DX ; Back to Select register

; Write FFH (in AH) to Palette Mask register (64H)
; This value i1s ANDed with display memory. Setting all bits
; makes the palette visible again

MOV AX,0O0FF64H ; All bits set

ouT DX, AX ; To make visible
; At this point all Palette registers have been loaded from
; the data array supplied on entry

The procedure named XGA_PALETTE in the XGA2 module of the GRAPHS-OL li-
brary, furnished with the book, can be used to perform palette loading. The code in
this procedure is similar to the one listed above.

12.4 Processor Access to XGA Video Memory

An application can access XGA video memory through the CPU or by means of the
XGA graphics coprocessor. Coprocessor programming is discussed in Section 12.5.
The present discussion relates to accessing the XGA video memory space by means of
the 80386 or 486 Central Processing Unit.

The system processor can access XGA memory to perform write and read opera-
tions. The write operation sets one or more screen pixels to the value stored in a
processor register. The read operation transfers a pixel's value into a processor reg-
ister. In Section 12.1.2 we saw that the XGA system can configure video memory by
means of three possible apertures. The 4Mb aperture is the one used by the graphics
coprocessor. Using this memory aperture will be discussed later in this chapter. The
1Mb memory aperture is typically used in multitasking environments.

MS-DOS applications usually access XGA video memory by means of multiple
memory banks of 64K each. This is called the 64K aperture. Before this aperture is
used the program must make sure that the Aperture Control register (at base ad-
dress plus 1) has been initialized to the value 01H (see Table 12-4). The banks' struc-
ture at this aperture depends on the display mode. At the 1,024 by 768 modes the
64K aperture can be visualized as 12 memory blocks of 64K each. This visualization
is shown in Figure 12-2, on the following page

© 2003 by CRC Press LLC

Bank 11

Figure 12-2 Block Structure in XGA 64K Aperture

Notice that, when using the 64K aperture, the start address for the video memory
in each bank is selected by means of the Aperture Control register. The valid values
are AOOOOH and BOOOOH. The first one coincides with the base address used in VGA
graphics modes. If the start address of AOOOOH is selected, then each bank extends
from AOOOOH to BOOOOH. Which bank is currently selected depends on the setting of
the Aperture Index register, located at base address plus 8 of the XGA Display Con-
troller group. If the base address of the Display Controller group is stored in the
variable XGA_REG_BASE and the bank number in the AL register, then enabling the
bank can be coded as follows:

MOV DX, XGA_REG_BASE ; XGA base register address
ADD DX, 08H ; Aperture Index register
ouT DX, AL ; Bank number is in AL

The total number of banks available depends on the display mode selected. We
saw that 12 banks of 65,5636 memory units are needed to encode all the pixels in the
1,024 by 768 modes. However, in the 640 by 480 pixel mode each full screen consists
of 307,200 pixels, which require only 5 memory banks of 65,536 units each.

12.4.1 Setting Screen Pixels

In order to set a screen pixel the display logic must take into account whether the base
address of the video buffer for the 64K aperture is located at AOOOH or at BOOOH. In ad-
dition, the code must perform the necessary bank switching operation. Processing
performance in this case can be improved by storing the value of the currently se-
lected bank in amemory variable so that bank switching can be bypassed if the pixel is
located in the currently selected bank. The following code fragment writes a data byte

© 2003 by CRC Press LLC

to avideo memory address. This fragment does not take into account the currently se-

lected bank.

; Write a screen pixel accessing XGA memory directly
; On entry:

; CX = x coordinate of pixel

; DX = y coordinate of pixel

; BL = pixel color in 8-bit format

; Note: code assumes that XGA is in a 1024 by 768 pixel mode

; in 256 colors and that AO00OH is the start address for
; the video buffer using the 64K aperture

; Set ES to video buffer base address

MOV AX,0A000H ; Base for all graphics modes
MOV ES, AX ; To ES segment
MOV AL, BL ; Color to AL
; Get address in XGA system
CLC ; Clear carry flag
PUSH AX ; Save color value
MOV AX,1024 ; 1024 dots per line
MUL DX ; DX holds line count of address
ADD AX,CX ; Plus this many dots on the line
ADC DX, 0 ; Answer in DX:AX
; DL = bank, AX = offset
MOV BX,AX ; Save offset in BX
MOV AX,DX ; Move bank number to AL

.**********************|
7

; change banks
;‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k****‘k‘k‘k‘k|

MOV DX, XGA_REG_BASE ; XGA base register address
ADD DX, 08H ; Aperture index register
ouT DX, AL ; Bank number is in AL

POP AX ; Restore color value

.**********************|
7

; set the pixel
;**********************|

MOV ES: [BX],AL ; Write the dot

The procedure named XGA_PIXEL in the XGA2 module of the GRAPHSOL library
sets a screen pixel using processing similar to that shown in the above code sample.
A routine to set the entire screen to a specific color value can be simplified by using
80x86 string move instructions. The following code fragment shows the processing
necessary to clear the entire vide display in an XGA 1,024-by-768 pixel mode.

; Clear video memory using block move

MOV AX,0AQ000H ; Video memory base address
MOV ES,AX ; To the ES register
MOV BL, 0 ; BL is bank counter
; Select bank
NEXT_BANK:
MOV DX, XGA_REG_BASE ; Select Page
ADD DX, 08H ; To Aperture Index register
MOV AL, BL ; Bank number
ouT DX, AL ; Select bank in AL
; Write 65536 bytes of 00H in current bank
MOV CX,0FFFFH ; CX 1s byte counter

© 2003 by CRC Press LLC

MOV AX, 0 ; Attribute to place in VRAM

CLD ; Forward direction
MOV DI,O0 ; Start of block
REP STOSB ; Store 65536 bytes

; Bump bank
INC BL
CMP BL,12 ; 12 is past last bank
JNE NEXT_BANK

The procedure named XGA_CLS in the XGA2 module of the GRAPHSOL library
clears the screen using processing similar to the one listed above.

12.4.2 Reading Screen Pixels

A write routine that accesses the video memory space through the Central Processing
Unit can be easily converted to read the value of screen pixels. The conversion con-
sists mainly of changing the write operation for a read operation and in making other
minor register adjustments. The following code fragment can be used to read the value
of a screen pixel into a CPU register.

; Read a screen pixel accessing XGA memory directly

; On entry:

; CX = x coordinate of pixel
; DX = y coordinate of pixel
; On exit:

; BL = pixel color

; Note: code assumes that XGA is in a 1024 by 768 pixel mode

; in 256 colors and that AO00O0H is the start address for
; the video buffer using the 64K aperture

; Set ES to video buffer base address

MOV AX,0A000H ; Base for all graphics modes
MOV ES,AX ; To ES segment
; Get address in XGA system
CLC ; Clear carry flag
PUSH AX ; Save color value
MOV AX,1024 ; 1024 dots per line
MUL DX ; DX holds line count of address
ADD AX,CX ; Plus this many dots on the line
ADC DX, 0 ; Answer in DX:AX
; DL = bank, AX = offset
MOV BX, AX ; Save offset in BX
MOV AX, DX ; Move bank number to AL

.**********************|
7

; change banks
;‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k*‘k***|

MOV DX, XGA_REG_BASE ; XGA base register address
ADD DX, 08H ; Aperture Index register
ouT DX, AL ; Bank number is in AL

POP AX ; Restore color value

.**********************|
7

; read the pixel |

.**********************|
7

MOV BL, ES: [BX] ; Read pixel in BL

© 2003 by CRC Press LLC

12.4.3 Programming the XGA Direct Color Mode

Mode number 4 in Table 12-3 is called the direct color mode. It consists of 640 by 480
pixels in 65,536 colors. Notice that this mode is available in XGA systems equipped
with the full maximum VRAM of 1,024K. The XGA direct color mode presents some
unique characteristics, among them the most extensive color range. In this mode the
pixel color is determined by a 16-bit value, which encodes 65,536 colors that can be
represented. The actual pixel color is generated independently of the setting of the
DAC registers, for which reason the direct color mode has also been referred to as the
palette bypass mode. The color encoding of the 16-bit value for the direct color mode
is shown in Figure 12-3.

15 |14 |13 {12 |11 |10 9 8 7 6 5 4 3 2 1 0

RED (5 bits) | GREEN (6 bits) | BLUE (5 bits) |

Figure 12-3 Bitmapping in XGA Direct Color Mode

Notice that the color bitmap in Figure 12-3 contains 5 bits for the blue and red ele-
ments and 6 bits for the green element. This 5-6-5 configuration allows 64 shades of
green and 32 shades of both blue and red colors. The argument in favor of having
more shades of green than of red and blue is that the human eye is more sensitive to
the green portion of the spectrum.

The Direct Color Palette

Although the DAC registers are bypassed during direct color mode operation, the IBM
documentation states that the DAC registers must be loaded with specific data for op-
eratinginthe Direct Color mode. Table 12-5 shows the values recommended by IBM.

Notice that bit 7 of the Border Color register (at offset 556H) is used to select be-
tween the first and second group of values to be entered in the direct color palette.
Also that the red and blue components are always zero, while the green component
is incremented by 8 for each successive register. The following code fragment