
APPLICATION
NOTE

Ap·113

February 1981

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may
appear in this document nor does it make a commitment to update the information contained herein.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication or
disclosure is subjectto restrictions stated in Intel's software license, or as defined in ASPR 7-104.9 (a) (9). Intel Corporation
a!=;sumes no resDonsibilitv for the use of anv circuitry other than circuitry embodied in an Intel product. No other circuit
patent licenses are implied.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of
Intel Corporation.

The following are trademarks of Intel Corporation and may only be used to identify Intel products:

BXP Intelevision MULTIBUS*
CREDIT Intellec MULTIMODULE
i iSBC Plug-A-Bubble
ICE iSBX PROMPT
ICS Library Manager Promware
im MCS RMX
Insite Megachassis UPI
Intel Micromap ~Scope

System 2000

and the combinations of ICE, iCS, iSBC, MCS or RMX and a numerical suffix.

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of Mohawk
Data Sciences Corporation.

*MUL TIBUS is a patented Intel bus.

Additional copies of this manual or other Intel literature may be obtained from:

Intel Corporation
Literature Department SV3-3
3065 Bowers Avenue
Santa Clara, CA 95051

© INTEL CORPORATION, 1981 AFN-013008-1

Getting Started With
the Numeric Data

Processor

LITERATURE REFERENCE

Title

Ap·113

Contents

INTRODUCTION

iAPX 86,88 Base 1
Nomenclature 1
N PX Overview 2
8087 Emulator Overview 3
iSBC 337 Overview 4

CONSTRUCTING AN iAPX 86
OR iAPX 88 NUMERICS SYSTEM

Wiring up the 8087 5
What is the iAPX 86,88

Coprocessor interface? 7
8087 Coprocessor Operation 10
RQ/GT Connection 13
iAPX 86/20, 88/20 13
iAPX 86/21, 88/21 13
iAPX 86/22, 88/22 15
8087 INT Connection 15

GETTING STARTED IN SOFTWARE

How to Initialize the NPX 20
Concurrency Overview 20
Instruction Synchronization 21
Data Synchronization 22
Error Synchronization 23
Deadlock 24
Synchronization and the Emulator 25
Special Control Instructions of the NPX 25

PROGRAMMING TECHNIQUES

Using Numeric Registers and Instructions 26
NPX Register Usage 26
Programming Conventions 27

PROGRAMMING EXAMPLES

Appendix A Overview 28
Appendix B Overview 30
Appendix C Overview 32
Appendix D Overview 44
Appendix E Overview 52

The 8086 Family User's Manual
Stock No.

205885
205993

Cost
7.50
2.00 The 8086 User's Manual Numerics Supplement

3065 Bowers Avenue
SV 3-3
Santa Clara, CA 95051

(408) 734-8102, Ext. 598

Intel Corporation Assumes no responsiblity for the use of any circuitry embodied in an Intel product. No other circuit patent licenses are implied.

iii

Ap·113

INTRODUCTION

This is an application note on using numerics in Intel's
iAPX 86 or iAPX 88 microprocessor family. The nu­
merics implemented in the family provide instruction
level support for high-precision integer and floating
point data types with arithmetic operations like add,
subtract, multiply, divide, square root, power, log and
trigonometrics. These features are provided by members
of the iAPX 86 or iAPX 88 family called numeric data
processors.

Rather than concentrate on a narrow, specific applica­
tion, the topics covered in this application note were
chosen for generality across many applications. The
goal is to provide sufficient background information so
that software and hardware engineers can quickly move
beyond needs specific to the numeric data processor and
concentrate on the special needs of their application.
The material is structured to allow quick identification
of relevant material without reading all the material
leading up to that point. Everyone should read the in­
troduction to establish terminology and a basic
background.

iAPX 86,88 BASE

The numeric data processor is based on an 8088 or 8086
microprocessor. The 8086 and 8088 are general purpose
microprocessors, designed for general data processing
applications. General applications need fast, efficient
data movement and program control instructions. Ac­
tual arithmetic on data values is simple in general appli­
cations. The 8086 and 8088 fulfill these needs in a low
cost, effective manner.

However, some applications need more powerful arith­
metic instructions and data types than a general purpose
data processor provides. The real world deals in frac­
tional values and requires arithmetic operations like
square root, sine, and logarithms. Integer data types
and their operations like add, subtract, multiply, and
divide may not meet the needs for accuracy, speed, and
ease of use.

Such functions are not simple or inexpensive. The
general data processor does not provide these features
due to their cost to other less-complex applications that
do not need such features. A special processor is re­
quired, one which is easy to use and has a high level of
_______ !_ L __ ...lI ________ ..1 __ ~ ... _____ _

~uppun 111 HClfUWCUC: ClHU ~UllWClfC:.

The numeric data processor provides these features. It
supports the data types and operations needed and
allows use of all the current hardware and software sup­
port for the iAPX 86/10 and 88/10 microprocessors.

The iAPX 86 and iAPX 88 provide two imple­
mentations of a numeric data processor. Each offers
different tradeoffs in performance, memory size, and
cost.

1

One alternative uses a special hardware component, the
8087 numeric processor extension, while the other is
based on software, the 8087 emulator. Both component
and software emulator add the extra numerics data
types and operations to the 8086 or 8088.

The component and its software emulator are com­
pletely compatible.

Nomenclature

Table one shows several possible configurations
of the iAPX 86 and iAPX 88 microprocessor family.
The choice of configuration will be decided by the
needs of the application for cost and performance
in the areas of general data processing, numerics,
and 110 processing. The combination of an 8086 or
8088 with an 8087 is called an iAPX. 86/20 or 88/20
numeric data processor. For applications requir­
ing high I/O bandwidths and numeric perfor­
mance, a combination of 8086, 8087 and 8089 is an
iAPX 86/21 numerics and I/O data processor. The
same system with an 8088 CPU for smaller size
and lower cost, due to the smaller 8-bit wide
system data bus, is referred to as an iAPX 88/21.
Each 8089 in the system is designated in the units
digit of the system designation. The term 86/2X or
88/2X refers to a numeric data processor with any
number of 8089s.

Throughout this _ application note, I will use the
terms NDP, numeric data processor, 86/2X, and
88/2X synonymously. Numeric processor exten­
sion and NPX are also synonymous for the func­
tions of either the 8087 component or 8087
emulator. The term numeric instruction or
numeric data type refers to an instruction or data
type made available by the NPX. The term host will
refer to either the 8086 or 8088 microprocessor.

Table 1. Components Used in i/APX 86,88

Configurations

System Name 8086 8087 8088 8089

iAPX 86/10 1
iAPX 86/11 1 1
iAPX ~6/12 1 2
iAPX 86/20 1 1
iAPX 86/21 1 1 1
iAPX 86/22 1 1 2

iAPX 88/10 1
1

iAPX 88/11 1 1
iAPX 88/12 1 2
iAPX 88/20 1 1
iAPX 88/21 1 1 1
iAPX 88/22 1 1 2

Ap·113

NPX OVERVIEW

The 8087 is a coprocessor extension available to
iAPX 86/1X or iAPX 88/1X maximum mode
microprocessor systems. (See page 7). The 8087
adds hardware support for floating point and ex­
tended precision integer data types, registers, and
instructions. Figure 1 shows the register set
available to the NDP. On the next page, the seven
data types available to numeric instructions are
listed (Fig 2). Each data type has a load and store
instruction. Independent of whether an 8087 or its
emulator are used, the registers and data types all
appear the same to the programmer.

All the numeric instructions and data types of the NPX
are used by the programmer in the same manner as the
general data types and instructions of the host.

The numeric data formats and arithmetic operations
provided by the 8087 conform to the proposed IEEE
Microprocessor Floating Point Standard. All the pro­
posed IEEE floating point standard algorithms, excep­
tion detection, exception handling, infinity arithmetic
and rounding controls are implemented. 1

The numeric registers of the NPX are provided for fast,
easy reference to values needed in numeric calculations.
All numeric values kept in the NPX register file are held
• .., "" ... I , ,.,..

.i..i. "" vV" v .. " ... "" yv) .&-...w.a.l.VU.&J.6 yV.LJ. V.i..lJ. ... u"- ''W.I..i..1.'"''''''''

is the same as the 80-bit temporary real data type.

All data types are converted to the 80-bit register file
format when used by the NPX. Load and store instruc­
tions automatically convert between the memory
operand data type and the register file format for all
numeric data types. The numeric load instruction
specifies the format in which the memory operand is ex­
pected and which addressing mode to use.

All host base registers, index registers, segment
registers, and addressing modes are available for
locating numeric operands. In the same manner, the
store instruction also specifies which data type to use
and where the value is located when stored into
memory.

Selecting Numeric Data Types
As figure 2 shows, the numeric data types are of dif­
ferent lengths and domains (real or integer). Each
numeric data type is provided for a specific function,
they are:

16-bit word integers -Index values, loop counts,
and small program control
values

l"An Implementation Guide to a Proposed Standard for Floating
Point" by Jerome Coonen in Computer, Jan. 1980 or the Oct. 1979
issue of ACM SIGNUM, for more information on the standard.

2

32-bit short integers

64-bit long integers

18-digit packed
decimal

32-bit short real

64-bit long real

80-bit temporary
real

-Large integer general
computation

-Extended range integer
computation

-Commercial and decimal
conversion arithmetic

-Reduced range and
accuracy is traded for
reduced memory require­
ments

-Recommended floating
point variable type

-Format for intermediate
or high precision calcu-
lations

Referencing memory data types in the NDP is not
restricted to load and store instructions. Some arith­
metic operations can specify a memory operand in one
of four possible data types. The numeric instructions
compare, add, subtract, subtract reversed, multiply,
divide, and divide reversed can specify a memory
operand to be either a 16-bit integer, 32-bit integer,
32-bit real, or 64-bit real value. As with the load and
store operations, the arithmetic instruction specifies the
address and expected format of the memory operand.

The remaining arithmetic operations: square root,
modulus, tangent, arctangent, logarithm, exponentiate,
scale power, and extract power use only register
operands.

15 FILE 0 79 NPX STACK 0
AX R1 EXPONENT SIGNIFICANO
BX R2

CX R3

OX R4

SI R5

01 R6
BP R7

SP R8

IP NPX STATUS
FLAGS NPX MODE

EI
Figure 1. NDP Register Set for iAPX 86/20, 88f20

AP·113

The register set of the host and 8087 are in separate
components. Direct transfer of values between the two
register sets in one instruction is not possible. To trans­
fer values between the host and numeric register sets,
the value must first pass through memory. The memory
format of a 16-bit short integer used by the NPX is iden­
ticai to that of the host, ensuring fast, easy transfers.

Since an 8086 or 8088 does not provide single instruc­
tion support for the remaining numeric data types, host
programs reading or writing these data types must con­
form to the bit and byte ordering established by the
NPX.

Writing programs using numeric instructions is as sim­
ple as with the host's instructions. The numeric instruc­
tions are simply placed in line with the host's instruc­
tions. They are executed in the same order as they ap­
pear in the instruction stream. Numeric instructions
follow the same form as the host instructions. Figure 2
shows the ASM 86/88 representations for different
numeric instructions and their similarity to host instruc­
tions.

FILD
FIADD
FADD

DATA
FORMATS

WORD INTEGER

SHORT INTEGER

LONG INTEGER

PACKED BCD

SHORT REAL

LONG REAL

TEMPORARY REAL

RANGE

104

109

1019

1018

10:!:38

10:!: 308

10:!:4932

PRECISION

16 BITS

32 BITS

64 BITS

18 DIGITS

24 BITS

53 BITS

64 BITS

VALUE
TABLE [BX]
ST,ST(1)

MOST SIGNIFICANT BYTE

7 01 7 01 7

115 10J

131

163

S 1 - 1017 0161

S IE7 EoIF1

S IE10 Eo I F1

S IE14 Eo I Fo

INTEGER: 1
PACKED BCD: (- 1)S(D17 ... Dol

01 7

8087 EMULATOR OVERVIEW

The NDP has two basic implementations, an 8087 com­
ponent or with its software emulator (E8087). The deci­
sion to use the emulator or component has no effect on
programs at the source level. At the source level, all in­
structions, data types, and features are used the same
way.

The emulator requires all numeric instruction ope odes
to be replaced with an interrupt instruction. This
replacement is performed by the LINK86 program. In­
terrupt vectors in the host's interrupt vector table will
point to numeric instruction emulation routines in the
8087 software emulator.

When using the 8087 emulator, the linker changes all the
2-byte wait-escape, nop-escape, wait-segment override,
or nop-segment override sequences generated by an
assembler or compiler for the 8087 component with a
2-byte interrupt instruction. Any remaining bytes of the
numeric instruction are left unchanged.

01 7 01 7 01 7 01 7 01 7 01 7 01

TWO'S COMPLEMENT

10 I TWO'S COMPLEMENT

10 I
TWO'S

COMPLEMENT

J 01 DoJ

F231 Fo IMPLICIT

FS21 Fo IMPLICIT

F63J

REAL: (-1)S(2E.BIAS) (Fo.F1 ...)
BIAS = 127 FOR SHORT REAL

1023 FOR LONG REAL
16383 FOR TEMP REAL

Figure 2. NPX Data Types

3

Ap·113

When the host encounters numeric and emulated in­
struction, it will execute the software interrupt instruc­
tion formed by the linker. The interrupt vector table will
direct the host to the proper entry point in the 8087
emulator. Using the interrupt return address and CPU
register set, the host will decode any remaining part of
the numeric instruction, perform the indicated opera­
tion, then return to the next instruction following the
emulated numeric instruction.

One copy of the 8087 emulator can be shared by all pro­
grams in the host.

The decision to use the 8087 or software emulator is
made at link time, when all software modules are
brought together. Depending on whether an 8087 or its
software emulator is used, a different group of library
modules are included for linking with the program.

If the 8087 component is used, the libraries do not add
any code to the program, they just satisfy external refer­
ences made by the assembler or compiler. Using the
emulator will not increase the size of individual modu­
les; however, other modules requiring about 16K bytes
that implement the emulator will be automatically
added.

Selecting between the emulator or the 8087 can be very
easy. Different versions of submit files performing the
1O t... ". a .. ~t;,... ,..~ ha 0...1 t,... C'no,..;4·'" tho r1,fforont C'~t nf . ~ .
library modules needed. Figure 3 shows an example of
two different submit files for the same program using
the NPX with an 8087 or the 8087 emulator.

iSBC 337™ MUL TIMODULETM Overview

The benefits of the NPX are not limited to systems
which left board space for the 8087 component or mem­
ory space for its software emulator. Any maximum
mode iAPX 86/1X or iAPX 88/1X system can be up­
graded to a numeric processor. The iSBC 337 MUL­
TIMODULE is designed for just this function. The
iSBC 337 provides a socket for the host microprocessor
and an 8087. A 4O-pin plug is provided on the underside
of the 337 to plug into the original host's socket, as
shown in Figure 4. Two other pins on the underside of
the MULTIMODULE allow easy connection to the
8087 INT and RQ/GTI pins.

4

8087 BASED LINK/LOCATE COMMANDS

L1NK86 :F1:PROG.OBJ, IO.L1B, 8087.L1B TO
:F1:PROG.LNK

LOC86 :F1:PROG.LNK TO :F1:PROG

SOFTWARE EMULATOR BASED
LINK/LOCATE COMMANDS

L1NK86 :F1 :PROG.OBJ, IO.L1B, E8087.L1B,
E8087 TO :F1:PROG.LNK

LOC86 :F1:PROG.LNK TO :F1:PROG

Figure 3. Submit File Example

Figure 4. MUL TIMODULE TM Math Mounting Scheme

Ap·113

CONSTRUCTING AN iAPX 86/2X OR iAPX
88/2X SYSTEM

This section will describe how to design a micropro­
cessor system with the 8087 component. The discussion
will center around hardware issues. However, some of
the hardware decisions must be made based upon how
the software will use the NPX. To better understand
how the 8087 operates as a local bus master, we shall
cover how the coprocessor interface works later in this
section.

Wiring up the 8087

The 8087 can be designed into any 86/1X or 88/1X
system operating in maximum mode. Such a system
would be designated an 86/2X or 88/2X. Figure 5 shows
the local bus interconnections for an iAPX 86/20 (or
iAPX 88/20) system. The 8087 shares the maximum
mode host's multiplexed address/data bus, status sig­
nals, queue status signals, ready status signal, clock and
reset signal. Two dedicated signals, BUSY and INT, in­
form the host of current 8087 status. The 10K pull-down
resistor on the BUSY signal ensures the host will always
see a "not busy" status if an 8087 is not installed.

Adding the 8087 to your design has a minor effect on
hardware timing. The 8087 has the exact same timing
and equivalent DC and AC drive characteristics as a
host or lOP on the local bus. All the local bus logic,
such as clocks ready, and interface logic is shared.

The 8087 adds 15 pF to the total capacitive loading on
the shared address/data and status signals. Like the
8086 or 8088, the 8087 can drive a total of 100 pF
capacitive load above its own self load and sink 2.0 rnA
DC current on these pins. This AC and DC drive is suf­
ficient for an 86/21 system with two sets of data
transceivers, address latches, and bus controllers for
two separate busses, an on-board bus and an off-board
MUL TIBUSTM using the 8289 bus arbiter.

Later in this section, what to do with the 8087 INT and
RQ/GT pins, is covered.

It is possible to leave a prewired 4O-pin socket on the
board for the 8087. Adding the 8087 to such a system is
as easy as just plugging it in. If a program attempts to
execute any numeric instructions without the 8087 in­
stalled, they will be simply tieated as 1"-~OP instructions
by the host. Software can test for the existence of the
8087 by initializing it and then storing the control word.
The program of Figure 6 illustrates this technique.

5

RDY2

'" I~ ~ :>
CI)

<C

~ 8284A
w
<C
(\j

:>
---<.C-f~

Z ---OI w
C"l <C

_R D_Y_1 __ --I>
~ CI

cr:

I

I

8282

~

Ol z_
~ ::\.

I~ 1--_--+----11
I

CI ;:::
z
C!lJ__---------'

Ol
l.::
...J

Ap·113

~I

u~-----~-~-r_------------------~-------------~_+_r~
<.C I~ I- co

W
CI)

~~o-----.-r--4--r-------------------~----------~
:> ~

~J-----~-+-r-~-r-----------------------4----------~
w Lt:
cr:

8282

- N ~ ~ ~ • ~i· I

Note 1

l.::
'----+--+-----:-:i ...J

N U

8286

1cr:1=-----,
j:: '¢
C

Wf---
...I lI'l
<C

8oo8dC3C3o~~
ClCICCCCClC

~ 4 ~ :~: ~i ~i~~ I
W

O NC"l'¢lI'l<.C·. o Ol
aJaJaJaJaJaJ~ aJ

O N"''¢lI'l<.C ~O-;;;-­
aJaJaJaJaJaJaJaJ

Ol I

CO

I"" 1"'1"'1'" IC?I"'I ::::::
;;:;;:;;:;;:;;:;;:~~

;:!I ;:!I ~!I ;=!I ;:!I ;::!I ;.' ~I
I.O,¢MNr-O ;
.................. ,.... ... C)-a)

CI C CI C C C CI '0

Figure 5. System Diagram

"'!<O! !<.C! !'¢!"'!NI

~I;I~I~I~I~I~I~I
Note 1: Data Transceiver not present in 88121 system
Note 2: BHE signal not necessary in 88121 system

Ap·113

WHAT IS THE iAPX 86,88
COPROCESSOR INTERFACE?
The idea of a coprocessor is based on the observation
that hardware specially designed for a function is the
fastest, smallest, and cheapest implementation. But, it is
too expensive to incorporate all desired functions in
general purpose hardware. Few applications could use
all the functions. To build fast, small, economical sys­
tems, we need some way to mix and match components
supporting specialized functions.

Purpose of the Coprocessor Interface
The coprocessor interface of the general purpose 8086
or 8088 microprocessor provides a way to attach special­
ized hardware in a simple, elegant, and efficient man­
ner. Because the coprocessor hardware is specialized, it
can perform its job much faster than any general pur­
pose CPU of similar size and cost. The coprocessor
interface simply requires connection to the host's local
address/data, status, clock, ready, reset, test and re­
quest/grant signals. Being attached to the host's local
bus gives the coprocessor access to all memory and I/O
resources available to the host.

The coprocessor is independent of system configura­
tion. Using the local bus as the connection point to the
host isolates the coprocessor from the particular system
confillUration. ~ince the: timinp ~nn fnnf'tinn nflnf'~l hm:

signals are fixed.

Software's View of the Coprocessor
The coprocessor interface allows specialized hardware
to appear as an integral part of the host's architecture
controlled by the host with special instructions. When
the host encounters these special instructions, both the
host and coprocessor recognize them and work together
to perform the desired function. No status polling loops
or command stuffing sequences are required by soft­
ware to operate the coprocessor.

More information is available to a coprocessor than
simply an instruction opcode and a signal to begin exe-

cution. The host's coprocessor interface can read a
value from memory, or identify a region of memory the
coprocessor should use while performing its function.
All the addressing modes of the host are available to
identify memory based operands to the coprocessor.

Concurrent Execution of Host and
Coprocessor
After the coprocessor has started its operation, the host
may continue on with the program, executing it in par­
allel while the coprocessor performs the function started
earlier. The parallel operation of the coprocessor does
not normally affect that of the host unless the copro­
cessor must reference memory or I/O-based operands.
When the host releases the local bus to the coprocessor,
the host may continue to execute from its internal in­
struction queue. However, the host must stop when it
also needs the local bus currently in use by the copro­
cessor. Except for the stolen memory cycle, the opera­
tion of the coprocessor is transparent to the host.

This parallel operation of host and coprocessor is called
concurrent execution. Concurrent execution of instruc­
tions requires less total time then a strictly sequential
execution would. System performance will be higher
with concurrent execution of instructions between the
host and coprocessor.

SYNCHRONIZATION

In exchange for the higher system performance made
available by concurrent execution, programs must pro­
vide what is called synchronization between the host
and coprocessor. Synchronization is necessary whenever
the host and coprocessor must use information available
from the other. Synchronization involves either the host
or coprocessor waiting for the other to finish an opera­
tion currently in progress. Since the host executes the
program, and has program control instructions like
jumps, it is given responsibility for synchronization. To
meet this need, a special host instruction exists to syn­
chronize host operation with a coprocessor.

Test for the existence of an 8087 in the system. This code will always recognize an 8087
independent of the TEST pin usage on the host. No deadlock is possible. Using the 8087
emulator will not chang~ the function of this code since ESC instructions are used. The word
variable control is used for communication between the 8087 and the host. Note: if an 8087 is
present, it will be initialized. Register ax is not transparent across this code.

,
ESC
XOR
MOV
ESC
OR
JZ

28, bx
ax, ax
control, ax
15, controi
ax, control
no_8087

FNINIT if 8087 is present. The contents of bx is irrelevant
These two instructions insert delay while the 8087 initializes itself
Clear intial control word value
FNSTCW if 8087 is present
Control = 03ffh if 8087 present
Jump if no 8087 is present

Figure 6. Test for Existence of an 8087

7

AP·113

The host coprocessor synchronization instruction,
called "WAIT", uses the TEST pin of the host. The
coprocessor can signal that it is still busy to the host via
this pin. Whenever the host executes a wait instruction,
it will stop program execution while the TEST input is
"""t'u'" UTh",n th", T'P~T' 1"\'n h"'",..,. "'" """t;".<> th.<> h",,+
""1. l' Y l' .1..1""'.1..1. L.J.J."" .&...L...IU.&. p.l.J..1. v V.1..I..l:l J.1..lQ.""'L..1 V "-', l.J..l J..1Ur3L

will resume program execution with the next instruction
following the WAIT. While waiting on the TEST pin,
the host can be interrupted at 5 clock intervals; how­
ever, after the TEST pin becomes inactive, the host will
immediately execute the next instruction, ignoring any
pending interrupts between the WAIT and following
instruction.

COPROCESSOR CONTROL

The host has the responsibility for overall program con­
trol. Coprocessor operation is initiated by special in­
structions encountered by the host. These instructions
are called "ESCAPE" instructions. When the host en­
counters an ESCAPE instruction, the coprocessor is
expected to perform the action indicated by the instruc­
tion. There are 576 different ESCAPE instructions,
allowing the coprocessor to perform many different
actions.

The host's coprocessor interface requires the copro­
cessor to recognize when the host has encountered an
ESCAPE instruction. Whenever the host begins execut­
ing a new instruction, the coprocessor must look to see
if it is an ESCAPE instruction. Since only the host
fetches instructions and executes them~ the coprocessor
must monitor the instructions being executed by the
host.

Host Queue Tracking

The host can fetch an instruction at a variable length
time before the host executes the instruction. This is a
characteristic of the instruction queue of an 8086 or
8088 microprocessor. An instruction queue allows pre­
fetching instructions during times when the local bus

52 S1 SO Function a51

0 0 0 Interrupt Acknowledge 0

0 0 1 Read I/O Port 0

0 1 0 \AI ... i+o lin 01"\1"+ -1
VYIIlv .,"-' I VI" I

0 1 1 Halt 1

1 0 0 Code Fetch

1 0 1 Read Data Memory

1 1 0 Write Data Memory

1 1 1 Idle

would be otherwise idle. The end benefit is faster execu­
tion time of host instructions for a given memory band­
width.

The host does not externally indicate which instruction
it is currently executing. Instead, the host indicates
when it fetches an instruction and when, some time
later, an opcode byte is decoded and executed. To iden­
tify the actual instruction the host fetched from its
queue, the coprocessor must also maintain an instruc­
tion stream identical to the host's.

Instructions can be fetched in byte or word increments,
depending on the type of host and the destination ad­
dress of jump instructions executed by the host. When
the host has filled its queue, it stops pre fetching instruc­
tions. Instructions are removed from the queue a byte at
a time for decoding and execution. When a jump oc­
curs, the queue is emptied. The coprocessor follows
these actions in the host by monitoring the host's bus
status, queue status, and data bus signals. Figure 7
shows how the bus status signals and queue status
signals are encoded.

iGNORiNG ilO PROCESSORS

The host is not the only local bus master capable of
fetching instructions. An Intel 8089 lOP can generate
instruction fetches on the local bus in the course of exe­
cuting a channel program in system memory. In this
case, the status signals S2, SI, and SO generated by the
lOP are identical to those of the host. The coprocessor
must not interpret these instruction prefetches as going
to the host's instruction queue. This problem is solved
with a status signal called S6. The S6 signal identifies
when the local bus is being used by the host. When the
host is the local bus master, S6 = 0 during T2 and T3 of
the memory cycle. All other bus masters must set S6 = 1
during T2 and T3 of their instruction prefetch cycles.
Any coprocessor must ignore activity on the local bus
when S6= 1.

aso Host Function Coprocessor Activity

0 No Operation No Queue Activity

1 First Byte Decode Opcode Byte

n L ~I._.I_ r::~~~ .. I"'\ .. ~ •• ~
V L..llqJly \..>(UC;UC; l::llltJlY \..>(uc;uc;

1 Subsequent Byte Flush Byte or if 2nd

Byte of Escape

Decode it

Figure 7.

Q

Ap·113

DECODING ESCAPE INSTRUCTIONS

To recognize ESCAPE instructions, the coprocessor
must examine all instructions executed by the host.
When the host fetches an instruction byte from its inter­
nal queue, the coprocessor must do likewise.

The queue status state, fetch opcode byte, identifies
when an opcode byte is being examined by the host. At
the same time, the coprocessor will check if the byte fet­
ched from its internal instruction queue is an ESCAPE
opcode. If the instruction is not an ESCAPE, the
coprocessor will ignore it. The queue status signals for
fetch subsequent byte and flush queue let the
coprocessor track the host's queue without knowledge
of the length and function of host instructions and ad­
dressing modes.

Escape Instruction Encoding

All ESCAPE instructions start with the high-order
5-bits of the instruction being 11011. They have two
basic forms. The non-memory form, listed here, in­
itiates some activity in the coprocessor using the nine
available bits of the ESCAPE instruction to indicate
which function to perform.

I 1 I

Memory reference forms of the ESCAPE instruction,
shown in Figure 8, allow the host to point out a memory
operand to the coprocessor using any host memory ad­
dressing mode. Six bits are available in the memory
reference form to identify what to do with the memory
operand. Of course, the coprocessor may not recognize
all possible ESCAPE instructions, in which case it will
simply ignore them.

Memory reference forms of ESCAPE instructions are
identified by bits 7 and 6 of the byte following the
ESCAPE opcode. These two bits are the MOD field of
the 8086 or 8088 effective address calculation byte.

They, together with the R/M field, bits 2 through 0,
determine the addressing mode and how many subse­
quent bytes remain in the instruction.

Host's Response to an Escape Instruction

The host performs one of two possible actions when
encountering an ESCAPE instruction: do nothing or
calculate an effective address and read a word value
beginning at that address. The host ignores the value of
the word read. ESCAPE instructions change no regis­
ters in the host other than advancing IP. So, if there is
no coprocessor, or the coprocessor ignores the ESCAPE
instruction, the ESCAPE instruction is effectively a
Nap to the host. Other than calculating a memory ad­
dress and reading a word of memory, the host makes no
other assumptions regarding coprocessor activity.

The memory reference ESCAPE instructions have two
purposes: identify a memory operand and for certain in­
structions, transfer a word from memory to the
coprocessor.

COPROCESSOR INTERFACE TO MEMORY

The design of a coprocessor is considerably simplified if
it only requires reading memory values of 16 bits or less.
The host can perform all the reads with the coprocessor
l~trhlno thp v~l11p ~~ 1t ~nnP~r~ on thp rf~t~ hl1~ ~t thp

end of T3 during the memory read cycle. The copro­
cessor need never become a local bus master to read or
write additional information.

If the coprocessor must write information to memory,
or deal with data values longer than one word, then it
must save the memory address and be able to become a
local bus master. The read operation performed by the
host in the course of executing the ESCAPE instruction
places the 20-bit physical address of the operand on the
address/data pins during Tl of the memory cycle. At
this time the coprocessor can latch the address. If the
coprocessor instruction also requires reading a value, it
will appear on the data bus during T3 of the memory
read. All other memory bytes are addressed relative to
this starting physical address.

MOD RIM 16·bit direct displacement
11111011111 II 1°1 0 1 I 111111°11 1 I 1 III I I I 1 I I I I I

115 114 113 112 111 110 19 IS 17 IS 15 14 13 12 11 10 015 0 14 013 012 011 010 09 Os 07 Os 0s 04 03 02 01 00

MOD RIM 16·bit displacement
11111011111 1 1 11101 I III 1 I 1 1 I I I III I I 1 1 1 1 1 I

115 114 113 112 111 110 19 IS 17 IS 15 14 13 12 11 10 015 0 14 0 13 012 011 010 09 Os 07 Os 0s 04 03 02 01 DO

MOD RIM a·bit displacement
11111011111 II 1°1111 III I I I I 1 I 1 I ~

'i5 '14 '13 '12 '11 110 19 '8 17 Is 15 '4 '3 '2 '1 .0 D7 Os Os 04 ° 0" O. 0c

MOD RIM

11111011111 1 1 1°1 0 1 I III II
'15 114 113 112 111 110 19 IS 17 IS 15 14 13 12 11 10

Figure 8. Memory Reference Escape Instruction Forms

9

Ap·113

Whether the coprocessor becomes a bus master or not,
if the coprocessor has memory reference instruction
forms, it must be able to identify the memory read per­
formed by the host in the course of executing an
ESCAPE instruction.

Identifying the memory read is straightforward, requir­
ing all the following conditions to be met:

1) A MOD value of 00, 01, or 10 in the second byte
of the ESCAPE instruction executed by the host.

2) This is the first data read memory cycle performed
by the host after it encountered the ESCAPE in­
struction. In particular, the bus status signals
S2-S0 will be 101 and S6 will be o.

The coprocessor must continue to track the instruction
queue of the host while it calculates the memory address
and reads the memory value. This is simply a matter of
following the fetch subsequent byte status commands
occurring on the queue status pins.

HOST PROCESSOR DIFFERENCES

A coprocessor must be aware of the bus characteristics
of the host processor. This determines how the host will
read the word operand of a memory reference ESCAPE
instruction. If the host is an 8088, it will always perform
two byte reads at sequential addresses. But if the host is
an 8086, it can either perform a single word read or two
byte reads to sequential addresses.

The 8086 places no restrictions on the alignment of
word operands in memory. It will automatically per­
form two byte operations for word operands starting at
an odd address. The two operations are necessary since
the two bytes of the operand exist in two different mem­
ory words. The coprocessor should be able to accept the
two possible methods of reading a word value on the
8086.

A coprocessor can determine whether the 8086 will per­
form one or two memory cycles as part of the current
ESCAPE instruction execution. The ADO pin during Tl
of the first memory read by the host tells if this is the
only read to be performed as part of the ESCAPE in­
struction. If this pin is a 1 during Tl of the memory
cycle, the 8086 will immediately follow this memory
read cycle with another one at the next byte address.

Coprocessor Interface Summary

The host ESCAPE instructions, coprocessor interface,
and WAIT instruction allow easy extension of the host's
architecture with specialized processors. The 8087 is
such a processor, extending the host's architecture as
seen by the programmer. The specialized hardware pro­
vided by the 8087 can greatly improve system perfor­
mance economically in terms of both hardware and
software for numerics applications.

The next section examines how the 8087 uses the
coprocessor interface of the 8086 or 8088.

8087 COPROCESSOR OPERATION
The 8086 or 8088 ESCAPE instructions provide 64
memory reference opcodes and 512 non-memory refer­
ence opcodes. The 8087 uses 57 of the memory reference
forms and 406 of the non-memory reference forms. Fig­
ure 9 shows the ESCAPE instructions not used by the
8087.

1111°11111 I I 111111 II 1 1
115 114 113 112 111 110 19 18 17 16 15 14 13 12 11 10

110 19 18 IS 14 13 12 11 10 Available codes

0 0 1 0 1 0 0 0 1 1
0 0 1 0 1 0 0 1 - 2
0 0 1 0 1 0 1 -- 4

0 0 1 1 0 0 0 1 - 2
0 0 1 1 0 0 1 1 - 2
0 0 1 1 0 1 1 1 1 1
0 0 1 1 1 0 1 0 1 1
0 0 1 1 1 1 0 1 1 1
0 0 1 1 1 1 1 1 - 2

0 1 1 1 0 0 1 0 1 1
0 1 1 1 0 0 1 1 - 2
0 1 1 1 0 1 --- 8

0 1 1 1 1 ---- 16
1 0 1 1 ----- 32
1 1 1 1 0 0 0 0 1 1
1 1 1 1 0 0 0 1 0 1
1 1 1 1 0 0 1 -- 4

1 1 1 1 0 1 --- 8

1 1 1 1 1 ---- 16
105 total

Available Non·Memory Reference Escape Instructions

I MOD RIM

1111 0 11j11 J 1 1 I 1 I I I 1
115 114 113 112 111 110 19 18 I 17 16 15 14 13 12 11 10

110 19 IS IS 14 13

0 0 1 0 0 1
0 1 1 0 0 1
0 1 1 1 0 0
0 1 1 1 1 0
-I n -I n n -I
I U I U U I

1 0 1 1 0 1
1 1 1 0 0 1

Available Memory Reference Escape Instructions

Figure 9.

I

AP·113

Using the 8087 With Custom
Coprocessors
Custom coprocessors, a designer may care to develop,
should limit their use of ESCAPE instructions to those
not used by the 8087 to prevent ambiguity about
whether anyone ESCAPE instruction is intended for a
numerics or other custom coprocessor. Using any
escape instruction for a custom coprocessor may con­
flict with opcodes chosen for future Intel coprocessors.

Operation of an 8087 together with other custom co­
processors is possible under the following constraints:

1) All 8087 errors are masked. The 8087 will update its
opcode and instruction address registers for the un­
used opcodes. Unused memory reference instruc­
tions will also update the operand address value.
Such changes in the 8087 make software-defined
error handling impossible.

2) If the coprocessors provide a BUSY signal, they must
be ORed together for connection to the host TEST
pin. When the host executes aWAIT instruction, it
does not know which coprocessor will be affected by
the following ESCAPE instruction. In general, all
coprocessors must be idle before executing the
ESCAPE instruction.

Operand Addressing by the 8087
The 8087 has seven different memory operand formats.
Six of them are longer than one word. All are an even
number of bytes in length and are addressed by the host
at the lowest address word.

When the host executes a memory reference ESCAPE
instruction intended to cause a read operation by the
8087, the host always reads the low-order word of any
8087 memory operand. The 8087 will save the address
and data read. To read any subsequent words of the
operand, the 8087 must become a local bus master.

When the 8087 has the local bus, it increments the 20-bit
physical address it saved to address the remaining words
of the operand.

When the ESCAPE instruction is intended to cause a
write operation by the 8087, the 8087 will save the ad­
dress but ignore the data read. Eventually, it will get
control of the local bus, then perform successive write,
increment address operations writing the entire data
value.

11

8087 OPERATION IN iAPX 86,88 SYSTEMS
The 8087 will work with either an 8086 or 8088 host.
The identity of the host determines the width of the
local bus path. The 8087 will identify the host and
adjust its use of the data bus accordingly; 8 bits for an
8088 or 16 bits for an 8086. No strapping options are
required by the 8087; host identification is automatic.

The 8087 identifies the host each time the host and 8087
are reset via the RESET pin. After the reset signal goes
inactive, the host will begin instruction execution at
memory address FFFF016•

If the host is an 8086 it will perform a word read at that
address; an 8088 will perform a byte read.

The 8087 monitors pin 34 on the first memory cycle
after power up. If an 8086 host is used, pin 34 will be the
BHE signal, which will be low for that memory cycle.
For an 8088 host, pin 34 will be the SSO signal, which
will be high during Tl of the first memory cycle. Based
on this signal, the 8087 will then configure its data bus
width to match that of the host local bus.

For 88/2X systems, pin 34 of the 8087 may be tied to
V cc if not connected to the 8088 SSO pin.

The width of the data bus and alignment of data oper­
ands has no effect, except for execution time and num-

". .. ('I _ . ..'1 ___ nl"\n~ ! __ ... _ _ ... ! __ t-t

V"".1. V..L .a..I..I.~.IL .. .iLv.&.J) "' ... -...u t"'~~ v.a. "" , v _ <oJ'O.i I ~. _"..., .. A · ~_, •.

A numeric program will always produce the same results
on an 86/2X or 88/2X with any operand alignment. All
numeric operands have the same relative byte orderings
independent of the host and starting address.

The byte alignment of memory operands can affect the
performance of programs executing on an 86/2X. If a
word operand, or any numeric operand, starts on an
odd-byte address, more memory cycles are required to
access the operand than if the operand started on an
even address. The extra memory cycles will lower system
performance.

The 86/2X will attempt to minimize the number of extra
memory cycles required for odd-aligned operands. In
these cases, the 8087 will perform first a byte operation,
then a series of word operations, and finally a byte
operation.

88/2X instruction timings are independent of operand
alignment, since byte operations are always performed.
However, it is recommended to align numeric operands
on even boundaries for maximum performance in case
the program is transported to an 86/2X.

-
......

I I
I i

r1D~
READY

8284A
ClK

CLOCK
GENERATOR

RESET

t
SYSTEM
READY

---..

-----.

Ap·113

fI!t. r---'
A fI!t. ;;>1111 ~ ClK r- tf!!

AID 11 i ADDRESS I ~

8088 ==;1
READY ~

(3)8282 - ADDRESS

IV' lATCHES

~r--
RESET STATUS -V RO/GT1 OS TEST

I I I I
."",~i I I I

RO/GTO OS BUSY
~ ~ v1 AID
~ IY N

READY

8087
ClK

M RESET STATUS y-l
RO/Gn

RO/GT
~ ~ RESET

AID
~ lYe-

8089
READY

~ STATUS
ClK IV

Figure 10. iAPX 88/21

12

STB t....-'
....... 1,..0"

r nVt I 1\ 8286
DATA i'J v' TRANSCEIVER

T OE ~

q

DT/R
- ALE DEN f--

~
8288

STATUS
11 BUS

CONTROllER
ClK

DATA t\

II

(OMMANDS

v i
I I
ISYSTEMI
I BUS I L __ .J

Ap·113

RQ/GT CONNECTION

Two decisions must be made when connecting the 8087
to a system. The first is how to interconnect the RQ/OT
signals of all local bus masters. The RQ/OT decision af­
fects the response time to service local bus requests from
other local bus masters, such as an 8089 lOP or other
coprocessor. The interrupt connection affects the
response time to service an interrupt request and how
user-interrupt handlers are written. The implications of
how these pins are connected concern both the hardware
designer and programmer and must be understood by
both.

The RQ/GT issue can be broken into three general cate­
gories, depending on system configuration: 86/20 or
88/20, 86/21 or 88/21, and 86/22 or 88/22. Remote
operation of an lOP is not effected by the 8087 RQ/GT
connection.

iAPX 86/20, 88/20

For an 86/20 or 88/20 just connect the RQ/GTO pin of
the 8087 to RQ/GTI of the host (see Figure 5), and skip
forward to the interrupt discussion on page 15.

iAPX 86/21, 88/21

For an 86/21 or 88/21, connect RQ/GTO of the 8087 to
RQ/GTI of the host, connect RQ/GT of the 8089 to
RQ/GTI of the 8087 (see Figure 10, page 12), and skip
forward to the interrupt discussion on page 15.

The RQ/GTI pin of the 8087 exists to provide one I/O
processor with a low maximum wait time for the local
bus. The maximum wait times to gain control of the
local bus for a device attached to RQ/GTI of an 8087
for an 8086 or 8088 host are shown in Table 2. These
numbers are all dependent on when the host will release
the local bus to the 8087.

As Table 2 implies, three factors determine when the
host will release the local bus:

1) What type of host is there, an 8086 or 8088?

2) What is the current instruction being executed?

3) How is the lock prefix being used?

An 8086 host will not release the local bus between the
two consecutive byte operations performed for odd­
aligned word operands. The 8088, in contrast, will never
release the local bus between the two bytes of a word
transfer, independent of its byte alignment.

Host operations such as acknowledging an interrupt will
not release the local bus for several bus cycles.

U sing a lock prefix in front of a host instruction
prevents the host from releasing the local bus during the
execution of that instruction.

8087 RQ/GT Function
The presence of the 8087 in the RQ/GT path from the
lOP to the host has little effect on the maximum wait
time seen by the lOP when requesting the local bus. The
8087 adds two clocks of delay to the basic time required
by the host. This low delay is achieved due to a preemp­
tive protocol implemented by the 8087 on RQ/GTI.

The 8087 always gives higher priority to a request for
the local bus from a device attached to its RQ/OTI pin
than to a request generated internally by the 8087. If the
8087 currently owns the local bus and a request is made
to its RQ/OTI pin, the 8087 will finish the current
memory cycle and release the local bus to the requestor.
If the request from the devices arrives when the 8087
does not own the local bus, then the 8087 will pass the
request on to the host via its RQ/OTO pin.

Table 2. Worst Case Local Bus Request Wait Times in Clocks

System No Locked
Configuration Instructions

iAPX 86/21
even aligned words 151

iAPX 86/21
odd aligned words 151

iAPX 88/21 151

Notes: 1. Add two clocks for each wait state inserted per bus cycle
2. Add four clocks for each wait state inserted per bus cycle
• Execution time of longest locked instruction

Only Locked Other Locked
Exchange Instructions

35 1 max (15 1, *)

432 max (432, *)

432 max (432, *)

13

~---I--""I READY

8089
,-----. ClK (IOPA)

Ap·113

A

STATUS r--+- RESET 1------1

RO/GT

L

.1\

11

~r-
hi

r--'
", ~ I

~ I ADDRESS " I 1\

; V
ADDRESS
lATCHES

I
(3)8282 I

STB ~'" I
~ I

I
I
I

.." ",'" I
SYSTEM

R1DY

~£~----r"

I ~
Vi ~ DATA ~r----y' RO/GTO

READY I----+----+---;--...... ~ READY I I AlD~'-------' IFJ ~.---r-II-r-'I ----r-,¥ TR~~~;~~RS :

8284A STATUS I T OE IY I
ClK t----t--t-~--t--"~ ClK 8086 , I II

GE~~~~:OR os _ ~
RESET t----t--+--...~ RESET TEST ...- ALE DT/R DEN ICOMMANDS

RO/GTf ~ 8288 I I

t r---l/ STATUS I!
I V BUS CONTROllER !

I elK ISYSTEMI

1 L .!!.US .J
RO/GTO BUSY r-­

--+---;---, READY

OS V1----
8087 l\r

~~ ClK ~D~~--~~

f'r -V f------J\
~ RESET STATUS ~ t------J/

"RO/Gfi I ... I V

RO/GT
L..---+----t-1 _. READY

LJl elK (~~~)

Ll RESET STATUS t--------,~ ~

Figure 11. iAPX 86/22 System

Ap·113

iAPX 86122, 88122
An 86/22 system offers two alternates regarding to
which lOP to connect an 110 device. Each lOP will of­
fer a different maximum delay time to servide an I/O re­
quest. (See Fig. 11)

The second 8089 (lOP A) must use the RQ/GTO pin of
the host. With two lOPs the designer must decide which
lOP services which 110 devices, determined by the max­
imum wait time allowed between when an I/O device re­
quests lOP service and the lOP can respond. The max­
imum service delay times of the two lOPs can be very
different. It makes little difference which of the two
host RQ/GT pins are used.

The different wait times are due to the non-preemptive
nature of bus grants between the two host RQ/GT pins.
No communication of a need to use the local bus is
possible between lOP A and the 8087/IOPB combina­
tion. Any request for the local bus by the 10PA must
wait in the worst case for the host, 8087, and 10PB to
finish their longest sequence of memory cycles. 10PB
must wait in the worst case for the host and 10PA to
finish their longest sequence of memory cycles. The
8087 has little effect on the maximum wait time of
10PB.

DELAY EFFECTS OF THE 8087

The delay effects of the 8087 on lOP A can be signifi­
cant. When executing special instructions (FSA VE,
FNSA VE, FRSTOR), the 8087 can perform 50 or 96
consecutive memory cycles with an 8086 or 8088 host,
respectively. These instructions do not affect response
time to local bus requests seen by an 10PB.

If the 8087 is performing a series of memory cycles while
executing these instructions, and 10PB requests the
local bus, the 8087 will stop its current memory activity,
then release the local bus to 10PB.

The 8087 cannot release the bus to 10PA since it cannot
know that lOP A wants to use the local bus, like it can
for 10PB.

REDUCING 8087 DELAY EFFECTS

For 86/22 or 88/22 systems requiring lower maximum
wait times for lOP A, it is possible to reduce the worst
case bus usage of the 8087. If three 8087 instructions are
never executed; namely FSA VE, FNSA VE, or
FRSTOR, the maximum number of consecutive mem­
ory cycles performed by the 8087 is 10 or 16 for an 8086
or 8088 host respectively. The function of these instruc­
tions can be emulated with other 8087 instructions.

Appendix B shows an example of how these three in­
structions can be emulated. This improvment does have
a cost, in the increased execution time of 427 or 747 ad-

15

ditional clocks for an 8086 or 8088 respectively, for the
equivalent save and restore operations. These opera­
tions appear in time-critical context-switching functions
of an operating system or interrupt handler. This tech­
nique has no affect on the maximum wait time seen by
10PB or wait time seen by 10PA due to 10PB.

Which lOP to connect to which I/O device in an 86/22
or 88/22 system will depend on how quickly an 110 re­
quest by the device must be serviced by the lOP. This
maximum time must be greater than the sum of the
maximum delay of the lOP and the maximum wait time
to gain control of the local bus by the lOP.

If neither lOP offers a fast enough response time, con­
sider remote operation of the lOP.

8087 I NT Connection
The next decision in adding the 8087 to an 8086 or 8088
system is where to attach the INT signal of the 8087.
The INT pin of the 8087 provides an external indication
of software-selected numeric errors. The numeric pro­
gram will stop until something is done about the error.
Deciding where to connect the INT signal can have im­
portant consequences on other interrupt handlers.

WHAT ARE NUMERIC ERRORS?

A numeric error occurs in the NPX whenever an opera­
tion is attempted with invalid operands or attempts to
produce a result which cannot be represented. If an in­
correct or questionable operation is attempted by a pro­
gram, the NPX will always indicate the event. Examples
of errors on the NPX are: 1/0, square root of -1, and
reading from an empty register. For a detailed descrip­
tion of when the 8087 detects a numeric error, refer to
the Numerics Supplement. (See Lit. Ret).

WHAT TO DO ABOUT NUMERIC ERRORS

Two possible courses of action are possible when a
numeric error occurs. The NPX can itself handle the
error, allowing numeric program execution to continue
undisturbed, or software in the host can handle the
error. To have the 8087 handle a numeric error, set its
associated mask bit in the NPX control word. Each
numeric error may be individually masked.

The NPX has a default fixup action defined for all pos­
sible numeric errors when they are masked. The default
actions were carefully selected for their generality and
safety.

For example, the default fixup for the precision error is
to round the result using the rounding rules currently in
effect. If the invalid error is masked, the NPX wiH
generate a special value called indefinite as the result of
any invalid operation.

Ap·113

NUMERIC ERRORS (CON'n

Any arithmetic operation with an indefinite operand
will always generate an indefinite result. In this manner,
the result of the original invalid operation will pro­
pagate throughout the program wherever it is used.

When a questionable operation such as multiplying an
unnormal value by a normal value occurs, the NPX will
signal this occurrence by generating an unnormal result.

The required response by host software to a numeric
error will depend on the application. The needs of each
application must be understood when deciding on how
to treat numeric errors. There are three attitudes
towards a numeric error:

1) No response required. Let the NPX perform the
default fixup.

2) Stop everything, something terrible has happened!

3) Oh, not again! But don't disrupt doing something
more important.

SIMPLE ERROR HANDLING

Some very simple applications may mask all of the
numeric errors. In this simple case, the 8087 INT signal
may be left unconnected since the 8087 will never assert
this signal. If any numeric errors are detected during the
course of executing the program, the NPX will generate
a safe result. It is sufficient to test the final results of the
calculation to see if they are valid.

Special values like not-a-number (NAN), infinity, in­
definite, denormals, and unnormals indicate the type
and severity of earlier invalid or questionable opera­
tions.

SEVERE ERROR HANDLING

For dedicated applications, programs should not gener­
ate or use any invalid operands. Furthermore, all num­
bers should be in range. An operand or result outside
this range indicates a severe fault in the system. This
situation may arise due to invalid input values, program
error, or hardware faults. The integrity of the program
and hardware is in question, and immediate action is re­
quired.

In this case, the INT signal can be used to interrupt the
program currently running. Such an interrupt would be
of high priority. The interrupt handier responsibie for
numeric errors might perform system integrity tests and
then restart the system at a known, safe state. The
handler would not normally return to the point of error.

Unmasked numeric errors are very useful for testing
programs. Correct use of synchronization, (Page 21),
allows the programmer to find out exactly what
operands, instruction, and memory values caused the
error. Once testing has finished, an error then becomes
much more serious.

The 8086 Family Numerics Supplement recommends
masking all errors except invalid. (See Lit. Ref.). In this
case the NPX will safely handle such errors as
underflow, overflow, or divide by zero. Only truly ques­
tionable operations will disturb the numerics program
execution.

An example of how infinities and divide by zero can be
harmless occurs when calculating the parallel resistance
of several values with the standard formula (Figure 12).
If Rl becomes zero, the circuit resistance becomes O.
With divide by zero and precision masked, the NPX will
produce the correct result.

NUMERIC EXCEPTION HANDLING

For some applications, a numeric error may not indicate
a severe problem. The numeric error can indicate that a
hardware resource has been exhausted, and the software
must provide more. These cases are called exceptions
since they do not normally arise.

Special host software will handle numeric error excep­
tions when they infrequently occur. In these cases,
numeric exceptions are expected to be recoverable
although not requiring immediate service by the host. In
effect, these exceptions extend the functionality of the
NDP. Examples of extensions are: normalized only
arithmetic, extending the register stack to memory, or
tracing special data values.

Equivalent resistance =

Figure 12. Infinity Arithmetic Example

Ap·113

HOST INTERRUPT OVERVIEW

The host has only two possible interrupt inputs, a non­
maskable interrupt (NMI) and a maskable interrupt
(lNTR). Attaching the 8087 INT pin to the NMI input is
not recommended. The following problems arise: NMI
cannot be masked, it is usually reserved for more impor­
tant functions like sanity timers or loss of power signal,
and Intel supplied software for the NDP will not sup­
port NMI interrupts. The INTR input of the host allows
interrupt masking in the CPU, using an Intel 8259A
Programmable Interrupt Controller (PIC) to resolve
multiple interrupts, and has Intel support.

NUMERIC INTERRUPT CHARACTERISTICS

Numeric error interrupts are different from regular in­
struction error interrupts like divide by zero. Numeric
interrupts from the 8087 can occur long after the
ESCAPE instruction that started the failing operation.
For example, after starting a numeric multiply opera­
tion, the host may respond to an external interrupt and
be in the process of servicing it when the 8087 detects an
overflow error. In this case the interrupt is a result of
some earlier, unrelated program.

From the point of view of the currently executing inter­
rupt handler, numeric interrupts can come from only
..... ~_ _.,. __ ~. +k,.. __ _+ 1. __11 ___ 1_ __ :_,...; __ _

gram.

To explicitly disable numeric interrupts, it is recom­
mended that numeric interrupts be disabled at the 8087.
The code example of Figure 13 shows how to disable
any pending numeric interrupts then reenable them at
the end of the handler. This code example can be safely
placed in any routine which must prevent numeric inter­
rupts from occurring. Note that the ESCAPE instruc­
tions act as NOPs if an 8087 is not present in the system.
It is not recommended to use numeric mnemonics since
they may be converted to emulator calls, which run
comparatively slow, if the 8087 emulator used.

Interrupt systems have specific functions like fast
response to external events or periodic execution of
system routines. Adding an 8087 interrupt should not
effect these functions. Desirable goals of any 8087 inter­
rupt configuration are:

- Hide numeric interrupts from interrupt handlers that
don't use the 8087. Since they didn't cause the
numeric interrupt why should they be interrupted?

- Avoid adding code to interrupt handlers that don't
use the 8087 to prevent interruption by the 8087.

- Allow other higher priority interrupts to be serviced
while executing a numeric exception handler.

- Provide numeric exception handling for interrupt

- Avoid deadlock as described in a later section
(page 24)

Disable any possible numeric interrupt from the 8087. This code is safe to place in any
procedure. If an 8087 is not present, the ESCAPE instructions will act as nops. These
instructions are not affected by the TEST pin of the host. Using the 8087 emulator will not
convert these instructions into interrupts. A word variable, called control, is required to hold
the 8087 control word. Control must not be changed until it is reloaded into the 8087.

,
ESC 15, control
NOP
NOP
ESC 28,cx

(FNSTCW) Save current 8087 control word
Delay while 8087 saves current control
register value
(FNDISI) Disable any 8087 interrupts
Set IEM bit in 8087 control register
The contents of cx is irrelevant
Interrupts can now be enabled

(Your Code Here)

Reenable any pending interrupts in the 8087. This instruction does not disturb any 8087 instruction
currently in progress since all it does is change the IEM bit in the control register.

TEST control,80H
JNZ $+4
ESC 28,ax

Look at I EM bit
If IEM = 1 skip FNENI
(FNENI) reenable 8087 interrupts

Figure 13. Inhibit/Enable 8087 Interrupts

17

Ap·113

Recommended Interrupt Configurations

Five categories cover most uses of the 808i interrupt in
fixed priority interrupt systems. For each category, an
interrupt configuration is suggested based on the goals
mentioned above.

1. All errors on the 8087 are always masked.
Numeric interrupts are not possible. Leave the
8087 INT signal unconnected.

2. The 8087 is the only interrupt in the system. Con­
nect the 8087 INT signal directly to the host's
INTR input. (See Figure 14 on page 19). A bus
driver supplies interrupt vector 1016 for com­
patibility with Intel supplied software.

3. The 8087 interrupt is a stop everything event.
Choose a high priority interrupt input that will ter­
minate all numerics related activity. This is a
special case since the interrupt handler may never
return to the point of interruption (i.e. reset the
system and restart rather than attempt to continue
operation).

4. Numeric exceptions or numeric programming er­
rors are expected and all interrupt handlers either
don't use the 8087 or only use it with all errors
masked. Use the lowest priority interrupt input.
The 8087 interrupt handler should allow further
interrupts by higher priority events. The PIC's
priority system will automatically prevent the 8087
from disturbing other interrupts without adding
extra code to them.

5. Case 4 holds except that interrupt handlers may
also generate numeric interrupts. Connect the 8087
INT signal to multiple interrupt inputs. One input
would still be the lowest priority input as in case 4.
Interrupt handlers that may generate a numeric in­
terrupt will require another 8087 INT connection
to the next highest priority interrupt. Normally the
higher priority numeric interrupt inputs would be
masked and the low priority numeric interrupt
enabled. The higher priority interrupt input would
be unmasked only when servicing an interrupt
which requires 8087 exception handling.

All of these configurations hide the 8087 from all inter­
rupt handlers which do not use the 8087. Only those in­
terrupt handlers that use the 8087 are required to per­
form any special 8087 related interrupt control ac­
tivities.

A conflict can arise between the desired PIC interrupt
input and the required interrupt vector of 1016 for com­
patibility with Intel software for numeric interrupts. A
simple solution is to use more than one interrupt vector
for numeric interrupts, all pointing at the same 8087 in­
terrupt handler. Design the numeric interrupt handler
such that it need not know what the interrupt vector was
(i.e. don't use specific EOI commands).

If an interrupt system uses rotating interrupt priorities,
it will not matter which interrupt input is used.

r---

r--

I ~ ~

~D~
READY

RESET

ClK

READY

RESET

ClK

8284A

CLOCK
GENERATOR

AID

STATUS

tSUtSti
INTR

TEST
as

BUSY

'--+-+-t~ READY

INT

RESET 8087

SYSTEM READY

V1- t\

N-

11 I I

Ap·113

./

t\ (3)8282
ADDRESS

-V lATCHES

STB

•
./

(2)8286 ;1 ~
DATA

If I

-V TRANSCEIVERS

T OE

t '4

INT.
VECTOR

AlE~--~--------~

8288 DTIR ~--~------------------'

AID 1\ r-----...--, j
BUS

CONTROLLER

STATUS
DEN t----------'

Figure 14. iAPX 86/20 With Numerics Interrupt Only

19

r-- ,
.... I ADDRESS

1
I

.... ~ I
I
1

.... I
;1.1 DATA

\JI
ISYSTEM

L .!U": I
...J ~

AP·113

GETTING STARTED IN SOFTWARE

Now we are ready to run numeric programs. Developing
numeric software will be a new experience to some pro­
grammers. This section of the application note is aimed
at describing the programming environment and pro­
viding programming guidelines for the NPX. The term
NPX is used to emphasize that no distinction is made
between the 8087 component or an emulated 8087.

Two major areas of numeric software can be identified:
systems software and applications software. Products
such as iRMXTM 86 provide system software as an off­
the-shelf product. Some applications use specially
developed systems software optimized to their needs.

Whether the system software is specially tailored or
common, they share issues such as using concurrency,
maintaining synchronization between the host and 8087,
and establishing programming conventions. Appli­
cations software directly performs the functions of the
application. All applications will be concerned with ini­
tialization and general programming rules for the NPX.
Systems software will be more concerned with context
switching, use of the NPX by interrupt handlers, and
numeric exception handlers.

How to Initialize the NPX
The first action required by the NPX is initialization.
This places the NPX in a known state, unaffected by
other activity performed earlier. This initialization is
similar to that caused by the RESET signal of the 8087.
All the error masks are set, all registers are tagged
empty, the TOP field is set to 0, default rounding, pre­
cision, and infinity controls are set. The 8087 emulator
requires more initialization than the component. Before
the emulator may be used, all its interrupt vectors must
be set to point to the correct entry points within the
emulator.

To provide compatibility between the emulator and
component in this special case, a call to an external pro­
cedure should be used before the first numeric instruc­
tion. In ASM86 the programmer must call the external
function INIT87. (Fig. 15). For PLM86, the
programmer must call the built-in function
INIT$REAL$MA TH$UNIT. PLM86 will call INIT87
when executing the INIT$REAL$MA TH$UNIT built­
in function.

The function supplied for INIT87 will be different,
depending on whether the emulator library, called
E8087.LIB, or component library, called 8087.LIB,
were used at link time. INIT87 will execute either an
FNINIT instruction for the 8087 or initialize the 8087
emulator interrupt vectors, as appropriate.

Concurrency Overview

With the NPX initialized, the next step in writing a
numeric program is learning about concurrent execution
within the NDP.

Concuuency is a special feature of the 8087, allowing it
and the host to simultaneously execute different instruc­
tions. The 8087 emulator does not provide concurrency
since it is implemented by the host.

The benefit of concurrency to an application is higher
performance. All Intel high level languages automatic­
ally provide for and manage concurrency in the NDP.
However, in exchange for the added performance, the
assembly language programmer must understand and
manage some areas of concurrency. This section is for
the assembly language programmer or well-informed,
high level language programmer.

Whether the 8087 emulator or component is used, care
should be taken by the assembly language programmer
to follow the rules described below regarding synchro­
nization. Otherwise, the program may not function cor­
rectly with current or future alternatives for implement­
ing the NDP.

Concurrency is possible in the NDP because both the
host and 8087 have separate arithmetic and control
units. The host and coprocessor automatically decide
who will perform any single instruction. The existence
of the 8087 as a separate unit is not normally apparent.

Numeric instructions, which will be executed by the
8087, are simply placed in line with the instructions for
the host. Numeric instructions are executed in the same
order as they are encountered by the host in its instruc­
tion stream. Since operations performed by the 8087
generally require more time than operations performed
by the host, the host can execute several of its instruc­
tions while the 8087 performs one numeric operation.

IN PLM86:
CALL IN IT$REAL$MATH$UN IT;

IN ASM86:
EXTRN

•
•
•
•

CALL

INIT87:FAR

INIT87

Figure 15. 8087 Initialization

Ap·113

MANAGING CONCURRENCY

Concurrent execution of the host and 8087 is easy to
establish and maintain. The activities of numeric pro­
grams can be split into two major areas: program con­
trol and arithmetic. The program control part performs
activities like deciding what functions to perform, calcu­
lating addresses of numeric operands, and loop control.
The arithmetic part simply performs the adds, sub­
tracts, multiplies, and other operations on the numeric
operands. The NPX and host are designed to handle
these two parts separately and efficiently.

Managing concurrency is necessary because the arithme­
tic and control areas must converge to a well-defined
state when starting another numeric operation. A well­
defined state means all previous arithmetic and control
operations are complete and valid.

Normally, the host waits for the 8087 to finish the cur­
rent numeric operation before starting another. This
waiting is called synchronization.

Managing concurrent execution of the 8087 involves
three types of synchronization: instruction, data, and
error. Instruction and error synchronization are
automatically provided by the compiler or assembler.
Data synchronization must be provided by the assembly
language pro gammer or compiler.

Instruction Synchronization

Instruction synchronization is required because the 8087
can only perform one numeric operation at a time. Be­
fore any numeric operation is started, the 8087 must
have completed all activity from previous instructions.

The WAIT instruction on the host lets it wait for the
8087 to finish all numeric activity before starting an­
other numeric instruction. The assembler automatically
provides for instruction synchronization since aWAIT
instruction is part of most numeric instructions. A
WAIT instruction requires 1 byte code space and 2.5
clocks average execution time overhead.

Instruction synchronization as provided by the assem­
bler or a compiler allows concurrent operation in the
NDP. An execution time comparison of NDP concur­
rency and non-concurrency is illustrated in Figure 16.
The non-concurrent program places aWAIT instruction
immediately after a multiply instruction ESCAPE in­
struction. The 8087 must complete the multiply opera­
tion before the host executes the MOV instruction on
statement 2. In contrast, the concurrent example allows
the host to calculate the effective address of the next
operand while the 8087 performs the multiply. The ex­
ecution time of the concurrent technique is the longest
of the host's execution time from line 2 to 5 and the ex-
_ ; _ ... :........,,.. _.& +)..._ QOo.'" ,c_ ... ~ _ 1 .. :_1 ;~ t~ !-~ T'L

,. """ .,L,L 'I" "."'r .. ., LIO .. _' s.., ... _ l-' -'" _

execution time of the non-concurrent example is the
sum of the execution times of statements 1 to 5.

This code macro defines two instructions which do not allow any concurrency of execution with
the host. A register version and memory version of the instruction is shown. It is assumed that the
8087 is always idle from the previous instruction. Allow space for emulator fixups.

R233 Record RF6:2, Mid3:3, RF7:3

CodeMacro NCMUL dstT, src:F
RNfix 0008
R233 (118, 0018, src)
RWfix
EndM

CodeMacro NCMUL memop:Mq
RNfixM 1008, memop
ModRM 0018, memop
RWfix
EndM

Statement

1

2
3
4

5

Concurrent

FMUL st(O), st(1)
MOV ax, size A
MUL index
MOV bx, ax
FMUL A [bx]

Figure 16. Concurrent Versus Non-Concurrent Program

21

Non Concurrent

NCMUL st(O), st(1)
MOV ax, size A
MUL index
MOV bx, ax
NCMUL A [bx]

Ap·113

Data Synchronization

Managing concurrency requires synchronizing data ref­
erences by the host and 8087.

Figure 17 shows four possible cases of the host and 8087
sharing a memory value. The second two cases require
the FW AIT instruction shown for data synchronization.
In the first two cases, the host will finish with the
operand I before the 8087 can reference it. The
coprocessor interface guarantees this. In the second two
cases, the host must wait for the 8087 to finish with the
memory operand before proceeding to reuse it. The
FW AIT instruction in case 3 forces the host to wait for
the 8087 to read I before changing it. In case 4, the
FW AIT prevents the host from reading I before the
8087 sets its value.

Obviously, the programmer must recognize any form of
the two cases shown above which require explicit data
synchronization. Data synchronization is not a concern
when the host and 8087 are using different memory
operands during the course of one numeric instruction.
Figure 16 shows such an example of the host performing
activity unrelated to the current numeric instruction
being executed by the 8087. Correct recognition of these
cases by the programmer is the price to be paid for pro­
viding concurrency at the assembly language level.

Automatic Data Synchronization

Two methods exist to avoid the need for manual recog­
nition of when data synchronization is needed: use a
high level language which will automatically establish
concurrency and manage it, or sacrifice some perfor­
mance for automatic data synchronization by the as­
sembler.

When a high level language is not adequate, the
assembler can be changed to always place aWAIT in­
struction after the ESCAPE instruction. Figure 18
shows an example of how to change the ASM86 code
macro for the FIST instruction to automatically place
an FW AIT instruction after the ESCAPE instruction.
The lack of any possible concurrent execution between
the host and 8087 while the FIST instruction is executing
is the price paid for automatic data synchronization.

An explicit FW AIT instruction for data synchroniza­
tion, can be eliminated by using a subsequent numeric
instruction, After this subsequent instruction has
started execution, all memory references in earlier
numeric instructions are complete. Reaching the next
host instruction after the synchronizing numeric instruc­
tion indicates previous numeric operands in memory are
available.

22

The data synchronization purpose of any FW AIT or
numeric instruction must be well documented. Other­
wise, a change to the program at a later time may
remove the synchronizing numeric instruction, causing
program failure, as:

FISTP
FMUL
MOV

Case 1:

AX, I

MOV 1,1
FILD I

Case 2:
MOV AX, I
FISTP I

; I is safe to use

Case 3:
FILD
FWAIT
MOV

Case 4:
FISTP
FVVAIT
MOV

Figure 17. Data Exchange Example

1,5

AX,I

This is a code macro to redefine the FIST
instruction to prevent any concurrency
while the instruction runs. A wait
instruction is placed immediately after the
escape to ensure the store is done
before the program may continue. This
code macro wi II work with the 8087
emulator, automatically replacing the
wait escape with a nap.

CodeMacro FIST memop: Mw
RfixM 111 B, memop
ModRM 010B, memop
RWfix
EndM

Figure 18. Non-Concurrent F!ST Instruction
Code Macro

Ap·113

DATA SYNCHRONIZATION RULES EXCEPTIONS

There are five exceptions to the above rules for data syn­
chronization. The 8087 automatically provides data syn­
chronization for these cases. They are necessary to
avoid deadlock (described on page 24). The instructions
FSTSW IFNSTSW, FSTCW IFNSTCW, FLDCW,
FRSTOR, and FLDENV do not require any waiting by
the host before it may read or modify the referenced
memory location.

The 8087 provides the data synchronization by prevent­
ing the host from gaining control of the local bus while
these instructions execute. If the host cannot gain con­
trol of the local bus, it cannot change a value before the
8087 reads it, or read a value before the 8087 writes into
it.

The coprocessor interface guarantees that, when the
host executes one of these instructions, the 8087 will
immediately request the local bus from the host. This
request is timed such that, when the host finishes the
read operation identifying the memory operand, it will
always grant the local bus to the 8087 before the host
may use the local bus for a data reference while execut­
ing a subsequent instruction. The 8087 will not release
the local bus to the host until it has finished executing
the numeric instruction.

Error Synchronization

Numeric errors can occur on almost any numeric in­
struction at any time during its execution. Page 15
describes how a numeric error may have many inter­
pretations, depending on the application. Since the re­
sponse to a numeric error will depend on the applica­
tion, this section covers topics common to all uses of the
NPX. We will review why error synchronization is need­
ed and how it is provided.

Concurrent execution of the host and 8087 requires syn­
chronization for errors just like data references and
numeric instructions. In fact, the synchronization re­
quired for data and instructions automatically provides
error synchronization.

However, incorrect data or instruction synchronization
may not cause a problem until a numeric error occurs. A
further complication is that a programmer may not ex­
pect his numeric program to cause numeric errors, but
in some systems they may regularly happen. To better
understand these points, let's look at what can happen
when the NPX detects an error.

23

ERROR SYNCHRONIZATION FOR EXTENSIONS

The NPX can provide a default fixup for all numeric
errors. A program can mask each individual error type
to indicate that the NPX should generate a safe, reason­
able result. The default error fixup activity is simply
treated as part of the instruction which caused the error.
No external indication of the error will be given. A flag
in the numeric status register will be set to indicate that
an error was detected, but no information regarding
where or when will be available.

If the NPX performs its default action for all errors,
then error synchronization is never exercised. But this is
no reason to ignore error synchronization.

Another alternative exists to the NPX default fixup of
an error. If the default NPX response to numeric errors
is not desired, the host can implement any form of re­
covery desired for any numeric error detectable by the
NPX. When a numeric error is unmasked, and the error
occurs, the NPX will stop further execution of the
numeric instruction. The 8087 will signal this event on
the INT pin, while the 8087 emulator will cause inter­
rupt 1016 to occur. The 8087 INT signal is normally con­
nected to the host's interrupt system. Refer to page 18
for further discussion on wiring the 8087 INT pin.

Interrupting the host is a request from the NPX for - ,..
l1t:.tv • .lU~ lCl"'L LUCl" 1.11~ "l.lV.l '/'IQ.,) uu.lUQ..:IA" HU.U. a. .. "..,

that further numeric program execution under the arith­
metic and programming rules of the NPX is unreason­
able. Error synchronization serves to insure the NDP is
in a well defined state after an unmasked numeric error
occured. Without a well defined state, it is impossible to
figure out why the error occured.

Allowing a correct analysis of the error is the heart of
error synchronization.

NDP ERROR STATES

If concurrent execution is allowed, the state of the host
when it recognizes the interrupt is undefined. The host
may have changed many of its internal registers and be
executing a totally different program by the time it is in­
terrupted. To handle this situation, the NPX has special
registers updated at the start of each numeric instruction
to describe the state of the numeric program when the
failed instruction was attempted. (See Lit. Ref. p. iii)

Besides programmer comfort, a well-defined state is im­
portant for error recovery routines. They can change the
arithmetic and programming rules of the 8087. These
changes may redefine the default fixup from an error,
change the appearance of the NPX to the programmer,
or change how arithmetic is defined on the NPX.

Ap·113

EXTENSION EXAMPLES

A change to an erior response might be to automatically
normalize all denormals loaded from memory. A
change in appearance might be extending the register
stack to memory to provide an "infinite" number of
numeric registers. The arithmetic of the 8087 can be
changed to automatically extend the precision and range
of variables when exceeded. All these functions can be
implemented on the NPX via numeric errors and
associated recovery routines in a manner transparent to
the programmer.

Without correct error synchronization, numeric
subroutines will not work correctly in the above situa­
tions.

Incorrect Error Synchronization

An example of how some instructions written without
error synchronization will work initially, but fail when
moved into a new environment is:

FILD
INC
FSQRT

COUNT
COUNT

Three instructions are shown to load an integer, calcu­
late its square root, then increment the integer. The
coprocessor interface of the 8087 and synchronous ex­
ecution of the 8087 emulator will allow this program to
execute correctly when no errors occur on the FILD in­
struction.

But, this situation changes if the numeric register stack
is extended to memory on an 8087. To extend the NPX
stack to memory, the invalid error is unmasked. A push
to a full register or pop from an empty register will
cause an invalid error. The recovery routine for the er­
ror must recognize this situation, fixup the stack, then
perform the original operation.

The recovery routine will not work correctly in the ex­
ample. The problem is that there is no guarantee that
COUNT will not be incremented before the 8087 can in­
terrupt the host. If COUNT is incremented before the
interrupt, the recovery routine will load a value of
COUNT one too large, probably causing the program to
fail.

~rr"r ~"n"hr"ni.,eti,,", eftA WA ITt:! --.,'-", z •. ..., u. ... " •• u,., •• g

Error synchronization relies on the WAIT instructions
required by instruction and data synchronization and
the INT and BUSY signals of the 8087. When an un­
masked error occurs in the 8087, it asserts the BUSY
and INT signals. The INT signal is to interrupt the host,
while the BUSY signal prevents the host from destroy­
ing the current numeric context.

24

The BUSY signal will never go inactive during a numeric
instruction which asserts INT.

The WAIT instructions supplied for instruction syn­
chronization prevent the host from starting another
numeric instruction until the current error is serviced. In
a like manner, the \V AIT instructions required for data
synchronization prevent the host from prematurely
reading a value not yet stored by the 8087, or over­
writing a value not yet read by the 8087.

The host has two responsibilities when handling
numeric errors. I.) It must not disturb the numeric con­
text when an error is detected, and 2.) it must clear the
numeric error and attempt recovery from the error. The
recovery program invoked by the numeric error may
resume program execution after proper fixup, display
the state of the NDP for programmer action, or simply
abort the program. In any case, the host must do
something with the 8087. With the INT and BUSY
signals active, the 8087 cannot perform any useful
work. Special instructions exist for controlling the 8087
when in this state. Later, an example is given of how to
save the state of the NPX with an error pending. (See
page 29)

Deadlock
An undesirable situation may result if the host cannot
be interrupted by the 8087 when asserting INT. This sit­
uation, called deadlock, occurs if the interrupt path
from the 8087 to the host is broken,

The 8087 BUSY signal prevents the host from executing
further instructions (for instruction or data syn­
chronization) while the 8087 waits for the host to service
the exception. The host is waiting for the 8087 to finish
the current numeric operation. Both the host and 8087
are waiting on each other. This situation is stable unless
the host is interrupted by some other event.

Deadlock has varying affects on the NDP's perfor­
mance. If no other interrupts in the system are possible,
the NDP will wait forever. If other interrupts can arise,
then the NDP can perform other functions, but the af­
fected numeric program will remain "frozen".

SOLVING DEADLOCK

Finding the break in the interrupt path is simple. Look
for disabled interrupts in the following places: masked
interrupt enable in the host, explicitly masked interrupt
request in the interrupt controller, implicitly masked in­
terrupt request in the interrupt controller due to a higher
priority interrupt in service, or other gate functions,
usually in TTL, on the host interrupt signal.

AP·113

DEADLOCK AVOIDANCE

Application programmers should not be concerned with
deadlock. Normally, applications programs run with
unmasked numeric errors able to interrupt them. Dead­
lock is not possible in this case. Traditionally, systems
software or interrupt handlers may run with numeric in­
terrupts disabled. Deadlock prevention lies in this do­
main. The golden rule to abide by is: "Never wait on the
8087 if an unmasked error is possible and the 8087 inter­
rupt path may be broken."

Error Synchronization Summary

In summary, error synchronization involves protecting
the state of the 8087 after an exception. Although not all
applications may initially require error synchronization,
it is just good programming practice to follow the rules.
The advantage of being a "good" numerics program­
mer is generality of your program so it can work in
other, more general environments.

Summary

Synchronization is the price for concurrency in the
NDP. Intel high level language compilers will auto­
matically provide concurrency and manage it with syn­
chronization. The assembly language programmer can
choose between using concurrency or not. Placing a
W All InstructIon Immecllately alter any numenc m­
struction will prevent concurrency and avoid synchro­
nization concerns.

The rules given above are complete and allow concur­
rency to be used to full advantage.

Synchronization and the Emulator

The above discussion on synchronization takes on
special meaning with the 8087 emulator. The 8087 emu­
lator does not allow any concurrency. All numeric
operand memory references, error tests, and wait for
instruction completion occur within the emulator. As a
result, programs which do not provide proper instruc­
tion, data, or error synchronization may work with the
8087 emulator while failing on the component.

Correct programs for the 8087 work correctly on the
emulator.

Special Control Instructions of the NPX
The special control instructions of the NPX: FNINIT,
FNSAVE,FNSTENV,FRSTOR,FLDENV,FLDCW,
FNSTSW, FNSTCW, FNCLEX, FNENI, and FNDISI
remove some of the synchronization requirements men­
tioned earlier. They are discussed here since they repre­
sent exceptions to the rules mentioned on page 21.

The instructions FNINIT, FNSA VE, FNSTENV,
FNSTSW, FNCLEX, FNENI, and FNDISI do not wait

25

for the current numeric instruction to finish before they
execute. Of these instructions, FNINIT, FNSTSW,
FNCLEX, FNENI and FNDISI will produce different
results, depending on when they are executed relative to
the current numeric instruction.

For example, FNCLEX will cause a different status
value to result from a concurrent arithmetic operation,
depending on whether is is executed before or after the
error status bits are updated at the end of the arithmetic
operation. The intended use of FNCLEX is to clear a
known error status bit which has caused BUSY to be
asserted, avoiding deadlock.

FNSTSW will safely, without deadlock, report the busy
and error status of the NPX independent of the NDP in­
terrupt status.

FNINIT, FNENI, and FNDISI are used to place the
NPX into a known state independent of its current
state. FNDISI will prevent an unmasked error from
asserting BUSY without disturbing the current error
status bits. Appendix A shows an example of using
FNDISI.

The instructions FNSA VE and FNSTENV provide spe­
cial functions. They allow saving the state of the NPX in
a single instruction when host interrupts are disabled.

Several host and numeric instructions are necessary to
,.. _ .,.'L_ Tn'V" _ _4- _ ~C ... l .. _ ! .. _. __ _ _. __ ~ ._('> ... 1 .. _ 1~ _~.A ~

unknown. Appendix A and B show examples of saving
the NPX state. As the Numerics Supplement explains,
host interrupts must always be disabled when executing
FNSA VE or FNSTENV.

The seven instructions FSTSW IFNSTSW, FSTCW I
FNSTCW, FLDCW, FLDENV, and FRSTOR do not
require explicit WAIT instructions for data synchro­
nization. All of these instructions are used to interrogate
or control the numeric context.

Data synchronization for these instructions is
automatically provided by the coprocessor interface.
The 8087 will take exclusive control of the memory bus,
preventing the host from interfering with the data values
before the 8087 can read them. Eliminating the need for
aWAIT instruction avoids potential deadlock pro­
blems.

The three load instructions FLDCW, FLDENV, and
FRSTOR can unmask a numeric error, activating the
8087 BUSY signal. Such an error was the result of a
previous numeric instruction and is not related to any
fault in the instruction.

Data synchronization is automatically provided since
the host's interrupts are usually disabled in context swit­
ching or interrupt handling, deadlock might result if the
host executed a WAIT instruction with its interrupts
disabled after these instructions. After the host inter­
rupts are enabled, an interrupt will occur if an unmask­
ed error was pending.

Ap·113

PROGRAMMING TECHNIQUES

The NPX provides a stack-oriented register set with
stack-oriented instructions for numeric operands. These
registers and instructions are optimized for numeric
programs. For many programmers, these are new re­
sources with new programming options available.

Using Numeric Registers and
Instructions

The register and instruction set of the NDP is optimized
for the needs of numeric and general purpose programs.
The host CPU provides the instructions and data types
needed for general purpose data processing, while the
8087 provides the data types and instructions for
numeric processing.

The instructions and data types recognized by the 8087
are different from the CPU because numeric program
requirements are different from those of general pur­
pose programs. Numeric programs have long arithmetic
expressions where a few temporary values are used in a
few statements. Within these statements, a single value
may be referenced many times. Due to the time involved
to transfer values between registers and memory, a
significant speed optimization is possible by keeping
numbers in the NPX register file.

In contrast, a general data processor is more concerned
with addressing data in simple expressions and testing
the results. Temporary values, constant across several
instructions, are not as common nor is the penalty as
large for placing them in memory. As a result it is
simpler for compilers and programmers to manage
memory based values.

MAIN PROGRAM:

FLD A
FADO ST, ST(1)
CALL SUBROUTINE
FSTP B

SUBROUTINE:

FLO
FSQRT
FADD
FMULP
RET

ST

c
ST(1), ST

NPX Register Usage

The eight numeric registers in the NDP are stack ori­
ented. All numeric registers are addressed relative to a
value called the TOP pointer, defined in the NDP status
register. A register address given in an instruction is ad­
ded to the TOP value to form the internal absolute ad­
dress. Relative addressing of numeric registers has ad­
vantages analogous to those of relative addressing of
memory operands.

Two modes are available for addressing the numeric
registers. The first mode implicitly uses the top and op­
tional next element on the stack for operands. This
mode does not require any addressing bits in a numeric
instruction. Special purpose instructions use this mode
since full addressing flexibility is not required.

The other addressing mode allows any other stack ele­
ment to be used together with the top of stack register.
The top of stack or the other register may be specified as
the destination. Most two-operand arithmetic instruc­
tions allow this addressing mode. Short, easy to develop
numeric programs are the result.

Just as relative addressing of memory operands avoids
concerns with memory allocation in other parts of a
program, top relative register addressing allows registers
to be used without regard for numeric register assign­
ments in other parts of the program.

STACK RELATIVE ADDRESSING EXAMPLE

Consider an example of a main program calling a
subroutine, each using register addressing independent
of the other. (Fig. 19) By using different values of the
TOP field, different software can use the same relative
register addresses as other parts of the program, but
refer to different physical registers.

Argument is in ST(O)

ST(O) = ST(1) = Argument
Main program ST(1) is
safe in ST(2) here

Figure 19. Stack Relative Addressing Example

26

Of course, there is a limit to any physical resource. The
NDP has eight numeric registers. Normally, program­
mers must ensure a maximum of eight values are pushed
on the numeric register stack at any time. For time­
critical inner loops of real-time applications, eight regis­
ters should contain all the values needed.

REGISTER STACK EXTENSION

This hardware limitation can be hidden by software.
Software can provide "virtual" numeric registers, ex­
panding the register stack size to 6000 or more.

The numeric register stack can be extended into memory
via unmasked numeric invalid errors which cause an in­
terrupt on stack overflow or underflow. The interrupt
handler for the invalid error would manage a memory
image of the numeric stack copying values into and out
of memory as needed.

The NPX will contain all the necessary information to
identify the error, failing instruction, required registers,
and destination register. After correcting for the missing
hardware resource, the original numeric operation
could be repeated. Either the original numeric instruc­
tion could be single stepped or the affect of the instruc­
tion emulated by a composite of table-based numeric in­
structions executed by the error handler.

~

tion, the activity of the error handler will be transparent
to programs. This type of extension to the NDP allows
programs to push and pop numeric registers without
regard for their usage by other subroutines.

Programming Conventions

With a better understanding of the stack registers, let's
consider some useful programming conventions. Fol­
lowing these conventions ensures compatibility with
Intel support software and high level language calling
conventions.

1) If the numeric registers are not extended to
memory, the progr::tmmer must ensure that the
number of temporary values left in the NPX stack
and those registers used by the caller does not exceed
8. Values can be stored to memory to provide enough
free NPX registers.

2) Pass the first seven numeric parameters to a subrou­
tine in the numeric stack registers. Any extra param­
eters can be passed on the host's stack. Push the
values on the register or memory stack in left to right
order. If the subroutine does not need to allocate any
more numeric registers, it can execute solely out of
the numeric register stack. The eighth register can be
used for arithmetic operations. All parameters
should be popped off when the subroutine com­
pletes.

27

3) Return all numeric values on the numeric stack. The
caller may now take advantage of the extended preci­
sion and flexible store modes of the NDP.

4) Finish all memory reads or writes by the NPX before
exiting any subroutine. This guarantees correct data
and error synchronization. A numeric operation
based solely on register contents is safe to leave run­
ning on subroutine exit.

5) The operating mode of the NDP should be transpar­
ent across any subroutine. The operating mode is
defined by the control word of the NDP. If the sub­
routine needs to use a different numeric operating
mode than that of the caller, the subroutine should
first save the current control word, set the new oper­
ating mode, then restore the original control word
when completed.

PROGRAMMING EXAMPLES

The last section of this application note will discuss five
programming examples. These examples were picked to
illustrate NDP pr02ramminR; technioues and commonJv
used functions. All have been coded, assembled, and
tested. However, no guarantees are made regarding
their correctness.

The programming examples are: saving numeric
context switching, save numeric context without
FSA VE/FNSA VE, converting ASCII to floating point,
converting floating point to ASCII, and trigonometric
functions. Each example is listed in a different appendix
with a detailed written description in the following text.
The source code is available in machine readable form
from the Intel Insite User's Library, "Interactive 8087
Instruction Interpreter," catalog item AA20.

The examples provide some basic functions needed to
get started with the numeric data processor. They work
with either the 8087 or the 8087 emulator with no source
changes.

The context switching examples are needed for
operating systems or interrupt handlers which may use
numeric instructions and operands. Converting between
floating point and decimal ASCII will be needed to in­
put or output numbers in easy to read form. The trigo­
nometric examples help you get started with sine or
cosine functions and can serve as a basis for optimiza­
tions if the angle arguments always fall into a restricted
range.

Ap·113

APPENDIX A

OVERVIEW

Appendix A shows deadlock-free examples of numeric
context switching. Numeric context switching is re­
quired by interrupt handlers which use the NPX and
operating system context switchers. Context switching
consists of two basic functions, save the numeric con­
text and restore it. These functions must work indepen­
dent of the current state of the NPX.

Two versions of the context save function are shown.
They use different versions of the save context instruc­
tion. The FNSA VE/FSA VE instructions do all the work
of saving the numeric context. The state of host inter­
rupts will decide which instruction to use.

Using FNSAVE

The FNSA VE instruction is intended to save the NPX
context when host interrupts are disabled. The host does
not have to wait for the 8087 to finish its current opera­
tion before starting this operation. Eliminating the in-
struction synchronization \vait avoids any potentia!
deadlock.

The 8087 Bus Interface Unit (BIU) will save this instruc­
tion when encountered by the host and hold it until the
8087 Floating point Execution Unit (FEU) finishes its
current operation. When the FEU becomes idle, the
BIU will start the FEU executing the save context opera­
tion.

The host can execute other non-numeric instructions
after the FNSA VE while the BIU waits for the FEU to
finish its current operation. The code starting at
NO_INT _NPX_SA VE shows how to use the
FNSA VE instruction.

When executing the FNSA VE instruction, host inter­
rupts must be disabled to avoid recursions of the in­
struction. The 8087 BIU can hold only one FNSA VE in­
struction at a time. If host interrupts were not disabled,
another host interrupt might cause a second FNSA VE
instruction to be executed, destroying the previous one
saved in the 8087 BIU.

It is not recommended to explicitly disable host inter­
rupts just to execute an FNSA VE instruction. In
general, such an operation may not be the best course of
action or even be aliowed.

If host interrupts are enabled during the NPX context
save function, it is recommended to use the FSA VE in­
struction as shown by the code starting at NPX_SA VE.
This example will always work, free of deadlock, in­
dependent of the NDP interrupt state.

28

Using FSAVE

The FSA VE instruction performs the same operation as
FNSA VE but it uses standard instruction synchroniza­
tion. The host will wait for the FEU to be idle before
initiating the save operation. Since the host ignores all
interrupts between completing aWAIT instruction and
starting the following ESCAPE instruction, the FEU is
ready to immediately accept the operation (since it is not
signalling BUSY). No recursion of the save context
operation in the BIU is possible. However, deadlock
must be considered since the host executes a WAIT in­
struction.

To avoid deadlock when using the FSA VE instruction,
the 8087 must be prevented from signalling BUSY when
an unmasked error exists.

The Interrupt Enable Mask (lEM) bit in the NPX con­
trol word provides this function. When IEM = 1, the
8087 will not signal BUSY or INT if an unmasked error
exists. The NPX instruction FNDISI will set the IEM in­
dependent of any pending errors without causing
deadlock or any other errors. Using the FNDISI and
FSA VE instructions together with a few other glue in­
structions allows a general NPX context save function.

Standard data and instruction synchronization is re­
quired after executing the FNSA VE/FSA VE instruc­
tion. The wait instruction following an FNSA VEl
FSA VE instruction is always safe since all NPX errors
will be masked as part of the instruction execution.
Deadlock is not possible since the 8087 will eventually
signal not busy, allowing the host to continue on.

PLACING THE SAVE CONTEXT FUNCTION

Deciding on where to save the NPX context in an inter­
rupt handler or context switcher is dependent on
whether interrupts can be enabled inside the function.
Since interrupt latency is measured in terms of the max­
imum time interrupts are disabled, the maximum wait
time of the host at the data synchronizing wait instruc­
tion after the FNSA VE or the FSA VE instruction is im­
portant if host interrupts are disabled while waiting.

The wait time will be the maximum single instruction
execution time of the 8087 plus the execution time of the
save operation. This maximum time will be approxi­
mately 1300 or 1500 clocks, depending on whether the
host is an 8086 or 8088, respectively. The actual time
will depend on how much concurrency of execution bet­
ween the host and 8087 is provided. The greater the
concurrency, the lesser the maximum wait time will be.

Ap·113

If host interrupts can be enabled during the context save
function, it is recommended to use the FSA VE instruc­
tion for saving the numeric context in the interruptable
section. The FSA VE instruction allows instruction and
data synchronizing waits to be interruptable. This
technique removes the maximum execution time of 8087
instructions from system interrupt latency time con­
siderations.

Using FRSTOR
Restoring the numeric context with FRSTOR does not
require a data synchronizing wait afterwards since the
8087 automatically prevents the host from interfering
with the memory load operation.

The code starting with NPX_RESTORE illustrates the
restore operation. Error synchronization is not
necessary since the FRSTOR instruction itself does not
cause errors, but the previous state of the NPX may in­
dicate an error.

It is recommended to delay starting the numeric save
function as long as possible to maintain the maximum
amount of concurrent execution between the host and
the 8087. If further numeric instructions are executed after the

FRSTOR, and the error state of the new NPX context is
unknown, deadlock may occur if numeric exceptions
cannot interrupt the host.

NP)Lsave

General purpose save of NPX context. This function will work independent of the interrupt state of
the NDP. Deadlock can not occur. 47 words of memory are required by the variable save_area.
Register ax is not transparent across this code.

NPX_save:
FNSTCW
NOP
FNDISI
IVIUV

FSAVE

FWAIT
MOV

aX, ::;ave_area
save_area

Save IEM bit status
Delay while 8087 saves control register
Disable 8087 BUSY Signal
~et onglnal control wora
Save NPX context, the host can be safely interrupted while
waiting for the 8087 to finish. Deadlock is not possible since
IEM = 1.Wait for save to finish. Put original control word into
NPX context area. All done

Save the NPX context with host interrupt~ disabled. No deadlock is possible. 47 words of memory
are required by the variable save_area.

no_i nt_N PX_save:

FNSAVE save_area
FWAIT

N P)Lrestore

Save NPX context. Wait for save to finish, no deadlock
is possible. Interrupts may be enabled now, all done

Restore the NPX context saved earlier. No deadlock is possible if no further numeric instructions
are executed until the 8087 numeric error interrupt is enabled. The variable save_area is assumed
to hold an NPX context saved earlier. It must be 47 words long.

N PX_restore:

FRSTOR Load new N PX context

29

Ap·113

APPENDIX B

OVERVIEW

Appendix B shows alternative techniques for switching
the numeric context without using the FSA VEl
FNSAVE or FRSTOR instructions. These alternative
techniques are slower than those of Appendix A but
they reduce the worst case continuous local bus usage of
the 8087.

Only an iAPX 86/22 or iAPX 88/22 could derive any
benefit from this alternative. By replacing all
FSA VE/FNSA VE instructions in the system, the worst
case local bus usage of the 8087 will be 10 or 16 con­
secutive memory cycles for an 8086 or 8088 host, respec­
tively.

Instead of saving and loading the entire numeric context
in one long series of memory transfers, these routines
use the FSTENV IFNSTENV IFLDENV instructions
and separate numeric register load/store instructions.
Using separate load/store instructions for the numeric
registers forces the 8087 to release the local bus after
each numeric loadl store instruction. The longest series
of back-to-back memory transfers required by these
instructions are 8/12 memory cycles for an 8086 or 8088
host, respectively. In contrast, the FSA VEl
FNSAVE/FRSTOR instructions perform 50/94 back­
to-back memory cycles for an 8086 or 8088 host.

Compatibility With FSAVE/FNSAVE

This function produces a context area of the same for­
mat produced by FSA VE/FNSA VE instructions. Other
software modules expecting such a format will not be
affected. All the same interrupt and deadlock considera­
tions of FSA VE and FNSA VE also apply to FSTENV
and FNSTENV. Except for the fact that the numeric
environment is 7 words rather than the 47 words of the
numeric context, all the discussion of Appendix A also
applies here.

30

The state of the NPX registers must be saved in memory
in the same format as the FSA VE/FNSA VE instruc­
tions. The program example starting at the label
Sr-v1ALL_BLOCK_NPX_SA VE illustrates a software
loop that will store their contents into memory in the
same top relative order as that of FSAVE/FNSAVE.

To save the registers with FSTP instructions, they must
be tagged valid, zero, or special. This function will force
all the registers to be tagged valid, independent of their
contents or old tag, and then save them. No problems
will arise if the tag value conflicts with the register's
content for the FSTP instruction. Saving empty regis­
ters insures compatibility with the FSA VE/FNSA VE in­
structions. After saving all the numeric registers, they
will all be tagged empty, the same as if an
FSA VE/FNSA VE instruction had been executed.

Compatibility With FRSTOR

Restoring the numeric context reverses the procedure
described above, as shown by the code starting at
SMALL_BLOCK_NPX_RESTORE. All eight regis­
sters are reloaded in the reverse order. With each
register load, a tag value will be assigned to each
register. The tags assigned by the register load does not
matter since the tag word will be overwritten when the
environment is reloaded later with FLDENV.

Two assumptions are required for corr~ct operation of
the restore function: all numeric registers must be empty
and the TOP field must be the same as that in the con­
text being restored. These assumptions will be satisfied
if a-matched set of pushes and pops were performed bet­
ween saving the numeric context and reloading it.

If these assumptions cannot be met, then the code exam­
ple starting at NPX_CLEAN shows how to force all the
NPX registers empty and set the TOP field of the status
word.

Ap·113

small_bloclLN P>Lsave

Save the NPX context independent of NDP interrupt state. Avoid using the FSAVE instruction to
limit the worst case memory bus usage of the 8087. The NPX context area formed will appear the
same as if an FSAVE instruction had written into it. The variable save_area will hold the NPX
context and must be 47 words long. The registers ax, bx, and cx will not be transparent.

small_block_N PX_save:
FNSTCW save_area
NOP
FNDISI
MOV
MOV
XOR

ax, save_area
cx,8
bx, bx

FSTENV save_area
FWAIT
XCHG save_area + 4, bx
FLDENV save_area
MOV
MOV
XOR

save_area, ax
save_area + 4, bx
bx, bx

reg_store_loop:

FSTP saved_reg [bx]
ADD bx, type saved_reg
LOOP reg_store_loop

Save current IEM bit
Delay while 8087 saves control register
Disable 8087 BUSY signal
Get original control word

; Set numeric register count
; Tag field value for stamping all registers as valid
; Save NPX environment
; Wait for the store to complete

Get original tag value and set new tag value
Force all register tags as valid. BUSY is still masked. No data
synchronization needed. Put original control word into NPX
environment. Put original tag word into NPX environment
Set initial register index

Save register
Bump pointer to next register

All done

; Force the NPX into a clean state with TOP matching the TOP field stored in the NPX context and all
numeric registers tagged empty. Save_area must be the NPX environment saved earlier.
Temp_env is a 7 word temporary area used to build a prototype NPX environment. Register ax will
not be transparent.

NPX_clean:
FINIT
MOV
AND
FSTENV

FWAIT

ax, save_area + 2
ax, 3800H
temp_env

OR temp_env + 2, ax
FLDENV temp_env

Put NPX into known state
Get original status word
Mask out the top field
Format a temporary environment area with all registers
stamped empty and TOP field = O.

; Wait for the store to finish.
Put in the desired TOP value.
Setup new NPX environment.
Now enter small_block_NPX_restore

31

Ap·113

Restore the NPX context without using the FRSTOR instruction. Assume the NPX context is in the
same form as that created by an FSAVElFNSAVE instruction, all the registers are empty, and that
the TOP field of the NPX matches the TOP field of the NPX context. The variable save_area must
be an NPX context save area, 47 words long. The registers bx and cx will not be transparent.

small_blocLN PLrestore:

MOV cX,8
MOV bx, type saved_reg*7

Set register count
Starting offset of ST(7)

reg_load_loop:

FLD saved_reg [bx] Get the register
SU B bx, type saved_reg Bump pointer to next register
LOOP reg_load_loop

FLDENV save_area Restore N PX context
All done

APPENDIX C

OVERVIEW

Appendix C shows how floating point values can be
converted to decimal ASCII character strings. The func­
tion can be called from PLM/86, PASCAL/86, FOR­
TRAN/86, or ASM/86 functions.

Shortness, speed, and accuracy were chosen rather than
providing the maximum number of significant digits
possible. An attempt is made to keep integers in their
own domain to avoid unnecessary conversion errors.

Using the extended precision real number format, this
routine achieves a worst case accuracy of three units in
the 16th decimal position for a non-integer value or in­
tegers greater than 1018• This is double precision ac­
curacy. With values having decimal exponents less than
100 in magnitude, the accuracy is one unit in the 17th
decimal position.

Higher precision can be achieved with greater care in
programming, larger program size, and lower perfor­
mance.

Function Partitioning
Three separate modules implement the conversion.
Most of the work of the conversion is done in the mod­
ule FLOATING_ TO_ASCII. The other modules are
provided separately since they have a more general use.
One of them, GET_POWER_I0, is also used by the
ASCII to floating point conversion routine. The other
small module, TOS_ST A TUS, will identify what, if
anything, is in the top of the numeric register stack.

32

Exception Considerations

Care is taken inside the function to avoid generating ex­
ceptions. Any possible numeric value will be accepted.
The only exceptions possible would occur if insufficient
space exists on the numeric register stack.

The value passed in the numeric stack is checked for ex­
istence, type (NAN or infinity), and status (unnormal,
denormal, zero, sign). The string size is tested for a
minimum and maximum value. If the top of the register
stack is empty, or the string size is too small, the func­
tion will return with an error code.

Overflow and underflow is avoided inside the function
for very large or very small numbers.

Special Instructions

The functions demonstrate the operation of several
numeric instructions, different data types, and precision
control. Shown are instructions for automatic conver­
sion to BCD, calculating the value of 10 raised to an in­
teger value, establishing and maintaining concurrency,
data synchronization, and use of directed rounding on
the NPX.

Without the extended precision data type and built-in
exponential function, the double precision accuracy of
this function could not be attained with the size and
speed of the shown example.

The function relies on the numeric BCD data type for
conversion from binary floating point to decimal. It is

Ap·113

not difficult to unpack the BCD digits into separate
ASCII decimal digits. The major work involves scaling
the floating point value to the comparatively limited
range of BCD values. To print a 9-digit result requires
accurately scaling the given value to an integer between
108 and 109. For example, the number + 0.123456789
requires a scaling factor of 109 to produce the value
+ 123456789.0 which can be stored in 9 BCD digits. The
scale factor must be an exact power of 10 to avoid to
changing any of the printed digit values.

These routines should exactly convert all values exactly
representable in decimal in the field size given. Integer
values which fit in the given string size, will not be
scaled, but directly stored into the BCD form. Non­
integer values exactly representable in decimal within
the string size limits will also be exactly converted. For
example, 0.125 is exactly representable in binary or
decimal. To convert this floating point value to decimal,
the scaling factor will be 1000, resulting in 125. When
scaling a value, the function must keep track of where
the decimal point lies in the final decimal value.

DESCRIPTION OF OPERATION

Converting a floating point number to decimal ASCII
takes three major steps: identifying the magnitude of
the number, scaling it for the BCD data type, and con-

Identifying the magnitude of the result requires finding
the value X such that the number is represented by
1*10x, where 1.0 < = I < 10.0. Scaling the number re­
quires multiplying it by a scaling factor lOs, such that
the result is an integer requiring no more decimal digits
than provided for in the ASCII string.

Once scaled, the numeric rounding modes and BCD
conversion put the number in a form easy to convert to
decimal ASCII by host software.

Implementing each of these three steps requires atten­
tion to detail. To begin with, not all floating point
values have a numeric meaning. Values such as infinity,
indefinite, or Not A Number (NAN) may be en­
countered by the conversion routine. The conversion
routine should recognize these values and identify them
uniquely.

Special cases of numeric values also exist. Denormals,
unnormals, and pseudo zero all have a numeric value
but should be recognized since all of them indicate that
precision was lost during some earlier calculations.

Once it has been determined that the number has a
numeric value, and it is normalized setting appropriate
unnormal flags~ the value must be scaled to the BCD
range.

33

Scaling the Value

To scale the number, its magnitude must be determined.
It is sufficient to calculate the magnitude to an accuracy
of 1 unit, or within a factor of 10 of the given value.
After scaling the number, a check will be made to see if
the result falls in the range expected. If not, the result
can be adjusted one decimal order of magnitude up or
down. The adjustment test after the scaling is necessary
due to inevitable inaccuracies in the scaling value.

Since the magnitude estimate need only be close, a fast
technique is used. The magnitude is estimated by multi­
plying the power of 2, the unbiased floating point expo­
nent, associated with the number by log102. Rounding
the result to an integer will produce an estimate of suffi­
cient accuracy. Ignoring the fraction value can in­
troduce a maximum error of 0.32 in the result.

Using the magnitude of the value and size of the number
string, the scaling factor can be calculated. Calculating
the scaling factor is the most inaccurate operation of the
conversion process. The relation lOX = 2**(X*log210) is
used for this function. The exponentiate instruction
(F2XM 1) will be used.

Due to restrictions on the range of values allowed by the
F2XMl instruction, the power of 2 value will be split in­
to integer and fraction components. The relation
~ '\.1 '-1');';;'; ~. '.1 ~" l' c:UIUW~ UMU~ tile r'.)\....r\.LD 111-

struction to recombine the 2**F value, calculated
through F2XMl, and the 2**1 part.

Inaccuracy in Scaling
The inaccuracy of these operations arises because of the
trailing zeroes placed into the fraction value when strip­
ping off the integer valued bits. For each integer valued
bit in the power of 2 value separated from the fraction
bits, one bit of precision is lost in the fraction field due
to the zero fill occurring in the least significant bits.

Up to 14 bits may be lost in the fraction since the largest
allowed floating point exponent value is 214 - 1.

AVOIDING UNDERFLOW AND OVERFLOW

The fraction and exponent fields of the number are sep­
arated to avoid underflow and overflow in calculating
the scaling values. For example, to scale 10- 4932 to 108

requires a scaling factor of 104950 which cannot be rep­
resented by the NPX.

By separating the exponent and fraction, the scaling
operation involves adding the exponents separate from
multiplying the fractions. The exponent arithmetic will
involve small integers, all easily represented by the
NPX.

Ap·113

FINAL ADJUSTMENTS Output Format
It is possible that the power function (Get_Power_lO)
could produce a scaling value such that it forms a scaled
result larger than the ASCII field could allow.
For example, scaling 9.999999999999999ge4900
by 1.00000000000000010e~4883 would prodUCe
1.000000000000000eI8. The scale factor is within the
accuracy of the NDP and the result is within the conver­
sion accuracy, but it cannot be represented in BCD for­
mat. This is why there is a post-scaling test on the
magnitude of the result. The result can be multiplied or
divided by 10, depending on whether the result was too
small or too large, respectively.

For maximum flexibility in output formats; the position
of the decimal point is indicated by a binary integer
called the power value. If the power value is zero, then
the decimal point is assumed to be at the right of the
right-mosi digit. Power values greater than zero indicate
how many trailing zeroes are not shown. For each unit
below zero, move the decimal point to the left in the
string.

The last step of the conversion is storing the result in
BCD and indicating where the decimal point lies. The
BCD string is then unpacked into ASCII decimal char­
acters. The ASCII sign is set corresponding to the sign
of the original value.

LINE

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

SOURCE

$title(Convert a floating point number to ASCII)
name floating to ascii
public floating-to-ascii
extrn get_power_10:near,tos_status:near

This subroutine will convert the floating point number in the
top of the 8087 stack to an ASCII string and separate power of 10
scaling value (in binary). The maximum width of the ASCII string
formed is controlled by a parameter which must be > 1. Unnormal values,
denormal values, and psuedo zeroes will be correctly converted.
A returned value will indicate how many binary bits of
precision were lost in an unnormal or denormal value. The magnitude
(in terms of binary power) of a psuedo zero will also be indicated.
Integers less than 10**18 in magnitude are accurately converted if the
destination ASCII string field is wide enough to hold all the
digits. Otherwise the value is converted to scientific notation.

The status of the conversion is identified by the return value,
it can be:

o conversion complete, string size is defined
1 invalid arguments
2 exact integer conversion, string size is defined
3 indefinite
4 + NAN (Not A Number)
5 - NAN
6 + Infinity
7 - Infinity
8 psuedo zero found, string_size is defined

The PLM/86 calling convention is:

floating to ascii:
procedure (number,denormal_ptr,string_ptr,size_ptr,field_size,

power-ptr) word external;
declare (denormal ptr,string ptr,power ptr,size ptr) pointer;
declare field size word, strIng size based size-ptr word; .
declare number real; - -
declare denormal integer based denormal ptr;
declare power integer based power ptr; -
end floating_to_asciii -

The floating point value is expected to be on the top of the NPX
stack. This subroutine expects 3 free entries on the NPX stack and
will pop the passed value off when done. The generated ASCII string
will have a leading character either I_I or '+' indicating the sign
of the value. The ASCII decimal digits will immediately follow.
The numeric value of the ASCII string is (ASCII STRING.)*10**POWER.

34

49
50
51
52
53
54
55
56
57
~8

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
Q?

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
III
112
113
114
115
116
117
118

119

Ap·113

It the given number was zero, the ASCII string will contain a siqn
and a single zero chacter. The value string size indicates the total
length of the ASCII string including the sign character. String(0) will
always hold the sign. It is possible for string size to be less than
field size. This occurs for zeroes or integer values. A psuedo zero
will return a special return code. The denormal count will indicate
the power of two originally associated with the value. The power of
ten and ASCII string will be as if the value was an ordinary zero.

This subroutine is accurate up to a maximum of 18 decimal digits for
integers. Integer values will have a decimal power of zero associated
with them. For non integers, the result will be accurate to within 2
decimal digits of the 16th decimal place (double precision). The
exponentiate instruction is also used for scalinq the value into the
range acceptable for the BCD data type. The rounding mode in effect
on entry to the subroutine is used for the conversion.

The following registers are not transparent:

ax bx cx dx si di flags

Define the stack layout.
;
bp_save
es save
return ptr
power ptr
field-size
size ptr
string ptr
denormal_ptr

parms_size
&

equ
equ
equ
equ
equ
equ
equ
equ

wo rd ptr [bp 1
bp save + size bp_save
es-save + size es save
return ptr + size-return ptr
power ptr + size power ptr
field-size + size fiela size
size ptr + size size ptr
string_ptr + size string_ptr

equ size power ptr + size field size + size size_ptr +
size string_ptr + size denormal_ptr

Define constants used

BCD DIGITS equ 18 Number of digits in bcd value
WORD SIZE 2 -equ
BCD g"IZ E equ 10
MINUS equ 1 Define return values
NAN equ 4 The exact values chosen here are
INFINITY equ 6 important. They must correspond
INDEFINITE equ 3 the possible return values and be
PSUEDO ZERO equ 8 the same numeric order as tested
INVALID equ -2 the program.
ZERO equ -4
DENORMAL equ -6
UNNORMAL equ -8
NORMAL equ 0
EXACT equ 2

Define layout of temporary storage area.

status
power two
power-ten
bcd value
bcd-byte
fraction

local size
&

equ
equ
equ
equ
equ
equ

equ

word ptr [bp-WORD ~IZE]
status - WORD ~IZE
power two - WORD ~IZE
tbyte-ptr power ten - BCD ~IZE
byte ptr bcd varue
bcd value -

size status + size power_two + size power_ten
+ size bcd value

to
in

by

Allocate stack space for the temporaries so the stack will be big enough

stack segment stack 'stack'
db (local_size+6) dup (?)

stack ends

35

12ta
121
122
123
124
125
126
127
128
129
130
131
132
133
134

135

136

137

138
139
14ta
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

cgroup
code

const10

AP·113

group code
segment public 'code'
assume cs:cgroup
extrn power_table:qword

Constants used by this function.

even
dw Ita

; Optimize for 16 bits
; Adjustment value for too big BCD

Convert the C3,C2,Cl,C0 encoding from tos status into meanin~fu1 bit
flags and values.

status table db UNNORMAL, NAN, UNNORMAL + MINUS, NAN + ~INUS,

&

&

&

;

call
mov
mov
cmp
jne

NORMAL, INFINITY, NORMAL + MINUS, INFINITY + MINUS,

ZERO, INVALID, ZERO + MINUS, INVALID,

DENORMAL, INVALID, DENORMAL + MINUS, INVALID

tos status
bx,ax
al,status table[bx]
aI, INVALID
not_empty

Look at status of ST(0l
Get descriptor from table

Look for empty ST(e)

ST(0) is empty! Return the status value.

ret parms_size

Remove infinity from stack and exit.

found_infini ty:

fstp
jmp

st(0)
short exit_proc

OK to leave fstp running

string space is too small! Return invalid code.

small_string:

;

mov aI, INVALID

mov
pop
pop

sp,bp
bp
es

ret parms size

Free stack space
Restore registers

ST(0) is NAN or indefinite. Store the value in memory and look
at the fraction field to separate indefinite from an ordinary NAN.

NAN or_indefinite:

fstp
test
fwait
jz

fraction
al,MINUS

36

Remove value from stack for examination
Look at sign bit
Insure store is done
Can't be indefinite if positive

181
182
183
184
185
186
187
188
189
190
1y1
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
?1';

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
240
247
248
249
250
251
252
253
254

size ok:

mov
sub
or
or
or
jnz

mov
jmp

Ap·113

bx,0C000H
bx,word ptr fraction+6
bx,word ptr fraction+4
bx,word ptr fraction+2
bx,word ptr fraction
exit_proc

a1,INDEFINITE
exit_proc

Match against upper 16 bits of fraction
Compare bits 63-48
Bits 32-47 must be zero
Bits 31-16 must be zero
Bits 15-0 must be zero

Set return value for indefinite value

Allocate stack space for local variables and establish parameter
addressibility.

push
push
mov
sub

mov
cmp
jl

dec
cmp
jbe

mov

cmp
jge

cmp
jge

es
bp
bp,sp
sp,local size

cX,field size
cx,2 -
small string

cx
cx,BCD DIGITS
size ok

cx,BCD_DIGITS

a1,INFINITY
found_infini ty

al,NAN
NAN or_indefinite

Save working register

Establish stack addressibility

Check for enough string space

Adjust for sign character
See if string is too large for BCD

Else set maximum string size

Look for infinity
Return status value for + or - info

Look for NAN or INDEFINITE

Set default return values and check that the number is normalized.

fabs

mov
xor
mov
mov
mov
mov
cmp
jae

cmp
jae

fxtract
cmp
jb

sub

dx,ax
ax,ax
di,denorma1 ptr
word ptr CdT, ,ax
bx,power ptr
word ptr-[bx] ,ax
d 1, ZERO
real zero

d 1, DENORMAL
found denormal

d 1, UNNORMAL
normal value

dl,UNNORMAL-NORMAL

Use positive value only
sign bit in al has true sign of value
Save return value for later
Form e constant
Zero denormal count

Zero power of ten value

Test for zero
Skip power code if value is zero

Look for a denorma1 value
Handle it specially

Separate exponent from significand
Test for unnormal value

; Return normal status with correct sign

Normalize the fraction, adjust the power of two in ST(l) and set
the denormal count value.

Assert: 0 (= STUn (1.0

fIdl Load constant to normalize fraction

normalize fraction:

fadd st(l),st
fsub
fxtract

fxch

37

Set inteqer bit in fraction
Form normalized fraction in ST(e)
Power of two field will be neoative
of denormal count
Put denormal count in ST(0)

255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
3H'
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327

;
real

;

fist
faddp

neg
jnz

word ptr (di]
st(2) ,st

word ptr [di]
not _psuedo _ze ro

Ap·113

Put negative of denormal count in memory
Form correct power of two in stell
OK to use word ptr (di] now
Form positive denormal count

A psuedo zero will appear as an unnormal number. When attempting
to normalize it, the resultant fraction field will be zero. Performing
an fxtract on zero will yield a zero exponent value.

fxch
fistp

sub
jmp

wo rd pt r [d i]

dl,NORMAL-PSUEDO ZERO
convert_integer -

Put power of two value in st(0)
Set denormal count to power of two value
Word ptr [di] is not used by convert
integer, OK to leave running
Set return value saving the sign bit
Put zero value into memory

The number is a real zero, set the return value and setup for
conversion to BCD.

zero:

sub
jmp

dl,ZERO-NORMAL
convert _i nteger

Convert status to normal value
Treat the zero as an integer

The number is a denormal. FXTRACT will not work correctly in this
case. To correctly separate the exponent and fraction, add a fixed
constant to the exponent to guarantee the result is not a denormal.

found denormal:

,

fldl
fxch
fprem

fxtract

Prepare to bump exponent

Force denorma1 to smallest representable
extended real format exponent
This will work correctly now

The power of the original denorma1 value has been safely isolated.
Check if the fraction value is an unnormal~

fxam
fstsw
fxch
fxch
sub
test
jz

fstp

status

st(2)
d1,DENORMAL-NORMAL
status,4400H
normalize fraction

st(0)

See if the fraction is an unnormal
Save status for later
Put exponent in ST(0)
Put 1.0 into ST(0), exponent in ST(2)
Return normal status with correct sign
See if C3=C2=0 impling unnormal or NAN
Jump if fraction is an unnormal

Remove unnecessary 1.0 from st(0)

Calculate the decimal magnitude associated with this number to
within one order. This error will always be inevitable due to
rounding and lost precision. As a result, we will deliberately fail
to consider the LOG10 of the fraction value in calculating the order.
Since the fraction will always be 1 <= F < 2, its LOG10 will not change
the basic accuracy of the function. To get the decimal order of magnitude,
simply multiply the power of two by LOG10(2) and truncate the result to
an integer.

normal value:
not_psuedo_zero:

fstp fraction
fist power_two
f1d1g2

fmu1
fistp power_ten

Save the fraction field for later use
Save power of two
Get LOGl0(2)
Power two is now safe to use
Form LOGl0(of exponent of number)
Any rounding mode will work here

Check if the magnitude of the number rules out treating it as
an integer.

CX has the maximum number of decimal digits allowed.

38

328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
~~1

362
363
364
365
366
367
368
369
370
371
372
373
j74
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401

;

fwa it
mov
sub
ja

ax,power ten
ax,cx
adjust_result

Ap·113

Wait for power ten to be valid
Get power of ten of value
Form scaling factor necessary in ax
Jump if number will not fit

The number is between 1 and 10**(field_size).
Test if it is an integer.

fild
mov
sub
fld
fscale
fst
frndint
fcomp
fstsw
test
jnz

fstp
mov

power two
s i , dx­
dl,NORMAL-EXACT
fraction

stell

status
status,4000H
convert_integer

st(0)
dx,si

Restore original number
Save return value
Convert to exact return value

Form full value, this is safe here
Copy value for compare
Test if its an integer
Compare values
Save status
C3=1 implies it was an integer

Remove non integer value
Restore original return value

Scale the number to within the range allowed by the BCD format.
The scaling operation should produce a number within one decimal order
of magnitude of the largest decimal number representable within the
given string width.

The scaling power of ten value is in ax.

adjust result:

test

test

neg

call

fld
fmul
mov
shl
shl
shl
fild
faddp
fscale
fstp

~._ ,.,....:1 r ,

ax

get _power_ 10

fraction

si,cx
si,l
si,l
si,l
power two
st(2);st

st (l)

,.... _.... :.~: •• : ... "" P ••••

Subtract one for each order of
magnitude the value is scaled by
Scaling factor is returned as exponent
and fraction
Get fraction
Combine fractions
Form power of ten of the maximum
BCD value to fit in the string
Index in si

Combine powers of two

Form full value, exponent was safe
Remove exponent

Test the adjusted value against a table of exact powers of ten.
The combined errors of the maqnitude estimate and power function can
result in a value one order of magnitude too small or too large to fit
correctly in the BCD field. To handle this problem, pretest the
adjusted value, if it is too small or large, then adjust it by ten and
adjust the power of ten value.

_power:

fcom

fstsw
test
jnz

fidiv
and
inc
jmp

for small: -
fcom
fstsw

power _table[si]+type power table; Compare against exact power
e"n try. Use the next entry since ex
has been decremented by one

status
status,4100H
test for small - -
const10
dl,not EXACT
word ptr [bx]
short in_range

power_ table[si]
status

39

No wait is necessary
If C3 = C0 = 0 then too big

Else adjust value
Remove exact flag
Adjust power of ten value
Convert the value to a BCD integer

Test relative size
No wait is necessary

4rtl2
4rtl3
4rtl4
4rtl5
406
4~7
408
409
419
411
412
413
414
415
416
417
418
419
42rtl
421
422
423
424
425
426
427
428
429
43rtl
431
432
433
434
435
43f;
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474

test
jz

fimu1
dec

frndint

status, HHlH
in_range

const10
word ptr [bx]

Ap·113

If C0 = 0 then st(0) >= lower bound
Convert the value to a BCD integer

Adjust value into range
Adjust power of ten value

; Form integer value

Assert: 0 <= TOS <= 999,999,999,999,999,999
The TOS number will be exactly representable in 18 digit BCD format.

convert_integer:

fbstp bcd value Store as BCD format number

While the store BCD runs, setup registers for the conversion to
ASCII.

mov
mov
mov
mov
mov
mov
cld
mov
test
jz

mov

posi ti ve _resul t:

stosb
and
fwai t

si,BCD SIZE-2
cx,0f04h
bx,l
di,string ptr
ax,ds -
es,ax

aI, ,+ i
dl,MINUS
positive_result

aI, "_,

dl,not MINUS

Register usage:

Initial BCD index value
Set snift count and mask
Set initial size of ASCII field for sign
Get address of start of ASCII string
Copy ds to es

Set autoincrement mode
Clear sign field
Look for negative value

Bu~p strinq rointer past sign
Turn off siqn bit
Wait tor fbstp to finish

ah: BCD byte value in use
al: ASCII character value
dx: Return value
ch: BCD mask = 0fh
cl: BCD shift count = 4
bx: ASClI string field width
si: BCD field index
di: ASCII string field pointer
ds,es: ASCII string segment base

Remove leading zeroes from the number.
;
skip_leading_zeroes:

mov ah,bcd _byte [si]
mov al,ah
shr al,cl
and al,ch
jnz enter odd

mov al,ah
and al,ch
jnz enter even -
dec si
jns skip - leading -zeroes

The significand was all zeroes.

mov
stosb
inc
jmp

aI, • 0 I

bx
short exit with value

Get BCD byte
Copy value
Get high order digit
Set zero flag
Exit loop if leading non zero found

Get BCD byte again
Get low order digit
Exit loop if non zero digit found

Decrement BCD index

Set initial zero

Bump string length

475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
!>00
501
502
503
504
505
506
507
:>lI.ib

509
510
511

AP·113

NOW expand the BCD string into digit per byte values 0-9.
;
digit_loop:

mov
mov
shr

enter odd:

add
stosb
mov
and
inc

enter even:

add
stosb
inc
dec
jns

ah,bcd byte[si]
aI,ah -
al,cl

aI, • 0'

aI,ah
al,ch
bx

bx
si
digi t_Ioop

Get BCD byte

Get high order digit

Convert to ASCII
Put digit into ASCII string area
Get low order digit

Bump field size counter

Convert to ASCII
Put digit into ASCII area
Bump field size counter
Go to next BCD byte

Conversion complete. Set the string size and remainder.
;
exit_with value:

mov
mov
mov
jmp

di,sizeptr
word ptr [di],bx
ax,dx
exit proc

floating to ascii
code --

endp
ends
end

Set return value

ASSEMBLY COMPLETE, NO ERRORS FOUND

LINE

1
2
3
4
5
6
7
8
y

10
11
12
13

14
15
16
17
18
19
20
21
22
23

SOURCE

~title(Calculate the value of 10**ax)

stack

stack

cgroup
code

This subroutine will calculate the value of 10**ax.
All 8086 registers are transparent and the value is returned on
the TOS as two numbers, exponent in STell and fraction in ST(0).
The exponent value can be larger than the maximum representable
exponent. Three stack entries are used.

name get power 10
public get~power=l0,power table

segment stack 'stack'
dw 4 dup (?)

ends

group code
segment public 'code'
assume cs:cgroup

Use exact values from 1.0 to le18.

Allocate space on the stack

Optimize 16 hit access
power table

even
dq 1.0,lel,le2,le3

41

24

25

26

27

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

get_power_ 10

cmp
ja

push
mov
shl
shl
sh1
f1d
pop
fxtract
ret

dq

dq

dq

dq

proc

ax,18
out of

bx
bx,ax
bx,l
bx,l
bx,l

-

Ap·113

le4,le5,le6,le7

le8,le9,le10,lell

le12,le13,le14,le15

le16,le17,le18

range
Test for 0 <= ax < 19

Get working index register
Form table index

power _table [bx] Get exact value
Restore register value
Separate power and fraction
OK to leave fxtract iunning

bx

Calculate the value using the exponentiate instruction.
The following relations are used:

l0**x = 2**(log2(10)*x)
2**(I+F) 2**1 * 2**F
if stell = I and st(0) = 2**F then fscale produces 2**(1+F}

fld12t
push
mov
push
push
fimul
fnstcw

mov
and
or
xchg

fldl
fchs
fld
fldcw
frnd i nt
mov
fldcw

bp
bp,sp
ax
ax
word ptr [bp-2]
word ptr [bp-4]

ax,word ptr [bp-4]
ax,not 0C00H
ax,0400H
ax,word ptr [bp-4]

st (1)
word per [bp-4]

word ptr [bp-4] ,ax
word ptr [bp-4]

42

TOS = LOG2 (10)
Establish stack addressibility

Put power (P) in memory
Allocate space for status
TOS,X = LOG2(10)*P = LOG2(10**P)
Get current control word
Control word is a static value
Get control word, no wait necessary
Mask off current rounding field
Set round to negative infinity
Put new control word in memory
old control word is in ax
Set TOS = -1. 0

Copy power value in base two
Set new control word value
TOS = I: -inf < I. <= X, I is an integer
Restore original rounding control

72
73
74
75
76
77
78
79
8~
81
82
83
84
85

fxch
pop
fsub
pop
fscale
f2xml
pop
fsubr
fmul
ret

get power HJ
code -

st(2)
ax
st,st(2)
ax

bp

st,st(~)

endp
ends
end

Ap·113

TOS = X, ST(l) = -1.0, ST(2)
Remove original control word
TOS,F = X-I: 0 <= TOS < 1.0
Restore power of ten
TOS = F/2: 0 <= TOS < ~.5
TOS = 2**(F/2) - 1.0
Restore stack
Form 2**(F/2)
Form 2**F
OK to leave fmul running

I

ASSEMBLY COMPLETE, NO ERRORS FOUND

LINE

1
2
3
4
5
6
7
8
9

1~
11
12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

SOUHCE

Stitle(Determine TOS register contents)

stack

stack

cgroup
code

This subroutine will return a value from 0-15 in ax corresponding
to the contents of 8087 TOS. All registers are transparent and no
errors are possible. The return value corresponds to c3,c2,cl,c0
of FXAM instruction.

name tos status
public tos-status

segment stack 'stack'
dw 3 dup (?)

ends

group code

Allocate space on the stack

tos status

segment public 'code'
assume cs:cgroup
proc

fxam
push
push
mov
fstsw
pop
pop
mov
and
shr
shr
shr
or
mov
ret

tos status
code

ax
bp
bp,sp
word ptr [bp+21
bp
ax
al,ah
ax,4liH?J7h
ah,l
ah,l
ah,l
al,ah
ah,0

endp
ends
end

Get register contents status
Allocate space for status value
Establish stack addressibility

Put tos status in memory
Restore registers
Get status value, no wait neCeSS&ij
Put bit 10-8 into bits 2-0
Mask out bits c3,c2,cl,c0
Put bit c3 into bit 11

Put c3 into bit 3
Clear return value

ASSEMBLY COMPLETE, NO ERRORS FOUND

Ap·113

APPENDIX D

OVERVIEW

Appendix D shows a function for converting ASCII
input strings into floating point values. The returned
value can be used by PLM/86, P ASCAL/86, FOR­
TRAN/86, or ASM/86. The routine will accept a num­
ber in ASCII of standard FORTRAN formats. Up to 18
decimal digits are accepted and the conversion accuracy
is the same as for converting in the other direction.
Greater accuracy can also be achieved with similar
tradeoffs, as mentioned earlier.

code simply determines the meaning of each character
encountered. Two separate number inputs must be rec­
ognized, mantissa and exponent values. Performing the
numerics operations is very straightforward.

The length of the number string is determined first to
allow building a BCD number from low digits to high
digits. This technique guarantees that an integer will be
converted to its exact BCD integer equivalent.

If the number is a floating point value, then the digit
string can be scaled appropriately. If a decimal point oc­
curs within the string, the scale factor must be decreased
by one for each digit the decimal point is moved to the
right. This factor must be added to any exponent value
specified in the number.

Description of Operation

Converting from ASCII to floating point is less complex
numerically than going from floating point to ASCII. It
consists of four basic steps: determine the size in deci­
mal digits of the number, build a BCD value corre­
sponding to the number string if the decimal point were
at the far right, calculate the exponent value, and scale
the BCD value. The first three steps are performed by
the host software. The fourth step is mainly performed
by numeric operations.

ACCURACY CONSIDERATIONS

All the same considerations for converting floating
point to ASCII apply to calculating the scaling factor.
The accuracy of the scale factor determines the accuracy
of the result.

The exponents and fractions are again kept separate to
prevent overflows or underflows during the scaling
operations.

The complexity in this function arises due to the flexible
nature of the input values it will recognize. Most of the

LINE

1
2
3
4
5
6
7
8
y

HJ
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

SOURCE

$title(ASCII to floating point conversion)

Define the publicly known names.

name
public
extrn

ascii to floating
ascii-to-floating
get-power_10:near

This function will convert an ASCII character string to a floating
point representation. Character strings in integer or scientific form
will be accepted. The allowed format is:

[+,-] [digit(s)] [.J [digit(s)] [E,e] [+,-] [digit(s)]

Where a digit must have been encountered before the exponent
indicator 'E' or'e'. If a '+', '-', or '.' was encountered, then at
least one digit must exist before the optional exponent field. A value
will always be returned in the 8~87 stack. In case of invalid numbers,
values like indefinite or infinity will be returned.

The first character not fittino within the format will terminate the
conversion. The address of the terminating character will be returned
by this sUbroutine.

The result will be left on the top of the NPX stack. This
subroutine expects 3 free NPX stack registers. The sign of the result
will correspond to any sign characters in the ASCII string. The rounding
mode in effect at the time the subroutine was called will be used for
the conversion from bose 10 to base 2. Up to 18 significant decimal
digits may appear in the number. Lea~irn zeroes, trailinr zeroes, or
exponent riqits no not count towards the 18 digit maxiMum. Integers
or exactly representable decimal numbers of 18 dioits or less will be
exactly converted. The technique used constructs-a BCD number

44

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
~l
52
53
54
55
~6
57
58
59
60
61
62
63
64
65
66

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
Hn

;

Ap·113

representing the significant ASCII digits of the string with the decimal
point removed.

An attempt is made to exactly convert relatively small integers or
small fractions. ~or example the values: .06125, 123456789012345678,
le17, 1.23456e5, and l25e-3 will be exactly converted to floating point.

The exponentiate instruction is used to scale the generated BCD vaslue
to very large or very small numbers. The basic accuracy of this function
determines the accuracy of this subroutine. For very large or very small
numbers, the accuracy of this function is 2 units in the 16th decimal
place or double precision. The range of decimal powers accepted is
10-*-4930 to 10**4930.

The PLM/86 calling format is:

ascii to floating:

ax

- procedure (string ptr,end ptr,status ptr) real external:
declare (string ptr,end ptr,status pEr) pointer:
declare end based end ptr pointer:-
declare status based status ptr word:
end:

The status value has 6 possible states:

o A number was found.
1 No number was found, return indefinite.
2 Exponent was expected but none found, return indefinite.
3 Too many digits were found, return indefinite.
4 Exponent was too big, return a signed infinity.

The following registers are used by this subroutine:

bx cx dx si di

Define constants.

LOW EXPONENT
HIGH EXPONENT
WORD-t;IZE

equ
equ
equ
equ

-4930
4930
2

Smallest allowed power of 10
Largest allowed power of IA

BCD ~IZE 10

Define the parameter layouts involved:
,
bp save
return ptr
status-ptr
end_ptr
stringytr

equ
equ
,equ
equ
equ

equ

word ptr [bpJ
bp save + size bp save
return ptr + size-return ptr
status-ptr + size status-ptr
end_ptr + size end_ptr -

size status_ptr + size end_ptr + size string_ptr

Define the local variable data layouts

power ten
bcd form

local size

equ
equ

equ

word ptr [bp- WORD SIZE] : power of ten value
tbyte ptr power_ten - BCD_SIZE: BCD representation

size power_ten + size bcd form

Define common expressions used

bcd byte
bcd-count
bcd-Sign
bcd:sign_ bi t

equ
equ
equ
equ

byte ptr bcd form
(type(bcd form)-1)*2
byte ptr bcd form + 9
80H

Current byte in the BCD form
Number of digits in BCD form
Address of BCD sign byte

Define return values~
:
NUMBER FOUND
NO NUMBER
NO-EXPONENT

equ
equ
equ

TOO MANY DIGITS equ
EXPONENT-TOO BIG equ

o
1
2
3
4

45

Number was found
No number was found
No exponent was found when expected
Too many digits were found
Exponent was too big

108
109
110
III
112

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

tack

stack

cgroup
code

AP·113

Allocate stack space to insure enough exists at run time.

segment stack 'stack'
db (local_size+4) dup (?)

ends

group code
segment public 'code'
assume cs:cgroup

Define some of the possible return values.

Optimize 16 bit access
indefinite
infinity

even
dd
dd

0FFC00000R
07FF80000R

Single precision real for indefinite
Single precision real for +infinity

ascii to_floating proc

fldz
push
mov
sub

bp
bp,sp
sp,local size

Prepare to zero BCD value
Save callers stack environment
Establish stack addressibility
Allocate space for local variables

Get any leading sign character to form initial BCD template.

mov
xor
cld

si,string ptr
dx,dx -

Get starting address of the number
Set initial decimal digit count
Set auto increment mode

Register usage:

al: Current character value being examined
cx: Digit count before the decimal point
dx: Total digit count
si: Pointer to character string

Look for an initial sign and skip it if found.

lodsb
cmp
jz

cmp
jnz

fchs

aI, '+'
scan_leading digits

aI, '-'
enter_leading_digits

Get first character
Look for a sign

If not "-" test current character

Set TOS = -0

Count the number of digits appearing before an optional decimal point.

lodsb

call
jnc

test digit
scan:leading_digits

Get next character

Test for digit and bump counter

Look for a possible decimal point and start fbstp operation.
The fbstp zeroes out the BCD value and sets the correct sign.

fbstp
mov
cmp
jnz

bcd form
cx,dx
aI, ' • '
test for_digits

Set initial sign and value of BCD number
Save count of digits before decimal point

Count the number of digits appearing after the decimal point.

lodsb Look at next character

46

180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
L14
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

;

call
jnc

Ap·113

test digit
scan=trailing_digits

Test for digit and bump counter

There must be at least one digit counted at this point.

test_for_digi ts:

dec
or
jz

push
dec

si
dx,dx
no number

si
si

found

Put si back on terminating character
Test digit count
Jump if no digits were found

Save pointer to terminator
Backup pointer to last digit

Check that the number will fit in the 18 digit BCD format.
CX becomes the initial scaling factor to account for the implied
decimal point.

sub cx,dx For each digit to the right of the
decimal point, subtract one from the
initial scaling power

neg dx Use negative digit count so the
test digit routine can count dx up
to zero

cmp dx,-bcd count ; See if too many digits found
jb test_for_unneeded_digits

Setup initial register values for scanning the number right to left,
while building the BCD value in memory.

form bcd value:

std
mov
xor
mov
fwai t
jmp

power ten.cx
d i,d i
cl,4

Set autodecrement mode
Spt initi~l DOWPY of tpn
Clear BCD number index
Set digit shift count
Ensure BCD store is done

No digits were encountered before testing for the exponent.
Restore the string pointer and return an indefinite value.

no _number _found:

mov
fld
jmp

ax,NO NUMBER
indefinite
exit

Set return status
Return an indefinite numeric value

Test for a number of the form ???00000.
;
test_terminating~point:

10dsb
cmp
jz

inc
jmp

al, I • I

enter_power zeroes

si
short enter_power_zeroes

Get last character
Look for decimal point
Skip forward if found

Else bump pointer back

Too many decimal digits encountered. Attempt to remove leading and
trailing digits to bring the total into the bounds of the BCD format.

;
test_for_unneeded_digits:

std
or

jz

dec

cx,cx

dx

Set autodecrement mode
See if any digits appeared to the
right of the decimal point
Jump if none exist

Adjust diqit counter for loop

Scan backwards from the right skipping trailing zeroes.
If the end of the number is encountered, dx=0, the string consists of
all zeroes!

47

254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327

Ap·113

skip_trailing_zeroes:

inc dx
jz look_for_exponent

lodsb
inc
cmp
jz

dec
cmp
jnz

dec

cx
aI, • 0'
skip_trai1ing_zeroes

cx
a 1, • • •
scan_leading_zeroes

dx

Bump digit count
Jump if string of zeroes found!

Get next character
Bump power value for each trailing
zero dropped

Adjust power counter from loop
Look for decimal point
Skip forward if none found

Adjust counter for the decimal point

The string is of the form: ????0000000
See if any zeroes exist to the left of the decimal point.

dec

inc
jz

lodsb
inc
cmp
jz

dec

dx

dx
look_for~exponent

cx
aI, • 0'
skip_power_zeroes

cx

Adjust digit counter for loop

Bump digit count

Get next character
Bump power value for each trailing
zero dropped

; Adjust power counter from loop

Scan the leading digits from the left to see if they are zeroes.

lea
cld
mov
lodsb

di,byte ptr [si+1J

si,string_ptr

cmp aI, '+'
je skip_leading zeroes

cmp aI, ,_I
jne enter-feading_zeroes

Save new end of number pointer
Set autoincrement mode
Set pointer to the start
Look for sign character

Drop leading zeroes. None of them affect the power value in cx.
We are guarenteed at least one non zero digit to terminate the loop.

skip_leading_zeroes:

lodsb

enter_leading zeroes:

inc
cmp
jz

dec
cmp
jnz

dx
aI, '0'
skip_leading zeroes

dx
a1, , • •
test_digit_count

Number is of the form 000.????

Get next character

Bump digit count
Look for a zero

Adjust digit count from loop
Look for 000.??? form

Drop all leading zeroes with no effect on the power value.

skip_middle zeroes:

inc
lodsb

dx

48

Remove the digit
Get next character

328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
.,Cl

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401

Ap·113

cmp aI, • 0 I

jz skip_middle zeroes

dec dx ; Adjust digit count from loop

All superflous zeroes are removed. Check if all is well now.
;
test_digit_count:

cmp dx,-bcd count
jb too_many_digits_found

mov
jmp

fld
mov
pop
jmp

si ,d i
form bcd val ue

indefinite
ax,TOO_MANY_DIGITS
si
exit

Restore string pointer

Set return numeric value
Set return flag
Get last address

Build BCD form of the decimal ASCII string from right to left with
trailing zeroes and decimal point removed. Note that the only non
digit possible is a decimal point which can be safely ignored.
Test digit will correctly count dx back towards zero to terminate
the BCD build function.

;
get_digi t_loop:

lodsb
call
jc

shl
or
mov
inc
or
jz

test digit
get_digi t_1oop

al,cl
ah,a1
bcd byte[diJ ,ah
di -
dx,dx
look_for_exponent

enter _ d igi t _loop:

lodsh
call test digit

enter_digit_Ioop jc

mov
or
jnz

mov

ah,al
dx,dx
get _d ig it_loop

bcd_byteldi] ,ah

Look for an exponent indicator.
;
look_for_exponent:

pop
cld
mov
lodsb
cmp
je

si

aI, • e I

exponent_found

cmp aI, • E I
jne convert

Get next character
Check if digit and bump digit count
Skip the decimal point if found

Put digit into high nibble
Form BCD byte in ah
Put into BCD string
Bump BCD pointer
Check if digit is available

Get next character
Check If digit
Skip the decimal point

Save digit
Check if digit is available

Save last odd digit

Restore string pointer
Set autoincrement direction
Get current power of ten
Get next character
Look for exponent indication

An exponent is expected, get its numeric value.
;
exponent_found:

lodsb
xor
mov

d i,d i
cx,di

49

Get next character
Clear power variable
Clear exponent siqn flag and digit flag

402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
43"
431
432
433
434
435
436
437
438
439
44k:i
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475

cmp
je

cmp
jne

aI, =+!
ski p _powe r _ s i g n

al, '-'
enter_power_loop

Ap·113

Test for positive sign

Test for negative sign

The exponent is negative.

inc ch Set exponent sign flag

ski p _power _sign:

Register usage:

al: exponent character being examined
bx: return value
ch: exponent sign flag 0 positive, 1 negative
cl: digit flag 0 no digits found, I digits found
dx: not usable since test digit increments it
si: string pointer -
di: binary value of exponent

Scan off exponent digits until a non-digit is encountered.

power _loop:

lodsb

mov
call
jc

mov
sal
add
sal
sal
add
cmp
jna

ah,0
test digit
form:power_value

Get next character

Clear ah since ax is added to later
Test tor a digit
Exit loop if not

cl,l Set power digit flag
di,l old*2
ax,di old*2+digit
di,l old*4
di,l old*8
di,ax old*10+digit
di,HIGH EXPONENT+bcd_count; Check if exponent is too big
power_loop

The exponent is too large.

exponent_overflow:

mov
fld
test
jz

fchs
jmp

ax,EXPONENT TOO BIG
infinity -
bcd sign,bcd sign bit
exit --

short exit

No exponent was found.

dec
mov
fld
jmp

si
ax,NO EXPONENT
indefinite
short exit

Set return value
Return infinity
Return correctly signed infinity
Jump if not

Return -infinity

Put si back on terminating character
Set return value
Set

__ . __ L __ L ___ ..L. ___ _

numuel LO It:l.Ulll

The string examination is complete. Form the correct power of ten.

dec

rcr
jnc

neg

si

ch,l
positive_exponent

di

50

Backup string pointer to terminating
character
Test exponent sign flag

Force exponent negative

476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
E:;(JO

510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547

positive_exponent:

convert:

done:

exit:

Test exponent digit flag rcr
jnc

cl,l
no_exponent_found If zero then no exponent digits were

found
add
cmp
js

di ,power ten
d i , LOW EXPONENT
exponent_overflow

cmp di,HIGH EXPONENT
jg exponen~overflow

inc si

Form the final power of ten value
Check if the value is in range
Jump if exponent is too small

; Adjust string pointer

Convert the base 10 number to base 2.
Note: 10**exp = 2**(exp*10g2(10»

di has binary power of ten value to scale the BCD value with.

dec
mov
or
js

si
ax,di

Bump string pointer back to last character
Set power of ten to calculate

ax,ax
get_negative_power

Test for positive or negative value

Scale the BCD value by a value >= 1.

call
fbld
fmul
jmp

get power Hil
bcd-form -

short done

Get the adjustment power of ten
Get the digits to use
Form converged result

Calculate a power of ten value> 1 then divide the BCD value with
it. This technique is more exact than multiplying the BCD value by
a fraction since no negative power of ten can be exactly represented
in binary floating point. Using this technique will guarentee exact
conversion of values like .5 and .0625.

neg
call
fbld
fdivr
fxch
fchs
fxch

ax
get power 10
bcd-form -

All done, set return values.

fscale
mov ax,NUMBER FOUND
fstp st(1) -

mov
mov
mov
mov
mov
pop
fwait
ret

di,status ptr
word ptr Ydi] ,ax
di,end ptr
wo rd pt r [d i] , s i
sp,bp
bp

parms size

Force positive power
Get the adjustment power of ten
Get the digits to use
Divide fractions
Negate scale factor

Update exponent of the result
Set return value
Remove the scale factor

Set status of the conversion

Set ending strinq address

Deallocate local storage area
Restore caller's environment
Insure all loads from memory are

Test if the character in al is an ASCII digit.
If so then convert to binary, bump cx, and clear the carry flag.
Else leave as is and set the carry flag.

51

done

Ap·113

548
549
550
551
552
553
554
555
556
551
558
559
560
561
562
563
564
565
566
561
568
569
570

;

test_digit:
cmp
ja

aI, • 9'
not_digi t

cmp al,=0=
jb not_digit

Character is a digit.

inc dx
sub aI, • 0'
ret

Character is not a digit. .
not digit:

- stc
ret

ascII to floating endp
code - - ends

end

ASSEMBLY COMPLETE, NO ERRORS FOUND

See if a digit

Bump digit count
Convert to binary and clear carry flag

Leave as is and set the carry flag

APPENDIX E

OVERVIEW

Appendix E contains three trigonometric functions for
sine, cosine, and tangent. All accept a valid angle argu­
ment between - 262 and + 262• They may be called from
PLM/86, PASCAL/86, FORTRAN/86 or ASM/86
functions.

They use the partial tangent instruction together with
trigonometric identities to calculate the result. They are
accurate to within 16 units of the low 4 bits of an ex­
tended precision value. The functions are coded for
speed and small size, with tradeoffs available for greater
accuracy.

FPTAN and FPREM

These trigonometric functions use the FPT AN instruc­
tion of the NPX. FPT AN requires that the angle argu­
ment be between 0 and PI/4 radians, 0 to 45 degrees.
The FPREM instruction is used to reduce the argument
down to this range. The low three quotient bits set by
FPREM identify which octant the original angle was in.

One FPREM instruction iteration can reduce angles of
1018 radians or less in magnitude to PI/4! Larger values
can be reduced, but the meaning of the resuit is ques­
tionable since any errors in the least significant bits of
that value represent changes of 45 degrees or more in the
reduced angle.

Cosine Uses Sine Code
To save code space, the cosine function uses most of the
sine function code. The relation sin (IAI + PII2) =
cos(A) is used to convert the cosine argument into a sine

52

argument. Adding PI/2 to the angle is performed by
adding 0102 to the FPREM quotient bits identifying the
argument's octant.

It would be very inaccurate to add PI/2 to the cosine
argument if it was very much different from PI/2.

Depending on which octant the argument falls in, a dif­
ferent relation will be used in the sine and tangent func­
tions. The program listings show which relations are
used.

For the tangent function, the ratio produced by FPTAN
will be directly evaluated. The sine function will use
either a sine or cosine relation depending on which oc­
tant the angle fell into. On exit these functions will nor­
mally leave a divide instruction in progress to maintain
concurrency.

If the input angles are of a restricted range, such as from
o to 45 degrees, then considerable optimization is pos­
sible since full angle reduction and octant identification
is not necessary.

All three functions begin by looking at the value given
to them. Not a number (NAN), infinity, or empty regis­
ters must be sneciallv treated, Unnormals need to be
converted to n~~~~ ~alues before the FPT AN instruc­
tion will work correctly. Denormals will be converted to
very small unnormals which do work correctly for the
FPT AN instruction. The sign of the angle is saved to
control the sign of the result.

Within the functions, close attention was paid to main­
tain concurrent execution of the 8087 and host. The
concurrent execution will effectively hide the execution
time of the decision logic used in the program.

LINE

1
2
3
4
5
6 +1
7
8
9

1"
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
3"
31
.)~

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

Ap·113

SOURCE

$tit1e(8"87 Trignometric Functions)

public
name

sine,cosine,tangent
trig_functions

$inc1ude (:f1:8087.anc)

Define 8"87 word packing in the environment area.

cw 87
&
&
&

sw 87
&
&
&

tw 87
&

low _i P _87

high_ip_op_87

low_op_87

high_op_87

environment 87
t::IlVOI ~w

env87-sw
env87-tw
env87-1ow ip
env87nip-op
env87-low -op
env87hop­
environment 87

record res871:3,infinity control:l,rounding control:2,
precision control:2,error enable:l,res872:1,
precision-mask:l,underflow mask:l,overflow mask:l,
zero_divide_mask:l,denormaf_mask:1,invalid:mask:1

record busy:1,cond3:1,top:3,cond2:1,cond1:1,cond0:l,
error-pending:1,res873:1,precision error:1,
underflow error:1,overflow error:1;zero divide_error:l,
denormal_error:1,invalid_error:1 -

record reg7 tag:2,reg6 tag:2,reg5 tag:2,reg4 tag:2,
reg3:tag: 2 ,reg2:tag:2,regl:tag:2,reg0:tag:2

record

record

record

record

struc
uW

dw
dw
dw
dw
dw
dw
ends

low_ip:16

h i _.i p: 4 , res 8 74 : 1 , 0 pc od e _8 7 : 11

low_op: 16

hi_op:4,res875:l2

?
?
?
?
?
?

8087 environemnt layout

Define 8087 related constants.

TOP VALUE INC equ sw 87 <0,",1,0,0,0,0,0,0,0,0,0,0,0>

VALID TAG equ 0 ; Tag register values
ZERO TAG equ 1
SPECIAL TAG equ 2
EMPTY TAG equ 3
REGISTER MASK equ 7

Define local variable areas.
;
stack

local area
sw1 -
local area

stack

code

status

segment stack 'stack'

struc
dw
ends

db
ends

?

size local area+4

segment public 'code'
assume cs:code,ss:stack

Define local constants.

equ [bp].swl

even

8087 status value

Allocate stack space

8087 status value location

dt 3FFEC90FDAA22168C235R PI/4

53

73
74
75
76
77
78
79
89
81
82
83
84
85
86
87
88
89
99
91
92
93
94
95
96
97
98
99

199
191

H13
194
HI5
106
107
198
199
119
III
112
113
114
115
116
117
118
119
129
121
122
123
124
125
126
127
128
129
139
131
132
133
134
135
136
137
138
139
149
141
142
143
144
145

Ap·113

indefinite dd 0FFC90900R Indefinite special value

This subroutine calculates the sine or cosine of the angle, given in
radians. The angle is in ST(9), the returned value will be in ST(9).
The result is accurate to within 7 units of the least siqnificant three
bits of the NPX extended real format. The PLM/86 definition is:

sine: procedure (angle) real external:
declare angle real;
end sine:

cosine: procedure (angle) real external:
declare angle real;
end cosine;

Three stack registers are required. The result of the function is
defined as follows for the following arguments:

angle

valid or unnormal less than 2**62 in magnitude
zero
denormal
valid or unnormal greater than 2**62
infinity
NAN
empty

result

correct value
9 or I
correct denormal
indefinite
indefinite
NAN
empty

This function is based on the NPX fptan instruction. The fptan
instruction will only work with an angle of from 9 to PI/4. With this
instruction, the sine or cosine of angles from 9 to PI/4 can be accurately
calculated. The technique used by this routine can calculate a general
sine or cosine by using one of four possible operations:

1) sineR)

Let R
S

!ang1e mod PI/4!
-lor 1, according to the sign of the angle

2) cos(R) 3) sin{PI/4-R) 4) cos (PI/4-R)

The choice of the relation and the sign of the result follows the
decision table shown below based on the octant the angle falls in:

octant sine cosine

9 S*l 2
1. S*4 3
2 5*2 -1*1
3 S*3 -1*4
4 -S*l -1*2
5 -S*4 -1*3
6 -S*2 1
7 -S*3 4

Angle to sine function is a zero or unnormal.

sine zero unnormal:

fstp st(l) Remove PI/4
jnz enter sine normalize Jump if angle is unnormal

Angle is a zero.

pop bp Return the zero as the result
ret

Angle is an unnorma1.
:
enter sine normalize:

54

1~6
147
148
149
158
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
.HH,)

181
182
183
184
185
186
187
188
189
199
191
192
193
194
195
196
197
198
199
200
201
202
293
204
205
296
207
298
209
210
211
212
213
214
215
216
217
218
219

cosine

sine:

call
jmp

proc

fxam
push
sub
mov
fstsw
fld
mov
pop
lahf
jc

normalize value
short enter sine

bp

AP·113

sp,size local area
bp,sp
status
pi quarter
cl ;-1
ax

funny _parameter

Entry point to cosine

Look at the value
Establish stack addressibility
Allocate stack space for status

Store status value
Setup for angle reduce
Siqnal cosine function
Get status value
ZF = C3, PF,= C2, CF = C0
Jump if parameter is
empty, NAN, or infinity

Angle is unnormal, normal, zero, denormal.

fxch
jpe

Angle

fstp
jnz

Angle

fstp
pop
fld1
ret

enter sine

is an unnormal or zero.

st(l)
enter sine normalize

is a zero. cos(9) = 1.9

st(9)
bp

st(0) angle, st(l) = PI/4
Jump if normal or denormal

Remove PI/4

Remove 0
Restore stack
Return 1

A~~ worK IS aone as a sine runCClon. ~y addIng ~l/L co cne angle
a cosine is converted to a sine. Of course the angle addition is not
done to the argument but rather to the program logic control values.

fxam
push
sub
mov
fstsw
fld
pop
lahf
jc

bp
sp,size local area
bp,sp
status
pi_quarter
ax

funny _parameter

Entry point for sine function

Look at the parameter
Establish stack addressibility
Allocate local space

Look at fxam status
Get PI/4 value
Get fxam status
CF = C9, PF = C2, ZF = C3
Jump if empty, NAN, or infinity

Angle is unnormal, normal, zero, or denormal.

fxch
mov
jpo

cl,9
sine zero unnormal

ST(1) = PI/4, st(9) angle
Signal sine
Jump if zero or unnormal

ST(0) is either a normal or denormal value. Both will work.
Use the fprem instruction to accurately reduce the range of the given
angle to within" and PI/4 in magnitude. If fprem cannot reduce the
angle in one shot, the angle is too big to be meaningful, > 2**62
radians. Any roundoff error in the calculation of the angle given
could completely change the result of this function. It is safest to
call this very rare case an error.

enter sine:

fprem

mov
fstsw

sp,bp
st~tus

55

Reduce angle
Note that fprem will force a
denormal to a very small unnormal
Fptan of a very small unnormal
will be the same very small
unnormal, which is correct.
Allocate stack space for status
Check if' rp'rtlction Vli'lS cO!:1plete

220
221
222
223
224
225
226
227
228
229
239
231
232
233
234
235
236
237
238
239
249
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
269
261
262
263
264
265
266
267
268
269
279
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293

pop
test
jnz

Ap·113

bx
bh,high(mask cond2)
ang Ie _too _big

Quotient in C0,C3,Cl
Get fprem status
sin(2*N*PI+x} = sin(x)

Set sign flags and test for which eighth of the revolution the
angle fell into.

Assert: -PI/4 < st(9) < PI/4

fabs

or
jz

cl,cl
sine select

Force the argument positive
condl bit in bx holds the sign
Test for sine or cosine function
Jump if sine function

This is a cosine function. Ignore the original sign of the angle
and add a quarter revolution to the octant id from the fprem instruction.
cos(A) = sin(A+PI/2) and cos(IAI) cos(A)

and
or

add
mov
rcl
xor

ah,not high(mask condl)
bh,high(mask busy)

bh,high(mask cond3)
al,0
al,l
bh,al

Turn off sign of argument
Prepare to add 019 to C0,C3,Cl
status value in ax
Set busy bit so carry out from
C3 will go into the carry flag
Extract carry flag
Put carry flag in low bit
Add carry to C0 not changing
Cl flag

See if the argument should be reversed, depending on the octant in
which the argument fell during fprem.

sine select:

no sine

;
do sine

test
jz

bh,high(mask condl)
no sine reverse - -

Angle was in octants 1,3,5,7.

fsub
jmp

Angle was in octants 0,2,4,6.

Reverse angle if Cl I

Invert sense of rotation
o < arg <= PI/4

Test for a zero argument since fptan will not work if st(0) 9

reverse: -
ftst
mov
fstsw
fstp
pop
test
jnz

Assert:

_fptan:

fptan

sp,bp
status
st(l)
cx
ch,high(mask
sine _argument

9 < st(9) <=

cond3)
zero

PI/4

Test for zero angle
Allocate stack space
cond3 = 1 if st(0) = 0
Remove PI/4
Get ftst status
If C3=1, argument is zero

TAN ST(9) ST (1) /ST (0) Y/X

after_sine_fptan:

pop bp , Restore stack
test bh,high(mask cond3 + mask condl)i Look at octant angle fell into
jpo X numerator Calculate cosine for octants

1,2,5,6

Calculate the sine of the argument.
sin(A) = tan(A)/sqrt(1+tan(A)**2)
sin(A) = Y/sqrt(X*X + y*y)

fld st(l)
jmp short finish sine

56

if tan (A) = Y/X the~

Copy Y value
Put Y value in numerator

294
295
296
297
298
299
399
391
392
393
394
305
306
307
398
399
3HJ
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
1'7
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366

Ap·113

The top of the stack is either NAN, infinity, or empty.
,
funny_parameter:

fstp
jz

jpo

st(9) Remove PI/4
return _empty Return empty if no parm

return NAN Jump if st(0) is NAN

st(0) is infinity. Return an indefinite value.

fprem ; STell can be anything

return NAN:
return:empty:

pop
ret

bp

Simulate fptan with st(0) 0
,
sine_argument_zero:

fldl
jmp after sine_fptan

Restore stack
Ok to leave fprem running

; Simulate tan(9)
; Return the zero value

The angle was too large. Remove the modulus and dividend from the
stack and return an indefinite result.

,
angle_too_big:

fcompp
fln innpfinitp
pop bp
fwait
ret

Calculate the cosine of the argument.
cos (A) 1/sqrt(l+tan(A)**2) if tan(A)
cos (A) = X/sqrt(X*X + y*y)

;
X numerator:

fld
fxch

finish sine:

fmul
fxch
fmul
fadd
fsqrt

st(0)
st(2)

st,st(0)

st,st(0)

Pop two values from the stack
Rpt-l1rn innpfinitp
Restore stack
Wait for load to finish

Y/X then

Copy X value
Put X in numerator

Form X*X + y*y

st(0)
st(0)

X*X + y*y
sqrt(X*X + y*y)

Form the sign of the result. The two conditions are the Cl flag from
FXAM in bh and the C9 flag from fprem in aha

and
and
or
jpe

fchs

po sit i ve _ sin e :

fdiv
ret

cosine endp

bh,high(mask cond0)
ah,high(mask condl)
bh,ah
posi ti ve _Sine

57

Look at the fprem C0 flag
Look at the fxam Cl flag
Even number of flags cancel
Two negatives make a positive

Force result negative

Form final result
Ok to leave fdiv running

367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440

;

Ap·113

This function will calculate the tangent of an angle.
The angle, in radians is passed in ST(0), the tangent is returned
in ST(0). The tangent is calculated to an accuracy of 4 units in the
least three significant bits of an extended real format number. The
PLM/86 calling format is:

tangent: procedure (angle) real external;
declare angle real;
end tangent;

Two stack registers are used. The result of the tangent function is
defined for the following cases:

angle resul t

valid or unnormal < 2**62 in magnitude
o
denormal
valid or unnormal > 2**62 in magnitude
NAN
infinity
empty

The tangent instruction uses the fptan instruction~
relations are used:

Let R
S

jangle MOD PI/41
-lor 1 depending on the sign of the angle

correct value
o
correct denormal
indefinite
NAN
indefinite
empty

Four possible

1) tan(R) 2) tan (PI/4-R) 3) l/tan (R) 4) 1/tan(PI/4-R)

The following table is used to decide which relation to use depending
on in which octant the angle fell.

octant

o
1
2
3
4
5
6
7

relation

S*l
S*4

-S*3
-S*2

S*l
S*4

-S*3
-S*2

tangent proc

;

fxam
push
sub
mov
fstsw
fld
pop
lahf

bp
sp,size local area
bp,sp
status
pi_quarter
ax

jc funny_parameter

Look at the parameter
Establish stack addressibility
Allocate local variable space

Get fxam status
Get PI/4

CF = C0, PF C2, ZF C3

Angle is unnormal, normal, zero, or denormal.

fxch
jpe tan zero unnormal

Angle is either an normal or denormal.

st(0) angle, st(l)

Reduce the angle to the range -PI/4 < result < PI/4.

PI/4

If fprem cannot perform this operation in one try, the magnitude of the
angle must be > 2**62. Such an angle is so large that any rounding
errors could make a very large difference in the reduced angle.
It is safest to call this very rare case an error.

tan normal:

fprem Quotient in C0,C3,Cl
Convert denormals into unnormals

58

441
442
443
444
445
446
447
448
449
459
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
*'il;')

476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
51n
504
505
506
507
508
5e9
510
511
512
513

mov
fstsw

pop
test
jnz

sp,bp
status

bx

Ap·113

bh,high(mask cond2)
ang Ie _too _big

See if the angle must be reversed.

Assert: -PI/4 < st(0) < PI/4

fabs

test
jz

bh,high(mask condl)
no tan reverse

Allocate stack spce
Quotient identifies octant
original angle fell into
tan(PI*N+x) = tan(x)
Test for complete reduction
Exit if angle was too big

" <= st (0) < PI/4
C1 in bx has the sign flag
must be reversed

Angle fell in octants 1,3,5,7. Reverse it, subtract it from PI/4.

;

fsub
jmp short do_tangent

Angle is either zero or an unnormal.

tan zero unnormal:

fstp
jz

stell
tan_angle _zero

Angle is an unnormal.

call normalize value
jmp tan normar

tan angle_zero:

pop
ret

bp

Reverse angle

Remove PI/4

Restore stack

Angle fell in octants 0,2,4,6. Test for st(0) 0, fptan won't work.

no tan reverse:

ftst
mov
fstsw
fstp
pop
test
jnz

do tangent:

fptan

after_tangent:

sp,bp
status
stell
cx
ch,high(mask cond3)
tan zero

Test for zero angle
Allocate stack space
C3 = I if st(0) = 0
Remove PI/4
Get ftst status

tan ST(e) ST (l) 1ST (fa)

Decide on the order of the operands and their sign for the divide
operation while the fptan instruction is working.

pop bp Restore stack
mov al,bh Get a copy of fprem C3 flag
and ax,mask condl + high(mask cond3); Examine fprem C3 flag and

; fxtract CI flag
test bh,high(mask condl + mask cond3); Use reverse divide if in

octants 1,2,5,6
jpo reverse divide Note! parity works on low

8 bits only!

Angle was in octants ~,3,4,7.
Test for the sign of the result. Two negatives cancel.

or al,ah
jpe positive_divide

59

fchs

po sit i v e _ d i vi de:

fdlv
ret

tan zero:

fldl
jmp after_tangent

Ap·113

Angle was in octants 1,2,5,6.
Set the correct sign of the result.

reverse divide:

or al,ah
jpe positive_r_divide

fchs

positive_r_divide:

fdivr
ret

tangent endp

Force result negative

Form result
Ok to leave fdiv running

Force 1/0 tan(PI/2)

Force result negative

Form reciprocal of result
Ok to leave fdiv running

514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
5513
551
552
553
554
555
556
557
558
559
560
561

This function will normalize the value in st(0).
Then PI/4 is placed into stell.

;
normalize value:

fabs
fxtract
fldl
fadd
fsub
fscale
fstp
fld
fxch
ret

code ends
end

st(l),st

st(l)
pi_quarter

ASSEMBLY COMPLETE, NO ERRORS FOUND

60

Force value positive
o <= st un < 1
Get normalize bit
Normalize fraction
Restore original value
Form original normalized
Remove scale factor
Get PI/4

value

intJ
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, CA 95051 (408) 987·8080

Reprinted in U.S.A./T-2034/20K/1 081/JL CP

