
Pro Audiospectrum
Developer's Toolkit Reference

Media Vision

Pro Audiospectrum
Developer's Toolkit
Reference

Media Vision, Inc.
47221 Fremont Boulevard

Fremont, CA 94538

Technical Support (510) 770-9905

BBS (510) 770-0968

Fax (510) 770-8648

July 1992

Trademarks and Copyrights

Media Vision believes this information is
accurate and reliable. However, it is subject to
change without notice. Media Vision grants to
you the right to reproduce and distribute both
the run time modules and compiled versions of
source, including but not limited to sample
program code provided either on disk or
provided after purchase by electronic means or
through supplemental disk, provided that you
(a) distribute the run time modules and
compiled source code of the PC as an integral
part of your software product, (b) state in your
documentation that your product is compatible
with the Thunder Board, and (c) agree to
indemnify, hold harmless, and defend Media
Vision from and against any claims or lawsuit.

This software is protected by both the United
States copyright law and international
copyright treaty provisions. You may not
reproduce any part of the documentation nor
software program except in accordance with
the above provisions, and for backing up your
software for protection from accidental loss.

Media Vision Software License Statement

The software described in this manual is
protected by US and international copyright
laws. You must not copy the software for any
purpose other than making archival copies for
the sole purpose of backing-up our software for
protection against loss.

The software must not be used on two or more
machines at the same time.

Limited Warranty

(2) Media Vision warrants to you that the
Software will perform substantially in
accordance with the Documentation for a
period of one year after delivery to you. You
must report all defects and return the Software
to Media Vision with a copy of your sales
receipt within such period to be eligible for
warranty service. If the Software fails to
comply with this warranty, your sole and
exclusive remedy, at Media Vision's option and

cost, will be to either provide all corrections
required for any errors, or replace the
Software.(3) Mediavision warrants to you that
the Hardware will be free from significant
defects in materials and workmanship for a
period of one year from the date of purchase.
Media Vision's sole and exclusive remedy with
respect to defective Hardware will be, at Media
Vision's option, to repair or replace such
Hardware, if it is determined to be defective by
Media Vision in its sole discretion, or refund
the purchase price for the Hardware.

(4) MEDIA VISION DOES NOT AND
CANNOT WARRANT THE
PERFORMANCE OR RESULTS YOU MAY
OBTAIN BY USING THE SOFTWARE,
HARDWARE OR DOCUMENTATION.
THE FOREGOING STATES THE SOLE
AND EXCLUSIVE REMEDIES MEDIA
VISION WILL PROVIDE FOR BREACH OF
WARRANTY. EXCEPT FOR THE
FOREGOING LIMITED WARRANTY,
MEDIA VISION MAKES NO WARRANTS,
EXPRESS OR IMPLIED, AS TO NON-
INFRINGEMENT OF THIRD PARTY
RIGHTS, MERCHANTABILITY, OR
FITNESS FOR ANY PARTICULAR
PURPOSE.

(5) Some states do not allow the exclusion of
implied warranties or limitations on how long
an implied warranty may last, so the above
limitations may not apply to you. This
warranty gives you specific legal rights. You
may have other rights which vary from state to
state.

Limit of Liability

(6) IN NO EVENT WILL MEDIA VISION
BE LIABLE TO YOU FOR ANY
CONSEQUENTIAL OR INCIDENTAL
DAMAGES, INCLUDING ANY LOST
PROFITS OR LOST SAVINGS, EVEN IF A
MEDIA VISION REPRESENTATIVE HAS
BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES, OR FOR ANY CLAIM
BY ANY PARTY.

(7) Some states do not allow the exclusion of
limitation of incidental or consequential
damages, so the above limitation or exclusion
may not apply to you.

Media Vision and Pro Audiospectrum are
trademarks of Media Vision, Inc.

Spectrum Sound and AudioMate are registered
trademarks of Media Vision, Inc.

IIBM, XT, and AT are registered trademarks of
International Business Machines Corp.

MS DOS, Microsoft, and Microsoft Windows
are registered trademarks of Microsoft Corp.

AdLib is a registered trademark of AdLib, Inc.

Sound Blaster is copyright Creative Labs, Inc.

Harvard Graphics is a registered trademark of
Software Publishing Corporation.

Autodesk, Autodesk Animator and Autodesk
3D Studio are trademarks of Autodesk, Inc.

Media Vision, Inc.

47221 Fremont Boulevard

Fremont, CA 94538

Technical Support (510) 770-9905

BBS (510) 770-0968

FAX (510) 770-8648

Printed in the United States of America.

This book was written, illustrated, and
produced using ~ r a m e ~ a k e r ~ workstation
publishing software and the ITC ~irnes@,
~ e l v e t i c a ~ Condensed, palatinoB and
courierB families of typefaces.

Program team: Doug Cody, Bart Crane, Jim
Gifford, and Debbie Gronski. Technical
writing by Tansy Associates.

Table of Contents

Chapter 1 Introduction 1-1
Pro AudioSpectrum Developer's Toolkit contents 1-1

About this manual 1-1

Software and hardware API's 1-2

Bulletin board support 1-5

Chapter 2 Installing the Pro AudioSpectrum
Developer's Toolkit 2- 1

PC system requirements 2- 1

Installation procedure 2-2

Experimenting with your Pro AudioSpectrum 2-2

Chapter 3 Common Function Calls and Hardware
Registers 3-1

Common software API function call 3-2

mvGetHWVersion 3-2

Common hardware API register functions 3-4

Audio Filter Control
Register B8Ah 3-4

Interrupt Control
Register B8Bh 3-6

Interrupt Status
Register B89h 3-8

PCM Programming Section

Chapter 4 PCM Programming Essentials 4-1
Accessing PCM function calls 4-1

Theory of Operation 4-2

Using the High-Level PCM API 4-3

Using the Low-Level PCM API 4-6

Pro AudioSpectrum Developer's Toolkit Reference vii

Chapter 5 High-Level PCM Function Call
Reference 5-1

ASpecialContinueFileInput 5-2
ClosePCMBuffering 5-3
ContinueBlockInput 5-3
ContinueBlockOutput 5-4
ContinueFileInput 5-5
ContinueFileOutput 5-6

OpenPCMBuffering 5-7
PCMState 5-8
StartBlockInput 5-8
StartBlockOutput 5-9
StartFileInput 5-10
StartFileOutput 5-1 1

StopDMAIO 5-1 2

Chapter 6 Low-Level PCM Function Call
Reference 6-1

DMABuffer 6-2
FindDMABuffer 6-3
InitMVSound 6-4
InitPCM 6-4
PausePCM 6-5
PCMInfo 6-6
PCMPlay 6-7
PCMRecord 6-8
RemovePCM 6-8
ResumePCM 6-9
StopPCM 6-10
UserFunc 6- 1 1

Chapter 7 PCM Hardware Register Functio~
Audio Filter Control
Register B8Ah 7-2

viii Pro AudioSpectrum Developer's Toolkit Reference

PCM Data
Register F88h 7-3

Cross Channel Control
Register F8Ah 7-4

Sample Rate Timer
Register 1388h 7-6

Sample Buffer Count
Register 1389h 7-7

Local Speaker Timer Count
Register 138Ah 7-8

Local Timer Control
Register 138Bh 7-8

Sample Size Configuration
Register 8389h 7-10

FM Programming Seelion

Chapter 8 FM Synthesizer Programming
Essentials 8-1

Pro AudioSpectrum FM synthesizer capabilities 8-2

Low-level FM synthesizer software API programming steps 8-3

FM synthesizer channel modes 8-3

Operator connection modes 8-3

Understanding operator cell number and channel number 8-6

Synthesizer sound modes 8-8

Changing sound modes 8-8

Programming strategy 8-8

Chapter 9 Low-Level FM Synthesizer Function
Call Reference 9-1

mvInitFMMode 9-2

mvOutDua13812 9-2

mvOutLeft38 12 9-3

mvOutRight38 12 9-4

Pro AudioSpecfrum Developer's Toolkit Reference ix

Chapter 10 FM Synthesizer Hardware I/O Ports
10-1

FM synthesizer IJ0 addresses 10-2

Reading and writing to FM synthesizer ports 10-2

Chapter 11 Standard FM Synthesizer Register
Functions 11-1

Test
Register Olh 11-1

Timer 1
Register 02h 11-2

Timer 2
Register 03h 11-3

Control Timer
Register 04h 11-3

CSM Mode / Keyboard Split
Register 08h 11-5

AMNIBIEG/KSR/Multiple
Registers 20h to 35h 11-7

KSL / Total Level
Registers 40h to 55h 11-11

Attack / Decay Rate
Registers 60h to 75h 11-12

Sustain Level I Release Rate
Registers 80h to 95h 11-15

Block and F-Number
Registers AOh to A8h to BOh to B8h 11-16

Depth I Percussion / Instruments
Register BDh 11-20

Feedback / Connection
Registers COh - C8h 11-22

Waveform
Registers EOh to F5h 11-24

x Pro AudioSpectrum Developer's Toolkit Reference

Chapter 12 Enhanced FM Synthesizer Register
Functions 12-1

ChanneVConnection Select
Register 04h (right half of OPL3) 12-2

Select OPL3
Register 05h 12-2

Feedback/Connection/Stereo Left and Right
Register(s) COh to C8h of left and right half of chip 12-3

Waveform
Registers EOh to F5h 12-5

MIDI Programming Section

Chapter 13 MIDI Programming Essentials 13-
MIDI software API information 13-1

MVlOl interrupt control 13-3

Chapter 14 Low-level MIDI Function Call
Reference 14-1

mvMIDIEnable 14-2

mvMIDIDisable 14-2

mvMIDIGetBuff 14-3

mvMIDIGetByte 14-4

mvMIDISendBuff 14-4

mvMIDISendByte 14-5

Chapter 15 MIDI Hardware Register Functions
MIDI Prescale
Register 1788h 15-1

MIDI Timer
Register 1789h 15-2

MIDI Data
Register1 78Ah 15-3

MIDI Control
Register 178Bh 15-3

MIDI Status

Pro AudioSpectrurn Developer's Toolkit Reference

Register 1B88h 15-6

MIDI FlFO Count
Register 1B89h 15-8

MIDI Compare Time
Register 1B8Ah 15-10

CD-ROM Programming Section

Chapter 16 CD-ROM Programming Essentials
CD-ROM function call syntax 16-1

CD-ROM units of measure 16-2

Red book address definitions 16-2

BCD to integer value conversion 16-3

TOC 16-3

CD-ROM device driver status and error codes 16-3

Chapter 17 High-Level CD-ROM Function Call
Reference 17- 1

buildaudiotoc 17-2

createaudiotoc 17-2

destroyaudiotoc 17-3

getcdtable 17-4

getdiscinfotable 17-5

gettrackinfotable 17-6

gettrackframes 17-6

playcdtrack 17-7

seektokrack 17-8

Chapter 18 Low-Level CD-ROM Function Call
Reference 18- 1

cdplay 18-1

cdstop 18-2

cdpause 18-3

cdresume 18-4

xii Pro Audiospectrum Developer's Toolkit Reference

cdseek 18-4

cdreset 18-5

cdeject 18-6

cdstatus 18-6

cdaudiostatus 18-7

cdmediachanged 18-8

cddiscinfo 18-9

cdtrackinfo 18-9

cdqchaninfo 18- 10

isanaudiocd 18-1 1

cdseekrnsf 18-12

cdplaymsf 18-12

fixmsf 18-13

bcdtoint 18-14

inttobcd 18-15

redtolong 18-15

msftolong 18-16

longtored 18-17

Chapter 19 Microsoft CD-ROM E
Call Reference 19-1

ismscdex 19-2

getnumcdroms 19-2

getfirstcdrom 19-3

getcdromlist 19-3

getcopyrightfname 19-4

getabstractfname 19-4

getbibliofname 19-5

readvtoc 19-6

absdiscread 19-6

absdiscwrite 19-7

chkdrive 19-8

getmscdexversion 19-8

getcdromunits 19-9

Pro Audiospectrum Developer's To[rce xiii

getvdescpref 19-9

setvdescpref 19-10

getdirentry 19-1 1

senddevreq 19-1 1

getlasterror 19-12

clearlasterror 19-1 3

Mixer Programming Section

Chapter 20 Mixer Programming Essentials 20- 1
MVPROAS Device Driver Overview 20-1

Loading and Customizing MVPROAS 20-2

Controlling Total Volume From The Keyboard 20-3

Mixer block diagram 20-4

Low-level Mixer API programming steps 20-5

Chapter 21 Command Line Mixer Interface 21-1
Command Line Syntax 21-1

MVPROAS Verbs 21-3

Controlling MVPROAS devices 21 -5

Using MS-DOS Commands With MVPROAS 21-10

Controlling MVPROAS From Programs 21-1 1

Chapter 22 Low-Level Mixer Function Call
Reference 22- 1

xiv Pro AudioSpectrum Developer's Toolkit Reference

Appendices

Appendix A FM Hardware Register Charts and
Tables A-1

Rate to Time Conversion Tables A-1

Key Scaling Level Tables A-4

Standard Pitch Values A-7

Appendix B CD-ROM Data Structures and
Definitions B- 1

Request header structure B-1

Data Definitions B-5

Microsoft CD-ROM Extensions data structures B-6

Appendix C Programming the PC's Interrupt
Controller and DMA Channels C- 1

Programming the PC's interrupt controller C-1

Programming the AT DMA Controllers C-3

DMA addresses C-4

DMAmode C-5

Programming procedure C-5

Appendix D Relocating Pro AudioSpectrum UO
Addresses D-1

Appendix E Pro AudioSpectrum Utility Programs
1

PLAYFILE E-1

RECFILE E-2

BLOCKOUT E-4

BLOCKIN E-4

MERGE E-5

WHATIS E-6

WAVEIT E-6

Pro AudioSpectrum Developer's Toolkit Reference

PAS E-7

OPL3 E-8

REPORT E-12

Appendix F INT 2F Function Calls F-3
Common function call method F-I

Check For Driver
Function 0 F-2

Get Version
Function 1 F-3

Get Pointer to State Table
Function 2 F-4

Get Pointer to Function Table
Function 3 F-6

Get DMAIIRQJINT
Function 4 F-7

Send Command Structure
Function 5 F-8

Get Driver Message
Function 6 F-8

Set Hotkey Scan Codes
Function 10 F-9

Get Path to Driver
Function 11 F-11

xvi Pro AudioSpectrum Developer's Toolkit Reference

List of Tables

Table 1

Table 2
Table 3
Table 4

Table 5
Table 6
Table 7
Table 8

Table 9
Table 10
Table 11
Table 12

Table 13

Table 14

Table 15
Table 16

Table 17

Table 18

Table 19
Table 20
Table 21

Operator Cell Pairings To Create Channels
8-7
Envelope Types 1 1-8
Envelope Waveform 1 1-9
Key Scaling RateIKeyboard Split Number
Cross Reference 1 1-9
F-Numbers For Octave 4 1 1 - 18

MidiInFilter Bit Settings 13-2 -
CD-ROM Driver Error Codes 16-4
Total Volume Control Key
Sequences 20-3
Rate Table For Rates 63 to 45 A-2
Rate Tables For Rates 44 to 25 A-3
Rate Table For Rates 24 To 4 A-4
Key Scaling Levels for Octaves 0
Through 3 A-5
Key Scaling Levels for Octaves 4
Through 7 A-6
Standard Pitch Values: C, C#, D, and D#
A-7
Standard Pitch Values: E, F, F#, and G A-7
Standard Pitch Values: G#, A, A#, and B
A-8
DMA Controller 1 (8-bit) Register Ad-
dresses C-4
DMA Controller 2 (16-bit) Register Ad-
dresses C-5
Relocatable Hardware Addresses D-1
Operations Activated By Function 3 F-7
Hot Key Scan Code Values F-10

Pro AudioSpectrum Developer's ToolKit Reference xvii

xviii Pro AudioSpecfrurn Developer's ToolKit Reference

List

Figure 1
Figure 2
Figure 3
Figure 4

Figure 5

Figure 6

Figure 7
Figure 8

Figure 9
Figure 10
Figure 11
Figure 12

of Figures

FM Synthesis (Serial Connection) 8-4
Operator Cell Components 8-5
Additive Synthesis 8-6
Data Returned From Reading The FM
Synthesizer Address and Status Port (388h
or 2x8h and 38Ah) 10-2
Data to Write to the FM Synthesizer Ad-
dress and Status Port (388h or 2x8h and
38Ah) 10-3
FM Synthesizer Data Port (389h or 2x9h
and 38Bh) 10-3
FM Synthesis (Serial) Connection 11-23
Additive Synthesis (Parallel) Connection
11-23
Mixer Block Diagram 20-4
Cross Channel Connections 2 1-9
IBM PCIAT Interrupt Controllers C- 1
OLP3 Sample Display E-9

1 AudioSpectrum Developer's ToolKit Reference xix

xx Pro AudioSpectrum Developer's ToolKit Reference

Introduction

The Pro AudioSpectrum Developer's Toolkit provides a fast and easy method
for PC developers to write software for Media Vision's Pro AudioSpectrum
family of multi-media products.

This chapter includes:

A description of the contents of the Pro AudioSpectrurn Developer's Toolkit

A description of how this manual is organized

An overview of Pro AudioSpectrum software and hardware API's

Technical support information

Pro AudioSpectrum Developer's Tool kit contents
Included with the Pro AudioSpectrurn Developer's Toolkit is a set of software
and hardware API's. The API's consist of source code, header files, useful
utilities, and sound clip files, plus supporting documentation.

To see the directory structure of the Developer's Kit diskettes and descriptions
of the files on the diskette, see the CONTENTS. LST file on the first Developer's
Kit diskette.

About this manual
This book, combined with the READ. ME files contained on the first diskette,
comprises a comprehensive reference to Pro AudioSpectrum development
techniques and API's.

The manual is organized as follows:

General information (Chapters 1-3)
Chapter 1, "Introduction," provides a brief descriptions of the Toolkit and its
major features. Chapter 2, "Installing the Pro AudioSpectrum Developer's
Toolkit," provides installation instructions. Chapter 3, "Common Function
Calls and Hardware Registers," describes the function calls and hardware
register functions used by more than one Pro AudioSpectrum feature.

Pro AudioSpectrurn Developer's Toolkit Reference 1-1

Chapter 1 Introduction

Multiple sections, organized by feature
A separate section of the manual is devoted to each major product feature.
These sections are divided into several chapters which typically provide the
following information:

8 Theory of operation for the feature

Step-by-step programming procedures

Background material that helps you use the function call interface(s) and
hardware register functions more efficiently

One or more software software function call references

A hardware register function reference

Appendices
The appendices cover general PC programming techniques, charts and tables
that are used with function calls and register functions, and other related
information.

Manual conventions
File names, function call names, and function call parameters are presented in
Courier font within the text. "C" language function calls are presented
inaccordance with ANSI standards with the types listed next to parameters. For
example, int cdstatus (int ccdrive) .

Software and hardware APl's
The Developer's Toolkit provides maximum flexibility and control over
Pro Audiospectrum features. Each feature is accessible by at least one software
API and one direct hardware API.

PCM digital audio sampler
The Pro AudioSpectrum family of products uses 8- and 16-bit, pulse code
modulation (PCM) sampling to record and play back digital audio stereo
sounds. Pro AudioSpectrum supports recording and playback rates from 4 Hz,
and 44.lkHz. At each sampling rate, a variable input filter is programmed at the
correct Nyquist frequency to prevent imaging, aliasing, and other undesirable
digital effects.

The Pro AudioSpectrum Developer's Toolkit accompanying this manual
provides three interfaces to the PCM sampler:

High-level source code

1-2 Pro AudioSpectrum Developer's Toolkit Reference

Software and hardware API's

A set of "C" language function calls which are contained in the PCMIO . H file.
This is a file- and block-oriented API offering the highest level of abstraction
from the PCM hardware. You can find information on this interface in
Chapter 5, "High-Level PCM Function Call Reference."

Low-level source code

A set of "C" language function calls which have been prototyped in the
WSOUND . H file. You can find information on this interface in Chapter 6,
"Low-Level PCM Function Call Reference."

Hardware register interface

The lowest level interface upon which the software function call interfaces
were written. You can find inforination on this interface in Chapter 7, "PCM
Hardware Register Functions."

Stereo FM synthesizer
Multi-timbral, polyphonic, 11-voice FM synthesizers function together to
produce 22 different instruments and can play up to 22 different notes
simultaneously. The FM synthesizers are completely AdLib compatible.

Two API's are available for the stereo FM synthesizer:

Low-level source code

A set of "C" language function calls which are contained in the 3 8 1 2 A . ASM
file. You can find information on this interface in Chapter 9, "Low-Level FM
Synthesizer Function Call Reference."

Hardware register interface

The lowest level interface upon which the software function call interface
was written. You can find information on this interface in Chapter 11,
"Standard FM Synthesizer Register Functions."

The latest versions of the Pro Audiospectrum come with the OPL3 stereo FM
synthesizer chip set. You can find information on the additional register
functions offered by this chip in Chapter 12, "Enhanced FM Synthesizer
Register Functions."

MIDI sequencer
The MIDI controller provides high speed bi-directional transmission with two
internal FIFO buffers of 16 bytes each.

Two API's are available for the MIDI sequencer:

Low-level source code

Pro AudioSpectmm Developer's Toolkit Reference 1-3

Chapter 1 Introduction

A set of "C" language function calls which are contained in the MIDIA. ASM
file. You can find information on this interface in Chapter 13, "MIDI
Programming Essentials."

Hardware interface

The lowest level interface upon which the software function call interface
was written. You can find information on this interface in Chapter 15, "MIDI
Hardware Register Functions."

CD-ROM
The CD-ROM feature provides SCSI driven 1 /0 to CDROM's, tapes, and hard
drives and controls and plays back music CD's.

Three software API's are available for the CD-ROM that work directly with the
CD-ROM device driver and Microsoft CD-ROM Extensions:

High-level source code that works with the CD-ROM device driver

A set of "C" language function calls which have been prototyped in the
CDMASTER . H file. This API is currently under revision and will be upgraded
to offer more functions and greater abstraction from the CD-ROM hardware.
You can find information on this interface in Chapter 17, "High-Level CD-
ROM Function Call Reference."

Low-level source code that works with the CD-ROM device driver

A set of "C" language function calls which have been prototyped in the
CDMASTER . H file. You can find information on this interface in Chapter 18,
"Low-Level CD-ROM Function Call Reference."

Low-level source code that works with Microsoft CD-ROM extensions

A set of "C" language function calls which have been prototyped in the
MSCDEX . PRO file. You can find information on this interface in Chapter 19,
"Microsoft CD-ROM Extension Function Call Reference."

Audio mixer
The audio mixer gives you complete control over audio recording and playback
by providing the ability to connect input and output sources such as CD-ROM,
PC speaker, microphone, FM synthesizers, and PCM circuitry; split monaural
sound sources into a pair of channel signals; filter input and output mixer
signals to remove aliases during PCM playback; and mix left- and right-channel
input and output.

The mixer uses proprietary shielding and circuitry to produce high-fidelity,
low- noise audio, with a frequency response of 30 Hz to 20 kHz. It interacts
with all Pro AudioSpectrum devices and external sources like stereo
equipment, microphones, and the PC's speaker.

1-4 Pro AudioSpectrum Developer's Toolkit Reference

Bulletin board support

Mixer software and hardware API's let you control parameters such as: input
level for each source; stereo panning; treble and bass cut and boost; level
control for each output channel; loudness; and, input/output device
configuration.

Two software API's are available for the audio mixer:

8 Text string command interface

An English-like command interface that is integral to MS-DOS when the
Pro AudioSpectrum device driver (MVSOUND . SYS) is loaded. You can find
information on this interface in Chapter 21, "Command Line Mixer
Interface."

m Low-level source code

A set of "C" language function calls which link with the MVsoUND. SYS
device driver and have been prototyped in the MIXERS. H file. You can find
information on this interface in Chapter 22, "Low-Level Mixer Function Call
Reference."

Bulletin board support
Media Vision provides developers with the latest software updates and
technical support through its bulletin board. You can dial into (510) 770-0968 or
(510) 770-0527 24 hours a day 7 days a week to check the bulletin board.

Use the following protocol settings on your modem when dialing into the
Media Vision bulletin board:

2400 or 1200 baud

8 No parity

8 data bits

1 stop bit

MNP level 5

File compression with PKZIP version 1.1

End-users and developers can access this bulletin board. After signing on, send
a message to the SYSOP requesting developer privileges. Once you submit a
nondisclosure statement to Media Vision, you can download the most recent
version of products in development and access confidential technical
documentation. Additionally, you can exchange technical support messages
with the SYSOP.

Pro AudioSpectrum Developer's Toolkit Reference 1-5

Chapter 1 Introduction

1-6 Pro AudioSpectrum Developer's Toolkit Reference

Installing the Pro AudioSpectrum
Developer's Toolkit

This chapter provides the following information;

A description of the PC system requirements for the Pro AudioSpectrum
Developer's Toolkit

Instructions describing how to install the Developer's Kit software

A list of sample programs you can use to explore the Pro AudioSpectrum

PC system requirements
The Developer's Toolkit can run on virtually any PC that is suitable for C
language development. Pro AudioSpectrum systems are ISA- and EISA-bus
compatible for 286/386/486-based computer systems.

The Pro AudioSpectrum Developer's Toolkit software was developed and
tested using the following software development tools:

Microsoft C (version 6.0)

Microsoft MASM (version 5.10)

Microsoft Program Maintenance Utility, NMAKEEXE, that is shipped with
MASM 6.0 and Microsoft C 6.0.

Pro AudioSpectrum Developer's Toolkit Rt$erence 2-1

Chapter 2 Installing the Pro AudioSpectrum Developer's Toolkit

Installation procedure
After you've familiarized yourself with the contents of the Developer's Toolkit
diskette, install the software:

1. Check the\PAS directory of the toolkit floppy to see if there is a REALME file with last minute
additions to the documentation.

2. Use the DOS XCOPY command to move everything on the two diskettes to a directory on your
machine.

You may use any drive. This example uses drive C:

xcopy a:*.* c : \ / s

3. Modify the INCLUDE and LIB environment variables so that Microsoft C knows where to find
the Pro AudioSpectrum include and library files.

Add the following to your SET statements for the INCLUDE and LIB
environment variables:

4. Make sure that you have the proper version of NMAKE.EXE in the compiler directory and there
are no similarly named NMAKE files in the path.

5. Load MVSOUND.SYS before you begin testing the utilities provided on the diskette.

Experimenting with your Pro AudioSpectrum
After you've installed the Developer's Toolkit package, you can test out your
Pro AudioSpectrum using one of the ready-to-run utility programs provided on
the Developer's Toolkit diskette. Both the executable file and the source code
are provided.

The sample programs listed below are the ideal starting point for learning how
to do PCM programming. To learn more about what these utilities do, see
Appendix E, "Pro AudioSpectrum Utility Programs."

Category Program File

TOOIS playfile.exe

recfile.exe

waveit.exe

merge.exe

Example Source p1ayfile.c

recfi1e.c

b1ockin.c

b1ockout.c

2-2 Pro AudioSpectrum Developer's Toolkit Reference

Common Function Calls and
Hardware Registers

This chapter describes the function call and hardware register functions that are
used with more than one feature of the Pro AudioSpectrum. Read this chapter
before starting to program any Pro AudioSpectrum feature.

Pro AudioSpectrum Developer S Toolkit Reference 3-1

Chapter 3 Common Function Calls and Hardware Registers

Common software API function call
Each of the software API's described in this book use the mvGetHWVersion
function call.

mvGetH WVersion
mvGetHWVersion is an assembler routine that determines which Media Vision
product and product revision level is installed.

This routine returns the product identifier and the hardware version number in
a 16- bit field. Because the products contain multiple features, the values
returned are a combination of the bit field settings shown below.

Use USE-ACTIVE-ADDR as defined in the COMMON. I N C file to find the active
base address. You can find a prototype usage of this function in the
GetHW. ASM file.

Calling Convention
C long MVGetHWVersion (intl baseaddr);

ASM call MVGetHWVersion

mov version, AX

mov ProductID, DX

mov featurebit, CX

Input Parameters

Parameter Type Value Description

intl baseaddr integer 0 Search for the board at one of four addresses.

address Search for the board at this specific address.

3-2 Pro Audiospectrum Developer's Toolkit Reference

Return Values

Parameter Type Value

long 32-bit signed DX:AX = -1
integer

DX:AX = -2

DX=O

D X = 1

D X = 2

D X = 3

CX, DO = 1

CX, DO = 0

CX, Dl = 1

CX, D2 = 1

CX, D3 = 1

CX, D4 = 1

CX, D5 = 1

CX, D6 = 1

CX, D7 = 1

CX, D8 = 1

CX, D9 = 0

CX, D9 = 1

CX, DA = 1

CX, DB = 1

CX, DC = 1

CX, DD = 1

CX, DE = 1

CX, DF = 1

BX = 0

AH=O

A H = 2

Default

Related topics
None.

Description

Hardware not installed.

Hardware installed, can't identify it.

Pro AudioSpectrum installed.

Pro AudioSpectrum Plus installed.

Pro AudioSpectrum 16 installed.

CDPC installed.

MVA 508 mixer chip installed.

National mixer chip installed.

PSI2 interface installed.

CDPC slave device installed.

SCSI interface installed.

Enhanced SCSI interface installed.

Sony 535 interface installed.

16-bit DAC installed.

Sound Blaster WW emulation installed.

MPU (Roland MIDI) WW emulation in-
stalled.

3812 installed.

OPL3 installed.

MVlOl MIDI interface installed.

Bit 0 of MVlOl revision level.

Bit 1 of MVl 01 revision level.

Bit 2 of MVl 01 revision level.

Bit 3 of MVlOl revision level.

Resewed.

Always 0, resewed

Pro AudioSpectrum installed

Pro AudioSpectrum Plus or
Pro AudioSpectrum 16 installed

CDPC installed

NIA

Pro Audiospectrum Developer's Toolkif Rejerenct 3-3

Chapter 3 Common Function Calls and Hardware Registers

Common hardware API register functions
Three register functions are used by more than one of the Pro AudioSpectrum
hardware API's:

Audio Filter Control, Register BSAh. Use this register to mute the
Pro AudioSpectrum and control PCM sampling filters.

Interrupt Control, Register B8Bh. Use this register to enable
Pro AudioSpectrum feature interrupts.

Interrupt Status, Register B89h. Use this register to determine that status of
interrupts you enabled using the Interrupt Control Register.

The following is a description of these three register functions.

Audio Filter Control
Register B8Ah

Use the Audio Filter Control Register to set bit masks that enable and disable
counters and select filtering.

Sample Buffer Counter Mask (D7)
Use this bit to enable the Sample Buffer Count Register.

For information on the Sample Buffer Count Register, see "Sample Buffer
Count Register 1389h" on page 7-7.

D7 Description
Settings: 1 Enable Sample Buffer Count Register.

0 Disable Sample Buffer Count Register.

Default: 0

Sample Rate Timer Mask (D6)
Use this bit to enable the Sample Rate Timer Register,

3-4 Pro AudioSpectrum Developer's Toolkit Reference

Audio Filter Control Register B8Ah

For information on the Sample Rate Timer Register, see "Sample Rate Timer
Register 1388h" on page 7-6.

D6 Description

Settings: 1 Enable Sample Rate Timer Register.

0 Disable Sample Rate Timer Register.

Default: 0

Audio Mute(D5)
Use this bit to enable and disable the Pro AudioSpectrum audio output. When
the Pro Audiospectrum is enabled, all audio sources (including the PC speaker)
can be mixed and output to speakers or headphones.

When the Pro AudioSpectrum is disabled, only the PC speaker can output
sound.

D5 Description

Settings: 1 Enable Pro AudioSpectrum.

0 Disable Pro AudioSpectrum.

Default: 0

Filter Select (D4 though DO)
Use these bits to select a filter to eliminate unwanted high-frequency
harmonics. For proper filtering and playback, select a filter with a limiting
frequency equal to half the sample rate. If more than one audio signal source is
combined in the input mixer, the lower quality audio signal should dictate the
filter selection. All filter settings below have a low end threshold of 20 Hz.

D4 D3 D2 D l DO Description

Settings: 0 0 0 0 1 Select filter rate of 17.897 kHz.

0 0 0 1 0 Select filter rate of 15.909 kHz.

0 1 0 0 1 Select filter rate of 11.931 kHz.

1 0 0 0 1 Select filter rate of 8.948 kHz.

1 1 0 0 1 Select filter rate of 5.965 kHz.

0 0 1 0 0 Select filter rate of 2.982 kHz

Default: 0 0 0 0 0

Pro AudioSpectrum Developer's Toolkit Reference 3-5

Chapter 3 Common Function Calls and Hardware Registers

lnterrupt Control
Register B8B h

Use the Interrupt Control Register to enable Pro AudioSpectrum feature
interrupts and to determine the revision of the Pro AudioSpectrum hardware.

Board Revision (D7 though D5)
Use these bits to determine the current hardware revision level of the
Pro AudioSpectrum. This is a read-only field.

D7 D6 D5 Description
Settings: X X X Pro AudioSpectrum hardware revision level.

Default: NIA

MIDI lnterrupt Enable (D4)
Use this bit to enable the MIDI controller interrupt.

D4 Description
Settings: 0 Disable MIDI controller interrupt.

1 Enable MIDI controller interrupt.

Default: 0

Sample Buffer Count lnterrupt Enable (D3)
Use this bit to enable the sample buffer count interrupt. For more information
on the sample buffer count register, see "Sample Buffer Count Register 1389h"
on page 7-7.

D3 Description
Settings: 0 Disable sample buffer count interrupt.

1 Enable sample buffer count interrupt.

Default: 0

3-6 Pro AudioSpectrum Developer's Toolkit Reference

Interrupt Control Register B8Bh

Sample Rate Timer lnterrupt Enable (D2)
Use this bit to enable the sample rate timer interrupt. For more information on
the sample rate timer register, see "Sample Rate Timer Register 1388h" on
page 7-6.

D2 Description

Settings: 0 Disable sample rate timer interrupt.

1 Enable sample rate timer interrupt.

Default: 0

Right FM lnterrupt Enable (Dl)
Use this bit to enable the right channel FM synthesizer interrupt on older
Pro AudioSpectrum systems. This interrupt has been redefined for the
Pro AudioSpectrum Plus. Pro Audiospechum 16, and the CDPC.

D l Description

Settings: 0 Disable right channel FM interrupt,

1 Enable right channel FM interrupt.

Default: 0

Left FM lnterrupt Enable (Dl)
Use this bit to enable the left channel FM synthesizer interrupt.

DO Description
Settings: 0 Disable left channel FM interrupt.

1 Enable left channel FM interrupt.

Default: 0

Pro AudioSpectrum Developer's Toolkit Reference 3-7

Chapter 3 Common Function Calls and Hardware Registers

Interrupt Status
Register B89h

Use the Interrupt Status Register to determine if any of the interrupts you
enabled need servicing. If you have initialized the Pro AudioSpectrum, and an
interrupt occurs on the Pro AudioSpectrum, a PC hardware interrupt will
occur. The PC then calls an interrupt service routine (ISR). The ISR must then
read the Interrupt Status Register to determine the cause of the interrupt.

Sample Clipping Occurred (D7)
Read this bit to determine if the audio recording signal is too loud. When
clipping occurs, this bit is automatically set to 1. Reduce the input mixer volume
for the selected input sources to minimize clipping errors. This bit is reset to 0
after each use.

D7 Description

Settings: 0 Volume OK.

1 Clipping occurred.

Default: 0

Reset (D6)
Read this bit to determine if the Pro AudioSpectrum is in reset mode. This
status bit is automatically set to 0 if the Pro Audiospectrum system is in the
reset state. Writing to the Audio Filter Control Register brings the system out of
reset.

3-8 Pro AudioSpectrum Developer's Toolkit Reference

Interrupt Status Register B89h

For information on the Audio Filter Register, see "Audio Filter Control Register
B8Ah" on page 3-4.

D6 Description

Settings: 0 Pro AudioSpectrum is in reset state.

1 Pro AudioSpectrum active.

Default: 0

Note: This bit is only valid on the older Pro AudioSpectrum systems. This bit
is reserved on the Pro AudioSpectrum Plus, Pro AudioSpectrum 16, and the
CDPC.

PCM LeftIRight Flag (D5)
Use this bit to determine if the left or right channel is active during PCM
operations. In stereo mode, this bit is set to 0 when the left channel is active and
set to 1 when the right channel is active. In mono mode, only the left channel is
used, so this bit is always set to 0.

To learn how to set stereo or mono mode, see "Cross Channel Control Register
F8Ah" on page 7-4.

D5 Description

Settings: 0 Left channel active.

1 Right channel active.

Default: 0

MID! Interrupt Active (D4)
Use this bit to determine if the MIDI controller is active. When this bit is set to
1, a MIDI interrupt has occurred indicating that an interrupt is waiting to be
processed by the MIDI controller.

D4 Description
Settings: 0 MIDI interrupt not in use.

1 MIDI interrupt active.

Default: 0

Pro AudioSpectrum Developer's Toolkit Reference 3-9

Chapter 3 Common Function Calls and Hardware Registers

Sample Buffer Count lnterrupt Active (D3)
Use this bit to determine if the sample buffer count interrupt is active,
indicating that the sample buffer count is equal to 0. This interrupt is commonly
used for PCM DMA buffer management. You may clear it by writing a 0 to this
register.

D3 Description
Settings: 0 Sample buffer count interrupt not in use.

1 Sample buffer count interrupt active.

Default: 0

Note: To perform PCM in polled mode, set bits D3 and D2 to 1.

Sample Rate Timer lnterrupt Active (D2)
Use this bit to determine if the rate timer interrupt is active, indicating that the
sample rate timer is equal to 0. This interrupt is not very useful since it causes
interrupts coincident with the sample rate. Clear the interrupt by writing a 0 to
this register.

0 2 Description
Settings: 0 Sample rate timer interrupt not in use.

1 Sample rate timer interrupt active.

Default: 0

Note: To perform PCM in polled mode, disable bits D3 and D2 by setting them
equal to 1.

Right FM lnterrupt Active (Dl)
Use this bit to determine if the right FM synthesizer interrupt is active,
indicating that one or both FM timers have reached a 0 count. Read the Right
FM Synthesizer Address and Status port (38A.h) to determine which timer
caused the interrupt. Reset this bit by acknowledging the interrupt.

Dl Description
Settings: 0 Right FM interrupt not in use.

1 Right FM interrupt active.

Default: 0

Note: This interrupt has been redefined on the Pro AudioSpectrum Plus,
Pro AudioSpectrum 16, and the CDPC.

3-10 Pro AudioSpectrum Developer's Toolkit Reference

Interrupt Status Register B89k

Left FM Interrupt Active (Dl)
Use this bit to determine if the left FM synthesizer interrupt is active, indicating
that one or both FM timers have reached a 0 count. Read the Left F M
Synthesizer Address and Status port (3881.1) to determine which timer caused
the interrupt. Reset this bit by acknowledging the interrupt.

D2 Description
Settings: 0 Left FM interrupt not in use.

1 Left FM interrupt active.

Default: 0

Pro AudioSpectrum Developer's Toolkit Reference 3-1 1

Chapter 3 Common Function Calls and Hardware Registers

3-12 Pro AudioSpectrum Developer's Toolkit Reference

PCM Programming Section

PCM Programming Essentials

This chapter describes:

w How to access PCM function calls

w The theory of operation of the Pro AudioSpectrum PCM system

w General use of the High-Level PCM API

w General use of the Low-Level PCM API

Three distinct PCM programming interfaces are available for the PCM system:
the high level software API, described in Chapter 5, "High-Level PCM
Function Call Reference," the low level software API, described in Chapter 6,
"Low-Level PCM Function Call Reference," and the direct hardware
programming, described in Chapter 7, "PCM Hardware Register Functions."

Accessing PCM function calls
You make PCM function calls through statically linked subroutines. Pro
Audiospectrum PCM routines are linked through the usual compile/link
process.

The PCM software library is provided as source files on your Pro
AudioSpectrum Developer's Toolkit diskette. You can find the high-level
routines in the PCMIO . H file and the low-level calls in the MVSOUND . ASM
file.

With the exception of the routines listed below, you should call only high-level
block/file routines or low-level routines - not a mix of both.

You can use the following routines in both high-level and low-level derived
programs:

PausePCM

w ResumePCM

For more information on these function calls, see Chapter 6, "Low-Level PCM
Function Call Reference."

Pro AudioSpectrum Developer's Toolkit Reference 4-1

Chapter 4 PCM Programming Essentials

Theory of Operation
This section describes the operation of DMA-controlled PCM from a high-level,
software-oriented perspective. This discussion provides the context for using
the three distinct programming interfaces for the PCM.

The Pro AudioSpectrum PCM circuitry must process audio data in real time to
ensure an unbroken stream of audio information. Failure to keep pace with
input (recording) or output (playback) leads to serious defects in sound quality.
The Pro AudioSpectrum uses the PC's DMA channel to perform rapid, direct-
to-memory transfers of audio data.

To ensure continuous playback and recording, the Pro AudioSpectrum uses the
auto-initialize mode of the DMA controller and multiple buffers. Since M S
DOS is neither a real-time nor re-entrant operating system, the software library
uses a buffer management system with distinct foreground and background
tasks.

The DMA buffer is split into an even number of divisions. The Sample Buffer
counter on the Pro AudioSpectnun interrupts the CPU when one buffer has
filled (or emptied) a buffer division.

The buffer divisions can be 1/2,1/4,1/8, or a smaller fraction of the overall
buffer. A buffer division that is too small results in higher CPU overhead while
the system processes interrupts. An excessively large buffer takes valuable
system memory without yielding a gain in performance.

PCM Qutput
Use two levels of buffering to perform PCM output (playback). The top level is
a linked list of buffers, which is loaded by the foreground task and unloaded by
the background task. The lower buffer is loaded by the background task and
unloaded by the DMA controller. The DMA controller transfers this data to the
PCM circuitry for playback.

To start PCM output, the foreground task loads all the buffers in the linked list,
then calls the background task to begin playing. The background task loads the
DMA output buffer every time it receives a sample buffer counter interrupt.
This mechanism lets the background and foreground tasks operate
asynchronously, keeping the DMA buffer and the linked list of buffers filled.

If the foreground task keeps the linked list of buffers full, there should be
continuous PCM output. If the foreground task cannot keep up, the
background task is forced to stop the DMA, causing an audible break in the
output. The foreground task is then obligated to restart the background task.

4-2 Pro AudioSpectrum Developer's Toolkit Reference

Using the High-Level PCM API

PCM Input
Use two levels of buffering to perform PCM input (recording). The bottom level
is the DMA input buffer. This buffer is filled with sample data from the PCM
circuitry and is unloaded by the background tasks into an empty buffer in a
circular linked list of buffers.

This linked list of buffers is the top level of buffering. The foreground tasks
unload each top level buffer by writing the contents of the buffer to disk.

To start PCM input, the foreground task calls low-level code that begins the
background task. The linked list of buffers is initialized and DMA is enabled.

The background task unloads the DMA input buffer to a top level buffer in the
linked list. The foreground task is responsible for writing each filled buffer to
disk.

If the foreground task keeps the linked list of buffers empty, there should be
continuous PCM input. If the foreground task cannot keep up, the background
task is forced to stop the DMA, causing an audible break in the input. The
foreground task is then obligated to restart the background task.

Using the High-Level PCM API
You can use the high-level PCM function calls for either file or block
programming. Both types of 1 /0 have advantages. File 1 /0 is simpler and
requires less memory. Block 1/0 uses more memory (because you must
maintain your own buffers in addition to the internal PCM buffer created by the
call to OpenPCMBuffering), but provides far greater control. It is important to
understand the differences between these styles of 1 /0 before beginning work.

High-level PCM function calls are organized according to how they are used:
file and block, file only, and block only.

The first group of functions apply to both file and block programming:

w ClosePCMBuffering

OpenPCMBuffering

PCMState

w StopDMAIO

The second group is segregated according to the file/block programming
distinction and performs start, continue input, and output procedures.

Pro AudioSpectrunz Developer's Toolkit Reference 4-3

Chapter 4 PCM Programming Essentials

The five file-only routines are:

H StartFileInput

H StartFileOutput

H ContinueFileInput

ContinueFileOutput

H ASpecialContinueFileInput

The four block-only routines are:

H StartBlockInput

H StartBlockOutput

Global Variables
The following list shows global counters and flags used in the high-level PCM
API processing:

Global Variable Description

int BufferDataCount Number of full buffers.

int DMARunning DMA processing status. O=off,l=running.

int ProcessedBlockCount Number of blocks handled by DMA.

BufferDataCount
Buff erDataCount is a key handshaking variable between processes. It holds
a count of foreground buffers containing data.

For output, Buff erDataCount is incremented each time a buffer is loaded by
the foreground task, and is then decremented when a buffer is emptied by the
background task.

For input, Buff erDataCount is incremented by the background task and
decremented by the foreground task.

DMARunning
DMARunning indicates the status of the DMA channel. It is set to 1 when DMA
is running (either playback or record). It is set to 0 when DMA is turned off
(disabled).

ProcessedBlockCount
Proces sBlockCount is the total count of blocks (a block is a buffer division)
processed since the beginning of I/O.

4-4 Pro AudioSpectrum Developer's Toolkit Reference

Using the High-Level PCM API

High-level PCM API programming steps
The following procedure shows the order in which you should use high level
API function calls. The function calls are documented in Chapter 5, "High-
Level PCM Function Call Reference."

1. Initialize PCM

Function call:

2. Set PCM parameters

Function calk

3. Start input UO

Function calls:

4. Start output UO

Function calls:

5. Continue input UO

Function calls:

6. Continue output 110

Function calls:

7. Pause UO

Function call:

8. Resume UO

Function call:

9. Shut down PCM

Function calk

PCMS tat e

StartBlockOutput

StartFileOutput

ContinueBlockInput

ContinueFileInput

ASpecialContinueFileInput

ContinueBlockOutput

ContinueFileOutput

PausePCM

Pro AudioSpectrum Developer's Toolkit Reference 4-5

Chapter 4 PCM Programming Essentials

Return codes
The following is a list of codes returned by the high-level block/file routines.
Many PCM routines return a 0 value if the routine was successful, or a non-zero
value if an error occurred.

Error Code

PCMIOERR-SAMPLERATE

PCMIOERR-OPENFILE

PCMIOERR-OPENPCM

PCMIOERR-NOMEM

PCMIOERRBADDMA

PCMIOERLB ADIRQ

PCMIOERR-FILEFULL

Definition

Invalid sample rate requested.

Error opening the output file.

Error starting the PCM code.

Error starting the PCM code.

Invalid DMA number requested.

Invalid IRQ number requested.

Cannot write data to the file.

Using the Low-Level PCM API
The Pro AudioSpectrum's low-level PCM function calls provide maximum
control and minimum overhead. The high-level PCM API was built using the
low-level PCM routines.

4-6 Pro Audiospectrum Developer's Toolkit Reference

Using the Low-Level PCM API

Low-level PCM API programming steps
The following procedure shows the order in which you should use low-level
PCM function calls. The function calls are documented in Chapter 6, "Low-
Level PCM Function Call Reference."

1. Initialize PCM routines

Function call:

2. Initialize PCM

Function call:

3. Set PCM Parameters

Function calls:

InitPCM

PCMinf o

SetDMA

SetIRQ

4. Set up buffering

5. Set up call back routine

6. Start input UO

7. Start output I10

8. Pause UO

9. Resume I10

10. Stop PCM

11. Shut Down PCM

UserFunc

PausePCM

Resume PCM

Remove PCM

Pro AudioSpectrum Developer's Toolkit Reference 4-7

Chapter 4 PCM Programming Essentials

4-8 Pro AudioSpectrum Developer's Toolkit Reference

High-Level PCM Function Call
Reference

This chapter describes the highest level PCM software interface, which is
appropriate for file and block-level programming. For information on PCM
programming basics, see Chapter 4, "PCM Programming Essentials." For
information on the Pro AudioSpectnunls low-level sofbvareAP1, see Chapter 6,
"Low-Level PCM Function Call Reference." For information on hardware level
programming, see Chapter 7, "PCM Hardware Register Functions."

You can find prototypes of the high level routines in the PCMIO . H file.

Pro AudioSpectrum Developer's Toolkit Reference 5-1

Chapter 5 High-Level PCM Function Call Reference

Use ASpecialCont inueFileInput to perform voice-activated recording. As
each block of data is recorded, it is scanned for changes in the audio signal. If
changes exceed the threshold, the block is written to disk; otherwise, the block
is discarded.

This routine is similar to Cont inueFileInput except that it records input
only while the signal level exceeds the noise threshold. You must poll the
ASpecialContinueFileInput routine continuously in order to sustain
recording to disk.

The noise parameter sets the threshold level to begin recording. It is specified
as a delta value from silence. Sample data has a dynamic range of 128 steps.
The center point is 80h, which is the value for silence.

The rectype parameter controls whether recording starts and continues once
the signal-level threshold is reached, or whether only those samples that
exceed the signal-level threshold are recorded.

Calling Convention
int ASpecialContinueFileInput(int noise, int rectype);

Input Parameters

Parameter Type Value Description
noise integer Oh to 7Fh Specifies the signal level that is considered noise; only

signals with a magnitude greater than this level will
trigger recording. The noise level is specified as one of
128 steps within the dynamic range of PCM data.

rectype integer 0 Enable latch recording. Record everything when first
sample exceeds noise threshold.

1 Enable threshold recording. Record only buffers that
contain samples that exceed noise threshold.

Return Values

Parameter Type Value Description
int integer 0 DMA recording complete.

non-zero DMA recording still in process.

Related Topics
To begin the recording process, see"StartFile1nput" on page 5-10.

To capture and record all input, see "ContinueFileInput" on page 5-5.

5-2 Pro AudioSpectrum Developer's Toolkit Reference

ClosePCMBuffering

ClosePCMBuffering
Use ClosePCMBuf f ering to close down the PCM I/O system.

You must call this routine before your program terminates to ensure file buffers
are closed, memory is released properly, and interrupt vectors are restored.

Calling Convention
void ClosePCMBuffering();

Input Parameters
None.

Return Values
None.

Related Topics
To stop Dh4A transfers, see "StopDMAIO on page 5-12.

To set up the PCM I/O system, see "OpenPCMBuffering" on page 5-7.

Use Cont inueBlockInput to sustain PCM block recording.

This routine is a similar to ContinueFileInput except that it records input
to a memory block rather than writing it directly to a file. If PCM data has been
loaded into the buffers created by the OpenPCMBuf f ering call, this function
will cause it to be transferred to your buffer.

You must poll the global variable DMAXunning to make sure that DMA is still
running during this function call.

Note: Your application must call Cont inueBlockInput frequently to avoid
losing PCM data.

Calling Convention
int ContinueBlockInput (char far *block);

Pro Audiospectrum Developer's Toolkit Reference 5-3

Chapter 5 High-Level PCM Function Call Reference

Input Parameters

Parameter Type Value Description

*block far pointer Far pointer to the next block in the linked list of buff-
ers you have reserved for storing PCM data. The
block must match the buffer division in size.

Return Values

Parameter Type Value Description

int integer 0 PCM buffer empty.

non-zero DMA has loaded PCM buffer.

Related Topics
To begin recording to memory, see"StartBlockInput" on page 5-8.

To stop DMA transfers, see "StopDMAIO on page 5-12.

To pause DMA transfers, see "PausePCM" on page 6-5.

To resume DMA transfers, see "ResurnePCM" on page 6-9.

ContinueBlockOutput
Use Cont inueBlockOutput to sustain PCM block playback.

This routine is similar to Cont inueF ileoutput . You must call
ContinueBlockOutput repeatedly to keep the PCM buffer (created by the
OpenPCMBuf f ering call) full of new data. When the
ContinueBlockOutput function returns a non-zero value, you must pass a
pointer to the next block in your linked list.

Your application must call this routine frequently to keep PCM output flowing.

Calling Convention
int ContinueBlockOutput (char far *block);

5-4 Pro Audiospectrum Developer's Toolkit Reference

lnput Parameters
Parameter Type Value Description

*block far
pointer

Far pointer to the next block in the linked list of
buffers you have reserved for storing PCM data.
The block must match the buffer division in size.

Return Values

Parameter Type Value Description

int integer 0 PCM buffer empty.

non-zero DMA has loaded PCM buffer.

Related Topics
To begin playing from memory, see "StartBlockOutput" on page 5-9.

To stop DMA transfers, see "StopDMAIO on page 5-12.

To pause DMA transfers, see "PausePCM on page 6-5.

To resume DMA transfers, see "ResumePCM on page 6-9.

Use Cont inueFileInput to sustain PCM recording to disk.

This routine writes all new PCM blocks to disk. Your application should call
this routine repeatedly until you are ready to stop PCM recording.

Calling Convention
int ContinueFileInput();

lnput Parameters
None.

Return Values

Parameter Type Value Description
int integer 0 PCM buffer loading complete.

non-zero PCM buffer loading in process.

Pro Audiospectrum Developer's Toolkit Reference 5-5

Chapter 5 High-Level PCM Function Call Reference

Related Topics
To start recording to disk, see "StartFileLnput" on page 5-10.

To stop DMA transfers, see "StopDMAIO on page 5-12.

ContinueFileOutput
Use Cont inueFileOutput to sustain PCM playback.

This routine keeps data moving from disk to the PCM buffers. Your application
must call this routine frequently to ensure continuous sound output.

Calling Convention
int ContinueFileOutput~);

Input Parameters
None.

Return Values

Parameter Type Value Description

int integer 0 PCM output has stopped.

non-zero PCM output in process.

Related Topics
To start playing from disk, see "StartFileOutput" on page 5-11.

To pause DMA transfers, see "PausePCM on page 6-5.

To resume DMA transfers, see "ResurnePCM" on page 6-9.

To stop DMA transfers, see "StopDMAIO on page 5-12.

5-6 Pro Audiospectrum Developer's Toolkit Reference

OpenPCMBuffering
Use OpenPCMBuf f ering to initialize the PCM environment for input and
output.

This function tells the low-level routines which D M channel, IRQ level, buffer
size, and number of divisions to use. OpenPCMBuf f ering allocates the
appropriate buffers using halloc () , the huge version of malloc () . Using
halloc () avoids consuming critical near-data segment memory.

Note: 20 bytes per division are allocated from the near-data segment for buffer
management control.

Calling Convention
int OpenPCMBuffering (int channel, int level, int size, int

divisions);

Input Parameters

Parameter Type Value
channel integer 1,2,3,5,6,

or 7

- 1

level integer 1,2,3,5,7,
10, 11,12,
or 15

- 1

size integer 4, 8, 16,
32, or 64

divisions integer 2,4, 8, or
16

Description
Specifies the DMA channel to use for feeding the
PCM circuitry.

Use the default DMA channel.

Specify the IRQ level to use to control the DMA
channel that feeds the PCM circuitry.

Use the default IRQ level.

Specifies total size of the DMA buffer in kilobytes.

Specifies the number of buffer partitions.

Return Values

Parameter Type Value Description
int integer 0 Initialization succeeded.

non-zero Initialization failed

Related Topics
To close down PCM I/O, see "ClosePCMBufferingn on page 5-3.

Pro AudioSpectrum Developer's Toolkit Reference 5-7

Chapter 5 High-Level PCM Function Call Reference

PCMState
Use PCMState to set parameters for PCM.

This routine configures the low-level calls to operate at the desired sampling
rate, specifies whether to interpret data in stereo or mono mode, and selects 8-
or 16-bit PCM mode.

PCMState is identical to the low-level PCMInf o function.

Calling Convention
int PCMState (long rate, int stereo, int compression, int psizej;

Input Parameters

Parameter Type Value

rate 8,000 to
88,200

stereo integer 0

1

compression integer 0

psize integer 8

16

Description
Specifies sample rate in cycles per second.

Set sound mode to mono.

Set sound mode to stereo.

Default setting. Compression parameter not currently
defined.

Set PCM mode to 8-bit.

Set PCM mode to 16-bit.

Return Values

Parameter Type Value Description
int integer 0 Initialization succeeded.

non-zero Initialization failed. See error codes to determine
specific reason for failure.

Related Topics
None.

Use StartBlockInput to begin PCM recording to memory.

This routine is similar to StartFileInput except that it records input to
memory rather than writing it directly to a file. Use Cont inueBlockInput to
fill the caller's memory with all subsequent blocks.

5-8 Pro Audiospectrum Developer's Toolkit Reference

Calling Convention
int StartBlockInputO;

Input Parameters
None.

Return Values

Parameter Type Value Description
int integer 0 Operation succeeded.

non-zero Operation failed. DMA is inactive; an error occurred,
possibly because a failure to call PCMStateO or incor-
rect parameters passed by PCMStateO or
DMABufferO.

Related Topics
To continue recording to memory, see "ContinueBlockInput" on page 5-3.

To set up the PCM 1/0 system, see "OpenPCMBuffering" on page 5-7.

To set up the PCM environment, see "PCMState" on page 5-8.

Use StartBlockOutput to initiate PCM block playback.

This routine initiates playback of PCM data stored in your buffer. The DMA
copies this data to the PCM buffer created by the call to OpenPCMBuf f er ing.
PCM output begins to play this data immediately. Once started, you must call
Cont inueBlockOutput repeatedly to sustain output of all subsequent
blocks.

Calling C~nvention
int StartBlockOutput (char far *block);

Pro Audiospectrum Developer's Toolkit Reference 5-9

Chapter 5 High-Level PCM Function Call Reference

Input Parameters

Parameter Type Value Description

*block far
pointer

Far pointer to your first block reserved for hold-
ing PCM data ready for PCM output.

Return Values

Parameter Type Value Description
int integer 0 DMA started.

non-zero DMA initiation failed.

Related Topics
To sustain PCM block playback, see "StartFileInput" on page 5-10.

To stop DMA transfers, see "StopDMAIO on page 5-12.

To pause DMA transfers, see "PausePCM on page 6-5.

To resume DMA transfers, see "ResumePCM on page 6-9.

To set up the PCM environment, see "PCMState" on page 5-8.

Use St artFi leInput to initiate PCM data recording.

This routine starts PCM digitized audio data recording. All blocks will be read
from the disk file specified by FILE * f stream parameter. After initiating the
recording process, you must call ContinueFileInput repeatedly to sustain
file input processing.

Note: This call does not create header information associated with a .WAV or
.VOC file.

Calling Convention
int StartFileInput (FILE *£stream);

5-1 0 Pro Audiospectrum Developer's Toolkit Reference

Input Parameters

Parameter Type Value Description

FILE *fstream Pointer to the PCM input file.

Return Values

Parameter Type Value Description

int integer 0 DMA started.

non-zero DMA initiation failed.

Related Topics
To capture and record all input, see "ContinueFileInput" on page 5-5.

To stop DMA transfers, see "StopDMAIO on page 5-12.

To pause DMA transfers, see "PausePCM on page 6-5.

To resume DMA transfers, see "ResumePCM on page 6-9.

To set up the PCM environment, see "PCMState" on page 5-8.

Use StartFileOutput to begin playing PCM data from disk.

This routine initiates playback of PCM data stored in the disk file specified by
FILE * f stream parameter. The long count parameter specifies the
number of bytes to read and play. All bytes will be played until the count is
exhausted and the file pointer will be positioned to the next byte in the file.

After initiating the playback process, you must call ContinueFileOutput
repeatedly to sustain file output processing.

Note: This call does not recognize the header information associated with a
.WAV or .VOC file. StartFileOutput plays data beginning with the first byte
of the file. You must process the header before calling this routine.

Calling Convention
int StartFileOutput (FILE *£stream, long count);

Pro AudioSpectrum Developer's Toolkit Reference 5-1 1

Chapter 5 High-Level PCM Function Call Reference

Input Parameters

Parameter Type Value Description

FILE *fstream Pointer to the PCM output file.

count signed Specifies the number of bytes to read and play.
integer

-1 Read and play all available data.

Return Values

Parameter Type Value Description

int integer 0 DMA started.

non-zero DMA initiation failed.

Related Topics
To continue playing PCM data from disk, see "ContinueFileOutput" on
page 5-6.

To stop DMA transfers, see "StopDMAIO on page 5-12.

To pause DMA transfers, see "PausePCM on page 6-5.

To resume DMA transfers, see "ResumePCM on page 6-9.

To set up the PCM environment, see "PCMState" on page 5-8.

Use S t o p D M A I O to terminate PCM I/O.

This routine terminates the PCM 1 / 0 immediately, even if the PCM buffers
have more PCM data or sound input to process. S'COPDMAIO flushes all buffers
to prepare for a new start command. PCM can be restarted by calling one of the
"start" functions.

The S t o p D M A I o call frees the DMA channel. This allows the
Pro AudioSpectrum to share a DMA channel with another device without
conflict.

Note: S t o p D m 1 0 terminates processing, it does not pause recording or
playback.

Calling Convention
vo id StopDMAIO 0 ;

5-12 Pro AudioSpectrum Developer's Toolkit Reference

Stop DMAIO

Input Parameters
None.

Return Values
None.

Related Topics
To close down PCM I/O, see "ClosePCMBuffering" on page 5-3.

To pause DMA transfers, see "PausePCM on page 6-5.

To resume DMA transfers, see "ResumePCM on page 6-9.

Pro AudioSpectrum Developer's Toolkit Reference 5-1 3

Chapter 5 High-Level PCM Function Call Reference

5-14 Pro Audiospectrum Developer's Toolkit Reference

Low-Level PCM Function Call
Reference

This chapter describes low-level PCM function calls. These routines are the
lowest-level PCM routines provided in the Pro AudioSpectrum Developer's
Toolkit. For background information on PCM programming, see Chapter 4,
"PCM Programming Essentials." For simpler programming or for rapid
prototyping, use the block or file-level routines described in Chapter 5, "High-
Level PCM Function Call Reference."

Unless otherwise specified, you can find prototypes of each of the functions
documented here in the MVSOUND . H file.

Pro AudioSpectrum Developer's Toolkit Reference 6-1

Chapter 6 Low-Level PCM Function Call Reference

DMABuffer
Use DMABuffer to pass a pointer to the DMA buffer.

This routine receives the physical DMA buffer, size, and number of divisions.
The minimum recommended buffer size for low sampling rates is 4 K; the
minimum number of divisions is 2.

The DMA buffer is a circular buffer. By using the auto-initialize mode of the t

DMA controller, the CPU can keep an uninterrupted stream of data moving to
or from the Pro AudioSpectrum.

Each time a buffer division is processed, an interrupt is generated. The
interrupt, in turn, triggers the CPU to process the next buffer division.

Note: You must call InitMVSound() and then InitPCM() before using this
function. The PCM library routines require the DMA buffer to be a
contiguous block of memory that doesn't span a 64 K boundary. The function
FindDMABufferO helps you to allocate such a block.

Calling Convention
void f a r * DMABuffer (c h a r far * b u f f e r , int size, int divisions);

Input Parameters

Parameter Type Value Description

far pointer Pointer to the buffer buff that you have already
allocated.

size integer 4, 8, 16,32, Total size of the buffer, in kilobytes.
or 64

divisions integer 2,4, 8, or 16 The number of partitions that buffer buff will be
divided into. A value of 16 gives the smallest rec-
ommended division size; any smaller size results
in excessive interrupt overhead.

Return Values

Parameter Type Value Description
void far * non zero Call was successful.

pointer

null pointer Call failed.

6-2 Pro Audiospectrum Developer's Toolkit Reference

Find DMABufer

Related Topics
To determine the hardware features, IRQ settings, and DMA settings of the
Pro AudioSpectrum, see "InitMVSound" on page 6-4.

To find an appropriate DMA buffer, see "FindDMABuffer" on page 6-3.

To hook the interrupt, see "InitPCM on page 6-4.

To register a call back at interrupt time, see "UserFunc" on page 6-11.

FindDMABuffer
Use FindDMABuffer to find a DMA buffer that lies within the 64K boundary.

Calling Convention
char far * FindDMABuffer(char huge *block, int size);

Input Parameters

Parameter Type Value Description
*block pointer Pointer to a block of memory that is at least twice as large

as the required buffer size.

size integer 4,8,16, DMA buffer size in kilobytes (1024 bytes).
32, or
64

Return Values

Parameter Type Value Description
char far * pointer non- Far pointer to a usable DMA buffer. The huge pointer

zero passed in should point to a memory block twice the size
pointer of the required DMA buffer size. This huge pointer is con-

verted to a far pointer.

null Indicates that a valid far pointer cannot be obtained.
pointer

Related Topics
To use the DMA buffer returned by this call, see "DMABuffer" on page 6-2.

Pro AudioSpectrum Developer's Toolkit Reference 6-3

Chapter 6 Low-Level PCM Function Call Reference

lnit MVSound
Use InitMVSound to initialize the low-level code and link to the hardware
state table.

This function establishes a link with the MVSOUND . SYS driver that controls the
Pro AudioSpectrum. If the MVSOUND. SYS driver is found, a far pointer is
returned to the MVState structure within the driver's data segment that
contains hardware state information. This enables various programs to share
the current hardware state. Your application calls 1nitMVsound just once,
before any other library calls are made.

Calling Convention
void MVState far * InitMVSoundO;

Input Parameters
None.

Return Values

Parameter Type Value Description
MVState far * far pointer Pointer to the hardware state table.

Related Topics
"InitPCM on page 6-4

Use InitPCM to enable the Pro AudioSpectrum to use the IRQ and DMA
channels.

This function initializes the library routines that handle PCM input and output.
Your application calls this routine once when it loads. This code initializes the
PCM state machine with the following settings:

Default IRQ and DMA selections

w Default sample rate

w Mono recording mode

Call InitPCM a second time only if you called RemovePCM to terminate PCM
and wish to do further PCM.

6-4 Pro AudioSpectrum Developer's Toolkit Reference

Calling Convention
int Init PCM () ;

lnput Parameters
None.

Return Values

Parameter TY pe Value Description
int integer Version of the library code.

Related Topics
To initialize the PCM library, see "InitMVSound" on page 6-4.

To release the IRQ and DMA, see "RemovePCM on page 6-8.

PausePCM

PausePCM
Use PausePCM to temporarily stop PCM I/O.

This function temporarily stops PCM input/output by disabling the Sample
Rate Timer. The PCM hardware and software state is frozen until ResumePCM
is called.

Calling Convention
void PausePCMO ;

lnput Parameters
None.

Return Values
None.

Related Topics
To resume DMA transfers, see "ResumePCM on page 6-9.

To stop DMA transfers, see "StopPCM on page 6-10.

Pro AudioSpectrum Developer's Toolkit Reference 6-5

Chapter 6 Low-Level PCM Function Call Reference

Use PCMInf o to set parameters for PCM.

This function configures the low-level code to operate at the desired sampling
rate and indicates whether to interpret data as stereo or mono.

The sample rate is set between 4,000 and 44,100 kHz for both mono and stereo
mode, which is set with the stereo parameter.

Compression is not currently supported.

The PCMsize parameter determines whether 8- or 16-bit data is used.

Calling Convention
int PCMInfo (long rate, int stereo, int compress, int PCMsize);

Input Parameters

Parameter TY pe Value Description
rate 32-bit signed 4,000 to 44,100 Set rate in samples per seconds.

integer

stereo integer 1 Interpret data as stereo.

0 Interpret data as mono.

compress integer Currently unused, set to 0.

PCMsize integer 8 Use 8-bit PCM data.

16 Use 16-bit PCM data.

Return Values

Parameter TY pe Value
int integer 0

Related Topics
None.

Description
Indicates that rate entered was within
range.

Indicates that rate entered was not
within range.

6-6 Pro Audiospectrum Developer's Toolkit Reference

Use PCMPlay to start playing PCM.

This function call causes the PCM circuitry to convert PCM digitized audio
data into audio sound using DMA.

The function takes advantage of the auto-initialization mode of the DMA
controller to maintain a flow of data. Once DMA is started, an interrupt is
generated at each buffer division.

Yow: application must keep the DMA buffers loaded; the callback routine must
continually reload the DMA buffer division to ensure an uninterrupted flow of
data.

Calling Convention
int PCMPlay () ;

Input Parameters
None.

Return Values

Parameter Type Value Description
int integer 0 Playing began successfully.

non-zero Error. A failure occurred.

Related Topics
For a discussion of PCM buffering and a description of relevant global
variables, see Chapter 4, "PCM Programming Essentials."

To temporarily pause PCM output, see "PausePCM on page 6-5.

To stop the PCM output process completely, see "StopPCM on page 6-10.

To record PCM data, see "PCMRecord on page 6-8.

To receive a call back at interrupt time, see "UserFunc" on page 6-11.

Pro AudioSpectrum Developer's Toolkit Reference 6-7

Chapter 6 Low-Level PCM Function Call Reference

PCMRecord
Use PCMRecord to start recording PCM.

This function causes the PCM circuitry to begin recording digitized audio data
to the DMA buffer. This function turns on the PCM state machine, enables the
timers and enables the interrupt that is generated for each buffer division.

Calling Convention

int PCMRecordO;

Input Parameters
None.

Return Values

Parameter Type Value Description
int integer 0 Recording began successfully.

non-zero Error. A failure occurred.

Related Topics
For a discussion of PCM buffering and a description of relevant global
variables, see Chapter 4, "PCM Programming Essentials."

To temporarily pause PCM recording, seeUPausePCM on page 6-5.

To stop the PCM output process completely, see "StopPCM" on page 6-10.

To play back PCM data, see "PCMPlay" on page 6-7.

To receive a call back at interrupt time, see "UserFunc" on page 6-11.

RemovePCM
Use RemovePCM to restore the interrupt.

This function frees the DMA and IRQ channels. If you elect to do further PCM,
you must re-initialize the PCM library by calling Init PCM; you need not call
InitMVSound again.

Calling Convention
void RemovePCMO;

6-8 Pro Audiospectrum Developer's Toolkit Reference

ResumePCM

lnput Parameters
None.

Return Values
None.

Related Topics
To stop the PCM output process completely, see "StopPCM on page 6-10.

To set up the interrupt chain, see "InitPCM" on page 6-4.

To play back PCM data, see "PCMPlay" on page 6-7.

ResumePCM
Use ResumePCM to restart PCM I/O.

This function restarts the PCM circuitry from its state prior to a PausePCM call
and re-enables the PCM timers.

The Sample Rate Timer is reloaded, so changes to the rate can occur between
pause and resume statements.

Calling Convention
void ResumePCMO;

lnput Parameters
None.

Return Values
None.

Related Topics
To temporarily pause PCM output, see "PausePCM on page 6-5.

To stop the PCM output process completely, see "StopPCM on page 6-10.

Pro Audiospectrum Developer's Toolkit Reference 6-9

Chapter 6 Low-Level PCM Function Call Reference

Use StopPCM to halt PCM processing.

This function terminates PCM input/output processing by turning off the
PCM timers, disabling the interrupts, resetting the PCM state machine, and
freeing up the DMA channel. This function allows the Pro Audiospectrum to
share a DMA channel with another device without conflict.

Use RemovePCM before terminating your program.

Calling Convention
void StopPCM() ;

Input Parameters
None.

Return Values
None.

Related Topics
To temporarily pause PCM output, see "PausePCM" on page 6-5.

To resume DMA transfers, see "ResumePCM on page 6-9

To play back PCM data, see "PCMPlay" on page 6-7.

To record PCM data, see "PCMRecord on page 6-8.

6-1 0 Pro Audiospectrum Developer's Toolkit Reference

UserFunc ~
UserFunc

Use UserFunc to pass a call- back routine to the low-level library.

This function registers your routine to be called back at interrupt time. The
objective is to call your routine to keep a continuous flow of data moving to
and from the DMA buffer. While one part of the buffer is depleted (or
replenished) by the PCM circuitry, the other part is refilled (or emptied). When
an interrupt occurs, your function is called. UserFunc must then load (or
unload) the DMA buffer.

Caution: You should not attempt to use the Microsoft C interrupt function
declaration because it generates an IRET that will crash your application.
Your UserFunc() routines must be an ASM module that saves and restores
registers.

Note: This code must not execute DOS calls unless it can predetermine the
state of DOS.

Note: Your routine should save all registers when called.

Calling Convention
void UserFunc (long far "routine);

Input Parameters
None.

Return Values

Parameter Type Value Description

"routine 32-bit signed Far pointer to a routine that will be called at
integer interrupt time.

Related Topics
None.

Pro AudioSpectrum Developer's Toolkit Reference 6-11

Chapter 6 Low-Level PCM Function Call Reference

6-12 Pro Audiospectrum Developer's Toolkit Reference

PCM Hardware Register Functions

This chapter is a reference to the Pro AudioSpectrurnrs PCM hardware register
functions. Both the high- and low-level function call interfaces are built upon
this interface. PCM hardware register functions provide you with ultimate
control over PCM programming.

The Pro AudioSpectrumls PCM circuitry,, aided by DMA, samples and plays
back PCM waveforms. With DMA, the Pro AudioSpectrum sends or receives
data samples without direct program involvement. You must ensure that the
DMA is set up with a dedicated memory area to process DMA transfers. Using
double -buffering techniques, you can create continuous sound waveforms by
simply filling one buffer area while the other is being played. For more
information on using DMA, see Appendix C, "Programming the PC's Interrupt
Controller and DMA Channels.''

Pro AudioSpectrum Developer's Toolkit Reference 7-1

Chapter 7 PCM Hardware Register Functions

Audio Filter Control
Register B8Ah

Use the Audio Filter Control Register to set bit masks that enable and disable
counters and allow the system to generate interrupts; mute and reset the board;
and, select filtering for PCM playback.

Sample Buffer Counter Gate (07)
Use this bit to enable the Sample Buffer Count register.

For information on the Sample Buffer Counter, see "Sample Buffer Count
Register 13891.1" on page 7-7.

D7 Description

Settings: 1 Enable Sample Buffer Counter.

0 Disable Sample Buffer Counter.

Default: 0

Sample Rate Timer Gate (D6)
Use this bit to enable the Sample Rate Timer Register.

For information on the Sample Rate Timer, see "Sample Rate Timer Register
138%" on page 7-6.

D6 Description

Settings: 1 Enable Sample Rate Timer.

0 Disable Sample Rate Timer.

Default: 0

Audio Mute(D5)
Use this bit to enable and disable the Pro AudioSpectrum audio output. When
the Pro AudioSpectrum is enabled, all audio sources (including the PC speaker)
can be mixed and output to speakers or headphones.

7-2 Pro AudioSpectrum Developer's Toolkit Reference

PCM Data Register F88h

When the Pro AudioSpectrum is disabled, only the PC speaker can output
sound.

D5 Description

Settings: 1 Enable Pro AudioSpectrum.

0 Disable Pro AudioSpectrum.

Default: 0

Filter Select (D4 though DO)
Use these bits to select a filter to eliminate unwanted high-frequency
harmonics. For proper filtering and playback, select a filter with a limiting
frequency equal to half the sample rate. If more than one audio signal source is
combined in the input mixer, the lower quality audio signal should dictate the
filter selection. All filter settings below have a low -end threshold of 20 Hz.

D4 D3 D2 Dl DO Description
Settings: 0 0 0 0 1 Select filter rate of 17.897 kHz.

0 0 0 1 0 Select filter rate of 15.909 kHz.

0 1 0 0 1 Select filter rate of 11.931 kHz.

1 0 0 0 1 Select filter rate of 8.948 kHz.

1 1 0 0 1 Select filter rate of 5.965 kHz.

0 0 1 0 0 Select filter rate of 2.982 kHz
Default: 0 0 0 0 0

PCM Data
Register F88h

Use the PCM Data register to read samples from the Analog-to-Digital
Converter (ADC) and write data to the Digital-to-Analog Converter (DAC). All
eight bits of this register are programmed as a group.

To set the sample rate, see "Sample Rate Timer Register 1388h on page 7-6.
Use the PCM Data Register only for direct mode transfers, not for non-DMA
PCM.

Pro AudioSpectrum Developer's Toolkit Reference 7-3

Chapter 7 PCM Hardware Register Functions

Cross Channel Control
Register F8Ah

Use Cross Channel Control register to manage the PCM hardware and DMA
interface; and to configure the channel connections between mixers. When the
Pro AudioSpectrum is reset, all bits in this register are cleared (set to 0).

DMA Enable(D7)
Use this bit to turn DMA on between the Pro AudioSpectrum DMA circuitry
and the PC's motherboard. When D7 is set to 1, DMA can occur. When D7 is set
to 0, the Pro AudioSpectrum's DMA circuitry is logically removed from the PC
bus and other boards can use a shared DMA channel without conflict. You
should set this bit only when using PCM I/O.

You must set DMA Enable to 1 before programming the PC's DMA controller.

D7 Description
Settings: 1 Enable Pro AudioSpectrum DMA.

0 Disable Pro AudioSpectrum DMA.

Default: 0

PCM Enable(D6)
Use this bit to enable the PCM state machine.

You must initialize the sample timer before enabling the PCM state machine.
To enable the sample timer, see "Local Timer Control Register 138Bh" on
page 7-8.

D6 Description

Settings: 1 Enable PCM state machine.

0 Disable PCM state machine.

Default: 0

7-4 Pro AudioSpectrum Developer's Toolkit Reference

Cross Channel Control Register F8Ah

MonoIStereo Mode (D5)
Use this bit to set the PCM circuitry to either mono or stereo mode.

In stereo mode, the first byte is left channel data and the second byte is right
channel data. You can determine whether the next byte is from the left or right
channel by reading the interrupt status register at address B89h.

D5 Description

Settings: 1 Set PCM to stereo mode.

0 Set PCM to mono mode.

Default: 0

DACIADC Mode (D4)
Use this bit to set the PCM circuitry to either output (DAC) or input (ADC)
mode.

D4 Description
Settings: 1 Enable output (DAC) mode.

0 Enable input (ADC) mode.

Default: 0

Left to Left (D3)
Use this bit to connect the left output channel of the Input Mixer to the left input
channel of the Output Mixer. For a complete description of Input and Output
Mixer interactions, see Chapter 20, "Mixer Programming Essentials."

D3 Description

Settings: 1 Connect left output to left input.

0 Disabled.

Default: 0

Right to Left (D2)
Use this bit to connect the right output channel of the Input Mixer to the left
input channel of the Output Mixer. For a complete description of Input and
Output Mixer interactions, see Chapter 20, "Mixer Programming Essentials."

D2 Description

Settings: 1 Connect right output to left input.

0 Disabled.

Default: 0

Pro AudioSpectrum Developer's Toolkit Reference 7-5

Chapter 7 PCM Hardware Register Functions

Left to Right (Dl)
Use this bit to connect the left output channel of the Input Mixer to the right
input channel of the Output Mixer. For a complete description of Input and
Output Mixer interactions, see Chapter 20, "Mixer Programming Essentials."

D l Description

Settings: 1 Connect left output to right input.

0 Disabled.

Default: 0

Right to Right (DO)
Use this bit to connect the right output channel of the Input Mixer to the right
input channel of the Output Mixer. For a complete description of Input and
Output Mixer interactions, see Chapter 20, "Mixer Programming Essentials."

DO Description

Settings: 1 Connect right output to right input.

0 Disabled.

Default: 0

Sample Rate Timer
Register 1 38811

Use the Sample Rate Timer to set the interval for processing PCM samples. The
Pro Audiospectrum processes a sample and then waits a specific period of time
before processing the next one. You use the Sample Rate Timer Register to
specify this period of time.

Program all 16 bits of this register by writing a value representing the interval
between samples. To determine the proper programming sequence, see "Local
Timer Control Register 138Bh on page 7-8.

For stereo sampling, load the timer with an interval value half that of the mono
sample rate, since twice the number of samples are required per sound.

7-6 Pro AudioSpectrunz Developer's Toolkit Reference

Sample Bufer Count Register 1389h

Calculate interval values as follows:

Interval = 1,193,180 / sample rate

For example, a 22 kHz sample rate would calculate as follows:

Interval = 1,193,180/22,050 or

Interval = 54

Note: Before setting the sample rate interval, be sure to select the Sample Rate
Timer using Local Timer Control Register 138Bh. Also remember to set the
Sample Rate Timer Gate of the Audio Filter Control Register B8Ah to 0 before
programming the timer.

Sample Buffer Count
Register 1 389h

Use the Sample Buffer Count register to set number of bytes in the DMA buffer
division. This register holds a 16-bit value. When using a 16-bit DMA channel,
the Sample Buffer Count must be divided by two. For example, to set up a 2K
DMA buffer division, you must program a count of 1K into the counter. Once
the counter decrements to zero, a Sample Buffer Count Interrupt is generated
and enabled.

Note: To determine the proper programming sequence for this register, see
"Local Timer Control Register 138Bh" on page 7-8. The Sample Buffer Counter
Gate in the filter register (B8Ah) must be set to zero before programming the
counter.

05

Y

D7

Y a
B
cl

Pro Audiospectrum Developer's Toolkit Reference 7-7

D4

r - \ D l o ~ r n c \ 1 * 0

a a a a a a a a

a g J J ;

D6

Y z

cl

D2

Y

D3

U g , z z z z z
2 g c c z g g c

Dl

Y

- 5

DO

Y

j

Chapter 7 PCM Hardware Register Functions

Local Speaker Timer Count
Register 1 38Ah

Use the Local Speaker Timer Count Register to control the speaker timer on the
Pro Audiospectrum that shadows the PC speaker timer. When the
Pro AudioSpectrum is installed, PC speaker sounds are generated from the
Local Speaker Timer Count Register rather than from the PC.

Program all eight bits of this register at once by writing a value representing
the speaker count value. This timer is a PC-compatible 8253 timer that can be
programmed in all six modes. For more information, on programming the
8253, contact Intel for product literature.

Local Timer Control
Register 138B h

Use the Local Timer Control Register to enable and disable timers; set read and
write modes; set timer generator modes; and select binary or BCD counting
modes.

Timer Select (D7 and D6)
Use these two bits to select the Sample Rate Counter, Sample Buffer Counter, or
the Local Speaker Timer Counter. You must enable these functions before
programming other PCM registers.

D7 D6 Description

Settings: 0 0 Select Sample Rate Timer.

0 1 Select Sample Buffer Counter.

1 0 Select Local Speaker Timer Counter.

Default: NIA NIA

7-8 Pro AudioSpectrum Developer's Toolkit Reference

Local Timer Control Register 138Bh

Reamrite
Use these two
write the least

(D5 and D4)
bits to enable the 16-bit sample timer. In 16-bit mode, read or
significant byte first, then the most sigruficant byte.

05 04 Description

Settings: 1 1 Enable 16-bit timer.

Default: 0 0

Timer Mode(D3 though Dl)
Use these three bits to select a timer mode. Timer Mode must be matched to the
timer you have enabled:

For Sample Rate Timer, set Timer Mode to Square Wave Generator

For Sample Buffer Count, set T i e r Mode to Rate Generator

D3 D2 Dl Description

Settings: 0 1 0 Select Rate Generator (Sample Rate Timer).

0 1 1 Select Square Wave Generator (Sample Buffer Count).

Default: 0 0

BinaryIBCD (DO)
Use this bit to set the timer counting mode to binary or BCD. This bit should
normally be set to binary mode.

DO Description

Settings: 0 Set counting mode to binary.

Set counting mode to BCD.

Default: 0

Pro AudioSpectrum Developer's Toolkit Reference 7-9

Chapter 7 PCM Hardware Register Functions

Sample Size Configuration
Register 8389h

Use the Sample Size Configuration Register to select output sample
compression ratios and 8- or 16-bit audio.

Reserved (D7 through D3)
These bits should not be programmed by application developers. Modifying
any of these bits will result in unpredictable behavior by the
Pro Audiospectrum.

811 6-bit Audio (D2)
Use this bit to select either 8- or 16-bit audio. Choosing 16-bit audio results in
better sound quality,

DO Description

Settings: 0 Set audio byte size to &bit.

1 Set audio byte size to 16-bit.

Default: 0

Note: Not all Pro AudioSpectrum products support 16-bit audio. To
determine if your system supports 16-bit audio, use the MVGetHWVersion
function call described in "MVGetHWVersion" on page&% k, . i'

Over Sampling(D1 and DO)
Use these bits to select over -sampling rates of 1,2, or 4 times.

Dl DO Description

Settings: 0 0 Set over sampling rate to 1X.

0 1 Set over sampling rate to 2X.

1 1 Set over sampling rate to 4X.

Default: 0 0

7-1 0 Pro AudioSpectrum Developer's Toolkit Reference

FM Programming Section

FM Synthesizer Programming
Essentials

This chapter describes:

The standard features and capabilities of the Pro AudioSpectrum's stereo
FM synthesizer

Pro AudioSpectrum channel mode configurations

Operator connection modes including FM synthesis (serial connection) and
additive synthesis (parallel connection)

Understanding operator cell and channel number

Selecting synthesizer access mode (stereo or mono)

Reading and writing to hardware registers

Programming strategy

For information on FM synthesizer function calls, see Chapter 9, "Low-Level
FM Synthesizer Function Call Reference." For information on programming
the standard FM synthesizer hardware registers, see Chapter 11, "Standard FM
Synthesizer Register Functions." For information on the enhanced FM
synthesizer hardware registers, see Chapter 12, "Enhanced FM Synthesizer
Register Functions."

Pro Audiospectrum Dateloper's Toolkit Reference 8-1

Chapter 8 FM Synthesizer Programming Essentials

Pro AudioSpectrum FM synthesizer capabilities
The Pro AudioSpectrum's stereo FM synthesizer can produce complex musical
waveforms while introducing very little PC processor overhead. Unlike PCM
waveform generation, in which you must simulate a complex waveform, FM
synthesis uses pre-programmed counters and waveforms to generate sound.

The Pro AudioSpectrum stereo FM synthesizer is based on Yamaha chips
(either dual 3812's or a single OPL3 with stereo synthesizer capability) to
simulate the timbre of musical instruments. Timbre, or sound quality, results
from the complexity of sound harmonics. The Pro AudioSpectrum's frequency
modulation technique lets you create rich harmonics and musical sounds by
programmatically controlling a few simple parameters.

The Pro AudioSpectrum can be programmed to produce up to 20 voices. Both
FM synthesizers on the Pro AudioSpectrum generate music as a monaural
audio source. You produce stereo music by setting the board to stereo
synthesizer access mode and programming the two synthesizers
independently

The key features of the FM synthesizers include:

Programmatic control over individual operators, operator pairs, and all
operators at once

Control over a wide range of parameters for creating sound with rich texture:

Frequency

Frequency multiplier

Envelope type (percussive or non-percussive)

Envelope amplitude (total level)

Envelope key scaling level (KSL)

ADSR (attack/decay/sustain/release) rate

Key scaling rate (KSR)

Sustain amplitude level

Feedback (modulating operator only)

Tremolo depth and enable

Vibrato depth and enable

Waveform selection (eight different waveforms)

8-2 Pro AudioSpectrum Developer's Toolkit Reference

Low-level FM synthesizer software API programming s t q s

Low-level FM synthesizer software API programming steps
The following procedure shows the order in which you should use low- level
API function calls. The function calls are documented in Chapter 9, "Low-Level
FM Synthesizer Function Call Reference."

1. Initialize the function call library and the Pro AudioSpectrum hardware.

Function call: mvInitFMMode

2. Write FM data

Function calls: mvOutDua13812 or

mvOutLeft3812or

Note: Although you may use the New bit of the Select OPL3 hardware register
to split the FM synthesizer, in order to ensure compatibility with all
Pro AudioSpectrum models, Media Vision recommends that you use the
low-level software API to perform this function.

FM synthesizer channel modes
The stereo FM synthesizer can be configured in two different ways:

Two- operator mode

This mode provides either 18 melody voices or 12 melody and six rhythm
voices.

Four- operator mode

This mode provides: six four-operator melody voices and six two-operator
melody voices; or six four-operator melody voices, three two-operator
voices, and five rhythm voices.

For information on programming the FM synthesizer's the different channel
modes, see the following section and Chapter 12, "Enhanced FM Synthesizer
Register Functions."

Operator connection modes
The FM synthesizer operators are combined to create channels (also known as
voices). The FM synthesizer of the Pro AudioSpectrum Plus,
Pro AudioSpectrum 16, and the CDPC support eight different connection
modes. Earlier Pro AudioSpectrum systems support two connection modes:
FM synthesis (serial connection) and additive synthesis (parallel connection).
These two connection modes are described here.

Pro AudioSpectrum Deueloper's Toolkit Reference 8-3

Chapter 8 FM Synthesizer Programming Essentials

FM synthesis (serial connection)
In FM synthesis (serial connection), a sine wave carrier frequency is modulated
by a second sine wave signal at the same or closely related frequency. Both of
these frequencies, as well as many of the partial frequencies (harmonics) that
are created, are within the audible range. Since it contains many harmonics, the
resulting sound spectrum is complex and creates notes that are rich in timbre.

Harmonics are predictable because they appear in accordance with well-
known formulae, called Bessel functions. Bessel functions describe the
combination of two sine waves by modulation.

The FM synthesis technique requires that two cells be connected in series, as
shown in the figure below:

feedback -
Carrier out

Figure 1 FM Synthesis (Serial Connection)

The output of the carrier cell (which generates the base frequency) is modulated,
or altered, by the modulator cell. The modulator cell imparts a richness in
timbre when it modulates the steady frequency produced by the carrier cell.

Each operator cell has three components:

Phase generator

Envelope generator

Sine table

8-4 Pro Audiospectrum Developer's Toolkit Reference

Operator connection modes

The diagram below depicts the characteristics of operator cells.

Modulator Cell
(OP1)

Carrier Cell
(OP2)

Figure 2 Operator Cell Components

Each operator creates sine waves independently. The frequency of each sine
wave is controlled by the phase generator; the amplitude is controlled by the
envelope generator.

Operators are combined in series. The output of the modulator cell alters the
carrier cell. The waveform that results from the output of the carrier cell
contains the fundamental frequency of the carrier cell, plus harmonics that
result from the interaction of the two cells. The harmonics are at frequencies
equal to the carrier frequency, plus and minus integer multiples of the
modulator frequency.

The relative strength of the harmonics depends on the amplitude of the
modulator cell output. By changing the frequency and amplitude of the
modulator cell, while keeping the frequency of the carrier cell constant, you
can dramatically change the timbre of the FM synthesized sound created by
these two operators.

The formula below explains the interaction of the four parameters, which you
control programmatically, that control FM sound production:

A output amplitude

I modulation index (modulator cell amplitude)

w carrier cell frequency
C

w modulator cell frequency
m

Pro AudioSpectrum Developer's Toolkit Reference 8-5

Chapter 8 FM Synthesizer Programming Essentials

See Figure 2 for a visual representation of this formula.

Additive synthesis (parallel connection)
With additive synthesis (parallel connection), the output equals the sum of the
two operators. Operator 1 optionally has feedback, which is useful for creating
interesting harmonics. The figure below illustrates the interaction of cells
operating in parallel.

feedback -
Figure 3 Additive Synthesis

The formula below describes composite sine wave synthesis:

F (t) = A sin(w t) + A sin(w t)
1 1 2 2

Al
cell 1 amplitude

w cell 1 frequency
1

A2
cell 2 amplitude

w cell 2 frequency
2

Understanding operator cell number and channel number
The FM synthesizer of early Pro AudioSpectrum systems can be configured for
up to nine FM channels (also known as voices). Each channel is produced by
combining a pair of operator cells.

When the FM synthesizer is set to melody mode, all 18 operators are dedicated
to the nine FM channels. To set the FM synthesizer to melody mode, set CSM
Mode/Keyboard Split Register (08h) bit D7 = 0 and Depth/Percussion/
Instruments Register (OBDh) bit D5 = 0.

In percussion mode, operators 1 through 12 are paired to create six FM
channels; operators 13 through 18 produce five percussion sounds, including
bass drum and high hat. For more information on enabling percussion mode
and percussion instruments, see "Depth / Percussion / Instruments Register
BDh" on page 11-20.

8-6 Pro AudioSpectrum Developer's Toolkit Reference

Understanding operator cell number and channel number

The table below shows how operator cells are paired to create channels when
the synthesizer is in melody mode. Remember, in percussion mode, operator
cells 13 through 18 are reserved for percussion instruments.

Table 1 Operator Cell Pairings To Create Channels

* Used for either FM synthesis (in melody mode) or percussion sound
production (in percussion mode)

Caution: Notice the gaps in the address map at 06h and 07h, and at OEh and
on.

Note: The Key On bits (D5) of Block and F-Number Registers B6h, B7h, and
B8h must be set to 0 before enabling percussion instruments.

Pro AudioSpectrum Developer's Toolkit Reference 8-7

Chapter 8 FM Synthesizer Programming Essentials

Synthesizer sound modes
The Pro AudioSpectrum's stereo FM synthesizers support two sound modes:

Monaural

Stereo

When powered on, the Pro AudioSpectrum comes up in monaural mode. In
monaural mode, both FM synthesizers are addressed at ports 388h and 389h.

In stereo mode, the left FM synthesizer is addressed at 388h and 389h. The
right FM synthesizer is addressed at 38Ah and 38Bh.

Changing sound modes
Use the mvInitFMMode function to change sound modes between monaural
and stereo. For information on this function call, see "mvInitFMMode" on
page 9-2.

After writing to an FM synthesizer address and status port, wait 3.35
microseconds before writing to the corresponding FM synthesizer data port.
Execute five IN instructions to read the FM Status port following your OUT
instruction.

After writing to an FM synthesizer data port, wait 23.75 microseconds before
writing to the corresponding FM synthesizer address and status port. Execute 33
IN instructions to read the FM Status port following your OUT instruction.

These sequences provide the correct delays for the older Pro AudioSpectrum
systems. The Pro AudioSpectrum Plus, Pro AudioSpectrum 16, and the CDPC
require only 2 IN operations after each write to the address and status or data
ports.

Programming strategy
The following procedure integrates the concepts presented in this chapter.
Follow the steps below to produce computer synthesized music.

1. Identify the channel and operators you want to program.

2. Initialize.

Select FM synthesis mode (FM synthesis or additive synthesis) and melody
or percussion mode.

3. Determine the note you want to produce.

Load the frequency and octave information into the appropriate registers.

8-8 Pro AudioSpectrum Developer's Toolkit Reference

Programming strategy

4. Start playing notes.

Toggle the Key On bit for the channel and operators you've chosen.

5. Wait until all notes have been played and start again.

Note: If you follow the procedure to produce a note, but don't produce the one
you want, check the ADSR setting, frequency, octave scale, connection bit,
frequency multiplier, and CSM mode/keyboard split, in that order.

Note: The design of the the early Pro Audiospectrum systems requires that
you wait 3.3 microseconds after writing to register 38Ah and 23
microseconds after writing to register 38Bh before issuing a second
command to the FM synthesizer. Newer Pro AudioSpectrum systems (Plus,
16, or CDPC) require a 2 microsecond delay.

Pro AudioSpectrum Developer's Toolkit Reference 8-9

Chapter 8 FM Synthesizer Programming Essentials

8-10 Pro Audiospectrum Developer's Toolkit Reference

Low-Level FM Synthesizer Function
Call Reference

This chapter describes the low-level function calls you can use to program the
Pro Audiospectrum's FM synthesizer. To understand the fundamentals of
programming the FM synthesizers, see Chapter 10, "FM Synthesizer Hardware
1/0 Ports." For a reference to the basic FM synthesizer register functions, see
Chapter 11, "Standard FM Synthesizer Register Functions." For a reference to
more advanced FM synthesizer register functions, see Chapter 12, "Enhanced
FM Synthesizer Register Functions."

You must start your FM synthesizer programs by calling the mvInitFMMode
routine. You can find prototypes of each of the function calls listed in this
chapter in the 3 8 1 2 A . ASM file.

Pro Audiospectrum Developer's Toolkit Reference 9-1

Chapter 9 Low-Level FM Synthesizer Function Call Reference

mvlnitFMMode
Use mvInitFMMode to set the synthesizer to stereo or mono mode.

You must call this routine before using any of the other FM synthesizer
function calls.

Calling Convention
int mvInitFMMode (int mode) ;

Input Parameters

Parameter Type Value Description
mode integer 0 Set synthesizer mode to mono.

1 Set synthesizer mode to stereo.

Return Values

Parameter Type Value Description
int integer 0 Initialization succeeded.

- 1 Initialization failed. Hardware not found.

Related topics
None.

Use mvOutDual3 8 1 2 to write FM synthesizer register commands and data
both the left and right FM synthesizers.

Calling Convention
void mvOutDua13812 (int addr, int leftdata, int rightdata) ;

9-2 Pro AudioSpectrum Developer's Toolkit Reference

lnput Parameters

Parameter Type Value Description

addr integer Specifies the address of an FM register function.

leftdata integer Data to be sent to a left M synthesizer device.

rightdata integer Data to be sent to a right FM synthesizer device.

Return Values
None.

Related topics
To initialize the FM synthesizer environment, see "mvInitFMMode" on
page 9-2.

For a reference to the basic FM synthesizer register functions, see Chapter 11,
"Standard FM Synthesizer Register Functions."

For a reference to more advanced FM synthesizer register functions, see
Chapter 12, "Enhanced FM Synthesizer Register Functions."

Use mvOutLef t3 812 to write FM synthesizer register commands and data to
the left FM synthesizer (port addresses 388h and 389h). If the
Pro AudioSpectrum is in FM mono mode, mv~ut~ef t3 812 will write data to
the left and right FM synthesizers simultaneously.

Calling Convention
void mvOutLeft3812 (i n t addr , i n t l e f t d a t a) ;

lnput Parameters

Parameter Type Value Description

addr integer Specifies the address of an FM register function.

leftdata integer Specifies data to be sent to a left FM synthesizer device.

Return Values
None.

Pro AudioSpectrum Developer's Toolkit Reference 9-3

Chapter 9 Low-Level FM Synthesizer Function Call Reference

Related topics
To initialize the FM synthesizer environment, see "mvInitFMMode" on
page 9-2.

For a reference to the basic FM synthesizer register functions, see Chapter 11,
"Standard FM Synthesizer Register Functions."

For a reference to more advanced FM synthesizer register functions, see
Chapter 12, "Enhanced FM Synthesizer Register Functions."

Use mvOutRight3 812 to write FM synthesizer register commands and data to
the right FM synthesizer (port addresses 38Ah and 38Bh). This function always
sends data to the right FM synthesizer, regardless of the FM -synthesizer -split -
mode state.

Calling Convention
void mvOutRight3812 (int addr, int rightdata);

Input Parameters

Parameter Type Value Description
addr integer Specifies the address of an FM register function.

rightdata integer Specifies data to be sent to a right EM synthesizer device.

Return Values
None.

Related topics
To initialize the FM synthesizer environment, see "mvInitFMh4ode" on
page 9-2.

For a reference to the basic FM synthesizer register functions, see Chapter 11,
"Standard FM Synthesizer Register Functions."

For a reference to more advanced FM synthesizer register functions, see
Chapter 12, "Enhanced FM Synthesizer Register Functions."

9-4 Pro Audiospectrum Developer's Toolkit Reference

10 FM Synthesizer Hardware 110 Ports

This chapter describes the hardware programming interface to the stereo F M
synthesizer.

Unlike the other hardware programming interfaces of the Pro AudioSpectrum
where you read and write data to many individual ports, the FM synthesizer
uses the concept of an index. In this scheme, only four port addresses handle
all interactions with the FM synthesizer chip. The following section describes
this concept in detail.

For information on standard FM registers and register values, see Chapter 11,
"Standard FM Synthesizer Register Functions." For information on enhanced
FM synthesizer registers and register values, see Chapter 12, "Enhanced FM
Synthesizer Register Functions."

Pro AudioSpectrum Developer's Toolkit Reference 10-1

Chapter 10 FM Synthesizer Hardware I/O Ports

FM synthesizer 110 addresses
The following table describes the channel 1/0 addresses (ports) used to
program the FM synthesizer.

Channel VO address(es) Description

Left 388h Lefi FM synthesizer address and status port. Used for
two purposes: To select the register address and to read
the FM synthesizer status register.

Left 389h Left FMsynthesizer data port. Used to write data to the
selected register.

Right 38Ah Right FM synthesizer address and status port. Used for
two purposes: To select the register address and to read
the FM synthesizer status register.

Right 38Bh Right FM synthesizer data port. Used to write data to
the selected register.

In monaural mode, both sides of the stereo synthesizer is addressed at 388h
and 3891.1 and function like as a one channel device. Monaural mode ensures
compatibility with AdLib and Sound Blaster, and with older sound boards that
have a single FM synthesizer. The FM synthesizer also supports an alternative
set of left channel addresses at addresses 2x8h and 2x9h for Sound Blaster
compatibility.

Reading and writing to FM synthesizer ports
The bits of the FM synthesizer address and status port contains different types
of data depending upon whether the port is being read or written to.

When reading this register, it returns the following data:

Figure 4 Data Returned From Reading The FM Synthesizer Address and Status
Port (388h or 2x8h and 38Ah)

10-2 Pro Audiospectrum Developer's Toolkit Reference

Reading and writing to FM synthesizer ports

Use this port to determine the current state of the FM synthesizer Interrupt line
and Timers. When either Timer overflows, the corresponding Timer Flag (D5 or
D6) and the Interrupt Request (D7) is set to 1. For more information on
handling interrupts, see Appendix E, "Programming the PC's Interrupt
Controller.".

The FM synthesizer address and status port accepts the following data:

Figure 5 Data to Write to the l?M Synthesizer Address and Status Port (38811 or
2x8h and 38Ah)

Use this port to speclfy FM registers to load when your program writes to the
FM synthesizer data port.

The FM synthesizer data port is used to load (write) sound generation
parameters into the FM synthesizer. The table below shows a bit map of FM
synthesizer data port.

Figure 6 FM Synthesizer Data Port (389h or 2x9h and 38Bh)

Use this port to load FM registers with register values.

Pro AudioSpectrum Developer's Toolkit Reference 10-3

Chapter 10 FM Synthesizer Hardware I/O Ports

10-4 Pro AudioSpectrum Developer's Toolkit Reference

11 Standard FM Synthesizer Register
Functions

This chapter provides a complete description of the standard FM synthesizer
registers and register functions. All Pro Audiospectrum systems support the
registers and functions described here. The newest Pro AudioSpectrum models
like the Pro AudioSpectrum Plus, Pro AudioSpectrum 16, and the CDPC also
support enhanced FM synthesizer functions. For information on enhanced FM
synthesizer registers and functions, see Chapter 12, "Enhanced FM Synthesizer
Register Functions.".

Test
Register 01 h

This register enables the Wave Select command. The other bits of this register
are reserved by Yamaha to test the FM synthesizer chip. With the exception of
the Enable Wave Select bit (D5), this register should always be cleared
(initialized to zero).

Test (D7, D6 and D4 to DO)
Used by Yarnaha to test the synthesizer chip. These bits should be set to 0.

Dn Description

Settings: 1 Reserved, do not use.

0 Clear test bits.

Default: 0

Pro AudioSpectrum Developer's Toolkit Reference 11 -1

Chapter 11 Standard FM Synthesizer Register Functions

Enable Wave Select (DS)
Use this bit to enable the Wave Select command (registers EOh to F5h). For
information on the Wave Select command, see "Waveform Registers EOh to
F5h" on page -24.

D5 Description

Settings: 1 Turn Wave Select on.

0 Turn Wave Select off.

Default: 0

-- -- p- --

Note: Use this register with 3812-based Pro AudioSpectrum systems only.
This bit disrupts the operation of OPL3-based systems (Pro AudioSpectrum
Plus, Pro AudioSpectrum 16, and the CDPC).

Timer 1
Register 02h

Use this register to set a value for Timer 1. Timer 1 is an 8-bit, presettable
counter with a resolution of 80 microseconds.

The Timer 1 interval is calculated as shown below:

T1overflow
= (256-N) * 80 microseconds

where N = Timer 1 register value

Dn Description

Settings: 1 Set bits on to indicate greater Timer 1 value.

0 Set bits off to indicate smaller Timer 1 value.

Default: N/A

11-2 Pro AudioSpectrum Developer's Toolkit Reference

Timer 2 Register 03h

Timer 2
Register 03h

Use this register to set Timer 2. Timer 2 is identical to Timer 1 except that its
resolution is 320 microseconds.

The timer 2 interval is calculated as shown below:

T20verflow
= (256-N) * 320 microseconds

where N = Timer 2 register value

Dn Description

Settings: 1 Set bits on to indicate greater Timer 2 value.

0 Set bits off to indicate smaller Timer 2 value.

Default: NIA

Control Timer
Register 04h

This register starts, stops, and masks the status flags for Timer 1 and Timer 2.

Pro Audiospectrum Developer's Toolkit Reference 11 -3

Chapter 11 Standard FM Synthesizer Register Functions

Reset IRQ (07)
Use this bit to clear Status Register flags for IRQ, Timer 1, and Timer 2. This bit
automatically resets itself to 0 after flags are cleared.

D7 Description

Settings: 1 Clear status register flags.

0 Inactive.

Default: 0

-

Note: See "Synthesizer sound modes" on page 8-8 for an explanation of how
the board responds to the FM synthesizer IRQ and Timer status flags.

Mask Timer 1 (D6)
Use this bit to prevent the Timer 1 Status flag (D5 of Test and Status Register
Olh) from being set when Timer 1 overflows.

Because the Media Vision systems has its own interrupt enable bits for FM
synthesis, using this mask is not recommended.

D6 Description

Settings: 1 Mask Timer 1 flag.

0 Inactive.

Default: 0

Mask Timer 2 (D5)
Use this bit to mask the Timer 2 flag. This function of this bit is identical to the
Mask Timer 1 bit.

D5 Description

Settings: 1 Mask Timer 1 flag.

0 Inactive.

Default: 0

Start or Stop Timer 2 (Dl)
Use this bit to load the Timer 2 register value and begin counting. When this bit
is set to 0, Timer 2 is stopped and reset.

Dl Description

Settings: 1 Load register value into Timer 2 and begin counting.

0 Stop Timer 2.

Default: 0

11 -4 Pro Audiospectrum Developer's Toolkit Reference

CSM Mode /Keyboard Split Register 08h

Start or Stop Timer 1 (DO)
Use this bit to load the Timer 1 register value and begin counting. When this bit
is set to 0, Timer 1 is stopped and reset.

DO Description

Settings: 1 Load register value into Timer 1 and begin counting.

0 Stop Timer 1.

Default: 0

CSM Mode 1 Keyboard Split
Register 08h

This register controls whether the synthesizer operates in music mode or
composite speech mode (CSM), and the location of the keyboard split for
keyboard rate scaling.

Composite Sine Wave Mode (D7)
Use this bit to toggle the synthesizer between music mode and composite
speech mode.

In music mode, the FM synthesizer can be programmed to operate in one of
two sub-modes: melody mode (9 FM channels) or percussion mode (6 FM
channels and 5 percussion sounds). Melody mode is the default configuration.

All 18 operators must be turned off (Key On = 0) before you switch to the
composite speech mode. Composite speech sound is produced by momentarily
switching to Key On.

D7 Description

Settings: 1 Set synthesizer to composite speech mode.

0 Set synthesizer to music mode.

Default: 0

Note: There is no functional use for composite speech mode. This function is
not supported on the Pro AudioSpectrum Plus, Pro AudioSpectrum 16, or
the CDPC.

Pro AudioSpectrum Developer's Toolkit Reference 11 -5

Chapter H Standard FM Synthesizer Register Functions

Keyboard Split Point or SEL (D6)
Use this bit to control the split point of the keyboard.

Note that the FM synthesizer definition of keyboard split is different from the
standard music definition. In the context of the FM synthesizer, keyboard split
refers to the point where keyboard scaling occurs within each octave.

The Split Number controls the amount of key scaling applied to a note. As
outlined in the table below, the Split Number is a function of both the octave
(block number) and the split point within each octave. For both split point
settings (SEL = 0 or I), key scaling increases by a factor of two as the octave
(block number) increases. An exception to this rule occurs at the split point
within an octave. Beyond the split point, key scaling increases by 1.

Octave

Block
Data

F-Num
MSB

F-Num
2nd
Split
Number

Octave

Block
Data
F-Num
MSB
F-Num
2nd
Split
Number

For more information on key scaling, see "AM/VIB/EG/KSR/Multiple
Registers 20h to 35h" on page 11-7.

For both SEL bit settings, the keyboard split point occurs in the middle of each
octave. Note that the most significant bit changes from 0 to 1 in the middle of
the octave.

When set to 1, keyboard scaling increases smoothly (in jumps of 2) from octave
to octave, and increases by 1 within each octave. Keyboard scaling increases in
a roughly linear fashion across the entire keyboard. When set to 0, notes of the

11 -6 Pro AudioSpecfrum Developer's Toolkit Reference

AM/VIB/EG/KSR/Multiple Registers 20h to 35h

lower half of the keyboard have no scaling while notes of the upper half scale
smoothly (in jumps of 2).

Since the split number influences the note's attack/decay/release rate, SEL=1
results in a natural sounding scaling effect while SEL=O scaling provides a
special effect.

D6 Description

Settings: 1 Scale keyboard by jumps of 2 from octave to octave.

0 Do not scale lower half of keyboard, scale by jumps of 2 for upper half.
Default: 0

AMNIBIEGIKS WMultiple
Registers 20h to 35h

This register group controls operator characteristics that produce changes in
timbre. One register is dedicated to each of the operators.

D7 D6 D5 D4 D3 D2 D l DO

h
& P
P g r n ~ r . '3 .s .r(

Q - Q - Q a a a a 3 3 7 2 3 3

B a 5 5 5

Tremolo Modulation (D7)
Use this bit to control the tremolo (amplitude) modulation of an operator.

The tremolo frequency is 3.7 Hz and the modulation depth is either 7% or 14%,
depending on the setting of the Tremolo Depth (bit D7) in register BDh.

D7 Description
Settings: 1 Apply amplitude modulation.

0 No amplitude modulation.
Default: 0

Pro AudioSpecfrum Developer's Toolkif Reference 11 -7

Chapter 11 Standard FM Synthesizer Register Functions

Vibrato Modulation (D6)
Use this bit to control the vibrato modulation of an operator.

The vibrato is a frequency of 6.4 Hz (twice that of the tremolo frequency) and
the modulation depth is either 4.8 dB or 1 dB, depending on the setting of the
Vibrato Depth (bit D6) in register at BDh.

D6 Description

Settings: 1 Apply vibrato modulation.

0 No vibrato modulation.

Default: 0

Envelope Type (D5)
Use this bit to control whether the sound has the envelope shape of a
diminishing sound or a continuing sound.

Diminishing sounds are sometimes referred to as percussive sounds while
continuing sounds are called non-percussive. The figure below shows the two
envelope types.

Diminishing Sound
D 5 = 0

Continuing Sound
D5= 1

Release Rate

Key On Key Off

Table 2 Envelope Qpes

D5 Description
Settings: 1 Set envelope shape to continuing sound.

0 Set envelope shape to diminishing sound.

Default: 0

Key Scaling Rate (D4)
Use this bit to control the rate of key scaling in order to imitate string
instruments. Scaling choices are minimal or maximal scaling.

To the human ear, notes of string instruments appear to shorten at higher
frequencies. Key scaling lets you set the rate of attack, decay, and release of a
note. A higher (more vertical) rate of attack, decay, and release results in a

11-8 Pro AudioSpectrum Developer's Toolkit Reference

AM/VIB/EG/KSR/Multiple Registers 20h to 35h

gradual shortening of the envelope length as higher frequency notes are
played. The figure below illustrates this phenomenon.

Key On I K ~ ~ off

Table 3 Envelope Waveform

Using values from the table below, use this formula to calculate the actual rate:

Actual-rate = 4 * Unsealed-rate + KSR-adjustment
where Unsealed-rate = Unscaled attacWdecaylrelease rate (Keyboard Split Number)

KSR-adjustment = KSR adjustment value from table

Table 4 Key Scaling RatetKeyboard
Split Number Cross Reference

Pro Audiospectrum Developer's Toolkit Reference 11-9

Chapter 11 Standard FM Synthesizer Register Functions

D4 Description

Settings: 1 Set key scaling rate to maximum.

0 Set key scaling rate to minimum.

Default: 0

Multiple Bits or MUL (D3 - DO)
Use the MUL bits to switch from the fundamental frequency of a note to a
nearby harmonic frequency.

To understand the effect of the MUL bits, the formula below shows FM
synthesis, this time with the multiplication factor explicitly included:

F(t) = A sin (m w t + I sin (m w t))
C C m m

where A = output amplitude

m = multiplication factor for carrier
C

w = frequency for carrier cell
C

m = multiplication factor for modulator
m

w = frequency for modulator cell
m

D3 D2 D l DO

Settings: 1 1 1 1

1 1 1 0

1 1 0 1

1 1 0 0

1 0 1 1

1 0 1 0

1 0 0 1

1 0 0 0

0 1 1 1

0 1 1 0

0 1 0 1

0 1 0 0

0 0 1 1

0 0 1 0

0 0 0 1

0 0 0 0

Default: 0 0 0 1

Description
Set multiplication factor to 15.

Set multiplication factor to 15.

Set multiplication factor to 12.

Set multiplication factor to 12.

Set multiplication factor to 10.

Set multiplication factor to 10.

Set multiplication factor to 9.

Set multiplication factor to 8.

Set multiplication factor to 7.

Set multiplication factor to 6.

Set multiplication factor to 5.

Set multiplication factor to 4.

Set multiplication factor to 3.

Set multiplication factor to 2.

Set multiplication factor to 1.

Set multiplication factor to .5.

11 -1 0 Pro Audiospectrum Developer's Toolkit Reference

KSL /Total Level Registers 40h to 55h

KSL / Total Level
Registers 40h to 55h

The KSL/Total Level registers control the operator envelope level (amplitude).
By changing the operator envelope of the carrier operator, you control the
output level (strength) of a note. By changing the modulator operator envelope
level, relative to the carrier operator, you control the harmonic richness (timbre)
of the sound. One register is dedicated to each of the operators.

Key Scaling Level (D7 and D6)
Use these bits to specify the rate at which the output amplitude declines from
the starting level as pitch increases. Key Scaling Level is used to simulate the
behavior of acoustic instruments.

D7 D6 Description

Settings: 1 1 Set degree of attenuation to 6 dBIoctave.

0 1 Set degree of attenuation to 3 dB1octave.

1 0 Set degree of attenuation to 1.5 dBIoctave.

0 0 Set degree of attenuation to 0 dB1octave.

Default: 0 0 Set degree of attenuation to 0 dB1octave.

Total Level (D5 to DO)
Use the Total Level bits to specify the operator strength. The output amplitude
can vary from full strength to 47.25 dB attenuation (reduction). The table below
illustrates the amount of attenuation controlled by each bit.

D5 D4 D3 D2 Dl DO

Degreeof 24 dB 12 dB 6 dB 3dB 1.5 dB .75 dB
Attenuation

To determine the total amount of attenuation, add up the decibel values for
each of the bits set to 1.

The carrier cell output level governs how dominant this channel is relative to
other FM channels produced by the FM synthesizer. For a given carrier cell
output level, varying the modulator cell output level changes the amount of

Pro Audiospectrum Developer's Toolkit Reference 11 -1 1

Chapter 11 Standard EM Synthesizer Register Functions

modulation. The greater the modulation, the greater the number and strength
of harmonics. Strong harmonics result in rich timbre.

Dn Description

Settings: 1 Turn bit on for attenuation.

0 Turn bit off for attenuation.

Default: 0

Attack 1 Decay Rate
Registers 60h to 75h

This set of registers sets the rising and decaying times for a sound. One register
is dedicated to each of the operators.

11-12 Pro Audiospectrum Developer's Toolkit Reference

Attack /Decay Rate Registers 60h to 75h

Attack Rate (D7 to D4)
Use these bits to control the attack rate for the sound. To determine the actual
rate of attack, see Appendix A, "FM Hardware Register Charts and Tables."

Pro Audiospectrum Developer's Toolkit Reference 11-13

Chapter 11 Standard EM Synthesizer Register Functions

Decay Rate (D3 to DO)
Use these bits to control the decay rate for the sound. To determine the actual
rate of decay, see Appendix A, "FM Hardware Register Charts and Tables."

03 D2 Dl DO

Settings: 1 1 1 1

1 1 1 0

1 1 0 1

1 1 0 0

1 0 1 1

1 0 1 0

1 0 0 1

1 0 0 0

0 1 1 1

0 1 1 0

0 1 0 1

0 1 0 0

0 0 1 1

0 0 1 0

0 0 0 1

0 0 0 0

Default: 0 0 0 0

Description

Set decay rate value to 15.

Set decay rate value to 14.

Set decay rate value to 13.

Set decay rate value to 12.

Set decay rate value to 11.

Set decay rate value to 10.

Set decay rate value to 9.

Set decay rate value to 8.

Set decay rate value to 7.

Set decay rate value to 6.

Set decay rate value to 5.

Set decay rate value to 4.

Set decay rate value to 3.

Set decay rate value to 2.

Set decay rate value to 1.

Set decay rate value to 0.

11-14 Pro AudioSpectrum Developer's Toolkit Reference

Sustain Level /Release Rate Registers 80h to 95h

Sustain Level / Release Rate
Registers 80h to 95h

This set of registers sets the sustain level for a continuing sound and the release
rate for both continuing and diminishing sounds. One register is dedicated to
each of the operators.

Sustain Level (07 to D4)
Use the Sustain Level bits to spec* the amplitude of a continuing sound prior
to decay. The Sustain Level is specified relative to peak amplitude of the note; it
can vary between 0 dB (same as the peak) and 46 dB attenuation (almost a
vertical drop-off from the peak). The table below illustrates the number of
sustain decibels controlled by each bit.

24 dB 12 dB 6 dB 3 dB Attenuation

To determine the total sustain level, add up the decibel values for each of the
bits set to 1.

Dn Description

Settings: 1 Turn a bit on for sustain level.
0 Turn a bit off for sustain level.

Default: 0

Release Rate (D3 to DO)
Use the Release Rate bits to specify the the speed at which a sound fades away.
Release Rate can be applied to both continuing and diminishing sounds.

Pro AudioSpectrum Developer's Toolkit Reference 11 -15

Chapter 11 Standard EM Synthesizer Register Functions

For continuing sounds, the Release Rate governs the speed at which sound
fades away after the transition from Key On (D5 Of Axh =1) to Key Off (D5 = 0).
For diminishing sounds, the Release Rate governs the rate at which sound
fades away after the Sustain Level signal level is reached. To see understand
the relationship between Release Rate values and actual release times, see
Appendix A, "FM Hardware Register Charts and Tables."

D3 D2 Dl DO
Settings: 1 1 1 1

1 1 1 0

1 1 0 1

1 1 0 0

1 0 1 1

1 0 1 0

1 0 0 1

1 0 0 0

0 1 1 1

0 1 1 0

0 1 0 1

0 1 0 0

0 0 1 1

0 0 1 0

0 0 0 1

0 0 0 0

Default: 0 0 0 0

Description

Set release rate value to 15.

Set release rate value to 14.

Set release rate value to 13.

Set release rate value to 12.

Set release rate value to 11.

Set release rate value to 10.

Set release rate value to 9.

Set release rate value to 8.

Set release rate value to 7.
Set release rate value to 6.

Set release rate value to 5.

Set release rate value to 4.

Set release rate value to 3.

Set release rate value to 2.

Set release rate value to 1.

Set release rate value to 0.

Block and F-Number
Registers AOh to A8h to BOh to B8h

These two groups of nine registers select the octave, and note within the octave,
associated with the two operator cells that are paired in FM synthesis to form a
channel. The Key On bit of register group BOh to B8h controls when notes are
played.

The Block Number specifies the octave for a pair of operator cells. The 10-bit F-
Number, which spans AX and Bx registers, specifies the note within the octave.

1 1-1 6 Pro AudioSpectrum Developer's Toolkit Reference

Block and F-Number Registers AOh to A8h to BOh to B8h

The 10 bit F-Number is formed by combining bits Dl and DO from the BOh to
B8h register group with its matching register in the AOh to A8h group. F-
Numbers are configured as follows:

F-Number (8 lower bits) (D7 to DO bits in Axh)

F-Number (2 high bits) (Dl and DO bits in Bxh)

Register Group AOh to A8h

Register Group BOh to B8h

F-Num (D7 to DO of register Axh plus D l and DO of register
Bx h)
Use these bits to set the frequency number for a note within an octave. The F-
Num for a given note is the same for all octaves.

D7

.

Ten bit F-Nums map into 1,024 frequency values. Many of these values extend
outside an octave or spec* frequencies that fall between commonly accepted
pitch values. Consequently, only a relatively small number of the F-Num

06

C I \ O I O
u ...

Pro AudioSpectrum Developer's Toolkit Reference 11 -1 7

DO

0
.* u

D5

-
D3

E E E E E E E E

D4

"- .* m m S m m c s m m

g z g g z g 2 z
d d d d d d d d

D2

2
D l
3

.* -

Chapter 11 Standard EM Synthesizer Register Functions

values make sense for a given octave. The figure below shows the F-Num for
the fourth octave in both decimal and in binary:

Table 5 F-Numbers For Octave 4

The operator frequency can be multiplied by the Multiple bits found in register
group 20h through 35h to yield a set of frequencies different than those
specified by the Block Number and F-Num alone. Note that while the Block
Number and F-Num applies to both operators in a pair, the Multiple can be
applied to the modulator, the carrier, or to both the modulator and carrier. For a
complete list of standard pitch values for all notes within the eight octave
range of the FM synthesizer, see Appendix A, "FM Hardware Register Charts
and Tables."

11 -1 8 Pro Audiospectrum Developer's Toolkit Reference

Block and F-Number Registers AOh to A8h to BOh to B8h

Dl D2 D7 D6 D5 D4 D3 D2 Dl DO

Setting: 0 1 0 1 1 0 1 0 1 1

1 0 1 0 1 0 1 1 1 0

Default: 0 0 0 0 0 0 0 0 0 0

Description

Set F-Num
value to (C#).

Set F-Num
value to (D).

Set F-Num
value to (D#).

Set F-Num
value to (E).

Set F-Num
value to (F).
Set F-Num
value to (F#).

Set F-Num
value to (G).

Set F-Num
value to (G#).

Set F-Num
value to (A).

Set F-Num
value to (A#).

Set F-Num
value to (B).

Set F-Num
value to (C).

Key On (05 of register Bxh)
Use these bits to control the output of a given operator pair. There is one Key On
bit for each of the nine operator pairs (in FM synthesis melody mode). For a
discussion of operator cell pairs, see "Understanding operator cell number and
channel number" on page 8-6.

Note: Key On bits 13 through 18 must be cleared before you switch from
melody mode to percussion mode.

D5 Description
Settings: 1 Turn channel on for operator pair.

0 Turn channel off for operator pair.

Default: 0

Pro AudioSpectrum Developer's Toolkit Reference 11 -1 9

Chapter 11 Standard EM Synthesizer Register Functions

Block Number (D4 through D2 of register Bxh)
Use the Block Number bits to specify the octave you are programming. The FM
synthesizer supports an eight octave range.

D4 D3 D2

Settings: 1 1 1

1 1 0

1 0 1

1 0 0

0 1 1

0 1 0

0 0 1

0 0 0

Default: 0 0 0

Description

Set to octave 8.

Set to octave 7.

Set to octave 6.

Set to octave 5.

Set to octave 4.

Set to octave 3.

Set to octave 2.

Set to octave 1.

Depth / Percussion / Instruments
Register BDh

This register group controls tremolo modulation and vibrato depth for melody
instruments; toggles the FM synthesizer between melody and percussion mode;
and enables percussion instruments of the FlLI synthesizer.

Tremolo Depth (D7)
Use this bit to set the amount of tremolo modulation (changes to amplitude) for
a given operator pair, Tremolo must be enabled (D7 of register group 20h
through 35h) for this setting to take effect.

D7 Description
Settings: 1 Set tremolo modulation to 4.8 decibels.

0 Set tremolo modulation to 1 decibel.

Default: 0

11 -20 Pro AudioSpectrum Developer's Toolkit Reference

Depth /Percussion /Instruments Register BDh

Vibrato Depth (D6)
Use the Vibrato Depth bit to set the amount of vibrato modulation (changes to
pitch) for a given operator pair. Vibrato must be enabled (D6 or register group
20h through 35h) for this setting to take effect.

D6 Description

Settings: 1 Set vibrato modulation to 14 percent.

0 Set vibrato modulation to 7 percent.

Default: 0

Percussion Mode Enable (D5)
Use this bit to turn percussion instruments on and off. You must set this bit on
in order to enable individual percussion instruments.

D5 Description
Settings: 1 Set FM synthesizer to percussion mode.

0 Set FM synthesizer to melody mode.

Default: 0

Percussion Instrument Enable (D4 through DO)
When FM synthesizer mode is set to percussion (D5 = I), use these bits to enable
the bass, snare drum, Tom Tom drums, Top cymbal, and the Hi-Hat cymbal. The
essential characteristics of the percussion instruments are pre-programmed into
the FM synthesizer, but you must still program other characteristics, such as the
FNumber and Attack Rate, to control the frequency and timbre.

The table below shows FM synthesizer percussion instruments, the particular
bits of register BDh that control them, and the operator cell numbers associated
with them.

Percussion Control Bit Operator Cell
Instrument Number@)

Bass Drum D4 13 and 16

Snare Drum D3 17

Tom Tom D2 15

Top Cymbal Dl 18

Hi-Hat Cymbal DO 14

Pro AudioSpectrum Developer's Toolkit Reference 11 -21

Chapter 11 Standard EM Synthesizer Register Functions

Before enabling a percussion instrument, you must turn off the corresponding
Key On bits (D5 = 0) in registers B6h through B8h. These three registers control
channels 7 through 9 (operators 13 through 18), which are now reserved for
rhythm instrument sounds.

Dn Description

Settings: 1 Enable percussion instrument.

0 Disable percussion instrument.

Default: 0

Feedback 1 Connection
Registers COh - C8h

This group of registers determines the amount of operator cell feedback and
whether pairs of operators are connected serially (FM synthesis) or in parallel
(additive synthesis).

Feedback (D3 to D l)
Use these bits to set the level of feedback for the first operator cell in a channel.
The FM synthesizer supports eight fixed amplitude settings.

When an operator pair is connected serially (FM synthesis), feedback applies to
the modulator operator; when connected in parallel (additive synthesis),
feedback applies to one operator only. For more information on connection
modes, see "Operator connection modes" on page 8-3.

D3 D2 D l
Settings: 1 1 1

1 1 0

1 0 1

1 0 0

0 1 1

0 1 0

0 0 1

0 0 0

Default: 0 0 0

Description

Set feedback to 476.

Set feedback to 2n.

Set feedback to 76.

Set feedback to d2.

Set feedback to d4.

Set feedback to d8.

Set feedback to 76/16.

Set feedback to 0.

11-22 Pro Audiospectrum Developer's Toolkit Reference

Feedback / Connection Registers COh - C8h

Connection (DO)
Use this bit to determine how pairs of operator cells are connected. The 18
operator cells provided by the FM synthesizer are organized as nine pairs of
operator cells which can be connected serially (for FM synthesis) or in parallel
(for additive synthesis). The figures below illustrate the the differences between
FM synthesis and additive synthesis.

feedback

or1 Out

Figure 7 FM Synthesis (Serial) Connection

feedback -
Figure 8 Additive Synthesis (Parallel) Connection

DO Description

Settings: 1 Set connection to additive synthesis (parallel).

0 Set connection to FM synthesis (serial).

Default: 0

Pro AudioSpectrum Developer's TooZkif Reference 11 -23

Chapter 11 Standard EM Synthesizer Register Functions

Waveform
Registers EOh to F5h

This group of 18 registers is used to select the waveform generated by the
operator cells.

Wave Select (Dl to DO)
Use the Wave Select bit to control the shape of the waveform generated by
operator cells.

D l DO Description

Settings: 1 1 Set waveform to:

1 0 Set waveform to:

0 1 Set waveform to:

0 0 Set waveform to:

Default 0 0

11 -24 Pro Audiospectrum Developer's Toolkit Reference

12 Enhanced FM Synthesi,rr Register
Functions

This chapter describes additional functions available with the newest models of
the Pro AudioSpectrum including the Pro AudioSpectnun Plus,
Pro AudioSpectrum 16, and the CDPC. All these systems come with Yamaha
OPL3 stereo FM synthesizer chip.

With the exception of the additional registers documented here, the OPL3 is
register -compatible with systems based on the Yamaha 3812 (such as the
Thunder Board and earlier versions of the Pro AudioSpectrum). For
information on the compatible registers, see Chapter 11, "Standard FM
Synthesizer Register Functions."

Some functions are available only on the left or right side of the OPL3 chip and,
therefore, can only be accessed using the left or right side interfaces (388H and
389H or 38AH or 38BH). Functions available only on one side of the chip are
noted in the specific reference for that function.

Some pre-existing register functions, such as the connection function, have
been enhanced. This section documents only new functions or pre-existing
register functions that have been enhanced.

Pro AudioSpectrum Developer's Toolkif Reference 12-1

Chapter 12 Enhanced FM Synthesizer Register Functions

ChannelIConnection Select
Register 04h (right half of OPL3)

When New (bit DO of register 05h) is set to OPL3 mode (DO = I), this register
controls how individual channels are connected together in four operator
modes.

ChannelIConnection Select (D4 to Dl)
Use these bits to specify which channels are used in two- and four-operator
connections.

Dn Description
Settings: 1 In four-operator channel mode, select channels 6,5,4,3,2, and 1.

In two-operator mode, select pairs 12/15, 11/14,10/13,3/6,2/5, and 114.

0 Do not select channels.

Default: 0

Select OPL3
Register 05h

The Select OPL3 register controls FM synthesizer mode (Yamaha 3812 or
Yarnaha OPL3 mode). Selecting OPL3 mode activates the additional functions
described in this chapter.

12-2 Pro AudioSpectrum Developer's Toolkit Reference

Feedback/Connection/Stereo Left and Right Registeds) COh to C8h of left and right half of

New (DO)
Use this bit to toggle between 3812 mode and OPL3 mode.

Dn Description

Settings: 1 Select OPL3 mode.

0 Select 3812 mode.

Default: 0

FeedbacWConnectionlStereo Left and Right
Register(s) COh to C8h of left and right half of chip

When the New bit (register 05h, bit DO) is set to OPL3 mode, this set of registers
activates a different set of functions than when the FM synthesizer is in 3812
mode. In OPL3 mode, these registers enable left and right stereo channels and
add four new four-operator connection modes.

When the New bit is set to 3812 mode (DO = 0), registers COh to C8h work as
documented in Chapter 11, "Standard FM Synthesizer Register Functions."

Stereo Left (D5)
When the New bit (register 05h, bit DO) is set to OPL3 mode, use these bits to
enable left and right stereo channels and add four new four-operator
connection modes.

D5 (left D5 (right Description
side) side)

Settings: 1 1 Output data to the left channel from both the left
and right hand sides of the chip.

1 0 Output data to the left channel from only the left
hand side of the chip.

0 1 Output data to the left channel from only the right
hand side of the chip.

0 0 Do not output data to the left channel.

Default: 0

Pro AudioSpectrum Developer's Toolkit Reference 12-3

Chapter 12 Enhanced FM Synthesizer Register Functions

Stereo Right (D4)
When OPL3 mode is enabled, use this bit to direct data output to the right
channel. Stereo Right bits can be controlled individually for both the left and
right hand sides of the OPL3 chip.

D4 (left D4 (right Description
side) side)

Settings: 1 1 Output data to the right channel from both the left
and right hand sides of the chip.

1 0 Output data to the right channel from only the left
hand side of the chip.

0 1 Output data to the right channel from only the
right hand side of the chip.

0 0 Do not output data to the right channel.

Default: 0

Connection Mode (DO)
When OPL3 mode is enabled, use bits DO of the twin set of COh to C8h registers
to select four other connection modes.

12-4 Pro Audiospectrum Developer's Toolkit Reference

Waveform Registers EOh to F5h

See the following diagrams for visual depictions of the new connection modes.

DO DO Description
(left (right
side) side)

Settings: 1 1 Set connection
mode to:

Set connection
mode to:

Set connection -
mode to:

Set connection
mode to:

Default: 0 0

Waveform
Registers EOh to F5h

When OPL3 mode is enabled, this group of registers selects four new waveform
types.

Pro AudioSpectrum Developer's Toolkit Reference 12-5

Chapter 12 Enhanced FM Synthesizer Register Functions

Wave Select (Dl to DO)
Use the Wave Select bit to set the shape of the waveform generated by operator
cells.

D2 D l DO Description

Settings: 1 1 1 Set waveform to:

1 1 0 Set waveform to:

1 0 1 Set waveform to:
M

Default:

1 0 0 Set waveform to:

0 1 1 Set waveform to:

0 1 0 Set waveform to:

0 0 1 Set waveform to:

0 0 0 Set waveform to:

0 0

12-6 Pro AudioSpectrum Developer's Toolkit Reference

MIDI Programming Section

13 MIDI Programming Essentials

This chapter provides the basic information you need to know in order to use
the MIDI function calls and hardware programming register functions
described in later chapters. For information on the MIDI function calls, see
Chapter 14, "Low-level MIDI Function Call Reference." For information on
MIDI hardware register functions, see Chapter 15, "MIDI Hardware Register
Functions."

MlDl software API information
The information in the following sections is pertinent to both the low-level and
high-level function call API's for the MIDI device.

Low-Level MlDl API programming steps
The following procedure shows the order in which you should use high level
API function calls. The function calls are documented in Chapter 14, "Low-level
MIDI Function Call Reference."

1. Initialize MlDl hardware and function call library.

Function call: mvMIDIEnable

2. Perform MlDl input, output, or both.

Function calls: mvMIDIGetByte

mvMIDIGetBuff

mvMIDISendByte

mvMIDISendBuff

3. Clean up and terminate MlDl programming.

Function call: mvMIDIDisable

Pro AudioSpectrum Developer's Toolkit Reference 13-1

Chapter 13 MIDI Programming Essentials

Global variable
One global variable, -MidiInFilter, is available from the MlDI routines.

The -MidiInFilter variable filters out MIDI ACTIVE SENSE bytes. By
default, the filter actively removes these bytes. It can be turned off by masking
out the appropriate bit(s) in the variable. Future versions of the
Pro AudioSpectrum code will provide additional filtering capabilities.

The following table shows -MidiInFilter bit assignments according to bit -
position:

I Descri~tion I Bit Settinas I

MF-MTCQTR I OOOOOOOOOOOOOOlOb
I

MF SONGPOS I OOOOOOOOOOOOOlOOb I - I

MF SONGSEL I OOOOOOOOOOOOlOOOb I

-

1 MF UNDEFINED3 I OOOOOOlOOOOOOOOOb
I I

MF-UNDEFINED1

MF-UNDEFINED2

MF-TUNE

MF-ENDEX

- I

MF START I 00000 l OOOOOOOOOOb 1

OOOOOOOOOOOlOOOOb

OOOOOOOOOOlOOOOOb

0000000001 OOOOOOb

OOOOOOOOlOOOOOOOb

MF-CONTINUE I OOOOlOOOOOOOOOOOb
M F STOP I OOOlOOOOOOOOOOOOb -

I

MF UNDEFINED4 I OOlOOOOOOOOOOOOOb

Caution: The -MidiInFilter variable is an unsigned integer. You should
mask out only the active sense filter bit (MF-ACTSENSE) to keep from
interfering with future functionality.

The code implementing this variable is available in the M I D I A . ASM file.

-

MF-ACTSENSE

MF-SYSRESET

13-2 Pro AudioSpectrum Developer's Toolkit Reference

01 OOOOOOOOOOOOOOb

1 OOOOOOOOOOOOOOOb

Table 6 -MidiInFilter Bit Settings

A;IV101 interrupt control

MV101 interrupt control
The MVlOl MIDI controller provides software control of 1 /0 interrupts, FIFO
control, and other important features. Interrupts from each MIDI device are
routed through the Pro Audio Spectrum Interrupt Mask and Status register.

To set up interrupt processing:

1. Enable the interrupt on the appropriate device.

2. Enable the Pro Audio MIDI interrupt.

3. Enable the PC system interrupt controller.

For more information on the Pro AudioSpectrum interrupt control, see
Chapter 3, "Common Function Calls and Hardware Registers."

Pro AudioSpectrum Developer's Toolkit Reference 13-3

Chapter 13 MIDI Programming Essentials

13-4 Pro AudioSpectrurn Developer's Toolkit Reference

14 Low-level MIDI Function Call
Reference

This chapter describes the low-level MIDI function call API. The routines in this
section let you read or write MIDI data to any of the Pro Audio Spectrum MIDI
devices. The programming interface provides six separate functions: two for
reading MIDI data, two for writing MIDI data, and two for setup. You can find
source code to these functions in the MIDIA . ASM file.

Pro Audiospectrum Developer S Toolkit Reference 14-1

Chapter 14 Low-level MIDI Function Call Reference

Use mvMIDIEnable to initialize the MIDI hardware interface for
bi-directional I/O.

This function resets the MIDI interface and enables interrupts for either
direction and sets up the global variable, -MidiInFilter, to filter out all
incoming ACTIVE SENSE MIDI messages.

The i n t l parameter determines whether 1 / 0 is either polled or interrupt
driven. Polled 1 / 0 uses direct 1 / 0 to or from the MIDI interface. Interrupt
driven 1 / 0 enables the Pro Audio interrupts to allow MIDI data to be sent and
received using an internal buffering mechanism. The programming interface is
the same in both cases.

Calling Convention
int mvMIDIEnable (int enableint);

Input Parameters

Parameter Type Value Description

enableint integer Bit 0 = 1 Enable input interrupts.

Bit 1 = 1 Enable output interrupts.

Return Values

Parameter Type Value Description

int integer 0 MIDI hardware was successfully initialized.
OxFFFF MIDI initialization failed.

Related Topics
None.

Use mvMIDIDisable to shut down the MIDI hardware.

MVMIDIDisable resets the MIDI hardware interface, and disables and
unhooks interrupts. Do not make any calls to the MIDI 1 / 0 routines until
performing an mvMIDIEnable call.

Calling Convention
void mvMIDIDisable 0;

14-2 Pro Audiospectrum Developer's Toolkit Reference

lnput Parameters
None.

Return Values
None.

Related Topics
None.

Use mvMIDIGetBuf f to fetch a buffer of data from the MIDI interface.

This routine loads as many bytes as possible from the MIDI input buffer into
the user's buffer, up to the maximum count specified in the count parameter.

The routine returns only currently available data; it does not wait for more to
be received. Therefore, a return value of zero is possible, indicating no MIDI
data available.

Calling Convention
int mvMIDIGetBuff (int limit, char far *buffer);

lnput Parameters

Parameter Type Value Description
limit integer Specifies the maximum number of bytes to load in

the buffer

*buffer far pointer Pointer to the user's target buffer.

Return Values

Parameter Type Value Description

int integer 1 The data available from the MIDI FIFO or
circular buffer was placed in the user's buffer.

0 No data available from the MIDI FIFO or circular
buffer.

Related Topics
None.

Pro AudioSpectrum Developer's Toolkit Reference 14-3

Chapter 14 Low-level MIDI Function Call Reference

Use mvMIDIGetByte to fetch the next byte from the MIDI channel.

This function returns the next byte available from the internal buffer of the
receiver. If no data is available, the routine returns a value of OxFFFF (signed
integer negative one). If data is available, the return value will be less than 256.

Calling Convention
int mvMIDIGetByte () ;

input Parameters
None.

Return Values

Parameter Type Value Description

int 16-bit MIDI data Next data byte available from the MIDI input buffer.
signed
integer

-1 No data is available.

Related Topics
None.

Use mvMIDISendBuf f to send a buffer of data out the MIDI device.

This routine passes the entire buffer to the MIDI device. If the buffer is larger
than the physical MIDI FIFO, the return will be delayed until the routine
finishes sending the buffer.

For polled output, mvMIDISendBuf f feeds the on-board 16 byte FIFO. When
the on-board 16 byte FIFO is filled, the routine polls the MIDI interface until
additional buffer space is available.

For interrupt driven output, user data is loaded into a 128 byte circular buffer.
The circular buffer sends data to the on-board 16 byte FIFO at interrupt time.

Calling Convention

void mvMIDISendBuff (int limit, char far *buffer);

14-4 Pro Audiospectrum Developer's Toolkit Reference

lnput Parameters

Parameter Type Value Description

limit integer Max count Specifies the maximum number of bytes to load in
the buffer.

*buffer far pointer Pointer to the user's target buffer.

Return Values
None.

Related Topics
None.

mvMIDISend Byte
Use mvMIDISendByte to send one data byte out the MIDI interface.

For polled- mode output, the byte is sent when room is available in the
outbound FIFO. For interrupt -driven output, the byte is queued until the
interrupt sends it out.

Calling Convention
void mvMIDISendByte (char databyte);

lnput Parameters

Parameter Type Value Description
databyte char Data byte The byte to be sent.

Return Values
None.

Related Topics
None.

Pro Audiospectrum Developer's Toolkit Referelice 14-5

Chapter 14 Low-level MIDI Function Call Reference

14-6 Pro AudioSpectrum Developer's Toolkit Reference

MIDI Hardware Register Functions

This chapter describes register functions for Media Vision's state-of-the-art
MIDI controller, the MV101, which is used in the Pro AudioSpectrum Plus,
Pro AudioSpectrum 16, and the CDPC.

Earlier versions of the Pro AudioSpectrum used the Yamaha 3802 MIDI
controller. Yamaha 3802 programming is not covered in this chapter.

MIDI Prescale
Register 1788h

Use the MIDI Prescale register to set the time interval for MIDI timer interrupts.
The formula for calculating the time is (N+1)/2 in ms, where N is the
programmed value.

A MIDI timer interrupt is generated when the value being decreased wraps
from zero to 255, and is enabled setting bit DO of the MIDI Control Register. For
more information on this register, seel'MIDI Control Register 178Bh" on
page 15-3.

Pro AudioSpectrum Developer's Toolkit Reference 15-1

Chapter 15 MIDI Hardware Register Functions

Program bits D7 though DO as a group. The table here shows two of a possible
255 settings.

D7 D6 D5 D4 D3 D2 D l DO Description

Settings: 1 1 1 1 1 1 1 1 Set time interval to 128 ms.

0 0 0 0 0 0 0 1 Set time interval to 1 ms.

Default: NIA

Note: Using this register is optional. It is intended to be used to generate
special interrupts.

MIDI Timer
Register 1789h

Use the MIDI Timer register to determine the contents of the MIDI timer. This
register is read-only. The register value is decreased in 2 millisecond increments
and resets to zero when the MIDI Prescale register is programmed.

This register is useful for controlling MIDI system interrupts. The MIDI system
generates an interrupt under one of the following conditions: when the MIDI
Timer register wraps to zero, or, when the MIDI Timer register contains the
same value as the MIDI Compare Time register. For information on the MIDI
Compare Time register, see "MIDI Compare Time Register 1B8Ah" on
page 15-10.

Set bits D7 through DO as a group. The table here shows two of a possible 255
settings.

D7 D6 05 D4 03 D2 D l DO Description
Settings: 1 1 1 1 1 1 1 1 CurrentMIDItime=128ms.

0 0 0 0 0 0 0 1 CurrentMIDI time= 1 ms.

Default: N/A

15-2 Pro Audiospectrum Developer's Toolkit Reference

MIDI Data Register1 78Ah

MlDl Data
Registerl 78Ah

Use the MIDI Data register to send data and receive to and from MIDI FIFO
buffers. These FIFOs allow MIDI data to be read or written in bursts, thereby
minimizing host processor overhead.

Write to the register to send data to the MIDI transmitter FIFO buffer. Read
from the register to retrieve data from the MIDI receiver FIFO.

Set bits D7 through DO as a group. The table here shows two of a possible 255
settings.

D7 D6 05 04 D3 D2 D l DO Description
Settings: 1 1 1 1 1 1 1 1 MIDIdata.

0 0 0 0 0 0 0 1 MIDIdata.

Default: N/A

MlDl Control
Register 178B h

Use the MIDI Control register to perform MIDI management tasks such as:
echoing input to output; resetting output and input FIFO pointers; and enabling
output FIFO half-empty, output FIFO empty, input data available, compare
time, and time stamp interrupts.

Pro AudioSpectrum Developer's Toolkit Reference 153

Chapter 15 MIDI Hardware Register Functions

Echo lnput To Output (07)
Setting this bit allows data received though the W I receiver FIFO buffer to be
transmitted immediately to the MIDI transmitter FIFO buffer, thus creating a
THRU connection on the IN/OUT MIDI connector.

D7 Description

Settings: 1 Enable MIDI echoing.

0 Disable MIDI echoing.

Default: 1 Enable MIDI echoing.

Reset Output FlFO Pointer (D6)
Setting the Reset Output FIFO Pointer bit to 1 clears the output FIFO pointer.
After clearing the pointer, you must immediately reset the Reset Output FIFO
Pointer bit to 0.

D6 Description

Settings: 1 Clear output FIFO pointer.

0 Normal state.

Default: 0

Reset lnput FlFO Pointer (D5)
Setting the Reset Input FIFO Pointer bit to 1 clears the input FIFO pointer. After
clearing the pointer, you must immediately reset the Reset Input FIFO Pointer
bit to 0.

D6 Description

Settings: 1 Clear input FIFO pointer.

0 Normal state.

Default: 0

Enable Output FlFO Half-Empty Interrupt (D4)
Setting this bit to 1 enables the output FIFO half-empty interrupt. This interrupt
is generated when half of the data in the output FIFO is transmitted.

04 Description
Settings: 1 Enable FIFO half-empty interrupt.

0 Disable FIFO half-empty interrupt.

Default: 0

15-4 Pro AudioSpectrum Developer's Toolkit Reference

MIDI Control Register 178Bh

Enable Output FIFO Empty lnterrupt (D3)
Setting this bit to 1 enables the output FIFO empty interrupt. This interrupt is
generated when the last byte of the output FIFO is transmitted.

D3 Description

Settings: 1 Enable FIFO empty interrupt.

0 Disable FIFO empty interrupt.

Default: 0

Enable Input Data Available lnterrupt (D2)
Setting this bit to 1 enables the input data available interrupt. This interrupt is
generated when MIDI data is received and is available in the FIFO.

D2 Description

Settings: 1 Enable input data available interrupt.

0 Disable input data available interrupt.

Default: 0

Enable Compare Time lnterrupt (Dl)
Setting this bit to 1 enables the compare time interrupt. This interrupt is
generated whenever the value in the MIDI timer is equal to the MIDI Compare
Time register.

D l Description

Settings: 1 Enable compare time interrupt.

0 Disable compare time interrupt.

Default: 0

Enable Time Stamp lnterrupt (DO)
Setting this bit to 1 enables the time stamp interrupt. This interrupt is generated
whenever the MIDI timer wraps from FFh to OOh.

D l Description

Settings: 1 Enable time stamp interrupt.

0 Disable time stamp interrupt.

Default: 0

Pro Audiospectrum Developer's Toolkit Reference 15-5

Chapter 15 MIDI Hardware Register Functions

MIDI Status
Register 1 B88h

Read the MIDI Status register to detect: frame errors; output and input FIFO
overruns; output FIFO half-empty and FIFO empty interrupts; input data
available interrupts; and compare time and time stamp interrupts. Clear MIDI
Status bits by setting them to 0.

Be aware that overrun and frame error interrupts cannot be disabled. This
means your interrupt routine must always process these error conditions.

Frame Error (D7)
The Frame Error bit is set to 1 when a frame error occurs.

D7 Description

Settings: 1 Frame error occurred.

0 Normal state.

Default: 0

Output FIFO Overrun (D6)
The Output FIFO Overrun bit is set to 1 when an overrun occurs.

D6 Description
Settings: 1 Output FIFO overrun occurred.

0 Normal state.

Default: 0

Input FIFO Overrun (D5)
The Input FIFO Overrun bit is set to 1 when an overrun occurs.

05 Description

Settings: 1 Input FIFO overrun occurred.

0 Normal state.

Default: 0

15-6 Pro AudioSpectrum Developer's Toolkit Reference

MIDI Status Register 1 B88h

Output FIFO Half-Empty lnterrupt (D4)
The Output FIFO Half-Empty Interrupt bit is set to 1 when an interrupt occurs.

D4 Description

Settings: 1 Output FIFO half-empty interrupt occurred.

0 Normal state.

Default: 0

Output FIFO Empty lnterrupt (D3)
The Output FIFO Empty Interrupt bit is set to 1 when an interrupt occurs.

D4 Description

Settings: 1 Output FIFO empty interrupt occurred.

0 Normal state.

Default: 0

Input Data Available lnterrupt (D2)
The Input Data Available Interrupt bit is set to 1 when an interrupt occurs.

D4 Description
Settings: 1 Input data available interrupt occurred.

0 Normal state.

Default: 0

Compare Time lnterrupt (Dl)
The Compare Time Interrupt bit is set to 1 when an interrupt occurs indicating
that the compare time value is equal to the MIDI timer value.

D4 Description

Settings: 1 Compare time interrupt occurred.

0 Normal state.

Default: 0

Time Stamp lnterrupt (DO)
The Time Stamp Interrupt bit is set to 1 when an interrupt occurs.

D4 Description

Settings: 1 Time stamp interrupt occurred.

0 Normal state.

Default: 0

Pro AudioSpectrum Developer's Toolkit Reference 15-7

Chapter 15 MIDI Hardware Register Functions

MIDI FlFO Count
Register 1 B89h

Use the MIDI FIFC) Count register to determine the number of bytes that can be
sent to the output FIFO buffer and the number of bytes that have been received
and stored in the input FIFO buffer.

The upper four bits of this register indicate the number of bytes that can be
written to the output FIFO before it becomes full. The lower four bits indicate
the number of bytes of data that have been received and stored in the input
FIFO.

FlFO Space (D7 through D4)
This group of bits indicates the number of bytes that can be written to the
output FIFO before it becomes full. Valid settings range from Oh to Fh. A count
of Oh indicates that either zero or 16 bytes are ready to be loaded into the output
FIFO.

Determining whether a Oh count indicates zero or sixteen bytes is difficult. The
Output FIFO Empty bit only goes high when the FIFO shifts out its last byte to
the transmitter. When the Output FIFO Pointer is cleared, the Output FIFO
Empty bit remains zero. To handle this situation, assume that a Oh value
indicates 16 bytes. Write only 15 MIDI bytes at a time to the output FIFO and
ignore the empty bit..

D7 D6 D5 D4

Settings: 1 1 1 1

1 1 1 0

1 1 0 1

1 1 0 0

1 0 1 1

1 0 1 0

1 0 0 1

1 0 0 0

0 1 1 1

0 1 1 0

Description
Either 0 or 16 bytes available for output FIFO.

15 bytes available for output FIFO.

14 bytes available for output FIFO.

13 bytes available for output FIFO.

12 bytes available for output FIFO.

11 bytes available for output FIFO.

10 bytes available for output FIFO.

9 bytes available for output FIFO.

8 bytes available for output FIFO.

7 bytes available for output FIFO.

15-8 Pro Audiospectrum Developer's Toolkit Reference

MIDI FIFO Count Register 1B89h

D7 D6 D5 D4
0 1 0 1

0 1 0 0

0 0 1 1

0 0 1 0

0 0 0 1

0 0 0 0

Default:

Description

6 bytes available for output FIFO.

5 bytes available for output FIFO.

4 bytes available for output FIFO.

3 bytes available for output FIFO.

2 bytes available for output FIFO.

1 byte available for output FIFO.

N/A

Received Bytes (03 though DO)
This group of bits indicates the number of bytes that that have been received
and stored in the input FIFO. Valid settings range from Oh to Fh. A count of Oh
indicates that either zero or 16 bytes have been received.

To determine whether zero or 16 bytes have been received, determine if data is
available by checking bit D2 of the MIDI Status register. If D2 = 0, the FIFO
count indicates zero bytes have been received. If D2 = 1,16 bytes have been
received.

D3 D2 D l DO

Settings: 1 1 1 1

1 1 1 0

1 1 0 1

1 1 0 0

1 0 1 1

1 0 1 0

1 0 0 1

1 0 0 0

0 1 1 1

0 1 1 0

0 1 0 1

0 1 0 0

0 0 1 1

0 0 1 0

0 0 0 1

0 0 0 0

Default:

Description
Either 0 or 16 bytes received from input FIFO.

15 bytes received from input FIFO.

14 bytes received from input FIFO.

13 bytes received from input FIFO.

12 bytes received from input FIFO.

11 bytes received from input FIFO.

10 bytes received from input FIFO.

9 bytes received from input FIFO.

8 bytes received from input FIFO.

7 bytes received from input FIFO.

6 bytes received from input FIFO.

5 bytes received from input FIFO.

4 bytes received from input FIFO.

3 bytes received from input FIFO.

2 bytes received from input FIFO.

1 byte received from input FIFO.

N/A

Pro Audiospectrum Developer's Toolkit Reference 15-9

Chapter 15 MIDI Hardware Register Functions

MIDI Compare Time
Register 1 B8Ah

Use the MIDI Compare Time register to set values that will evaluated against
MIDI timer values. When the MIDI timer count is equal to the value
programmed into this register, an interrupt is generated.

This register can be used to cause events that are triggered by a time stamp.

- -- - --

Note: Using this register is optional. It is useful for generating special
interrupts.

Program bits D7 though DO as a group. The table here shows two of a possible
255 settings.

D7 D6 D5 D4 D3 D2 Dl DO Description
Settings: 1 1 1 1 1 1 1 1 Set compare time value to

255.

0 0 0 0 0 0 0 1 Set compare time value to 1.

Default: N/A

15-1 0 Pro AudioSpecf rum Developer's Toolkit Reference

CD-ROM Programming Section

16 CD-ROM Pmgmmming Essentials

This chapter provides background information and information that is
generally applicable to all of the CD-ROM API1s including:

Location of CD-ROM source code on the Pro AudioSpectmm Developer's
Toolkit diskette

CD-ROM function call syntax

Definitions of CD-ROM units of measure

Red Book address definitions

CD-ROM device driver error messages and status codes

The Media Vision CD-ROM programming environment consists of a higher
level function call API and a lower level function call API. The lower level API
is fully developed, and is the base line upon which all Media Vision software
(including more abstract API's) will be developed.

The high-level API set, which is built on the low-level API, is currently being
expanded. When it is completed, this API set will make it much easier for
novice and intermediate level multi-media programmers to work with the
Media Vision product, and for experienced developers to prototype new
functions. The most important CD-ROM calls have been implemented in the
current release. Calls from both API sets can be inter-mixed.

For more information on the low-level API, see Chapter 18, "Low-Level CD-
ROM Function Call Reference." For more information on the high-level API,
see Chapter 17, "High-Level CD-ROM Function Call Reference."

CD-ROM function call syntax
Most functions specify the drive number of the CDROM device as their first
argument s. Use getf irstcdrom to set the default drive or getcdromunits,
which returns an array of structures containing the drive numbers. For more
information on these calls, see "Microsoft CD-ROM Extension Function Call
Reference" on page 19-1.

Pro AudioSpectrum Developer's Toolkit Reference 16-1

Chapter 16 CD-ROM Programming Essentials

CD-ROM units of measure
CD-ROM technology defines frames, seconds, and minutes as its basic units of
measure. You use these units of measure to tell your program where to position
the read mechanism of the CD-ROM drive on a given disk. Frames, seconds,
and minutes are defined as follows:

Function Value

Frame 1175th of a second

Second One second of time, 1160th of a minute

Minute A minute of time, 60 seconds, 4500 frames

Red book address definitions
A Red Book address is an addressing unit used to locate a particular position on a
CD. It is made up of three portions: minutes (0 through 59), seconds (0 through
59), and frames (0 through 74). Normally, each element is represented by a
single value in a 32-bit unsigned long integer with the most sigruficant byte not
used. The conversion from Red Book address into physical sector is:

Sector = (minute*60*75)+(second*75)+frame

Red book addresses can also be specified as structures. The following table
shows Red Book addresses in both formats:

Red Book Format
address value:
"long" value OxMMSSFF

Comments

MM = minutes,
SS = seconds,
FF = frames

"structure" struct redbookaddr {char frame, sec, min, unknown)

Use the following values to convert a Red Book value to "number of frames":

Value Equal to: Description
frames (Red Book& 0x00FF0000)>> 16; Number of minute.

frames* 60; Number of seconds.

frames+ (Red Book& 0x0000FF00)>> 8; Number of seconds.

frames* 75; Number of frames.

frames+ Red Book& 0x000000FF, Number of frames.

16-2 Pro AudioSpectrum Developer's Toolkit Reference

BCD to integer value conversion

BCD to integer value conversion
Some CD routines return values in BCD instead of binary (qchaninfo.track, for
example). Use the conversion functions, in t tobcd and bcdtoint, to convert
values from BCD to integer and visa versa. For information on these two
functions, see "inttobcd" on page 18-15 and "bcdtoint" on page 18-14.

TOC
TOC stands for Table of Contents and is a table that contains addresses of every
sound track in a CD. The addresses are specified in 32-bit unsigned long
integers.

In order to minimize interrupting the CD-ROM, your application program
should read the TOC once and then make it accessible from memory.

CD-ROM device driver status and error codes
The CD ROM driver status is a specific 16-bit value that is generated from the
CD ROM driver. Bits 15,9, and 8 indicate the status of the driver and are defined
as follows:

Status Bits and Setting Description

Dl5 = 1 Driver error. See four lowest bits for specific error condition.

D9= 1 Drive busy.

D8= 1 Command done.

Pro AudioSpectrum Developer's Toolkit Reference 16-3

Chapter 16 CD-ROM Programming Essentials

When Bit 15 is set to 1, bits 3,2,1, and 0 indicate specific CD-ROM error
conditions. These error conditions are defined as follows:

Table 7 CD-ROM Driver Error Codes

16-4 Pro Audiospectrum Developer's Toolkit Reference

High-Level CD-ROM Function Call
Reference

This chapter is a reference to high-level CD-ROM calls. Over time, this set of
calls will be expanded and enhanced significantly. For general information on
how to program the CD-ROM, see Chapter 16, "CD-ROM Programming
Essentials."

All functions described here require that the internal data structures be
initialized using buildaudiotoc. Unless otherwise indicated, you can find
prototypes of the function calls in the CDMASTER. H file.

Pro Audiospectrum Developer's Toolkit Reference 17-1

Chapter 17 High-Level CD-ROM Function Call Reference

buildaudiotoc
Use buildaudiotoc to initialize CD-ROM data structures and prepare to
program the CD-ROM. This function fills the internal discinfo structure using
cddiscinf o, allocates an array of trackinfo structures, fills trackinfo using
cdtrackinf o, makes an after-the-last track min.sec:frame, and returns the
address of the internal cdtable structure.

Note: This function destroys the previous table of contents for the drive if it
existed.

Calling Convention
struct cdtable * buildaudiotoc (int cddrive) ;

Input Parameters

Parameter TY Pe Value Description

cddrive integer Specifies the target CD-ROM drive number.

Return Values

Parameter TY Pe Value Description

struct cdtable * data Pointer to the internal cdtable structure.
structure

null Null if an error occurred with cddiscinfo0 or cal-
loco.

Related topics
To get the CD drive number, see "getnumcdroms" on page 19-2 and
"getfirstcdrom" on page 19-3.

To free allocated memory and clear the table entry for the drive, see
"destroyaudiotoc" on page 17-3.

createaudiotoc
Use createaudiotoc to allocate memory and prepare to program the CD-
ROM. This function is similar to the bui ldaudiotoc function except that it
returns without filling the trackinfo structures, enabling disc initialization to
occur quickly.

All internal routines verify that the trackinfo structures have been properly
initialized, so you can choose between bui ldaudiotoc and
createaudiotoc functions.

17-2 Pro Audiospectrum Developer's Toolkit Reference

destroyaudiotoc

Calling Convention
struct cdtable * createaudiotoc (int cddrive);

Input Parameters

Parameter TY pe Value Description
cddrive integer Specifies the target CD-ROM drive number.

Return Values

Parameter TY pe Value Description
struct cdtable* data Pointer to the internal cdtable structure or a null if

structure an error occurred with cddiscinfo() or calloc().

Related topics
To get the CD drive number, see "getnumcdroms" on page 19-2 and
"getfirstcdrom" on page 19-3.

To free allocated memory and clear the table entry for the drive, see
"destroyaudiotoc" on page 17-3.

To initialize CD-ROM data structures and prepare for CD-ROM programming,
see l'buildaudiotoc" on page 17-2.

destroyaudiotoc
Use destroyaudiotoc to free memory allocated by buildaudiotoc and
perfom housekeeping on internal variables.

Calling Convention
void destroyaudiotoc (int cddrive);

Pro AudioSpectrum Developer S Toolkit Reference 17-3

Chapter 17 High-Level CD-ROM Function Call Reference

lnput Parameters

Parameter Type Value Description
cddrive integer Specifies the target CD-ROM drive number.

Return Values

Parameter Type Value Description

void 0 Internal address was null.

- 1 Internal address was not null.

Related topics
To initialize the routine internal tables and variables, see "buildaudiotoc" on
page 17-2.

To get the CD drive number, see "getnumcdroms" on page 19-2 and
"getfirstcdrom" on page 19-3.

getcdtable
Use getcdtable to returns the address of the internal cdtable structure. The
cdtable structure holds pointers to the internal discinfo structure and to the
internal array of trackinfo table structures.

Callling Convention
s t r u c t cd tab le * getcd tab le (i n t cdd r ive) ;

lnput Parameters

Parameter TY Pe Value Description
cddrive integer Specifies the target CD-ROM drive number.

Return Values

Parameter TY Pe Value Description
struct cdtable * data structure Pointer to internal cdtable structure.

Null Indicates buildaudiotoc was not called or failed.

Related topics
To initialize the routine internal tables and variables, see ~'buildaudiotoc" on
page 17-2.

17-4 Pro AudioSpectrum Developer's Toolkit Reference

getdiscinfotable

To get the CD drive number, see "getnumcdroms" on page 19-2 and
"getfirstcdrom" on page 19-3.

To determine the address of discinfo table for the specified drive, see
"getdiscinfotable" on page 17-5.

To determine the address of an internal array of trackinfo structures for the
specified drive, see "gettrackinfotable" on page 17-6.

For more information on the cdfable data structure, see "struct cdtable" on
page B-3.

getdiscinfotable
Use getdiscinf otable to determine the address of the internal discinfo table
for the specified drive.

Calling Convention
struct discinfo * getdiscinfotable (int cddrive);

Input Parameters

Parameter Type Value Description

cddrive integer Specifies the target CD-ROM drive number.

Return Values

Parameter TY pe Value Description
struct discinfo * data structure Pointer to the internal discinfo table for the

specified drive.

null Indicates buildaudiotoc was not called or failed.

Related topics
To initialize the routine internal tables and variables, see ~'buildaudiotoc" on
page 17-2.

To get the CD drive number, see "getnumcdroms" on page 19-2 and
"getfirstcdrom" on page 19-3.

To determine discinfo table address, see "getcdtable" on page 17-4.

To determine the address of an internal array of trackinfo structures for the
specified drive, see "gettrackinfotable" on page 17-6.

For more information on the discinfo data structure, see "stmct discinfo" on
page B-4.

Pro Audiospectrum Developer's Toolkit Reference 17-5

Chapter 17 High-Level CD-ROM Function Call Reference

gettrackinfotable
Use gettrackinf otable to determine the address of the internal array of
trackinfo structures.

Calling Convention
struct trackinfo * gettrackinfotable (int);

Input Parameters

Parameter TY pe Value Description
cddrive integer Specifies the target CD-ROM drive number.

Return Values

Parameter TY pe Value Description
trackinfo* data structure Pointer to internal array of trackinfo structures.

null Indicates buildaudiotoc was not called or failed.

Related topics
To initialize the routine internal tables and variables, see i'buildaudiotoc" on
page 17-2.

To get the CD drive number, see "getnumcdroms" on page 19-2 and
"getfirstcdrom" on page 19-3.

gettrackf rames
Use gettrackf rames to retrieve the number of frames specified in the track
parameter. You can derive the track number from the audio table of contents.

Calling Convention
long gettrackframes (int cddrive, int tracknum);

17-6 Pro Audiospectrum Developer's Toolkit Reference

playcdtrack

Input Parameters

Parameter Type Value Description
cddrive integer Specifies the target CD-ROM drive number.

tracknum integer Specifies the track number.

Return Values

Parameter Type Value Description

long 32-bit Length (frames) of the specified track.
signed
integer

0 Error - buildaudiotoc() was not called first or the track
number is out of range.

- 1 Error - the track calculation produced a negative length.

Related topics
To initialize the routine internal tables and variables, see '%uildaudiotoc" on
page 17-2.

To get the CD drive number, see "getnumcdroms" on page 19-2 and
"getfirstcdrom" on page 19-3.

playcdtrack
Use playcdtrack to play a track starting from an offset (specified in seconds)
for a period of time (also specified in seconds). If length equals -1, playing will
continue till the end of the disc. If length equals -2, playing will continue till the
end of the track.

Calling Convention
i n t playcdtrack (i n t cddrive, i n t t r a c k , i n t offset, i n t l e n g t h) ;

Pro Audiospectrum Developer's Toolkit Reference 17-7

Chapter 17 High-Level CD-ROM Function Call Reference

Input Parameters

Parameter Type Value Description
cddrive integer Specifies the target CD-ROM drive number.

track integer Specifies track number.

offset integer Specifies offset (in seconds) from the start of the track.

length integer Specifies length (in seconds) from the starting offset.

Return Values

Parameter Type Value Description

int integer CD-ROM driver status.

Related topics
To initialize the routine internal tables and variables, see "buildaudiotoc" on
page 17-2.

To get CD-ROM driver status, see "CD-ROM device driver status and error
codes" on page 16-3.

To get the CD drive number, see "getnumcdtoms" on page 19-2 and
"getfirstcdrom" on page 19-3.

see ktotrac k
Use seektotrack to move the CD drive head to the specified track. You can
determine track number by looking at the audio table of contents.

Calling Convention
int seektotrack (int cddrive, int track);

17-8 Pro AudioSpecf rum Developer's Toolkit Reference

seektotrack

Input Parameters

Parameter Type Value Description

cddrive integer Specifies the target CD-ROM drive number.

track integer Specifies a track number.

Return Values

Parameter Type Value Description

int integer 0 Error - buildaudiotoc() was not called first, or the
track number is out of range.

Non-zero Indicates CD-ROM driver status.

Related topics
To initialize the routine internal tables and variables, see l'buildaudiotoc" on
page 17-2.

To get the CD drive number, see "getnumcdroms" on page 19-2 and
"getfirstcdrom" on page 19-3.

Pro AudioSpectrum Developer's Toolkit Reference 17-9

Chapter 17 High-Level CD-ROM Function Call Reference

17-10 Pro Audiospectrum Developer's Toolkit Reference

Low-Level CD-ROM Function Call
Reference

This chapter is a complete reference to Media Vision's low level function calls to
CD-ROM.

Unless otherwise indicated, you can find prototypes of the function calls
described in this chapter in the CDROM. H file.

cdplay
Use cdplay to begin playing CD audio from a starting frame for a specified
number of frames. Calling cdplay a second time will stop the current playback,
advance to the new starting frame, then begin playing again.

Calling Convention
int cdplay (int cddrive, long startframe, long framecount);

Input Parameters

Parameter TY pe Value Description
cddrive integer Specifies the target CD drive number.

startframe 32-bit signed integer Specifies the starting frame number.

framecount 32-bit signed integer Specifies the count of frames to play.

Return Values

Parameter TY pe
int integer

Value Description

CD ROM driver status.

Related topics
To resume from a paused status, see "cdresume" on page 18-4.

To stop from a playing state, see "cdstop" on page 18-2.

Pro Audiospectrum Developer's Toolkit Reference 18-1

Chapter 18 Low-Level CD-ROM Function Call Reference

To pause, see "cdpause" on page 18-3.

To get the CD drive number, see "getnumcdroms" on page 19-2 and
"getfirstcdrom" on page 19-3.

To calculate the starting frame and length frame, see Chapter 16, "CD-ROM
Programming Essentials."

To determine CD ROM driver status, see "CD-ROM device driver status and
error codes" on page 16-3, "cdstatus" on page 18-6, and "cdaudiostatus" on
page 18-7.

cdstop
Use cdstop to stop a playing or paused song.

Calling Convention
i n t cdstop (i n t cddrive) ;

Input Parameters

Parameter Type Value Description

cddrive integer Specifies the target CD drive number.

Return Values

Parameter Type Value Description
int integer CD ROM driver status.

Related topics
To start the CD playing audio, see "cdplay" on page 18-1

To get the CD drive number, see "getnumcdroms" on page 19-2 and
"getfirstcdrom" on page 19-3.

To determine CD ROM driver status, see "CD-ROM device driver status and
error codes" on page 16-3.

18-2 Pro Audiospectrum Developer S Toolkit Reference

cdpause

cdpause
Use cdpause to pause the CD audio output and leave the CD spinning. Use
cdresume to resume playing.

Calling Convention
int cdpause (int cddrive);

Input Parameters

Parameter Type Value Description
cddrive integer Specifies the target CD drive number.

Return Values

Parameter Type Value Description

int integer CD-ROM driver status.

0 Audio output has already paused or stopped.

Related topics
To resume from a paused status, see "cdresume" on page 18-4.

To stop from a playing or paused state, see "cdstop" on page 18-2.

To start the CD playing audio, see "cdplay" on page 18-1.

To get the CD drive number, see "getnumcdroms" on page 19-2 and
"getfirstcdrom" on page 19-3.

To determine CD ROM driver status, see "CD-ROM device driver status and
error codes" on page 16-3.

Pro AudioSpectrum Developer's Toolkit Reference 18-3

Chapter 18 Low-Level CD-ROM Function Call Refevence

cdresume
Use cdresume to resume playing audio from CD's in a paused state.

Calling Convention
int cdresume (int cddrive);

Input Parameters

Parameter Type Value Description

cddrive integer Specifies the target CD-ROM drive number.

Return Values

Parameter Type Value Description
int integer CD-ROM driver status.

Related topics
To stop from a playing or paused state, see "cdstop" on page 18-2.

To start the CD playing audio, see "cdplay" on page 18-1.

To pause the audio play, see "cdpause" on page 18-3.

To get the CD drive number, see "getnumcdroms" on page 19-2 and
"getfirstcdrom" on page 19-3.

To determine CD ROM driver status, see "CD-ROM device driver status and
error codes" on page 16-3.

cdseek
Use cdseek to move the drive head to location specified by the frame number
parameter.

Calling Convention
int cdseek (int cddrive, long framenumber);

18-4 Pro AudioSpectrum Developer's Toolkit Reference

cdreset

lnput Parameters

Parameter TY Pe
cddrive integer

long1 framenumber 32-bit signed
integer

Return Values

Parameter TY pe

int integer

Value Description

Specifies the target CD drive number.

Specifies a valid starting frame number.

Value Description

CD-ROM driver status

Related topics
To calculate the starting frame, see "CD-ROM function call syntax" on
page 16-1.

To determine CD ROM driver status, see "CD-ROM device driver status and
error codes" on page 16-3.

To get the CD drive number, see "getnumcdroms" on page 19-2 and
"getfirstcdrom" on page 19-3.

cdreset
Use cdreset to force the driver to clear all internal buffers and re-initialize.

Calling Convention
int cdreset (int cddrive);

lnput Parameters

Parameter Type
cddrive integer

Return Values

Parameter Type
int integer

Value Description

Specifies the target CD drive number.

Value Description
CD-ROM driver status.

Pro Audiospectrum Developer's Toolkit Reference 18-5

Chapter 18 Low-Level CD-ROM Function Call Reference

Related topics
To determine CD ROM driver status, see "CD-ROM device driver status and
error codes" on page 16-3.

To get the CD drive number, see "getnumcdroms" on page 19-2 and
"getfirstcdrorn" on page 19-3.

cdeject
Use cdeject to send a signal to drive to eject the disc.

Note: Some drives do not support this function.

Calling Convention
i n t cde jec t (i n t cddrive) ;

Input Parameters

Parameter Type Value Description
cddrive integer Specifies the target CD-ROM drive number.

Return Values

Parameter Type Value Description

int integer CD-ROM driver status.

Related topics
To get the CD drive number, see "getnumcdroms" on page 19-2 and
"getfirstcdrom" on page 19-3.

To determine CD ROM driver status, see "CD-ROM device driver status and
error codes" on page 16-3.

cdstat us
Use cdstatus to determine the CD-ROM drive status. cdstatus calls
cdaudiostatus and returns a bit field. This status is maintained locally and is
not associated with the CD-ROM Driver Status derived from the CD-ROM
driver.

Each of the return values is represented by one of the bits in the bit field.
Certain values will never be returned, such as CD is playing and CD is paused.

18-6 Pro Audiospectrum Developer's Toolkit Reference

cdaudiostatus

Calling Convention
int cdstatus (int cddrive);

lnput Parameters

Parameter Type Value Description
cddrive integer Specifies the target CD-ROM drive.

Return Values

Parameter Type Value Description
int Bit field integer 0x00 No CD is present in CD-ROM drive.

0x01 CD is present in CD-ROM drive.

0x02 CD is playing.

0x04 CD is paused.

Related topics
To get the CD drive number, see "getnumcdroms" on page 19-2 and
"getfirstcdrom" on page 19-3.

cdaudiostatus
Use cdaudiostatus to determine the status of the CD-ROM driver.
cdaudiostatus returns the status of the CD-ROM driver along with the next
start and end frame values.

Calling Convention
int cdaudiostatus (int cddrive, long "beginfm, long *endfm);

lnput Parameters

Parameter TY Pe Value Description

cddrive integer Specifies the target CD drive number.

beginfm 32-bit signed Pointer to a 32-bit integer to receive the next
integer start frame address.

endfm 32-bit signed Pointer to a 32-bit integer to receive the next
integer end frame address.

Pro Audiospectrum Developer's Toolkit Reference 18-7

Chapter 18 Low-Level CD-ROM Function Call Reference

Return Values

Parameter TY pe Value Description
int integer CD-ROM driver status.

Related topics
To determine CD ROM driver status, see "CD-ROM device driver status and
error codes" on page 16-3.

To get the CD drive number, see "getnurncdroms" on page 19-2 and
"getfirstcdrom" on page 19-3.

cdmediachanged
Use cdrnediachanged to see if the CD ROM has changed.

Calling Convention
int cdmediachanged (int cddrive, int *result);

Input Parameters

Parameter Type Value Description
cddrive integer Specifies the target CD-ROM drive number.

result integer Pointer to an integer address to receive a one word result.

Return Values

Parameter Type Value Description
int integer 0 Function call succeeded.

- 1 Function call failed.

*result integer -1 If int = 0,indicates CD-ROM media has changed.

1 If int = 0, indicates CD-ROM media has not changed.

0 If int = -1, unknown if CD-ROM media has changed.

Note: If the function return value is -1, then an error occurred in the CD ROM
driver. To determine the failure, call get l a s t e r ro r to get the CD-ROM
driver status word.

18-8 Pro Audiospectrum Developer's Toolkit Reference

cddiscinfo

Related topics
To determine the last CD ROM driver status, see "getlasterror" on page 19-12.

To determine CD ROM driver status, see "CD-ROM device driver status and
error codes" on page 16-3.

To get the CD drive number, see "getnumcdroms" on page 19-2 and
"getfirstcdrom" on page 19-3.

cddiscinfo
Use cddiscinf o to fill the discinfo structure with first and last track numbers,
and the end of disc address.

Calling Convention
int cddiscinfo (int cddrive, struct discinfo*);

Input Parameters

Parameter TY pe Value Description

cddrive integer Specifies the target CD-ROM drive number.

struct discinfo* pointer Pointer to structure to receive discinfo data.

Return Values

Parameter TY Pe Value Description
int integer CD-ROM driver status.

Related topics
To get the CD drive number, see "getnumcdroms" on page 19-2 and
"getfirstcdrom" on page 19-3.

To determine CD ROM driver status, see "CD-ROM device driver status and
error codes" on page 16-3.

cdtrackinfo
Use cdtrackinf o to fill the trackinfo structure with the min:sec:frame address.

Calling Convention
int cdtrackinfo (int cddrive, int track, struct trackinfo*);

Pro AudioSpectrum Developer's Toolkit Reference 18-9

Chapter 18 Low-Level CD-ROM Function Call Reference

lnput Parameters

Parameter Type Value Description

cddrive integer Specifies the target CD-ROM drive number.

track integer Specifies a CD track number. Track number can be
derived from the audio table of contents.

trackinfo* pointer Pointer to the address of the buffer to receive start and
ending track numbers and the last red book address.

Return Values

Parameter Type Value Description

trackinfo* pointer Address of start and ending track numbers and the last
red book address.

Related topics
To get the CD drive number, see "getnumcdroms" on page 19-2 and
"getfirstcdrom" on page 19-3.

For information on the trackinfo data structure, see "struct trackinfo" on
page B-4.

cdqchaninfo
Use cdqchaninf o to fill the qchaninfo structure with the current location of the
drive head within the current track on the disc (in min:sec:frame format).

Calling Convention
int cdqchaninfo (int cddrive, struct qchaninfo*);

lnput Parameters

Parameter Type Value Description
cddrive integer Specifies the target CD-ROM drive number.

qchaninfo* pointer Pointer to the address of the buffer to receive the cur-
rent location of the CD-drive head.

18-1 0 Pro AudioSpectrum Developer's Toolkit Reference

isanaudiocd

Return Values

Parameter Type Value Description
int integer CD-ROM driver status.

Related topics
To determine CD ROM driver status, see "CD-ROM device driver status and
error codes" on page 16-3.

For more information on the qchaninfo data structure, see "struct qchaninfo" on
page B-4.

To get the CD drive number, see "getnumcdroms" on page 19-2 and
"getfirstcdrom" on page 19-3.

isanaudiocd
Use isanaudio to determine the type of CD inserted in the CD-ROM drive.

Calling Convention
int isanaudiocd (int cddrive);

Input Parameters

Parameter Type Value Description

cddrive integer Specifies the target CD-ROM drive number.

Return Values

Parameter Type Value Description
int Bit field integer 0 Unknown compact disk type detected.

1 Audio compact disk detected.

Pro AudioSpectrum Developer's Toolkit Reference 18-1 1

Chapter 18 Low-Level CD-ROM Function Call Reference

Related topics
To get the CD drive number, see "getnumcdroms" on page 19-2 and
"getfirstcdrom" on page 19-3.

cdseekmsf
Use cdseekms f to calculate the frame offset for the cdseek routine.

Calling Convention
cdseekmsf lint cddrive, int min, int sec, int frame);

Input Parameters

Parameter Type Value Description

cddrive integer Specifies the target CD-ROM drive number.

min integer Specifies the number of minutes to seek forward.

sec integer Specifies the number of seconds to seek forward.

frame integer Specifies the number of frames to seek forward.

Return Values
This function calculates the frame value, then retuns cdseek.

Related topics
To get the CD drive number, see "getnumcdroms" on page 19-2 and
"getfirstcdrom" on page 19-3.

cd play msf
Use cdplaymsf to calculate the frame offset and length for cdplay.

Calling Convention

cdplaymsf (int cddrive, int minfwd, int secfwd, int frmfwd, int

minplay, int secplay, int frmplay);

18-1 2 Pro Audiospectrum Developer's Toolkit Reference

fixmsf

lnput Parameters

Parameter

cddrive

minfwd

secfwd

frmfwd

minplay

secplay

frmplay

TY pe
integer

integer

integer

integer

integer

integer

integer

Value Description

Specifies the target CD-ROM drive number.

Specifies the number of minutes to move forward before
playing.

Specifies the number of seconds to move forward before
playing.

Specifies the number of frames to move forward before
playing.

Specifies the number of minutes to play.

Specifies the number of seconds to play.

Specifies the number of frames to play.

Return Values
This function calculates the frame values and returns cdplay.

Related topics
To get the CD drive number, see "getnumcdroms" on page 19-2 and
"getfirstcdrom" on page 19-3.

f ixmsf
Use fixmsf after performing math operations that use minutes, seconds, and
frame values to ensure that minute, second, and frames values are within legal
bounds. This function makes each value non-negative; checks that the frame
value is between 0 and 74, inclusive; and checks that minutes and seconds are
between 0 and 59, inclusive.

Calling Convention
int fix msf (int min, int sec, int frame) ;

lnput Parameters

Parameter Type Value Description
min integer Specifies minutes value.

sec integer Specifies seconds value.

frame integer Specifies frames value.

Pro AudioSpectrum Developer's Toolkit Reference 18-1 3

Chapter 18 Low-Level CD-ROM Function Call Reference

Return Values

Parameter Type Value Description
int integer -1 Minutes value is negative, other values are not updated.

0 Minutes value is not negative, other values are updated.

Related topics
None.

bcdtoint
Use bcdtoint to convert BCD values to signed, 16-bit integers.

Calling Convention
i n t bcdtoint (i n t BCD) ;

Input Parameters

Parameter Type Value Description
BCD integer Specifies BCD number to convert to integer.

Return Values

Parameter Type Value Description

int integer A signed 16 -bit binary quantity representing thel6-bit
BCD input value.

Related topics
To see a structure expressed in BCD, see "struct qchaninfo" on page B-4.

18-1 4 Pro Audiospectrum Developer's Toolkit Reference

inttobcd

inttobcd
Use inttobcd to convert integers to BCD values.

Calling Convention
int inttobcd (int intval);

lnput Parameters

Parameter Type Value Description
intval integer Specifies the integer to convert to BCD.

Return Values

Parameter Type Value Description

int integer An unsigned 16-bit value in BCD representing the
binary input value.

Related topics
None.

redtolong
Use redt olong to convert a Red Book address in the format OxOOMMSSFF into
a long value representing the frame address.

Calling Convention
long redtolong (struct redaddress);

lnput Parameters

Parameter TY pe Value Description
redaddress data structure Four-byte structure of the Red Book address.

Pro Audiospectrum Developer's Toolkit Reference 18-15

Chapter 18 Low-Level CD-ROM Function Call Reference

Return Values

Parameter TY pe Value Description

long 32-bit signed Frame address corresponding to the Red Book
integer address.

Related topics
To determine the format of Red book addresses and how convert them to frame
addresses, see "Red book address definitions" on page 16-2.

msftolong
Use m s f tolong to convert an MSF number to a frame address. The MSF
number returned by this call is similar to the Red Book address except that it is
presented in byte-reversed order.

Calling Convention
longR msftolong (long msfvalue) ;

Input Parameters

Parameter Type Value Description
msfvalue 32-bit signed Four-byte value in OxFFSSMMOO order.

integer

Return Values

Parameter Type Value Description
longR 32-bit signed Frame address corresponding to the MSF

integer number.

Related topics
None.

18-1 6 Pro Audiospectrum Developer's Toolkit Reference

longtored

longtored
Use longtored to convert frame value to a Red Book address. The Red Book
address is returned as a long value.

Calling Convention
longR longtored (long redvalue);

Input Parameters

Parameter Type Value Description
redvalue 32-bit signed A frame value.

integer

Return Values

Parameter TY pe Value Description

longR 32-bit signed Red Book address corresponding to the input
integer kame value.

Related topics
None.

Pro AudioSpectrum Developer's Toolkit Reference 18-17

Chapter 18 Low-Level CD-ROM Function Call Reference

18-18 Pro AudioSpectrum Developer's Toolkit Reference

Microsoft CD-ROM Extension
Function Call Reference

This chapter describes the function calls specified in under Microsoft CD-ROM
Extensions. CD-ROM Extensions allow MS-DOS applications to access CD-
ROM's in the High Sierra or ISO-9660 formats as if they were standard MS-DOS
block devices. An entire CD-ROM is represented as a single logical unit with up
to 660MB of storage. Using this interface, files can be opened and read with the
normal Int 21H function calls. The CD-ROM extensions also support a set of
special function calls that provide CD-ROM-specific information.

Most Microsoft CD-ROM Extensions function calls return Microsoft CD-ROM
Extension error values. To interpret the return values, use the getlasterror
function.

This set of function calls uses one static variable, defined as i n t lasterror.
This variable holds the last error value when a flag is set upon return from the
int 2F call.

You can find assembly language prototypes of the CD-ROM functions and
variables in MSCDEX . ASM file. You can find "C" language prototypes in the
MSCDEX . PRO file. To accommodate all memory models, all pointers are
prototyped as far.

Note: Make sure to compile modules with byte-aligned structure elements.

Pro Audiospectrum Developer's Toolkit Reference 19-1

Chapter 19 Microsoft CD-ROM Extension Function Call Reference

ismscdex
Use ismscdex to determine if the Microsoft CD-ROM Extensions are installed
on your system.

Calling Convention
int ismscdex (void) ;

lnput Parameters
None.

Return Values

Parameter Type Value Description
int integer 0 MSCDEX is installed.

non-zero MSCDEX is not installed.

Related topics
None.

getnumcdroms
Use getnurncdroms to determine the number of CD-ROM drives installed in
the PC.

Calling Convention
int getnumcdroms (void) ;

lnput Parameters
None.

Return Values

Parameter Type Value Description
int integer Indicates the total number of CD-ROM drives

installed in the PC.

Related topics
None.

19-2 Pro Audiospectrum Developer's Toolkit Reference

getfirstcdrorn

getfirstcdrom
Use get f irstcdrom to determine the drive number of the first CD-ROM
drive installed in the PC.

Calling Convention
int getfirstcdrom (void);

lnput Parameters
None.

Return Values

Parameter Type Value Description
int integer Indicates the number of the first CD-

ROM drive installed in the PC.

Related topics
None.

getcdromlist
Use getcdromlis t to fill a buffer with drive identifiers and addresses.

Calling Convention
int getcdromlist (struct far *cdromdrives);

lnput Parameters

Parameter Type Value Description

struct far *cdrom- pointer Pointer to list of CD-ROM drive identifiers and
drives addresses.

Return Values

Parameter TY pe Value Description
int integer 0 Function call was successful.

- 1 Function call failed.

Related topics
None.

Pro Audiospectrum Developer's Toolkit Reference 19-3

Chapter 19 Microsofl CD-ROM Extension Function Call Reference

getcopyrig htfname
Use getcopyright f name to fill a buffer with the name of the copyright file for
the specified drive.

Calling Convention
int getcopyrightfname (int cddrive, char far *copyrightfname);

Input Parameters

Parameter TY Pe Value Description

cddrive integer Specifies the target CD-ROM drive.

*copyrightfname pointer Pointer to the copy right name file on the CD.

Return Values

Parameter Type Value Description
int integer 0 Function call was successful.

- 1 Function call failed.

Related topics
None.

getabstractfname
Use getabstract fname to fill a buffer with the name of the abstract file for
the specified drive.

Calling Convention
int getabstractfname (int cddrive, char far *abstracthame);

19-4 Pro AudioSpectrum Developer's Toolkit Reference

lnput Parameters

Parameter TY pe Value Description
cddrive integer Specifies the target CD-ROM drive.

"abstractfname pointer Pointer to the abstract file on the CD.

Return Values

Parameter TY pe Value Description
int integer 0 Function call was successful.

- 1 Function call failed.

Related topics
None.

getbibliofname
Use getbibliof name to fill a buffer with the name of the bibliography file for
the specified drive.

Calling Convention
i n t getbibliofnarne (i n t l cddrive, char f a r *bibliofnarne);

lnput Parameters

Parameter TY pe Value Description

cddrive integer Specifies the target CD-ROM drive.

"bibliofname pointer Pointer to the bibliography file on the CD.

Return Values

Parameter Type Value Description
int integer 0 Function call was successful.

- 1 Function call failed.

Related topics
None.

Pro AudioSpectrum Developer's Toolkit Reference 19-5

Chapter 19 Microsoft CD-ROM Extension Function Call Reference

readvtoc
Use readvtoc to read an entry from the volume table of contents for the
specified drive.

Calling Convention
int readvtoc (int cddrive, int index, char far "dscbuf);

Input Parameters

Parameter TY pe Value Description
cddrive integer Specifies the target CD-ROM drive.

index integer Specifies index number.

*dscbuf pointer Pointer to the CD buffer.

Return Values

Parameter Type Value Description
int integer Indicates type of descriptor.

-2 Function call failed.

Related topics
None.

absdiscread
Use absdiscread to read one or more logical sectors from the specified drive.

Calling Convention
int absdiscread (int cddrive, int count, long sector, char far

*buffer) ;

19-6 Pro AudioSpectrum Developer's Toolkit Reference

absdiscwrite

lnput Parameters

Parameter TY pe Value Description

cddrive integer Specifies the target CD-ROM drive.

count integer Specifies the number of sectors to read.

sector Specifies the starting sector address.

*buffer pointer Pointer to the buffer to receive sector data.

Return Values

Parameter Type Value Description

int integer Indicates number of sectors that were read.

- 1 Function call failed.

Related topics
None.

absdiscwrite
Use absdiscwrite to write one or more logical sectors to the specified drive.

Calling Convention
int absdiscwrite (int drive, int count, long sector, char far

*buffer) ;

lnput Parameters

Parameter TY Pe Value Description

cddrive integer Specifies the target CD-ROM drive.

count integer Specifies number of sectors to write.

sector Specifies the number of sectors to write.

*buffer pointer Pointer to the buffer to write.

Pro Audiospectrum Developer's Toolkit Reference 19-7

Chapter 19 Microsoft CD-ROM Extension Function Call Reference

Return Values

Parameter Type Value Description

int integer Indicates number of sectors that were written.

- 1 Function call failed.

Related topics
None.

chkdrive
Use chkdrive to determine that the specified drive supported by MSCDEX.

Calling Convention
int chkdrive (int cddrive) ;

Input Parameters

Parameter 'VP~ Value Description
cddrive integer Specifies the target CD-ROM drive.

Return Values

Parameter TY pe Value Description
int integer 0 MSCDEX is installed and the drive is

supported.

1 MSCDEX is installed and the drive is not
supported.

- 1 MSCDEX is not installed.

Related topics
None,

getmscdexversion
Use getmscdexversion to determine the version of MSCDEX installed.

Calling Convention
int getmscdexversion (void);

19-8 Pro AudioSpectrum Developer's Toolkit Reference

getcdromunits

lnput Parameters
None.

Return Values

Parameter TY pe Value Description

int integer Indicates version number of MSCDEX
installed.

Related topics
None.

getcdromunits
Use getcdromunits to fill a buffer with a list of CD-ROM drives.

Calling Convention
int getcdromunits (char far *cdromunits);

lnput Parameters

Parameter TY pe Value Description
* cdromunits far pointer Pointer to a buffer to receive a list of CD-ROM

drive numbers.

Return Values

Parameter

int

TY pe Value Description
integer Function call was successful.

Function call failed.

Related topics
None.

getvdescpref
Use getvdescpref to get preference for primary or supplementary descriptors.

Calling Convention
int getvdescpref (int cddrive);

Pro AudioSpectrum Developer's Toolkit Reference 19-9

Chapter 19 Microsoft CD-ROM Extension Function Call Reference

lnput Parameters

Parameter Type Value Description
int cddrive integer Specifies the target CD-ROM drive.

Return Values

Parameter Type Value Description
int integer 0 Indicates preference for primary descriptors.

1 Indicates preference for supplementary descriptors.

-1 Function call failed.

Related topics
None.

setvdescpref
Use setvdescpref to set preference for primary or supplementary
descriptors.

Calling Convention
int setvdescpref (int cddrive, int pref) ;

lnput Parameters

Parameter Type Value Description
cddrive integer Specifies the target CD-ROM drive.

pref integer Specifies preference for version description.

Return Values

Parameter Type Value Description
int integer 0 Function call was successful.

- 1 Function call failed.

Related topics
None.

19-1 0 Pro AudioSpectrurn Developer's Toolkit Reference

getdirenty

getdirentry
Use getdirentry to search directory for entry, fill a buffer if the directory is
found.

Calling Convention
int getdirentry (int drive, char far *name, char far "buffer);

lnput Parameters

Parameter Type Value Description
cddrive integer Specifies the target CD-ROM drive.

*name far pointer Pointer to the name of the entry to
search for.

*buffer far pointer Pointer to the buffer to fill.

Return Values

Parameter TY pe Value Description
int integer Format of the target volume.

- 1 Function call failed.

Related topics
None.

senddevreq
Use senddevreq to send a device request.

Calling Convention
int senddevreq (intl cddrive, struct far *cdreqheader);

lnput Parameters

Parameter TY pe Value Description
cddrive integer Specifies the target CD-ROM drive.

"cdreqheader far pointer Pointer to the cdreqheader data structure.

Pro AudioSpectrum Developer's Toolkit Reference 19-11

Chapter 19 Microsoft CD-ROM Extension Function Call Reference

Return Values

Parameter TY pe Value Description

int integer 0 Function call was successful.

- 1 Function call failed.

Related topics
None.

getlasterror
Use getlasterror to retrieve the value of the last MSCDEX error.

Calling Convention
int getlasterror (void);

Input Parameters
None.

Return Values

Parameter Type Value Description
int integer Value of last MSCDEX error.

-1 Function call failed.

Related topics
None.

19-1 2 Pro AudioSpectrurn Developer's Toolkit Reference

clearlasterror

clearlasterror
Use clearlasterror to clear the error variable prior to executing any CD-
ROM function call.

Calling Convention
int clearlasterror (void) ;

Input Parameters
None.

Return Values

Parameter Type Value Description
int integer Value of last error value.

- 1 Function call failed.

Related topics
None.

Pro AudioSpectrum Developer's Toolkit Reference 19-1 3

Chapter 19 Microsoft CD-ROM Extension Function Call Reference

19-14 Pro Audiospectrum Developer's Toolkit Reference

Mixer Programming Section

rn Mixer Programming Essentials

This chapter describes:

The MVPROAS mixer device and the MVSOUND.SYS device driver

Mixer channel and device connections

Low-level Mixer software API programming steps

The Pro AudioSpectrum mixer blends multiple audio channels from the FM
synthesizer, CD-ROM, PC speaker, microphone, digital audio controller, and
an externalstereo line-in port.

You can program the mixer using either the text string, command line interface
or the low-level software API. For information on the text string, command line
interface to the mixer, see Chapter 21, "Command Line Mixer Interface." For
information on the low-level mixer function calls, see Chapter 22, "Low-Level
Mixer Function Call Reference." A direct hardware API is not provided.

MVPROAS Device Driver Overview
MVPROAS is an MS-DOS device that provides easy access to the
Pro Audiospectrum's mixer and volume controls through both a text string,
MS-DOS command line interface, and a binary programming interface. The
unique design of this driver makes it easy for both end-users and developers to
control the Pro AudioSpectrum devices.

MVPROAS text interface provides a natural language interface that lets you
issue English-like sentences to control the mixer and volume levels of all the
audio devices. End users can use this interface from the DOS prompt, from a
DOS application program, or from a Windows program.

The binary programming interface is a set of low-level function calls that are
linked with the MVSOUND.SYS device driver. These function calls are similar to
the other low-level function calls supporting other features of the
Pro Audiospectrum.

Pro AudioSpectrum Developer's Toolkit Reference 20-1

Chapter 20 Mixer Programming Essentials

MVPROAS has at least three "behind-the-scenes" duties:

It initializes the hardware at boot time

Every time the computer boots, the Pro AudioSpectrum performs an internal
reset. Sounds generated prior to booting are silenced.

After a reset, MVPROAS sets the mixers, volume controls, and other devices
to their default states

It serves as a single, central resource for all applications to share hardware-
dependant information like mixer and volume settings, DMA settings, and
IRQ settings

Loading and Customizing MVPROAS
The installation procedure described in the Pro AudioSpectrum User's Guide
copies the device driver file, MVSOUND . SYS, to your PC system disk and sets up
a default configuration profile.

MVSOUND . SYS is automatically loaded by the MS-DOS device driver loading
facility, CONFIG. SYS. You access the MVSOUND . SYS device driver using the
unique device name of MVPROAS. MVPROAS is similar to other MS-DOS
devices like LPTl and COM1, and can be accessed in the same way you would
access them.

MVSOUND.SYS Command Line Switches
Command line switches tell MVSOUND . SYS about the configuration of the PC
and specify default volume settings for Pro AudioSpectrum devices. Command
line switches are processed once at boot time.

To load the MVSOUND . SYS device driver with command line switches, modlfy
your PC's CONFIG. SYS file so that the MVSOUND device line looks similar to
the one below:

In order for MVSOUND . SYS to process command line switches correctly, be sure
to put at least one space between each of the arguments.

20-2 Pro AudioSpectrum Developer's Toolkit Reference

Controlling Total Volume From The Keyboard

MVSOUND. SYS command line switches are defined as follows:

Switch Description

D:xx Identifies the DMA selection. This switch tells the driver which DMA channel the
hardware is set to use. The actual selection is made by a jumper on the
Pro AudioSpectrum system. Valid DMA channel numbers are 1,3,5,6, or 7.

Q:xx Identifies the IRQ selection. Like the DMA selection, this switch only informs the
driver which IRQ channel the system has been jumpered to use. Valid IRQ channel
numbers are 3 ,5 ,6 ,7 ,8 ,9 , 10, 11, 12, 13, 14, or 15.

V:xx Identifies the total volume control setting. A numeric value ranging from 0 to 100%
sets the volume level, where 0 is the lowest volume (off) and 100% is the highest vol-
ume (full on).

Controlling Total Volume From The Keyboard
Once loaded, MVPROAS provides direct keyboard control over the total
volume settings. Raise, lower, or mute the total volume control by typing one of
the following special key sequences:

Table 8 Total Volume Control Key Sequences

Key Sequence

[Ctrl] + [Alt] + [U]

[Ctrl] + [Alt] + [Dl

[Ctrl] + [Alt] + [MI

Pro AudioSpectrum Developer's Toolkit Reference 20-3

Description
Increases volume

Decreases volume

Toggles the volume mute

Chapter 20 Mixer Programming Essentials

Mixer block diagram
The following diagram shows the logical audio path from the audio source,
through the input and output mixers, volume control device, and out the
speaker. Note that each audio source can be directed to the input or output
mixer.

Line-in \

CD-ROM \
I

DAC

FM
MIC 1

PC Spkr /

ADC to I DMA I
Figure 9 Mixer Block Diagram

20-4 Pro AudioSpectrum Developer's Toolkit Reference

Low-level Mixer API programming steps

Low-level Mixer API programming steps
The following procedure shows the order in which you should use low-level
Mixer function calls. The function calls are documented in MIXERS.ASM.

1. Initialize mixer hardware and software function call library.

Function call: cMVInitMixerCode

2. Read from or write to the mixer channel.

Function calls: ~MVSetMixerFunction

3. Perform other mixer functions (can be intermixed with read and write calls).

Function calls: cMVGetFilter~unction

Pro AudioSpecfrum Developer's Toolkit Reference 20-5

Chapter 20 Mixer Programming Essentials

20-6 Pro AudioSpectrum Developer's Toolkit Reference

Command Line Mixer Interface

This chapter describes the command line interface of the Pro AudioSpectrum's
mixer device, MVPROAS. MVPROAS controls the Pro AudioSpectrum's mixer
and total volume control devices.

Topics covered in this chapter include:

w MVPROAS MS-DOS command line syntax

A reference to the MVPROAS command set

w Controlling MVPROAS devices

Using the command set interactively and with batch files

Using the command set from "C" programs

For more general information on using the mixer, see Chapter 20, "Mixer
Programming Essentials." For information on the low-level mixer function
calls, see Chapter 22, "Low-Level Mixer Function Call Reference."

Command Line Syntax
MVPROAS provides a natural, English-like language interface to the various
devices on the Pro AudioSpectrum system. The interface uses a subject/verb/
predicate structure where periods and commas are optional. Every command
must be entered on a single command line.

Pro AudioSpectrum Developer's Toolkit Reference 21 -1

Chapter 21 Command Line Mixer Interface

The following examples demonstrate the flexibility and intuitiveness of the
MVPROAS interface.

TURN VOLUME LEFT LEVEL TO 5 PERCENT.

FADE [THE] VOLUME [FOR THE] RIGHT LEVEL TO 100%

SET OUTPUT MIXER [FOR THE] LEFT FM TO 50%

TURN INPUT MIXER FM FROM 0, TO 50%

FADE INPUT MIXER FM FROM 50, TO O%, IN 3 SECONDS.

SET INPUT MIXER LEFT MIC IN 3 SECONDS, TO 0,FROM 50 PERCENT

TURN [THE] INPUT MIXER FM UP 508, IN 3 SECONDS.

TURN INPUT MIXER FM FROM 0, UP loo%, IN 3 SECONDS.

TURN INPUT [THE] MIXER FM FROM SO%, DOWN 50%, IN 3 SECONDS.

Some of the keywords are surrounded with brackets (e.g., [THE]). This
indicates the keyword is optional and is ignored by MVPROAS.

As you can see from the examples, there are several ways to set device levels.
Each volume setting can be changed using up to three arguments:

FROM a starting point

The FROM starting point is optional. If the starting point is not specified, the
current setting is used.

TO a new setting

The TO setting must be explicitly stated.

I N x amount of time

The I N command, also optional, tells MVPROAS to adjust the setting over a
period of time. MVPROAS takes the difference between the FROM setting and
the TO setting, and determines the number of steps needed to complete the
task over the time period.

The FROM, TO, and I N portions of the command can be listed in any order. In
the next set of examples shows three different ways to adjust the volume level
from 0 to 100 percent over a period of three seconds.

SET VOLUME LEVEL FROM 0% TO 100% IN 3 SECONDS

SET VOLUME LEVEL TO loo%, FROM O%, IN 3 SECONDS.

SET VOLUME LEVEL IN 3 SECONDS, FROM O%, TO 100%.

21-2 Pro AudioSpectrurn Developer's Toolkit Reference

MVPROAS Verbs

The following is a formal definition of the MVPROAS language syntax:

Syntax Element

<statement>

Definition

[TURN I SET I FADE] <devcontext>

INPUT MIXER <term listl> I OUTPUT MIXER <term listl> I
VOLUME <term list2> I FILTER <term list3> I CROSS <term list4>

<levelterm> I <loudnessterm> I <enhancedterm>

<MUTE> I <ON I OFF>

<opt> TO <opt> <ON I OFF>

[LEFT I RIGHT] <device list>

FM I SPEAKER I MIC I EXT I INT I

[BASS I TREBLE I LEVEL] <setting>

[FROM <term>] TOlUPlDOWN < t e r n [IN <expression> SECONDS]

LOUDNESS <ON I OFF>

ENHANCED <ON I OFF>

<expression> [PERCENT I%]

LEFT l RIGHT

MVPROAS Verbs
The MVPROAS verb set defines the actions you can perform to the
Pro AudioSpectrum from the device driver. Some actions require additional
information while others are single words.

FadeISetTTu rn
Use these FADE, SET, and TURN to set volume levels or switch settings. These
verbs are interchangeable, even when the syntax seems unnatural.

The following examples show MVPROAS commands using the FADE, SET,
and TURN verbs:

FADE [THE] INPUT MIXER [FOR THE] FM TO 5%

SET [THE] INPUT MIXER [FOR THE1 LEFT FM TO 5%

TURN [THE] INPUT MIXER [FOR THE] RIGHT FM TO 5%

Pro AudioSpectrum Developer's Toolkit Reference 21 -3

Chapter 21 Command Line Mixer Interface

FADE, SET, and TURN operate on the following devices:

Input Mixer

Output Mixer

Volume

Mute

Cross Channel

Real Sound

Get
GET can only effectively be used within a program, not from the MS-DOS
command line. The GET command t e h MVPROAS to prepare to fetch the
current setting of a device. Issuing a subsequent read command to MVPROAS
returns the settings as a text message.

The GET command syntax is identical to the FADE/SET/TURN set command,
except no FROM/TO/ IN operation needs to be specified.

The following examples show MVPROAS commands using the GET verb:

GET [THE] INPUT MIXER [FOR THE] FM

GET [THE] OUTPUT MIXER [FOR THE] RIGHT FM

GET [THE] VOLUME [FOR THE] LEFT LEVEL

GET [THE] MUTE

GET [THE] CROSS [FOR THE] LEFT TO LEFT

GET [THE] REALSOUND

The GET command operates on all Pro Audiospectrum devices accessible to
the mixer.

Hold
HOLD tells MVPROAS to queue up the next series of commands. You may queue
and then execute up to sixteen (16) commands at a time. The HOLD verb is useful
for creating cross-channel fades, from one channel to the next or from one
device to another.

The following example shows MVPROAS commands using the HOLD verb:

HOLD

21-4 Pro AudioSpecfrum Developer's Toolkit Reference

Controlling MVPROAS devices

Release
RELEASE tells MVPROAS to start executing the queued commands. If
MVPROAS is read any time while processing a queue, it returns the text
message "BUSY" until all command entries have been executed.

The following example shows MVPROAS commands using the RELEASE verb:

RELEASE

Reset
RESET initializes MVPROAS settings to their boot up states.

The following example shows an MVPROAS command using the RESET verb:

RESET

Controlling MVPROAS devices
The following is a description of the devices and device components you can
control using MVPROAS.

lnput Mixer
You can control six different stereo channels of the input mixer using
MVPROAS:

lnput Mixer Channel

FM
PCM

INT

EXT

SPEAKER

MIC

SB

Description
FM synthesizer.

PCM playback.

Internal CD connection.

External stereo jack.

PC speakers.

Microphone jack.

Sound Blaster emulation.

You can specify LEFT channel or RIGHT channel of the device. By not
indicating LEFT or RIGHT, you implicitly specify both channels.

The following list of examples shows all the simple input mixer commands
(with 5% shown as a representative value) you can issue to MVPROAS:

SET [THE] INPUT MIXER [FOR THE] FM TO 5%

SET [THE] INPUT MIXER [FOR THE] LEFT FM TO 5%

SET [THE] INPUT MIXER [FOR THE] RIGHT FM TO 5%

SET [THE] INPUT MIXER [FOR THE] PCM TO 5%

Pro AudioSpectrum Developer's Toolkit Reference 21 -5

Chapter 21 Command Line Mixer Interface

SET [THEI INPUT MIXER [FOR THE] LEFT PCM TO 5%

SET [THE] INPUT MIXER [FOR THE] RIGHT PCM TO 5%

SET [THEI INPUT MIXER [FOR THE] INT TO 5%

SET [THEI INPUT MIXER [FOR THE] LEFT INT TO 5%

SET [THE] INPUT MIXER [FOR THE] RIGHT INT TO 5%

SET [THEI INPUT MIXER [FOR THE] EXT TO 5%

SET [THE] INPUT MIXER [FOR THE] LEFT EXT TO 5%

SET [THEI INPUT MIXER [FOR THE] RIGHT EXT TO 5%

SET [THE] INPUT MIXER [FOR THE] SPEAKER TO 5%

SET [THE] INPUT MIXER [FOR THE] LEFT SPEAKER TO 5%

SET [THEI INPUT MIXER [FOR THE] RIGHT SPEAKER TO 5%

SET [THE] INPUT MIXER [FOR THE] MIC TO 5%

SET [THE] INPUT MIXER [FOR THE] LEFT MIC TO 5%

SET [THE] INPUT MIXER [FOR THE] RIGHT MIC TO 5%

Output Mixer
You can control six different stereo channels of the output mixer using
MVPROAS:

Output Mixer Channel Description
FM FM synthesizer.

INPUT Input mixers connection to the output mixer.

INT Internal CD connection.

EXT External stereo jack.

SPEAKER PC speakers.

MIC Microphone jack.

SB Sound Blaster emulation.

With the exception of the PCM input channel and the INPUT output channel,
every channel is duplicated on the input and output mixers. Any given input
channel can be routed to either the input or output mixer, but not both. The last
mixer programmed for any given channel sets the active channel.

For example, programming the FM channels of the output mixer turns off the
FM channels on the input mixer. As a result, there is only one stereo input/
output control active per device at a time.

21-6 Pro Audiospectrum Developer's Toolkit Reference

Controlling MVPROAS devices

As with the input mixer, you can address each channel on the output mixer as
LEFT or RIGHT to speclfy left channel or right channel. If you don't specify
LEFT or RIGHT, you implicitly specify both channels to be modified.

The following is a complete list of all the simple output mixer commands (with
5% shown as a representative value) that you can issue to MVPROAS:

SET [THE] OUTPUT MIXER [FOR THE] FM TO 5%

SET [THE] OUTPUT MIXER [FOR THE] LEFT FM TO 5%

SET [THE] OUTPUT MIXER [FOR THE] RIGHT FM TO 5%

SET [THE] OUTPUT MIXER [FOR THE] INPUT TO 5%

SET [THE] OUTPUT MIXER [FOR THE] LEFT INPUT TO 5%

SET [THE] OUTPUT MIXER [FOR THE] RIGHT INPUT TO 5%

SET [THE] OUTPUT MIXER [FOR THE] INT TO 5%

SET [THE] OUTPUT MIXER [FOR THE] LEFT INT TO 5%

SET [THE] OUTPUT MIXER [FOR THE] RIGHT INT TO 5%

SET [THE] OUTPUT MIXER [FOR THE] EXT TO 5%

SET [THE] OUTPUT MIXER [FOR THE] LEFT EXT TO 5%

SET [THE] OUTPUT MIXER [FOR THE] RIGHT EXT TO 5%

SET [THE] OUTPUT MIXER [FOR THE] SPEAKER TO 5%

SET [THE] OUTPUT MIXER [FOR THE] LEFT SPEAKER TO 5%

SET [THE] OUTPUT MIXER [FOR THE] RIGHT SPEAKER TO 5%

SET [THE] OUTPUT MIXER [FOR THE] MIC TO 5%

SET [THE] OUTPUT MIXER [FOR THE] LEFT MIC TO 5%

SET [THE] OUTPUT MIXER [FOR THE] RIGHT MIC TO 5%

Pro Audiospectrum Developer's Toolkit Reference 21 -7

Chapter 21 Command Line Mixer Interface

Volume
The Volume control device on the Pro AudioSpectrum is a combination of on/
off switches and volume level controls.

You can control five different device elements using the volume control device
of MYPROAS:

Device Element Description

Enhanced Bass and Treble Onloff switches that provide an absolute boost when turned on.

Bass and Treble The equalizer bands on the volume control device. Both Bass
and Treble has its own level setting. You set each device with a
percentage: from 0 percent (-12 dB) to 100 percent (+I2 dB).

Volume Sets left and right channel, either programmed independently or
together as a single device

The following is a list of example volume commands that you can issue to
MVPROAS:

SET [THE] VOLUME ENHANCED BASS [TO] ON

SET [THE] VOLUME ENHANCED BASS [TO] OFF

SET [THE] VOLUME ENHANCED TREBLE [TO] ON

SET [THE] VOLUME ENHANCED TREBLE [TO] OFF

SET [THE] VOLUME BASS TO 5%

SET [THE] VOLUME TREBLE TO 100%

SET [THE] VOLUME LEVEL TO 0%

SET [THE] VOLUME LEFT LEVEL TO 100%

SET [THE] VOLUME RIGHT LEVEL TO 50%

Mute
The Mute device lets you completely mute the external output jack. When Mute
is set to ON, the PC speaker is the only active sound device. All other audio
devices are silent.

Program Mute using one of the following commands:

SET [THE] MUTE [TO] ON

SET [THE] MUTE [TO] OFF

21 -8 Pro Audiospectrum Developer's Toolkit Reference

Con trolling MVPROAS devices

Cross Channel
Residing between the input mixer and the filter, the Cross Channel device lets
you mix and match stereo input and output channels in interesting
combinations. The following diagram shows that there are four possible inputs
and four possible outputs for a total 16 possible combinations. Each of the
inputs is either ON or OFF.

Input Output

Left - Left

Left Right x - : z:ht
Right, Right

Figure 10 Cross Channel Connections

You can set the Cross Channel device in any of the possible combinations by
issuing up to four separate commands. Following is a complete list of all the
possible Cross Channel commands:

SET [THE] CROSS [CHANNEL] LEFT TO LEFT [TO] OFF

SET [THE] CROSS [CHANNEL] LEFT TO LEFT [TO] ON

SET [THE] CROSS [CHANNEL] LEFT TO RIGHT [TO] OFF

SET [THE] CROSS [CHANNEL] LEFT TO RIGHT [TO] ON

SET [THE] CROSS [CHANNEL] RIGHT TO LEFT [TO] OFF

SET [THE] CROSS [CHANNEL] RIGHT TO LEFT [TO] ON

SET [THE] CROSS [CHANNEL] RIGHT TO RIGHT [TO] OFF

SET [THE] CROSS [CHANNEL] RIGHT TO RIGHT [TO] ON

SET [THE] CROSS [CHANNEL] [TO] ON

SET [THE] CROSS [CHANNEL] [TO] OFF

-- -

Note: The command SET CROSS CHANNEL ON enables all connections: LEFT
to LEFT, LEFT to RIGHT, RIGHT to LEFT, and RIGHT to RIGHT. This creates
a monaural composite of both inputs.

The command SET CROSS CHANNEL OFF disables connections and
effectively mutes the system.

Pro Audiospectrum Developer's Toolkit Reference 21-9

Chapter 21 Command Line Mixer Interface

Real Sound
The Real Sound device lets you switch the improved "Real Sound hardware on
or off to enhance a unique technology employed in certain video games called
"Real Sound." This technology drives the PC speaker in a way that results in
amazingly clear pre-recorded audio playback.

You control the Real Sound device using the following commands:

SET [THE] REALSOUND [TO] OFF

SET [THE] REALSOUND [TO] ON

Using MS-DOS Commands With MVPROAS
You can communicate with MVPROAS from either the MS-DOS command line
or from batch programs by using the MS-DOS ECHO and COPY commands.

ECHO Command
The easiest way to pass a command to MVPROAS is to use the MS-DOS ECHO
command. This command takes whatever data you type and writes it to the
device. You can redirect the write to any MS-DOS device by specifying an
appropriate device name. The following example shows a RESET command
being sent to MVPROAS:

ECHO >MVPROAS RESET

The greater than symbol (>) precedes the device name (MVPROAS). This is the
standard MS-DOS method for redirecting output to the designated device.
Since the ECHO command is a standard MS-DOS command, it can be placed in
batch files.

The following example, when entered in a batch file, fades in the PC Speaker
while fading out the microphone:

ECHO >MVPROAS HOLD

ECHO >MVPROAS SET OUTPUT MIXER MIC TO 0 IN 2 SECONDS

ECHO >MVPROAS SET OUTPUT MIXER SPEAKER TO 7 5 PERCENT IN 2 SECONDS

ECHO >MVPROAS RELEASE

COPY Command
The COPY command is similar to the ECHO command, but allows multiple lines
of text to be sent to the device at one time.

21 -1 0 Pro AudioSpectrum Developer's Toolkit Reference

Controlling MVPROAS From Programs

In the following example, the four lines of text below are contained in a file
called FADE:

HOLD

SET OUTPUT MIXER MIC TO 0 IN 2 SECONDS

SET OUTPUT MIXER SPEAKER TO 75% IN 2 SECONDS

RELEASE

To execute the fade-in, fade-out procedure described in the under the ECHO
command, type this command at the DOS prompt:

COPY FADE MVPROAS

Controlling MVPROAS From Programs
You can send text to MVPROAS with a simple C program. The following code
sample opens the MVPROAS device, sends a command, closes the device, and
exits to DOS. For this example, assume the program sets the total volume by
accepting a percentage from the command line. Error checking code is not
included.

int argc;

char *argv [1 ;

(

FILE *proas;

/ * open the device * /

if ((proas = fopen ("MVPROAS", "w")) == 0) {

printf ("\cannot open the device!\nU);

exit (1) ; }

/ * send out the text, then we can exit * /

fprintf (proselyte VOLUME LEVEL TO %S%%\nw,argv[l1);

fclose (proas) ;

exit (0) ;

1

Pro AudioSpectrurn Developer's Toolkit Reference 21 -1 1

Chapter 21 Command Line Mixer Interface

21 -1 2 Pro AudioSpectrum Developer's Toolkit Reference

22 Low-Level Miner Function Call
Reference

This section provides a complete reference to the low-level mixer function calls.
Use these calls to modify the mixer and volume settings. Unless otherwise
specified, you can find prototypes of each of the calls described here in the
MIXERS . H file.

cMVlnitMixerCode
Use cMVInitMixerCode to link software library with MVSOUND.SYS to give
programs access to the mixers and other related functions. This function is
called only once, and must be called before any of the mixer routines are called.
It does not initialize the Pro AudioSpectrum board.

Calling Convention
int MVInitMixerCode (void);

Input Parameters
None.

Return Values

Parameter Type Value Description
int integer 0 No driver found.

1 MVSOUND.SYS driver was found.

Related Topics
None.

Pro AudioSpectrum Developer's Toolkit Reference 22-1

Chapter 22 Low-Level Mixer Function Call Reference

Use ~MVGetFilterFunction to determine the current setting of the PCM
(digital audio) low-pass filter. This function returns a value, stated as a
percentage of the total data frequency range of data that will pass through the
Pro AudioSpectrum board, that indicates the highest allowable frequency for
recording data.

Calling Convention
int ~MVGetFilterFunction 0 ;

Input Parameters
None.

Return Values

Parameter Type Value
int integer 100

84

67

50

34

17

0

Description

Limiting frequency set to 18 kHz (near CD quality).
Limiting frequency set to 16 kHz (cassette quality).

Limiting frequency set to 12 kHz (FM radio quality).

Limiting frequency set to 9 kHz (AM radio quality).

Limiting frequency set to 6 kHz (telephone quality).

Limiting frequency set to 3 kHz (male voice quality).

Limiting frequency set to 0 kHz (mute).

Related Topics
To program settings for the low-pass filter, see"cMVSetFilterFunction" on
page 22-6.

22-2 Pro AudioSpectrum Developer's Toolkit Reference

Use cMVGetMixerFunct ion to determine the signal level setting for the
specified channel. This function returns a two-byte value. The low byte
indicates the source rhannel's level of attenuation. The high byte indicates
whether the mixer is on or off.

Calling Convention
int ~MVGetMixerFunction (int mixer, int channel);

Input Parameters

Parameter Type Value
mixer integer BI-OUTPUTMIXER

BI-INPUTMIXER

channel integer DX = BI-L-FM

BI-R-FM

BI-L-IMIXER

BI-R-IMIXER

BI-L-EXT

BI-R-EXT

BI-L-INT

BI-R-INT

BI-L-MIC

BI-R-MIC

BI-L-PCM

BI-R-PCM

BI-L-SPEAKER

BI-R-SPEAKER

BI-L-SBDAC

BI-L-SBDAC

Description
Select output mixer.

Select input mixer.

Select left FM synthesizer.

Select right FM synthesizer.

Select left input mixer.

Select right input mixer.

Select left line in.

Select right line in.

Select left internal (CD) audio.

Select right internal (CD) audio.

Select left microphone.

Select right microphone.

Select left PCM.

Select right PCM.

Select left PC speaker.

Select right PC speaker.

Select left Sound Blaster channel.

Select left Sound Blaster channel.

Pro Audiospectrum Developer's Toolkit Reference 22-3

Chapter 22 Low-Level Mixer Function Call Reference

Return Values

Parameter Type Value Description

int integer Low byte: 0 to 100 Indicates level of attenuation. 0 indicates
almost complete attenuation (-80 db),
100 indicates no attenuation (0 db).

High byte: 0 Mixer off.

High byte: 1 Mixer on.

Related Topics
To set the signal level for a specified channel, see "~MVSetMixerFunction" on
page 22-7.

To determine the current settings for the total volume control device, see
"~MVGetVolumeFunction" on page 22-4.

Use ~MVGetVolumeFunction to determine the current settings for the total
volume control device.

Calling Convention
int ~MVGetVolumeFunction (int level, int device) ;

22-4 Pro AudioSpectrum Developer's Toolkit Reference

Input Parameters

Parameter Type
level integer

device integer

Return Values

Value

0

BI-VOLLOUD

BI-VOLENHANCE

BI-VOLBASS

BI-VOLTREBLE

BI-VOLLEm

BI-VOLRIGHT

Parameter Type Value

int integer 0

1

Description

If device = BI-VOLLOUD, loudness off.

If device = BI-VOLENHANCE, enhanced
stereo off.

If device = BI-VOLLOUD, loudness on.

If device = BI-VOLENHANCE, enhanced
stereo on.

If device = BI-VOLBASS or BI-VOLTRE-
BLE, bass or treble equalizer band set to cut
(0), no change (50), or maximum gain
(100).

If device = BI-VOLLEFT or BI-VOL-
RIGHT, left or right channel volume set to
nearly complete attenuation (0) or no atten-
uation (100). Nearly complete attenuation is
80dB. No attenuation is OdB.

Select loudness device.

Select enhanced stereo device.

Select bass equalizer band device.

Select treble equalizer band device.

Select left channel volume device.

Select right channel volume device.

Description

Function call failed.

Function call succeeded.

Related Topics
To set the total volume control device levels, see "~MVSetVolumeFunction" on
page 22-9.

To determine the signal level setting for the specified channel, see
"cMVGetMixerFunctionU on page 22-3.

Pro Audiospectrum Developer's Toolkit Reference 22-5

Chapter 22 Low-Level Mixer Function Call Reference

Use cMVRealSoundSwitch to set or read the status of the
Pro AudioSpectm's real sound circuitry. Valid settings are on or off.

The Pro Audiospectrum's real sound device the PC's native sound device. To
hear normal PC speaker sound, disable real sound. Real sound circuitry should
be turned on only for video games.

You can find a prototype of this function in the BINARY. H file.

Calling Convention
int c~V~ealSoundSwitch (int state, int mode);

Input Parameters

Parameter Type Value Description

state integer 0 For read mode, real sound disabled.
For write mode, disable real sound.

100 For read mode, real sound enabled.

For write mode, enable real sound.

mode integer 0 Set mode to read settings.
1 Set mode to write settings.

. .

Return Values

Parameter Type Value Description

int integer 0 Function call failed.
1 Function call succeeded.

Related Topics
None.

Use ~MtTSetFilterFunction to set the frequency limit of the digital audio
filter. The filter causes frequencies above the limit to be removed while leaving
frequencies below the limit un-modified. Filter settings are specified as a
percent of the total frequency range.

The digital audio filter resides between the input and output mixer and is
useful for recording and playing back PCM sounds. When recording, it
eliminates frequencies that cause aliasing errors. When playing back, it

22-6 Pro Audiospectrum Developer's Toolkit Reference

removes higher harmonics generated as a by-product of digital to analog
conversion.

For playback or recording, set the filter to a frequency no greater than half the
sample rate.

Calling Convention
void ~MVSetFilterFunction (int filter);

Input Parameters

Parameter Type Value
filter integer 100

84

67

50

34

17

0

Description
Set limiting frequency to 18 kHz (near CD quality).

Set limiting frequency to 16 kHz (cassette quality).

Set limiting frequency to 12 kHz (FM radio quality).

Set limiting frequency to9 kHz (AM radio quality).

Set limiting frequency to 6 kHz (telephone quality).

Set limiting frequency to 3 kHz (male voice quality).

Set limiting frequency to 0 kHz (mute).

Return Values
None.

Related Topics
To determine the current setting of the PCM low-pass filter, see
"~MVGetFilterFunction" on page 22-2.

cMVSet MixerFunction
Use cMVSetMixerFunct ion to configure channels and mixers and set the
signal level for a specified channel. The level can vary between 0 (off) and 100
(maximum).

The power-on default mixer settings specify all sources off. MVSOUND.SYS
will route all the channels to the input mixer. Since any given source can be
routed to either the input or output mixer, but not both simultaneously, a call
that 'connects' a source to one mixer will automatically cut-off the signal from
reaching the other mixer.

The mixers are high fidelity devices designed to handle the entire audio
spectrum from 20 Hz to 20 kHz with low distortion. You route a signal source
to the input mixer to convert an audio input signal to digital PCM data, or to
convert digital PCM data to audio with subsequent mixing with other audio

Pro AudioSpectrum Developer's Toolkit Reference 22-7

Chapter 22 Low-Level Mixer Function Call Reference

sources in the output mixer. See "Mixer block diagram" on page 20-4 for a
depiction of mixer configurations.

Note: Make sure to turn off the input mixer PCM channels before recording to
prevent feedback.

Note: The channels BI-L-IMIXER and BI-R-IMIXER must only be sent to
the output mixer.

Calling Convention
void cMVSetMixerFunction (int level, int mixer, int channel);

Input Parameters

Parameter Type Value
level integer 0 to 100

mixer integer BI-OUTPUTMIXER

BI-INPUTMIXER

channel integer BI-L-FM

BI-R-FM

BI-L-IMIXER

BI-R-IMIXER

BI-L-EXT

BI-R-EXT

BI-L-INT

BI-R-INT

BI-L-MIC

BI-R-MIC

BI-L-PCM

BI-R-PCM

BI-L-SPEAKER

BI-R-SPEAKER

BI-L-SBDAC

BI-R-SBDAC

Description
Set channel attenuation level. 0 is almost
complete attenuation (-8OdB); 100 is no
attenuation (0 dB).

Select output mixer.

Select input mixer.

Select left FM synthesizer.

Select right FM synthesizer.

Select left input mixer.

Select right input mixer.

Select left line in.

Select right line in.

Select left internal (CD) audio.

Select right internal (CD) audio.

Select left microphone.

Select right microphone.

Select left PCM.

Select right PCM.

Select left PC speaker.

Select right PC speaker.

Select left Sound Blaster DAC.

Select right Sound Blaster DAC.

Return Values
None.

22-8 Pro Audiospectrum Developer's Toolkit Reference

Related Topics
To determine the signal level setting for the specified channel, see
"~MVGetMixerFunction" on page 22-3.

To set the total volume control device levels, see "~MVSetVolumeFunction" on
page 22-9.

Use ~MVSetVolumeFunction to set the total volume control device levels.
Volume control device levels shape the Pro AudioSpectrum sound by
controlling the relative strength of signal sources flowing into the mixer.

Together with the total volume control circuitry, this function provides controls
similar to those found on a speaker amplifier:

Loudness on/off

Bass boost/cut

Treble boost/cut

Left and right channel volume

An additional switch, enhanced stereo, is also provided to force increased
stereo channel separation, enhancing the stereo effect, or give a slight stereo
effect to what would otherwise be normal mono sound.

Calling Convention
void ~MVSetVolumeFunction (int level, int device);

Pro AudioSpectrum Developer's Toolkit Reference 22-9

Chapter 22 Low-Level Mixer Function Call Reference

Input Parameters

Parameter Type Value
level integer 0

device

Description
If device = BI-VOLLOUD, set loudness
off.

If device = BIVOLENHANCE, set en-
hanced stereo off.

100 If device = BI-VOLLOUD, set loudness on.

If device = BI-VOLENHANCE, set en-
hanced stereo on.

BI-VOLLOUD Select loudness device.

BI-VOLENHANCE Select enhanced stereo device.

BI-VOLBASS Select bass equalizer band device.

BI-VOLTREBLE Select treble equalizer band device.

BI-VOLLEFT Select left channel volume device.

BI-VOLRIGHT Select right channel volume device.

Return Values
None.

Related Topics
To determine the current settings for the total volume control device, see
"~MYGetVolumeFunction'~ on page 22-4.

To set the signal level for a specified channel, see "~MYSetMixerFunction" on
page 22-7.

22-1 0 Pro AudioSpectrum Developer's Toolkit Reference

Appendices

A FM Hardware Register Charts and
Tables

This appendix provides a variety of information including:

Rate-to-time conversion tables

Key scaling level tables

Standard Pitch Values

Rate to Time Conversion Tables
Use the the following tables to compute attack, decay, release values for Attack/
Decay Rate (60h to 75h) and Sustain Level/Release Rate Registers (80h to 95h).

These tables list time periods (in milliseconds) for the full spread of rate values
(63 to 0) and show two durations for each rate value:

10% to 90% (or 90% to 10%)

Indicates the time period over which the envelope makes 80% of the attack,
decay, or release transition.

0% to 100% (or 100% to 0%)

Indicates the total duration for the attack, decay, or release.

Pro AudioSpectrum Developer's Toolkit Reference A-1

Chapter ti FM Hardware Register Charts and Tables

Note that a sustain column is not provided; the sustain bits speclfy a level, in
decibels below the peak of envelope, for the sustain period. The sustain period
is maintained as long as the note is played (Key On is set to 1).

Table 9 Rate Table For Rates 63 to 45

"10%-90% is equivalent to -86.4 dB to -9.6 dB

0%-100% is equivalent to -96 dB to 0 dB

A-2 Pro AudioSpectrum Developer's Toolkit Reference

Rate to Time Conversion Tables

Table 10 Rate Tables For Rates 44 to 25

*lo%-90% is equivalent to -86.4 dB to -9.6 d B

0%-100% is equivalent to -96 dB to 0 dB

Pro AudioSpectrum Developer's Toolkit Reference A-3

Chapter A FM Hardware Register Charts and Tables

Table 11 Rate Table For Rates 24 To 4

"10%-90% is equivalent to s-86.4 dB to -9.6 dB

0%-100% is equivalent to -96 dB to 0 dB

*"There is no waveform for rates less than 4.

Key Scaling Level Tables
The two tables that follow list the key scaling level attenuation for each octave,
and for notes within the octave, for the 3 dB/octave KSL setting of the KSL/
Total Level registers (40h to 55h). The first table shows the attenuation (in dB)
for octaves 0 through 3, while the second shows the same for octaves 4 through
7.

A-4 Pro AudioSpectrum Developer's Toolkit Reference

Key Scaling Level Tables

Note that you can calculate the 1.5 dB and 6 dB KSL attenuation by halving and
doubling the values shown in this table.

Table 12 Key Scaling Levels for Octaves 0 Through 3

" The value of the F-Number four most significant bits

**1.5 dB values are one-half of these; 6 dB are twice

Pro AudioSpectrurn Developer's Toolkit Reference A-5

Chapter A FM Hardware Register Charts and Tables

Table 13 Key Scaling Levels for Octaves 4 Through 7

* The value of the F-Number four most signrficant bits

**1.5 dB values are one-half of these; 6 dB are twice

A-6 Pro AudioSpectrurn Developer's Toolkit Reference

Standard Pitch Values

Standard Pitch Values
The tables below show standard pitch values for all notes within the eight
octave range of the FM synthesizer. Use them to set F-Numbers in Block and F-
Number registers (AOh to A8h and BOh to B8h).

Table 14 Standard Pitch Values: C, C#, D, and D#

Table 15 Standard Pitch Values: E, F, F#, and G

Pro Audiospectrum Developer's Toolkit Reference A-7

Chapter A FM Hardware Register Charts and Tables

Table 16 Standard Pitch Values: G#, A, A#, and B

A-8 Pro AudioSpectrum Developer's Toolkit Reference

CD-ROM Data Structures and
Definitions

This appendix lists the data structures and data definitions you will need to
know in order to use the CD-ROM API's.

Request header structure
The following structure is called the request header. Use it to communicate
directly with the CD-ROM device driver. This structure is an integral part of all
the other following defined structures.

struct cdreq header
(

char len;

char unit;

char cmd;

int stat;

char reserved0[81;

1 ;

/ / always 13 - size of (cdreqheader)

/ / the drive #

/ / the command, defined above

/ / set by device driver

Pro AudioSpectrum Developer's Toolkit Reference 0-1

Chapter B CD-ROM Data Structures and Definitions

struct ioctlread

{

struct cdreqheader cdh; //see above

char mdb; / / "mediadescriptor byte", usually 0

void far *buffer;

int size:

int ssn;

void far *errbuf;

/ / address of additional command
information

/ / size of additional command
information

/ / "starting sector number", usually
0

/ / pointer to vol ID if error OFh,
usually 0

struct ioctlwrite

{

struct cdreqheader cdh; / / see above

char mdb; / / same as "ioctlread"

void far *buffer; / / same as "ioctlread"

int size; / / same as "ioctlread"

int ssn; / / same as "ioctlread"

void far *errbuf; / / same as "ioctlread"

struct ioctlseek

I

struct cdreqheader cdh; / / see above

char addrmode; / / * * * *

void far *buffer; / / ignored

int sectorcount; / / ignored

long startsector; / / frame address as seek destination

I ;

8-2 Pro Audiospectrum Developer's Toolkit Reference

Request header structure

struct ioctlplay

{

struct cdreqheader cdh;

char addrmode ;

long startsector;

long sectorcount;

1;

struct ioctlstop

{

struct cdreqheader cdh;

1 ;

struct ioctlresume

(

struct cdreqheader cdh;

1 ;

struct ioctlstat

(

char cmd;

int status;

long startloc;

long endloc;

1 ;

struct cdtable

{

struct discinfo di;

struct trackinfo * ti;

1

/ / see above

/ / * * * *

/ / frame address to start play

/ / frame address to end play

/ / see above

/ / see above

/ / CD-GETAUDIOSTAT

/ / returned value

/ / returned last start frame address

/ / returned last end frame address

Pro AudioSpectrurn Developer's Toolkit Reference 8-3

Chapter B CD-ROM Data Structures and Definitions

struct discinfo

{

char cmd;

char strk;

char ltrk;

long eodisc;

1 ;

struct trackinfo

(

char cmd;

char track;

char frame;

char sec;

char min;

char dummy;

char control;

struct qchaninfo

{

char cmd;

char caa;

char track;

char index;

char min;

char sec;

char frame;

char reservedl;

/ / CD-GETDISCINFO

/ / returned first track # on disc

/ / returned last track # on disc

/ / returned last frame+l on disc

/ / CD-GETTRACKINFO

/ / set track #

/ / returned frames on track

/ / returned seconds on track

/ / returned minutes on track

/ / not used

/ / returned track info

/ / CD-GETQCHANINFO

/ / returned control and adr byte (?)

/ / returned current track in BCD

/ / returned point

/ / returned minute in track

/ / returned second in track

/ / returned frame in track

Pro AudioSpectrum Developer's Toolkit Reference

Data Definitions

char amin;

char asec;

char aframe;

1 ;

struct redbookaddr

{

char frame:

sec;

min;

unknown;

1 ;

/ / returned minute in disc

/ / returned second in disc

/ / returned frame in disc

/ / OxOOOOOOFF

/ / OxOOOOFFOO

/ / OxOOFFOOOO

/ / OxFFOOOOOO

Data Definitions
These values are placed in the cdreqheader . cmd field:

#define IOCTL-READ 3

#define IOCTL-WRITE 12

#define CD-CMD-EJECT 0

#define CD-CMD-RESET 2

#define CD-CMD-SEEK 131

#define CD-CMD-PLAY 132

#define CD-CMD-STOP 133

#define CD-CMD-RESUME 13 6

These values are used with the IOCTL-READ command:

#define CD-GETDISCINFO 10

#define CD-GETTRACKINFO 11

#define CD-GETQCHANINFO 12

#define CD-GETAUDIOSTAT 15

Pro AudioSpectrum Developer's Toolkit Reference B-5

Chapter B CD-ROM Data Structures and Definitions

These values are used with the CD-GETTRACKINFO command, returned
by the driver in the t r ack in f o . con t ro l field:

#define CD-GTI-AUDIOINFO 0x90 / * and with this, then * /

#define CD-GTI-2CH-NOEMPHASIS 0x00 / * compare to these values * /

#define CD-GTI-CHECKCOPY 0x20 / * and with this, then * /

#define CD-GTI-NOCOPYING 0x00 / * compare to these values * /

These values are OR'ed into the return from cdstatus:

#define CDISHERE Ox01

#define CDISPLAYING 0x02

#define CDISPAUSED 0x04

These values are set by the cdmediachanged () function:

#define MEDIAWASCHANGED -1

#define MEDIAMAYCHANGED 0

#define MEDIANOTCHANGED 1

Microsoft CD-ROM Extensions data structures
Use the data structures shown here as a template to create your own data
structures to use with Microsoft CD-ROM Extensions. Although the Microsoft
CD-ROM Extension function calls make no explicit reference to the data
structures shown here, they assume that certain buffers are defined in a like
manner.

You can find these data structures in the CDROM. H file.

B-6 Pro AudioSpectrum Developer's Toolkit Reference

Microsoft CD-ROM Extensions data structures

struct cdreqheader
(

char len;

char unit;

char cmd;

int status;

char reservedL81;

1 ;

struct cdromdrives

I

char unitcode;

void far *driverheader;

1 ;

/ * 13, size of (cdreqheader) * /

/ * drive number * /

/ * command to execute * /

/ * driver return status * /

/ * drive number * /

/ * address of driver header * /

Pro AudioSpectrum Developer's Toolkit Reference 8-7

Chapter B CD-ROM Data Structures and Definitions

B-8 Pro AudioSpectmm Developer's Toolkit Reference

c Programming the PC's Interrupt
Controller and DMA Channels

This appendix describes how to program the IBM PC/AT's interrupt and DMA
controllers to work with Pro AudioSpectnun hardware and software. The
techniques and descriptions are not intended to be comprehensive. For a
comprehensive description of PC hardware devices, refer to the appropriate
data sheets or see one of the many popular PC programming books available in
computer book stores.

Programming the PC's interrupt controller
The IBM AT class of machines incorporate two Intel 8259 interrupt controllers
for handling hardware device interrupts. These devices are linked serially into
the host CPU: one interrupt controller feeds the other and the second feeds the
CPU. The following illustration shows how the devices are serially linked.

Figure 11 IBM PCIAT Interrupt Controllers

8259 #2
Real Time Clock 0

IRQ2 channel I
Unassigned 2
Unassigned 3
Unassigned 4

Math Co-Proc 5
Hard Disk 6

Unassigned 7

The first IRQ controller I/O addresses are 20h and 21h. The second IRQ
controller addresses are AOh and Alh.

8259 #I
System Clock 0
Keyboard 1

)Chained IRQ's 2
Com2: 3
Coml: 4
Unassigned 5
Floppy Drive 6
Lptl : 7

Pro Audiospectrum Developer's Toolkit Reference C-1

Chapter C Programming the PC's Interrupt Controller and DMA Channels

1/0 addresses 20h and AOh are Interrupt Status Registers. Each bit of these
registers correspond to an IRQ channel. In the first controller, IRQ's 0 through 7
correspond to bits 0 through 7. In the second controller, IRQ's 8 through 15
correspond to bits 0 through 7.

When bit 0 through 7 of 20h or AOh is set to one (I), the IRQ corresponding to
that bit number is waiting to be serviced. 1/0 addresses 21h and Alh are
Interrupt Mask Registers. When a mask bit is set to 1, the IRQ corresponding to
that bit is disabled. Setting the bit to 0 allows the channel to send interrupts to
host CPU.

Handling IRQ's on either controller is straight forward. When an interrupt is
generated, the hardware responsible for the interrupt must be acknowledged.
Secondly, the interrupt controller must be acknowledged.

The following example shows the sequence to to acknowledge a
Pro AudioSpectnun PCM IRQ:

mov dx, INTRCTLRST ; get the Int status reg.

xor dx, [-MVTranslateCode] ; remember to do this..

out dx, a1 ; ACK the H/W PCM int

mov a1,20h ; 8259 non-specific ACK

out 20h,al

Handling IRQ's on the second interrupt controller requires one additional step.
Since the IRQ flows from the hardware to the second 8259, from the second
8259 to the first 8259, and from the first 8259 to the host CPU, that path must be
followed when acknowledging the interrupt:

mov dx, INTRCTLRST ; get the Int status reg.

xor dx, [-MVTranslateCodel ; remember to do this . . .
out dx, a1 : ACK the H/W PCM int

mov a1,20h ; 8259 non-specific ACK

out AOh, a1 ; ACK the 2nd 8259

out 20h,al ; ACK the 1st 8259

C-2 Pro Audiospectrum Developer's Toolkit Reference

Programming the AT DMA Controllers

Programming the AT DMA Controllers
The IBM AT class of machines use two Intel 8237 DMA controllers for
transferring data and refreshing the DRAM memory. Each controller has four
separate channels, but the channels are significantly different from one another
due to the way each was incorporated into the motherboard design.

The DMA controller is a 16- bit device and can only read from a 64K address
space. Since the PC addresses a minimum of 1 megabyte, PC designers had to
add hardware to support this size memory model. As a result, programming is
more difficult due to restrictions placed on the location and length of the DMA
buffer.

A special Page Register was created with the original PC and carried forward
with the AT. This register receives a value indicating which 64K page of
memory the DMA controller will read or write to. The 1 megabyte address
space is divided into 16 separate pages.Using a simple trick, the second DMA
controller is able to transfer 128K of data from 128K blocks by way of the page
register. The following table illustrates the 16 megabyte address space, as
divided by the Page Register:

Page register value DMA Controller #1
Linear Address

Minimum Maximum

000000 - o o m
010000 - 0 1 m

020000 - 0 2 m

030000 - 03FFFF

040000 - 04FFFF

050000 - OSFFFF

060000 - 06FFFF

070000 - 07FFFF

through ...
EFOOOO - EFFFFF

DMA Controller #2
Linear Address

Minimum Maximum

000000 - 0 1 m

020000 - 03FFFF

040000 - OSFFFF

060000 - 07FFFF

080000 - 09FFFF

OA0000 - OBFFFF

oc0000 - ODFFFF

OE0000 - OFFFFF

through ...
EFOOOO - FFFFFF

--- -

Note: The Page Register on AT class machines has been increased to allow
access to the full 16 megabytes of address space, so the page register can be
programmed with values of 0x00 through OxFE

It is important to keep track of which pages of memory your program is using
for DMA purposes. Programs must load the starting address and block length
into the DMA hardware. If this starting address plus block length exceeds 64K
or 128K, the DMA controller will wrap back to offset 0000 within the current
page; it will not increment the page register and continue through memory.

Pro AudioSpectrurn Developer's Toolkit Reference C-3

Chapter C Programming the PC's Interrupt Controller and DMA Channels

The second DMA controller only transfers 16-bit quantities on word
boundaries. This is due to the fact that the second DMA controller, and it's page
registers, occupy address lines A1 through A23. The second DMA controller
never uses the least significant bit of the memory address lines. Therefore, the
values programmed into the base address and base count must be shifted right
by one (effectively a divide by 2) in order to transfer the correct number of
bytes. As a result, the PCM Sample Buffer Timer (register 0x1389) value must
also be divided by two.

DMA addresses
To begin a DMA transfer, all of the following registers must be programmed for
the target DMA channel:

Page register

Base address

Base count

Read/write status count

Write request

Write single mask

Write mode

Clear byte flip/flop

The following tables list register addresses for each of the eight PC/AT IRQ
channels. All values are listed in hexadecimal notation:

Table 17 DMA Controller 1 (&bit) Register Addresses

C-4 Pro AudioSpectrurn Developer's Toolkit Reference

DMA mode

Table 18 DMA Controller 2 (16-bit) Register Addresses

Channel 5 - Available

Channel 6 - Available

Channel 7 - Available

DMA mode
The DMA mode determines if the DMA controller will perform a record or
playback function. There are two types of transfers to consider for both record
and playback:

w Auto-initialize

Although it is the least used, the DMA controller's auto-initialize mode is the
best for audio. It allows unlimited, uninterrupted transfers to occur and
forces the DMA controller to auto-initialize itself when the end of buffer has
been reached.

8Bh

89h

8Ah

Single shot approach

With the single shot approach, the DMA controller must be reprogrammed
for every new block transfer.

Programming procedure

C4h

C8h

CCh

The DMA controller must be programmed before the Pro AudioSpectrum
PCM engine is enabled.

Before enabling the DMA channel, "secure" the channel via the DRQ bit in the
Cross Channel register (register OxF8A). This causes the Pro AudioSpectrum to
drive the DMA channel from a floating state to a known good state. If you
enable the DMA channel with an unsecured DRQ line, the DMA will perform a
rapid-fire data transfer due to the floating DRQ line.

C6h

CAh

CEh

Pro AudioSpectrum Developer's Toolkit Reference C-5

Doh

Doh

Doh

D2h

D2h

D2h

D4h

D4h

D4h

D6h

D6h

D6h

D8h

D8h

D8h

Chapter C Programming the PC's Interrupt Controller and DMA Channels

Use these sequential programming steps to setup the DMA for a transfer.

1. Disable the DMA channel by writing one of these values to the Write Mask register:

Channel 0: 04h

Channel 1: 05h

Channel 3: 0%

Channel 5: 05h

Channel 6: 06h

Channel 7: 07h

2. Write the page number to the page register.

The page number is the top eight bits of the DMA buffer's 24 bit linear
address.

3. Clear the byte pointer flip-flop register.

You can write any value.

4. Write the base address and the base count registers.

The base address is the lower 16 bits of the DMA buffer's 24 -bit address. Be
sure to write the low byte of each value first, then the high byte.

5. Write the DMA transfer mode to the Write Mode register.

Write a value corresponding to the desired transfer method:

Auto-initialize continuous playback: 59h

One shot non-continuous playback: 49h

Auto-initialize continuous record: 55h

One shot non-continuous record: 45h

6. Enable the DMA channel by writing one of these values to the Write Single Mask register.

Channel 0: OOH

Channel 1: Olh

Channel 3: 03h

'Channel 5: OOh

Channel 6: Olh

Channel 7: 03h

C-6 Pro AudioSpectrum Developer's Toolkit Reference

D Relocating Pm AudioS'pectrum i/O
Addresses

The new Pro AudioSpectrum models (Pro AudioSpectrum Plus,
Pro AudioSpectrum 16, and CDPC) support relocatable 1 /0 addresses. The
purpose of this feature is to allow multiple cards to be installed in a single PC.
Up to four Pro AudioSpectrum boards can be resident within the computer, all
at separate 1 / 0 addresses.

The native Pro AudioSpectrum I/O addresses use four 16-bit I/O addresses.
These addresses are sequential, and normally start at 0x388 and run through
Ox38A. The exceptions being the implementation of other standard devices (the
joystick, Sound Blaster emulation, and MPU-401), which have fixed,
predefined addresses.

The following diagram shows the Pro AudioSpectrum 16-bit addressing
scheme:

I< 16 BIT ADDRESS -...-.......-... >I

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 Description

I<--- 388 --->I OPL3 FM
I< ----------- 1788 ------------>I MIDI

I< 5388 >I SCSI
I< F388 >I Configuration

Table 19 Relocatable Hardware Addresses

The original Pro AudioSpectrum used 388h through 38Bh for it's base address.
This address range was originally chosen by Adlib even though it is within the
reserved area of the SDLC or 2nd Bisynchronous communications hardware.
Fortunately, almost no hardware has been found to have conflicts with this
default address range.

Media Vision's 1 / 0 relocation capability is software selectable to any one of 256
locations, but only four are recommended. To avoid creating 1 / 0 conflicts with
other devices, Media Vision only suggests using the base address of 388h, 384h,
38Ch, or Ox288h.

Pro AudioSpectrum Developer's Toolkit Reference D-1

Chapter D Relocating Pro AudioSpectrum 110 Addresses

You must reset the hardware before the board accept a new base address.

To relocate 1 /0 addresses, write two 8-bit values to the Master Address Pointer
register at address 9AOlh.

1. Write the board ID value address 9A01h.

Valid settings are BCh through BFh.

2. Write the base address value shifted right by two positions.

The following assembler code sets up the base address at 388h:

mov dx, 09a01h; Master Address Pointer

mov al, OBCh; 1st Board ID

out dx,al; Send the ID

mov ax, 0388h; ax = 1110001000B

shr ax,2; ax = lllOOOlOB

out dx,al; Send the Address

This procedure can be followed for the next three boards. To support the 1 /0
relocation, the Pro AudioSpectrurn Developer's Toolkit provides a library call
to locate the existing hardware.

The routine MVGetHWVersion returns a variety of information including a
translate code. This translate code is XORed into the original 1 /0 address to
derive the physical 1 /0 address.

The following assembler code segment programs the Cross Channel register:

include common.inc; PAS equates

mov dx,CROSSCHANNEL; An EQUated address

xor dx, [-MVTranslateCodel; Adjust the address

in a1,dx; get all the bits

and a1,fcCpcmbits; save the PCM bits

or al,bCC12l+bCCr2r; set 1-2-1, r-2-r

out dx,al; send it back out . . .

D-2 Pro Audiospectrum Developer's Toolkit Reference

Pro AudioSpectrum Utility
Proarams

The Pro AudioSpectrum Developer's Toolkit includes a number of useful utility
programs that you can use to explore the Pro AudioSpectrum. Source is
available on the Developer's Toolkit disk for many of these utilities. Read the
file SOURCE. LST in the root directory for a list of the source files.

Several of these utilities require that you have the MVSOUND.SYS device driver
loaded by CONFIG. SYS. Most of these utilities display the command line
parameters if you type the program name without switch settings. For
example, to get information about the utility PLAYFILE. EXE, type PLAYFILE
at the MS-DOS prompt.

The following conventions apply to all the utilities below, except when
explicitly noted otherwise:

Command flags can be typed in either upper- or lowercase, and a dash (-) or
slash (/) preceding the flag is optional.

PLAYFILE tigers.wav D3 S120

PLAYFILE tigers.wav /s120 -d3

Flags need not be entered in a prescribed order. The two command lines
below are equivalent:

PLAYFILE tigers.wav D3 S120

PLAYFILE tigers.wav S120 D3

PLAY FILE
The PLAYFILE.EXE utility plays back PCM digitized audio data stored in a file.
It converts the digital sound data into audio that can be mixed and played
through the speakers or headphone. A companion program, RECFILE.EXE,
records digital sound data. PLAYFILE can playback audio files at up to 44,100
samples per second (double for stereo) on most machines.

Pro AudioSpectrum Developer's Toolkit Reference E-1

Chapter E Pro AudioSpectrum Utility Programs

Syntax
PLAYFILE <sound filename> [Dx] [Ixl [FCC] [Sl [Sxxxl
[Rxxxxxl [I 6 1

where:

sound filename

Dx

Sxxx

Rxxxxx

Filename of file to be played. You must specify the file extension.

Optional. Specifies the DMA channel and ovemdes the default DMA
setting. Enter a DMA channel value of 1,2,3,5,6, or 7.

Optional. Specifies the IRQ channel and overrides the default IRQ setting.
Enter an IRQ channel value of 3 ,5 ,6 ,7 , 10, 11, 12, or 15.

Optional. Sets the cut-off frequency for the low-pass filter. Enter a filter
value of 1 through 6. 1 is the recommended setting for male speech (cut-off
at about 6 kHz). 6 is recommended for high-fidelity music (cut-off at about
22 kHz).

Optional. Forces a monaural file to be played back as stereo sound. Half of
the sound samples (every other one) become left -source sound data; the
other half become the right source.

Optional. Sets the speed adjustment. Enter a speed adjustment value from
0 (silence) to 200 (double speed). A value of 100 sets the speed adjustment
level to "no change."

Optional for .WAV and .VOC files; required for other file types. Sets the
sampling rate and ovemdes the sampling rate in the file headers of .WAV
and .VOC files. Enter a value from 4000 to 44100.

Optional. Specifies that the file be played as 16-bit PCM.

Note: PLAYFILE will play back any file you give it. If it does not recognize the
file type, it assumes that the file contains &bit unpacked PCM audio data.

Source code
Provided.

Example
PLAYFILE TEST123.WAV 5120

This plays sound file TEST123 at 120% of the speed it was recorded (20%
speed increase).

RECFILE
RECFILE.EXE records audio input and converts it into PCM digitized audio
that is saved to disk in either the .VOC or .WAV file format. Before using
RECFILE, use the PAS utility to setup the mixer inputs and volume control.

E-2 Pro Audiospectrum Developer's Toolkit Reference

RECFILE records at up to 44,100 samples per second (double for stereo) on
most machines.

To terminate recording, press the [ESC] key.

Note: Since the PCM circuitry on the Pro Audiospectrum can be used for
either playing back or recording digitized audio, you must not select
digitized audio as an input when recording with RECFILE.

Syntax
RECFILE <sound filename> [Rxxxxx] [Dx] [Ix] [FCC] [S]

where:
sound filename Required. Filename of file to capture audio data. If you specify the .VOC

file extension, the sound data is saved in Sound Blaster .VOC file format.
If you do not specify .VOC, the sound data is saved in Microsoft WAVE
(.WAV) file format.

Rxxxxx Required. Sets sampling rate. Enter avalue from 4000 and 44100. Note that
if you select 44100 and are recording in stereo, you are actually saving
88200 samples per second.

Dx Optional. Specifies the DMA channel and ovemdes the default DMA
setting. Enter a DMA channel value of 1,2,3,5,6, or 7.

IX Optional. Specifies the IRQ channel and ovemdes the default IRQ setting.
Enter an IRQ channel value of 3,5,6,7, 10, 11, 12, or 15.

FCC Optional. Sets the cut-off frequency for the low-pass filter. Enter a filter
value of 1 through 6. 1 is the recommended setting for male speech (cut-off
at about 6 kHz). 6 is recommended for high-fidelity music (cut-off at about
22 kHz).

Optional. Forces stereo recording. If you record a stereo source in
monaural, only the left- channel sound is captured.

16 Optional. Specifies that the file be recorded as 16-bit PCM.

- - --- - -

Note: Use the lowest possible sampling rate that's feasible to avoid filling up
the hard disk. For example, to record a male voice a sampling rate of 6000 is
adequate. Digitized audio sound files can grow very quickly. If you record
stereo sound at 44100 sampling rate you record 88,200 samples per second.
Since each sample is 1 byte, you save 88,200 bytes per second. One minute of
recording consumes just over 1.77 megabytes!

Source code
Provided.

Pro Audiospectrum Developer's Toolkit Reference E-3

Chapter E Pro AudioSpectrum Utility Programs

Example
RECFILE LEFT.WAV 1-11025 S 16

This example creates a stereo digitized audio file, in .WAV format, that has
been sampled in 16-bit PCM at 11 kHz (recording 22K samples per second).

BLOCKOUT
The BLOCKOUT.EXE utility is similar to the PLAYFILE-EXE utility, but is much
simpler. Like PLAYFILE, it plays back PCM digitized audio data stored in a file.
It is designed to playback a file created by BLoCKIN.EXE, has a fixed playback
rate of 22,050 samples per second, and assumes monaural sound.

Syntax
BLOCKOUT <sound filename>

sound filename Required. Filename of file to be played. You must specify the file
extension. This file should be created by BLOCIUN.EXE.

Note: BLOCKOUT plays back any file you give it. If it does not recognize the file
type, it assumes that the file contains &bit unpacked PCM audio data.

Source code
Provided.

Example
BLOCKOUT MYVOICE.TST

The BLOCKIN.EXE utility is similar in function to the RECFILE utility but is
much simpler. It records monaural audio input (left channel only) to disk at a
fixed rate of 22050 samples per second. The sound file can be played by
BLOCKOUT.

Terminate recording by pressing the [ESC] key

E-4 Pro AudioSpectrum Developer's Toolkit Reference

MERGE

Syntax
BLOCKIN <sound filename>

where:
sound filename Required. Filename of file to capture audio data. If you specify the .VOC

file extension, the sound data is saved in Sound Blaster .VOC file format.
If you do not specify .VOC, the sound data is saved in Microsoft WAVE
(.WAV) file format.

Source code
Provided.

Example
BLOCKIN MYVOICE.TST

This creates a stereo digitized audio file, in unpacked 8-bit binary format (no
header), that has been sampled at 22K samples per second.

MERGE
MERGE combines two .WAV format audio files into a single file. If the two sources
files are monaural, the left source becomes left channel information and the
right source becomes right channel information in the output file. If the two
source files are stereo, MERGE combines the first file's left channel with the
second file's right channel.

Syntax
MERGE <left source filename> <right source filename>
<output>

where:
left source Name of .WAV file that provides left channel audio information.

right source Name of .WAV file that provides right channel audio information

output Name of output file that is created by combining the left and right source
files.

Pro AudioSpectrurn Developer's Toolkit Reference E-5

Chapter E Pro AudioSpectrum Utility Programs

Error messages
MERGE generates the following two different error messages.

Error Message Description
One of the input files is specified as You cannot overwrite an input file. Use an output
the output file name. filename that is different from that of the input file.

The leftlright channel is already a MERGE has recognized that one (or both) of the input
stereo file. Is this okay? sources are stereo channels. Confirm that you want to

merge stereo sources by pressing 'Y'. Press 'N' to
abandon the merge.

Source code
Not Provided.

Example
MERGE speech.wav music.wav Waf.wav

WHATIS lets you examine the contents of a .VOC file and shows the contents of
the header for each data block.

Syntax
WHATIS <file.voc>

where:
file.voc Name of the file to examine.

Source code
Not Provided.

Example
WHATIS GUPPY.VOC

WAVEIT converts .VOC, .SOU, and other 8-bit PCM digitized audio files into
Microsoft Wave (.WAV) format. If WAVEIT recognizes the input file type (by
examining the file extension), it reads its header information and copies
relevant parameters to the header of the .WAV output file that it creates.

E-6 Pro AudioSpectrum Developer's Toolkit Reference

PAS

Syntax
WAVEIT <input file> <output file> [Rxxxxx] [S]

where
input file Name of the .VOC, .SOU, or other 8-bit PCM file that you want ta convert

to .WAV format. You must specify the file extension.

output file Name of the .WAV file generated by the WAVEIT utility.

Rxxxxx Optional. Sets the sample rate to assign the output file. If the file type is
.VOC or .SOU, WAVEIT reads the sample rate from the input file header.
To convert other file types you must supply the sample rate. You can also
override the .VOC or .SOU sample rate using this parameter.

The rate can vary from 4000 to 44100. If you specify the conversion to be
done in stereo (using the S flag), the actual sampling rate is automatically
doubled.

Optional. Specifies that the PCM data in the .VOC or .SOU file to be
interpreted as stereo data. If this flag is left out, the <input file> is
interpreted as monaural data. When S is specified, WAVEIT ignores the
.VOC or .SOU file header information indicating that stereo or monaural
data is contained in the file.

Source code
Not provided.

Example
WAVEIT thunder.voc thunder.wav

PAS lets you send commands to the mixer, equalizer, and volume control from
the MS-DOS command line or from a batch file. PAS also provides an interactive
mixer control panel. With this very easy-to-use interface you can see the current
mixer settings; toggle mixer input sources on and off and set their individual
levels; and, control the total volume control, bass, and treble.

While using the on-screen mixer you can press [Fl] for help.

You can find a more complete description of the PAS utility in
Pro AudioSpectrum User's Guide.

Pro AudioSpectrum Developer's Toolkit Reference E-7

Chapter E Pro AudioSpectrum Utility Programs

Syntax
PAS [* I

where
* Optional. Causes the interactive mixer control panel to appear.

Source code
The user interface source code, dialog. c, is provided in
\pas\subs\mixers.

OPL3 is designed for hardware 'hackers' who want to directly program the FM
synthesizer chip. The OPL3 utility displays a map of the FM synthesizer
registers. Using a mouse you can point to and click on register bits. When you
toggle KON (key on) you hear the sound corresponding to the register values
you selected. This utility makes it easy to understand the FM synthesizer by
giving you immediate, audible feedback as you program the FM synthesizer
operators.

For detailed information on standard FM synthesizer registers, see Chapter 11,
"Standard FM Synthesizer Register Functions." For detailed information on
enhanced (OPL3) FM synthesizer registers, see Chapter 12, "Enhanced FM
Synthesizer Register Functions."

Since there are too many registers to display all on the screen at one time, this
utility only shows the relevant set of registers to an operator. To program an
individual operator, you program each register in the set that controls that
operator. When you select a register to program, OPL3 automatically displays
all the related registers, making it easy to program an operator.

For example, if you select register 20 (to program the first operator), registers
40,60, and 80 are also displayed, because they all relate to operator one.
Additionally, you will see registers AO, BO, and CO because they contain
parameters for the first voice, which is comprised of operators 1 and 4.
Registers Olh through 04h, register 08h, and register BDh apply to all operators
so they are always displayed.

Note: This utility requires a mouse and VGA color adapter. It is loaded only if
it detects the correct equipment in the PC.

E-8 Pro AudioSpectrum Developer's Toolkit Reference

OPL3 Screen
The OPL3 utility screen contains the following components:

Component Description
Register window The register window consists of five vertical sections. Each is described

below in the order they appear from left to right.

Address (Index) The Address section is the left-most column titled "Index". This column
displays the address offset, from the base address of the Yamaha chip, for
a register or register group. For example, the first row of the register map
has an Address entry of 01. This row explains the register at offset +01.
The middle section of this utility begins with an Address entry of 20h-
35h. This row explains the 18 registers in the register group at offsets
+20h through +35h. Each register in this group controls the amplitude
(AM), vibrato (VIB) and similar characteristics for its corresponding
operator.

Register Map The register map, which contains eight columns titled D7 through DO,
(D7-DO) provides short descriptive labels explaining the purpose of each register

bit. The meaning of each bit, or group of bits, varies from register to
register.

The following figure shows an example OPL3 screen display:

INSTR rn
Figure 12 OLP3 Sample Display

Pro AudioSpectrum Developer's Toolkit Reference E-9

Chapter E Pro AudioSpectrum Utility Programs

OPL3 gives you further information on each bit field when you position the
cross-hair on the corresponding bit in the Bit Value column.

Register Select The narrow column immediately to the right of the register tells you which
(un-labeled register is currently selected among those in aregister group. Note how the
column) first five rows in this column display the same value as the Index column

since there is only one register in each group. Now examine the row that
has an Index entry of 20-35. For this row, the Selected Register column
tells you that register 20 is currently selected. Any changes you make to bit
values, by clicking on the bits in the columns to the right, will revise
register 20 only. By clicking on this column you can switch to another
register in this group.
For example, by positioning the cross-hair on the 20 value and clicking
once with the left mouse button you can cause register 21 to become the
currently selected register in this group. Conversely, clicking with the right
button decrements the register select. Note that when you switch to
register 21 you also simultaneously switch to registers 41,61, 81, and El
in the rows below. All five registers are related to the same operator.

Bit Value This column, titled "76543210", displays the individual bits of the
currently selected register. You can change the bit values by positioning
the cross-hair on register (row) and bit you want to change, and then click
on the bit. You will toggle the bit from 0 to 1 or vice-versa. When you
position on a bit its meaning is explained in the Helps window. Note that
the column to the right shows the hex equivalent for the 8 bits shown in
this column.

Hex Value You can also change the register value by clicking on the hex value
(un-labeled displayed in the un-labeled, right-most column.
column)

Helps window Text appears here that explains the register bits. Use the mouse to position
the cross-hair on the Bit Value column you want to have explained.

Mouse picture This picture explains what the mouse buttons do. When you click on a bit
you toggle it on or off. When you click on a hex value you increment (left
mouse button) or decrement (right mouse button) by one.

KON Voice box This keys on (turns on) ALL voices simultaneously. Click once to turn on
the voices, click twice to turn off. You can sound a single voice by double-
clicking on that voices's KON bit (in BO-B8).

Configuration File
OPL3 automatically saves the register settings when you quit. They are stored
in the file OPL3.STT. When you next mOPL3, these settings are restored. To
quickly clear all registers, delete the OPL3.STT configuration file before running
this utility.

Source
Not provided.

E-10 Pro AudioSpectrum Developer's Toolkit Reference

Example
The following values demonstrate how to set up a single operator for making a
simple sound. First set all bits to zero, if they are not already. Next, prepare
configure operator 0 with the settings given below. They toggle the Key-On bit
on and off to generate notes.

Configure the registers at offset 20h, 40h, 60h, and 80h that control this
operator:

register 20 (h4ulti) Olh

register 40 (KSLtTL) OOh
register 60 (ARJDR) FOh

register 80 (SLIRR) FFh

Now configure the registers that control the first voice (operators 1 and 4, but
operator 4 will not be enabled). The F-Number (low bits), F-Number (high
bits), and Block parameters in registers A0 and BO control the operator
frequency. Bit DO is very important, since this is the "connect" that enables
sound to be heard from this voice:

register A0 @Number (L) 40h

register BO (Block/F-Number(H)) 12h

register CO (Connect) Olh

To hear the sound click twice on the KON (key on) bit for this voice, D5 in
register BO. Now experiment by changing the frequency by clicking on the
MUL bits in 20h. Try changing the timbre by adding tremolo (AM) or vibrato
(VIB).

Note: The settings above describe the fourth octave A that has a frequency of
440 hertz. For a complete list of F-Numbers, see Appendix A, "FM Hardware
Register Charts and Tables."

Pro Audiospectrum Developer's Toolkit Reference E-11

Chapter E Pro AudioSpectrum Utility Programs

REPORT
REPORT notifies your of all INT 2F calls made to MVPROAS. It echoes
messages to a monochrome adapter (only) before and after an INT 2F call.

REPORT stays memory resident until you reboot.

Syntax
REPORT

Source code
Provided upon request.

E-12 Pro AudioSpectrum Developer's Toolkit Reference

INT 2F Function Calls

This appendix documents the binary INT 2F interface to the
Pro AudioSpectrum. The INT 2F multiplex interrupt is used by applications to
talk directly to the control devices on the Pro AudioSpectrurn like the mixers
and volume control. INT 2F calls are made directly to the MVSOUND.SYS device
driver rather than through MS-DOS. This interface is non-reentrant and uses a
semaphore to control entry. Return values indicate whether calls were
successful or whether a collision occurred with another process.

An especially important call is the Function #3 - Get Pointer to Function Table.
It points to a table of function pointers that are used access to most of the
devices on the Pro AudioSpectrum board. The linkable mixer sub-routines use
this function for mixer control.

Common function call method
All functions share a common method for function call entry and exit. They are
called through a single entry point using appropriate function numbers in
register AX and function number variables in registers BX, CX, and DX.

Return values are placed in registers AX, BX, CX, and DX. The normal return
values are listed below:

Register Normal return value
AX 'MV' if the call was successful

not 'MV' if the call failed

BX Varies by function call

CX Varies by function call

DX Varies by function call

Pro AudioSpectrurn Developer's Toolkit Reference F-1

Chapter F INT 2F Function Calls

A function call can fail if:

The driver is not loaded.

The call collided with another program that just called this driver. A
semaphore scheme is employed by the driver to ensure that the driver will
not respond to a second call while still handling the first.

Another process uses 'BC' as its INT 2F interface identifier.

The example below shows the common calling method. Prototype function call
entry/exit code can also be found on the developer's kit diskette in the
M1XERS.H file.

ASM include binary.inc

AH OxBC ; Media Vision INT2F identifier

AX function ; Media Vision function number (OxBChh)

BX (call dependent)

(call dependent)

(call dependent)

Check For Driver
Function 0

Checks to see if the MVSOUND.SYS device driver is loaded. If the device driver
is loaded, the function returns a unique set of values in variables AX and BX.

Input parameters

AX OxBCOO

BX Ox3F3F

Return values
If the driver is loaded:

AX OxBCOO (unchanged)

BX Ox6D00 (M)

CX 0x0076 (v)

DX 0x2020

XORING CX and DX into BX returns the ASCLI characters "MV".

If the driver is not loaded, values in the registers are unknown.

F-2 Pro Audiospectrum Developer's Toolkit Reference

Get Version Function 1

Related topics
INT 2F Function #1 (Get Version #), MVInitMixerCode

Get Version
Function 1

Returns version number of the MVSOUND.SYS device driver and the version of
the Pro Audiospectrum board.

Input parameters

AX OxBCOl

Return values
If the function call was successful:

AX 'MV'

BX library major version id

CX library minor version id

DX hardware version

If the function call failed:

AX does not contain 'MV'

BX undefined

CX undefined

DX undefined

Related topics
INT 2F Function #O (Check for Driver)

Pro AudioSpectrum Developer's Toolkit Reference F-3

Chapter F INT 2F Function Calls

Get Pointer to State Table
Function 2

Returns a far pointer to the state table containing hardware state information.
The state table is necessary because the Pro AudioSpectrum contains write-only
registers.

The structure declaration for the state table, taken from file STATE.H follows
the related topics section. The developer's kit diskette contains STATE.INC for
MASM programmers.

Note: The comment for each structure element gives the hex offset of the given
board address.

Input parameters

AX OxBC02

Return values
If the function call was successful:

AX 'MV"

BX offset to the table

CX length of the table

DX segment to the table

If the function call failed:

AX does not contain 'MV'

BX undefined

CX undefined

DX undefined

Related topics
None.

State table
struct MVState

{

unsign char -sysspkrtmr; / * 42 System Speaker Timer Address * /

unsign char -systmrctlr; / * 43 System Timer Control * /

F-4 Pro Audiospectrum Developer's Toolkit Reference

Get Pointer to State Table Function 2

unsign char -sysspkrreg;

unsign char Joystick;

unsign char -1fmaddr;

unsign char -1frndata

unsign char -rfrnaddr

unsign char -rfmdata

unsign char -RESRVD1[4];

unsign char -audiomixr;

unsign char -intrctlrst;

61 System Speaker Register * /

201 Joystick Register * /

388 Left FM Synth Address * /

389 Left FM Synth Data * /

38A Right FM Synth Address * /

38B Right FM Synth Data * /

reserved * /

B88 Audio Mixer Control * /

B89 Interrupt Status * /

unsign char -audiofilt; / * B8A Audio Filter Control * /

unsign char -intrctlr; / * B8B Interrupt Control * /

unsign char -pcmdata; / * F88 PCM Data 1/0 Register * /

unsign char -RESRVD2; / * reserved * /

unsign char -crosschannel; / * F8A Cross Channel * /

unsign char -RESRVD3; / * reserved * /

unsign int -samplerate; / * 1388 Sample Rate Timer * /

unsign int -samplecnt; / * 1389 Sample Count Register * /

unsign int -spkrtmr; / * 138A Shadow Speaker Timer Count * /

unsign char -tmrctlr; / * 138B Local Timer Control * /

unsign char _RESRVD4[81; / * reserved * /

1 ;

Note: The library code keeps entries from B8A through 1389 inclusive up-to-
date whenever you make library calls. If you write directly to the hardware
you are responsible for updating the corresponding entries in this table.

Pro Audiospectrum Developer's Toolkit Reference F-5

Chapter F INT 2F Function Calls

Get Pointer to Function Table
Function 3

Returns a far pointer to the function table containing addresses of driver
functions that set or get settings for Pro AudioSpectrum devices. Devices
controlled through this interface include the mixer, total volume control, filter,
and the cross channel device.

The software routines called indirectly through Function 3 pointers are
identical to the statically linked routines.

Note: When MVInitMixerCode () is called, Function 3 is called to
dynamically link to MVSOUND. SYS ' s ten internal functions. This level of
indirection is necessary to insulate your program from future hardware
changes.

Input parameters

Return values
If the function call was successful:

AX 'MV'

BX offset address to table

CX number of table entries

DX segment address to table

If the function call failed:

AX does not contain 'MV"

BX undefined

CX undefined

DX undefined

F-6 Pro AudioSpectrum Developer's Toolkit Reference

Get DMA/IRQ/INT Function 4

The table below lists the operations that are activated using Function 3
pointers.

Table 20 Operations Activated By Function 3

control (5)

Get filter (6)

Get cross
channel (7)

Real sound
switch (8)

FM split (9)

Related topics
For additional information on how to use the Function 3 calls described below,
refer to the comparable cMV* routines in the Linkable Mixer Calls section.

Get DMA/IRQ/INT
Function 4

None

None

CX = mode

BX = state
CX = state

Returns the DMA, IRQ, and INT numbers that were selected when the
MVSOUND . SYS driver was loaded. These numbers are specified in the Device
command line in CONFIG. SYS.

Note: The software library currently returns only IBM XT DMA/IRQ values
(DMA 1-3 and IRQ 3-7).

BX = setting

BX = cross
channel bit
map
BX = state

BX = state

Pro AudioSpecfrum Developer's Toolkit Reference F-7

volume control

Returns setting of PCM low-pass
filter

Returns settings of cross channel
device

Sets or reads real sound setting

Sets or reads FM synthesizer split
setting

Chapter F INT 2F Function Calls

Input parameters
AX OxBC04

Return values
If the function call was successful:

AX 'W

BX DMA channel number (1-3,5-7)

CX IRQ channel number (3-15)

DX INT number (unused)

If the call failed:

AX does not contain 'MV'

BX undefined

CX undefined

DX undefined

Related topics
None.

Send Command Structure
Function 5

Reserved.

Get Driver Message
Function 6

Returns a pointer to the text message generated by the driver.

The driver generates messages (ASCII strings containing 79 characters or less
plus a null terminator) in response to each command it processes. The typical
text message is 'okay' after successful processing of a command.

Note: You must copy the test message immediately after a command is
processed. The next call to the driver, which could be generated by another
program h g in the background or the user issuing driver commands
from the keyboard, will overwrite the message response to your command.

F-8 Pro Audiospectrum Developer's Toolkit Reference

Set Hotkey Scan Codes Function 10

Input parameters

AX OxBCO6

Return values

If the function was successful.

AX 'MV'

BX offset of pointer

CX undefined

DX segment of pointer

If the call failed:

AX does not contain 'MV'

BX undefined

CX undefined

DX undefined

Related topics
None.

Set Hotkey Scan Codes
Function 10

Sets new scan codes for the keyboard hot key combinations that control the
master volume control. The default settings are:

[Ctrl] + [Alt] + [U] increase volume

[Ctrl] + [Alt] + [Dl decrease volume

[Ctrl] + [Alt] + [MI toggle the mute switch

Key scan codes are those of the standard IBM XT or AT keyboard (83,84,101,
and 102 key keyboards). Special AT keys, such as PgDn, generate extended (2
byte) scan codes where the first byte is always EO. Specify these keys by
entering only the second byte of the scan code.

Note: The new hot key combination will stay in effect until modified, as long
as the PAS driver is loaded, or until the PC is rebooted.

Pro AudioSpecfrum Developer's Toolkit Reference F-9

Chapter F INT 2F Function Calls

Input parameters
AX OxBCOA

BX hot key selection

CX new hot key scan code combo:

CH: key scan code

CL: shift state scan code

Valid BX and CX/CL scan codes:

Table 21 Hot Key Scan Code Values

Return values
If the function was successful:

AX 'MV"

BX undefined

CX previous hot key scan code combo

CH: shift state scan code

CL: key scan code

DX undefined

If the call failed:

AX does not contain 'MV'

BX undefined

CX undefined

DX undefined

Related topics
None.

F-10 Pro Audiospectrum Developer's Toolkit Reference

Get Path to Driver Function 11

Get Path to Driver
Function 11

Returns a pointer to an ASCII string (\PROAUDIO) that is the MS-DOS path to
the MVSOUND . SYS driver.

MS-DOS locates paths to drivers using CONFIG. SYS. This routine provides a
way for your application to locate the driver and other associated files in the
directory called \PROAUDIO.

Input parameters

AX OxBCOB

Return values
If the function was successful:

AX ' M Y '

BX offset of pointer

CX undefined

DX segment of pointer

If the call failed:

AX does not contain 'MV'

BX undefined

CX undefined

DX undefined

Related topics
None.

Pro AudioSpectrum Developer's Toolkit Reference F-11

Chapter F INT 2F Function Calls

F-12 Pro Audiospectrum Developer's Toolkit Reference

Index

A
additive synthesis, defined 8-3
AdLib compatibility 10-2

B
Bessel functions, defined 8-4
bulletin board phone numbers and modem

settings 1-5

C
cdreqheader.cmd values B-5
CD-ROM

capabilities 1-4
data definitions B-5
device driver error codes 16-3
programming

intermixing low-level and high-
level calls 16-1

Red Book address
conversion values 16-2
definition 16-2
formats 16-2

TOC address format 16-3
software API's, differences 16-1
supported disk size 19- 1
supported formats 19-1

CD-ROM high-level software API
allocating memory 17-2
finding

address of cdtable structure 17-4
address of discinfo table 17-5
address of trackinfo structures 17-6

initializing data structures 17-2
moving drive head to specified

track 17-8
playing a specified track 17-7
releasing memory 17-3
retrieving number of frames 17-6

CD-ROM low-level software API
calculating

frame offset 18-12
offset and play length 18-12

checking minutes, seconds, and frame
values 18-13

converting
16-bit integers to BCD values

18-15
a frame value to a Red Book

address 18-17
an MSF number 18-16
BCD values to 16-bit integers

18-14
Red Book address 18-15

determining
CD type 18-11
device driver status 18-7
drive status 18-6
if disc changed 18-8

ejecting the disc 18-6
filling

discinfo structure 18-9
qchaninfo structure 18-10
trackinfo structure 18-9

initializing internal buffers 18-5
moving drive head to specified

location 18-4
pausing a song 18-3
playing a CD for specified length 18- 1
resuming playing from a paused

state 18-4
stopping a song 18-2

cell number 8-6
compatibility, Pro AudioSpectrum

language compilers 2-1
PC hardware 2- 1

compilers, supported compilers 2- 1
configuring multiple

Pro Audiospectrum's in one
PC D-1

connection
operator cell components 8-5

control devices, interacting directly from
programs F-1

converting PCM files to WAV format

Pro AudioSpectrum Developer's Toolkit Reference Index-1

WAVEIT utility E-6
cross channel device diagram 21-9

D
determining addresses of driver

functions F-6
determining contents of VOC file

WHATIS utility E-6
determining if MVSOUND.SYS is

loaded F-2
determining MVSOUND.SYS and Pro

AudioSpectrum version
numbers F-3

device driver
determining

addresses of MVSOUND.SYS
functions F-6

DMA, IRQ, and INT numbers
associated with
MVSOUND.SYS F-7

if MVSOUND.SYS is loaded F-2
MVSOUND.SYS and

Pro AudioSpectrum version
numbers F-3

finding path to MVSOUND.SYS F- 11
returning

MVSOUND.SYS message F-8
MVSOUND.SYS messages F-8

device driver error codes, CD-ROM 16-3
DMA

controller, auto-initialize mode 4-2
PCM background buffer 4-3
PCM buffer divisions 4-2
PCM foregroundlbackground buffer

tasks 4-2
PCM input buffer 4-3
programming

least significant bit C-4
loading start address and block

length C-3
programming procedure C-5

E
enabling feature interrupts 3-4

F
file and block 110, PCM 4-3
FM FM synthesizer

operator amplitude, controlling 11-1 1
FM hardware programming

controlling
timbre 11-7
timer interrupts and status

flags 11-3
volume devices 1 1 - 1 1

enabling
left and right channel, OPL3

mode 12-3
percussion instruments 11-20
percussion mode 1 1-22
sound, Key On command 1 1-19
Wave Select 11-1

masking
Timer 1 1 1-4
Timer 2 1 1-4

playing a note 8-8
resetting IRQ's 1 1-4
setting

attackldecay rates 1 1-12
connection mode 11-22
connection mode, OPL3 based

systems 12-2
envelope shape 1 1 - 1 1
feedback, OPL3 mode 12-3
harmonic frequencies 11-10
keyboard split 1 1-5
melodylpercussion mode 1 1-20
New bit, OPL3-based systems 12-2
octave and note 1 1-16
operator feedback strength 11-22
OPL3 mode 12-2
sustainlrelease levels 1 1 - 15
synthesizer mode 1 1-5
Timer 1 1 1-2
Timer 2 11-3
tremolo/vibrato depth 11-20
waveforms, 38 12-based

systems 1 1-24
waveforms, OPL3 mode 12-5

Index2 Pro AudioSpectnrm Developer's Toolkit Reference

starting and stopping
Timer 1 11 -5
Timer 2 1 1-4

FM low-level software API
setting sound mode 9-2
writing

to both sides of the synthisizer 9-2
to the left side of the synthesizer

9-3
to the right side of the syntesizer

9-4
FM sound modes

changing 8-8
timing procedure 8-8

FM synthesis
defined 8-3
operator components 8-4

FM synthesizer
AdLib compatible port addresses 10-2
attackldecay rate control 1 1-12
capabilities 1-3
channels, defined 8-3
chip sets 8-2
connection mode

setting in standard mode 11-22
settings for OPL3-based

systems 12-2
envelope shape, setting 11-1 1
experimenting using the OPL3

utility E-8
feedback, setting in OPL3 mode 12-3
harmonic frequencies, setting with

Multiple bits 11-10
IRQ's, resetting 11 -4
Key On (sound), enabling 11-19
keyboard split, setting 11-5
left and right channel, enabling in

OPL3 mode 12-3
melody/percussion mode, setting

11-20
New bit, setting for OPL3-based

systems 12-2
octave and note, setting 1 1 - 16
operator connection modes 8-3

operator feedback, setting 11-22
OPL3 mode, setting 12-2
percussion instruments, enabling

11-20
percussion mode, enabling 11-22
sound mode, setting 11-5
standard port addresses 10-2
sustain/release level, setting 11-15
timbre, controlling 11 -7
timers

controlling timer interrupts and
status flags 11-3

masking Timer 1 1 1-4
masking Timer 2 11-4
setting Timer 1 11 -2
setting Timer 2 11-3
starting and stopping Timer 1 11-5
starting and stopping Timer 2 11-4

tremolo/vibrato depth, setting 11-20
voices, defined 8-3
volume devices, controlling 11-1 1
Wave Select, enabling 11-1
waveforms

setting in OPL3 mode 12-5
setting waveforms for 38 12-based

systems 1 1-24

G
global variables

MidiInFilter 13-2 -

I
initializing
FM low-level software API 8-3
MIDI low-level software API 13-1
PCM high-level software API 4-5
PCM low-level software API 4-7

installating the Pro Audiospectrum
Developer's Toolkit 2-2

INT 2F
determining

addresses of device driver
functions F-6

DMA, IRQ, and INT numbers
associated with

Pro Audio Spt zctrum Developer's Toolkit Reference Index-3

MVSOUND.SYS F-7
if MVSOUND.SYS is loaded F-2
MVSOUND.SYS and

Pro AudioSpectrum version
numbers F-3

failure conditions F-2
finding path to MVSOUND.SYS

driver F- 1 1
function call method F-1
reporting INT 2F calls made to

MVPROAS
REPORT utility E-12

retrieving pointer to state table F-4
returning

device driver message F-8
device driver messages F-8

setting hot key combinations for
volume control F-9

interrupt
controller, PC architecture C-1

interrupt processing
MIDI 13-3

interrupts
acknowledging on first PC

controller C-2
acknowledging on second PC

controller C-2
detecting MIDI compare time and time

stamp 15-6
detecting MIDI input data

available 15-6
determining status of enabled

interrupts 3-4
enabling MIDI interrupts 15-3
programming the PC interrupt

controller C- 1
setting MIDI time interval for timer

interrupts 15-1

M
MERGE utility E-5
merging WAV files E-5
MIDI

capabilities 1-3

global variables
MidiInFilter 13-2 -

polled UO 14-2
MIDI device

compare time values, setting 15-10
data buffers

sending and receiving to 15-3
FIFO buffers

counting number of bytes sent or
received 15-8

FIFO pointers
setting 15-3

input/output
echoing 15-3

interrupts
enabling 15-3

time interval, timer interrupts,
setting 15-1

timer
reading timer register 15-2

MIDI hardware programming
counting number of bytes sent or

received from FIFO buffers
15-8

detecting
compare time and time stamp

interrupts 15-6
FIFO overruns 15-6
frame errors 15-6
input data available interrupts 15-6

echoing input/output 15-3
enabling interrupts 15-3
reading timer register 15-2
sendinglreceiving data to buffers 15-3
setting

compare time values 15-10
FIFO pointers 15-3
time interval, timer interrupts 15-1

MIDI low-level software API
initializing hardware for bi-directional

I/O 14-2
retrieving buffers 14-3
sending

a buffer 14-4

Index-4 Pro AudioSpectrum Developer's Toolkit Reference

a byte 14-5
shutting down hardware 14-2

mixer
capabilities 1-4
device driver background tasks 20-2
programming procedure 20-5
volume control key sequences 20-3

mixer command line interface
controlling

channel configurations 21 -9
input devices 21-5
output devices 21 -6
volume device 21-8

enabling "Real Sound 21-10
executing queued commands 21 -5
initializing MVPROAS settings 21 -5
muting external output jack 21-8
passing commands from batch

files 21-10
prototype code segment 21-1 1
queuing commands 21-4
reading current settings 21 -4
setting volume levels and switch

settings 21-3
syntax

description 21-1
formal definition 21 -3
optional key words 21-2

mixer low-level software API
configuring channels and mixers 22-7
determining

PCM low-pass filter setting 22-2
signal level setting for a

channel 22-3
total volume control settings 22-4

linking function call library with device
driver 22-1

reading "Real Sound setting 22-6
setting

"Real Sound" mode 22-6
channel signal level 22-7
frequency limit for filter 22-6
total volume control 22-9

MS CD-ROM extensions

clearing error variable 19-1 3
determining

descriptor preference 19-9
first CD-ROM drive number 19-3
if drive is supported 19-8
if MS CD-ROM extensions are

installed 19-2
MS CD-ROM version 19-8
number of drives installed 19-2

filling
buffer with abstract file name 19-4
buffer with bibliography file

name 19-5
buffer with CD-ROM drive list

19-9
buffer with copyright file name

19-4
buffer with directory entry 19-1 1
buffer with drive identifiers and

addresses 19-3
reading

sectors 19-6
volume table of contents 19-6

retrieving last error 19-12
searching directory for entry 19-1 1
sending device request 19-1 1
setting preference for primary1

supplementary descriptors
19-10

writing sectors 19-7
muting

Pro AudioSpectrum external output
jack 21-8

muting the Pro AudioSpectrum 3-4
MVPRO AS

background tasks 20-2
initializing settings 21 -5

MVSOUND.SYS
determining DMA, IRQ, and INT

numbers associated with F-7
finding path to F- 1 1
returning device driver messages F-8

Pro Audil oSpectrurn Developer's Toolkit Reference Index4

0
operator cell components 8-5
operator components

FM synthesis 8-4
operator connection

parallel mode 8-6
serial mode 8-4

operator connection modes
FM synthesizer 8-3

operators
understanding operator cell number

8-6

P
parallel mode, FM synthesis 8-6
PAS utility E-7
PC hardware and software requirements,

Pro AudioSpectrum 2-1
PCM

block-only calls 4-4
common file and block 110 calls 4-3
file and block U 0 advantages 4-3
file and block programming return

codes 4-6
file-only calls 4-3
initializing

PCM high-level software A H 4-5
PCM low-level software API 4-7

sampling capabilities 1-2
PCM device

ADC, reading from 7-3
channel connections, configuring 7-4
counters, enabling 7-2
DAC, writing to 7-3
DMA and PCM, enabling 7-4
DMA buffer division size, setting 7-7
output compression ratios, selecting

7-10
readlwrite mode, setti 7-8
speaker timer, controlling 7-8
time intervals, setting 7-6
timers, enabling 7-8

PCM hardware programming
configuring channel connections 7-4
controlling speaker timer 7-8

enabling
counters 7-2
DMA and PCM 7-4
timers 7-8

reading from the ADC 7-3
selecting

counting mode 7-8
output compression ratios 7-10

setting
DMA buffer division size 7-7
readwrite mode 7-8
time intervals 7-6
timer generator modes 7-8

writing to the DAC 7-3
PCM high-level software API

closing down UO system 5-3
initializing 5-7
initiating

block playback 5-9
playback 5- 1 1
recording 5- 10
recording to memory 5-8

setting parameters 5-8
sustaining

block playback 5-4
block recording 5-3
playback 5-6
recording 5-5

terminating UO 5- 12
voice-activated recording 5-2

PCM low-level software API
calling back the function call library

6-1 1
enabling IRQ and DMA channels 6-4
finding DMA buffer within 64K

boundary 6-3
halting processing 6-10
initializing 6-4
initiating

playback 6-7
recording 6-8

passing a pointer to DMA buffer 6-2
restarting If0 6-9
restoring interrupts 6-8

Index-6 Pro AudioSpectmm Developer's Toolkit Reference

setting parameters 6-6
stopping UO 6-5

PLAYFILE utility E-1
playing a digital audio file

PLAYFILE utility E- 1
playing a note, FM hardware

programming 8-8
polled UO, MIDI programming 14-2
Pro AudioSpectrum

enabling feature interrupts 3-4
PC hardware requirments 2-1

Pro AudioSpectrum hardware
base address variable 3-2

state table information F-4

u
USE-ACTIVE-ADDR

variable, board base address 3-2
utility program syntax E-1

v
VOC files

determining contents E-6
volume control

key sequences, mixer 20-3
setting hot key combinations F-9

configuring multiple -- -
Pro AudioSpectrumls in one W
PC D-1 WAV files

feature bits 3-3
converting PCM files to WAV

format E-6
physical addresses

recommended base addresses B-1
WAVEIT utility E-6

scheme D-1
WHATIS utility E-6

programming procedure
addressing Cross Channel register D-2
DMA C-5
mixer 20-5
relocating Pro AudioSpectrum UO

addresses D-2

R
RECFILE utility E-2
recording audio input to disk

RECFILE utility E-2
Red Book address

conversion values 16-2
definition 16-2
formats 16-2

REPORT utility E-12
reporting INT 2F calls made to

MVPROAS
REPORT utility E-12

returning device driver message F-8

S
sending commands to Pro AudioSpectrum

devices from command line E-7
serial mode, FM synthesis 8-4

Pro AudioSpectrum Developer's Toolkit Reference Index-7

	PAS Developer's Toolkit Reference
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1 - Introduction
	Pro AudioSpectrum Developer's Toolkit contents
	About this manual
	Software and hardware API's
	Bulletin board support

	Chapter 2 - Installing the Pro AudioSpectrum Developer's Toolkit
	PC system requirements
	Installation procedure
	Experimenting with your Pro AudioSpectrum

	Chapter 3 - Common Function Calls and Hardware Registers
	Common software API function call
	mvGetHWVersion
	Common hardware API register functions
	Audio Filter Control Register B8Ah
	Interrupt Control Register B8Bh
	Interrupt Status Register B89h

	PCM Programming Section
	Chapter 4 - PCM Programming Essentials
	Accessing PCM function calls
	Theory of Operation
	Using the High-Level PCM API
	Using the Low-Level PCM API

	Chapter 5 - High-Level PCM Function Call Reference
	ASpecialContinueFileInput
	ClosePCMBuffering
	ContinueBlockInput
	ContinueBlockOutput
	ContinueFileInput
	ContinueFileOutput
	OpenPCMBuffering
	PCMState
	StartBlockInput
	StartBlockOutput
	StartFileInput
	StopDMAIO

	Chapter 6 - Low-Level PCM Function Call Reference
	DMABuffer
	FindDMABuffer
	InitMVSound
	InitPCM
	PausePCM
	PCMInfo
	PCMPlay
	PCMRecord
	RemovePCM
	ResumePCM
	StopPCM
	UserFunc

	Chapter 7 - PCM Hardware Register Functions
	Audio Filter Control Register B8Ah
	PCM Data Register F88h
	Cross Channel Control Register F8Ah
	Sample Rate Timer Register 1388h
	Sample Buffer Count Register 1389h
	Local Speaker Timer Count Register 138Ah
	Local Timer Control Register 138Bh
	Sample Size Configuration Register 8389h

	FM Programming Section
	Chapter 8 - FM Synthesizer Programming Essentials
	Pro AudioSpectrum FM synthesizer capabilities
	Low-level FM synthesizer software API programming steps
	FM synthesizer channel modes
	Operator connection modes
	Understanding operator cell number and channel number
	Synthesizer sound modes
	Changing sound modes
	Programming strategy

	Chapter 9 - Low-Level FM Synthesizer Function Call Reference
	mvInitFMMode
	mvOutDual3812
	mvOutLeft3812
	mvOutRight3812

	Chapter 10 - FM Synthesizer Hardware I/O Ports
	FM synthesizer I/O addresses
	Reading and writing to FM synthesizer ports

	Chapter 11 - Standard FM Synthesizer Register Functions
	Test Register 01h
	Timer 1 Register 02h
	Timer 2 Register 03h
	Control Timer Register 04h
	CSM Mode / Keyboard Split Register 08h
	AM/VIB/EG/KSR/Multiple Registers 20h to 35h
	KSL / Total Level Registers 40h to 55h
	Attack / Decay Rate Registers 60h to 75h
	Sustain Level / Release Rate Registers 80h to 95h
	Block and F-Number Registers A0h to A8h to B0h to B8h
	Depth / Percussion / Instruments Register BDh
	Feedback / Connection Registers C0h - C8h
	Waveform Registers E0h to F5h

	Chapter 12 - Enhanced FM Synthesizer Register Functions
	Channel/Connection Select Register 04h (right half of OPL3)
	Select OPL3 Register 05h
	Feedback/Connection/Stereo Left and Right Register(s) C0h to C8h of Left and right half of chip
	Waveform Registers E0h to F5h

	MIDI Programming Section
	Chapter 13 - MIDI Programming Essentials
	MIDI software API information
	MV101 interrupt control

	Chapter 14 - Low-Level MIDI Function Call Reference
	mvMIDIEnable
	mvMIDIDisable
	mvMIDIGetBuff
	mvMIDIGetByte
	mvMIDISendBuff
	mvMIDISendByte

	Chapter 15 - MIDI Hardware Register Functions
	MIDI Prescale Register 1788h
	MIDI Timer Register 1789h
	MIDI Data Register 178Ah
	MIDI Control Register 178Bh
	MIDI Status Register 1B88h
	MIDI FIFO Count Register 1B89h
	MIDI Compare Time Register 1B8Ah

	CD-ROM Programming Section
	Chapter 16 - CD-ROM Programming Essentials
	CD-ROM function call syntax
	CD-ROM units of measure
	Red book address definitions
	BCD to integer value conversion
	TOC
	CD-ROM device driver status and error codes

	Chapter 17 - High-Level CD-ROM Function Call Reference
	buildaudiotoc
	createaudiotoc
	destroyaudiotoc
	getcdtable
	getdiscinfotable
	gettrackinfotable
	gettrackframes
	playcdtrack
	seektotrack

	Chapter 18 - Low-Level CD-ROM Function Call Reference
	cdplay
	cdstop
	cdpause
	cdresume
	cdseek
	cdreset
	cdeject
	cdstatus
	cdaudiostatus
	cdmediachanged
	cddiscinfo
	cdtrackinfo
	cdqchaninfo
	isanaudiocd
	cdseekmsf
	cdplaymsf
	fixmsf
	bcdtoint
	inttobcd
	redtolong
	msftolong
	longtored

	Chapter 19 - Microsoft CD-ROM Extension Function Call Reference
	ismscdex
	getnumcdroms
	getfirstcdrom
	getcdromlist
	getcopyrightfname
	getabstractfname
	getbibliofname
	readvtoc
	absdiscread
	absdiscwrite
	chkdrive
	getmscdexversion
	getcdromunits
	getvdescpref
	setvdescpref
	getdirentry
	senddevreq
	getlasterror
	clearlasterror

	Mixer Programming Section
	Chapter 20 - Mixer Programming Essentials
	MVPROAS Device Driver Overview
	Loading and Customizing MVPROAS
	Controlling Total Volume From the Keyboard
	Mixer block diagram
	Low-level Mixer API programming steps

	Chapter 21 - Command Line Mixer Interface
	Command Line Syntax
	MVPROAS Verbs
	Controlling MVPROAS devices
	Using MS-DOS Commands With MVPROAS
	Controlling MVPROAS From Programs

	Chapter 22 - Low-Level Mixer Function Call Reference
	cMVInitMixerCode
	cMVGetFilterFunction
	cMVGetMixerFunction
	cMVGetVolumeFunction
	cMVRealSoundSwitch
	cMVSetFilterFunction
	cMVSetMixerFunction
	cMVSetVolumeFunction

	Appendices
	Appendix A - FM Hardware Register Charts and Tables
	Rate to Time Conversion Tables
	Key Scaling Level Tables
	Standard Pitch Values

	Appendix B - CD-ROM Data Structures and Definitions
	Request header structure
	Data Definitions
	Microsoft CD-ROM Extensions data structures

	Appendix C - Programming the PC's Interrupt Controller and DMA Channels
	Programming the PC's interrupt controller
	Programming the AT DMA Controllers
	DMA Addresses
	DMA mode
	Programming procedure

	Appendix D - Relocating the Pro AudioSpectrum I/O Addresses
	Appendix E - Pro AudioSpectrum Utility Programs
	PLAYFILE
	RECFILE
	BLOCKOUT
	BLOCKIN
	MERGE
	WHATIS
	WAVEIT
	PAS
	OPL3
	REPORT

	Appendix F - INT 2F Function Calls
	Common function call method
	Check For Driver, Function 0
	Get Version, Function 1
	Get Pointer to State Table, Function 2
	Get Pointer to Function Table, Function 3
	Get DMA/IRQ/INT, Function 4
	Send Command Structure, Function 5
	Get Driver Message, Function 6
	Set Hotkey Scan Codes, Function 10
	Get Path to Driver, Function 11

	Index

