Dot-Matrix Printer DMP 130A

OPERATION MANUAL
CAT. No. 26-1280A

For your own protection, we urge you to record the serial number of this unit in the space provided. You will find the serial number on the bottom of the unit.
I. CUSTOMER OBLIGATIONS
A. CUSTOMER assumes full responsibility that this computer hardware purchased (the "Equipment"), and any copies of software included with the Equipment or licensed separately (the "Software") meets the specifications, capacity, capabilities, versatility, and other requirements of CUSTOMER.
B. CUSTOMER assumes full responsibility for the condition and effectiveness of the operating environment in which the Equipment and Software are to function, and for its installation.
II. LIMITED WARRANTIES AND CONDITIONS OF SALE
A. For a period of ninety (90) calendar days from the date of the Radio Shack sales document received upon purchase of the Equipment. RADIO SHACK warrants to the original CUSTOMER that the Equipment and the medium upon which the Software is stored is free from manufacturing defects. This warranty is only applicable to purchases of Tandy Equipment by the original customer from Radio Shack company-owned computer centers, retail stores, and Radio Shack franchisees and dealers at their authorized locations. The warranty is void if the Equipment or Software has been subjected to improper or abnormal use. If a manufacturing defect is discovered during the stated warranty period, the defective Equipment must be returned to a Radio Shack Computer Center, a Radio Shack retail store, a participating Radio Shack franchisee or a participating Radio Shack dealer for repair, along with a copy of the sales document or lease agreement. The original CUSTOMER'S sole and exclusive remedy in the event of a defect is limited to the correction of the defect by repair, replacement, or refund of the purchase price, at RADIO SHACK'S election and sole expense. RADIO SHACK has no obligation to replace or repair expendable items.
B. RADIO SHACK makes no warranty as to the design, capability, capacity, or suitability for use of the Software, except as provided in this paragraph. Software is licensed on an "AS IS" basis, without warranty. The original CUSTOMER'S exclusive remedy, in the event of a Software manufacturing defect, is its repair or replacement within thirty (30) calendar days of the date of the Radio Shack sales document received upon license of the Software. The defective Software shall be returned to a Radio Shack Computer Center, a Radio Shack retail store, a participating Radio Shack franchisee or Radio Shack dealer along with the sales document.
C. Except as provided herein no employee, agent, franchisee, dealer or other person is authorized to give any warranties of any nature on behalf of RADIO SHACK.
D. EXCEPT AS PROVIDED HEREIN, RADIO SHACK MAKES NO EXPRESS WARRANTIES, AND ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE IS LIMITED IN ITS DURATION TO THE DURATION OF THE WRITTEN LIMITED WARRANTIES SET FORTH HEREIN.
E. Some states do not allow limitations on how long an implied warranty lasts, so the above limitation(s) may not apply to CUSTOMER.
III. LIMITATION OF LIABILITY
A. EXCEPT AS PROVIDED HEREIN, RADIO SHACK SHALL HAVE NO LIABILITY OR RESPONSIBILITY TO CUSTOMER OR ANY OTHER PERSON OR ENTITY WITH RESPECT TO ANY LIABILITY, LOSS OR DAMAGE CAUSED OR ALLEGED TO BE CAUSED DIRECTLY OR INDIRECTLY BY "EQUUIPMENT" OR "SOFTWARE" SOLD, LEASED, LICENSED OR FURNISHED BY RADIO SHACK, INCLUDING, BUT NOT LIMITED TO, ANY INTERRUPTION OF SERVICE, LOSS OF BUSINESS OR ANTICIPATORY PROFITS OR CONSEQUENTIAL DAMAGES RESULTING FROM THE USE OR OPERATION OF THE "EQUIPMENT" OR "SOFTWARE." IN NO EVENT SHALL RADIO SHACK BE LIABLE FOR LOSS OF PROFITS, OR ANY INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY BREACH OF THIS WARRANTY OR IN ANY MANNER ARISING OUT OF OR CONNECTED WITH THE SALE, LEASE, LICENSE, USE OR ANTICIPATED USE OF THE "EQUIPMENT" OR "SOFTWARE."
NOTWITHSTANDING THE ABOVE LIMITATIONS AND WARRANTIES, RADIO SHACK'S LIABILITY HEREUNDER FOR DAMAGES INCURRED BY CUSTOMER OR OTHERS SHALL NOT EXCEED THE AMOUNT PAID BY CUSTOMER FOR THE PARTICULAR "EQUIPMENT" OR "SOFTWARE' INVOLVED.
B. RADIO SHACK shall not be liable for any damages caused by delay in delivering or furnishing Equipment and/or Software.
C. No action arising out of any claimed breach of this Warranty or transactions under this Warranty may be brought more than two (2) years after the cause of action has accrued or more than four (4) years after the date of the Radio Shack sales document for the Equipment or Software, whichever first occurs.
D. Some states do not allow the limitation or exclusion of incidental or consequential damages, so the above limitation(s) or exclusion(s) may not apply to CUSTOMER.
IV. SOFTWARE LICENSE

RADIO SHACK grants to CUSTOMER a non-exclusive, paid-up license to use the TANDY Software on one computer, subject to the following provisions:
A. Except as otherwise provided in this Software License, applicable copyright laws shall apply to the Software.
B. Title to the medium on which the Software is recorded (cassette and/or diskette) or stored (ROM) is transferred to CUSTOMER, but not title to the Software
C. CUSTOMER may use Software on a multiuser or network system only if either, the Software is expressly labeled to be for use on a multiuser or network system, or one copy of this software is purchased for each node or terminal on which Software is to be used simultaneously.
D. CUSTOMER shall not use, make, manufacture, or reproduce copies of Software except for use on one computer and as is specifically provided in this Software License. Customer is expressly prohibited from disassembling the Software.
E. CUSTOMER is permitted to make additional copies of the Software only for backup or archival purposes or if additional copies are required in the operation of one computer with the Software, but only to the extent the Software allows a backup copy to be made. However, for TRSDOS Software, CUSTOMER is permitted to make a limited number of additional copies for CUSTOMER'S own use.
F. CUSTOMER may resell or distribute unmodified copies of the Software provided CUSTOMER has purchased one copy of the Software for each one sold or distributed. The provisions of this Software License shall also be applicable to third parties receiving copies of the Software from CUSTOMER.
G. All copyright notices shall be retained on all copies of the Software.
V. APPLICABILITY OF WARRANTY
A. The terms and conditions of this Warranty are applicable as between RADIO SHACK and CUSTOMER to either a sale of the Equipment and/or Software License to CUSTOMER or to a transaction whereby Radio Shack sells or conveys such Equipment to a third party for lease to CUSTOMER.
B. The limitations of liability and Warranty provisions herein shall inure to the benefit of RADIO SHACK, the author, owner and or licensor of the Software and any manufacturer of the Equipment sold by Radio Shack.
VI. STATE LAW RIGHTS

The warranties granted herein give the original CUSTOMER specific legal rights, and the original CUSTOMER may have other rights which vary from state to state.

The FCC Wants You to Know

This equipment generates and uses radio frequency energy. If not installed and used properly, that is in strict accordance with the manufacturer's instructions, it may cause interference to radio and television reception.

It has been type tested and found to comply with the limits for a Class B computing device in accordance with the specifications in Subpart J of Part 15 of FCC Rules, which are designed to provide reasonable protection against such interference in a residential installation. However, there is no guarantee that interference will not occur in a particular installation.

If this equipment does cause interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient the receiving antenna
- Relocate the computer with respect to the receiver
- Move the computer away from the receiver
- Plug the computer into a different outlet so that computer and receiver are on different branch circuits.

Warning

This equipment has been certified to comply with the limits for a Class B computing device, pursuant to Subpart J of Part 15 of FCC Rules. Only peripherals (computer input/ouput devices, terminals, printers, etc.) certified to comply with the Class B limits may be attached to this computer. Operation with non-certified peripherals is likely to result in interference to radio and TV reception.

Dot Matrix Printer DMP 130A Operation Manual :

 1986 Tandy Corporation All Rights Reserved.Reproduction or use, without express written permission from Tandy Corporation and/or its licensor, of any portion of this manual is prohibited. While reasonable efforts have been taken in the preparation of this manual to assure its accuracy, Tandy Corporation assumes no liability resulting from any errors or omissions in this manual, or from the use of the information contained herein.

IBM is a registered trademark of International Business Machines, Corp.

$$
\begin{array}{llllllllll}
10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1
\end{array}
$$

Contents

Introduction 1
About the Printer 1
Start-up Checklist 2
1 Setting Up the DMP 130A 3
Paper Rack 3
Tractor Feed Unit 4
Ribbon Cassette 6
Power Source 8
Paper Loading 8
Print Head Adjustment Lever 12
Self-test 13
Operator Controls 14
Computer Connections 16
Print Function (DIP) Switches 17
Power-up Sequence 20
Margin-set Switches 20
2 Using the DMP 130A 23
Control Codes 24
Control Codes from BASIC 24
Data Processing Mode 25
Word Processing Mode 25
Graphics Mode 26
Print Mode Selection 26
3 Print Font Styles and Character Widths 29
Character Styles 29
standard Characters 30
Correspondence Quality Characters 31
Proportionally Spaced Characters 31
Graphics Characters 32
Right Justification 34
Wraparound 36
Elongated Characters 36
Bold Characters 37
Italics 38
Superscript and Subscript 39
Microfont 40
4 General Control Codes 43
Line Feed Codes (LF) 43
Special Line Feed Codes 44
Carriage Return (CR) 44
Backspace 45
Top-of-Form and Form Length 47
Form Feed (FF) 47
IBM ${ }^{\circledR}$ Mode 48
Ignored or Undefined Codes 48
DMP 130A Buffer Operation 49
Hex Print Mode 51
IBM Character Set 51
5 Word and Data Processing Modes 53
Repeat Printing 53
Underline Printing 53
Print Head Positioning 54
Left and Right Margins 57
Skip Perforation 58
Bidirectional and Unidirectional Printing 58
International Characters 59
6 Graphics Mode 61
Graphics Patterns 63
Line Feed 65
Repeat Function 65
Graphics Mode Exit 66
Freehand Drawing 66
7 IBM Emulation Mode 69
Carriage Return 69
Vertical Formatting Control Codes 70
Horizontal Formatting Control Codes 72
Printing Mode Control 74
Other Control Codes 79
Appendices
A Character Sets 83
Tandy Character Set Table 83
Dot-column Width of Tandy Character 84
IBM Character Set 1 86
IBM Character Set 2 87
Dot-column Width of IBM Characters 88
B Control Codes 91
Tandy Control Codes 91
IBM Control Codes 95
C Character Category Priority Table 103
D Programming Information 109
E Care and Maintenance 113
General 113
If You Have Problems 114
F Specifications 115
G Interface 117
H Schematic diagrams 119
Index 121

Introduction

About the Printer

Congratulations for selecting this Tandy computer product! The DMP 130 A is a high-density, dot-matrix printer which can perform a variety of different printing operations. For instance, it can print:

- Proportionally spaced characters
- Monospaced characters (standard, condensed and compressed)
- Correspondence quality characters
- Italic cursive characters
- Super-/subscript
- Microfont
- Graphics - standard and high-resolution

The DMP 130A operates in 3 modes:

- Data Processing Mode for the fastest output of program listings or data
- Word Processing Mode for letter writing or the creation of any text documentation
- Graphics Mode for drawing pictures, figures or graphs

For word processing, you'll find the DMP 130A's proportionally spaced characters (created on a variable $n \times 18$ dot matrix) can produce letterquality results. If, however, you need a printout that is produced faster, monospaced characters (created on a 9×9 dot matrix) are just the thing for you! In graphics mode, you can use graphic data to draw just about any type of graphic configuration you desire.

You can use 2 types of paper with the DMP 130A:

- Standard $4^{\prime \prime}(10 \mathrm{~cm})$ to $10^{\prime \prime}(25 \mathrm{~cm})$ wide computer fanfold forms with guide holes (Radio Shack Cat. Nos. 26-1243, 26-1427, 26-1403, and 26-1456)
- Standard, single-sheet typewriter paper

Other software-controlled features include:

- Full- or half-line feed and $3 / 4$ or $4 / 5$ line feed
- Software-controlled form feed (from your computer)
- Underline capability
- Buzzer function
- Automatic paper loading
- Margin-set function

A Automatic paper feed at paper end. When the DMP 130A detects paper end, it automatically advances the paper 3 inches (7.5 cm) for easier paper removal.

Start-up Checklist

The following Start-up Checklist is a summary of how to set up your Printer and should be followed every time you start up the Printer - not just the first time.
\checkmark Find a good spot for your Printer. Be sure to consider:

- Printer should be placed on a sturdy work surface.
- Length of the printer cable, which will determine how far from the computer you can place the Printer.
- Paper takes up space. Be sure to leave enough room for smooth paper flow.
- Do not place the Printer near noise generators such as refrigerators and industrial equipment.
\checkmark Be sure the POWER switch (on the right side of the Printer) is OFF.
\checkmark Open the printer cover.
■ Install continuous-form fanfold or single-sheet paper.
\square Check the ribbon cassette. If it has not been installed, see Ribbon Cassette.
\checkmark Set the print function (DIP) switches (on the rear of the Printer).
\square Connect the AC power plug to a $120-$ volt, 60 Hz , grounded AC outlet $(220 / 240 \mathrm{~V}, 50 \mathrm{~Hz}$, where the unit is so marked).
\square Connect the interface cable from the computer to the printer interface connector.
\square Turn on the power and check that the POWER indicator (on the front panel) is illuminated.
\square Check to see that the Printer is ready by running the self-test. To do this, turn the POWER switch OFF. Press and hold the LINE FEED switch or NLQ (Near Letter Quality) switch while turning the power back ON. If you press the LINE FEED switch, the self-test is performed in standard mode. If you press NLQ, the self-test runs in NLQ mode. Printing will continue until you press the ON/OFF LINE switch.

Setting Up the DMP 130A 1

This section will show you how to set up the DMP 130A so you can begin using it as quickly as possible. This includes:

- Installing the paper rack
- Installing/adjusting the tractor feed unit
- Replacing a ribbon
- Loading paper
- Connecting the DMP 130A to a computer

Carefully unpack the DMP 130A, being sure to locate the ribbon and the paper rack. Keep the empty box and packing material just in case you ever need to transport the Printer.

Paper Rack

Open the printer cover. Holding the paper rack upright, insert the tips of the rack onto the supporters on both sides of the Printer, as shown.

Figure 1. Installing the Paper Rack
For single-sheet printing, insert the folding leg into the hole centered on top of the case. For the continuous fan-fold paper, fold the leg and lay the rack down, or, if you prefer, detach the paper rack from the Printer.
You can adjust the paper guide on the paper rack. Pull the guide upward to remove it from the rack. Then position it as you desire (within the range allowed) and insert it fully. When using narrower paper, insert it so 'rat the left edge of the paper is within the range of the paper guide. This
ensures proper operation of the paper empty switch and also reduces the possibility of paper jam.

Tractor Feed Unit

This Printer can be used with either the tractor feed system or friction feed system. The difference is that the tractor feed system is used with paper (fanfold) which has guide holes on both edges, while the paper used with the friction feed system does not have these holes.

When you use the friction feed system, be sure to remove the tractor. When the tractor is installed, the friction mechanism is released and the Printer may not feed the paper properly.

Installing the Tractor

1. Be sure the Printer's power switch is OFF.
2. Remove the paper rack and open the printer cover.
3. Turn the paper loading knob forward to move the paper bail forward.

Figure 2. Right Side View
4. Place the front pins of the tractor unit into the holes on both sides. Then push down on the rear of the tractor unit until the tractor is securely locked into position.

Figure 3. Installing the Tractor
5. Turn the paper loading knob backward (away from you) to move the paper bail toward the platen.
6. Close the printer cover and replace the paper rack.

Removing the Tractor

1. Turn off the Printer.
2. Open the printer cover and remove the paper rack.
3. Turn the paper loading knob toward you.
4. Lift the tractor unit from the rear, then pull it upward.
5. Turn the paper loading knob away from you.
6. Replace the paper rack and close the printer cover.

Ribbon Cassette

If the ribbon is already installed, simply check to see that it is properly threaded between the paper and print head.

If the ribbon cassette is not installed, or if it must be replaced due to excessive wear, faint printing, etc., follow this procedure:

1. Set the power switch to OFF. (Note: When you turn off the power, any information stored in the Printer's buffer will automatically be lost.)
2. Remove the printer cover.
3. Unwrap the new cassette. Before inserting the new cassette, tighten the ribbon by turning the knob in the direction indicated by the arrow. To replace the ribbon cassette, grasp the fin on the cassette and gently pull the ribbon cassette upward.

Figure 4. Removing the Ribbon Cassette

Figure 5. Installing the Ribbon Cassette
4. Gently slide the ribbon between the ribbon mask and the print head. Gently press down on the left side of the cassette until you hear a click sound. While rotating the cassette knob in the direction indicated by the arrow, press down the right side of the cassette.

Do not force the cassette into place! If the cassette is not properly fitted, the cassette knob will not match up with the ribbon drive mechanism. Do not force the cassette down but fit it in gradually while turning the cassette knob in the indicated direction.
5. Once the new cassette is installed, tighten the ribbon by turning the cassette knob in the indicated direction.
6. Replace the printer cover.

Note: Do not print without paper or ribbon. The print head or platen will be damaged.

Power Source

Before plugging the power cord into an AC power outlet, check the following:

Printer's power ON/OFF switch is set to OFF.
\square Printer is not connected to the computer yet.
Connect the AC power plug to a 120 -volt, 60 Hz , grounded AC outlet $(220 / 240 \mathrm{~V}, 50 \mathrm{~Hz}$, where the unit is so marked).

Figure 6. Connecting to a Power Source
Set the power switch to ON/1 to turn on the power. Press the left side of the switch to turn off power. Note that turning the power OFF and ON during operation may cause loss of the current program.

Paper Loading

Important! When loading paper (single-sheet or fanfold), be sure the paper correctly enters the paper insertion opening.

The paper must enter the DMP 130A straight and directly behind the Printer, or paper skewing or jamming may occur. Proper positioning of the paper guide (which attaches to the paper rack) is also important to help prevent paper jamming.

Single-Sheet Paper

1. Be sure the Printer's power is OFF. Open the printer cover.
2. Lift the paper rack and insert the folding leg into the hole centered on the top case.

Figure 7. Positioning the Paper
3. Position the single-sheet paper on the paper rack, aligning it with the paper guide. Since the auto-paper-loading system will pull the paper into the Printer, just placing the paper on the paper rack is sufficient. If you insert the paper into the opening, the Printer may "think" that the paper is already in place and may not activate the auto-loading mechanism.
4. Turn on the Printer's power switch.
5. Turn the paper loading knob toward you. The paper automatically advances to the print-start position.
6. Turn the paper loading knob away from you to return the paper bail to the platen.
7. When you want to align the paper, use the paper feed knob or the front panel LINE FEED switch (see Operator Controls) to advance the paper. Then, adjust the position.
Note: The paper bail MUST be against the platen for paper adjustment.
8. Set the print head adjustment lever located on the inside right of the Printer to the appropriate position. Refer to Print Head Adjustment Lever.
9. Close the printer cover.

Hints and Tips on Single-sheet Paper Loading

- With the paper properly installed, printing will continue until the paper passes the paper empty sensor. The Printer will then go OFF LINE. Insert another sheet and turn the paper loading knob to set the paper. When the paper is in place, press the ON/OFF LINE switch and the DMP 130A will continue printing where it left off.
- If you want to print another few lines after the paper empty sensor detects the paper end, press ON/OFF LINE. Be careful not to exceed the bottom edge of the paper.

Fanfold Paper

The DMP 130A will accept standard fanfold paper from $4^{\prime \prime}$ to $10^{\prime \prime}$ wide. Before using fanfold paper, however, the tractor unit should be installed. Refer to Tractor Feed Unit.

1. Turn off the power.
2. Open the printer cover. Remove the paper rack temporarily.
3. Turn the paper loading knob toward you to move the paper bail away from the platen.
4. Feed the paper into the Printer through the paper insertion opening. Use the paper feed knob to pull the paper around until it appears between the platen and the print head.
5. Adjust the pin-feed paper clamp positions for the width of the paper. Refer to Figure 8.
6. Open the pin-feed paper clamps.
7. Align the holes in the paper with the pin-feed sprockets. If you need to align the paper, return the paper bail to the platen to release friction on the paper.
8. Close the pin-feed clamps to secure the paper.

Figure 8. Front View
9. Set the print head adjustment lever located on the inside right of the Printer. Refer to Print Head Adjustment Lever.
10. Turn the paper loading knob away from you to move the paper bail toward the platen. This is important: the friction roller under the platen is released by setting the paper bail against the platen, otherwise, a paper jam may occur.
11. Replace the paper rack and the printer cover. Proper paper flow will be obtained if you attach the paper rack and lay it down flat with the paper feeding underneath it into the Printer (Figure 9).

Figure 9. Fanfold Paper Path
If fan fold paper is correctly loaded, it should enter between the body of the Printer and the paper rack. Once the paper is loaded and power is ON, check the ALERT indicator on the front panel (see Operator Controls). Press the ON/OFF LINE switch if the lamp is illuminated. When the lamp remains lit, the paper is probably loaded incorrectly.

If the ALERT lamp does not illuminate after the paper is loaded, the Printer is ready for operation.

Hints and Tips on Fanfold Paper Loading

- Be sure the paper is positioned so that it can travel through the Printer without binding.
- Do not let paper pile on top of unprinted paper or the printed paper may be pulled into the paper insertion opening. This could jam the paper feed or damage the Printer.
- As much as possible, place the paper on the same height as the printer.

Print Head Adjustment Lever

You have to adjust the print head according to the thickness of the paper you use. The print head adjustment lever is located on the inside right of the Printer.

Position (3) is suitable for one-part paper. Position (5) or (6) is for multiple part paper. See Figure 10.

Figure 10. Print Head Adjustment Lever
Single-part forms. Set the lever in position (3).
Multiple-part forms. Set the lever to position (5) or (6). Check for smudging by performing the self-test at each of the lever settings.

Warning! The print head must always be as close to the platen as possible; otherwise, damage to the print head may result.

Self-Test

The DMP 130A has a built-in, self-test feature which lets you check the print quality and general printer operation before you connect the Printer to your computer. This is a good time to check that the print head is adjusted properly (printing is neither too faint nor smudged) and the paper is feeding smoothly.
Before running the self-test, be sure to load the DMP 130A with 10 -inchwide paper since the test prints from one end of the platen to the other. Printing on the platen can shorten the life of the platen and the print head.

To run the self-test:

1. Plug the Printer into an AC power outlet.
2. Press and hold either the LINE FEED switch or NLQ switch (see Operator Controls).
3. Set the POWER switch to ON. Starting with the "music" of the internal buzzer, the Printer will begin printing rolling ASCII 96 characters after the version of the ROM.

If you press LINE FEED, the self-test is performed in the standard font. The correspondence quality font is used during the test when the NLQ switch is pressed.

Printing will continue until you press the ON/OFF LINE switch (or paper end is detected).

Operator Controls

It's important to become familiar with the DMP 130A before you begin using it.

Figure 11. Front Panel Controls
(1) POWER indicator. Illuminates when the DMP 130A is properly connected and the POWER ON/OFF switch is set to ON.
(2) ALERT indicator. Lights when the Printer is out of paper. In this case, the Printer enters the OFF-LINE state and the buzzer sounds for 1 second. Load more paper and press the ON/OFF LINE switch. It flickers when there is a carriage fault or some sort of electrical problem.

Model II users: When a BASIC program stops execution because of a Printer error, type CONT ENTER to resume printing. However, the entire contents of the print buffer will be printed starting with the current print head position.
(3) ON/OFF LINE switch. At power-up, the Printer is ON LINE; pressing this switch one time causes the Printer to go OFF LINE. To stop printing at any time or to use other front panel switches, press this switch to set the Printer to OFF LINE.

Press and hold this switch 1 second while in ON LINE mode to enter the margin-set mode.

The print head does not move when the Printer goes ON LINE after this switch is pressed.

Note: To print the remaining data in the buffer when the ON/OFF LINE switch is pressed to stop the printing, first, cancel the printing process using your computer software, then press the ON/OFF LINE switch to set the DMP 130A to ON LINE.
(4) ON/OFF LINE indicator. When this indicator is ON, the DMP 130A is ON LINE and ready to print. This indicator will flicker in the margin-set mode.
(5) NLQ/DP switch. Press this switch to select the print mode - NearLetter Quality or standard. When the NLQ mode is selected, the NLQ indicator turns ON. Press again for standard mode. This switch will work only when the Printer is OFF LINE.

In the margin-set mode, pressing this switch will set the margin position.
(6) $\mathbf{N L Q}$ indicator. Illuminates when the Printer is in the NLQ mode.
(7) FORM FEED switch. When pressed, the paper advances to the logical top of the next form. It is effective only when the Printer is OFF LINE.

In the margin-set mode, pressing this switch moves the print head to the left.
(8) LINE FEED switch. When this switch is pressed, the paper advances 1 line. When it is held down, continuous paper feed is performed. This switch will work only when the Printer is OFF LINE.

In the margin-set mode, pressing this switch moves the print head to ${ }^{\bullet}$ the right.

Computer Connections

Before making any connections between the Printer and computer, be sure the power to all units is OFF!

Figure 12. Computer Connections
You need the correct cable for your computer. Table 1 describes the printer cables Tandy provides. Table 2 provides quick instructions for the printer connection locations. If you have a color computer or DT - 100 data terminal, connect the cable to the serial interface connector. If your computer has parallel interface capabilities, connect the cable to the parallel interface connector.

1. Attach the molded male end of the cable to the connector on the right rear of the Printer. Do not force the plug. If it does not fit one way, turn it over and try again.
2. Connect the other end of the cable to the Printer jack of your computer. See your computer owner's manual for specific instructions.

Table 1. Computer to DMP 130A Cables

Computer	Cable Number
Model I (Keyboard only)	$26-1411$
Model I (Exp. Interface)	$26-1401$
Model II/12/16/16B/DT-1/Tandy 2000	$26-4401$
Model III/4/4D/4P/1000	$26-1401$
Model 100/Tandy 102/200/600	$26-1409$
Tandy 1000EX	$*$
Tandy 1000SX	$*$
Tandy 1200/3000/3000HL/3000HD	$26-1347$
DT-100	$26-1361$
Color Computer	$26-3020$

*Cable is supplied with the computer.
Table 2. Computer Connection Points

Computer	Connector
Model I (Keyboard only)	Rear of keyboard
Model I (Exp. interface)	Left side of expansion interface
Model II/4P/12/16/100	Rear panel of computer
Model III/4/4D/DT-1	Bottom panel of computer
DT-100	Rear panel of terminal
Tandy 102/200/600/1000/1200/2000/3000	Rear panel of computer
Color Computer	Rear panel of computer

Print Function (DIP) Switches

There are 10 switches located on the rear panel of the Printer. These switches allow you to customize some DMP 130A features for your own applications.

Switch 2
Switch 1

Figure 13. DIP Switch Panel

When you set switch 1-1 to OFF before turning on the power, the DMP 130A selects Tandy codes. In this setting, the switches function as shown in Table 3. On the other hand, if you set switch 1-1 to ON, the DMP 130A selects codes for the IBM mode. In this case, the switches function as shown in Table 4.

For instance, in Tandy mode, you can select word processing mode (better print quality) or data processing mode (faster printing speed). Or, if you begin using the DMP 130A with a computer which has serial printer output (such as the Color Computer), turn off the power and set the appropriate switch accordingly.

When you receive the DMP 130A, all DIP switches should be set to OFF.
Remember! The Printer's power must be OFF before you change any of the switches.

Table 3. DIP Switch Functions in Tandy Mode (Switch $\mathbf{1 - 1}$ is set to OFF)

Sw.	Symbol	ON	OFF
1-1	Control Codes		Tandy Codes
1-2	CR	Carriage Return Only $(C R=C R)$	Carriage Return and Line Feed (CR = NL)
1-3	LF	Line Feed and Carriage Return (LF = NL)	Line Feed Only ($\mathrm{LF}=\mathrm{LF}$)
1-4	Form Length	12 Inches	11 Inches
1-5	1-Inch Skip Over Perforation	Valid	Not Valid
1-6	Line Spacing	1/8 Inch	1/6 Inch
1-7	Character Generator	IBM Character	Tandy Character
1-8	WP/DP Mode	Word Processing Mode	Data Processing Mode

SW2-1 and SW2-2 select the interface and baud rate for serial interfacing.

| Interface | Baud Rate | Switch | |
| :--- | :---: | :--- | :--- | :--- |
| | | $\mathbf{2 - 1}$ | $\mathbf{2 - 2}$ |
| Parallel | | OFF | OFF |
| Serial | 600 | OFF | ON |
| Serial | 1200 | ON | OFF |
| Serial | 2400 | ON | ON |

Table 4. DIP Switch Functions in IBM Mode
(Switch 1-1 is set to ON)

Sw.	Symbol	ON	OFF
$1-1$	Control Codes	Codes for IBM	
$1-2$	CR	Carriage Return Only (CR $=$ CR)	Carriage Return and Line Feed (CR = NL)
$1-3$	LF	Line Feed and Carriage Return (LF $=$ NL)	Line Feed Only (LF $=$ LF)
$1-4$	Form Length	12 Inches	11 Inches
$1-5$	1-Inch Skip Over Perforation	Valid	Not Valid
$1-6$	Line Spacing	1/8 Inch	1/6 Inch
$1-7$	Character Generator	IBM Character Set 2	Tandy Character Set 1
$1-8$	Buffer Full	Carriage Return Only	Carriage Return and Line Feed
$\mathbf{2 - 1}$	Cancel Code	Not Valid	Valid
$2-2$	Error Buzzer	Sounds	Does Not Sound

When using the IBM mode, DIP switches 2-1 and 2-2 must be set to OFF. Serial interface selection is not supported while in the IBM mode.

Power-up Sequence

The specific power-up sequence will depend on your computer. Consult your computer owner's manual for details on powering up your computer with peripheral devices (such as printers).

In any event, the POWER indication lamp on the DMP 130A will remain lit while the Printer is ON.

It is essential that the Printer remain ON when connected to the computer. If you turn the power ON or OFF, or the Printer is connected but not turned ON, erratic operation of the entire system may occur.

Margin-Set Switches

Figure 14. Front Panel

1. Be sure the ON LINE indicator is ON.
2. Press and hold the MARGIN (ON/OFF LINE) switch until the ON LINE indicator blinks.
3. Press the \rightarrow (LINE FEED) and \leftarrow (FORM FEED) switches to move the print head to the position you wish to set as a left margin.
4. Press the SET (NLQ/DP) switch to set the left margin.
5. Press the \rightarrow switch to move the print head to a desired position for a right margin.
6. Press the SET switch to set the right margin.

Note: Once the left and right margins are set, you cannot manually reset margins wider than the present ones unless the power is turned OFF and back ON again. You can change margins via software. (Refer to Chapter 5, Left and Right Margins.).

Using the DMP 130A 2

The DMP 130A is designed for three applications:

- Data Processing
- Word Processing
- Graphics Printing

This Printer responds to software codes from the computer in three ways - one for each application. These response patterns, or modes, have many similarities, but each has its own unique features.

Data and word processing modes, both used for printing characters, differ only in the way they handle line feed commands (commands that decide which direction and how far the paper is fed).

- In word processing mode, each line feed command causes immediate paper advancement. Word processing programs (such as SCRIPSIT) can use immediate line feeds for superscripts, subscripts, and the like.
- In data processing mode, line feed commands do not cause immediate printing. Instead, they are stored in the Printer's memory along with other data. When the current line is printed, the line feed commands stored in memory determine the direction and pitch of the paper feed.
Both data and word processing modes print in 2 print styles. One style is the proportionally spaced character set and the other is the monospaced character set.
- Proportionally spaced characters have variable widths: M takes up more space than an I. Proportionally spaced characters are used to create professional looking documents.
- Monospaced characters are so named because each character takes up the same width. This uniformity makes it preferable for tables and charts that require vertical alignment.
In Graphics mode, you have complete control of the print head. This mode can be used to create a custom letterhead, designs, special type fonts, etc.
However, with graphics operation, many control codes (which can be used with data and word processing) cannot be used. The DMP 130A does not return an error when you send such a code - it simply ignores the code. This includes codes that change line feed pitch and direction. Graphics mode has restricted numbers of line feed to ensure full coverage of the paper.

Control Codes

Before investigating the various print modes, let's consider how the computer communicates with the Printer.

All information is sent to the Printer as numbers between 0 and 255 decimal ($00-\mathrm{FF}$ hexadecimal). The Printer interprets these numbers according to the American Standard Code for Information Interchange, commonly referred to as the ASCII code. (See Appendix A for a list of ASCII codes.) Most numbers (or codes) are printed as letters, numbers, or symbols. However, the numbers 0-31, as well as some special sequences of code numbers, are used to control various functions of the Printer. These control codes allow you to change character sets, select print modes, underline, superscript, subscript, etc.

The control codes have different meanings, depending on the current print mode. If a code is not recognized by the Printer, it is printed as " ∇ ". The next few sections demonstrate how some of the control codes activate various printer functions. Read these sections carefully.

Control Codes from BASIC

Some Printer features are activated by a single code, but many functions require a sequence of 2 or more codes. Most multiple code sequences begin with decimal 27 (referred to as the ESCape code). The ESC code notifies the Printer that a special sequence is on its way. The next code(s) sent determines which Printer feature is selected. In BASIC, use CHR\$ () to send these codes to the Printer.

This section discusses Tandy codes (DIP switch 1-1 to OFF). To select IBM codes, turn off the Printer, set DIP switch 1-1 to ON and turn on the Printer, or send ESC $+!\mathrm{CHR} \$(27)$; CHR $\$(33)$. This will allow you to use the DMP 130A with Tandy's MS-DOS operating systems. Refer to Chapter 7, IBM Emulation Mode, for the IBM codes.

Note: The command LPRINT will be used in examples that send codes to the Printer. If you're using a Tandy Color Computer, substitute $\mathbb{P R I N T} \#-2$, for LPRINT.

For instance, set up the DMP 130A as described earlier and enter BASIC in the normal way. Then type the following program:

```
10 REM
20 LPRINT "DATA ";CHR$(27);CHR$(56);
    "PROCESSING"
30 LPRINT "MODE"
```

and RUN it.

Roll the paper forward and look at the results. The world MODE printed over part of the word DATA. Why? The codes CHR\$(27) and CHR\$(56) are the guilty parties. Take a quick look at Appendix B. This chart shows the various code sequences understood by the DMP 130A. The control code sequence $\mathrm{CHR} \$(27)$; $\mathrm{CHR} \$(56)$ means "change the forward line feed to three-quarter of its normal distance."

Data Processing Mode

How can you tell which mode the DMP 130A uses when it is first turned on? A little reflection on the above program tells you all you need to know.

Line feed commands are executed immediately in word processing (WP) mode, but not in data processing (DP) mode. The $(27,56)$ sequence did not cause a $3 / 4$-forward line feed until after the first line was printed. Thus, the Printer must be in DP mode. And, in case you missed it, this new line feed stays in effect until further notice (another characteristic of the DP mode). Type:

LLIST ENTER

Sure enough. You still have that short line feed. To return to normal line feed pitch, type:

LPRINT CHRS (27); CHR\$ (54)

Word Processing Mode

When the same program is executed in WP mode, the line feed occurs immediately after the word DATA. Go into WP mode and try it. To enter WP mode, change line 10 to:

10 LPRINT CHR\$(20): REM CHR\$(20) selects WP Mode and RUN the program.

Just a you suspected, the line feed is immediately executed.

Note that in WP mode, the new line feed is only temporary. Type LLIST and press ENTER to prove that the half-forward line feed occurs only once, then returns to normal.

Graphics Mode

Grahpics mode is different from the word and data processing modes. For one thing, code CHR $\$(10)$ in graphics mode feeds paper $7 / 72^{\prime \prime}$ as opposed to the ordinary $1 / 6^{\prime \prime}$ pitch in WP and DP modes. Furthermore, only a few of the WP and DP features are available in graphics mode. Standard letters and symbols, for example, are ignored by the Printer when it is in graphics mode. Instead, numeric data from 128 to 255 is translated into dot patterns for the print head. This lets you produce printouts of high-resolution graphics for charts, logos, etc.

For a quick look at this mode in action, change our test program to:

10 LPRINT CHR\$(18)
20 FOR I=128 TO 255
30 LPRINT CHR\$(I);
40 NEXT
and RUN the program.
CHR (18) puts the DMP 130A in graphics mode. The numbers 128 through 255 are interpreted as dot patterns.

Type LPRINT CHR\$(30) and press ENTER to return the Printer to WP mode. Try LLISTing the program to be sure you're not stuck in graphics land.

Print Mode Selection

Table 5 summarizes the control codes required to move from one mode to another.

Table 5. Control Codes for Changing Modes

If you're in:	And want to change to:	Send a CHR \$(): (Dec)	
DP	WP	20	14
	Graphics	18	12
WP	DP	19	13
	Graphics	18	12
Graphics	DP	30^{*}	1 E
	WP	30^{*}	1 E

*Returns to the last mode (WP or DP) used.

Hints and Tips about Print Modes

Data processing mode

- All commands which decide line feed pitch are stored in the Printer's memory. They are not executed until an LF code (10 Dec . or 138 Dec.) is received. Then, the paper advances according to the pitch and direction codes stored in the Printer's memory.
- Line feed commands stay in effect until replaced by a new command.
- All printable characters can be printed in this mode.

Word processing mode

- Line feed codes that determine pitch are executed immediately.
- Line feed pitch changes affect only the current print line.
- All printable characters can be printed in this mode.

Graphics mode

- The LF code causes the paper to move $7 / 72^{\prime \prime}$ forward.
- Decimal numbers 128 - 255 sent via CHR \$ in BASIC are interpreted as pin-firing patterns for the print head.
- On!y a few control code sequences are recognized.

Print Font Styles and Character Widths 3

The DMP 130A has four distinct print (character) font styles:

- Standard
- Correspondence quality (NLQ)
- Proportionally spaced
- Graphic characters

Each style is created with a unique dot pattern laid out in a grid or matrix.
The character styles differ in the size of the matrix and the way individual characters are created within the matrix.

The horizontal dot positions overlap; the vertical ones do not.
Table 6 shows that there are 3 basic pitches: normal, compressed, and condensed.

Table 6. Character Widths and Densities

Style	Matrix Size	Width and Density
Standard	9×9	Normal 10 CPI / Elongated 5 CPI Compressed 12 CPI / Elongated 6 CPI Condensed 17 CPI /Elongated 8.5 CPI
		Normal 10 CPI / Elongated 5 CPI Compressed 12 CPI / Elongated 6 CPI
Correspondence Quality (NLQ)	19×19	Variable character width (Condensed density)
Proportionally Spaced	$n \times 18$	

Character Styles

Character styles can be selected by control codes from the computer.
Character styles stay in effect until another character style is selected. Even entering graphics mode does not change the character set. The DMP 130A returns to the last active set on leaving graphics mode.

Table 7 is a summary of the character style change commands.

Table 7. Character Style Change Commands

Standard Characters

Standard characters are printed in a 9×9 dot matrix (9 dots wide by 9 dots high).

Each of the standard characters can be printed in 3 main character widths:

- Normal, 10 Characters-per-inch (CPI)
- Compressed, 12 CPI
- Condensed, 17 CPI

Condensed characters are printed in a 11×9 dot matrix for 17 CPI. This also can be elongated to double width. Each of these widths can be elongated (double width) which gives half as many characters per inch and a total of 6 different print widths.

You can get a better feel for the available print widths by printing a few sample lines. Type in this program:

NEW ENTER

```
120 F$="STANDARD":N=19:W$=" 10CPI":GOSUB 240
130 F$="COMPRESSED": N=23:W$=" 12CPI":GOSUB 240
140 F$="CONDENSED":N=20:W$=" 17CPI":GOSUB 240
230 LPRINT CHR$ (27)CHR$(19):STOP
240 LPRINT CHR$(27)CHR$ (N)F$" CHARACTERS ";W$
250 RETURN
and RUN it.
```

```
ETANDAFD CHAFIACTEFE TOCFI
```

ETANDAFD CHAFIACTEFE TOCFI
COMFFESSED CHAFACTEFS 12CFI
COMFFESSED CHAFACTEFS 12CFI
CONDENSED CHARACTERS 17CPI

```
CONDENSED CHARACTERS 17CPI
```

The subroutine in line 240 sends the required control codes to the DMP 130A. Line 230 returns to normal characters width and stops program execution.

Correspondence Quality Characters

Correspondence quality characters are printed in a 19×18 dot matrix for 10 CPI. The characters have the same total width as normal width characters, but they are printed with the condensed character density (19 dots wide fit in the same space as 9 dots wide). Correspondence quality print also has 12 CPI and can be elongated to $5 \mathrm{CPI} / 6 \mathrm{CPI}$.
Add these lines to the program, then compare the two styles.
$150 \mathrm{~F} \$=$ "CORRESPONDENCE ": $\mathrm{N}=18: \mathrm{W} \$=" 10 \mathrm{CPI} ":$ GOS UB 240
$160 \mathrm{~N}=29: W \$=" 12 \mathrm{CFI} ": G O S U B 240$
and RUN the program.
WTANDAFD CHARACTEFE $1 O C P$
COHFFESSED CHAFACTEFS 12CFI
CONOENSED CHARACTERS 17CPI
CORRESPONDENCE CHARACTERS 1OCPI
CORRESPONDENCE CHARACTERS 12CPI
You'll find a great difference between the two styles.

Proportionally Spaced Characters

Proportionally spaced characters are the same as correspondence quality, but the characters matrix width varies from character to character. The characters are 18 dots high and the widths vary from 3 dots to 11 dots (including 2 columns of blank dots to allow space between the characters).

Proportionally spaced characters add a quality look to word processing documents by eliminating wide gaps between characters. These characters can also be elongated to double their normal width.

To see how this font looks, add:

```
170 F$="PROPORTIONAL ":
180 N=17:W$="":GOSUB 240
```

and RUN the program.
STANDAFD CHAFACTEFE 10 CFI
COMFRESSED CHARACTERS $12 C F I$
CONDENSED CHAFACTERS 17CPI
CORRESPONDENCE CHARACTERS 10CPI
CORRESPONDENCE CHARACTERS 12CPI
PROPORTIONAL CHARACTERS

Graphics Characters

The graphics character set is used for block graphic printing. Characters can be normal 10 CPI width, compressed 12 CPI, or condensed 16.7 CPI. This set is not fully compatible with the screen graphics of most Tandy computers: it is a unique character set. The graphics characters are not available with correspondence characters or proportional characters.
To see how the various character widths affect the graphic characters, add:

```
190 N=19:W$="NORMAL ":F$="GRAPHIC ":LPRINT
2 0 0 ~ G O S U B ~ 2 4 0 : G O S U B ~ 2 6 0 ~
210 N=23:W$="COMPRESSED ":GOSUB 240:GOSUB 260
220 N=20:W$="CONDENSED ":GOSUB 240:GOSUB 260
260 FOR I=224 TO 254:LPRINT CHR$(I);:NEXT I
270 LPRINT:RETURN
```

and RUN the program.
ETANDARD CHARACTEFE 1OCFI
COMFPESEED CHAFACTERS 12CFI
CONDENSEO CHARACTERS I7CPI
CORRESPONDENCE CHARACTERS 1OCPI
CORRESPONDENCE CHARACTERS 12CPI
PROPORTIONAL CHARACTERS

GRAFHIC CHARACTEFE NOFMAL.

GRAFHIC CHARACTERS CDMFRESEED

GRAPHIC CHARACTERS CONOENSED

Since the normal line-to-line spacing is $1 / 6^{\prime \prime}$ or 12 dots high and the graphics characters are 6 dots high, you can create continuous vertical graphics by using the half line feed (CHR\$(27); CHR\$(28)).

Add these lines to the program:
10 LPRINT CHR\$(27); CHR\$(28);
20 FOR R=1 TO 3
30 FOR C=1 TO 7
40 READ N:LPRINT CHR\$(N);
50 NEXT C:LPRINT
60 NEXT R:LPRINT CHR (27); CHR\$ (54);
70 DATA 241,243,241,224,241,243,241
80 DATA 224,244,241,241,241,249,224
90 DATA $241,248,241,224,241,248,241$
and RUN it.

Print Font Styles and Character Widths

TANDAFD CHAFACTEFS IOCF
COMFRESEED CHAFACTEFG I CFL
CONOENSE CHARACTERS ITCPI
CORRESPONDENCE CHARACTERS 1OCPI
CORRESPONDENCE CHARACTERS 12CPI
PROPORTIONAL CHARACTERS

GFAFHIC: CHAFACTEFE NOFMAL

GRAFHIC CHAFACTEFS COHFFESGED

GRAFHIC CHARACTERS CONDENSED

When you've printed out the results, delete lines 10 through 90 .

Right Justification

Proportionally spaced characters are designed to be used with word processing programs. They do not carry around all the wasted space between words as in monospaced print style. As a result, you can sneak in little slivers of space between characters to line up the right margin of text on a page without destroying character spacing. This process, called right justification, is usually handled by word processing software. The DMP 130A provides codes to allow you to insert spaces between characters, ranging from 1 dot to 9 dots wide. There codes are summarized in Table 8.

You can demonstrate the way these codes work by modifying the current program. When you add the following 2 lines, the DMP 130A will print 2 lines of proportionally spaced characters, then insert enough space to line up the right margins.

[^0]The lines will be read in as a string of characters with the MID\$ function. Enter:
10 LPRINT CHRS (27)CHRS (17)
20 FOR I=1 TO 2: READ A\$
$30 \mathrm{FOR} \mathrm{J}=1 \mathrm{TO} \operatorname{LEN}(A \$)$
40 LPRINT MID\$ (A\$, J, 1);
50 REM
60 NEXT J:LPRINT:NEXT I
90 LPRINT CHR\$ (27)CHR\$(19):END
Now RUN the program.
THE PROPORTIONAL CHARACTER SET OF THE
DMP 130A PRINTER CAN BE RIGHT JUSTIFIED
To line up the right edge, insert a single, blank dot-column between the first 26 letters in the first print line. Add:
50 IF I=1 AND J>26 THEN LPRINT CHR\$(27)CHR $\$(1)$;
then RUN the program.
THE PROPORTIONAL CHARACTER SET OF THE
DMP 130A PRINTER CAN BE RIGHT JUSTIFIED
The following table will help when inserting spaces.

Table 8. Proportional Spacing

Send CHR\$(
(Dec)	(Hex)	To insert:
27	01	1B 01
27	02	1B 02
27	1B	1 Dot Space
27	1B	2 Dot Spaces
27	1B	3 Dot Spaces
27	1B 05	4 Dot Spaces
27	1B 06	5 Dot Spaces
27	1B 07	6 Dot Spaces
27	1B 08	7 Dot Spaces
27	1B 09	8 Dot Spaces

If a proportional spacing command is used at the end of the text (exceeding a line length), it generates a line-full condition. Printing will start and the proportional spacing command will begin at the start of the next line. If several kinds of proportional spacing commands in succession are used at the end of the text, and if the row of proportional spacing commands causes a line-full condition, only the last proportional spacing command is set at the head of the next line.

Delete lines 10 through 90 of your sample program before going on.

Wraparound

The DMP 130A is a dot-addressable printer. Therefore, line length is not determined by the number of characters, but by the number of dots-perline. The number of addressable dots-per-line in data processing or word processing mode follows:

Standard 10 CPI 960
Standard 12 CPI 1152
Standard 17 CPI 1918
Correspondence 10 CPI 1920
Correspondence 12 CPI 2304
If the length of text the Printer receives exceeds the limit of dots-per-line, a line feed is inserted and the last character is printed from the start of the next line. This called wraparound.

Elongated Characters

Any of the character styles can be elongated to twice their normal width.
Table 9. Elongated Printing

Send CHR\$ ()

(Dec)	(Hex)	To:
2714	1B 0E	Start Elongation
2715	1B 0F	End Elongation

The start (27 14) and end (27 15) codes for elongated characters can be entered any number of times within a line and used in every mode.

You can easily elongate the characters in the current program. Change:
100 LPRINT CHR\$(27)CHR\$(14)
230 LPRINT CHR\$(27)CHR\$(19)CHR\$(27)CHR\$(15):STOP and RUN the program.


```
CDMFFESEED CHAFACTERS \(12 C F I\)
CONDENSED CHARACTERS 17CPI
CORRESPONDENCE CHARACTE
CORRESPONDENCE CHARACTERS 1
PROPORTIONAI CHARACTERS
```



```
GFAFHIC CHAFACTEFS CDIFRESEE
```



```
GRAFHIC CHARACTERS CONDENSED
```


Bold Characters

Bold characters are implemented in much the same way as elongated characters.

Table 10. Bold Printing

Send CHR\$ ()		
(Dec)	(Hex)	To:
2731	1B 1F	Start Bold Printing
2732	1B 20	End Bold Printing

When a (27 31) code sequence is received, the DMP 130A prints the current buffer contents, then resumes bold character printing from the next character received.

Bold characters can be added to the current program by changing lines:
100 LPRINT CHR\$(27)CHR\$(31)
230 LPRINT CHR\$ (27)CHR\$(19)CHR\$(27)CHR\$(32):STOP

Now RUN the program.
STANDARD CHARACTERS IOCPI
CDMPRESSED CHARACTERS 12CPI
CONDENSED CHARACTERS ITCPI

CORRESPONDENCE CHARACTERS 10CPI CORRESPOMDEHCE CHARACTERS 12CPI
 PROPORTIONAL CHARACTERS

GRAPHIC CHARACTERS NORMAL

GRAPHIC CHARACTERS COMPRESSED

GRAFHIC CHARACTERS CONDENSED

Italics

Any of the character font styles can be printed on a slant.
Table 11. Italic Printing

Send CHR\$ (
(Dec)	(Hex)	To:		
27661	1B 42	1		
2766	0	1B 42 0		

When a (2766 1) code sequence is received, the DMP 130A prints the current buffer contents, then it begins italic printing from the next character received.
When a super-/subscript command is received during italic character printing, the DMP 130A prints the current buffer contents; then it enters into the super-/subscript printing mode.

Change the following program lines to:
100 LPRINT CHR\$(27);CHR\$(66); CHR\$(1)
230 LPRINT CHR\$(27);CHR\$(66);CHR\$(0);CHR\$(27)
; CHR\$ (19): STOP
and RUN.
GTAMDARD OHAFACTER 7 OCFI
COFFRESSED CHAFACTERS 1ECFI
CONDENSED CHARACTERS ITCFI
CORRESPONDENCE CHARACTERS 1OCPI
CORRESPONDENCE CHARACTERS 12CPI
PROPORTIONAL CHARACTERS

GFAFHIC CHAFACTEFS NDFMAL

GRAFHIC CHARACTERS COMFRESSED

GAAFHIC CHARACTERS CONDENSED

Superscript and Subscript

In superscript and subscript printing, character height is cut in half. In superscript character printing, a character is printed on the upper half of a line; and in subscript, a character is printed on the lower half of a line.

Table 12. Super-/Subscript Printing

Send CHR\$ ()		
(Dec)	(Hex)	To:
27830	1B 530	Start Superscript Printing
27831	1B 531	Start Subscript Printing
2788	1B 58	End Super-/Subscript Printing

When a (27 830) or (27 83 1) code sequence is received, subsequent characters are printed in superscript or subscript printing mode until a (27 88) is received. When a (27 88) code sequence is received, the DMP 130 A prints the current buffer contents; then it returns to the font style which prevailed before entering superscript or subscript character printing.

Print Font Styles and Character Widths

The printing speed or horizontal dot resolution is fixed at 17CPI. The underline position is not changed.

Type in this program.

```
10 LPRINT CHR$(27);CHR$(83);CHR$(0);
20 LPRINT "SUPERSCRIPT ";
30 LPRINT CHR$(27);CHR$(83); CHR$(1);
40 LPRINT "SUBSCRIPT ";
50 LPRINT CHR$(27);CHR$ (88);
60 LPRINT "CHARACTERS"
70 END
and RUN it.
```

supergcript subscript CHARACTEFE

In this program, lines 10 and 30 start superscript and subscript and line 50 ends the super-/subscript.

Microfont

In microfont mode, all printouts will be in superscript with a half-forward line feed (1/12") in WP mode and half of the designated line pitch in DP mode.

Table 13. Microfont Printing

Send CHR\$ ()		
(Dec)	(Hex)	To:
2777	1B 4D	Start Microfont

When a (27 77) code sequence is received, the DMP 130A prints the current buffer contents; then it enters the microfont mode.

In this mode, the italic function is invalid, even if you send an italic code.
As with superscript, the printing pitch for the microfont mode is 17 CPI
Type in the following NEW program:

```
10 LPRINT CHR$(27); CHR$ (19)
20 GOSUB 100
30 LPRINT CHR$ (27); CHR$ (23): GOSUB 100
40 LPRINT CHR$ (27); CHR$ (20):GOSUB 100
50 LPRINT CHR$ (27); CHR$ (29):GOSUB 100
6 0 ~ E N D ~
100 LPRINT CHR$ (27); CHR$(77);
110 LPRINT "THIS IS MICROFONT."
120 RETURN
and RUN it.
THIS IS MICROFONT.
THIS IS MICROFONT.
THIS IS MICROFONT.
THIS IS MICROFONT.
```

To exit microfont, send any other font select code.

General Control Codes 4

Line Feed Codes (LF)

When the DMP 130A receives an LF code (ASCII 10), all data in the Printer buffer is printed followed by a line feed. Unless you tell it otherwise, DMP 130A uses $1 / 6^{\prime \prime}$ forward line feed when advancing paper. If you set DIP switch 1-6 to ON before turning on the power, the line feed pitch is set to $1 / 8^{\prime \prime}$.

If DIP switch $1-3$ is ON, a carriage return is also performed with the line feed, moving the print head to the start of the next print line. If DIP switch $1-3$ is OFF, the print head stays in the current print column and moves down 1 line.

Other line feed codes control the pitch of the line feed. In DP mode, these codes can be stored in the buffer. In WP mode, they cause immediate printing.
Pitch setting is sent to the DMP 130A in a 2 -code sequence. First, a control code 27 (CHR\$(27)) is sent. This tells the DMP 130A that a special code sequence will follow. The next number determines the specific pitch. These control codes are listed in Table 14.

Table 14. Line Feed Control Codes

| Send CHR\$()
 (Dec) | | To: |
| :---: | :--- | :--- | :--- |

Hints and Tips on Line Feed

- In data processing mode, codes are stored in the printer buffer. They are not activated until an LF code is sent. In word processing mode, * Ese sequences cause the Printer to print the information in its buffer, nen execute a line feed with the specified pitch and direction.
- CHR\$(10) will not work from some BASIC with the CHR\$ function. The LF code (10) is intercepted by BASIC and sent to the Printer as 13.
- All the codes in Table 14 are ignored in graphics mode.
- When DIP switch 1-3 is ON, a carriage return follows each line feed.

Special Line Feed Codes

There are 5 special forward line feed codes that operate in all 3 print modes.

Table 15. Special Line Feed Control Codes

Send CHR\$()						To:	
(Dec)			(Hex)				
27	26		1B	1A		1/8 Forward Line Feed	(1/48 ${ }^{\prime \prime}$)
27	50		1B	32		1/12 Forward Line Feed	(1/72")
27	51		1B	33		1/36 Forward Line Feed	(1/216")
27	57		1B	39		1/24 Forward Line Feed	(1/144")
27	64	n	1B	40	n	n/24 Forward Line Feed	($n / 144^{\prime \prime}$)

1/8, 1/12, 1/36 and 1/24 Forward Line Feed

These line feed codes are unique for two reasons:

- They cause an immediate dump of the printer buffer followed by a line feed, regardless of the print mode.
- A carriage return is not performed, regardless of the setting of switch 1-3. These special line feed codes are useful for adjusting a print line or printing a dot-matrix picture.

Carriage Return (CR)

A CR (13 or 141) code tells the Printer to print the current buffer contents, and then perform a carriage return followed by a line feed or a carriage return only, depending on the following new line control code setting or on the setting of DIP switch 1-2.

Table 16. New Line Control Codes

Send CHR\$(
(Dec)	(Hex)	To:	
27	21	1B 15	$C R=C R$ Set
27	22	1B 16	CR $=$ CR + LF (NL) Set

- When a CR (13 or 141) code is received by the DMP 130A with a CHR\$(27); CHR\$(21) already received, or with DIP switch 1-2 ON, only a carriage return is performed after printing the buffer contents.
- When a CR code is received with a CHR\$(27); CHR\$(22) already received, or with DIP switch 1-2 OFF, a carriage return followed by a line feed (NL) is carried out.
- At power-on, the Printer is set to a new line mode (provided DIP switch 1-2 is set to OFF).

Backspace

The DMP 130A can be backspaced from 1 to 255 dot columns when you send a 2 -code sequence, of which the first code is $\mathrm{CHR} \$(8)$. The second code is in the form of $\operatorname{CHR} \$(n)$, where n is a value from 1 to 255 and specifies how many dot columns to backspace from the current print head position. For example:

LFRINT CHR Φ (8): CHR $\$$ (150)
would backspace the print head 150 dot columns from the current position.
In general, backspacing should be done in multiples of the current character size. That is, backspacing for the standard character set should be 12 dots-per-character (9 dots plus 3 for spacing between characters). For instance, LPRINT CHR $\$(8)$; CHR $\$(24)$ would backspace 2 characters.

If n is 0 , backspacing is not done. The repeat feature can be used to backspace more than 255 dot spaces.

If n is greater than the current dot position, printing starts at the beginning of the line. In graphics mode, the backspace code is ignored and n is treated as an independent character. Backspace works in both data and word processing modes.

Type in this program:

10 LPRINT TAB(30);"D P 1 0";
20 LPRINT CHR\$(8);CHR\$(72);"M 3 A" and RUN the program.

Go ahead and run it again. This time watch the action of the print head. The first string starts at position 30. The trailing semicolon holds the position right after the 0 . CHR $\$(8)$ CHR $\$(72)$; backspaces 6 normal character widths (12 dots each, remember?) to place the M right between the D and P . You can imagine what would happen if the dot distance is miscalculated!

To backspace over elongated characters, simply double the number of dots. Try it. Change the program to:

10 LPRINT TAB(30);CHR\$(27);CHR\$(14);"D P $10 " ;$ 20 LPRINT CHR\$ (8); CHR\$(144);"M 3 A"
30 LPRINT CHR\$(27); CHR\$ (15)
and RUN the program.
CHR (27); CHR (14) and CHR\$(27); CHR\$(15) get the DMP 130A in and out of elongated character width. Remember that you must compensate for the double-width characters by doubling the 72 in line 20 to 144.

The widths of the available character sets are shown in Table 17. The proportionally spaced character widths naturally vary from character to character.

Table 17. Character Set Width

Font Style		Dots/Character	To backspace:				
		1 Character	n Characters				
Standard	10 CPI		12	08	12	08	$12 \times n$
	12 CPI	12	08	12	08	$12 \times n$	
	17 CPI	14	08	14	08	$14 \times n$	
NLO	10 CPI	24	08	24	08	$24 \times n$	
	12 CPI	24	08	24	08	$24 \times n$	

The numbers in the dots/character column include blank dots between characters.

Top-of-Form and Form Length

The control code $\operatorname{CHR} \$(27)$; $\mathrm{CHR} \$(52)$; $\operatorname{CHR} \$(n)$ is used to set the form length in all 3 print modes. It resets the line feed count to 0 and sets the current line as the top-of-form position. The line length per page is set to $n\left(\times 1 / 6^{\prime \prime}\right)$ to be used with the form feed code. If n is 0 or 1 , it is changed to 2 . Whenever any line feed operation is activated, line feed pitch is counted up and compared with $n\left(\times 1 / 6^{\prime \prime}\right)$.
On initial power-up, the DMP 130A sets the top-of-form at the current paper position and the form length is set as follows, depending on the setting of DIP switches $1-4$ and $1-6$. Be sure the paper is properly positioned before you turn on the Printer.

Table 18. Form Length/Lines-per-Page

DIP Switch			
$\mathbf{1 - 4}$	$\mathbf{1 - 6}$	Form Length	Lines-per-Page
OFF	OFF	11 inches	66 lines
OFF	ON	11 inches	88 lines
ON	OFF	12 inches	72 lines
ON	ON	12 inches	96 lines

In single-sheet printing, the number of lines-per-page is 56 .

Form Feed (FF)

When a CHR \$ (12) command is received, the print buffer contents are printed out completely, the paper is advanced to the next top-of-form position, and the line feed counter is reset to 0 .

However, there is one slight problem when you communicate to the Printer through BASIC. Most BASICs keep track of the top-of-form internally and intercept the form feed code on its way to the Printer and send out, instead, a series of line feeds. Since the FF code never makes it to the Printer, the CHR\$(12) is not activated. Some BASICs can use the POKE or OUT statement to send an FF directly to the printer and bypass the interpreter.

IBM mode

When a CHR\$(27); CHR\$(33) is received, the DMP 130A resets to the defaults of the IBM mode. That is, buffer contents are printed out, the carriage returns to its home position, and all DIP switches (except switch $1-1)$ are read again.

Ignored or Undefined Codes

Codes that are unusable or undefined in a given print mode are either ignored or printed with the symbol which represents an invalid code.

There are several reasons a code can be unusable in a certain mode. Redundant codes that do not change the current printer status are usually ignored. For example, if the Printer is in DP mode, sending a CHR\$(19) (used to enter DP mode) is useless. And there are many ASCII control codes in the range 0 to 31 that the DMP 130A simply does not recognize. ASCII 0 , for example, is not used in any of the 3 print modes.

The following table summarizes the undefined print codes.
Table 19. Ignored Control Codes

All modes:

- Out of range on repeat sequence.
- Out of range on POS sequence.
- Redundant codes that do not change the current printer status. For example, if you send a CHR $\$(14)$ when underline is already set.
DP mode: $\quad 0,1,19,30,127,255$
WP mode: $\quad 0,1,20,30,127,255$
Graphics mode: All codes in the range $0-127$ are ignored, except (7), (10), (12), (13), (27 14), (27, 15), (27 $16 n 1 n 2),(27,21)$, (27 22), (27 26), (27 33), (2750), (2751), (2752n) (27, 57), (2764n), (27 $72 n$), (28n1n2), and (30).
Unprintable repeat sequence data $n 2$ is also ignored.

Codes printed as \triangle

in DP and WP modes:

- All codes from 0-31 and 128-159, except the active function codes or the above ignored codes.
- Unprintable repeat data $n 2$.

DMP 130A Buffer Operation

The DMP 130A's ability to temporarily store data is one its main advantages over a typewriter. Codes sent to a typewriter (that is, keys pressed) are transferred immediately to the paper. Codes sent to a Printer are not printed immediately; they are stored in a separate section of memory in the Printer called the buffer. When the buffer fills, or certain codes are received (for example, LF or CR), the buffer is emptied and all data is then printed on the paper. What happens after the buffer data is printed depends on the circumstances. In some cases, printing continues on the same line; in others, the print head is moved to a different position relative to the paper.
In the DP mode, commands for changing print fonts, line feed, etc., can be stored in the buffer to take effect when the data is dumped to paper.
Understanding how the buffer works is important if you wish to gain full control of the DMP 130A.

Hints and Tips on the DMP 130A Buffer

$D P, W P$, and graphics modes

- The buffer allocates a fixed number of dots, depending on the character width selected. The buffer is emptied when the data stored equals that number. Printing resumes at the start of the next line unless DIP switch $1-2$ is set to ON (CR only). If different character widths have been used on the same line, the last character added may exceed the dot count. The buffer is printed without this last character.
- The last character received by the buffer is printed at the beginning of the next print line following an automatic line feed and carriage return.
- The form feed code ($\mathrm{FF}=12$ decimal) automatically activates printing (if the code makes it to the Printer). If LF only has been selected (DIP switch 1-3), then the buffer is printed and the print head moves to the next top-of-form line without a carriage return to the beginning of the line. Otherwise, the print head is positioned at the beginning of the next top-of-form line.
- The carriage return code ($\mathrm{CR}=13$ decimal) automatically activates priuting (assuming at least 1 character code is already in the buffer). If carriage return only has been selected by the setting of DIP switch 1-2, the print head is moved to the beginning of the current line and the next buffer-full condition will result in printing over the current line. Otherwise, subsequent characters will be printed at the start of the next
print line.
- The line feed code ($\mathrm{LF}=10$ decimal) automatically activates printing. If LF only has been selected (DIP switch 1-3), then the buffer is printed and the print head moves to the next print line without a carriage return to the beginning of the line. Otherwise, the print head is positioned at the start of the next print line.
- If the computer delays more than a second before sending the next print code through the parallel interface, the buffer is printed. Printing continues from the current position.
- The head positioning sequence (27 $16 n 1 n 2$) prints the buffer. Printing continues in the current line at the dot address specified by the (27 16) command.

Data and word processing modes only

- The backspace command activates printing. Printing continues in the current line at the dot address specified by the command.
- If a character set of different dot density is selected, the data in the buffer is printed. Codes for changing character sets are: (27 17), (27 18), (27 19), (27 20), (27 23), (27 29), (27 31), and (27 32). Printing continues in the current line with the new character style.
- Dot graphics printing continues from the current character position.
- When a start bold or end bold command is received, the buffer is printed. Bold printing continues from the current character position.
- When a start super-/subscript, italics, microfont, compressed correspondence, proportional quality 12 CPI , or compressed code is received, the buffer is printed.

Graphics mode only

When the end graphics mode command is received, the Printer returns to the previous print mode and printing continues in the same line from the current print position.

Note 1: In the description, next line means the new line performed by a line feed operation. In data processing mode, if a reverse line feed has been set in the memory, the line feed operation will cat : paper to move in the reverse direction.

Note 2: Repeat data can cause a buffer-full condition, as well as an overflow by single characters.

Hex Print Mode

The DMP 130A is capable of printing hexadecimal values for data that are transmitted to it. This hex print mode is useful for checking exactly what information is being received by the Printer. To implement this function, turn ON the power to the Printer while simultaneously holding down the FORM FEED switch.
Before printing, be sure that 10 -inch-wide paper is loaded in the Printer to avoid printing on the platen. Then press the ON-LINE switch and RUN the program that you want to check.

For example, the BASIC program line

10 LPRINT "NOW IS THE TIME FOR"

will normally print out as

NOW IS THE TIME FOR

If you enter hex print mode, the printout will look like this:

4 E	4 F	57	20	49	53	20	54	48	45	20
54	49	4 D	45	20	46	4 F	52	0 D		

To exit hex print mode, turn the Printer OFF and then ON again.

IBM Character Set

You can use the IBM character set 2 in Tandy mode by sending the code sequence $\mathrm{CHR} \$(27)$; CHR $\$(58)$.
To return to the Tandy character set, send CHR\$(27); CHR\$(59). Only IBM character set 2 is applicable in Tandy mode.

Word and Data Processing Modes 5

Repeat Printing

The DMP 130A provides a built-in repeat capability. You can use it to repeat a single character code up to 255 times. It's great for repeating graphics codes, underlining, block graphics, etc. The repeat feature uses a 3-code sequence:

- CHR\$ (28)
- Number of repetitions
- Code to be repeated

Type in this new program:
10 LPRINT " $"$;REM 2 BLANK SPACES BEFORE TH E/
20 LPRINT CHR\$ (27); CHR\$ (28);
30 LPRINT CHR\$ (28); CHR\$(13); CHR\$(241)
Code 241 is from the graphics character set.
40 LPRINT " "; REM 1 BLANK SPACE
50 LPRINT CHR\$ (8); CHR\$ (7);
60 LPRINT CHR\$ (92);"/(X"CHR\$(27);"S"; CHR\$(0) ;"2"; CHR\$ (27) ;"X";
70 LPRINT "+2X+1)"
80 END
Now RUN the program.
With a little fancy footwork, you were able to line up the 2 slashes and came up with a rough approximation of a square root sign. Brings back bad memories, doesn't it?

Note: Depending on the computer, the second parameter (number of repetitions) is interpreted differently. For example, CHR\$ (9) may be interpreted as the TAB command, causing the print head to move to the next TAB position instead of printing characters 9 times. Refer to the owner's manual of your computer for details.

Underline Printing

When you need to underline any text in either DP or WP mode, send the DMP 130A a CHR\$(15). All text that follows this code will be underlined
until you send a CHR (14) which stops underlining.
If a print head positioning code is received while the Printer is in an underline-selected condition, the underline is not printed between the home position (leftmost printing position) and the dot column position designated by the print head positioning code.
If you enter graphics mode while the Printer is in an underline-selected condition, when you return to the former character printing mode, the designation of underline is the same as it was before entering graphics mode.

Table 20. Underline Printing

Send CHR\$((Dec)) (Hex)	To:
15	OF	Start Underline
14	OE	Stop Underline

For example, type in this short program:

```
10 LPRINT CHR$(20);:REM WORD PROCESSING
20 LPRINT CHR$(15);:REM START UNDERLINE
30 LPRINT "LEEWAY BUSINESS PRODUCTS "
40 LPRINT CHR$(14);:REM STOP UNDERLINE
50 LPRINT "GIVES GOOD SERVICE"
60 END
```

In this example, line 20 turns on the underline and the first line of text (LEEWAY BUSINESS PRODUCTS) is underlined. Line 40 turns the underline off and GIVES GOOD SERVICE is not underlined.

Print Head Positioning

In either DP or WP mode, you can position the print head to a specific dot position. Every other print head position is accessible through the positioning sequence.

Using the normal character sets (10 CPI), there are 960 dot positions per line, but only half (480) are accessible by you. The following table indicates the available columns in each mode.

Table 21. Print Head Positioning by Font

Character Width	Dots-per-Line	Available Columns
Normal (10 CPI)	960	480
Compressed (12 CPI)	1152	576
Condensed (17 CPI)	1918	959
Correspondence (10 CPI)	1920	960
Correspondence (12 CPI)	2304	1152

Elongated characters use the same dot columns, even though the characters are printed twice as wide.
Even if underline is designated, underline does not appear between the home position (the leftmost printing position) and the position designated by the print head positioning code.
To position the print head to a specific position, send a (27 16), then 2 numbers (we'll call them $n 1$ and $n 2$) that specify the desired position. In other words, just follow this general procedure:

1. Send a control code which specifies the character set (normal, condensed, or compressed).
2. Send a $\operatorname{CHR} \$(27)$; $\operatorname{CHR} \$(16)$ to tell the Printer you want to position the print head to print a specific dot column.
3. Tell the Printer which dot column you want to print. This is a little more complicated and will be explained shortly. For now, just understand that you simply tell the Printer which dot column you want.
4. Tell the Printer what you want to print.

When you want to specify a dot column where printing is to begin, you must first use CHR \$ to send the (27 16) code. Follow this with another 2-code sequence which specifies the position. For instance:
LPRINT CHR\$ (27); CHR\$ (16); CHR\$(n1);CHR\$(n2)
where $n 1$ is a value between $0-4$ and $n 2$ is a value between $0-255$.

Table 22. Print Head Positioning

If you wish to specify dot column:	$\boldsymbol{n} \mathbf{1}$ must be:	$\boldsymbol{n} \mathbf{2}$ must be:
$0-255$	0	$0-255$
$256-511$	1	$0-255$
$512-767$	2	$0-255$
$768-1023$	3	$0-255$
$1024-1152$	4	$0-128$

Remember! Normal printing allows you to access dot columns up to 479 ($n 1=1, n 2=223$); compressed printing allows you to access dot columns up to $575(n 1=2, n 2=63)$; condensed printing allows you to access dot columns up to $958(n 1=3, n 2=190)$; correspondence 10 CPI printing allows you to access dot columns up to $959(n 1=3, n 2=191)$; and correspondence 12 CPI allows you to access dot columns up to 1151 ($n 1=4$, $n 2=127$).

Why 2 numbers ($n 1$ and $n 2$)? The maximum value you can send to the DMP 130A with 1 number is 255 , and clearly you have more than 255 dot positions available.
If you are a fan of binary math, you will recognize that the DMP 130A is interpreting these 2 numbers as a single 11-bit $(b(0)-b(10))$ value. The 3 lower bits of $n 1$ are used as $b(8), b(9)$, and $b(10)$.

Note: Use 10-inch-wide paper for this next example.
See if you can print a character starting in position 480 in normal density. $n 1=1$ gives 256 of those dots, and $480-256=224$ is the difference to be sent as $n 2$. Type:

10 LPRINT CHR\$(27);CHR\$(16);CHR\$(1);CHR\$(224);"米"
and RUN the program.
Whoops! The asterisk printed at the left edge of the paper. Hmmm! Maybe you need to leave enough room for the asterisk to fit on the end of the line. Try:
$10 \operatorname{LPRINT} \operatorname{CHR} \$(27) ; \operatorname{CHRS}(16) ; \operatorname{CHRS}(1) ; \operatorname{CHR} \$(218$);"*"
and RUN the program. That's better. It fits nicely at the end of the line. Try this program with the different character densities.
Position is a little like a TAB, but it gets right down to the dot level, giving you much finer control. Although it is available in all 3 print modes, its potential is greatest in graphics mode.
If you want to make a real mess on your paper, try:
10 LPRINT CHR\$ (27); CHR\$ (28);
20 FOR I=1 TO 100
30 LPRINT CHR\$(27); CHR\$ (16); CHR\$ (1); CHR\$ (150
$+\mathrm{I} * \mathrm{SIN}(\mathrm{I} / 5)$);
40 LPRINT "*"
50 NEXT I
Get out of the double-width mode and then RUN the program.

Left and Right Margins

You can position the left or right margin to a specific character position designated by the current font pitch.

When you want to change the left or right margin to a new position, you must first send a CHR $\$(27)$; CHR $\$(81)$ to tell the Printer to change the margin. Follow this with another code which specifies the number of characters from the leftmost position.

Table 23. Left/Right Margin Set

Send CHR\$(
(Dec)	(Hex)	To:		
27	81	n	$1 B$	51
27	82	n	1B	52

The value n indicates the number of characters counted by the current font pitch from the leftmost margin.

- Once the left/right margin position is set, this margin will not be changed even when the character mode is changed.
Previously set tab-stop positions will not be affected by this command.
- When setting the left margin, the maximum value of n is limited to the maxinum printable characters in the current printing mode minus 2
(for example, $137-2=135$ in normal printing mode); otherwise, this command will be ignored.
- When setting the right margin, the value of n must exceed the left margin value by 2 ; otherwise, this command will be ignored.

Skip Perforation

You can set a skip zone for a perforation at the bottom of the form.
Table 24. Skip Perforation Set

The skip zone is determined by the number of n times $1 / 6^{\prime \prime}$ (or $1 / 8^{\prime \prime}$ if DIP switch 1-6 is set to ON). n equals the number of full lines to leave blank at the bottom of the form.

- If the value is already set, the Printer automatically skips the designated area when printing.
- If n extends the form length, this sequence will be ignored.
- At power-on, DIP switch 1-5 determines whether 1-inch skip perforation will be performed.

Bidirectional and Unidirectional Printing

In DP or WP mode, either bidirectional or unidirectional printing is selectable.

Table 25. Bidirectional/Unidirectional Printing

Send CHR\$(
(Dec)	(Hex)					
27	85	1	$1 B$	55	1	To:
27	85	0	$1 B$	55	0	Start Unidirectional Printing

If you need to select unidirectional printing, send a CHR\$ (27); CHR\$(85); CHR\$(1) and, to return to bidirectional printing, send a CHR\$(27);

CHR $\$(85)$; CHR $\$(0)$. At power-up, bidirectional printing is selected.

International Characters

The (2789 n) command is used to designate each country character. n must be within the range of $32 \leq n \leq 42$.

Table 26. Country Character Table

n	$\begin{gathered} 32 \\ (20) \mathrm{H} \end{gathered}$	$\begin{gathered} 33 \\ (21) \mathrm{H} \end{gathered}$	$\begin{gathered} 34 \\ (22) \mathrm{H} \end{gathered}$	$\begin{gathered} 35 \\ (23) \mathrm{H} \end{gathered}$	$\begin{gathered} 36 \\ (24) \mathrm{H} \end{gathered}$	$\begin{gathered} 37 \\ (25) \mathrm{H} \end{gathered}$	$\begin{gathered} 38 \\ (26) \mathrm{H} \end{gathered}$	$\begin{gathered} 39 \\ (27) \mathrm{H} \end{gathered}$	$\begin{gathered} 40 \\ (28) \mathrm{H} \end{gathered}$	$\begin{gathered} 41 \\ (29) \mathrm{H} \end{gathered}$	$\begin{gathered} 42 \\ (2 A) H \end{gathered}$
Country ASCII Code	U.S.A.	Germany	France	Norway	Sweden	Denmark	Finland	Italy	Spain	England	Belgium
35 (23)H	\#	\#	£	\#	\#	\#	\#	f	£	£	\#
36 (24)H	\$	\$	\$	\cdots	\square	\$	ζ	\$	\$	\$	\$
64 (40)H	@	\S	à	Ü	É	É	(a)	§	§	@	à
91 (5B)H	[Ä	-	AE	Ä	AE	Ä	-	i	[-
92 (5C)H	1	Ö	Ç	\varnothing	Ö	\varnothing	Ö	Ç	\tilde{N}	1	Ç
93 (5D)H]	Ü	§	A	\AA	A	A	é	¿]	§
94 (5E)H	\wedge	\wedge	\wedge	Ä	Ü	Ü	\wedge	\wedge	\wedge	\wedge	\wedge
96 (60)H	-	,	-	ü	é	é	'	ù	,	-	,
123 (7B) H	$\{$	ä	é	$æ$	ä	æ	ä	à	-	$\{$	é
124 (7C)H	i	Ö	ù	\varnothing	Ö	\emptyset	Ö	ò	ñ	1	ij
125 (7D)H	\}	ü	è	å	å	å	å	è	Ç	\}	è
126 (7E)H	~	β	.	ä	ü	ü	-	i	\sim	-	-

When the DMP 130A receives this command, the ASCII codes that are input will print characters as specified above. USA is designated at power-on.

Graphics Mode 6

In graphics mode, you no longer have pre-defined characters at your disposal. You are responsible for the positioning and the action of the print head.

The DMP 130A allows you to have direct, programmable control over all of the available graphic dots.
How many across the paper addressable dot columns are there? The correct answer is 480 .

How many up and down (dot columns) addressable dots are there? The answer is 7 .

That means you can specify any one of up to 3,360 individual dots ($7 \times$ $480=3,360$).
How do you print just 1 (or 2 or 3) of those dots in the dot column you want? For example, how can you print the third dot from the top in the 400th dot column?

Simple. Just follow this general procedure:

1. Send a CHR \$(18) to put the DMP 130A in graphics mode.
2. Send a CHR\$(27); CHR\$(16) to tell the Printer you want to position the print head to print a specific dot.
3. Tell the Printer in which dot column you wish to print. This is a little more complicated and will be explained shortly. For now, just understand that you simply tell the Printer which dot column you want.
4. Tell the Printer what you want to print. You can do this a number of ways. Again, this will be explained in more detail shortly. For now, just keep this overall procedure in mind.

When you want to specify a dot column where printing is to begin, you must first use CHR\$ to send the (27 16) code. Follow this with another 2 -code sequence which specifies the position. For instance:

LPRINT CHR\$ (27); CHR\$ (16); CHR\$(n1); CHR\$(n2)
where $n 1$ is a value between $0-1$ and $n 2$ is a value between $0-255$.

Table 27. Graphic Dot Positioning

If you wish to specify the dot column:	$\boldsymbol{n} \mathbf{1}$ must be:	$\boldsymbol{n} 2$ must be:
$0-255$	0	$0-255$
$256-479$	1	$0-223$

Remember! Graphic printing allows you to access dot columns up to 479 ($n 1=1, n 2=223$).

Even though dot columns greater than 255 exist, you cannot send values greater than 255 . That is, $\operatorname{CHR} \$(400)$ is not allowed - you must break it into a two-byte value.

For instance, to draw a vertical bar at dot column 144, try this program:
10 LPRINT CHRS(18)
20 LPRINT CHR\$(27);CHR\$(16);CHR\$(0);CHR\$(144) ; CHR\$ (255)
(Don't worry, that last CHR $\$(255)$ will be discussed shortly.)
In line $10, \mathrm{CHR} \$(18)$ puts the Printer in graphics mode and, in line 20 , CHR\$(27); CHR\$(16) tells it to get ready to position the print head. (Note that CHR\$(0) is necessary.)

Try this line to print a vertical bar at the rightmost available dot column.
10 LPRINT CHR\$(18);CHR $\$(27) ; C H R \Phi(16) ; C H R . \Phi(1)$; CHR\$ (223) ; CHR\$ (255);
What happens is:

1. $\mathrm{CHR} \$(18)$ puts the Printer into graphics mode.
2. CHR\$(27); CHR\$(16) tells the DMP 130A to get ready to position the print head.
3. CHR (1) tells the Printer that the position will be greater than 255.
4. CHR $\$(223)$ specifies the last available dot column.

Note: If you use CHR\$(224) in this line instead of $\mathrm{CHR} \$(223)$, the DMP 130A would wraparound to the first dot column in the next line.

Graphics Patterns

By now, you should be adept at positioning the print head. Now you need to tell the DMP 130A what to print once the head is positioned.

Remember that there are 7 vertical dots in each dot column. You can print any or all of these dots in any combination you want.

Look back at the sample programs used when print head positioning was discussed. Do you remember the last part of the program line (CHR\$(255)) which always printed a vertical bar? That's an example of all 7 dots being printed at once.

Try printing just the top dot of that last dot column (479).
10 LPRINT CHR\$(18);CHR\$(27);CHR\$(16);CHR\$(1) ; CHR\$ (223); CHRS (129);

How does CHR\$(129) print just the top dot?
Even though the 7 dots in a dot column are in a vertical row, they are not numbered sequentially from 1 to 7 . Table 28 describes the numbering system you must use with the DMP 130A when specifying an individual dot.

Table 28. Addressable Dot Numbering System

Dot \#:	Dot:	Number you must use to print the dot:
1	\cdot	129
2	.	130
4	.	132
8	.	136
16	.	144
32	.	160
64	.	192

For instance, you've already seen how to print the top dot in the column.
To print the bottom dot, change the program line to:
10 LFRINT CHR\$(18);CHR\$(27);CHR\$(16);CHR\$(1) ; CHR\$ (223); CHR\$ (192);
This is fine if you want to print an individual dot, but how do you print a combination of dots?

That's actually quite simple, too.

1. Specify the dot \# (1-64, see Table 28) that represents the individual dots you want to print.
2. Add those individual dot \#'s together.
3. Add the sum of the combined dot \#'s to 128.

For example, if you want to print the first dot (dot \#1), the fourth dot (dot \#8), and the last dot (dot \#64), add them together: $1+8+64=$ 73. Then add the sum (73) to $128: 73+128=201$. Use 201 as the addressable dot pattern in the form CHR $\$(201)$:
10 LPRINT CHR\$ (18); CHR\$ (27); CHR\$ (16) ; CHR\$ (1) ; CHR\$ (223) ; CHR\$ (201);

Remember how CHR\$ (255) printed a solid (all dots printed) vertical bar?
Try out the formula on that:

$$
1+2+4+8+16+32+64=127+128=255
$$

The following sample program line will print a box with a line through the middle:

10 LPRINT CHR $~(18) ~ ; ~ C H R \$ ~(27) ; C H R \$(16) ; C H R \$(1)$; CHR\$ (3) ; CHR\$ (255) ; CHR\$ (201); CHR\$ (201); CHR\$ (201) ; CHR\$ (201); CHR\$ (255);

Now to flex our muscles. Type in the following program:

NEW ENTER

```
10 LPRINT CHR$(18)
20 S=1:N=128
30 FOR I=1 TO 20:S=-S
4 0 ~ F O R ~ J = 0 ~ T O ~ 6 ~
80 IF S<O THEN N=N+2^(6-J) ELSE N=N-2^J
90 LPRINT CHR$(N);
100 NEXT J : NEXT I
120 LPRINT CHR$ (30)
```

RUN the program. Be prepared for a pause; it takes time to fill the print buffer.

This program alternately adds and subtracts powers of 2 to the current code pattern stored in the variable N. The net effect is to add or remove a single dot from the preceding dot pattern.

Line Feed

In graphics mode, it is assumed that you want to print rows of graphics one right after another, each 7 dots high. Therefore, graphics mode provides a $7 / 72^{\prime \prime}$ line feed. A single $7 / 72^{\prime \prime}$ line feed advances the paper 7 dots or approximately 0.1 inch. This small paper advance allows for continuous printing without unwanted space between lines.

Modify the current program to demonstrate this fixed line feed. Add or change:
20 FOR $K=1$ TO 2:S=1:N=128
50 IF $K=1$ THEN 80
60 IF $S<0$ THEN $N=N+2^{\wedge} J$ ELSE $N=N-2^{\wedge}(6-J)$
70 GOTO 90
110 LPRINT: NEXT K
and RUN the program.
These lines infiltrate the current loop and produce a mirror image of the first pass of the print head. The LPRINT in line 110 causes the line feed between passes.

In addition to a $7 / 72^{\prime \prime}$ line feed, the following 4 line feed codes are available:

- 1/72" line feed - CHR\$ (27); CHR\$ (50)
- $1 / 144^{\prime \prime}$ line feed - CHR\$ (27); CHR ${ }^{(57)}$
- $n / 144^{\prime \prime}$ line feed - CHR\$(27); CHR\$(64);CHR\$ (n) n should be a value between 1-255.
- $1 / 216^{\prime \prime}$ line feed - CHR\$(27); CHR\$(51)

Repeat Function

CHR\$(28) will tell the Printer to repeat a graphic pattern a specified number of times.

The format for this repeat function is:
repeat code + number of times to repeat + what to repeat
For instance, LPRINT CHR\$(28); CHR\$(15); CHR\$(255) will print the solid vertical bar 15 times.

Change line 90 to:
90 LPRINT CHR\$(28);CHR\$(2);CHR\$(N);
and RUN the program.

Graphics Mode Exit

CHR \$ (30) is used to exit graphics mode. It returns the DMP 130A to the same mode (DP or WP) the Printer was in when it entered graphics mode. In addition, all the previous conditions, such as underline and character style, are restored. Change the sample program to:

```
5 LPRINT CHR \({ }^{(27)}\); CHR \((23)\);"COMPRESSED CHARA CTER WIDTH"
```


90 LPRINT CHR\$(N);

130 LPRINT "STILL IN COMPRESSED MODE"
and RUN it.
Sure enough, the compressed mode is still alive and well.

Freehand Drawing

The computer can do most of the work in drawing figures that can be described by a mathematical function. Freehand drawings, on the other hand, require translating the figure into a matrix of dots, then calculating the dot printing combinations for each print head position. Since there are 7 dots available for graphics, separate the matrix into rows 7 dots high.
The numbers can be stored in DATA statements. To conserve memory and typing time, store the data as numbers from 0 to 127 , then add 128 as you send them to the Printer. Enter these sample DATA lines:
NEW ENTER
120 DATA 999
140 DATA $64,56,70,49,8,0,127,999$
170 DATA $31,7,115,13,66,125,62,29,96,24,6,1,9$ 99
190 DATA $17,16,3,64,48,12,3,999$
210 DATA 2,1,999
The 999's will be used to signify the end of a line. The other numbers are between 0 and 127. Now for the program to read the numbers, add 128, then send them to the Printer.

```
10 LPRINT CHR$(18)
20 FOR R=1 TO 5
30 READ N:IF N=999 THEN 80
40 LPRINT CHR$(128+N);:GOTO 30
80 LPRINT:NEXT R
90 LPRINT CHR$(30)
100 LPRINT "DMP 130A"
```

Now RUN the program.
Not much to brag about yet. Maybe what it needs is to be jazzed up to repeat a number several times. A good approach is to use negative numbers to indicate the number of repetitions followed by the number to be repeated. Add:

```
120 DATA -5, 80, -7,32,-6,64,-5,32,96,999
130 DATA -3,0,96,16,72,116,59,8,96,112,-24,12
7,-6,126
180 DATA 3, 12, -4, 16, -7, 33, -7, 66, -8,4,-6,9,-3,
18
```

Don't RUN it yet!
In line 180 , the sequence $-4,16$ is used to mean four 16 's: $16,16,16,16$. You must modify the program to recognize the negative numbers. Change:

40 IF $N>=0$ THEN LPRINT CHR\$ (128+N);:GOTO 30
50 READ M
60 LPRINT CHR\$ (28); CHR\$ (-N); CHR\$ (128+M);
70 GOTO 30
and RUN the program.
The figure still does not look like much. Add the remaining DATA lines and see what you have been working on.

Graphics mode

110 DATA $-8,0,64,32,12,4,66,97,-4,113,97,110$, $-4,104$
150 DATA $120,6,65,68,71,75,8,10,-3,11,-2,19,-$ 4,23
160 DATA $-2,39,-4,47,-2,79,-4,95,-2,31,-5,63$
200 DATA $-20,0,-8,1,-7,2,-4,4$
RUN the program.
Now, that's worth the effort!

IBM Emulation Mode 7

The DMP 130A has 2 control code sets. One is the original Tandy control code set and the other is the IBM control code set. These two code sets are independent of each other.
When using the IBM mode, DIP switches 2-1 and 2-2 must be set to OFF. Serial interface selection is not supported while in the IBM mode.

Code Set Selection

The IBM emulation mode is provided for use with the IBM code set. You can select it by setting DIP switch 1-1 to ON and then turning on the power.
If you send a CHR \$ (27); "!", it resets the Printer to the defaulted Tandy mode. (Refer to Appendix B.)

Character Set Selection

Three character sets (not character styles) are provided in the DMP130A; one is the Tandy character set and the other two are the IBM character sets (refer to Appendix A). In the IBM emulation mode, setting DIP switch 1-7 to OFF selects the IBM character set 1 , while setting it ON selects the IBM character set 2 . You can also designate character set 1 or character set 2 via software by sending the control codes CHR \$ (27); " 7 " (set 1) or CHR\$ (27); " 6 " (set 2).

Font Selection

The code CHR \$ (27);"I"; CHR\$(1) selects the IBM high-speed font, and CHR \$ (27); "I"; CHR\$(2) or CHR\$ (27); "I"; CHR\$(3) selects the IBM letter-quality font.
When either of these commands is designated, the current buffer contents are printed and the Printer then enters the new font.

Carriage Return

The code CHR \$ (13) prints the buffer contents and then moves the printing position to the leftmost dot position. A line feed is executed if DIP switch 1-2 is set to OFF (CR with LF).
When CR is received, only a carriage return is performed if CHR \$ (27); " 5 "; $\operatorname{CHR} \$(0)$ is set. Both a carriage return and line feed are executed if CHR $\$(27)$; " 5 "; CHR $\$(1)$ is set. This command is given priority over the DIP switch 1-2 selection.

Vertical Formatting Control Codes

Line Feed Pitch

The LF pitch is set to $1 / 6$ inch or $1 / 8$ inch (designated by the setting of DIP switch 1-6) at power-on. You can change the pitch by sending the command CHR $\$(27)$; " 0 ", $\mathrm{CHR} \$(27)$; " 1 " or the command CHR\$(27); "A".

1/8-inch Line Feed

The control code $\operatorname{CHR} \$(27)$; " 0 " changes the line feed distance to $1 / 8$ inch.

7/72-inch Line Feed

The control code $\operatorname{CHR} \$(27)$; " 1 " changes the line feed distance to $7 / 72$ inch.

Variable Line Feed

The control code $\operatorname{CHR} \$(27)$; " 2 " is an execution command for the CHR $\$(27)$; "A" command. That is, the LF pitch designated by the CHR \$(27); "A" command is executed after the CHR\$ (27); "2" command. If no CHR\$(27); "A" command has been given, the line feed distance is set to $1 / 6$ inch.

Useful Hint: If you want to return the LF pitch to $1 / 6$ inch when, for example, the line spacing has been set at $7 / 72$ inch for the bit image mode, send a control code CHR\$(27); "2" only (without a CHR\$(27); "A" command). The LF pitch will return to $1 / 6$ inch.

Variable Pitch Line Feed

The control code $\operatorname{CHR} \$(27)$; "A"; $\mathrm{CHR} \$(n)$ defines the line feed pitch in increments of $1 / 72$ inch. n is a single-byte binary number and can represent any value between 1 and 85 . For bit image graphics, line spacing can be set to $7 / 72$ inch by designating n as 7 .

This command is only to define the LF pitch. You need to send a control code CHR\$(27); "2" to change the line feed pitch.

Enter the following program:

```
10 LPRINT CHR$(27);"A";CHR$(6);
20 LPRINT CHR$ (27);"2"
30 LPRINT "NORMAL SPACING LINE FEED"
40 LPRINT "HALF LINE FEED IS EXECUTED"
```

then RUN it. LF pitch is changed to $1 / 12$ inch.

n/216" Variable Line Feed

The control code $\operatorname{CHR} \$(27) ; " 3 " ; \operatorname{CHR} \(n) sets the line feed pitch to $n / 216$ inch. n is a value between 1 and 255 .

Variable Line Feed Execution ($\boldsymbol{n} / \mathbf{2 1 6}$ ")

The control code $\operatorname{CHR} \$(27)$; "J"; $\operatorname{CHR} \$(n)$ executes a $n / 216 "$ line feed determined by the value of $n . n$ is a number between 1 and 255 .

Line Feed Execution Command

Line feed

The code CHR \$ (10) prints out the character and feeds the paper 1 line. The paper feed distance is specified by the DIP switch or the line spacing set commands as mentioned above. This command will terminate a doublewidth print mode set by code 14 or code sequence (27 14).

Reverse line feed
The code sequence (2793) executes a $1 / 6^{\prime \prime}$ reverse line feed.

Top-of-Form and Form Length

The form length can be changed at any time if the friction feed is used. The control code $\operatorname{CHR} \$(27)$; "C"; CHR\$(n) sets the lines per page and the control code $\operatorname{CHR} \$(27)$;"C"; $\operatorname{CHR} \$(0) ; \operatorname{CHR} \(m) sets the inches per page. n is a single-byte binary number and can represent any value between 1 and 127. m is also a single-byte binary number and can represent any value between 1 and 22 . The top-of-form position is set at the current line after a form length setting command is executed. The form length is set to 11 or 12 inches (selected by DIP switch 1-4) at power-on. To set the current print position as the top-of-form, send CHR\$(27); "4".

Form Feed

When a control code CHR \$(12) is issued, the Printer prints out the buffer contents and feeds the paper to the next top-of-form position.

Skip Perforation

The skip perforation function can be set by the CHR $\$(27$); "N"; CHR $\$(n)$ command. n designates the number of lines to skip. n is a single-byte binary number and can represent any value between 1 and 127. This function is terminated by the $\operatorname{CHR} \$(27)$; "O" command or the form length set command.
If the value for n exceeds the page length, the CHR\$(27); " N "; CHR\$(n) command is ignored.

If you want to print 60 lines per page on a sheet of 11 -inch paper, RUN the following program:

10 LPRINT CHR\$ (27);"N"; CHR\$ (60);

Line 61 is printed on the next top-of-form without a form feed command.

Horizontal Formatting Control Codes

Horizontal Tabulation

With horizontal tabulation, you can easily align sections horizontally. The maximum 28 horizontal TAB stops can be set to any column (the left margin is column 0) by using the following control codes:

CHR\$ (27);'D'; CHRS (n1); CHR\$ (n2)
CHR $\$$ (nk) ; CHR\$ (O)
n indicates the horizontal column position and can represent any number between 1 and 80 ; column positions should be designated in ascending order. When all TABs have been selected, send a null code (CHR\$(0)) to terminate the horizontal TAB designation. Once the TABs are set, send control code CHR $\$(9)$ to skip to the next right TAB position.

- When TAB stops are not set, control code CHR (9) is ignored.
- All the previously set TABs are cleared by designating new TAB stop positions.
- Horizontal TAB stops are set at every eighth column when the Printer is powered ON .

TAB Reset

The code CHR\$(27); "R" restores all TAB columns to the default value of every eighth column.

Backspace

CHR (8) causes the print head to backspace the length of 1 character after printing the current buffer contents. If proportional spacing is selected, the length of the backspace is the same as the length of a space (ASCII 32, 20 hex).

Home Head

If you send the code sequence CHR (27); CHR\$(60), the print head will return to the home position to print a line. This will occur for 1 line only.

Left and Right Margins

You can position the left and right margins to a specific character position designated by the current font pitch. Send control codes (2788 n 1 n 2), where n 1 is the left margin position and n 2 is the right margin position $(1<\mathrm{n} 1<\mathrm{n} 2<233)$. Both values n 1 and n 2 indicate the number of characters counted by the current font pitch from the leftmost margin. If the current font is proportionally spaced, the width of space (ASCII 32) is used.

Once set, the margin positions do not change even if you change the character font pitch.

The minimum distance between the left and right margins is $1 / 5^{\prime \prime}$. If you give values that result in less than $1 / 5^{\prime \prime}$, the Printer sets to minimum $1 / 5^{\prime \prime}$.

The command is a print start command. When this command is received, the Printer prints out the current buffer contents and subsequent data will be printed from the designated left margin.

Variable Forward/Backward Space

You can move the print head forward or backward in increments of $1 / 120^{\prime \prime}$. Use the code sequence (27100 n 1 n 2) for forward spacing and
(27 101 n 1 n 2) for backward spacing. In either case, n 1 and n 2 are the number of print head motions in the unit of $1 / 120^{\prime \prime}$. Each is a single-byte binary number; n 1 is the lower part of the value and n 2 is the upper part of the value. Therefore, the actual value is $\mathrm{n} 1+256 \times \mathrm{n} 2\left(\times 1 / 120^{\prime \prime}\right)$.

If the position you specify is beyond the right margin in forward spacing, the next print position is set to the left margin position. If the specified position is beyond the left margin in backward spacing, the Printer sets the next print position to the left margin.

Printing Mode Control

In IBM emulation mode, you can print elongated, condensed, bold, and emphasized characters. You can also print in super-or subscript mode, bit image mode and so on. Use these various print styles to print a title or to highlight effectively in the character printing mode.

Double-Width Printing

In double-width printing mode, the width of a printed character is doubled; the pitch space is also doubled. Double-width printing can be executed via CHR \$ (14) or CHR\$(27); CHR\$(14) or CHR\$(27); "W"; CHR\$(1). When this mode is established with CHR\$(14) or CHR\$ (27); CHR $\$(14)$, it is released by CHR $\$(20)$ or a line feed. When it is established with CHR\$(27); "W"; CHR\$(1), it is released by CHR\$(27); "W"; CHR $\$(0)$ only.

For instance, enter the following program:

```
10 LPRINT CHR$(27);CHR$(14);" TITLE "
20 LPRINT "TEXT PRINTING"
```

and RUN it. TITLE is printed in double-width character mode, but TEXT PRINTING is not since an LF took place at the end of line 10. Compare these results with the results of the following program:

```
10 LPRINT CHR$(27);"W";CHR$(1);", TITLE
20 LPRINT "TEXT PRINTING"
```


Compressed Printing

In the compressed printing mode, 10 CPI is changed to 17 CPI . Compressed printing can be selected with $\operatorname{CHR} \$(15)$ or CHR\$(27); CHR\$(15), and released with CHR\$(18).

Notes: 1. Condensed printing is suspended in bit image or emphasized printing mode. When the Printer exits either of these modes, condensed printing is restored.
2. Condensed printing is available only in standard font; it is ignored when the correspondence font is selected.
Type in the following program:

```
10 LPRINT CHR\$(15);
20 LPRINT "THIS IS COMPRESSED"
```

and RUN it. Data can be printed with up to 137 characters in a line.

12 CPI Selection

If the current font is one of the high-speed character sets when code CHR\$(27);":" is sent to the Printer, 12 CPI will be selected. If the current font is a letter-quality character set, correspondence 12 CPI characters will be selected. To return to 10 CPI , send CHR\$(27); " M ".

Proportional Spacing ON/OFF

Proportional Spacing OFF

When the code $\operatorname{CHR} \$(27)$; " P "; CHR\$(0) is received, the current buffer contents are printed and the font is changed to a monospaced font.
This command only resets the proportional spacing condition.

Proportional Spacing ON

When the code CHR\$(27); "P"; CHR\$(1) is sent to the DMP 130A, the current buffer contents are printed and the font is changed to a proportional spacing font.

This command sets the character font to proportional spacing.

Emphasized Printing

In the emphasized printing mode, each character is printed once on the normal printing line, and again with a small shift horizontally. This emphasized printing mode is established by the control code CHR\$(27); " E " and cancelled by CHR $\$(27)$; " F ".
Enter the following program:

$$
\begin{aligned}
& \text { ،O+، INIYdT } 06
\end{aligned}
$$

$$
\begin{aligned}
& \text { !"己, INIYdT 0L }
\end{aligned}
$$

$$
\begin{aligned}
& \text { !،"XG+، INIYdT OG }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ؛ "E، INIYdT } 0 \text { ह }
\end{aligned}
$$

؛ ،XV＝X＂LNIYdT OT

ıd！usqus pue „d！us．aədnS

＂BufquFAd＂LNI צdT Oも
！،＂A،：（LL）\＄yHO INIYdT OE

$$
\begin{aligned}
& \text { ! "ヨ،":(LZ)\$सHO INI\&dT OT }
\end{aligned}
$$

Underlining

In the underlining mode, all characters, spaces and the spaces which are moved by horizontal TABs (except bit image data and graphic symbols) will be underlined. This mode is established by CHR\$(27); "-"; CHR\$(1) and cancelled by CHR\$(27); "-"; CHR\$(0).

Enter the following program:
10 LPRINT "THIS FUNCTION CAN PRINT"
20 LPRINT CHRS (27);"-"; CHR\$ (1);"UNDERLINE" ; CHRS (27);"-"; CHRS (0);
30 LPRINT "WITH TEXT AUTOMATICALLY"
and RUN it.
The word UNDERLINE is printed with an underline.

Bit Image Mode

There are four kinds of bit image modes in the DMP 130A. One vertical line of dot image consists of 8-bit data. Each mode has its particular horizontal dot density, and its maximum number of bits on a line, as indicated.

Mode

480 Bit Image
960 Bit Image
960 Bit Image
(Normal Speed)
1920 Bit Image

Number of Bits/Line

480 Bits/Line
960 Bits/Line 960 Bits/Line

1920 Bits/Line

480 bit image mode
In 480 bit image mode, horizontal dot (bit) density is $1 / 60$ inch. The code sequence of this mode is as follows:

CHRS (27);"K"; CHRS (n1); CHRS (n2); CHR\$ (v1); CHR\$ (vK)
$n 1, n 2$ are the number of the horizontal dot positions. Each is a singlebyte binary number: $n 1$ is the lower part of the value and $n 2$ is the upper part of the value. Therefore, the actual value is $n 1+256 \times n 2$. The total data number ($n 1, n 2$) should not exceed 480.
$\nu 1$ through $v \mathrm{~K}$ represent the dot patterns for each vertical line and single-byte binary number. Unlike in the Tandy mode, the dot patterns are numbered
from bottom to top:
128
64
32
16
8
4
2
1
Add the numbers of the dot patterns you want to print to obtain the data for $v 1$ through $v \mathrm{~K}$.

960 bit image mode
In 960 bit image mode, horizontal dot (bit) density is $1 / 120$ inch. A dot pattern which corresponds with 1 bit is composed of 3 vertical dots $\times 3$ horizontal dots in $1 / 360$-inch dot pitch. The code sequence of this mode is as follows: CHR\$ (27);"L"; CHR\$(n1); CHR\$ (n2); CHR\$ (v1) +.... CHR\$ (vK)
The total data number $(n 1, n 2)$ should not exceed 960 .

960 bit image mode (normal speed)

In 960 bit image mode (normal speed), the dot density is equally $1 / 120$ inch: The difference between these two 960 bit image modes is equivalent to the difference between boldfaced characters and normal characters. The code sequence of this mode is as follows:
CHR\$ (27) ; "Y"; CHR\$ (n1); CHR\$ (n2); CHRS (v1); ... CHRS (vK)

The total data number $(n 1, n 2)$ should not exceed 960 .

1920 bit image mode

In 1920 bit image mode, horizontal dot (bit) density is $1 / 240$ inch. The bits on the same horizontal line should not be printed continuously in this mode. The code sequence of this mode is as follows:
CHR\$ (27);"2"; CHR\$ (n1); CHR\$ (n2); CHRS (v1); ... CHRS (vK)

The total data number $(n 1, n 2)$ should not exceed 1920 .

Other Control Codes

Paper End Detection

The FAULT signal to the interface when a paper end condition is detected can be turned ON or OFF. By combining this function with an override function, the last printable line on the paper can be printed without a device fault on the external terminal. The FAULT signal is inhibited by CHR $\$(27)$; " 8 " (ignore paper end), and is made available by CHR\$(27); " 9 " (cancel ignore paper end).

Cancel

CHR \$ (24) clears the data in the print buffer that was received prior to this command. Other control codes that were received prior to this control code remain in effect.

Unidirectional printing

Usually the DMP 130A executes bidirectional printing, but it allows you to print using a unidirectional printing method to avoid slight vertical misalignment. But using this function, you can print a chart or a graph perfectly. This function is executed by the code sequence $\operatorname{CHR} \$(27)$; "U"; CHR\$(1) and cancelled by CHR\$(27); "U"; CHR\$(0). When only a small number of characters is to be printed unidirectionally, printing all the characters on a page in the unidirectional mode decreases the efficiency of the DMP 130A. Use the code CHR $\$(27)$; " $<$ " to print only specific characters in the unidirectional mode. This code is cancelled by CHR\$(13): only 1 line following this code is printed unidirectionally.

Characters Below 20 Hex

The code sequence $\operatorname{CHR} \$(27)$; """; $\operatorname{CHR} \$(n)$ prints the character assigned to n when n is below 20 hex. If there is no character assigned to n, a space (20 hex) will be printed instead.

Bell

When the code $\operatorname{CHR} \$(07)$ is received, the Printer's buzzer sounds for 1 second. If DIP switch 2-2 is OFF, the buzzer does not sound.

I

Appendices

Character Sets A

Tandy Character Set Table

Upper Bit Lower	Hex.	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F	
Hex.	Binary	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111	
0	0000		$\begin{aligned} & \text { Pos } \\ & \sqrt{16} \end{aligned}$	sp 32	$\left.\right\|^{0}$	$\sqrt{64}$		$\sqrt{96}$	$\begin{array}{\|l\|} \hline \mathrm{p} \\ \hline 112 \\ \hline \end{array}$				$\sqrt{7176}$	$\begin{aligned} & \hat{a} \\ & { }^{192} \\ & \hline \end{aligned}$		224	200	
1	0001		$\begin{array}{\|c\|} \hline 001 \\ \hline 17 \\ \hline \end{array}$!	$\begin{array}{\|l\|} \hline 1 \\ \hline \end{array}$	A 65	${ }^{0}$	$\begin{aligned} & a \\ & 97 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \mathrm{q} \\ \hline 113 \\ \hline \end{array}$				$\begin{array}{l\|} \hline \stackrel{\rightharpoonup}{\mathrm{A}} \\ \sqrt{177} \\ \hline \end{array}$		${ }_{\infty}$		- 2	
2	0010		$\begin{array}{\|c} \hline 0 C 2 \\ \hline 18 \\ \hline \end{array}$		2		R 82	b 98	$\sqrt{144}$				$\sqrt{178}$		$\begin{array}{\|l\|} \hline A \\ \hline 210 \\ \hline \end{array}$		$\sqrt{222}$	
3	0011		$\begin{gathered} \mathrm{OC}^{\circ} 3 \\ -\quad 19 \\ \hline \end{gathered}$		$\begin{array}{\|c\|} \hline 3 \\ 51 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{c} \\ & \hline 67 \\ & \hline \end{aligned}$			$\begin{array}{\|l\|} \hline \mathrm{s} \\ \hline 1155 \\ \hline \end{array}$		147				à 211		${ }^{\top}$	
4	0100		$\begin{array}{\|c\|} \hline 0 C 4 \\ \hline 20 \\ \hline \end{array}$		$\sqrt[4]{52}$			d	$\begin{array}{\|l\|} \hline \mathrm{t} \\ \hline 116 \\ \hline \end{array}$				\& $\mid 180$		$\begin{array}{\|l\|} \hline \varnothing \\ \hline \\ \hline 212 \\ \hline \end{array}$	$\sqrt{228}$	$\sqrt{244}$	
5	0101	5			5	E 69		101	$\begin{array}{\|l\|} \hline 172 \\ \hline 10 \end{array}$			μ 165	$\longdiv { 1 8 1 }$			$\begin{aligned} & n_{n} \\ & 229 \\ & \hline \end{aligned}$	1	
6	0110	6	22	${ }^{\&}$	$\begin{aligned} & 6 \\ & \sqrt{54} \end{aligned}$	F 70	$\stackrel{ }{86}$	f 102	$\sqrt{118}$	134	150	$\sqrt{166}$	ä $\sqrt{182}$	$\begin{gathered} \hline \stackrel{e}{e} \\ \\ \hline 1988 \end{gathered}$	̄ 214	230	$\begin{array}{l\|} \hline- \\ \hline 246 \\ \hline \end{array}$	
7	0111	$\sqrt{8 E 1}$	$\begin{aligned} & \text { етв } \\ & \sqrt{23} \end{aligned}$		$\sqrt{55}$		w^{87}		$\begin{aligned} & \mathrm{w} \\ & \square \\ & \hline 109 \end{aligned}$	135				$\begin{aligned} & i \\ & \hline 109 \\ & \hline \end{aligned}$	E \qquad	$\sqrt{231}$	$\stackrel{1}{247}$	
8	1000				8 56				$\begin{array}{\|c\|} \hline \times \quad 120 \\ \hline \end{array}$			\dagger $\sqrt{168}$	ü 184	á $\stackrel{a}{200}$	A $\\|^{A 216}$		$\stackrel{\perp}{248}$	
9	1001	9					89		$\begin{aligned} & y \\ & \sqrt{121} \end{aligned}$			5 169			$\sqrt{217}$		$\stackrel{\dashv}{249}$	
A	1010	$\stackrel{\text { LF }}{10}$	$\begin{array}{r} \text { suB } \\ 26 \\ \hline \end{array}$			J	$\begin{aligned} & \mathrm{z}^{90} \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline i \\ \hline 1060 \\ \hline \end{array}$	2			© 170	$\left.\right\|_{\mid 189} ^{186}$	ó 202	$\begin{array}{\|l\|} \hline 0 \\ \hline 1218 \\ \hline \end{array}$	$\begin{aligned} & 1 \\ & \sqrt{224} \end{aligned}$	$+$	
B	1011		$\begin{array}{\|c} \text { ESC } \\ 27 \\ \hline \end{array}$		5	$\underbrace{\kappa}$	$\begin{aligned} & 1 \\ & \hline 91 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline k \\ \hline 107 \\ \hline \end{array}$	$1 \begin{gathered} 123 \\ 102 \end{gathered}$			© 171	é $\mid 187$	$\begin{array}{\|l\|} \hline \dot{u} \\ \hline 203 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { ن́ } \\ \hline 219 \\ \hline \end{array}$		${ }^{5}$	
C	1100	FF	FS		$<$	${ }^{L}$	12	$\begin{gathered} 1 \\ 108 \\ \hline \end{gathered}$	$\sqrt{124}$			$\int_{1 / 4}^{1 / 4}$	ù	204	i^{i}		$\stackrel{4}{252}$	
D	1101	${ }^{\text {CR }}$	$\begin{aligned} & \text { GS } \\ & \hline 29 \end{aligned}$		$=$	$]^{m}$		m $\sqrt{109}$	3^{3}	$\begin{array}{\|c\|} \hline \mathrm{CR} \\ \hline 141 \\ \hline \end{array}$		$\sqrt{3 / 4}_{173}^{173}$	è 189	ก 205	$\begin{aligned} & \text { ن } \\ & \hline 1221 \\ & \hline \end{aligned}$		$\sqrt{253}$	
E	1110	So	$\begin{gathered} \text { RS } \\ 4 \\ 40 \end{gathered}$		$\sqrt{62}$	N^{78}		n \qquad	$-$			$\begin{aligned} & 1 / 2 \\ & 174 \\ & \hline 10 \end{aligned}$	$\sqrt{190}$	à \qquad	È ${ }^{\mathrm{E}}$		${ }_{\mid}^{1254}$	
F	1111		$$	14	$\sqrt{63}$	${ }^{0}$	195		$\mid \sqrt{127}$	$\sqrt{146}$	159	$\sqrt{\pi}$	f \qquad	○ 207	$\begin{aligned} & \text { A } \\ & \hline 223 \end{aligned}$	223	255	

Dot Column Width of Tandy Characters

Standard and Proportional Characters

Upper Bit Lit Lower Bit	Hex.	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
Hex.	Binary	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0	0000	0		$\begin{array}{\|c} 12 \\ 32 \\ \hline \end{array}$	$\begin{aligned} & 11 \\ & \sqrt{48} \end{aligned}$	11 64	$:^{11}$	8 96	$\begin{aligned} & 11 \\ & \quad 112 \\ & \hline \end{aligned}$	128	144	8	11 176	$\begin{aligned} & 11 \\ & =\quad \sqrt{192} \\ & \hline \end{aligned}$	11	12 224	12
1	0001		17	9 33	9 49	11 65	$\begin{array}{\|c\|} \hline 11 \\ 81 \\ \hline \end{array}$	11 97	11 113	129	145	$\left.\right\|^{11}$	11 177	$\underbrace{11}$	$\begin{aligned} & 11 \\ & 209 \end{aligned}$	12 225	12 $\sqrt{241}$ 12
2	0010	2		9 34	11 50	11	11	11 98	10 114	130	146	9 162	11 178	9 194	11 210	12 226	2
3	0011	3		$\begin{aligned} & 11 \\ & \quad \begin{array}{r} 35 \\ \hline \end{array} \\ & \hline \end{aligned}$	11 51	11	$\begin{array}{\|l\|} \hline 11 \\ \hline 83 \\ \hline \end{array}$	9 99	11 115	131	147	11	11 179	11 195	11 211	$\begin{array}{\|c\|} \hline 12 \\ \sqrt{227} \\ \hline \end{array}$	12
4	0100	4		$\begin{aligned} & 11 \\ & \sqrt{36} \\ & \hline \end{aligned}$	11 52	11 68	$\begin{aligned} & 11 \\ & 84 \\ & \hline \end{aligned}$	11 100	11 $\sqrt{116}$	132	148	8 164	10 180	11 196	11 212	$\begin{array}{\|r\|} \hline 12 \\ \hline 228 \\ \hline \end{array}$	22
5	0101	5		$\begin{array}{\|l\|} \hline 11 \\ \hline 37 \\ \hline \end{array}$	11 53	$\begin{aligned} & 11 \\ & \hline 69 \\ & \hline \end{aligned}$	11	11 101	11 117	133		$\begin{array}{\|l\|} 12 \\ \mid 165 \\ \hline \end{array}$	10 181	9 197	11 213	$\begin{array}{\|l\|} \hline 12 \\ \sqrt{229} \\ \hline \end{array}$	12 \square 245
6	0110	6		11 38	$\begin{array}{\|l\|} \hline 11 \\ 54 \\ \hline \end{array}$	11 70	$\begin{aligned} & 11 \\ & \sqrt{86} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 9 \\ 102 \\ \hline \end{array}$	11 118	134	150	$\begin{gathered} 9 \\ \hline 166 \end{gathered}$	11 182	11 198	11 214	12 230	12 $\sqrt{246}$
7	0111	7		9 39	11 55	$\begin{array}{\|c\|} 11 \\ \\ 71 \end{array}$	11 87	$\begin{array}{\|c\|} \hline 11 \\ \hline \\ \hline \end{array}$	11 119	135	151	$\begin{array}{\|l\|} \hline 9 \\ \hline \\ \hline 167 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 11 \\ \sqrt{183} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 9 \\ \hline 199 \\ \hline \end{array}$	11 215	12 231	12
8	1000	8	24	$\begin{aligned} & 8 \\ & 40 \\ & \hline \end{aligned}$	11 56	$\begin{array}{\|c\|} 11 \\ 72 \\ \hline \end{array}$	10	$\begin{array}{\|l\|} \hline 11 \\ \hline 104 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 11 \\ \hline 120 \\ \hline \end{array}$	136		$\begin{array}{\|l\|} \hline 12 \\ \sqrt{168} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 11 \\ \hline \\ \hline 184 \\ \hline \end{array}$	11 200	11 216	$\begin{aligned} & \hline 12 \\ & \hline \quad 232 \\ & \hline \end{aligned}$	12 248 12
9	1001	9	25	$\begin{array}{\|l\|} \hline 9 \\ \hline \\ \hline \end{array}$	11 57	$\begin{array}{\|l\|} \hline 9 \\ \hline \end{array}$	11 \qquad	9 $\sqrt{105}$	$\begin{array}{\|l\|} \hline 11 \\ \hline \\ \hline 121 \\ \hline \end{array}$	137	$\sqrt{153}$	11 169	$\begin{array}{\|l\|} \hline 11 \\ \hline 185 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 9 \\ \sqrt{201} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 9 \\ \hline 217 \\ \hline \end{array}$	$\begin{gathered} 12 \\ 12 \\ 2 \\ 233 \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline 12 \\ \hline 249 \\ \hline \end{array}$
A	1010	10		$\begin{array}{\|l\|} \hline 11 \\ \sqrt{42} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 9 \\ \hline 58 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 11 \\ \hline 74 \\ \hline \end{array}$	11 90	$\begin{array}{\|c\|} \hline 8 \\ \hline 106 \\ \hline \end{array}$	$\begin{aligned} & 11 \\ & \hline \quad 122 \\ & \hline \end{aligned}$	138		$\begin{array}{\|r\|} \hline 12 \\ \hline 170 \\ \hline \end{array}$	12 186	$\begin{array}{\|l\|} \hline 11 \\ 202 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 11 \\ \hline 218 \\ \hline \end{array}$	$\begin{gathered} 12 \\ 234 \\ \hline \end{gathered}$	12 $\sqrt{250}$
B	1011	11	27	$\begin{array}{\|l\|} \hline 11 \\ \hline 43 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 9 \\ \hline \\ \hline \end{array}$	11 75	$\begin{array}{\|l\|} \hline 9 \\ \hline 91 \\ \hline \end{array}$	$\begin{aligned} & 9 \\ & \hline \\ & \hline 107 \\ & \hline \end{aligned}$	$\begin{aligned} & 9 \\ & 123 \end{aligned}$	139		$\begin{array}{\|r\|} \hline 12 \\ \hline 171 \\ \hline \end{array}$	11 187	$\begin{array}{\|c\|} \hline 11 \\ \hline \\ \hline 203 \\ \hline \end{array}$	11 219	$\begin{aligned} & 12 \\ & 235 \\ & \hline \end{aligned}$	12
C	1100	12	28	9 44	$\begin{array}{\|c\|} \hline 10 \\ \hline 60 \\ \hline \end{array}$	11 76	$\begin{array}{\|l\|} \hline 10 \\ \hline 92 \\ \hline \end{array}$	$\begin{aligned} & 9 \\ & \sqrt{108} \end{aligned}$	$\begin{aligned} & \hline 9 \\ & \sqrt{124} \\ & \hline \end{aligned}$	140	$\sqrt{156}$	$\begin{array}{\|c\|} \hline 12 \\ \sqrt{172} \\ \hline \end{array}$	11 188	$\begin{array}{\|l\|} \hline 9 \\ \hline 204 \\ \hline \end{array}$	10 220	$\begin{gathered} 12 \\ 236 \\ \hline \end{gathered}$	12
D	1101	13		11 45	$\begin{array}{\|r\|} \hline 11 \\ \hline \\ \hline 61 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 11 \\ \quad 77 \\ \hline \end{array}$	$\begin{aligned} & 9 \\ & 93 \\ & \hline \end{aligned}$	11 $\boxed{109}$	9 $\longdiv { 1 2 5 }$			$\begin{array}{\|r\|} \hline 12 \\ \hline \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 11 \\ \hline \\ \hline \end{array}$	11 205	11 221	12 237	12
E	1110	14	30	9 46	$\begin{array}{\|c\|} \hline 10 \\ \hline 62 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 11 \\ \hline 78 \\ \hline \end{array}$	9 94	$\begin{gathered} 11 \\ \hline 110 \\ \hline \end{gathered}$	10 126	142	$\sqrt{158}^{1}$	12 174	$\begin{array}{c\|} \hline 9 \\ \boxed{190} \\ \hline \end{array}$	11 206	$\begin{aligned} & 11 \\ & \quad 2222 \\ & \hline \end{aligned}$	$\begin{gathered} 12 \\ 2238 \\ \hline \end{gathered}$	12
F	1111	15	31	$\begin{array}{r} 10 \\ \hline 47 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 10 \\ \hline 63 \\ \hline \end{array}$	11 79	11 95	$\begin{aligned} & 11 \\ & \hline 111 \\ & \hline 10 \end{aligned}$	127	143	159	$\begin{array}{\|l\|} \hline 9 \\ \boxed{175} \\ \hline \end{array}$	$\begin{aligned} & 10 \\ & {[191} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 11 \\ \hline 207 \\ \hline \end{array}$	$\begin{aligned} & 11 \\ & 223 \\ & \hline \end{aligned}$	$\begin{aligned} & 12 \\ & 239 \\ & \hline \end{aligned}$	255

GRAPHICS

\boxtimes	\ddots	-	ò	ì	\mid	lj
11	11	12	11	9	9	11

Correspondence and Proportional Characters

Upper Bit Lower Bit	Hex.	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
Hex.	Binary	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0	0000	0		24 32	21 48	21 64	$\begin{array}{\|r\|} \hline 22 \\ \hline 80 \\ \hline \end{array}$	17 96	$\begin{array}{\|r\|} \hline 23 \\ \hline 112 \\ \hline \end{array}$	128	144	$\begin{array}{\|l\|} \hline 19 \\ \\ \hline 160 \\ \hline \end{array}$	23 176	22 192	24 208	$\begin{array}{\|r\|} \hline 24 \\ \hline 224 \\ \hline \end{array}$	24 240
1	0001	1		13	20	$\begin{array}{\|l\|} \hline 23 \\ \hline 65 \\ \hline \end{array}$	23	22 97	23 113	129	145	22 161	23 177	21 193	24 209	$\begin{array}{\|r\|} \hline 24 \\ \hline \end{array}$	24 241
2	0010	2		$\begin{array}{\|l\|} 17 \\ \\ \hline \end{array}$	21 \qquad	23 66	$\begin{array}{\|c\|} 23 \\ 82 \\ \hline \end{array}$	23 98	$\begin{array}{\|r\|} \hline 114 \\ \hline \end{array}$	130	146	$\begin{array}{\|l\|} \hline 22 \\ \hline 162 \\ \hline \end{array}$	23 178	20	$\begin{array}{\|r\|} \hline 23 \\ \hline 210 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 24 \\ \hline 226 \\ \hline \end{array}$	24 242
3	0011	3		$\begin{array}{\|r\|} \hline 23 \\ \hline \end{array}$	21 51	$\begin{array}{\|l\|} \hline 23 \\ \hline 67 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 23 \\ \hline 83 \\ \hline \end{array}$	22 99	$\begin{array}{\|l\|} \hline 23 \\ \\ \hline 115 \\ \hline \end{array}$	131	147	$\begin{array}{\|c\|} \hline 21 \\ 163 \\ \hline \end{array}$	23	22	22	$\begin{array}{\|c\|} \hline 24 \\ \hline 227 \\ \hline \end{array}$	24 243
4	0100	4		21 36	21 52	23 68	$\begin{array}{\|r\|} 23 \\ \hline 84 \\ \hline \end{array}$	23 100	21 116	132	148	17 164	21 180	2^{23}	23 212	$\begin{array}{\|r\|} \hline 248 \\ \hline \end{array}$	24 244
5	0101	5		23 37	21 53	23 69	$\begin{array}{\|l\|} \hline 23 \\ \hline 85 \\ \hline \end{array}$	21 101	$\begin{array}{\|r\|} \hline 23 \\ \hline 117 \\ \hline \end{array}$	133	149	23 165	21 181	16 197	19 213	24	24
6	0110	6		$\begin{array}{\|r\|} \hline 23 \\ \hline \end{array}$	21 54	$\begin{array}{\|l\|} \hline 23 \\ \hline 70 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 23 \\ \hline 86 \\ \hline \end{array}$	21 102	$\begin{array}{\|r\|} \hline 23 \\ \hline 118 \\ \hline \end{array}$	134	150	$\begin{array}{\|l\|} \hline 19 \\ \sqrt{166} \\ \hline \end{array}$	22	21 198	24	$\begin{array}{\|r\|} \hline 24 \\ \hline 230 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 24 \\ \hline 246 \\ \hline \end{array}$
7	0111	7	23	13 39	21 55	23 \qquad	24 87	23 103	24 119	135	151	17 167	22	21 199	$\begin{array}{\|l\|} \hline 23 \\ \hline 215 \\ \hline \end{array}$	24	24 247
8	1000	8		$\begin{array}{\|r\|} \hline 20 \\ \hline 40 \\ \hline \end{array}$	21 56	23 72	$\begin{array}{\|c\|} \hline 23 \\ \hline 88 \\ \hline \end{array}$	23 104	23 120	136		22 \qquad	23 184	22 200	2^{23}	$\begin{array}{\|l\|} \hline 24 \\ \hline \end{array}$	24
9	1001	9	25	$\begin{array}{\|l\|} \hline 16 \\ \boxed{41} \\ \hline \end{array}$	21 57	18 73	$\begin{array}{\|r\|} \hline 23 \\ \hline 89 \\ \hline \end{array}$	20 105	$\begin{array}{\|l\|} \hline 23 \\ \hline 121 \\ \hline \end{array}$	137	153	21 169	21 185	20 201	19 217	24	24
A	1010	10		22	13 58	19 74	22 90	16 106	21 122	138	154	21 170	24 186	22 202	$\begin{array}{\|l\|} \hline 23 \\ \hline 218 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 24 \\ \hline 234 \\ \hline \end{array}$	24
B	1011	11		22	13 59	$\begin{array}{\|c\|} \hline 23 \\ \hline \end{array}$	13	23 107	21	139	155	$\begin{array}{\|l\|} 21 \\ 171 \\ \hline \end{array}$	21 187	23	$\begin{array}{\|l\|} \hline 23 \\ \hline 219 \\ \hline \end{array}$	$\begin{array}{\|l\|} 24 \\ 235 \\ \hline \end{array}$	24
C	1100	12		$\begin{array}{\|l\|} 13 \\ 44 \\ \hline \end{array}$	19 60	22	$\begin{array}{\|l\|} \hline 23 \\ \hline 92 \\ \hline \end{array}$	20 108	13 124	140	156	19 172	23 188	13 204	21 220	$\begin{array}{\|l\|} \hline 24 \\ \hline 236 \\ \hline \end{array}$	24
D	1101	13	29	21 45	21 61	24 77	$\begin{array}{\|c\|} \hline 13 \\ \hline 93 \\ \hline \end{array}$	$\begin{gathered} 24 \\ \sqrt{109} \end{gathered}$	16 125	141	157	21 173	21 189	23 205	$\underbrace{23}$	$\begin{array}{\|r\|} \hline 24 \\ \hline \quad 237 \\ \hline \end{array}$	24
E	1110	14		$\begin{array}{\|c\|} 13 \\ \hline 46 \\ \hline \end{array}$	19 62	24 78	19	23 110	21 126	142	158	19 174	20 190	22 206	$\begin{array}{\|l\|} \hline 23 \\ \hline 222 \\ \hline \end{array}$	24 238	24
F	1111	15		$\begin{array}{\|c\|} \hline 23 \\ \hline 47 \\ \hline \end{array}$	21 63	23 79	24 95	$\underbrace{22}$	127	143	159	20	21 191	22	23	24 239	255

GRAPHICS

Z	\mathfrak{Q}	-	ò	i	I	Ij
23	23	24	22	20	13	24

IBM Character Set 1

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{|l|}
\hline \begin{tabular}{c}
Upper \\
Bit \\
\hline
\end{tabular} \\
\hline Bower \\
\hline
\end{tabular} \& Hex. \& 0 \& 1 \& 2 \& 3 \& 4 \& 5 \& 6 \& 7 \& 8 \& 9 \& A \& B \& C \& D \& E \& F \\
\hline Hex. \& Binary \& 0000 \& 0001 \& 0010 \& 0011 \& 0100 \& 0101 \& 0110 \& 0111 \& 1000 \& 1001 \& 1010 \& 1011 \& 1100 \& 1101 \& 1110 \& 11 \\
\hline 0 \& 0000 \& NuL
\[
0
\] \& \& \& 0
\[
48
\] \& \begin{tabular}{l}
@ \\
64
\end{tabular} \& \[
80
\] \& \& \[
\begin{array}{|c}
\hline \mathrm{p} \\
\hline
\end{array}
\] \& 128 \& 144 \& \begin{tabular}{l}
á \\
160
\end{tabular} \& \[
\sqrt{176}
\] \& 192 \& \[
\begin{aligned}
\& \perp \\
\& \sqrt{20}
\end{aligned}
\] \& \({ }^{\alpha}\) \& 240 \\
\hline 1 \& 0001 \& 1 \& 17 \& \[
\begin{aligned}
\& 1 \\
\& \hline \\
\& \hline
\end{aligned}
\] \& 1
\[
49
\] \& \begin{tabular}{l}
A \\
65
\end{tabular} \& \begin{tabular}{l}
0 \\
81
\end{tabular} \& \begin{tabular}{l}
a \\
97
\end{tabular} \& \[
\begin{array}{|l|}
\hline 113 \\
\hline
\end{array}
\] \& 129 \& 145 \& \& \& \begin{tabular}{l}
\(\perp\) \\
193
\end{tabular} \& T
\[
\sqrt{20}
\] \& \begin{tabular}{l}
\[
\beta
\] \\
225
\end{tabular} \& \[
\pm
\] \\
\hline 2 \& 0010 \& \& \[
\begin{array}{|r|}
\hline 0 C 2 \\
\hline 18 \\
\hline
\end{array}
\] \& \[
34
\] \& \[
2
\]
\[
50
\] \& \begin{tabular}{l}
B \\
66
\end{tabular} \& R
\[
82
\] \& \begin{tabular}{l}
b \\
98
\end{tabular} \& \[
\begin{aligned}
\& \hline r \\
\& \hline 114 \\
\& \hline
\end{aligned}
\] \& \& \[
\begin{array}{|r|}
\hline \text { DC2 } \\
\hline \\
\hline 146 \\
\hline
\end{array}
\] \& \begin{tabular}{l}
ó \\
162
\end{tabular} \& \[
178
\] \& \[
\begin{aligned}
\& \hline \mathrm{T} \\
\& \\
\& \hline 194 \\
\& \hline
\end{aligned}
\] \& \[
\begin{array}{|l|}
\hline T \\
\hline 210 \\
\hline
\end{array}
\] \& \[
\begin{array}{|l|}
\hline \Gamma \\
\hline \\
\hline
\end{array}
\] \& \(\geq{ }^{242}\) \\
\hline 3 \& 0011 \& 3 \& 19 \& \[
35
\] \& \[
3
\]
\[
51
\] \& \begin{tabular}{l}
C \\
67
\end{tabular} \& s \& \& \[
\] \& 131 \& 147 \& \begin{tabular}{l}
ú \\
163
\end{tabular} \& \[
\begin{array}{|l|}
\hline 1 \\
\hline 179 \\
\hline
\end{array}
\] \& \[
\vdash
\] \& \[
\llcorner
\]
\[
211
\] \& \(\pi\) \& \(\leq{ }^{243}\) \\
\hline 4 \& 0100 \& 4 \& \[
\begin{array}{|l|}
\hline 0 C 4 \\
20 \\
\hline
\end{array}
\] \& \$
\[
36
\] \& 4
\[
52
\] \& \begin{tabular}{l}
D \\
68
\end{tabular} \& T
\[
84
\] \& \begin{tabular}{l}
d \\
100
\end{tabular} \& \begin{tabular}{l}
\(t\) \\
\(\sqrt{116}\) \\
\hline
\end{tabular} \& \& \begin{tabular}{l}
\[
0 C 4
\] \\
148
\end{tabular} \& \begin{tabular}{l}
ก̄ \\
164
\end{tabular} \& \[
\] \& \(-\) \& \begin{tabular}{l}
ᄂ \\
212
\end{tabular} \& \(\Sigma \sqrt{228}\) \& 1 \\
\hline 5 \& 0101 \& 5 \& \& \%
\[
\begin{array}{|l|}
\hline 37 \\
\hline
\end{array}
\] \& \begin{tabular}{l}
5 \\
53
\end{tabular} \& \begin{tabular}{l}
E \\
69
\end{tabular} \& \begin{tabular}{l}
U \\
85
\end{tabular} \& \[
\begin{array}{|l|}
\hline \text { e } \\
\quad[101 \\
\hline
\end{array}
\] \& \[
\] \& 133 \& 149 \& \begin{tabular}{l}
N \\
165
\end{tabular} \& \[
\begin{aligned}
\& -1 \\
\& \sqrt{181}
\end{aligned}
\] \& \begin{tabular}{l}
\[
+
\] \\
197
\end{tabular} \& \[
213
\] \& \({ }^{\circ}\) \& \[
245
\] \\
\hline 6 \& 0110 \& 6 \& \& \&
\[
38
\] \& \begin{tabular}{l}
6 \\
54
\end{tabular} \& \[
\begin{aligned}
\& \text { F } \\
\& 70
\end{aligned}
\] \& \begin{tabular}{l}
v \\
86
\end{tabular} \& \[
\begin{array}{|l|}
\hline \mathrm{f} \\
\hline 102 \\
\hline
\end{array}
\] \& \[
\begin{array}{|l|l|}
\hline v \& \\
\& 1188 \\
\hline
\end{array}
\] \& 134 \& 150 \& \begin{tabular}{l}
a \\
166
\end{tabular} \& \[
\begin{aligned}
\& \hline-1 \\
\& \hline 182 \\
\& \hline
\end{aligned}
\] \& \begin{tabular}{l}
1 \\
198
\end{tabular} \& \(\ulcorner\) \& \(\stackrel{\mu}{230}\) \& \begin{tabular}{|c}
\(\div\) \\
\hline 246 \\
\hline
\end{tabular} \\
\hline 7 \& 0111 \& \[
\begin{array}{|l|}
\hline \text { BEL } \\
\hline
\end{array}
\] \& \& \[
39
\] \& \[
\begin{aligned}
\& 7 \\
\& \hline
\end{aligned}
\] \& \begin{tabular}{l}
G \\
71
\end{tabular} \& \[
\begin{array}{|l|}
\hline W \\
88 \\
\hline
\end{array}
\] \& \begin{tabular}{l}
g \\
103
\end{tabular} \& \[
\begin{array}{|l|}
\hline 119 \\
\hline
\end{array}
\] \& \[
\begin{array}{|r|}
\hline \text { BEL } \\
\mid 135 \\
\hline
\end{array}
\] \& \& \begin{tabular}{l}
o \\
167
\end{tabular} \& \[
\begin{aligned}
\& \hline \neg \\
\& \hline 183 \\
\& \hline
\end{aligned}
\] \& \begin{tabular}{l}
\[
\vdash
\] \\
199
\end{tabular} \& \begin{tabular}{l}
\[
+
\] \\
215
\end{tabular} \& \begin{tabular}{|c}
T \\
\\
\\
\hline 231
\end{tabular} \& \(\approx\) \\
\hline 8 \& 1000 \& \[
\] \& \& \[
40
\] \& \[
8
\]
\[
56
\] \& \begin{tabular}{l}
H \\
72
\end{tabular} \& \begin{tabular}{l}
\[
x
\] \\
88
\end{tabular} \& \[
\begin{array}{|l|l|}
\hline \mathrm{h} \\
\\
\hline 104 \\
\hline
\end{array}
\] \& \[
\begin{array}{|l|}
\hline \times \\
\hline 120 \\
\hline
\end{array}
\] \& \[
\begin{array}{|l|}
\hline \text { BS } \\
\hline
\end{array}
\] \& \begin{tabular}{l}
CAN \\
152
\end{tabular} \& i
\[
168
\] \& \[
\neg
\] \& \(\stackrel{\square}{200}\) \& \begin{tabular}{l}
\[
+
\] \\
216
\end{tabular} \& \[
\begin{array}{|l|}
\hline \Phi \quad . \\
\hline \quad 232 \\
\hline
\end{array}
\] \& \begin{tabular}{|c|}
\hline 248 \\
\hline
\end{tabular} \\
\hline 9 \& 1001 \& \[
\begin{array}{|l|}
\hline H T \\
\boxed{y y y} \\
\hline
\end{array}
\] \& \& \[
41
\] \& 9
\[
57
\] \& \[
\begin{array}{|l|}
\hline 1 \\
\\
\\
\hline 73 \\
\hline
\end{array}
\] \& \[
\begin{aligned}
\& \hline Y \\
\& \hline 89 \\
\& \hline
\end{aligned}
\] \& \[
\begin{array}{|l|}
\hline \text { i } \\
\hline \\
\hline 105 \\
\hline
\end{array}
\] \& \& \[
\begin{array}{|l|}
\hline \text { HT } \\
\hline 137 \\
\hline
\end{array}
\] \& \& 169 \& \[
\begin{aligned}
\& -1 \\
\& \hline \quad 185 \\
\& \hline
\end{aligned}
\] \& \& \(\checkmark\)

217 \& | 8 |
| :--- |
| |
| |
| 233 | \& - ${ }^{249}$

\hline A \& 1010 \& $$
\begin{array}{|l|}
\hline \text { LF } \\
\sqrt{10}
\end{array}
$$ \& \& 42 \& \[

58

\] \& | \\| |
| :--- |
| 74 | \& | Z |
| :--- |
| 90 | \& \[

\] \& \[

$$
\begin{aligned}
& \mathrm{z} \\
& \hline 122 \\
& \hline
\end{aligned}
$$

\] \& \[

\] \& \& 170 \& | 1 |
| :--- |
| 186 | \& $\stackrel{\perp}{\text { 202 }}$ \& $\stackrel{-}{218}$ \& \[

$$
\begin{array}{ll}
\hline \Omega \\
\hline \quad 234 \\
\hline
\end{array}
$$
\] \& $\sqrt{250}$

\hline B \& 1011 \& | vT |
| :--- |
| 11 | \& \[

$$
\begin{array}{|l|}
\hline \text { ESC } \\
\hline 27 \\
\hline
\end{array}
$$

\] \& 43 \& \[

59

\] \& \[

\mathrm{K}
\]

$$
75
$$ \& \[

$$
\begin{array}{|l|}
\hline 1 \\
\hline 91 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{|l|}
\hline k \\
\hline 107 \\
\hline
\end{array}
$$

\] \& \[

123

\] \& \[

$$
\begin{array}{|l|l|}
\hline V T \\
& 139 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{|l|}
\hline \text { ESC } \\
\hline 155 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{array}{|c|}
\hline 1 / 2 \\
\sqrt{171} \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& \square \neg \\
& \boxed{\mid 187} \\
& \hline
\end{aligned}
$$

\] \& | T |
| :--- |
| 203 | \& 219 \& ${ }^{\circ}$ \& \[

$$
\begin{gathered}
\sqrt{ } \\
\sqrt{251} \\
\hline
\end{gathered}
$$
\]

\hline C \& 1100 \& $$
\begin{array}{|l|}
\hline \mathrm{FF} \\
\sqrt{12} \\
\hline
\end{array}
$$ \& \& \& \[

$$
\begin{array}{|l|}
\hline< \\
\hline 60 \\
\hline
\end{array}
$$
\] \& L

$$
76
$$ \& \[

92

\] \& \[

$$
\begin{array}{|l|}
\hline 1 \\
\hline 108 \\
\hline
\end{array}
$$

\] \& \[

124

\] \& \[

$$
\begin{array}{|l|}
\hline \text { FF } \\
\hline 140 \\
\hline
\end{array}
$$

\] \& \& \[

$$
\begin{array}{|l|}
\hline 1 / 4 \\
\hline \\
\hline 172 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{gathered}
\hline-1 \\
\hline \\
\hline 188 \\
\hline
\end{gathered}
$$
\] \& $\stackrel{+}{204}$ \& \cdots \& \cdots \& $\bigcirc{ }^{\text {n }}$

\hline D \& 1101 \& \[
$$
\begin{array}{|c|}
\hline \text { CR } \\
\hline 13 \\
\hline
\end{array}
$$

\] \& \& 45 \& \& | M |
| :--- |
| 77 | \& \[

$$
\begin{array}{|c|}
\hline 1 \\
\hline 93 \\
\hline
\end{array}
$$

\] \& \& \[

$$
\begin{array}{|l|}
\hline 1 \\
\hline 125 \\
\hline
\end{array}
$$

\] \& \[

\] \& \& \[

\sqrt{173}

\] \& \[

$$
\begin{aligned}
& -1 \\
& \sim \\
& \hline \\
& \hline 189 \\
& \hline
\end{aligned}
$$
\] \& \& 221 \& \& 2

\hline E \& 1110 \& $$
\begin{array}{r|}
\hline 14 \\
\hline 10 \\
\hline 10
\end{array}
$$ \& \[

30

\] \& \[

46

\] \& \[

62
\] \& N

$$
78
$$ \& \[

94

\] \& \[

\] \& \[

126

\] \& \[

$$
\begin{array}{|l|}
\hline \text { So } \\
\hline 142 \\
\hline
\end{array}
$$

\] \& \& " \& \[

\stackrel{\rightharpoonup}{ } \stackrel{-}{190}

\] \& \[

+

\] \& -

$$
222
$$ \& \& \[

254
\]

\hline F \& 1111 \& $$
\begin{array}{|l|}
\hline \mathrm{SI} \\
\sqrt{15} \\
\hline
\end{array}
$$ \& \& \[

47

\] \& \[

63

\] \& \[

79

\] \& \& \[

$$
\begin{array}{|c}
\circ \\
\hline 111 \\
\hline
\end{array}
$$

\] \& \& \[

$$
\begin{array}{|c|}
\hline 51 \\
\\
\hline 143 \\
\hline
\end{array}
$$

\] \& 159 \& \& \[

$$
\begin{aligned}
& \neg \\
& \cdot \\
& \hline 191 \\
& \hline
\end{aligned}
$$

\] \& \& \& \[

$$
\begin{aligned}
& \cap \\
& \\
& \hline 239 \\
& \hline
\end{aligned}
$$
\] \& SP

\hline
\end{tabular}

Note: When using the ESC $\cdot \wedge \cdot \mathrm{n}$ command, codes $3,4,5,6,19,20$ and 21 are printed as , , !!, \| and §, respectively.
!"\#\$\%\&'() * $+,-. / 0123456789: ; \Leftrightarrow$? \Leftrightarrow ABCDEFGHIJKLMNOPQRSTUVWXYZ

IBM Character Set 2

Upper Bit LBwer Bit	Hex.	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
Hex.	Binary	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0	0000				48	$-^{@}$			\int^{p}	C 128	É 144	á 160	! 176		\perp 208	$\stackrel{\alpha}{224}^{2}$	240
1	0001	1	17	$\begin{aligned} & 1 \\ & \sqrt{33} \end{aligned}$	1 49	A 65	a 81		q	ü 129	æ 145	161	Ξ_{177}	\perp 193	T 209	β 225	\pm
2	0010	2	$\begin{array}{\|r\|} \hline 18 \\ \hline 102 \\ \hline \end{array}$		2 50	B 66	R 82	$\begin{array}{\|ll\|} \hline \mathrm{b} & \\ & \boxed{98} \\ \hline \end{array}$			A 146	ó 162	${ }^{178}$	T $\sqrt{194}$	T 210	$\begin{aligned} & \hline \Gamma \\ & \hline 226 \\ & \hline \end{aligned}$	$\begin{aligned} & \geq \\ & 242 \\ & \hline \end{aligned}$
3	0011				3 51	c 67	S 83	99		â 131	ô 147	ú 163	1 $\sqrt{179}$	195	$\begin{aligned} & - \\ & \boxed{211} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 227 \\ \hline \end{array}$	$\leq{ }^{243}$
4	0100		$\begin{array}{\|l} -0 C 4 \\ 20 \\ \hline \end{array}$	$\$$	4 52	D 68	T 84	$\begin{array}{\|l\|} \mathrm{d} \\ \hline 100 \\ \hline \end{array}$	$\left.\right\|^{\mathrm{t}}$	ä 132	ö 148	п̀ 164	\dashv 180	196	ᄂ 212	Σ	\uparrow 244
5	0101		§ 21	$\%$	5 53	E 69	$\underbrace{\mathrm{U}}$	101	\int^{u}	à 133		N 165	$\begin{aligned} & -1 \\ & \sqrt{181} \end{aligned}$	$+$ 197	${ }^{\Gamma}$		J 245
6	0110			$\begin{aligned} & 8 \\ & \hline \end{aligned}$	6 54	F 70	v 86	$\begin{aligned} & \text { f } \\ & \\ & \\ & \hline 102 \\ & \hline \end{aligned}$		å 134	\hat{u}	a 166	$\begin{aligned} & -1 \\ & \sqrt{182} \end{aligned}$	198	Γ	$\begin{aligned} & \mu \\ & 230 \\ & \hline \end{aligned}$	$\div{ }^{\div}+$
7	0111	BEL \qquad 7	23	39	7 55	G 71	w 87	$\begin{aligned} & \mathrm{g} \\ & \sqrt{103} \\ & \hline \end{aligned}$	w 119		$\begin{aligned} & \text { ì } \\ & \hline 151 \\ & \hline \end{aligned}$		$\begin{aligned} & \neg \\ & \square \\ & \hline 183 \\ & \hline \end{aligned}$	199	$+$	$$	\approx
8	1000	$$	CAN 24	$\begin{aligned} & 1 \\ & \hline 40 \\ & \hline \end{aligned}$	8 56	H 72	x 88	$\begin{aligned} & \hline \mathrm{h} \\ & \\ & \\ & \hline 104 \\ & \hline \end{aligned}$		ê 136		i^{i}	$\begin{aligned} & \neg \\ & \\ & \hline 184 \end{aligned}$	200	$+$	$\begin{array}{\|l\|} \hline \Phi \\ \hline \\ \hline \end{array}$	-
9	1001	HT 9) 41	9 \qquad 57	73	89	$\begin{array}{ll} \hline \mathrm{i} \\ \hline & 105 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{y} \\ & 5 \\ & 5 \end{aligned}$	ё 137	$\begin{aligned} & 0 \\ & 7 \\ & \hline 153 \\ & \hline \end{aligned}$		-1 185	201	$-$	${ }^{\theta}$	- $\boxed{249}$
A	1010	LF 10		* 42	58	74	$\begin{aligned} & \hline z \\ & \boxed{90} \\ & \hline \end{aligned}$	106	$\begin{aligned} & z \\ & y^{2} \\ & 6 \\ & 122 \end{aligned}$	è 138	$\begin{aligned} & \text { U } \\ & 8 \quad 154 \\ & 8 \end{aligned}$		1	\perp 202		Ω	$-$
B	1011	vT 11	$f^{\text {ESC }}$	43	59	K 75		$\begin{aligned} & \mathrm{k} \\ & \sqrt{107} \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 7 \\ & 123 \end{aligned}$	$\begin{aligned} & \mathrm{i} \\ & \\ & 139 \end{aligned}$		$\begin{aligned} & \hline 1 / 2 \\ & 5 \quad 171 \\ & \hline \end{aligned}$		$\begin{array}{l\|l} \hline & \mathrm{T} \\ 7 & \mathrm{~T} \\ \hline 203 \end{array}$			$\begin{aligned} & \sqrt{5} \\ & 5 \\ & 51 \end{aligned}$
C	1100	FF 12	28		60	76	92	108		i 140	$\begin{array}{\|l\|l} \hline \mathrm{f} \\ -0 & 156 \\ \hline \end{array}$	$\begin{array}{l\|l\|} \hline 1 / 4 \\ 6 & \\ 6 \end{array}$		\vdash 204		$\left.\right\|_{0} ^{\infty}$	$\stackrel{\square}{252}$
D	1101	CR 13 \qquad	29	45		M 77	1 93		$\begin{aligned} & \} \\ & -125 \\ & 9 \\ & \end{aligned}$					205			2
E	1110	so	30			N \qquad 78	194	n 110			Pt 158	$\begin{gathered} \text { " } \\ 1744 \end{gathered}$	190	$+$ 206	222	$\begin{gathered} \epsilon \\ 2 \\ 2 \end{gathered}$	-
F	1111	SI 15	31	47				- 111	127	$$			$\begin{aligned} & \neg \\ & \sqrt{191} \end{aligned}$	\perp 207	- 223	$\begin{array}{\|l\|l} \hline & \cap \\ \hline 239 \end{array}$	SP 255

Note: When using the ESC $\cdot \wedge \cdot \mathrm{n}$ command, codes 19 and 20 are printed as !! and $\mathbb{\Pi}$, respectively.

Dot Column Width of IBM Characters

Standard and Proportional Characters

	Hex.	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
Hex.	Binary	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0	0000	0	16	12	11 48	11 64	11	8 96	11 112	11 128	11 144	$\begin{array}{\|l\|} \hline 11 \\ \sqrt{160} \\ \hline \end{array}$	12	$\left.\right\|_{12} ^{12}$	$\begin{array}{\|c\|} \hline 12 \\ \mid 208 \\ \hline \end{array}$	$\begin{aligned} & 11 \\ & -8 \\ & \hline \end{aligned}$	$\underbrace{11}_{240}$
1	0001	1		9 33	9 49	11 65	11 81	11	11 113	11 129	11 145	$\begin{aligned} & 9 \\ & \quad 161 \\ & \hline \end{aligned}$	12 \qquad	12 193	12 209	11 225	11 241
2	0010	,	18	9 34		11 66	11 82	$\begin{array}{\|c\|} \hline 11 \\ \hline \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 10 \\ \hline 114 \\ \hline \end{array}$	11 130	$\sqrt{11}$	11 162	12 $\sqrt{178}$	12 194	12 210	10 226	10 242
3	0011	11 3	9 19	$\sqrt[11]{11}$	11		11	$\begin{aligned} & 9 \\ & 99 \\ & \hline 9 \end{aligned}$	$\begin{array}{\|l\|} \hline 11 \\ \hline 115 \\ \hline \end{array}$	11 131	11 147	11 163	12 179	12 \qquad	12 211	11	10
4	0100		$\begin{array}{\|l\|} \hline 9 \\ 20 \\ \hline \end{array}$	$\underbrace{11}$	$\begin{array}{\|c\|} \hline 11 \\ 52 \\ \hline \end{array}$	11	11	$\begin{array}{\|c\|} \hline 11 \\ \hline 100 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 11 \\ \hline 116 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 11 \\ \hline 132 \\ \hline \end{array}$	11 148	$\begin{array}{\|l\|} \hline 11 \\ \quad 164 \\ \hline \end{array}$	12 180	$\begin{array}{\|c\|} \hline 12 \\ \sqrt{196} \\ \hline \end{array}$	12 212	$\begin{gathered} 10 \\ \sqrt{228} \\ \hline \end{gathered}$	12
5	0101	11 5	11 21	11 37	$\begin{array}{\|l\|} \hline 11 \\ \\ \hline 53 \\ \hline \end{array}$	11 69	$\begin{aligned} & 11 \\ & \hline 85 \\ & \hline \end{aligned}$	11 101	11 $\sqrt{117}$	$\begin{array}{\|l\|} \hline 11 \\ \hline 133 \\ \hline \end{array}$	11 149	$\begin{array}{\|l\|} \hline 11 \\ \hline \\ \hline \end{array}$	12 181	$\begin{array}{\|c\|} \hline 12 \\ \hline 197 \\ \hline \end{array}$	12 213	$\begin{aligned} & 11 \\ & \hline 229 \end{aligned}$	12
6	0110	11 6		11 38	$\begin{array}{\|c\|} \hline 11 \\ \hline \\ \hline \end{array}$	11 70	11	$\begin{array}{\|l\|} \hline 9 \\ \hline 102 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 11 \\ \hline 118 \\ \hline \end{array}$	$\begin{aligned} & 11 \\ & \hline 134 \\ & \hline \end{aligned}$	11 150	$\begin{array}{\|r\|} \hline 11 \\ \hline 166 \\ \hline \end{array}$	12 182	$\begin{array}{\|r\|} \hline 12 \\ \hline \\ \hline 198 \\ \hline \end{array}$	$\begin{aligned} & 12 \\ & \hline 214 \\ & \hline \end{aligned}$	12	11 246
7	0111	$\sqrt{7}$	23	9 39	11	11 71	$\begin{aligned} & 11 \\ & 87 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 11 \\ 103 \\ \hline \end{array}$	11 119	$\begin{aligned} & 9 \\ & \hline \quad 135 \\ & \hline \end{aligned}$	11 151	$\begin{array}{\|c\|} \hline 11 \\ \hline 167 \\ \hline \end{array}$	12 \qquad	$\begin{array}{\|r\|} \hline 12 \\ \hline 199 \\ \hline \end{array}$	$\begin{array}{r} 12 \\ \hline 215 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 11 \\ \hline 231 \end{array}$	11 247
8	1000	8	24	$\begin{aligned} & 8 \\ & \hline \\ & \hline 40 \\ & \hline \end{aligned}$	11 56 \qquad	11 72	10 88	$\begin{array}{\|l\|} \hline 11 \\ \hline 104 \\ \hline \end{array}$	$\begin{array}{l\|l\|} \hline 11 & 1 \\ \hline & 120 \\ \hline \end{array}$	$\begin{gathered} 11 \\ \sqrt{136} \\ \hline \end{gathered}$	11 152	$\begin{array}{\|c\|} \hline 10 \\ \boxed{168} \\ \hline \end{array}$	12 184	$\begin{array}{\|r\|} \hline 12 \\ \hline 200 \\ \hline \end{array}$	$\begin{array}{r} 12 \\ 216 \\ \hline \end{array}$	10	$\begin{aligned} & 9 \\ & \hline 248 \\ & \hline \end{aligned}$
9	1001	9	25	$\begin{aligned} & 9 \\ & 41 \\ & \hline \end{aligned}$	11 57	$\begin{array}{\|c\|} \hline 9 \\ \hline 73 \\ \hline \end{array}$	11	$\begin{aligned} & \hline 9 \\ & \quad 105 \\ & \hline \end{aligned}$	11 121	11 $\sqrt{137}$	11 153	$\begin{aligned} & 11 \\ & \hline \quad 169 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 12 \\ \hline 185 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 12 \\ \hline 201 \\ \hline \end{array}$	$\begin{aligned} & 12 \\ & \quad 217 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 11 \\ \hline 233 \\ \hline \end{array}$	9 249
A	1010	10		11	$\begin{aligned} & \hline 9 \\ & 58 \\ & \hline 5 \end{aligned}$	$\begin{array}{\|l\|} \hline 11 \\ 74 \\ \hline \end{array}$	11	$\begin{array}{\|c\|} \hline 8 \\ \sqrt{106} \\ \hline \end{array}$	$\begin{array}{c\|c\|} \hline 11 & 1 \\ & 1222 \\ \hline \end{array}$	11 $\longdiv { 1 3 8 }$	$\begin{array}{\|l\|} \hline 11 \\ \hline 154 \\ \hline \end{array}$	11 170	$\begin{array}{\|c\|} \hline 12 \\ \sqrt{186} \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 12 \\ \hline 202 \\ \hline \end{array}$	$\begin{aligned} & 12 \\ & \sqrt{218} \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 11 \\ \hline 234 \\ \hline \end{array}$	$\begin{aligned} & 9 \\ & \sqrt{250} \end{aligned}$
B	1011	11		$\begin{array}{\|l\|} \hline 11 \\ \\ \hline 43 \\ \hline \end{array}$	$\begin{aligned} & 9 \\ & \hline 59 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 11 \\ \hline 75 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 9 \\ \hline \end{array}$	$\begin{aligned} & \hline 9 \\ & \sqrt{107} \\ & \hline \end{aligned}$	$\begin{aligned} & 9 \\ & \hline 123 \\ & \hline \end{aligned}$	$\begin{gathered} 9 \\ \hline 139 \end{gathered}$	$\begin{array}{\|l\|} \hline 10 \\ \hline 155 \\ \hline \end{array}$	11 171	12 187	12 203	$\begin{array}{r} 12 \\ \sqrt{219} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 11 \\ \hline 235 \\ \hline \end{array}$	11 251
C	1100	12	28	$\begin{array}{\|l\|} \hline 9 \\ \hline 44 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 10 \\ \hline 60 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 11 \\ \hline 76 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 10 \\ \hline 92 \\ \hline \end{array}$	$\begin{aligned} & \hline 9 \\ & \sqrt{108} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 9 \\ & \sqrt{124} \\ & \hline \end{aligned}$	$\begin{array}{l\|} \hline 9 \\ \hline 140 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 11 \\ \sqrt{156} \\ \hline \end{array}$	11 172	12 188	$\begin{aligned} & 12 \\ & 204 \\ & \hline \end{aligned}$	$\begin{array}{r} 12 \\ 2220 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 11 \\ \hline 236 \\ \hline \end{array}$	9 85
D	1101	13		$\begin{array}{\|l\|} \hline 11 \\ \hline 45 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 11 \\ \hline 61 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 11 \\ \hline 77 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 9 \\ \hline 93 \\ \hline \end{array}$	11 109	9 125	$\begin{array}{l\|} \hline 9 \\ 141 \\ \hline 10 \end{array}$	$\begin{array}{\|l\|} \hline 11 \\ \mid 157 \\ \hline \end{array}$	$\begin{aligned} & 9 \\ & \hline 173 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 12 \\ \hline 189 \\ \hline \end{array}$	$\begin{aligned} & 12 \\ & \hline 205 \\ & \hline \end{aligned}$	$\begin{aligned} & 12 \\ & \hline 221 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 11 \\ \sqrt{237} \\ \hline \end{array}$	$\begin{aligned} & \hline 8 \\ & \hline 253 \\ & \hline \end{aligned}$
E	1110	14	30	$\begin{array}{\|l\|} \hline 9 \\ \hline 46 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 10 \\ \hline 62 \\ \hline \end{array}$	11 78	$\begin{array}{\|l\|} \hline 9 \\ \hline 94 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 11 \\ \hline 110 \\ \hline \end{array}$	$\begin{array}{l\|l\|} 10 & 1 \\ \hline & 126 \\ \hline \end{array}$	$\begin{aligned} & 11 \\ & \hline 142 \\ & \hline \end{aligned}$	11 158	$\begin{aligned} & 11 \\ & 174 \\ & 174 \end{aligned}$	12 190	$\begin{gathered} 12 \\ 206 \\ \hline \end{gathered}$	12 222	$\begin{array}{\|l\|} \hline 10 \\ \hline \\ \hline 238 \\ \hline \end{array}$	$\begin{aligned} & 9 \\ & \hline 254 \\ & \hline \end{aligned}$
F	1111	15	31	$\begin{array}{\|c\|} \hline 10 \\ \hline 47 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 10 \\ \hline 63 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 11 \\ \hline 79 \\ \hline \end{array}$	11 95	11 111	$\sqrt{127}^{1}$	$\begin{array}{l\|} \hline 11 \\ \hline 143 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 10 \\ \hline 159 \\ \hline \end{array}$	$\begin{array}{l\|} 11 \\ \hline 175 \\ \hline 175 \end{array}$	$\begin{array}{\|c\|} \hline 12 \\ \hline \\ \hline 191 \\ \hline \end{array}$	$\begin{aligned} & 12 \\ & \hline 207 \\ & \hline \end{aligned}$	$\begin{aligned} & 12 \\ & \hline 223 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 10 \\ \hline 239 \\ \hline \end{array}$	$\begin{aligned} & 12 \\ & \hline 255 \\ & \hline \end{aligned}$

\varnothing	\ddots	-	$\cdot \cdot$	\cdot	\mid	ij	$\boxed{ }$
11	11	12	9	8	9	11	11

Correspondence and Proportional Characters

Upper Bit Lower Bit	Hex.	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
Hex.	Binary	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0	0000	0		24		21 64	22	$\begin{array}{\|c\|} \hline 17 \\ \hline 96 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 23 \\ \hline 112 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 123 \\ \hline 128 \\ \hline \end{array}$	23	22	24	24 192	$\begin{array}{\|c\|} \hline 24 \\ \hline 208 \\ \hline \end{array}$	24 224	$\begin{array}{\|r\|} 24 \\ \hline 240 \\ \hline \end{array}$
1	0001	1		13	$\begin{array}{\|c\|} 20 \\ 49 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 23 \\ \boxed{65} \\ \hline \end{array}$	23	$\begin{array}{\|c\|} 22 \\ \sqrt{97} \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 23 \\ \sqrt{113} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 123 \\ \hline 129 \end{array}$	$\begin{array}{\|l\|} \hline 24 \\ \sqrt{145} \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 161 \\ \hline \end{array}$	$\begin{array}{r} 24 \\ \sqrt{177} \end{array}$	24	24 209	21 225	24 241
2	0010	2		$\underbrace{17}$	2^{21}	$\underbrace{23}$	23	$\begin{array}{\|r\|} 23 \\ \mid 98 \\ \hline \end{array}$	$\begin{array}{\|r\|} 22 \\ \\ \hline 114 \\ \hline \end{array}$	${ }^{21}$	$\begin{array}{\|l\|} \hline 24 \\ \hline 146 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 162 \\ \hline \end{array}$	24	24	$\begin{array}{\|l\|} \hline 24 \\ \hline 210 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 19 \\ \hline 226 \\ \hline \end{array}$	24 242
3	0011	24 3	19 19	23	21 51	23 67	23 83	22	$\begin{array}{\|r\|} \hline 23 \\ \hline 115 \\ \hline \end{array}$	\int^{22}	22 147	23	$\begin{array}{\|c} 24 \\ \sqrt{179} \\ \hline \end{array}$	24 195	24 211	$\begin{array}{\|l\|} \hline 23 \\ \hline \end{array}$	24 243
4	0100	24 4	20 20	21	21	23 68	$\begin{array}{\|c\|} 23 \\ 84 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 23 \\ \hline 100 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 21 \\ \hline 116 \\ \hline \end{array}$	\int^{22}	22 \qquad	23 164	24 180	24 196	24 212	$\begin{gathered} 17 \\ \hline 228 \end{gathered}$	24
5	0101	24 5	21 21	$\underbrace{23}$	21	23 69	23 85	21	$\begin{array}{\|r\|} \hline 23 \\ \hline \\ \hline 117 \\ \hline \end{array}$	22 133	22 149	24 165	24	24 197	24 213	20 229	24
6	0110	24 6	22	23	21	23 70	23	21	$\begin{array}{\|r\|} \hline 23 \\ \hline 118 \\ \hline \end{array}$	22 134	23 150	23 \qquad	24 182	24 198	24 214	$\begin{array}{r} 23 \\ 230 \\ \hline \end{array}$	23
7	0111	7		13 39	$21 \quad$	23	24	$\begin{array}{\|c\|} \hline 23 \\ \hline 103 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 24 \\ \hline \\ \hline \end{array}$	22	$\begin{array}{\|r\|} \hline 23 \\ \sqrt{151} \\ \hline \end{array}$	23	24	24 199	24 215	$\begin{array}{\|l\|} 19 \\ \sqrt{231} \end{array}$	24 247
8	1000	8		$\begin{array}{\|r\|} \hline 20 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 21 \\ 85 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 23 \\ \hline 72 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 23 \\ \hline 88 \\ \hline \end{array}$	$\begin{array}{r} 23 \\ \hline 104 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 23 \\ \hline 120 \\ \hline \end{array}$	21	$\begin{array}{\|r\|} \hline 152 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 21 \\ \sqrt{168} \\ \hline \end{array}$	$\begin{array}{\|r} 24 \\ \hline 184 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 24 \\ \hline 200 \\ \hline \end{array}$	24 216	$\begin{array}{\|c\|} \hline 23 \\ \mid 232 \\ \hline \end{array}$	19 $\sqrt{248}$
9	1001	9		16 41	21 57	18 73	$\begin{array}{\|l\|} \hline 23 \\ \quad 89 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 20 \\ \hline \\ \hline 105 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 23 \\ \quad 121 \\ \hline \end{array}$	21 137	$\begin{array}{\|r\|} \hline 23 \\ \hline 153 \\ \hline \end{array}$	24	24	24	24 217	19 233	13 249
A	1010	10		$\begin{array}{\|l\|} \hline 22 \\ \hline 42 \\ \hline \end{array}$	$\begin{array}{\|c\|} 13 \\ 58 \\ \hline \end{array}$	19 74	22	$\begin{array}{\|c\|} \hline 16 \\ \mid \\ \mid 106 \end{array}$	$\begin{array}{r} 21 \\ \quad 122 \\ \hline \end{array}$	21	$\begin{array}{\|r\|} \hline 23 \\ \hline \end{array}$	24 170	24 186	$\begin{array}{\|r\|} \hline 24 \\ \hline \end{array}$	24 218	$\begin{array}{\|r\|} \hline 23 \\ \hline 234 \\ \hline \end{array}$	13 250
B	1011	11	27	22	$\begin{array}{\|c\|} 13 \\ \hline 59 \\ \hline \end{array}$	23	$\begin{array}{\|c\|} \hline 13 \\ \quad 91 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 23 \\ \hline \\ \hline 107 \\ \hline \end{array}$	$\begin{array}{l\|} \hline 21 \\ \hline 123 \\ \hline \end{array}$	$\left.\right\|^{21}$	$\begin{array}{\|l\|} \hline 21 \\ \hline 155 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 171 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 24 \\ \mid 187 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 24 \\ \hline 203 \\ \hline \end{array}$	24 219	$\begin{array}{\|r\|} \hline 21 \\ \hline 235 \\ \hline \end{array}$	24
C	1100	12		$\begin{array}{\|l\|} 13 \\ \hline 44 \\ \hline \end{array}$	$\begin{array}{\|c\|} 19 \\ \\ \hline 60 \end{array}$	$\begin{array}{\|l\|} \hline 22 \\ \hline 76 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 23 \\ \hline 92 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 20 \\ \sqrt{108} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 13 \\ \hline 1224 \\ \hline \end{array}$	20	$\begin{array}{\|l\|} \hline 21 \\ \hline 156 \\ \hline \end{array}$	23	$\begin{array}{\|r\|} \hline 24 \\ \hline 188 \\ \hline \end{array}$	$\begin{array}{\|r\|} \hline 24 \\ \hline \end{array}$	24 220	$\begin{array}{r} 23 \\ \hline \\ \hline 236 \\ \hline \end{array}$	18 -
D	1101	13		$\begin{array}{\|l\|} \hline 21 \\ \hline 45 \\ \hline \end{array}$	$21 \quad$61 8	24	$\begin{array}{\|c\|} \hline 13 \\ \boxed{93} \\ \hline \end{array}$	24 $\sqrt{109}$	$\begin{aligned} & 16 \\ & \hline 125 \\ & \hline \end{aligned}$	20	$\begin{array}{\|r\|} \hline 23 \\ \hline 157 \\ \hline \end{array}$	$\begin{array}{\|c} 13 \\ \sqrt{173} \end{array}$	$\begin{array}{\|r\|} \hline 189 \\ \hline \end{array}$	24 205	24 221	$\begin{aligned} & 23 \\ & \hline \quad \sqrt{237} \\ & \hline \end{aligned}$	15
E	1110	14		13	$\begin{array}{\|c\|} \hline 19 \\ \hline 62 \end{array}$	24 78	19 94	$\begin{array}{\|l\|} \hline 23 \\ \hline \\ \hline 110 \\ \hline \end{array}$	21 126	23	$\begin{array}{\|c\|} \hline 24 \\ \hline 158 \\ \hline \end{array}$	$\begin{array}{r} 22 \\ \sqrt{174} \\ \hline \end{array}$	$\begin{array}{r} 24 \\ \quad 190 \\ \hline \end{array}$	24 206	24 222	18 238	$17 \quad$17 254
F	1111	15	31	$\begin{array}{\|r\|} \hline 23 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 21 \\ \hline 63 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 23 \\ 79 \\ \hline \end{array}$	24 95	$\begin{array}{\|r\|} \hline 22 \\ \hline 111 \\ \hline \end{array}$		23	21 159	22	24 191	24 207	24 223	19 239	24

\varnothing	\mathscr{O}	-	\cdot	\cdot	\mid	ij	\triangle
19	23	24	20	19	13	24	23

Tandy Control Codes

Code Dec. Hex	Symbol	DP Mode	WP Mode	BI Mode	Remarks
$\begin{array}{ll} 0 & (00) \\ 1 & (01) \end{array}$	$\begin{aligned} & \text { NUL } \\ & \mathrm{SOH} \end{aligned}$	Ignored	Ignored	Ignored	
7 (07)	BEL	Sound buzzer	Sound buzzer	Sound buzzer	
$\begin{array}{ll} 8 & (08) \\ n \end{array}$	$\begin{aligned} & \text { BS } \\ & n \end{aligned}$	Dot column backspace n : dot number	Dot column backspace n : dot number	Ignored Receive n as character data	$1 \leq \mathrm{n} \leq 255$
$\begin{array}{ll} 10 & (0 \mathrm{~A}) \\ \text { or } & \text { or } \\ 138 & (8 \mathrm{~A}) \end{array}$	LF	Execute LF according to latched information	$\begin{aligned} & 1 / 6^{\prime \prime} \mathrm{LF} \\ & 1 / 12^{\prime \prime} \text { LF in Micro } \\ & \text { font } \end{aligned}$	7/72" LF Receive 138 as a print data	
12 (0C)	FF	Form Feed	Form Feed	Form Feed	Page length is selectable
$\begin{aligned} & 13(0 \mathrm{D}) \\ & \text { or } \text { or } \\ & 141(8 \mathrm{D}) \end{aligned}$	CR	Carriage Return only or plus Line Feed	Carriage Return only or plus Line Feed	Carriage Return only or plus Line Feed	DIP switch selects CR or CR+LF.
14 (0E)	SO	End Underline	End Underline	Ignored	
15 (0F)	SI	Start Underline	Start Underline	Ignored	
18 (12)	DC2	Select Graphics Mode	Select Graphics Mode	Ignored	
19 (13)	DC3	Ignored	Select DP Mode	Ignored	
20 (14)	DC4	Select WP Mode	Ignored	Ignored	
$\begin{array}{ll} 27 & \text { (1B) } \\ n & \end{array}$	$\begin{aligned} & \text { ESC } \\ & n \end{aligned}$	Microspacing	Microspacing	Ignored	2nd byte is dot column number. $1 \leq \mathrm{n} \leq 9$
$\begin{array}{ll} 27 & (1 \mathrm{~B}) \\ 10 & (0 \mathrm{~A}) \end{array}$	$\begin{aligned} & \text { ESC } \\ & \text { LF } \end{aligned}$	Set 1/6" Reverse LF	Perform 1/6" Reverse LF	Ignored	
$\begin{array}{ll} 27 & \text { (1B) } \\ 14 & \text { (0E) } \end{array}$	$\begin{aligned} & \text { ESC } \\ & \text { SO } \end{aligned}$	Start Elongation	Start Elongation	Start Elongation	
$\begin{array}{ll} 27 & (1 \mathrm{~B}) \\ 15 & (0 \mathrm{~F}) \end{array}$	$\begin{aligned} & \text { ESC } \\ & \text { SI } \end{aligned}$	End Elongation	End Elongation	End Elongation	

Code		Symbol	DP Mode	WP Mode	BI Mode	Remarks
Dec.	Hex					
$\begin{aligned} & 27 \\ & 32 \end{aligned}$	$\begin{aligned} & (1 \mathrm{~B}) \\ & (20) \end{aligned}$	$\begin{gathered} \mathrm{ESC} \\ \mathrm{SP} \end{gathered}$	End Bold Character	End Bold Character	Ignored	
$\begin{aligned} & 27 \\ & 33 \end{aligned}$	$\begin{aligned} & (1 \mathrm{~B}) \\ & (21) \end{aligned}$	$\begin{gathered} \text { ESC } \\ ! \end{gathered}$	Serect IBM Mode	Select IBM Mode	Select IBM Mode	
$\begin{aligned} & 27 \\ & 50 \end{aligned}$	$\begin{aligned} & (1 \mathrm{~B}) \\ & (32) \end{aligned}$	$\begin{gathered} \text { ESC } \\ 2 \end{gathered}$	Perform 1/12 LF	Perform 1/12 LF	Perform 1/12 LF	1/72 Inch
$\begin{aligned} & 27 \\ & 51 \end{aligned}$	$\begin{array}{r} (1 \mathrm{~B}) \\ (33) \end{array}$	$\begin{gathered} \text { ESC } \\ 3 \end{gathered}$	Perform 1/36 LF	Perform 1/36 LF	Perform 1/36LF	1/216 Inch
$\begin{gathered} 27 \\ 52 \\ n \end{gathered}$	(1B) (34)	$\begin{gathered} \text { ESC } \\ 4 \\ n \end{gathered}$	Specify Page Length	Specify Page Length	Specify Page Length	$n \times 1 / 6$ Inch
$\begin{aligned} & 27 \\ & 54 \end{aligned}$	$\begin{gathered} (1 \mathrm{~B}) \\ (36) \end{gathered}$	$\begin{gathered} \text { ESC } \\ 6 \end{gathered}$	Set 1 LF	Perform 1 LF	Ignored	1/6 Inch
$\begin{aligned} & 27 \\ & 56 \end{aligned}$	$\begin{aligned} & (1 \mathrm{~B}) \\ & (38) \end{aligned}$	$\begin{gathered} \text { ESC } \\ 8 \end{gathered}$	Set 3/4 LF	Perform 3/4LF	Ignored	1/8 Inch
$\begin{aligned} & 27 \\ & 57 \end{aligned}$	$\begin{aligned} & (1 \mathrm{~B}) \\ & (39) \end{aligned}$	$\begin{gathered} \text { ESC } \\ 9 \end{gathered}$	Perform 1/144" LF	Perform 1/144" LF	Perform 1/144"LF	
$\begin{aligned} & 27 \\ & 58 \end{aligned}$	$\begin{aligned} & (1 \mathrm{~B}) \\ & (3 \mathrm{~A}) \end{aligned}$		Select IBM Character Set 2	Select IBM Character Set 2	Ignored	
$\begin{aligned} & 27 \\ & 59 \end{aligned}$	$\begin{aligned} & (1 \mathrm{~B}) \\ & (3 \mathrm{~B}) \end{aligned}$	$\begin{gathered} \text { ESC } \\ ; \end{gathered}$	Select Tandy Character Set	Select Tandy Character Set	Ignored	
$\begin{gathered} 27 \\ 64 \\ n \end{gathered}$	$\begin{aligned} & (1 \mathrm{~B}) \\ & (40) \end{aligned}$	$\begin{gathered} \text { ESC } \\ \text { @ } \\ n \end{gathered}$	Set $n / 144^{\prime \prime} \mathrm{LF}$	Perform $n / 144{ }^{\prime \prime}$ LF	Perform $n / 144^{\prime \prime}$ LF	
$\begin{gathered} 27 \\ 66 \\ n \end{gathered}$	$\begin{aligned} & (1 \mathrm{~B}) \\ & (42) \end{aligned}$	$\begin{gathered} \text { ESC } \\ \text { B } \\ n \end{gathered}$	Select Italic Character	Select Italic Character	Ignored	$n=1$: Start Italic $n=0$: End Italic
$\begin{gathered} 27 \\ 72 \\ n \end{gathered}$	$\begin{aligned} & (1 \mathrm{~B}) \\ & (48) \end{aligned}$	$\begin{gathered} \text { ESC } \\ \mathrm{H} \\ n \end{gathered}$	Set $n / 6^{\prime \prime}$ Skikp Perforation	Set $n / 6^{\prime \prime}$ Skip Perforation	Set $n / 6^{\prime \prime}$ Skip Perforation	$n=0$: End Skip Perforation

Dec.	de Hex	Symbol	DP Mode	WP Mode	BI Mode	Remarks
$\begin{aligned} & 27 \\ & 77 \end{aligned}$	$\begin{aligned} & \text { (1B) } \\ & \text { (4D) } \end{aligned}$	$\begin{gathered} \mathrm{ESC} \\ \mathrm{M} \end{gathered}$	Select Micro Font	Select Micro Font	Ignored	$1 / 2 \mathrm{LF}\left(1 / 12^{\prime \prime}\right)$ is set.
$\begin{gathered} 27 \\ 81 \\ n \end{gathered}$	$\begin{aligned} & (1 \mathrm{~B}) \\ & (51) \end{aligned}$	$\begin{gathered} \text { ESC } \\ \mathrm{Q} \\ n \end{gathered}$	Set Left Margin	Set Left Margin	Ignored	Set at position ($n \times$ character width).
$\begin{gathered} 27 \\ 81 \\ n \end{gathered}$	$\begin{aligned} & (1 \mathrm{~B}) \\ & (52) \end{aligned}$	$\begin{gathered} \text { ESC } \\ \mathrm{R} \\ n \end{gathered}$	Set Right Margin	Set Right Margin	Ignored	Set at position ($n \times$ character width).
$\begin{gathered} 27 \\ 83 \\ n \end{gathered}$	$\begin{aligned} & (1 \mathrm{~B}) \\ & (53) \end{aligned}$	$\begin{gathered} \text { ESC } \\ \mathrm{S} \\ n \end{gathered}$	$\begin{aligned} & n=0 \text { Set Superscript } \\ & n=1 \text { Set Subscript } \end{aligned}$	$n=0$ Set Superscript $n=1$ Set Subscript	Ignored	ESC•X ends this selection.
$\begin{aligned} & 27 \\ & 85 \end{aligned}$	$\begin{aligned} & (1 \mathrm{~B}) \\ & (55) \end{aligned}$	$\begin{gathered} \mathrm{ESC} \\ \mathrm{U} \end{gathered}$	$\mathrm{n}=1$ Set Unidirectional $\mathrm{n}=0$ Set Bidirectional	$n=1$ Set Unidirectional $n=0$ Set Bidirectional	Ignored	
$\begin{aligned} & 27 \\ & 88 \end{aligned}$	$\begin{gathered} (1 \mathrm{~B}) \\ (58) \end{gathered}$	$\begin{gathered} \text { ESC } \\ \mathrm{X} \end{gathered}$	End Superscript and Subscript	End Superscript and Subscript	Ignored	
$\begin{gathered} 27 \\ 89 \\ n \end{gathered}$	$\begin{gathered} (1 \mathrm{~B}) \\ (59) \end{gathered}$	$\begin{gathered} \text { ESC } \\ \mathrm{Y} \\ n \end{gathered}$	Select Country Character	Select Country Character	Ignored	$n=32 \sim 42$
$\begin{aligned} & 28 \\ & n_{1} \\ & n_{2} \end{aligned}$	(1C)	$\begin{gathered} \text { FS } \\ n_{1} \\ n_{2} \end{gathered}$	Repeat Character (Undefined code is ignored.)	Repeat Character (Undefined code is ignored.)	Repeat Print Data	n : Repeat number n2: Char. or print data
30	(1E)	RS	Ignored	Ignored	End Bit Image	
127	(7F)	DEL	Ignored	Ignored	Ignored	
255	(FF)	DEL	Ignored	Ignored	Ignored	
Other undefined codes in function area, 2 to 31 (02 to 1F hex)			Print 8	Print X	Ignored	
Other undefined codes in function area,$\begin{aligned} & 128 \text { to } 159 \\ & \text { (80 to } 9 \mathrm{~F} \text { hex) } \end{aligned}$			Print X	Print X	Printing Data	

IBM Control Codes

Decimal	Hex	Symbol	Function
$\begin{array}{r} 7 \\ \\ \hline \end{array}$	(07)	BELL	Sound buzzer for 1 second
27	(1B)	$\begin{aligned} & \text { ESC } \\ & \text { BEL } \end{aligned}$	Same as BEL
7	(07)		
27	(1B)		
135	(87)		
8	(08)	BS	Move 1 character position to the left
136	(88)		
27	(1B)	$\begin{gathered} \text { ESC } \\ \text { BS } \end{gathered}$	Same as BS
8	(08)		
27	(1B)		
136	(88)		
9	(09)	HT	Move to next horizontal tab position
137	(89)		
27	(1B)	$\begin{gathered} \text { ESC } \\ \text { HT } \end{gathered}$	Same as HT
9	(09)		
27	(1B)		
137	(89)		
10	(0A)	LF	Print and Line Feed according to latched information with or without Carriage Return (DIP switch 1-3)
138	(8A)		
27	(1B)	$\begin{gathered} \text { ESC } \\ \text { LF } \end{gathered}$	Same as LF
10	(0A)		
27	(1B)		
138	(8A)		
11	(0B)	VT	Same as LF
139	(8B)		

Control Codes

Decimal	Hex	Symbol	Function
27	(1B)	$\begin{gathered} \text { ESC } \\ \text { VT } \end{gathered}$	Same as LF
11	(0B)		
27	(1B)		
139	(8B)		
12	(0C)	FF	Form Feed after printing
140	(8C)		
27	(1B)	$\begin{gathered} \text { ESC } \\ \text { FF } \end{gathered}$	Same as FF
12	(0C)		
27	(1B)		
140	(8C)		
13	(0D)	CR	Printing and Carriage Return with or without Line Feed (DIP switch 1-2)
	(8D)		
27	(1B)	$\begin{gathered} \text { ESC } \\ \text { CR } \end{gathered}$	Same as CR
13	(0D)		
27	(1B)		
141	(8D)		
14	(0E)	SO	Printing and Double-Width Mode designation (print command terminates this mode)
142	(8E)		
27	(1B)	$\begin{gathered} \text { ESC } \\ \text { SO } \end{gathered}$	Same as SO
14	(0E)		
27	(1B)		
142	(8E)		
15	(0F)	SI	Printing and Condensed Mode designation
143	(8F)		
27	(1B)	$\begin{gathered} \text { ESC } \\ \text { SI } \end{gathered}$	Same as SI
15	(0F)		
27	(1B)		
143	(8F)		

Decimal	Hex	Symbol	Function
$\begin{array}{r} 18 \\ 146 \end{array}$	$\begin{aligned} & (12) \\ & (92) \end{aligned}$	DC2	Printing and Condensed Mode termination
27	(1B)	$\begin{aligned} & \mathrm{ESC} \\ & \mathrm{DC} 2 \end{aligned}$	Same as DC2
18	(12)		
27	(1B)		
146	(92)		
20	(14)	DC4	Printing and Double-Width Mode termination
148	(94)		
27	(1B)	$\begin{aligned} & \text { ESC } \\ & \text { DC4 } \end{aligned}$	Same as DC4
20	(14)		
27	(1B)		
148	(94)		
27	(1B)	$\begin{gathered} \text { ESC } \\ ! \end{gathered}$	Select TANDY Mode
33	(21)		
24	(18)	CAN	Clear all print data in the internal buffer
152	(98)		
27	(1B)	$\begin{aligned} & \text { ESC } \\ & \text { CAN } \end{aligned}$	Same as CAN
24	(18)		
27	(1B)		
152	(98)		
27	(18)	ESC	$n=1$ Starts Underline $n=0$ Ends Underline
45	(2D)	-	
n	n	n	
27	(1B)	ESC	Line Feed pitch is set to $1 / 8$ inch
48	(30)	0	
27	(1B)	ESC	Line Feed pitch is set to 7/72 inch
49	(31)	1	
27	(1B)	ESC	Perform ESC•A or set Line Feed pitch to 1/6 inch
50	(32)	2	

	$\begin{gathered} w \\ \text { TTกN } \\ \nu \\ \text { OS } \end{gathered}$	（00） （ ε（ ） （al）	$\begin{gathered} W \\ 0 \\ \angle 9 \\ \angle Z \end{gathered}$
	$\begin{gathered} u \\ \nu \\ \text { OSG } \\ \hline \end{gathered}$	u （ ε t） （gI）	$\begin{array}{r} u \\ \angle 9 \\ \angle Z \\ \hline \end{array}$
$\mathrm{S} 8>\mathrm{u}>0$ 	$\begin{gathered} u \\ \forall \\ \text { OSE } \end{gathered}$	u （t） （q1）	$\begin{array}{r} u \\ \text { S9 } \\ L Z \end{array}$
uo！̣！	$\begin{gathered} > \\ \text { OSE } \end{gathered}$	$\begin{aligned} & (\mathrm{O} \mathrm{I}) \\ & (\mathrm{qL}) \end{aligned}$	$\begin{aligned} & 09 \\ & \angle Z \end{aligned}$
Idつ ZI ๖．əコS	OSE	$\begin{aligned} & (\forall \varepsilon) \\ & (\mathrm{g} I) \end{aligned}$	$\begin{aligned} & 8 \mathrm{~S} \\ & \angle Z \end{aligned}$
	$\begin{gathered} 6 \\ \text { OSヨ } \end{gathered}$	$\begin{aligned} & \text { (} 6 \varepsilon \text {) } \\ & \text { (gI) } \end{aligned}$	$\begin{aligned} & \angle S \\ & \angle Z \end{aligned}$
	$\begin{gathered} 8 \\ \text { OSヨ } \end{gathered}$	$\begin{aligned} & (8 \varepsilon) \\ & (\mathrm{gI}) \end{aligned}$	$\begin{aligned} & 9 \mathrm{~S} \\ & \angle Z \end{aligned}$
	$\begin{gathered} L \\ \text { OSJ } \end{gathered}$	$\begin{aligned} & (\angle \varepsilon) \\ & (\mathrm{gl}) \end{aligned}$	$\begin{aligned} & \mathrm{SS} \\ & L Z \end{aligned}$
	$\begin{gathered} 9 \\ \text { OSヨ } \end{gathered}$	$\begin{aligned} & (9 \varepsilon) \\ & (\mathrm{gI}) \end{aligned}$	$\begin{aligned} & t S \\ & L Z \end{aligned}$
	$\begin{gathered} u \\ \varsigma \\ \text { SSヨ } \end{gathered}$	u （ $\varsigma \varepsilon$ ） （gl）	$\begin{gathered} u \\ \varepsilon \varsigma \\ \angle Z \end{gathered}$
unoj－jo－dol se pəs s！uo！u！	$\begin{gathered} t \\ \text { OSE } \end{gathered}$	$\begin{aligned} & (\downarrow \varepsilon) \\ & (\mathrm{gI}) \end{aligned}$	$\begin{aligned} & Z S \\ & \angle Z \end{aligned}$
	$\begin{gathered} u \\ \varepsilon \\ \text { OSヨ } \end{gathered}$	u （ ε ） （gl）	$\begin{gathered} u \\ \mathrm{IS} \\ \angle Z \end{gathered}$
uoppung $^{\text {d }}$	Ioquis ${ }_{\text {S }}$	${ }^{\text {x }} \mathbf{H}$	［8upat

Decimal Hex	Symbol	Function
$\begin{array}{lll} 27 & & \text { (18) } \\ 68 & & \text { (44) } \\ n 1 & n 2 \ldots . & \\ 0 & & (00) \end{array}$	$\begin{gathered} \text { ESC } \\ \mathrm{D} \\ n 1 n 2 \ldots n \mathrm{k} \\ \text { NULL } \end{gathered}$	Horizontal Tab position setting $1 \leq \mathrm{K} \leq 28,1 \leq n \leq 80$ or 137
$\begin{array}{ll} 27 & (1 \mathrm{~B}) \\ 69 & (45) \end{array}$	$\begin{gathered} \mathrm{ESC} \\ \mathrm{E} \end{gathered}$	Print and set Bold Character Mode
27 $(1 B)$ 70 (46)	$\begin{gathered} \text { ESC } \\ \mathrm{F} \end{gathered}$	End Bold Character Mode
$\begin{array}{ll} 27 & (1 \mathrm{~B}) \\ 71 & (47) \end{array}$	$\begin{gathered} \text { ESC } \\ \mathrm{G} \end{gathered}$	Print and set Double-Strike Character Mode
$\begin{array}{ll} 27 & (1 \mathrm{~B}) \\ 72 & (48) \end{array}$	$\begin{gathered} \text { ESC } \\ \mathrm{H} \end{gathered}$	End Double-Strike Character Mode
27 $(1 \mathrm{~B})$ 73 (49) n	$\begin{gathered} \text { ESC } \\ \text { I } \\ n \end{gathered}$	$n=1$ selects standard font and $n=2$ or 3 selects NLQ font
27 $(1 \mathrm{~B})$ 74 $(4 \mathrm{~A})$ n	$\begin{gathered} \text { ESC } \\ \mathrm{J} \\ n \\ \hline \end{gathered}$	Set Line Feed pitch to $n / 216$ inch
$\begin{array}{ll} 27 & (1 \mathrm{~B}) \\ 75 & (4 \mathrm{~B}) \\ n_{1} & n_{2} \mathrm{D}_{1} \ldots \\ D_{\mathrm{k}} \end{array}$	$\begin{gathered} \text { ESC } \\ \mathrm{K} \\ n_{1} n_{2} \mathrm{D}_{1} \ldots D_{k} \end{gathered}$	Select 60 DPI (dot/inch) Bit Image $\mathrm{K}=n_{1}(\mathrm{LSB})+256 \times n_{2}(\mathrm{MSB})$
$\begin{array}{lll} 27 & (1 \mathrm{~B}) \\ 76 & (4 \mathrm{C}) \\ n_{1} & n_{2} & \mathrm{D}_{1} \ldots \\ \hline \end{array}$	$\begin{gathered} \text { ESC } \\ \text { L } \\ n_{1} n_{2} \mathrm{D}_{1} \ldots D_{k} \end{gathered}$	Select 120 DPI Bit Image, Half Speed $\mathrm{K}=n_{1}+256 \times n 2$
27 $(1 B)$ 77 $(4 D)$	$\begin{gathered} \text { ESC } \\ \mathrm{M} \end{gathered}$	Select 10 CPI character mode
27 $(1 B)$ 78 $(4 \mathrm{E})$ n	$\begin{gathered} \text { ESC } \\ \mathrm{N} \\ n \\ \hline \end{gathered}$	Set skip over perforation in line feed unit $1 \leq n \leq 127$
$\begin{array}{ll} 27 & (1 \mathrm{~B}) \\ 79 & (4 \mathrm{~F}) \end{array}$	$\begin{gathered} \text { ESC } \\ 0 \end{gathered}$	End skip over perforation

Control Codes

Decimal Hex	Symbol	Function
27 $(1 \mathrm{~B})$ 80 (50) n	$\begin{gathered} \text { ESC } \\ \mathrm{P} \\ \mathrm{n} \end{gathered}$	Proportional character mode designation $n=1: \mathrm{ON}, \quad n=0: \mathrm{OFF}$
27 $(1 B)$ 82 (52)	$\begin{gathered} \mathrm{ESC} \\ \mathrm{R} \end{gathered}$	Set horizontal tabs at every 8th character column
27 (1B) 83 (53) n	$\begin{gathered} \text { ESC } \\ \mathrm{S} \\ n \end{gathered}$	$n=1$ selects subscript $n=0$ selects superscript
27 $(1 B)$ 84 (54)	$\begin{gathered} \text { ESC } \\ \mathrm{T} \end{gathered}$	End Subscript and Superscript
27 $(1 \mathrm{~B})$ 85 (55) n	$\begin{gathered} \text { ESC } \\ \mathrm{U} \\ n \\ \hline \end{gathered}$	$n=1$ selects Unidirectional print $n=0$ selects Bidirectional print
27 $(1 \mathrm{~B})$ 87 (57) n	$\begin{gathered} \text { ESC } \\ \mathrm{W} \\ n \end{gathered}$	$n=1$ selects Double-Width Mode $n=0$ cancels Double-Width Mode
27 88 m n (1B)	$\begin{gather*} \text { ESC } \tag{58}\\ \mathrm{X} \\ m \\ n \end{gather*}$	Set left and right margins in present character columns. Left margin is specified by m and right margin, n. $1 \leq m<n \leq$ maximum character column
27 $(1 \mathrm{~B})$ 89 (59) $n_{1} n_{2}$ $\mathrm{D}_{1} \ldots$$D_{\mathrm{k}}$	$\begin{gathered} \text { ESC } \\ \mathrm{Y} \\ n 1 n_{2} \mathrm{D}_{1} \ldots D_{\mathrm{k}} \end{gathered}$	Select 120 DPI Bit Image, Normal Speed $\mathrm{K}=n_{1}(\mathrm{LSB})+n_{2}(\mathrm{MSB}) \times 256$ Horizontally aligned dots cannot be printed.
27 $(1 \mathrm{~B})$ 90 $(5 \mathrm{~A})$ n_{1} $n 2$ $\mathrm{D}_{1} \ldots$ D_{k}	$\begin{gathered} \text { ESC } \\ \mathrm{Z} \\ n_{1} n_{2} \mathrm{D}_{1} \ldots D_{\mathrm{k}} \end{gathered}$	Select 240 DPI Bit Image $\mathrm{K}=n_{1}(\mathrm{LSB})+n_{2}(\mathrm{MSB}) \times 256$
27 $(1 B)$ 93 (5D)	$\begin{gathered} \text { ESC } \\ \text {] } \end{gathered}$	Perform printing and 1/6-inch Reverse Line Feed
27 $(1 B)$ 94 $(5 \mathrm{E})$ n	$\begin{gathered} \text { ESC } \\ \wedge \\ n \\ \hline \end{gathered}$	Print characters of codes 3, 4, 5, 6, 19, 20 and 21 specified by n

Decimal	Hex	Symbol	Function
27	$(1 \mathrm{~B})$	ESC	
100	(64)	d	Move print position toward right by $1 / 120 \times(\mathrm{Ln}+\mathrm{Hn} \times 256)$
Ln		Ln	inches. If right margin is exceeded, this command is ignored.
Hn		Hn	
27	$(1 \mathrm{~B})$	ESC	
101	(65)	e	Move print position toward left by $1 / 120 \times(\mathrm{Ln}+\mathrm{Hn} \times 256)$
Ln		Ln	inches. Ignored if exceeds left margin.
Hn		Hn	

Character Category Priority Table C

In print mode, the following priorities exist:

1. Compressed $>$ Proportional $>$ Bold $>$ Condensed $>$ Normal
2. Superscript/Subscript $>$ Correspondence $($ NLQ $)>$ Double Strike
a. If the Compressed, Condensed, Superscript, and Double-Strike modes are designated according to priority chart No. 84, Compressed Superscript characters will be printed.
b. If the compressed mode is terminated from the above example, condensed, superscript characters will be printed according to No. 20.
c. If the superscript mode is terminated from example a., compressed, double-strike characters will be printed according to No. 83.

Prop：Proportional Cond：Condensed NLQ：Near Letter Quality
D．S．：Double Strike Sup／Sub：Superscript／Subscript Comp：Compressed

	Command Combination							Character Mode Printed								Printed Ex．
No．	Comp．	Prop．	Cond．	Bold	NLO	D．s．	SupSub	Normal	Comp．	Prop．	Cond．	Bold	NLO	D．s．	Sup／sub	ABChijk
1								\bigcirc								AECtiojk
2							\bigcirc	\bigcirc							\bigcirc	Ascras Ju
3						\bigcirc		\bigcirc						\bigcirc		AECRi jk：
4						\bigcirc	\bigcirc	\bigcirc							\bigcirc	Ascrit sk
5					\bigcirc			\bigcirc					0			ABChijk
6					\bigcirc		\bigcirc	\bigcirc							\bigcirc	Amくいまった
7					\bigcirc	\bigcirc		\bigcirc					\bigcirc			ABChifk
8					\bigcirc	\bigcirc	0	\bigcirc							\bigcirc	
9				\bigcirc				\bigcirc				\bigcirc				ABChijk
10				\bigcirc			0	\bigcirc				\bigcirc			\bigcirc	ABChitk
11				\bigcirc		\bigcirc		\bigcirc				\bigcirc		\bigcirc		ABChi jk
12				\bigcirc		\bigcirc	0	\bigcirc				\bigcirc			\bigcirc	ABChisk
13				\bigcirc	0			\bigcirc				\bigcirc	\bigcirc			ABChijk
14				\bigcirc	0		0	\bigcirc				\bigcirc			\bigcirc	ABCon ${ }^{\text {a }}$ A
15				\bigcirc	0	\bigcirc		\bigcirc				\bigcirc	\bigcirc			ABChijk
16				\bigcirc	0	\bigcirc	\bigcirc	\bigcirc				\bigcirc			\bigcirc	ABcmisk
17			\bigcirc								\bigcirc					ABChijk
18			\bigcirc				0				\bigcirc				\bigcirc	aschisk
19			\bigcirc			\bigcirc					\bigcirc			\bigcirc		ABChijk
20			\bigcirc			\bigcirc	\bigcirc				0				\bigcirc	ABChifk
21			\bigcirc		0						0					AEChijk
22			\bigcirc		0		0				0				\bigcirc	ABChi jk
23			\bigcirc		\bigcirc	\bigcirc					0			\bigcirc		ABChijk
24			\bigcirc		\bigcirc	\bigcirc	\bigcirc				\bigcirc				\bigcirc	ABChisk
25			\bigcirc	\bigcirc				\bigcirc				\bigcirc				ABChijk
26			\bigcirc	\bigcirc			\bigcirc	\bigcirc				\bigcirc			\bigcirc	ABChisk
27			\bigcirc	\bigcirc		\bigcirc		\bigcirc				\bigcirc		\bigcirc		ABChijk
28			\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc				\bigcirc			\bigcirc	ABCmisk
29			\bigcirc	\bigcirc	\bigcirc			\bigcirc				\bigcirc				ABChijk
30			\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc				\bigcirc			\bigcirc	Abchisk
31			\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc				\bigcirc		\bigcirc		ABChi jk
32			\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc				\bigcirc			\bigcirc	ABCmisk
33		\bigcirc								\bigcirc						AECTHijil：
34		\bigcirc					0			\bigcirc					0	AECr－1 ${ }^{\text {de }}$

Prop: Proportional Cond: Condensed NLQ: Near Letter Quality
D.S.: Double Strike Sup/Sub: Superscript/Subscript Comp: Compressed

	Command Combination							Character Mode Printed								Printed Ex.
No.	Comp	Prop.	Cond.	Bold	NLO	D.S.	Sup/ub	Nomal	Comp.	Prop.	Cond.	Bold	NLQ	D. S.	Sup/sub	ABChijk
35		\bigcirc				\bigcirc				\bigcirc				\bigcirc		ABCHiLjk:
36		\bigcirc				\bigcirc	\bigcirc			\bigcirc					\bigcirc	ABCMis.jte
37		\bigcirc			\bigcirc					\bigcirc			\bigcirc			ABChijk
38		\bigcirc			\bigcirc		\bigcirc			\bigcirc					\bigcirc	AEchath
39		\bigcirc			\bigcirc	\bigcirc				\bigcirc			\bigcirc			ABChijk
40		\bigcirc			\bigcirc	\bigcirc	\bigcirc			\bigcirc					\bigcirc	AECOn土.jor
41		\bigcirc		\bigcirc						\bigcirc		\bigcirc				AEChijat
42		\bigcirc		\bigcirc			\bigcirc			\bigcirc		\bigcirc			\bigcirc	Asechath
43		\bigcirc		\bigcirc		\bigcirc				\bigcirc		\bigcirc		\bigcirc		ABChiijk
44		\bigcirc		\bigcirc		\bigcirc	\bigcirc			\bigcirc		\bigcirc			\bigcirc	Aschilut
45		\bigcirc		\bigcirc	\bigcirc					\bigcirc		\bigcirc	\bigcirc			ABChifk
46		\bigcirc		\bigcirc	\bigcirc		\bigcirc			\bigcirc		\bigcirc			\bigcirc	Asconithe
47		\bigcirc		\bigcirc	\bigcirc	\bigcirc				\bigcirc		\bigcirc	\bigcirc			ABChifk
48		\bigcirc		\bigcirc	\bigcirc	\bigcirc	\bigcirc			\bigcirc		\bigcirc			\bigcirc	Asconilac
49		\bigcirc	\bigcirc							\bigcirc						AECriijl:
50		\bigcirc	\bigcirc				\bigcirc			\bigcirc					\bigcirc	amamatist
51		\bigcirc	\bigcirc			\bigcirc				\bigcirc				\bigcirc		ABCFi,jk:
52		\bigcirc	\bigcirc			\bigcirc	\bigcirc			\bigcirc					\bigcirc	AEChas.je
53		\bigcirc	\bigcirc		\bigcirc					\bigcirc			\bigcirc			ABChijk
54		\bigcirc	\bigcirc		\bigcirc		\bigcirc			\bigcirc					\bigcirc	AEcratuste
55		\bigcirc	\bigcirc		\bigcirc	\bigcirc				\bigcirc			\bigcirc			ABChijk
56		\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc			\bigcirc					\bigcirc	AEchithe
57		\bigcirc	\bigcirc	\bigcirc						\bigcirc		\bigcirc				AECtiojk
58		\bigcirc	\bigcirc	\bigcirc			\bigcirc			\bigcirc		\bigcirc			\bigcirc	AECOMisk
59		\bigcirc	\bigcirc	\bigcirc		\bigcirc				\bigcirc		\bigcirc		\bigcirc		ABChijijk
60		\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc			\bigcirc		\bigcirc			\bigcirc	ascanijuc
61		\bigcirc	\bigcirc	\bigcirc	\bigcirc					\bigcirc		\bigcirc	\bigcirc			ABChijlk
62		\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc			\bigcirc		\bigcirc			\bigcirc	Arconitur
63		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc				\bigcirc		\bigcirc	\bigcirc			ABChijk
64		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc			\bigcirc		\bigcirc			\bigcirc	Ascmishe
65	\bigcirc								\bigcirc							AEChijk
66	\bigcirc						\bigcirc		\bigcirc						\bigcirc	ABChisk
67	\bigcirc					\bigcirc			\bigcirc					\bigcirc		ABChijk
68	\bigcirc					\bigcirc	\bigcirc		\bigcirc						\bigcirc	AEChisk

Prop: Proportional Cond: Condensed NLQ: Near Letter Quality
D.S. : Double Strike Sup/Sub: Superscript/Subscript Comp: Compressed

	Command Combination							Character Mode Printed								Printed Ex.
NO.	Comp.	Prop.	Cond.	Bold	NLQ	D. S.	Sup/Sub	Normal	Comp.	Prop.	Cond.	Bold	NLQ	D.S.	Sup/Sub	ABChijk
69	\bigcirc				\bigcirc				\bigcirc				\bigcirc			ABCh1Jk
70	\bigcirc				\bigcirc		\bigcirc		\bigcirc						\bigcirc	AEAChisk
71	\bigcirc				\bigcirc	\bigcirc			\bigcirc				\bigcirc			ABChijk
72	\bigcirc				\bigcirc	\bigcirc	\bigcirc		\bigcirc						\bigcirc	ABCh 1 jk
73	\bigcirc			\bigcirc					\bigcirc			\bigcirc				ABChijk
74	\bigcirc			\bigcirc			\bigcirc		\bigcirc			\bigcirc			\bigcirc	ABCmi ik
75	\bigcirc			\bigcirc		\bigcirc			\bigcirc			\bigcirc		\bigcirc		ABChijk
76	\bigcirc			\bigcirc		\bigcirc	\bigcirc		\bigcirc			\bigcirc			\bigcirc	ABchitik
77	\bigcirc			\bigcirc	\bigcirc				\bigcirc			\bigcirc	\bigcirc			ABChijk
78	\bigcirc			\bigcirc	\bigcirc		\bigcirc		\bigcirc			\bigcirc			\bigcirc	Aschit ok
79	\bigcirc			\bigcirc	\bigcirc	\bigcirc			\bigcirc			\bigcirc	\bigcirc			ABChijk
80	\bigcirc			\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc			\bigcirc			\bigcirc	ABChisk
81	\bigcirc		\bigcirc						\bigcirc							AECKij jk:
82	\bigcirc		\bigcirc				\bigcirc		\bigcirc						\bigcirc	ABchis k
83	\bigcirc		\bigcirc			\bigcirc			\bigcirc					\bigcirc		ABChijk
84	\bigcirc		\bigcirc			\bigcirc	\bigcirc		\bigcirc						\bigcirc	AEChitik
85	\bigcirc		\bigcirc		\bigcirc				\bigcirc				\bigcirc			ABCh1jk
86	\bigcirc						\bigcirc	AEchiote								
87	\bigcirc		\bigcirc		\bigcirc	\bigcirc			\bigcirc				\bigcirc			ABChijk
88	\bigcirc		\bigcirc		\bigcirc	\bigcirc	\bigcirc		\bigcirc						\bigcirc	ABChi fk
89	\bigcirc		\bigcirc	\bigcirc					\bigcirc			\bigcirc				ABChijk
90	\bigcirc		\bigcirc	\bigcirc			\bigcirc		\bigcirc			\bigcirc			\bigcirc	ABCmi jk
91	\bigcirc		\bigcirc	\bigcirc		\bigcirc			\bigcirc			\bigcirc		\bigcirc		ABChijk
92	\bigcirc		\bigcirc	\bigcirc		\bigcirc	\bigcirc		\bigcirc			\bigcirc			\bigcirc	Aschisk
93	\bigcirc		\bigcirc	\bigcirc	\bigcirc				\bigcirc			\bigcirc	\bigcirc			ABChijk
94	\bigcirc		\bigcirc	\bigcirc	\bigcirc		\bigcirc		\bigcirc			\bigcirc			\bigcirc	ABChisk
95	\bigcirc		\bigcirc	\bigcirc	\bigcirc	\bigcirc			\bigcirc			\bigcirc	\bigcirc			ABChijk
96	\bigcirc		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc			\bigcirc			\bigcirc	ABChisk
97	\bigcirc	\bigcirc							\bigcirc							AECFij jk:
98	\bigcirc	\bigcirc					\bigcirc		\bigcirc						\bigcirc	ABChijk
99	\bigcirc	\bigcirc				\bigcirc			\bigcirc					\bigcirc		ABChijk
100	\bigcirc	\bigcirc				\bigcirc	\bigcirc		\bigcirc						\bigcirc	ABChijk
101	\bigcirc	\bigcirc			\bigcirc				\bigcirc				\bigcirc			ABCh1jk
102	\bigcirc	\bigcirc			\bigcirc		\bigcirc		\bigcirc						\bigcirc	Aschisk

Prop: Proportional Cond: Condensed NLQ: Near Letter Quality
D.S.: Double Strike Sup/Sub: Superscript/Subscript Comp: Compressed

	Command Combination							Character Mode Printed								Printed Ex.
No.	Comp.	Prop.	Cond.	Bold	NLQ	D.	Supsub	Nomal	Comp.	Prop.	Cond.	Bold	NLQ	D.S.	Sup/sub	ABChijk
103	\bigcirc	\bigcirc			\bigcirc	\bigcirc			\bigcirc				\bigcirc			ABCh1jk
104	\bigcirc	\bigcirc			\bigcirc	\bigcirc	\bigcirc		\bigcirc						\bigcirc	ABChijk
105	\bigcirc	0		0					\bigcirc			\bigcirc				ABChijk
106	\bigcirc	\bigcirc		0			\bigcirc		\bigcirc			\bigcirc			\bigcirc	ABChisk
107	\bigcirc	\bigcirc		\bigcirc		\bigcirc			\bigcirc			\bigcirc		\bigcirc		ABChijk
108	\bigcirc	0		\bigcirc		\bigcirc	\bigcirc		\bigcirc			\bigcirc			\bigcirc	ABChisk
109	\bigcirc	\bigcirc		\bigcirc	\bigcirc				\bigcirc			\bigcirc	\bigcirc			ABChijk
110	\bigcirc	\bigcirc		\bigcirc	\bigcirc		\bigcirc		\bigcirc			\bigcirc			\bigcirc	ABCMisk
111	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc			\bigcirc			\bigcirc	\bigcirc			ABChijk
112	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	\bigcirc		0			\bigcirc			\bigcirc	ABChisk
113	\bigcirc	0	\bigcirc						\bigcirc							AECTİjk:
114	\bigcirc	\bigcirc	\bigcirc				\bigcirc		\bigcirc						\bigcirc	ABChtsk
115	\bigcirc	\bigcirc	\bigcirc			\bigcirc			\bigcirc					\bigcirc		ABChijk
116	\bigcirc	0	\bigcirc			\bigcirc	\bigcirc		\bigcirc						\bigcirc	ABChisk
117	\bigcirc	\bigcirc	\bigcirc		\bigcirc				\bigcirc				\bigcirc			ABChijk
118	\bigcirc	0	\bigcirc		\bigcirc		\bigcirc		\bigcirc						\bigcirc	AEChysk
119	\bigcirc	0	\bigcirc		\bigcirc	\bigcirc			\bigcirc				\bigcirc			ABChijk
120	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc		\bigcirc						\bigcirc	ABChisk
121	\bigcirc	\bigcirc	0	\bigcirc					\bigcirc			\bigcirc				ABChijk
122	\bigcirc	\bigcirc	\bigcirc	\bigcirc			\bigcirc		\bigcirc			\bigcirc			\bigcirc	ABChisk
123	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc			\bigcirc			\bigcirc		\bigcirc		ABChi jk
124	\bigcirc	0	\bigcirc	\bigcirc		\bigcirc	\bigcirc		\bigcirc			\bigcirc			\bigcirc	Aschil k
125	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc				\bigcirc			\bigcirc	\bigcirc			ABChijk
126	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc		\bigcirc			\bigcirc			\bigcirc	ABChisk
127	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0			\bigcirc			\bigcirc	0			ABChijk
128	\bigcirc	0	\bigcirc	\bigcirc	0	\bigcirc	0		0			0			\bigcirc	ABChisk

Programming Information D

The following items should be considered when you program the computer:

1. When the Printer's power is turned on:

- Optional functions are selected according to the setting of the function selection switches.
- Full-forward line feed is set when the data processing mode is selected.
- Underline is not set.
- Standard character is set (not elongated and not bold).
- Buffer memory is completely cleared.
- Page length is set as 56 lines.

2. Every character font can be intermixed with another style of character in the same line. However, the Printer will insert dot spaces to ensure that the new dot position is valid for the current character size. This may cause unexpected, automatic wraparound. To prevent this, intermix characters only on short lines, or do not mix character sizes on the same line.
3. Since a proportional spacing command can be used in any character set condition, right-justification can be performed. You must consider that proportional spacing commands can indicate up to 9 -dot spacing; normal (10 or 5 CPI), compressed (12 or 6 CPI), or condensed (17 or 8.5 CPI) characters (normal space $=20 \mathrm{hex}$ or 32 dec) give 12 or 24 dot spaces.
4. Elongated (double-width) characters and underline are not terminated at the end of a line, and such printing continues until a terminating command is received.

Note: In IBM mode, elongation is set by sending a (27 14) command and terminated by sending a CR/LF command.
5. You should avoid wraparound. A wraparound will disturb the dot count of the text in a line.
6. Backspace is performed in the same manner under any character set condition. This command indicates the number of dots to backspace.
7. In the repeat data commands, printable characters can be repeated as many times as provided in the count number. If any function code is received for repetition, it is ignored.
8. POS commands can be used at any carriage position. If a designated dot-column address is in the current text which is already printed, overprint will occur.
9. In block graphic printing, half-forward line feed should be used for printing diagrams.
10. Line feed in graphics mode is different from line feed pitches in data processing or word processing mode.
11. Graphic printing can be intermixed with character printing in the same line.
12. Bold character mode is useful for headings or titles.

Programming Examples

Note to Model II programmers: If the Printer goes off-line during a print operation, and remains OFF LINE for a certain period of time, Model II TRSDOS will present an error message. Application programs should be written to trap such errors, inform the operator of the error condition, and give the operator a chance to correct the condition and continue printing. If it is a BASIC applications program, an I/O error will occur and the operator can type CONT ENTER to continue.

The BASIC statements LPRINT and LLIST output to the line printer. See your computer's reference manual for syntax details. If you have a Color Computer, read LPRINT as PRINT \#-2,

Examples:

LLIST

Lists the resident program to the Printer.
LPRINT "THIS IS A TEST."
Prints the message in quotes and tells the Printer that the next printable character brings a new line.

LPRINT "THIS IS PART OF A LINE";: LPRINT "THIS IS THE REST"

Prints both messages on the same line (because of the semicolon). The next printable character received starts a new line.

LPRINT "SMALL"; CHR\$(27);CHR\$(14);"LARGE"; CHR\$ (27); CHR\$ (15);"SMALL AGAIN"

Prints both normal and elongated characters on the same line.

LPRINT CHR\$(27); CHR\$ (47);"COMPRESSED PROPORTIONAL" CHR\$ (27); CHR\$(29);
"CORRESPONDENCE 12 CPI"; CHR\$ (27); CHR\$ (17);
"PROPORTIONAL"; CHR\$ (27); CHR\$ (18);
"CORRESPONDENCE 10 CPI"; CHR\$(27);
CHR\$ (20);"CONDENSED"; CHR\$(27); CHR\$(23); "COMPRESSED"; CHR\$ (27); CHR\$ (19);"NORMAL"

Prints proportional, correspondence, condensed, compressed, and normal characters in the same line.

LPRINT CHR\$(19);"START"; CHR\$(27); CHR\$ (56); CHR\$ (138);"LINE ONE"; CHR\$ (138);"LINE TWO"

Prints these letters at $3 / 4$-line pitch.
LPRINT CHR\$ (15);"UNDERLINE"; CHR.\$(14);
"WITHOUT UNDERLINE"
Prints both messages in the same line: one underlined and the other not underlined.

LPRINT CHR\$(27); CHR\$(31);"BOLD
LETTERS"; CHR\$ (27); CHR\$ (32);"NORMAL LETTERS"
Prints bold letters and normal letters in the same line.
LPRINT CHR\$(28); CHR\$ (9);"ABC
Prints 9 characters of \mathbf{A} and one character $\mathbf{B C}$.
LPRINT CHR\$(13);CHR\$(27);CHR\$(16);CHR\$(01); CHR\$(44);"300TH POSITION"

Prints the above message from the 300th column address.
LPRINT CHR\$(27);CHR\$(17);"A"; CHR\$(27);
CHR\$ (09);"B"; CHR\$ (27); CHR\$ (06); "C"; CHR\$ (27); CHR\$ (03);"DE"

Prints $\mathbf{A B C D E}$ by using proportional spacing.

LPRINT CHR\$(18); CHR\$(255);CHR\$(247); CHR\$ (227) ; CHR\$ (193) ; CHR\$ (227); CHR\$ (247); CHR\$ (255) ; CHR\$ (30)

Prints a special symbol in graphics mode.
LPRINT "DELETE"; CHR\$ (08) ; CHR\$ (72);" $/ / / / / / "$
Prints the message DELETE; then it is deleted by diagonal lines.

LPRINT "X"; CHR\$ (27) ; CHR\$ (83) ; CHR\$ (0);
"2"; CHR\& (27) ; CHR\$ (88) ;" $+\mathrm{X}=\mathrm{Y} "$
Prints an algebraic function expression $\mathbf{X}^{\mathbf{2}}+\mathbf{X}=\mathbf{Y}$.
LPRINT "H"; CHR\$(27); CHR\$ (83); CHR\$(1); "2"; CHR\$ (27); CHR\$ (88);"0"

Prints the formula of water $\mathbf{H}_{2} \mathbf{O}$.
LPRINT CHR\$ (27); CHR\$(66); CHR\$(1);
"ITALIC"; CHR\$ (27); CHR\$ (66) ; CHR\$ (0) ;"NORMAL"
Prints italicized letters and non-italicized letters in the same line.

LPRINT CHR\$(27); CHR\$ (77) ;"MICROFONT" Prints microfont letters.

Care and Maintenance E

General

- Never operate the Printer without paper. Be sure that printing does not exceed the paper width.
- If any object is accidentally dropped into the machine, turn off the power and carefully remove the object.
- When you turn off the power, all data stored in the Printer's buffer will be lost. Keep this in mind as you perform routine maintenance. Remember that toggling the Printer's power can also cause erratic operation of the CPU.
- Use only a lint-free cloth to clean the Printer's surface. Do not use solvents or harsh cleaning agents. A mild detergent solution or desk top cleanser may be used sparingly.
- The Printer must be kept dry. If water is accidentally spilled on the machine, turn off the power immediately and wipe it dry. Do not turn on the power again until the Printer is completely dry.
- When printed material is too light or too dark, check to see if the print head is positioned properly.

Care

- Do not use organic solvents or alcohol when cleaning the cover.
- Never set the Printer where it is exposed to direct sunlight.
- Prevent the Printer from vibrating during operation.
- Graphics printing places a heavier load on the print head than do text characters. If you print too many block graphic characters or graphics without pausing, the print head may be damaged.
When you must print graphics continuously, be sure to pause the printing for at least a few minutes after printing about 50 lines.

M-intenance

- If the print head becomes clogged with ribbon material or paper lint, carefully remove such material with a finely pointed tool (preferably a toothpick).
- A print head's life expectancy is approximately 80 million characters. When poor print quality, sticking ribbon, or bent character printing occurs, you should have the print head replaced by a Radio Shack service technician.

If you have problems

If the Printer fails to operate properly, try to solve the trouble by using the following table:

PROBLEM	CAUSE AND REMEDY		
$\begin{array}{l}\text { The Printer does not print. } \\ \text { The POWER lamp does not light. }\end{array}$	$\begin{array}{l}\text { 1) Power is not getting to the Printer. } \\ \text { Check the power cord and power } \\ \text { switch. }\end{array}$		
The Printer does not print.	$\begin{array}{l}\text { 1) The connection to the computer is } \\ \text { not correct. } \\ \text { The POWER lamp is lit. }\end{array}$		
	$\begin{array}{l}\text { Check that the cable connecting } \\ \text { the Printer and computer is correct- } \\ \text { ly connected. }\end{array}$		
2) The ribbon cassette is not properly			
installed.		$\}$	- Install it properly.
:---			

If the trouble cannot be corrected after making the above check-up and adjustment, check for secure contacts on all connectors. If you cannot eliminate the problem, take the unit to your Radio Shack Computer Center or store for repair.

Specifications F

Print Speed	120 CPS
Paper Feed Type	Pin feed and friction feed
Line Pitch	$1 / 6^{\prime \prime}, 1 / 8^{\prime \prime}, 1 / 9^{\prime \prime}, 1 / 12^{\prime \prime}, 1 / 36^{\prime \prime}, 1 / 48^{\prime \prime}$ $1 / 72^{\prime \prime}, 1 / 144^{\prime \prime}$ and $n / 216^{\prime \prime}$. Reverse: $1 / 6^{\prime \prime}$ and $1 / 12^{\prime \prime}$
Paper Feed Speed	10 lines/sec. when continuously feeding by $1 / 9^{\prime \prime}$ unit.
Print Method	Impact dot matrix
Print Direction	Bidirectional logic seeking in draft printing. Unidirectional in NLQ and graphics printing.
Ink Ribbon	Special cassette-type
Paper Weight	15 lbs . to 20 lbs . (45 kg . to 65 kg .)
Paper Thickness Single Sheet	$0.06-0.1 \mathrm{~mm}(2.5-3.8$ mils $)$
Multiple Copies	Original plus 2, max. 0.2 mm (7.7 mils)
Paper Width	$4^{\prime \prime}$ to $10^{\prime \prime}$ wide
Power Requirements	$120 \pm 15 \mathrm{~V}$ AC, 60 Hz in USA and Canada $220 / 240 \mathrm{~V}$ AC, 50 Hz in Europe and Australia
Power Consumption	30 Watts (self-test printing) 15 Watts (standby)
Temperature Operation Storage	$55^{\circ} \mathrm{F}$ to $85^{\circ} \mathrm{F}\left(13^{\circ} \mathrm{C}\right.$ to $\left.29^{\circ} \mathrm{C}\right)$ $-40^{\circ} \mathrm{F}$ to $160^{\circ} \mathrm{F}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.71^{\circ} \mathrm{C}\right)$
Humidity	20\% to 80% (non-condensing)
Dimensions	$15^{\prime \prime} \mathrm{W} \times 5^{\prime \prime} \mathrm{H} \times 10^{\prime \prime} \mathrm{D}(390 \mathrm{~mm} \times 119 \mathrm{~mm} \times 266 \mathrm{~mm})$
Weight	$11 \mathrm{lbs} .(5 \mathrm{~kg}$)

Interfaces G

Pin Configuration of the Serial RS-232C DIN Jack

Pin 1	NOT USED
$\operatorname{Pin} 2$	STATUS
$\operatorname{Pin} 3$	GROUND
$\operatorname{Pin} 4$	DATA

Time Chart of Serial Input

Baud rate selectable to $600 \mathrm{bps}, 1200 \mathrm{bps}$, or 2400 bps .

- One start bit, 8-bit data, no parity, 2 stop bits

Pin Configuration of the PARALLEL Connector

PIN	SIGNAL	IN/OUT	PIN	SIGNAL	IN/OUT
1	$\overline{\text { STROBE }}$	IN	19	TWISTED PAIR GND (PAIR WITH 1 PIN)	
2	DATA 1	IN	20	TWISTED PAIR GND (PAIR WITH 2PIN)	
3	DATA 2	IN	21	TWISTED PAIR GND (PAIR WITH 3PIN)	
4	DATA 3	IN	22	TWISTED PAIR GND (PAIR WITH 4PIN)	
5	DATA 4	IN	23	TWISTED PAIR GND (PAIR WITH 5PIN)	
6	DATA 5	IN	24	TWISTED PAIR GND (PAIR WITH 6PIN)	
7	DATA 6	IN	25	TWISTED PAIR GND (PAIR WITH 7PIN)	
8	DATA 7	IN	26	TWISTED PAIR GND (PAIR WITH 8PIN)	
9	DATA 8	IN	27	TWISTED PAIR GND (PAIR WITH 9PIN)	
10	ACK	OUT	28	TWISTED PAIR GND (PAIR WITH 10 PIN)	
11	BUSY	OUT	29	TWISTED PAIR GND (PAIR WITH 11 PIN)	
12	P.E.	OUT	30	GND	
13	BUSY	OUT	31	NC	
14	GND		32	FAULT	OUT
15	NC		33	INIT	IN
16	GND		34	NC	
17	CHASSIS GND		35	NC	
18	+5V 80mA Max.		36	NC	

Timing Diagram

Power Supply and Driver Logic Circuit
about the printer
addressable dot numbering system 63
ALERT indicator 14
backspace 45-46, 73
backward space variable 73-74
bell 79
bidirectional printing 58-59
bit image mode 77-78
bold characters 37
bold printing 37
buffer operation 49-50
cancel 79
care 113
carriage return 44-45, 69
character set selection 69
character set width 46
character style change commands 30
character styles 29-30
character widths and densities 29
characters below 20 hex 79
code set selection 69
compressed printing 74-75
computer connection points 17
computer connections 16-17
computer-to-DMP 130A cables 17
control codes 24
for changing modes 27
from BASIC 24
control logic circuit 119
correspondence quality characters 31
country character table 59
CPI selection 75
data processing mode 23, 25
DIP switch functions
in IBM mode 19
in Tandy mode 18-19
DIP switch panel 17
dot column widthof IBM characters 88-89
of Tandy characters 85
double-strike printing 76
double-width printing 74
elongated characters 36
elongated printing 36
emphasized printing 75-76
fanfold paper 10-12
loading (hints and tips) 10
fanfold paper path 12
folding leg 3font selection 69
form feed 47, 72
FORM FEED switch 15
form length/lines-per-page 47
forward space variable 73-74
freehand drawing 66-68
front panel 14, 20
front view 11
graphic dot positioning 62
graphics characters 32
graphics mode $23,26,62-68$
exit 66
graphics patterns 63-64
hex print mode 51
home head 73
horizontal formatting control codes 72-74
horizontal tabulation 72-73
IBM character set 51
IBM character set 1 86
IBM character set 2 87
IBM control codes, table of 95-101
IBM mode 48, 69-79
if you have problems 114
ignored control codes 48
ignored or undefined codes 48
installing the tractor 4-5
international characters 59
italic printing 38
italics 38
left margin, setting 20-21, 57-58, 73
left/right margin set 57
line feed 65
codes 43-44
control codes 43
execution command 71
execution ($\mathrm{n} / 216^{\prime \prime}$) variable 71
hints and tips 43-44
$\mathrm{n} / 216^{\prime \prime}$ variable 71
pitch 70
special codes 44
special control codes 44
switch 15
variable 70
variable pitch 70-71
$1 / 8,1 / 12,1 / 36$ and $1 / 24$ forward 44
$1 /{ }^{\circ}$-inch line feed 70
7/72-inch line feed 70
maintenance 113
margin-set switches 20
MARGIN switch 20
microfont printing 40
monospaced characters 23
new line control codes 44-45
NLQ/DP switch 15
NLQ indicator 15, 20
ON/OFF LINE indicator 15, 20
ON/OFF LINE switch 15
operator controls 14-15
paper bail 4
paper end detection 79
paper feed knob 4
paper guide 3
paper loading 8-12
paper loading knob 4
paper rack 3, 4, 12
parallel interface connector 16
pin configuration
parallel connector 118
serial RS-232C DIN jack 117
platen 4, 12
POWER cord 16
POWER indicator 14
POWER ON/OFF switch 16
power source 8
power supply and driver logic circuit 120
power switch 4
power-up sequence 20
Print font styles 29-41
print function (DIP) switches 16, 17-19

print head 7, 12

positioning 54-57
print head adjustment lever 12-13
print mode selection $26-27$
printer cover 3-4
printing mode control 74
programming examples $110-112$
proportional characters $84-85,88-89$
proportional spacing 35
proportional spacing on/off 75
proportionally spaced characters 23,31
removing the tractor 5
repeat function 65-66
repeat printing 53
ribbon cassette 6-7
installation 7
removal 6
ribbon mask 7
right justification 34
right margin, setting $20-21,57-58,73$
selection 12 CPI 75
self-test 13-14
serial interface connector 16
SET switch 20
single-sheet paper $9-12$
loading (hints and tips) 10
skip perforation 58,72
standard characters 30-31
start-up checklist 2
subscript 39,76
superscript 39,76
supporter 3

TAB reset 73
Tandy character set table 83
Tandy control codes, table of 91-94
time chart, serial input 117
timing diagram 118
top-of-form and form length 47, 71
tractor feed unit, installing 4-5
underline printing 53-54
underlining 77
unidirectional printing 58-59, 79
vertical formatting control codes 70-72
word processing mode $23,25-26$
wraparound 36

SERVICE POLICY

Radio Shack's nationwide network of service facilities provides quick, convenient, and reliable repair services for all of its computer products, in most instances. Warranty service will be performed in accordance with Radio Shack's Limited Warranty. Non-warranty service will be provided at reasonable parts and labor costs.

[^0]: 70 DATA "THE PROPORTIONAL CHARACTER SET OF THE" 80 DATA "DMP 130A PRINTER CAN BE RIGHT JUSTIFIED"

