
I

• • Q • 5 • 5 J

•

•

o I• 5

I
• • • •

I
e I e s s •

• . • e I

J

I

I

I

MICRO B + PROG RAMMER' S G U I D E : L I NK- 80

COPYRIGHT 19 80 , 1981 BY FAIRCOM

ALL RI GHTS RESERVED.

NO PART OF THIS PUBLICATION MAY BE R E PRODUCED' STORED I N A RE
TRIEVAL SYSTEM, OR TRANSMITTED, IN ANY FORM OR BY ANY MEANS, ELEC
TRONIC S MECHANICAL' PHOTOCOPYINGr RECORDING S OR O T HERWI SE r WI T H O U T
THE P R IO R W R ITT EN PER M IS S IO N OF FA IRCO M i 2606 J O H NSON D R I V E p
COLUMBIA, MO 65201.

Disclaimer

F airCom makes n o r epresent a t i o n s or warranties with respect to the
contents hereof and specifically disclaims any implied warranties
of merchantability or fitness for a ny pa r t i cu l a r pur p o s e . F urt h e r ,FairCom r e s e r ve s t he right to revise this publication a nd t o m a k e
changes from time to time in the content hereof without obligation
of FairCom to notify any such person of such revision or changes.

MICRO B+ PR OGRAMMER' S GUIDE: LINK-80

TABLE OF CONTENTS

1 0 I N T RODUCTION . . .
. . .

' • 1

2 • 0 SPECIAL FEATURES OF MICRO B+" • . . . 2

3 • 0 MICRO B+" BASIC APPROACH 4

4 0 OVERVIEW OP MICRO B+™ ROUTINES

4 • 1 PARAMETER PASSING PROTOCOL

• • 7

10

4.1.1 PARAMETER SPECIFICATIONS

4.1.2 INTERFACE PROGRAMMING EXAMPLE

4.1.3 MICROSOFT BASIC COMPATIBILITY

• • • • 1 0

11

12

4 2 INTREE (NO BUFFERS% g NO KEYS'ti g NO NODE • SECTORS% g

NO HEADER. SECTORS% i NO.DAT A . F I L ES %)

4.2.1 BUFFER SIZE CO M P UTATION
. . . . •

13

• • • • • • 1 4

4o3 SETERR(ERROR.CODE%)

4 4 ACCESS(KEY NO%~INDEX • FILESgKEY.LENGTHS J

15

KEYS TYPE%rMAX • NO KEYS%)

4 .4. 1 M U L T IP L E I ND E X F I L ES

4 • 4 • 2 ESTIMATING I N DEX F I L E S I Z E

4.4.3 MICROSOFT BASIC EXAMPLE

4.4.4 CP/Me 1.4 AND 2.x COMPATIBILITY

16

• • • • 1 6

17

18

18

4 • 5 ENTER (KEY • NO% g KEY VALUE $ g DATA • RECORD% ~ RETURN CODE%) • • 1 8

4 .5. 1 EXT R A L AR G E F I L ES

4.5.2 CODING NUMERIC KEY VALUES

4 . 5 3 KEY VAL U E PA D D I N G e •

4.5. 4 D U PL I CATE KEY VALUES

4 • 5 • 5 MICROSOFT BAS I C EXAMPLE •
• • • •

4. 6 RTRI EV (KEY • N0%, KEY VALUE $ i DATA. RECORD%)

19

• • • • • • 2 0

20

21

21

21

4 6.1 MICROSOFT BASIC EXAM PLE • • • • • • • • • 2 2

MICRO B+ PR OGRAMMER'S GUIDE: LINK-80

4. 7 SEARCH (KEY. N0% i KEY • VALUES i DATA. RECORD% i I NDEX. KEYS). . . 2 2

4.7.1 O N D U P L IC A T E K E Y VA L UES • • , . . . 2 2

4 • 8 SUCESR(KEY N 0% i DATA RECORD% g INDEX • KEY $) • • • • • • • • 2 3

4 • 8+1 MICROSOFT BASIC EXAMPLE • , 2 3

4.8.2 SEQUENTIAL PROCESSING AND INDEX UPDATES 24

4 • 9 PRDESR (KEY • N0% g DATA RECORD% g INDEX • KEYS) • • • • • • • • 2 4

4.10 NMENTR(KEY.N0%,NO.ENTRIES%) • • . • • . • . , • 25

4 .10.1 MICROSOFT BASIC EXAMPLE 2 5

4.11 NMNODE (KEY.N0%, NO.NODES%) •. 2 5

4 • 1 1 1 M I CROSOFT BAS I C EXAMPLE • • • • • • • • • • • • 25

4.12 REMOVE(KEY.N0%gKEY.VALUES, DATA.RECORD%g

4. 13 RSTRCT (KEY. N0%)

4.14 SEQUENTIAL LOADING OF INDEX

4. 14. 2. 1 IMPORTANT NOTE

4 • 14.1 I N T L OD(KEY.N0%iLOAD.FACTOR%)

RETURN.CODE%)

4 • 12.1 MI C ROSOFT B A SI C EX A M PL E • • • e • • e • • • • • 2 6

26

• • • • • • • • • 2 6

27

4 • 1 4 • 2 LOADKY (KEY VALUE S i DATA RECORDS i RETURN CODE%) • • 2 7

28

28

26

4 .14. 3 B L D I N D
. . . •

4.14.4 MICROSOFT BASIC EXAMPLE 28

5 .2 CLOSE DATA F I L E

5+0 BASIC SOURCE CODE DATA FILE SUPPORT ROUTINE S 30

5.1 OPEN DATA F I L E • . . . • • • 3 0

5 • 1 • 1 EXAMPLE • • • • • • • • • • • • o • • • • . . . 3 1

• • • • • • 3 1

• • • • • • 3 15 2 1 EXA MP L E o o • • • o •

5 • 3 NEW DATA • • • • • • • 3 1

• • • • • • 3 15 .3. 1 E X A M PL E

MICRO B+ P R OGRAMMER'S GUIDE: LINK-80

5 • 4 RETURN DATA

5 • 4 • 1 EXA M P L E

5 .5. 1 EXA M P L E

5 • 5 DATA F I L E SI Z E • • • •

• • 3 2

• • • • • • • • • • • • • • 3 3

• • 3 3

• • 3 3

335.6 DATA FILE UTILIZATION

5 • 7 MICRO B+" DISK 33

6 • 0 ASSEMBLY LANGUAGE DATA FILE SUPPORT ROUTINES • . • . . . 3 5

6.1 OPEND(FILE.N0%,FILE. NAMES, RECORD.SECTORS%) 35

• • • 3 56 1 1 O P ENR (FILE • N0% g F I LE • NAME S g RECORD • SECTORS%)

6 .2 CL O S E D (F I L E . N 0%)

6. 3 NEWDAT (FILE • N0% g DATA. RECORD%)

6 • 4 RETDAT (F ILE • NO'% g DATA e RECORD%)

6 • 5 DATAFS (FILE • N0% g FILE • SIZES)

6 • 6 DATAFU (FILE. N0% i UTILIZATION%)

6 • 7 READD (FILE. N0% i DATA. RECORD%, BUFFER+ PTR%)

6 • 8 WRI TED (F I LE • N0%f DATA e RECORD% J BUFFER PTR%)

6.9 INTEGRATING DATA FILE ROUTINES INTO

• • • • • 3 6

• • • 36

36

• • • 3 6

• • • 37

• • • 3 7

• • • 3 7

APPLICAT ION PROGRAMS
. . . . • 3 8

7 • 0 HOW TO INTEGRATE MICRO B+ WITH YOUR APPLICATION 3 9

7.1 WHAT YOU GET ON YOUR MICRO B+ DISK . . • • • • 3 9

7 • 1. 1 MEMORY REQUIREMENTS OF MICRO B+" CODE • • • • • • 4 0

• • • 4 07.2 HOW LARGE A BUFFER AREA

7o3 STEP-BY-STEP SYSTEM INTEGRATION PLAN FOR
COMPILED APPLICATIONS • • •

• • • • • • • •

7 • 3. 1 CODE I NTERFAC E ROUTINE S • • • . . . • . . 4 1

7.3.2 PREPARE APPLICATION PROGRAM •
• • • • • 4 2

7 3. 3 C R EATING BUFFER AREA

• • • 4 1

42

MICRO B+ PR OGRAMMER' S GUIDE: LINK-80

7 . 3. 4 CREATING A COMPOSITE PROGRAM 43

7.4 USING MICRO B+ W ITH THE MICROSOFT BASIC INTERPRETER . . 44

7 .4 . 1 W H ERE T O L OA D M I C R O B + 4 4

7 .4 . 2 . USI N G S PECIAL I N T ERFACE ROUTINES ' . . 4 5

7 • 4 • 3 PROTECTING THE CODE FROM M B A SIC 45

7.4.4 PROTECTING THE CODE FROM THE CCP 4 6

7 • 4.5 SAVE YOUR PROGRAM 46

8o0 ERROR CODES • 47

8 .1 USER ERROR CODES . 47

9 0 RECREATE fc DATABASE: TWO USEFUL EXAMPLES 51

9 .1 RECREATE.BAS . 5 1

9 .2 DATABASE.BAS . 5 4

NICRO B+ P R OGRAMMER'S GUIDE: LINK-80

l 0 INTRODUCTION

This manual describes the use of MICRO B+": a set o f g en e r a l p u r
pose f ile accessing routines written in 8080 assembly language. To
use this version of MICRO B+ , you must have a microcomputer system
running under the CP/M' operating system, and MICROSOFT's LINK-80
linking loader or some other compatible loader. System development
with MICRO B+ will require a computer with at least 48K bytes of
memory. However, applications including MICRO B+ can run i n sub
stantially less memory since the code only requires between 4K and
8K b. tes of memory (exclusive of buffer areas).

The design of NICRO B+" is based on the B-Tree Index, one o f t h e
most powerful file accessing methods available today. Many main
frame computer manufacturers base their file accessing on the B
Tree approach. IB N 's VSAN is one example. MICRO B+" b r i n g s t h e
full power of this approach to microcomputers. M ICRO B+ a llo w s
the application programmer to ef f iciently and easily maintain sin
gle or multiple key indices for large data files.

In general, a key index allows a user or programmer to locate a
data record in a data file — without an exhaustive search of the
file — just by knowing the key value associated with the desired
data record. Multiple key indices allow a data record to be lo
cated on the basis of anyone of several key values. For example, a
customer data file may use customer number and customer last name
as keys. A particular customer's record can be located either by
name or number; without the need to perform a lengthy search of all
t he cu s t omer r e c o r d s .

A key index method which also allows data records to be r ap i d l y
accessed in sequential (key value) order eliminates the need to
perform time consuming, inconvenient sorts. Rapid key value access
and rapid sequential access permit the design of powerful, on-line,
interactive systems.

NICRO B+" not only builds and maintains such key indices, it does
so in a manner which minimizes the disk accesses necessary to find
a key value in the index.

Please note that it is IMPERATIVE that back-ups of data files and
index files be maintained no matter whose file accessing routines
are utilized, and no matter how carefully you have conceived your
application programs. Back-ups of data and indices are the only way
to protect yourself, or users of your software from serious loss of
a da t abase.

CP/M is a trademark of DIGITAL RESEARCH

MICRO B+™ PROGRAMMER ' S GUIDE: LINK-80

2.0

There are six special features which combined make MICRO B+ the
state-of-the-art in file accessing routines for microcomputers.

SPECIAL PEATURES OF MICRO B+

2.1 BALANCED TREE

Consistent with the B-Tree philosophy, MICRO B+" ensures that
the path length necessary to locate a key value in the index
tree is the same for all key values. This is accomplished by
maintaining a "balanced tree" (see Section 3), no matter how
often the index is updated. The balanced nature of the index
tree ELIMINATES the need to REORGANIZE the index.

PAST SEQUENTIAL ACCESS

Many file accessing mechanisms sacrifice the speed or ability
to perform sequential key value accessing in order to provide
rapid random access. Hash coding is a prime example of a key
driven file accessing technique which does not permit effi
cient sequential processing. The B-Tree method provides se
quential links as well as a balanced index search t r ee t o
achieve both rapid sequential processing and random accessing .

2.2

2.3 VIRTUAL DISK ACCESSING

2.4

Even t h o ug h t he ba s i c B- Tr e e ap p r o a c h e ns u r es a relatively
small number of disk accesses to locate a pa r t i cu l ar k ey
value, MICRO B+" reduces the number of actual disk accesses
even further by dynamically assigning frequently used B-Tree
nodes to special I/O buffers. Therefore, locating a key value
in the index may be accomplished without any actual disk
a ccesses on s ome occ a i s i o n s , and almost always with fewer disk
accesses than would be required without the buffers.

DATA RECORD CONTROL

To ensure maximum flexibility for the application programmer,
MICRO B+" allows the programmer to control the a ct u a l d a t a
records. Data file support routines are provided with MICRO
B+ to help manage data records if desired. But t h e u s e o f
these data file routines is not required. The separation of
index and data records permits the application programmer to
use any data record formats as well as the most appropriate
read and write routines to perform the actual data record I/O.

APPLICATION PROGRAM INTEGRATION

MICRO B+ is designed to be fully integrated into your appli
cation programs. Mastering a small number of subroutine calls
is all that is required to use MICRO B+

2.5

MICRO B+" PROGRAMMER ' S GUIDE: LINK-80

2 .6 M U L T I P L E K E Y I NDE X I N G

MICRO B+" s u p p o rts up t o ten (10) keys s im u l taneously. A
separate index file is used for each key. The maximum number
o f key files w h ich can be a c c essed s im ultaneously can b e
increased beyond ten if a customized version o f M I C RO B + i s
o rde r e d .

MICRO B+ PR OGRAMMER' S GUIDE: LINK-80

3 • 0 MICRO B+ BASIC APPROACH

Managing a database requires two important activities:

— maintaining a "directory" which locates r ecords i n t he dat a
b ase accor d i n g t o k e y val ue s ; an d

— organizing the data records in the database (e.g. , p i l e
file, threaded list, stack, etc.).

MICRO B+ addresses the first of these requirements, and gives the
user complete freedom of choice on how to organize the data re
cords. Data file routines are provided with MICRO B+ which main
tain data records according to a stack structure. These are pro
vided as a convenience to the user; they are not required for the
use of MICRO B+

There are two main approaches to realize the "directory" of key
values :

— numerical transformation of the key value to a dat a r ec o r d
location (e.g., hash coding); and

i ndex t r e e sea r c h .

Subject to certain qualifications concerning the extent of overflow
conditions, numerical key value transformation approaches are very
fast. However, the key transformation approaches do not support
s equential processing, nor do they support multiple keys. T he
index search tree methods achieve their efficiency for random
access by partitioning the search for key values over successively
smaller ranges of key values.

For the following discussion of the index tree search, r efe r t o
Figure 3-1. To locate a record with key value of 50, we would
perform the following operations:

a ccess t h e r o o t no d e ;

since 50 is greater than or equal to the index v alue o f
43 in the root node, follow the right hand branch and access
n ode 3 g

since 50 is greater than 48 and less than 60, follow the
m iddle b r a nc h an d a c c es s n ode 5 ; a n d

since a match is found in leaf node 5, the data record with
key value 50 is record number 1 in the data file.

MICRO B+" PROGRAMMER ' S GUIDE: LINK-80

F IGURE 3 - 1

E XAMPLE I N D E X S E A RCH T R E E

Node 1 (Root)

Node 2 (L e a f)
* 1 0 * 1 8

Node 3
* 4 8 * 6 0 *

31 8

Node 4 (L e a f)
* 43 * 47

N ode 5 (L e a f)
* 5 0 * 56

Node 6 (L e a f)
* 6Q * 63 * 7P

l l l
5 6 1 9

' Data R e c o r d N u mb e r s

F IGURE 3 - 2

E XAMPLE MICRO B+ I N DEX S E A RCH T R E E

Node 1 (R o o t)
* 5 Q * 6 Q *

Node 2 (L e a f) N ode 3 (L e a f)
* 1 0 * 1 8 * 43 * 4 7 ~ * 50 * 5 6

N ode 4 (L e a f)
* 6 0 * 6 3 * 7 0

l l l I L l l l l
3 8 5 6 1 9 2 7 4

D ata R e c o r d N u mbe r s

MICRO B+ PR OGRAMMER' S GUIDE: LINK-80

3-2 shows a MICRO B+ tree for the same informationu sed i n
3-1 under the assumption of a maximum of four key values per
Two features of this tree are noteworthy:

The tree is balanced. This means that the number of nodes
necessary to find a key value is the same for all key values.
In the example, two node accesses are required for each of
t he n i n e k e y val u e s .

The leaf nodes are linked so that sequential access (in key
value order) to the data records can be accomplished without
traversing the tree.

Figure
Figure
node.

The virtual disk accesses refered to in Section 2.3 are implemented
by storing the information in a MICRO B+ no de in special I/O
buffers. When a node is accessed by a MICRO B+ routine, the I/O
buffers are checked to see if the node is present. If present, no
physical disk access is performed. If not present, the required
node is read from disk into a dynamically assigned buffer. Once in
a .'. buff e r , a node c a n b e a cc es s e d a n d upd a t e d ve r y r ap i d l y . By
increasing the number of I/O buffers, the number of actual disk
accesses necessary to search the MICRO B+" index tree can be drama
tically reduced to achieve very fast access to anyone of a large
n umber o f d a t a r eco r d s .

The real power of the MICRO B+ approach cannot be appreciated from
Figure 3-2. Instead of allowing only four key values per node,
consider what would happen if up to twenty key values are stored in
each node. In this case, three node accesses (which may be per
formed with even fewer actual disk accesses because of the node I/O
buffers) provide random access to the location of as many as 8,820
data records. Increasing the node size to accomodate up to forty
key values means that three node accesses can locate the address of
up to 67,240 records. (Note that these maximum capacities are not
always attainable, but in no case would more than one additional
node access be required to accomodate these data file sizes.)

This version of MICRO B+" limits the number of key values stored in
a node to one-hundred twenty-four (124).

For a more complete description of the B-Tree approach, please
r efe r t o

L

Comer, D . , "The Ubiquitous B-Tree," ACM COMPUTING SURVEYS,
V olume 11 , Number 2 , J u n e 1 9 7 9 (p p . 12 1 - 1 3 7) .

Knuth, D.E.,The Art Of Computer Programming Volume 3: Sorting
And Searching, Addison-Wesley Publishing Company, Reading,
M assachuset t s , 19 7 3 (p p . 451 - 4 7 9) .

MICRO B+ P R OGRAMMER ' S GUIDE: ' LINK-80

4 • 0 OVERVIEW OP MICRO B+ ROUTINES

This Section gives a brief overview of the MICRO B+ rou tines which
are callable either from other assembly language routines or high
level languages, such as MICROSOFT Basic, which support calls to
assembly language routines. Sections 4.2 through 4.14 provide more
complete documentation of the routines.

ROUTINE
NAME

INTREE v

PARAMETERS
(I = I N P U T O=OU T P U T)

1. Number of Buf f ers (I)
2 . Number of Key s (I)
3 . Number of 1 2 8 by t e

sector s p e r n o d e (I)
4 . Number of 1 2 8 b y t e

sectors in the file
header r e c o r d (I)

ported by the assembly lan
guage routines of Section 6.(I)

PURPOSE

To initialize the MICRO B+
routines and setup the buf
f er a r e a .

5. Number of data files sup

t SETERR

e i c f < lLQ(j

l. Error Code(I/O) To establish a variable which
is set to a non-zero value if
a user error occurs. If no call
i s made t o S ETERR, use r er r or s
will cause an error message fol
l owed by a w a r m r e b o o t .

ACCESS'

Q PPh.l P j(' (+

1 . Ke y N u mber (I)
2. Index File Name(I)*
3 . Key L e ngt h (b y tes) (I)
4. Key Type (O-alpha,l-numeric)(I)
5. Maximum number of key

values pe r n o d e (I)

T o open o r c r ea t e a n i nd e x
f i l e .

ENTER+ To add a ne w K e y Va l u e t o
the specified B-Tree Index.
T he assoc i a t e d d a t a r eco r d
number is stored with the
Key Value in the index.

l . K e y N u mber (I)
2 . Ke y V al ue (I) *
3 . Da t a R e c o r d N u m b e r(I)
4. Ret ur n Code(O)

1 -successf u l
2-duplicate key value
3-key n o t ACC ESSed

MICRO B+ PR OGRAMMER'S G UIDE: L I N K - 8 0

ROUTINE
NAME

RTRI EV /
f.~M

PARAMETERS
(I= I NPUT O= O UTPUT)

l . Ke y Number (I)
2 . Key Va l u e (I) *
3 . Data Recor d Number (0)

PURPOSE

T o re t u r n t h e da t a r eco r d
number associated with the
k ey va l ue . Z e r o i s r et ur n e d
if the key is not found.

1 . Key Number (I)
2 . Key V a l u e (I) *
3 . Data Recor d Number (0)
4 . I nd e x Ke y (0) *

To find the first index
entry which is geater than
or equal to the specified
K ey Value . T h e d a t a r ec o r d
number associated with the
index entry is returned and
Index Key is set equal to the
index entry. If the search is
unsuccessf u l , a zer o i s r e
turned for the data record
number.

SEARCH w

SUCESR To find the next entry in
the specified index. The
associated data record number
is returned and Index Key is
set equal to the index entry.
If there is no "next " e n t r y ,
a zero is returned for the
data r e c o r d n u mber .

1 . Key Number (I)
2 . Data Recor d Number (0)
3 . I nd e x Ke y (0) *

PRDESR 1. Key Number (I)
2 . D a t a Re c o r d N u mb e r(0)
3 . I n d e x Ke y (0) *

To find the previous entry in
the specified index. The
associated data record number
is returned and Index Key is
set equal to the index entry.
If there is no previous entry,
a zero is returned for the
data r e c o r d n u mber .

gQ i -~S~

NMENTR To determine the number of
entries in the specified
index.

1 . Key Number (I)
2. Number of Entries(0)

NMNODE To determine the number of
nodes in the specified index.

1 . Ke y N u mb e r(I)
2 . Number o f N o d e s (0)

MICRO B+ P R OGRAMMER' S GUIDE: LINK-80

ROUTINE
NAME

REMOVE +

PARAMETERS
(I= I NPUT O= OUTPUT) PURPOSE

1 . Key Number (I)
2 . Ke y V al u e (I) *
3. Data Record Number(IO)
4 . R e t u r n Cod e (O)

J~c <'g

0-Key V a l u e n o t

1 -success f u l
2-Data Record Number

To delete an index entry from
the specified index. If the
Data Record Number supplied
is zero, it will be set to
associated data record number
stored in the index for Key
V alue .

found

d oes no t a g r e e w i t h
associated number in
t he i n d e x

3-Key n o t AC C ESSed

RSTRCT K 1 . Ke y Nu m b e r (I) To close the specified
index file.qkcC

INTLOD To initialize MICRO B+" for
the construction of a new
index file with key values
presented in strictly in
c reas ing o r d e r .

1 . Key Number (I)
2 . L o a d F ac t o r (I)

l . Key V a l u e (I) *
2 . Data Record (I)
3 . R e t u r n Cod e (0)

1 -success f u l
2-duplicate key value
3-key v a l u e o u t of or de r

To add Key V a l u e s , i n seq u e n
tial order, to B-Tree leaf
nodes.

LOADKY

Loch. a~y

To build the upper levels of
the B-Tree after all calls to
L OADKY have b e e n m a d e .

BLDIND

NOTE: Parameters followed by an asterisk (*) are STRING entities.
All other parameters are sixteen (16) bit integer quantities.

NOTE: Key Numbers must be in the range from zero (0) to the Number
of Keys less one (1); where Number of Keys is the second parameter
in the INTREE routine.

MICRO B+ P R OGRAMMER'S GUIDE: LINK-80

4~ 1 PARAMETER PASSING PROTOCOL

Parameters are passed to the assembly language routines
according to the MICROSOFT "CALLing" standard:

— Return Address is placed on the Stack;

— Address of 1st parameter is in HL register pair;

— Address of 2nd parameter is in DE register pair;

If only three parameters are required, address of
3rd parameter is in BC register pair;

If four or more parameters are required, BC con
tains the address of a list of parameter ad
dresses: the address of the 3rd parameter is in
the first two bytes of the list, the address of
the 4th parameter is in the next two bytes of the
l i s t , et c . ;

If your host language does not use this parameter protocol, it
will be necessary to code interface routines to satisfy the
a bove s t a n d a r d .

4 l.l PARAMETER SPECIPICATIONS

Two types of parameters are used in the MICRO B+ rou
tines: string-valued quantities and two-byte integers.
The parameters followed by an asterisk (*) in Section 4.0
(viz., Key Value, Index Key, and Index File Name) are
string-valued quantities (even if the Key Type designates
numeric Key Values). All other parameters are two-byte
integer quantities.

All two-byte integer quantities are assumed to be stored
in memory with the Least Significant Byte first. There
fore, when the address of a such a parameter is passed to
a MICRO B + ro u t ine , th e a d d ress points to the L e a s t
Significant Byte of the parameter.

The address passed to MICRO B+ rou tines for string
valued parameters must point to the first byte of a
three-byte vector formed as follows:

1st byte: length of string quantity in bytes;
2nd byte: Least Significant Byte of the actual

3rd byte: Most Significant Byte of the actual
address of the string;

address of the string.

10

MICRO B+ PR OGRAMMER' S GUIDE: LINK-80

For example, if the string expression

I A M A ST R I NG II

is stored beginning at memory location 501EH, then the
three-byte vector describing this string is

OD1ESOH

Please note that if this string expression were to be
passed as a parameter, then the address passed should
point to the first byte of the three-byte vector (which
in turn points to the actual string).

4 1 2 INTERFACE PROGRAMMING EXAMPLE

For this example, assume that the host language passes
parameters according to the following protocol:

return address is placed on the stack;

— address of the list of argument addresses is in
the register pair HL; and

the address of a three-byte vector as described
above is passed for string valued parameters.

Further assume that it is desired to ENTER a new key
value into a B-Tree index. In this case, the following
8080 assembly language code could be used to interface
with the MICRO B+" routine:

EXT ENTER

ADDKEY: MOV

INX
MOV
PUSH
I NX
MOV
I NX
MOV
I NX
MOV
MOV

E NTRY ADD K EY

E,M

H
D,M
D
H
E,M
H
DiM
H
B,H
C,L

'DE = AD D R ES S O F 2 ND PAR A METER
' HL = ADD R ES S O F 3 RD EN T R Y O N L I ST

;DECLARE ENTER AS AN EXTERNAL NAME (You
must have an assembler which can create
relocatable object modules and allow for
the declaration of external names and
entry p o i n t s .)

; DECLARE ADDKEY AS AN ENTRY POINT (A DDKEY i s
the routine name you would use to
perform the MICRO B+ EN TER routine.)

;HL = ADDRESS OF 1S T E N TRY IN A R G U M ENT
ADDRESS LI ST

iDE = ADDRESS OF lS T P A R A M ET ER

;SAVE ADDRESS OF 1ST PARAMETER
' HL = A DDRESS OF 2ND ENTRY ON L I S T

'BC = ADDRESS OF A R G U MENT L IST S T A R T ING
WITH T H E 3 R D PA R A METER

11

MICRO B+" PR OG RAMMER I S GUIDE: LINK-80

POP 'RECOVER ADDRESS OF 1ST PARAMETER FROM
THE STACK

;NOW THE PARAMETER ADDRESSES SATISFY THE
MICROSOFT STANDARD

;CALL MICRO B+ RO UTINE
'RETURN TO CALLING PROGRAM

CALL ENTER
RET

4 l 3 MICROSOFT BASIC COMPATIBILITY

MICROSOFT Basic Version 5 is completely compatible with
all aspects of the protocol for parameter passing. Both
string-valued and two-byte integer parameters are passed
to the MICRO B+" ro utines in correct form when ca l l e d
from MICROSOFT Basic.

It suffices to add that the only restriction imposed on
parameter passing by MICROSOFT Basic is that integer and
string expressions cannot be passed a s p a r a m e t e r s .
Rather, parameters must be simple variables.

12

MICRO B+ P R OGRAMMER' S GUIDE: LINK-80

4 2 I NTREE (NO BUFFERS% @NO KEYS% @NO NODE SECTORS% g NO HEADER SECTORS% g

(In order to provide a concise specification of the parameters
required by each MICRO B+ rou tine, the remaining sections of Chap
ter 4 will use MICROSOFT Basic Version 5 as a model: identifiers
e nding i n "%" are two-byte integers, those ending in " S" are s t r i ng
valued quatities, those ending in "!" are four-byte floating point
quantities, and identifiers ending in "0" are eight-byte floating
point quantities.)

NO • DATA o F I LES%)

Before any index files (please note that the terms " index
file" and "key file" will be used interchangeably in this
manual, and that they refer to the disk file which contains
the actual B-Tree index) can be opened or used, the r ou t i n e
INTREE, which initializes the special MICRO B+ buf f e r ar e a
and specifies the basic characteristics of the index files,
m ust be e x e c u t e d .

NO.BUFFERS% specifies the number of index file I/O buffers
that will be used. There must be at least three (3) buffers
and no more than eighteen (18) buffers. A s t h e nu m be r o f
buffers is increased, the time to access a key value decreases
while the memory space required increases. Note that all the
index files share the same buffer space, thereby minimizing
the memory required to implement applications. Even if ten
(10) index files are used simultaneously, it is not necessary
(although it may be desirable) to use mor e t han t h r e e (3)
b uffe r s .

NO.KEYS% specifies the maximum number of index files that may
be accessed simultaneously. NO.KEYS% must be at least one (1)
a nd n o mo r e t h a n t e n (1 0) . This limit may be extended in
custom versions; please contact FairCom for details.

NO.NODE.SECTORS% determines the record length of the index
files. Specifically, NO.NODE.SECTORS% is the number of 128
byte disk sectors in each index file record. Each index file
record corresponds to a B-Tree node (as illustrated in Figure
3-2). Th e m or e s e c to r s pe r record, the more key values stored
per node. The more key values stored per node, the less node
accesses required to find a key value. NO.NODE.SECTORS% must
be at least one (1). There is no upper bound on this para
meter , b ut s i nce t h e m a x i mum number o f ke y v a l u e s st o r e d p e r
node is one-hundred twenty-four (124) there are some practical
limitations. It is very important to note that all index files
which are used simultaneously are forced to have the same
r ecor d l en g t h .

NO.HEADER.SECTORS% specifies the number of 128 byte disk sec
tors used for the header record (which is the first record) of
the index file. The header record maintains status information
about the size of the index file and the root of the B-Tree.

13

MICRO B+ PR OGRAMMER' S GUIDE: LINK-80

Although this information only requires nine (9) bytes, it is
not always advisable to choose a value of one (1) for NO.HEAD
ER.SECTORS%. NO.HEADER.SECTORS% should be set to the number of
128 byte sectors in a physical block for your disk drive.

For example, if you are using a double density disk drive
(which transfers 256-byte blocks of data), a nd you h a v e s e t
NO.NODE.SECTORS% to two (2), then chosing a value of one (1)
for NO.HEADER.SECTORS% would degrade your response time since
each B-Tree node would be split between two physical blocks on
your disk, and would require two disk accesses for each node
read and write operation. Choosing a value of two (2) for
NO.HEADER.SECTORS% would allow each node to be r ead o r w r i t t en
with only one disk access.

NO.DATA.FILES% specifies the maximum number of data files to
be opened simultaneously using the routines described in
Section 6 of this guide. (Section 6 describes a ssemb l y
language routines to support data file I/O.) PLEASE NOTE THAT
IT IS NOT NECESSARY TO USE THE ROUTINES IN SECTION 6 • YOU MAY
USE THE ROUTINES DESCRIBED IN SECTION 5 (WHICH ARE WRITTEN IN
BASIC S O URC E C OD E) g O R Y OU M A Y U S E Y O U R O W N DA T A F IL E
ROUTINES. IF YOU DO NOT USE THE ROUTINES IN SECTION 6, SIMPLY
SET NO DATA.FILES% TO ZERO (0) •

The maximum number of data files supported by the r out i ne s o f
Section 6 is twenty (20). This limit can be increased in a
custom version of MICRO B+

Once INTREE has been called, additional calls to INTREE (say
to set up a new set of index files) should only be made after
all opened index (and Section 6 data) files have been closed.

4~2 1 BUPPER SIZE COMPUTATION

The special I/O buffers which are used to facilitate node
accesses require the following amount of memory space:

((NO.KEYS%+ NO.DATA. F I L E S%) * 3 6) +
(NO.BUFFERS% * ((NO . NODE.SECTORS% * 1 2 8) + 5 0))

Recall that this memory space is required in addition to
that used by the MICRO B+ rou tines themselves.

For example, three (3) keys, one (1) data file (supported
by the routines of Section 6), ten (10) buffers, and a
256-byte index record length will require 3204 bytes of
memory.

14

MICRO B+ P ROGRAMMER' S GUIDE: LINK-80

SBTERR (ERROR. CODE%)

SETERR allows an application program to make an orderly re
covery f r o m U se r E rr o r s . MICRO B+ d is tinguishes between two
types of errors: User Errors and MICRO B+ Errors .

Ordinarily, MICRO B+ Errors should n e ve r oc c u r . Th e y r esu l t
from illegal conditions arising in the B-Trees. When a MICRO
B+ E rr o r occ u r s , a m e s s age i s sent to the console device, and
a warm boot is executed. Please call FairCom at (314) 445-3304
if a MICRO B+ error ever occursand you cannot determine the
cause. One possible cause is trying to build an index file
greater than 512K bytes while operating under CP/M® 1.4.

User Errors occur when a problem condition a r i s e s w hi c h i s
otherwise avoidable by the application program. F or exampl e ,
trying to create a new index file on diskette which is full
will result in a User Error. If SETERR is called, the applica
tion program can trap user errors and perform an appropriate
a ct i o n .

ERROR.CODE% serves as both an input and output parameter. If
SETERR is called with a non-zero value for ERROR.CODE% (the
particular non-zero value is of no significance), then each
subsequent call to a MICRO B+ routine will

— cause ERROR.CODE% to be set to zero if no User Error
o ccurs ; o r

— cause ERROR.CODE% to be set to one of the non-zero User
Error values described in Section 8.1.

In either case, control will be passed to the statement
following the call to M ICRO B+ . H en ce , i f th e f o l low ing
statement tests the v a lue of E R ROR.CODE%, the application
program can trap User Errors in order to make a meaningful
recovery .

If SETERR is called w it h a z ero va lue for ERROR.CODE%, or
never called at all, then subsequent User Errors will print a
message on the console device followed by a warm boot (back to
CP/M~) .

Note that SETERR can be called as often as desired, but that
SETERR needs only to be called once unless it is desired to
either change the ERROR.CODE% variable, or to change the error
handling protocol.

A list of User Error codes is given in Section 8.1.

P LEASE NOTE T HA T IF SE T E R R IS INV OKED (w it h a no n- ze ro
ERRORoCODE%) PRIOR TO THE USE OF THE AC C ESS ROUTINE@ I T I S
IMPERATIVE THAT THE VALUE OF ERROR CODE% BE TESTED AFTER EACH
CALL TO ACCESS. IF SUCH TESTS ARE NOT PERFORMED' AND IF THE

15

MICRO B+ PR OGRAMMER'S GUIDE: LINK-80

INDEX WAS NOT PROPERLY ACCESSED' IT IS POSSIBLE FOR UNPREDIC
TABLE ERRORS TO OCCUR IN OTHER ROUTINES +

4 • 4 ACCESS (KEY • NO% g I NDEX • F I LE 0 g KEY • LENGTH% ~ KEY • TYPE% g MAX • NO KEYS'%)

ACCESS is used to open or create the INDEX. FILES and assign
KEY.N0% to this file. All subsequent references to INDEX. FILES
are made via the KEY.N0% value.

KEY N0% must be in the range from zero to NO KEYS%-1.

KEY.LENGTH% specifies the maximum length (in bytes) for key
values. KEY.LENGTH% must be at least one (1) and not greater
than forty-eight (48). Numeric keys must be at least two (2)
bytes in length.

KEY.TYPE% specifies whether the key values are to be stored in
lexicographically increasing order (i.e.„ as alphanumerics),
or in numerical order. KEY.TYPE% equal to zero (0) indicates
alphanumeric key values while a value of one (1) indicates
numeric key values. It is especially important to note that
all key values are passed to and from the MICRO B+" r out i n e s
according to the protocol for string-valued quantities even if
the key is designated as a numeric key. The KEY.TYPE% desig
nation only affects the order in which the keys are stored.

Numeric key values are assumed to be integers (not, however,
restricted to only two bytes) stored with the Least Signifi
cant Byte first and the Most Significant Byte (which includes
the sign of the integer) last. This format is automatically
generated in MICROSOFT Basic for two-byte integers using the
MKIS intrinsic function.

M AX.NO.KEYS% determ ines the m a x i mu m n um b e r o f k e y v a l u es
stored in each B-Tree node (and, hence, in each index file
record). Recall that as MAX.NO.KEYS% is increased, the number
of levels in the index structure decreases. The number of
levels in the index structure determines the n ode ac c e s s e s
required to locate a key value. (Please note that a node
access causes a disk access only when the node is not in one
of the special MICRO B+ I/O buffers.)

MAX.NO.KEYS% must be an EVEN integer in the range from two (2)
to one-hundred twenty-four (124). Further, MAX.NO.KEYS% must
be less than or equal to

((NO.NODE.SECTORS% * 128) — 8) / (KEY.LENGTH% + 2)

4 4 1 MULTIPLE INDEX PILES

When more than one index file is to be ACCESSed simulta
n eous ly , t h e s e l e c t i o n o f N O .N O D E .S E C T O R S % a n d
M AX.NO.KEYS% m us t ta ke in t o acc o unt y o u r d es ire fo r

16

MICRO B+ P R OGRAMMER' S GUIDE: LINK-80

speedy response times and efficient disk storage. While
large values fo r M AX .NO.KEYS% lead t o f as t r e sp on s e
times, it may not be advisable to set this parameter the
same for all INDEX.FILES's. If the KEY.LENGTH%'s are not
the same for each file, there may be wasted disk space if
M AX.NO.KEYS% is se t t h e s a m e f o r each file since
NO.NODE.SECTORS% must be set to accomodate the longest
KEY.LENGTH%.

T he sel e c t ion o f N O . N O D E .SECTO R S% , an d e a c h o f t h e
MAX.NO.KEYS%'s parameters should reflect the relative
importance of response time and disk storage s pace. No t e
also, that NO.BUFFERS% can be used to improve response
time (at the expense of memory utilization) without in
creased disk space utilization. See Section 7.2 for addi
tional discussion of the buffer area.

4 4 • 2 ESTIMATING INDEX PILE SIZE

Once you have chosen the v a l ues for NO.NODE.SECTORS%,
NO.HEADER.SECTORS%, and MAX.NO.KEYS%, the minimum index
file size possible for a given number of index ENTRIES%
is computed as f ollows:

NODES% = <ENTRIES% / MAX.NO.KEYS%> [where <X> is the
smallest integer greater than or equal to Xl

INDEX.NODES% = NODES%
WHILE INDEX.NODES% > 1

INDEX NODES% = <INDEX ANODES% / (MAX.NO.KEYS% + 1) >
NODES% = NODES'% + INDEX • NODES%

WEND
INDEX. F I L E • S IZ E % = NODES% * NO.NODE.SECTORS% * 128 +

N O.HEADER.SECTORS% * 1 2 8

To compute the largest index file size possible, replace
MAX.NO.KEYS% by MAX.NO.KEYS%/2 in the above algorithm.
The minimum size computation assumes completely full
nodes while the largest size computation assumes half
full nodes. The ordinary B-Tree structure ensures at
least half-full nodes. MICRO B+ pe r fo rm s " loca l no de
rotations" to help maintain the smallest index file size
by avoiding unnecessary node splitting.

For example, using the above algorithm, it will require
between 87K and 180K bytes to store 10,050 index entries
in an index file for which

NO • NODE • SECTORS% 2
NO. HEADER. SECTORS%=1
MAX • NO • K EYS'% — 3 0

These values correspond to the bench mark speed test

17

MICRO B+ PR OGRAMMER ' S GUIDE: LINK-80

which FairCom has performed for MICRO B+". In that test,
in which the key values were generated totally at random,
the actual index file size was 118K bytes which implies
that the nodes were approximately 75% full.

4 4 • 3 MICROSOFT BASIC EXAMPLE

CUST.TYPE%,CUST.VAL%)

1 0 B U F S %=10:KEY S % = 2 : N O DE.SEC%=2:HEAD.SEC%=1:DAT.FILE%=0

20 CALL I N T REE (BUFS%iKEYS% i NODE • SEC% i HEAD • SEC% i DAT F I L E %)
30 USER.ERROR%NO% =1:CALL SETERR(USER. ERROR.N0%)
40 CUST. K EY% =0: PART. KEY% = 1
50 CUST.L EN%=11 : CUST.TYPE%=0:CUST.VAL%=18
60 PART. LENS =2 : P A RT. TYPES= 1: PART . V A L % =6 2
70 CALL A C C E SS (CUST KEY%i H B :CUST. I N D " ICUST.LEN% I

80 IF USER. ERROR.N0%<>0 THEN GOSUB 9000
90 CALL ACCESS (PART KEY%i C PA R T I ND i PART L E N % i

100 IF USER. ERROR.N0%<>0 THEN GOSUB 9000
PART. TYPE%, PART. VAL%)

In this example, there will be ten (10) I/O buffers
set up, a maximum of two (2) key f iles ACCESSible at
one time, an index f ile CUST.IND will be opened (or
created) on drive B which accomodates up to eighteen
(18) eleven-byte alphanumeric key values per node,
and an index file PART.IND will be opened on drive C
which accomodates up to sixty-two (62) two-byte
numeric keys per node. If a User Error occurs during
the ACCESS operations, control will be transferred
to a subroutine where the desired action will be
taken.

4 • 4 • 4 CP/M~ 1 4 AND 2 x COMPATIBILITY'

ACCESS automatically determines which version of CP/M® is
resident, and uses the appropriate disk I/O facilities.
Two r o u t i n e s — AC C ES1 a n d A C C ES2 c an be u se d i n p l ac e
of ACCESS to coerce MICRO B+ to use the disk I/O facili
ties of CP/M version 1 and 2, respectively. Both ACCES1
and ACCES2 require the same parameters as ACCESS.

UNPREDICTABLE, AND ALMOST CERTAINLY BAD i A CT I O NS W I L L
OCCUR IF A PROGRAM USES BOTH ACCES1 AND ACCES2 •

4 • 5 ENTER (KEY • N0%i KEY VAL UE S i DATA R ECORD% i RETURN CODE%)

ENTER adds KEY.VALUES to the index file specified by KEY.N0%
and associates the DATA.RECORD% number with the KEY.VALUES. I t
is the programmer's responsibility to ensure that the DATA.RE
CORD% does correspond to the KEY.VALUES.

18

MICRO B+ PR OGRAMMER' S GUIDE: LINK-80

RETURN. CODES is set according to the f ollowing:

1 if the KEY.VALUE$ insertion is successful;
2 if the KEY.VALUES is already in the index; and
3 if the index file specified by KEY.N0% has not

been ACCESSed.

If KEY.VALUES is a null st ring, then no action is taken by
ENTER; but RETURN.CODE% is set to one (1). A string is null if
the first byte of the three-byte vector (see Section 4.1.1)
defining the string is zero.

4e5~1 E XTRA LARGE P IL E S

While the standard version of MICRO B+™ is capable of
handling index files with up to 65,535 entries, the index
file itself must reside in one file. In fact, the only
actual physical limitation on the size of the index file
is determined by the largest file supported b y C P /M® on
your system. If more than 65,535 entries are added to the
i ndex, t h e co n s equences a r e :

— the internal counter which tracks the number of
index entries will be reset to zero (i.e., turn
o ver) ; an d

— the two-byte associated data record numbers may
not be sufficient to address all the data records.
In this case, one byte can be appended to the end
of the key v a l ues t o det e rm ine th e act u al
associated data record number.

The data files to which the index files maintain pointers
need not be restricted to one logical and/or physical
file. Since the index file and data file are separate
entities, it is possible to allow the data file to be
spread over more than one disk file. Such segmentation of
the data file can be represented in the index file either
by how the associated DATA.RECORD% number is interpreted,
or by appending an appropriate code to the KEY.VALUES
i t se l f .

For example, one may assume that a data base will be
split into files of 1000 records each. Then, the asso
ciated DATA. RECORDS number is interpreted both as indi
cator of data file as well as position within the data
file (e.g., DATA.RECORD% =9438 implies the 438th record of
the 9th data file).

19

MICRO B+ PR OGRAMMER' S GUIDE: LINK-80

4~5~2 CODING NUMERIC KEY VALUES

As mentioned several times already, all KEY.VALUES's are
passed to the MICRO B+ routines as string-valued quanti
ties; even when the KEY.TYPE% indicates a numeric key. If
t he KEY.LENGTHS is tw o (2) for a n u m e ric key , t he n t o
transform an integer variable to the appropriate string
representation in MICROSOFT Basic, one need only invoke
the MKIS intrinsic function. However, if your host lan
guage does not have such a conversion function, or if the
KEY.LENGTHS is greater than two (2), then the following
algorithm can be used to create a string representation
of a numeric (actually integer) key. Please note that
this algorithm assumes a positive integer is to be con
verted; if the number is not positive, then it should be
converted to a positive by adding it to the appropriate
upper bound w h i ch de pe nd s on the K EY .LENGTH% (e.g. ,
256 ' =65536 in the case of two byte integers). T he a l g o
rithm also assumes the existence of a function, CHRIS, to
convert integer values in the range from 0 to 255 to a
string quantity.

K EY.VAL UE S= " "
FOR B% =1 TO KEY. L ENGTH%

FACTOR=INT(NUMBER/256.)
BYTES=NUMBER-256 . * F ACTOR
NUMBER =FACTOR
KEY.VALUES=KEY • VALUES+CHRS(BYTES)

NEXT BS

where NUMBER is initially set to the value to be con
verted and INT(X) is the largest integer less than or
equal to X. This algorithm assumes that NUMBER can be
represented in KEY.LENGTHS bytes.

It is also possible to convert a number to its ASCII
representation (say with a function such as STRS in
M ICROSOFT Ba s ic). However, if t his is d o n e , t he n t h e
KEY.TYPES must indicate an alphanumeric key (i.e., must
be zero (0)). Further, the KEY.VALUESS's will not be
stored in numeric order unless a very careful right
justification scheme is employed; and the space savings
which are gained by converting from an ASCII to binary
representation will not be realized.

4 • 5 • 3 KEY VALUE PADDING

ENTER pads KEY.VALUES's that are less than KEY.LENGTHS
bytes with blanks (20H) on the right, and truncates
KEY.VALUES's that are too long. However, to ensure proper
handling of numeric keys, it essential that all numeric
KEY.VALUES's are passed to the MICRO B+™ routines wi th
the e x a c t KEY. L ENGTHS.

20

MICRO B+" PROGRAMM ER' S GUIDE: LINK-80

There may also be situations where it is desirable to
store alphanumeric KEY.VALUES's in right-justified form.
If so, it is the programmer's responsibility to ensure
that the KEY.VALUES's have been properly justified in
view of the truncation o f " t o o l on g " k e y s .

4 e5 • 4 DUPL I C AT E K E Y V A L U E S

There are situations, such as building an index based on
last names, where the key values are not inherently
unique. When this arises, it is necessary to append a
unique identifier to the key, possibly after truncating
the original key value to a prespeCified length. I n t h i s
m anner , t h e KEY.V A L U E S ' s will still be s t o red in the
e xpec t e d o r d e r , but there w ill no t b e any conflicts
between like-valued entries.

The easiest identifier to append in this situation is the
record number in the data file which corresponds to the
KEY.VALUES, In cases where there is, in addition to the
potentially non-unique key, a unique key associated with
e ach d a t a b a s e e ntry, an alternative is t o a ppend t h e
unique key to the end of the non-unique key value s i n c e
this creates an automatic cross reference capability.

5 • 5 MICROSOPT BASIC EXAMPLE

110 INPUT "ENTER NEW PART NUMBER:";PART.NO'o
12() PART.NOS =MKIS(PART • N0%)
1 30 C A L L ENT ER (PA R T K EY %APART NOSgNEW RECa,CODE%)
140 IF USER. ERROR.N0%<>0 THEN GOSUB 9000

ELSE IF CODE%<>1 THEN GOSUB 8000

I n this example, the key v al u e P ART.NOS will b e
added to an index file provided that the file has
a l r e ad y b e e n A C CESSed an d t h a t s u c h a n e ntr y i s n o t
already in tpe index file. Either of these condi
t ions will be re flected in th e v alu e a s s i g n e d t o
CODE%. It has been assumed that the r ecor d n u m be r i n
the data base corresponding to PART.NOS has a l r e a d y
b een a s s i g n e d t o t h e variable NEW.REC%. Further, i t
has also been assumed that SETERR was p reviously
called with USER. ERROR.N0% as the a rgument .

4 • 6 RT R I E V (KEY • N0% g KEY • VALUE S g DATA • RECORD%)

RTRIEV returns tl)e DATA.RECORD% numbe r associated with the
KEY.VALUES in the index specifiecl by the KEY.N0%. If no such
KEY.VALUES exists in the index file, then DATA. RECORD: is set
t o g e r o .

21

MICRO B+ P R OGRAMMER' S GUIDE: LINK-80

4.6 i1 MICROSOPT BA SIC E XA M PL E

1 50 I NP U T " ENT E R DESI R E D PA R T 5 : " ; PA R T . N 0 %
160 PART.NOS=MKIS(PART. NO%)
170 CALL RTRIEV (PART.KEY%, PART.NOSg DATA.BASE • POINTER%)
180 IF DA TA. BASE.POINTER% =0 THEN

PRINT RNO SUCH E N TRY I N DAT A BASE ! "

4 • 7 SEARCH (KEY • NO% ~ KEY • VALUE S g DATA • RECORDS g I NDEX • KEY S)

SEARCH returns the DATA.RECORD% number asgociated with the
first entry (in key-sequential order) in the index file which
is equal to o r g re a ter than KEY.VALUES. I NDEX. KEYS i s s e t
equal t:o this index entry. If no such iqdex entry is found
d ur i n g t h e SEARC H , t hen DATA.RECORD% i s s et t o z e r o a n d
INDEX. KEYS is set to all blanks (which is not a null strj.ng).

Two irpportant notes concerning INDEX. KEYS must be made. First,
sinCe MICRO B+" is exp|:cteg (but not required) to be used with
host languages which dynamically manage a s t r i n g s t o r a g e
spyee, MICRO B+" never changes the contents of the three-byte
vector (see section 4.1.1) which defines a s t r i n g - v a l u e d q u a n
t i t y . 7 herefore, if I N D EX, KEYS is not i n i tially se t t o a
string value which is long enough to contain the string-valued
index ent:ries which will be assign| d to INDEX. KEYS, then MICRO
B+ wj.ll be unable to make the assignment resulting in a
User Er r o r . T h e r e f o r e , at tpe beginning of an application
program, it is necessary to set up one or more string
v pqia43.es w h i c h c an be u s e d i n subsequent calls to SEARCH,
SpCEQR, and PRDESR. The set„-up Can be Simply assigning suff i
pieptly long blank strings to these variables. Second, if
I NDEX.KEYS is l onger thar) the KEY.LENGTH% apsociated w i t h
K EY,N0%, tPen INDEX. KEYS will be pa dded on t h e r i g h t w i t h
b lank s .

4 7 1 O N D UPLICATE KEY V ALUES

As mentioned in Section 4.5.4, situations arise where key
values must be m od i f ied to accomodate duplicate key
values. When this is done, it is no longer possible to
use RTRIEV to locate such an index entry since the ori
ginal Value will have been modified. SEARCH can be used
in this case to find the first candidate for a match with
t he d e s i r ed k e y v a l ue . Subsequen t c an d i d a t e s c an b e f ou n d
by using SUCESR which is described below.

22

MICRO B+ P R OGRAMMER' S GUIDE: LINK-80

4~8 S U C E S R (KEY.N0%iDATA.RECORD% i INDEX • KEY$)

SUCESR returns the DATA.RECORD% number associated with the
next key value stored in the index specified by the KEY.N0%.
INDEX.KEY$ is set equal to this "next" entry. If no next e n t ry
exists, then DATA.RECORD% is set to zero (0) and INDEX. KEYS
becomes a blank (not null) string.

Before the first call to SUCESR for a given KEY.NO% i e i t h e r
RTRIEV or SEARCH must have been called for the same KEY.N0%.
Each time RTRIEV or SEARCH are called, the position in the
index file is reset for subsequent calls to SUCESR. Each time
SUCESR is called, the position pointer is advanced so that
successive calls to SUCESR allow you to step through the index
file in key-sequential order. Please note that since al l
KEY.VALUE$'s are stored in the leaves of the B-Trees, it is
not necessary to traverse the tree to find the next entry.

Since separate position pointers are maintained for each index
file, it is allowable to interleave calls to SUCESR for dif
f e r e n t KEY . N 0 %' s .

Please see Section 4.7 for a discussion of how INDEX. KEYS must
be initialized.

4 8 1 MICROSOFT BASIC EXAMPLE

4 AS A CCT. RECV $
1 80 F I E L D 0 3 i 16 AS LA ST N A M E $i 12 AS F I R ST N A M E $i

190 ENTRY$=SPACE$ (11) ' S E T E NTRY$ TO TH E P ROPER LENGTH
200 INPUT "ENTER CUSTOMER LAST NAME:";CUST.NAME$
210 CUSToNAME $ LE FT $ (CUST NAME $+SPACE$ (16)i 16) SET

215 KEY$=LEFT$(CUST+NAME$,9) 'SET KEYS TO LENGTH OF

216 SRCH.KEY$ =KEY$+MKI$ (0) 'AP PEND B I NARY ZERO TO END OF
KEY SO THAT IT WILL NOT BE PADDED WITH BLANKS (20H)

VARIABLE TO SAME LENGTH AS FIELDed VARIABLE

TRUNCATED KEY.VALUE$

220 CAL L S E A RCH (CUST KEY'%iSRCH KEY$ i REC NO% iENTRY$)
2 30 WHILE K E Y $=LEFT $ (E NTRY$ i9) 'TEST FOR MATCH OF

240 GET 3 , RE C . N0%
250 I F LA ST +N A ME $=CUST.NAME $ T H EN

TRUNCATED KEY VALUES

PRINT F I R S T oNAME $i LAST N AM E $ i
CVS (ACCT.RECV$) ' T ES T F O R MATCH OF

COMPLETE NAME
260 CALL SU CESR(CUST.KEY%,REC.N0%i ENTRY $)
270 WEND
280 PRINT " S EARCH ENDED"

In this example, SEARCH is used to find the first
potential match for the desired CUST.NAME$ (which is
truncated to nine bytes and has a two-byte identi
fier added before it is ENTERed in the index file).
S ubsequent ca lls t o S U C ESR ar e u sed t o f ind th e

23

MICRO B+ P R OGRAMMER'S GUIDE: LINK-80

r emaining potential matches. Note that the W H I L E
loop is used to step through the index until the
truncated CUST.NAMES no longer matches the truncated
index entries. The SRCH.KEYS is padded with binary
zeroes to avoid padding with blanks to the full key
length of eleven (ll) bytes.

4 8 • 2 SEQUENTIAL PROCESSING AND INDEX UPDATES

Caution must be exercised if one desires to s tep t h r o u g h
an index file in sequential order while performing
occaisional additions and/or deletions t o t h e i nd e x .
While all key values are linked both forwards and
backwards to their nearest neighbors, and wh i l e t h e se
links are always maintained during additions and/or
deletions to the index, the actual sequential processing
is controlled by internal pointers (which are not a part
of the index file itself). These pointers determine the
current position in the index, and are updated by calls
to R T R IE V , SEA R CH , SU C ESR, a nd P R DESR. H o w e ve r , t h e s e
internal pointers are not maintained during additions
and/or deletions to the index.

Therefore, if you wish to sequentially traverse the index
and at the same time perform aditions and/or deletions to
the index, the following strategy should be adopted:

Step 1 — use the sequential access capability to
step through the index file until an insertion (ENTER) or
deletion (REMOVE) is performed.

Step 2 — after the insertion or deletion, use RTRIEV
and/or SEARCH to re-establish your position in the index
file. Then return to Step l.

Section 9.2 contains an extensive example program which
i ncludes t h e u s e o f S E A RC H t o reset the internal
pointers. (See, in particular, line 5385 of the example.)

4~9 PRDESR(KEY • NO%,DATA.RECORDS~INDEX.KEYS)

PRDESR returns the DATA. RECORDS associated with the previous
key value stored in the index specified by KEY.NO%. That is,
PRDESR allows the application program to traverse the key
values in reverse order. Otherwise, PRDESR behaves exactly
like SUCESR. See the Section 4.8 for more details.

Please note that calls to SUCESR and PRDESR may be intermixed
f ree l y .

24

MICRO B+ P R OGRAMMER' S GUIDE: LINK-80

4el0 NMENTR(KEY • N0% ~NO+ ENTRIES%)

NMENTR sets the v a r iable NO.ENTRIES% to the n umber o f key
values stored in the index file specified by KEY.N0%. The
number of entries ranges from z ero (0) t o 65, 5 3 5 .

Note that if NO.ENTRIES% is greater than 32,767, it will be a
negative number. Adding 65,536 to a negative NO.ENTRIES% re
sults in the correct value.

If more than 65,535 entries are added to an index file, it
will cause NO.ENTRIES% to start counting over from zero. It is
the application program's responsibility to determine how to
interpret the result of calling NMENTR.

4el0 1 MICROSOPT BASIC EXAMPLE

300 CALL NMENTR (PART KEY% g NO OF • PARTS%)
310 IF NO OF.PARTS% < 0 THEN

NO • OF. PARTS! = 65536l + NO.OF.PARTS%

NO • OF • PARTSl = NO.OF • PARTS%
ELSE

This example demonstrates how the size of an index
file, measured in number of entries, can be easily
determined; and subsequently transformed to a four
byte floating point representation.

4 l l NMN ODE(KEY,NO%gNO.NODES%)

NMNODE sets the variable NO.NODES% to the n umber o f B- T r e e
nodes in use and available for use in the index file s peci f i e d
by KEY. N0%.

4 ll 1 MICROSOPT BASIC EXAMPLE

400 CALL NMNODE (PART • KEY% g NODES%)
410 TOTAL.SECTORS% = NO HEADER.SECTORS% + NODES% *

420 TOTAL.KBYTES% = (TOTAL SECTORS% + 7) / 8
NO • NODE • SECTORS%

In this example, which assumes that NO.HEADER.SEC
TORS% and NO.NODE.SECTORS% were used in the call to
INTREE (see Section 4.2), TOTAL.KBYTES% is set to
the number of kilobytes (1024 bytes) consumed by the
index file.

25

MICRO B+ P R OGRAMMER ' S GUIDE: LINK-80

4 e l2 REllOVE (KEY • N0%i KEY VAL UE S i DATA RECORD% i RETURN CODE%)

REMOVE deletes KEY.VALUES from the index file specified by the
KEY.N0%. The data record number associated with KEY.VALUES in
the index is checked against DATA.RECORD% before the deletion
takes place. If DATA. RECORDS is set to z ero (0) before the
call to REMOVE, then no such check takes place; and DATA.RE
CORD% is set to the associated record number corresponding to
the KEY.VALUES to be deleted.

The RETURN.CODE% is set as follows:

0 if KEY.VALUES is not found in the index file;
1 for a successful deletion;
2 if DATA.RECORD% and the associated record number

in the index do not agree in which case no
deletion is performed; and

been ACCESSed.
3 the key file specified by the KEY.N0% has not

If KEY.VALUES is a null string, then REMOVE takes no action;
but RETURN.CODE% is set to one (1).

4el2el NICROSOPT BASIC EXAMPLE

10 I N PUT " E NTER PART 0 TO BE D E L ETED:"iPART.N0%
20 PART.NOS=MKIS(PART.N0%) : REC.N0% =0
3 0 CALL R E MOVE (PART KEY%i PART NOS iRECeN0% iRET CODE%)

If the PART.NOS is found, then it will be deleted
from the index file corresponding to the value of
PART.KEY%, and REC.N0% w ill be se t to th e c or r e
sponding d a t a r ec o r d n u mber .

4el3 R STRCT(KEY.N0%)

RSTRCT closes the index file corresponding to KEY.N0%. I f a n y
changes to the index file have occured since it was opened
(ACCESSed), it is mandatory that RSTRCT be called to close the
file. If not, the integrity of the index file is not ensured
(since some updated nodes may still reside in an I/O buffer
and/or the header record may be incorrect).

4 14 SEQUE1ITIAL LOADING OP INDEX

Three special MICRO B+ routines are available to construct a
B-Tree Index when existing data records can be accessed in
sequential (key value) order. Data records can be accessed in

26

MICRO B+ P R OGRAMMER'S GUIDE: LINK-80

key va l u e o r d e r i f :

— they are physically stored in key value o rder ; o r

— there exist a set of pointers to the data records which
provide logical access in key value order.

The computer time required to construct a B-Tree Index will be
significantly reduced with these routines. But it M UST BE
EMPHASIZED that these routines can be used only when BOTH of
the following conditions are satisfied:

— there are no existing entries in the index; and

— the da t a r ecords ca n b e a c c e s sed i n k e y v al u e o rd e r .

Once an index has some entries, it is not possible to use
these special routines unless the existing entries are merged
with the new entries-to-be, and the existing index is ERAsed
a nd r e p l a c e d b y a n ew , empty index file. Otherwise, r out i n e
ENTER must be used to add new entries to an existing index
file; even if the new entries are in key sequential order.

4 • 14ol INTLOD(KEY.N0%gLOAD.FACTOR%)

INTLOD initializes the MICRO B+ routines in preparation
for the sequential building of a new B-Tree Index. INTLOD
must be called after ACCESS and prior to t he u s e o f
LOADKY (see next Section).

KEY.N0% specifies the index file to be c onst r u c t e d .

LOAD. FACTORS specifies the number of entries to be loaded
into each B-Tree node. LOAD.FACTOR% must be less than or
equal to the ma x imum capacity of t he n o d e s (s e e
MAX.NO.KEYS% in Section 4.4), a nd g r e a t e r t h an o r eq u al
to one-half the max imum ca pacity. As LOAD.FACTOR% in
creases, the size of the resultant index file decreases.

4 • 14 • 2 LOADRY (KEY. VALUE $, DATA RECORD%, RETURN. CODE%)

Once INTLOD has been called to initialize the MICRO B+
routines (which presumes that IN TREE and A C C ESS have
already been called), LOADKY is used t o add t h e n ew
KEY.VALUES's in increasing key value order.

KEY.VALUES is the string valued entity to be a dded t o t h e
index file specified by KEY.N0% in the call to INTLOD.

DATA. RECORDS is the pointer to the data file associated
w i th t h e KEY . VALUE 8.

27

MICRO B+ P R OGRAMMER'S GUIDE: LINK-80

RETURN. CODES is set as follows:

1 for a successful load operation;
2 if KEY.VALUES already exists in the index, in
which case the load operation is not performed; and

3 if KEY.VALUES is less than the previous key value
added to the index, in which case the load operation
is not performed.

4 14 2 1 I MP ORTANT NOTE

Note that calls to LOADKY for different KEY.N0%'s
are not permitted. The appropriate procedure is to
CALL INTLOD for a specified key, followed by succes
sive calls to LOADKY for the SAME key, followed by a
call to BLDIND (see next Section).

4 14 • 3 BLDIND

BLDIND is called after all the sequentially orderd key
values have been loaded via LOADKY. Note that LOADKY only
loads the key values into the leaf-nodes of the B-Tree;
BLDIND constructs the upper levels of the B-Tree. I f
BLDIND is not called, then a properly configured B-Tree
will NOT exist. PLEASE NOTE that RSTRCT m ust s t ill be
called (after BLDIND) in order to properly close the
index f il e.

4el4 4 MICROSOFT BASIC EXAMPLE

DAT.FI L ES%)

KEY%iFILE • NAMESiKEY • LEN%gKEY • TYPE%iMAX • KV%

PRINT ERROR o • • CHECK • SIZE% i CHECK • SIZE% STOP

110 I N PUT " ¹ BU F F ERS, ¹ KEY S , ¹ NO D E S E CTORS,

115 DAT • FILES%=0
120 CALL INTREE(NO BUF%gNO • KEYS% iNO S E CT %PHD • SECT% i

130 INPUT "KEY ¹ FILE NAME LENGTH TYPE MAX CAPACITY:"

140 CALL ACCESS(KEY%/FILE • NAME$iKEY • LENSgKEY • TYPE%gMAX • KV%)
150 INPUT "LOAD FACTOR:" LOAD.FAC%
160 CALL NMENTR.(KEY%iCHECK • SIZES)
170 I F C H ECK ASSIZE%<>0 THEN

180 CALL I N T L OD(KEY%iLOAD • FAC%)
1 90 FOR I %= 1 TO 1 0 0 0 0
2 00 GET l g1 %
210 CA LL LO ADKY(KEYeVALUESgI%gRET • CODE%)
220 I F RET . CO DE%<>1 THEN

2 30 NEXT I %
2 40 CALL B L D I ND
250 CALL R STRCT(KEY%)

¹ HEADER SECTORS:",NO.BUF%,NO.KEYS% NO.SECT% HD SECT%

PRINT IM PROPER KEY VALUE iKEY • VALUES iI % i R ET • CODE%

28

MICRO B + PROG RAMMER' S G U I D E : L I NK- 80

2 60 S T O P

In this example, it is assumed that a data file has
been OPENed and a FIELD statement executed w h ich
sets up the KEY.VALUES each time the (random r ecor d)
GET statement is performed. Further, it is assumed
that the data records a re s t o r e d i n k e y v a l ue o r d e r .
In Statement 170, the sequential loading of the tree
will be abandoned if there are any existing entries
in the index file. N ote that SETERR has not b e en
c al l e d . He n c e , User Errors will be routed to the
console device followed by a w arm b o o t .

29

MICRO B+" PROGRAMMER ' S GU IDE: L INK-80

5~0 BASIC SOURCE CODE DATA PILE SUPPORT ROUTINES

While MICRO B+ provides complete freedom of choice on how the data
file is organized and managed, six MICROSOFT Basic data file sup
port routines have been provided for the convenience of the appli
cation programmer. These routines open and close the data files,
get space for new data records, report on the size of the data
files, and return space from deleted records. The deleted data re
cords are organized according to a stack (i.e., last in, first out)
s t r u c t u r e .

In addition to these routines, Section 6 describes similar routines
implemented in assembly language which can be called from BASIC
programs as well as from other languages.

To use the BASIC data file routines, follow these steps:

1. Set the global variable MICROBE to the appropriate three
(3) ch a r a c t e r cod e :

CODE ROUTINE

O PEN DATA F I L E
C LOSE DATA F I L E
NEW DATA
RETURN DATA
DATA FIL E S I ZE
D ATA FIL E U T I L I Z A T I O N

ODF
CDF
NWD
OLD
DFS
DFU

2. Set the appropriate input parameters to the desired values.

3 . Ex e c u t e a GO SUB 6 4 0 0 0 .

The input and output parameters, along with details of the routines
are presented in the following Sections of Chapter 5.

5 • l OPEN DATA P I L E

CODE I NPU T P A RAMETERS

DATA. FILES
FILETS N0%
RECORD.LENGTH%
MESSAGE.LENGTH%

OUTPUT PARAMETERS

NONEODF

T his r ou t in e op e n s D A T A . FILES w i t h t h e s p e c i f i ed R E
C ORD.LENGTH% as FILE.N0%. If DATA. FILES does not e x i st, i t
will be created. The RECORD.LENGTH% must be the same each time
the file is opened; and it must be at least 8 bytes. MES
SAGE. LENGTHS should be set to the desired maximum length of
any MESSAGES used in the RE TURN DATA r o u t ine (see Section
5.4). MESSAGE.LENGTH% must be less than or equal to the smal

30

MICRO B+ P R OGRAMMER' S GUIDE: LINK-80

ler of 255 or RECORD.LENGTH%-2. Note that the first record in
DATA. FILE S i s a h e a d e r record which maintains the status of
the DATA. FILES stack structure. NO DATA CAN BE STORED IN THE
F IRST RECORD OF DATA.F I L E S l

Note that while FIELD statements a re i n v o k e d b y t h es e r o u
tines, they only handle the management requirements of the
data files. It is the programmer's responsibility to invoke
FIELD statements to handle the actual data stored in the data
f i l e s .

5 1 1 E X AMPLE

10 DATA.FILES="D:CUSTOMER.DAT":FILE.N0%=4:MICROBS=
"ODF N: RECORD. LENGTH%=384: MESSAGE. LENGTH%=

16:GOSUB 64000

This call would open the specified data file as file
number 4 with a record length of 384 bytes. I f n o
such file existed (on Drive D), a new file would be
c rea t e d .

5 2 CLOSE DATA F I L E

CODE I NPUT PA R A METERS

CDF F I L E . N0 %

This routine closes data files previously opened with a call
t o OPEN DATA F I L E .

OUTPUT PARAMETERS

NONE

5.2.1 E X AMPLE

20 FILE.N0%=4:MICROBS="CDF":GOSUB 64000

5 3 NEW DATA

CODE I NPUT PAR A METERS

NWD F I L E . N0 %

OUTPUT PARAMETERS

DATA.RECORD%

This routine returns the D A TA.RECORD% number of the next
available record in the DATA. FILES opened as FILE.N0%. The
next available record is "popped" off the top of the s tac k f o r
FILE.N0%. If the stack is empty, NEW DATA automatically incre
ments the size of the data file to generate space f o r a ne w
record. WHEN A RECORD IS POPPED OFF THE STACK THE F I E L D ED
VARIABLES FOR THE D ATA FIL E AR E C L O B B ERED+ THEREFORE' Y OU MU S T
ASSIGN VALUES TO YOUR F IELDED VARIABLES FOR THE NEW DATA
R ECORD ONLY AFTER EXECUTING THE N NEW DATA" R O U T IN E

31

MICRO B+ PR OGRAMMER' S GUIDE: LINK-80

5 3 1 E X A MPLE

10 DATA F I L E $="D:CUST O M E R .DAT":FILE.N0%=4:MICROB$="ODF":

RECORD. LENGTH% =128: MESSAGE. LENGTH% =10:
GOSUB 64000

FIRST • NAME$,8 A S A CCT.RECV$

CUST • N0%gL • NAME$gF • NAME$

DATA.RECORD% iRET. CODE%)

20 F I EL D 4 ~ 2 A S C U ST NO$g 18 AS L AST NAME$g 12 AS

30 I N PUT EN T E R CUSTOMER 4I LAST N A M EI FI RS T N A M E .Bi

40 INPUT "ENTER ACCOUNTS RECEIVABLE:",ARO
5 0 F I L E . NO %=4:MICROB$="NWD":GOSUB 64000
60 KEY$ =MKI$(CUST • NO%) CALL E NTER(CUST • KEY%gKEY$g

/ 0 K E Y $=LEFT$(L • NAME$+SPACE$(9) i9) +MKI$ (CUST • NO%):
CALL ENTER(NAME. KEYS, KEYS, DATA.RECORD%,CODE%)

LSET F I R S T • NAME$= F • NAME$: L SE T A C C T R E C V $=MKD$(ARO)
80 LSET CUST. N0 $=MKI$(CUST.N0%) : L SET L A ST . NAME$=L.NAME$:

90 PUT 4 , D A TA.RECORD%

DATA.RECORD% is set to the value of an empty record
in the customer data file after executing statement
50. Then a new customer number and last name are
added to the corresponding B-Trees with the asso
ciated record number given by DATA.RECORD% in state
ments 60 and 70. Note how the last name key was
truncated and then made unique by the addition of
the CUST.N0%. Finally, DATA.RECORD% in the customer
data file is initialized by statements 80 and 90.

5 • 4 RETURN DATA

CODE I NPU T P A RAMETERS

OLD F I L E . N0 %

MESSAGE$

NONE

OUTPUT PARAMETERS

DATA.RECORD%

This r o u t i n e "pushes" the returned DATA.RECORD% on to the top
of the stack for FILE.N0%. A ft e r a call to RETURN DATA, the
record in the data file with record number DATA.RECORD% has
two fields written over the previous contents:

F IEL D L ENGT H DATA

1 2 LINK TO NEXT AVAILABLE RECORD
2 ME SSAG E .LENGTH% MESSAGES

The MESSAGES parameter can be used to flag deleted (i.e.,
returned) records, or to save information from the deleted
r ecord f o r sub s e quent pr o c e s s i n g .

32

MICRO B+ P R OGRAMMER ' S GUIDE: LINK-80

5~4 1 EXAMPLE

10 KEYS=MKI$ (1 0 2 3 1) : D ATA.RECORD%=0
1 5 CALL REMOVE (CUST KEYS /KEYS /DATA R E C ORD%/ RET CODE%)
20 I F D A T A.RECORD%)0 THEN

F IL E . N 0 % =4:MESSAGES = "DELETED":MICROBE="OLD " :

GOSUB 64000

In this example, the data r ecord c o r r e sp o n d i n g t o

file for future use, and the customer number would
be deleted from the B-Tree index; unless, of course,
no such customer number were found.

customer number 10231 would be returned to the data

5 • 5 DATA PIL E S I Z E

CODE I NPUT PAR A METERS

DFS F I L E . N0 %

OUTPUT PARAMETERS

D ATA. FILE . S I Z E %

This routine returns the total number of records used by a
data file including the header record and any returned (but
u nused) r e c o r d s .

5 5. 1 EXAMPLE

1 0 F I L E. N O %=4:MI C ROBE = "DFS" : GOSUB 6 4 0 00
2 0 PRIN T THE R E A R E " /DATA. F I L E . S I Z E S / " RECORDS

" IN THE DATA F I L E . "

5 • 6 DATA PILE UTILIZATION

CODE I NPUT PA R A METERS

DFU F I L E • NO + o

OUTPUT PA RAMETERS

D ATA. F I L E . UT I L I ZA T I ON %

T his routine returns the nu m ber of re cords in a d at a f i l e
currently being used to store data. It excludes the header
r ecor d a nd an y r e t u r n e d (b u t un u se d) r e c o r d s .

5 7 MICRO B+ D IS K

These six data file management routines will be found in file

MDATA.BAS

on your MICRO B+ d isk . T o inc l ude these r out i n e s i n y ou r

33

MICRO B+" PROGRAMMER' S GUIDE: LINK-80

application program, simply perform a MERGE statement of the
form:

MERGE "[X:] MDATA.BAS"

where [X:] is an optional disk drive specification.

LINE 64027 of the code contains the DIMension statement for
the subscripted variables which are used in the data file
routines. It is set for up to fifteen data files (numbered
from 1 to 15), but can be changed as needed for your applica
t i o n .

34

M ICRO B+" P ROGRAMMER' S GUIDE: L I N K -8 0

6 • 0 ASSEMBLY LANGUAGE DATA FILE SUPPORT ROUTINES

Nine assembly language data file support routines have been pro
vided for the convenience of the application programm e rs. These
routines may prove especially useful when working outside of a
BASIC environment. Th ese routines open and close the data files,
get space for new data records, report on the size o f t h e d a t a
files, return space from deleted records, and permit data file
reads and writes. As with the BASIC source c ode r o u t i n e s d e s c r i b e d
in the previous Section, it is not necessary to use these data file
support routines with MICRO B+ . However, these routines do provide
a simple method to organize the data files.

These assembly language routines restrict the record length to be
multiples of 128 bytes.

Please note that the M I C ROSOFT Basic parameter conventions (as
described in Section 4.1) apply to these routines.

Examples of the use of the following routines can be found in
Sect i o n 9 .

6ol OPE N D (F I L E • NO%@FILE • NAMESgRECORD • SECTORSS)

OPEND opens or creates the data file given by FILE.NAME$ with
a record length determined by the expression

R ECORD. SECTORS% * 1 2 8 .

The maximum value for RECORD.SECTORS% is 32 which means that
the data files may have record lengths between 128 and 4096.

FILE.N0% is an integer between zero (0) and NO.DATA.FILES%-1,
where NO.DATA.FILES% is the fifth param eter of INTREE (see
Section 4.2). The maximum value for NO.DATA.FILES% is twenty
(20). The remaining data file routines reference the data file
using the FILE.NO% parameter. An attempt to assign the same
FILE.N0% to more than one data file (at the same time) will
r esul t i n a Use r E r r o r .

The first record in each data file is reserved for a header
record which maintains status information concerning the f ile.
No data can be stored in the header record.

6 ~ 1 o 1 OPENR (F ILE. NO% i FILE. NAME S, RECORD. SECTORS%)

Each time OPEND opens a data file, the integrity of the
file is checked. A data file is considered to have lost
its integrity i f it i s up d ated an d not sub s equently
closed by CLOSED. If OPEND finds a loss of integrity, it
will not open the data file; instead, a User Error occurs
signaling the problem condition.

35

MICRO B+ PR OGRAMMER' S GUIDE: LINK-80

I
In order to facilitate the rebuilding of the data file,
the routine OPENR is available. OPENR behaves exact l y as
OPEND except that no check of data file integrity is
made. Hence, OPENR can be used to open a compromised data

file for purposes of reconstruction. g
6 • 2 CLOSED (F I LE. NOS)

CLOSED closes the data file associated with FILE.NOS. If any
updates have been made to the data file, it is necessary to
call CLOSED. Otherwise, a User Error will result when the file
is OPEND the next time. Q

6 3 NEWDAT (FILE. NOS i DATA. RECORDS)

NEWDAT returns in DATA. RECORDS the next available relative
record number for the data file specified by FILE.NOS. If any
previously deleted (see RETDAT) data records are availble,
these are used first. If not, then NEWDAT increments the size
of the data file to generate a new data record. Q

c36 • 4 RETDAT(FIL E . N OSgDATA.RECORDS)

RETDAT "pushes" the returned DATA. RECORDS onto the top of a
logical stack of deleted data records. This stack is imple
mented via a linked list, which ensures fast operation since
only the top most record is manipulated by the NEWDAT and
RETDAT routines. After a call to RETDAT, t he r e c o r d i n t h e
d ata file w it h r e c ord n u mbe r D A TA. RECORDS has tw o f iel d s
written over the previous contents:

F IEL D L ENGT H DATA

FF Hex (255 decimal). This
byte serves as flag for de
leted data records as long
as the u s e r r ese r v e s t h i s
byte o r e n s u r e s t h a t no ac
tual data will cause a FFH to
occur in the first byte.

Link to next availbale data
record .

6~5 DATAFS(FILE • NOS g FILE • SIZES)

DATAFS returns in FILE. SIZES the total number of data records
in use or available for use in the file specified by FILE.NOS.
The actual number of kilobytes consumed by the file can be

36

MICRO B+ PR OGRAMMER' S GUIDE: LINK-80

computed as

KILOBYTESS = ((FILE. SIZES * RECORD.SECTORSS) + 7) / 8

6 • 6 DATAFU(FI L E . NOS,UTI L I Z A T I ONS)

DATAFU returns in UT I L IZATION%, the number of data records
actually in use. The difference between the results returned
by DATAFS and DATAFU represents the data records returned for
r e-use an d t h e h e a de r r eco r d .

6+7 READD (FILE • NOS g DATA RECORDS g BUFFER PTR%)

READD reads the data record specified by the relative record
number DATA.RECORD% into memory starting at the address con
tained in BUFFER.PTR%. It is up to the application program to
ensure that sufficient space exists starting at the address
given by BUFFER.PTR% to accept the data record. Also, it is up
to the application program to be able to " parse " t h e da t a
record into the desired variables for use by the application
program. In languages that permit based variables and/or over
layed variables, this can be easily accomplished.

6 • 8 WRITED (FILE • NOS g DATA RECORD% g BUFFER. PTR%)

WRITED writes the data record speci f ied by DATA.RECORD% into
the file specified by F I LE.N0%, taking the in formation to
write from memory starting at the address contained in
B UFFER. P T R S .

Please note that the I/O does not occur at BUFFER.PTRS, but
rather at the address contained in BUFFER.PTRS. For example,
if one desired the information to be transferred from memory
location 6000 hex, then

B UFFER. P T R S = 24576 (d e c i m a l)

37

N ICRO B+ PR OGRAMMER' S GUIDE: L I N K -8 0

6 9 INTEGRATING DATA PILE ROUTINES INTO APPLICATION PROGRAMS

The assembly language data file routines are a part of the
relocatable library MICROB.REL. Therefore, CALL's to the data
file routines will be resolved when the NICROB.REL library is
searched during the linking of the application program into a
.CON file. See Section 7 for more details.

38

MICRO 8+ " PRO (; IV.NMER' S G U I DE : L I NK- 8 0

7 0 HOW TO INT E GRATE MI CRO B+ W ITH YOU R A PPL I CATION

NICRO B+" is distributed as a library of relocatable object modules
f o r 8 0 8 0 o r Z8 0 mi c r o p r o c e s s o r s o per a t i n g u n d e r CP/ N . Th e main
requirement for using NICRO B+ is a "linking loader" which accepts

NICROSOFT fo rm a tted object mo d ule l i b raries. Se e M IC R O SOFT's
"UTILITY SOFTWARE MANUAL" (Document No. 8401-334-01) for a complete
description of their linking loader LINK-80 and the format of their
relocatable object modules. In addition to a linking loader, i t i s
helpful to have a NACRO assembler (such as NICROSOFT's MACRO-80
described in the above mentioned manual) which will allow you:

1) to create relocatable interface routines if y ou r host
language does not use the MICROSOFT parameter protocol and/or
the MICROSOFT Basic string-descriptor v ec t o r (s e e Se c t i o n
4 .1) ; a n d

2) to easily change the size of the buffer area for index file
I / O .

7 • 1 WHAT YOU GET ON YOUR MICRO B+" DISK

Your NICRO B+" disk contains the following files:

1) N I CR O B . REL
a library of relocatable object modules which con
tain the MICRO B+" routines you call (e.g., ENTER)
plus all the support routines r equi r e d .

2) B UF MOD. REL
a relocatable object module which contains a prespe
cified buffer area of 3204 (decimal) bytes.

3) BUF NOD. NAC
an assembly language source module which contains
the EQUate statement necessary to redefine the size
of the buffer area.

4) N DATA. BAS
a series of MICROSOFT Basic source code routines to
handle data file I/O.

Together, NICROB.REL and BUFNOD.REL contain every t h i n g y ou
need to use the MICRO B+" routines as described in Sections 4
a nd 6 , p r o v i d e d y o u h a v e an appropriate linking loader, and
the 3204 byte buffer area is sufficient and/or n ot t o o l a r g e.

If you wish to create interface routines between your host
language and the NICRO B+" routines, an assembler which sup
ports external declarations and entry point designations is
required. Depending on the characteristics of your linking
loader, it ma y be p o s s ible to customize the s ize of y ou r
buffer area (without setting up BUFMOD MAC) by simply reser

39

MICRO B+" PROGRAMMER ' S GUIDE: LINK-80

ving suf f icient space at the end of the MICRO B+ r out i n e s . I n
any event, it is very important to note that the MICRO B+"
routines expect the buffer area to begin at the e nt r y p o i n t
"FCB" which is supplied by BUFMOD.MAC.

7 1 1 MEMORY REQUIREMENTS OF MICRO B+ CODE

The modu l a r d e s i g n of MICRO B+ ens u res that an applica
tion program utilizes only those portions of MICRO B+
which are actually required. The "calls" to MICRO B+
embedded in the application program d etermine w h i c h
modules will be brought into the final .COM file by the
linking loader. The memory requirements for t he v a r i o u s
modules comprising MICRO B+ a re g i v e n b e l o w :

MODULE COMPONENTS

INTREE, A CCESS, R STRCT , R T R I E V , S E A RCH
SUCESR JPRDESRgNMENTRgNMNODE~SETERR

MEMORY REQUIRED

4.0K

ENTER 1. 5K

REMOVE

I NTLOD ~ LOADKY g BLD I ND

OPEND ~ OPENR g CLOSED g NEWDAT g RETDAT
DATAFS g DATAFU g READD g WRI TED

1.7K

1. 5K

1.0K

7 2 HOIiT LARGE A BUFFER AREA

The two primary factors affecting the buffer area size are the
NO.NODE.SECTORS% and NO.BUFFERS%. Usually, NO.NODE.SECTORS% is
s et i n a c c o r d a n c e with the physical characteristics o f t h e
disk drives. The table below shows the most common choices for
NO.NODE.SECTORS%.

PHYSICAL S E C T OR
SIZE O F D I SK

COMMON CHOICES FOR
NO.NODE.SECTORS%

128
256
512

1024

2
2,4
2,4

2 ,4 , 8

PLEASE NOTE THAT NO.NODE.SECTORS% SPECIFIES THE NUMBER OF 128
BYTE SECTORS COMPRISING EACH INDEX FILE RECORD. FOR EXAMPLE

S A
VALUE OF TWO (2) IMPLIES A 256-BYTE INDEX FILE RECORD LENGTHEN
REGARDLESS OF THE PHYSICAL SECTORING OF THE DISK DRIVE.

Within the choices given above, the selection is usually based
o n t h e k e y l e n g t h . "Long " keys l ead t o hi g he r v al u e s o f

40

MICRO B+" PROGRAMMER ' S GUIDE: LINK-80

NO.NODE.SECTORS% in order to reduce the levels of the B-Tree.

For any specified NO.NODE.SECTORS%, the more buffers (i.e.,
larger NO.BUFFERS%), the few e r d i s k a cc e sses r equ i r e d t o
r et r i e v e a k ey v a l ue . Ho we v e r , when processing one index file
at a time, the pay-off from adding buffers diminishes r apid l y
once five (5) or six (6) buffers are already in use. If more
than one index f ile i s i n ac t ive us e a t on e t ime, it is
rewarding to increase the number of buffers even beyond six
(6). Provided the memory space is available, figuring three
(3) buffers per index file (in active use at the same time) is
a reasonable rule-of-thumb. Please note that buffers are not
assigned to individual index files. T hey ar e s h a r e d a c c o r d i n g
t o a least-recently-used p r iority w h ich en su res t hat t h e
active index files make full use of the buffers.

The final determinant of the size of the buffer area is the
amount of memory available. If there is very little memo ry
available for buffers, one can always reduce the NO.BUFFERS%
down to the minimum level of three (3) .

It is important to separate the concept of the s ize o f t he
buffer area from the manner in which the buffer area is used.
For any given specification of the maximum number of key files
(NO.KEYS%), the record length of the key files (NO.NODE.SEC
TORS% * 1 2 8) , t h e n u mb e r of buffers (NO.BUFFERS%), and the
number of data files suported by the assembly language rou
tines of Section 6 (NO.DATA.FILES%), the required buffer size
i s g i v e n b y

((NO.KEYS% + NO.DATA.FILES%) * 36) +
(NO.BUFFERS% * ((N O . NODE.SECTORS% * 1 2 8) + 5 0))

For example, NO.KEYS%=6, NO.BUFFERS%=7, N O.DATA.F I L E S %= 2, an d
N O.NODE.SECT O R S %=4 require a bu ffer area of 4 222 (decimal)
bytes. Once this buffer space has been r eserved , h o w ever , any
combination of the four determ ining parameters which s t ay s
within 4222 bytes can be passed to the INTREE routine which
sets up the way in which the buffer area is used.

Pleas e n o t e , h o we v e r , t hat all key files used at the sa m e
time, i.e., after a call to INTREE and before any other subse
quent calls to INTREE, must have identical record lengths.

7 3 STEP-BY-STEP SYSTEM INTEGRATION PLAN FOR COMPILED APPLICATIONS

7.3 1 CODE INTERFACE ROUTINES

If necessary, code interface routines in 8080 or Z80
assembly language. The basic form of the interface rou

41

MICRO B+ PR OGRAMMER'S GUIDE: LINK-80

t i nes s h o u l d b e

— Reassign parameters according t o t h e s t a n d a r d
presented in Section 4.1.

— Call desired MICRO B+ r ou t i n e .

— Execut e a n 8 0 8 0 RE T .

If it is necessary to use interface routines to handle
the parameter protocol of the host language, be sure to
choose names for these routines that will not conflict
w it h t h e MI CR O B + r o u t i ne s .

Once coded, test interface routines to ensure that they
pass the parameter addresses correctly.

7 3 2 PREPARE APPLICATION PROGRAM

Using the specifications from Sections 4,5 and 6 to guide
you, code your application program including calls to the
MICRO B+ routines or your interface routines.

Be sure that your application program has:

1) a call to INTREE prior to any use of the index
f i l e s ;

2) initialized the string variables which will be
set equal to index entries in SEARCH, SUCESR, and
PRDESR;

3) ensured that all numeric KEY.VALUES's are of the
specified KEY.LENGTHS (note that alphanumeric keys
can be any length although they will be truncated or
filled as n ec e s sary to ac h iev e t he K EY .LENGTH%
w hereas n u m e ric key s m ust be o f t h e e x a c t
KEY.LENGTHS before being used in any of the M I C RO
B + r out i nes) ;

4) closed (via R ST RCT and /o r C LO S ED) al l in d e x
and/or data files prior to subsequent calls to
INTREE and/or terminating the application program.

7 • 3 • 3 CREATING BUFFER AREA

The single most important characteristic of the buffer
area is that it must start at an entry point named "FCB".
It is also im p o rtant to n ote t hat the i n itialization
routine INTREE does not check to see if the requested
buffer area (as d e t e rm ined b y N O.KEYS%, N O .BUFFERSS,
NO.NODE.SECTORS%, and NO.DATA.FILESS) will fit within the

42

MICRO B+ PR OGRAMMER'S GUIDE: LINK-80

buffer area actually provided by BUFMOD.REL.

To redefine the buffer area to suit your application, use
a text editor to change the operand of the EQUate state
ment in BUFMOD.MAC from

to
BUFSIZ EQU 3 2 0 4

WXYZBUFSIZ EQU

where WXYZ is the decimal number of bytes required for
the buffer area as determined by the formula in Section
7 • 2 •

After redefining the BU FSIZ pa rameter, a ssembl e BUF
MOD.MAC to create a new relocatable module BUFMOD.REL.
Please note that it is not necessary to name the buffer
area relocatable module "BUFMOD.REL".

7 • 3 4 CREATING A COMPOSITE PROGRAM

Once you have compiled or assembled your application
program (and interface routines, if needed), you can
create a composite program which combines your applica
tion, the required modules from MICROB.REL, and the space
for the index file buffer area.

Consider the following example:

1) You have compiled an application program resul
ting in a relocatable module called INVENTRY.REL.

2) You have assembled interface routines resulting
in a module called INTRFACE.REL.

3) You have assembled, after appropriate redefini
tion, BUFMOD.MAC creating a bu ffer module called
BUFMOD.REL.

Then the following MICROSOFT LINK-80 comm and sequence
will create an ex e cutable p rogram m od ule c a lled
INVENTRY.COM:

L 80 INVENTRY g INTRFACE g MICROB/S g BUFMOD g I NVENTRY/N/E

where the LINK-80 program is assumed to reside in the
program module L80.COM and all of the " REL" f i l e s h a v e
been assumed to reside on the logged-in disk. Further, it
has been assumed that INVENTRY.REL does not require any
other libraries (besides M IC R OB.REL) to b e se a r c hed.
Please see MICROSOFT's "UTILITY SOFTWARE MODULE" for a
complete description of how to use their linking loader.

43

MICRO B+ PR OGRAMMER'S GUIDE: LINK-80

7 • 4 USING MICRO B+ W ITH THE MICROSOFT BASIC INTERPRETER

Provided one has a satisfactory linking loader, MICRO B+ can
be used with the M ICROSOFT Basic Interpreter. (The linking
loader supplied with the MICROSOFT Basic Compiler w orks w e l l
i n t h i s r eg ar d .)

The linking loader is used to place the MICRO B+" r out i ne s i n
upper memory, and to determine the addresses of the user
callable routines. Once the routines have been loaded, the
interpreter can be invoked with an option which will protect
t he MICRO B+ cod e.

To simplify this set-up procedure, several special relocatable
modules are included on your MICRO B+ disk:

I NTRFACE. R E L
NOADDKEY.REL

INTRFCB.REL
NODATA.REL

NOSEQKEY.REL
NODELKEY.REL

7.4 1 WHERE TO LOAD MICRO B+

Once MBASIC (the interpreter) is invoked, you c an de t e r
mine the highest available memory location for MICRO B+
by executing the statement

P RINT P E E K (7) i PEEK (6)

which will return the address of the bottom of the your
CP/M®. (Actually, this is the bottom of the permanent
portion of CP/M®; it does not account for the CCP (Com
mand Control Processor) which can, and will, be overwrit
ten. For example, you might get

209 0

which is interpreted as D100 (hex). Note that Dl (hex) is
equivalent to 209 (decimal).

Noting that the routines require about 4K bytes if only
the retrieval and search routines are used, and about
7.5K bytes if all the routines (except those for sequen
tial loading and data file I/O) are used, one can esti
mate the approximate origin for the routines. For ex
ample, one might want to use all the routines (with the
above noted exception), plus a 2K byte buffer area. Then
about 9.5K bytes would be required. Assuming the bottom
of CP/M is D100, then the origin for MICRO B+ w ould b e
A BOO. (D 10 0 — 2 6 0 0 = ABOO)

44

MICRO B+ P R OGRAMMER' S GUIDE: LINK-80

7 • 4 • 2 • USING SPECIAL INTERFACE ROUTINES

Instead of simply loading the entire MICROB.REL library
into memory, INTRFACE.REL provides a mechanism to allow
only those routines actually needed to be loaded. Fur
ther, it simplifies determining the addresses of the
routines which are used in the CALL statements.

For example, to load the routines at ABOO as suggested
above, the following comm and would be used with MICRO
SOFT'S Lo a d e r :

L80 / P AB 0 0 g IN TR FACE g NOSEQKEY ~ NODAT g MICROB/S g I NTRFCB/E

This will load all the routines (except those for sequen
tial loading of key values and data file I/O), s et t h e
origin of the buffer area, and exit back to the moni t o r .

I NTRFACE.REL contains jumps to a ll th e us e r c al l a b l e
routines in MICROB.REL. INTRFCB.REL con tains the origin
for the buffer area. NOSEQKEY.REL contains a dummy set of
routines for sequential loading so that the loader does
not select these r o u t ines w hen s e ar ching M I C ROB.REL.
Similarly, NOADDKEY.REL will keep the routines to add a
new key value from being loaded, NODELKEY.REL will keep
the routines to remove a key value from being loaded, and
NODAT.REL will keep the data file routines of Section 6
from being loaded. For example, to load only the search
and retrieval routines, one would use

L 8 0 / P AB 0 0 g I NTRFACE g NOSEQKEY g NOADDK EY g NODELKEY ~
NODAT i MICROB/S i I NTRFCB/E

7 • 4 • 3 PROTECTING THE CODE PROM MBASIC

To protect the routines loaded as above, the " /M" s wit c h
is used when M BA SIC i s i n v oked. C o n t inuing w it h ou r
example in wh ich the routines are loaded at ABOO, the
interpreter should be invoked as follows:

MBASIC /M:&HAAFF

which causes location AAFF (hex) to be the last byte used
by the interpreter.

Finally, it is necessary to assign the routine names
(e.g., ACCESS%) w it h t he p ro pe r add r e sses. If IN TR
FACE.REL is used, then the following assignment state
ments can be used at the beginning of your application
p ro g r a m (N OTE T HAT TH E O R I G I N U S ED HERE [A B OO] I S BA S E D
ON OUR EXAMPLE):

45

MICRO B+ PR OGRAMMER' S GUIDE: LINK-80

10 ORG%= & HAB 00: I NTREE%=ORG%: ACCESS% =ORG%+3: ACCES 1%=ORG%+6
20 ACCES2%=0RG'%+9 ' ENTER%=0RG%+12 ' RTRIEV%=0RG%+15 ' SEARCH%=0RG%+18
30 S UCESR%=ORG%+21: NMENTR% =ORG%+24: REMOVE% =ORG%+27: RSTRCT% =0RG%+30
4 0 I NTLOD%=ORG%+33: LOADKY%=ORG%+36: BLD IND% =ORG%+3 9: NMNODE% =ORG%+4 2
50 S E T ERR%=0RG%+45: PRDESR%=ORG%+48:OPEND%=ORG%+51: OPENR% =ORG%+54
60 C L O SED%=0RG%+57: NEWDAT% =ORG%+60: RETDAT%=ORG%+63: DATAFS% =0RG%+66
7 0 DATAFU%=ORG%+6 9: READD%=ORG%+7 2: WRI TED% =ORG%+7 5

Please note in the above assignments that the addresses
of the various MICRO B+" routines are assigned to INTEGER
variables. Therefore, be sure to use a statement of the
form

100 CALL R T RI EV%(KEY.N0%iTARGETS,DATA .RECORD%)

in which the name of the routine is actually an integer
variable. When moving this code to the compiler, it will
be necessary to strip the percent ("%") signs from the
routine names as well as eliminating the assignment
statements in lines 10 through 70 above.

7 4.4 PROTECTING THE CODE PROM THE CCP

Loading the index file routines into upper memory for
subsequent use with the interpreter causes the CCP (Com
mand Control Processor) to be overwritten. After the load
operation is completed, the CCP is written back into
memory (in order to process your next command) which
causes the end of the index file routines to be over
w ritten! How e v er, if th e b u f fer a rea i s at leas t 2 K
bytes, the CCP w ill not d i sturb any of the M I CRO B+
c ode. Th e r e f o r e , b e su r e t o :

— use a buffer at least as large a s t h e C C P
(usual l y 2 K) ; a nd

— place the buffer area at the end of the code.

7 4 5 SAVE YOUR PROGRAM

It is very important to note that you should save your
program before attempting to run it if you are making
CALLs to MICRO B+". Unlike errors detected by the inter
preter, User Errors return you to CP/M (unless you have
called SETERR), and you w ill not be able to save you r
code. Therefore, be sure to save your code prior to
r unning i t .

46

MICRO B+ P ROGRAMMER' S GUIDE: LINK-80

8. 0 ERROR CODES

The MICRO B+ routines generate two types of error codes:

— MICRO B+ E r r o r Co d e s ; a n d

U ser E r r o r Co d e s .

MICRO B+ Error Codes are generated when a B-Tree does not satisfy
the internal consistency checks which the MICRO B+ routines per
form whenever an index file is used. Such errors should never
occur. If a MICRO B+" Error does occur, an error message of the
form

MICRO B+ Er r o r . . . XY . . .

will be displayed. If, after careful review of your application
program, you cannot find any obvious cause for the MICRO B+" error
(such as using an index file which was not properly closed by
RSTRCT, or trying to build an index file greater than 512K bytes
under CP/M® 1.4), please contact FairCom. You should include as
much documentation as possible, including the two character error
code which is displayed.

8ol U SER ERROR CODES

User Errors occur when avoidable problems occur (such as no
more room on a disk or an illegal KEY.N0%). User Errors can be
h andled i n t wo w a y s :

1) If SETERR (see Section 4.3) is called near the begin
ning of an application program, User Errors can be trap
p ed by te st ing th e ER RO R .CODE% v a r i able (pa s sed to
SETERR) for a non-zero value after calls to M I CRO B+ "
r out i n e s .

2) If SETERR is not called, or prior to calling SETERR,
o r after calling SETERR w ith a zero param eter, a Use r
Error results in a message the form

USER ERROR . XY . . . CHE CK MANUAL

being sent to the console device. Further, a warm boot is
executed which causes the application program to lose
cont r o l .

47

MICRO B+ PR OGRAMMER ' S GUIDE: LINK-80

An explanation of the ERROR.CODE% values and the corresponding
two-character User Error Codes follows:

VALUE CODE EXPLA N ATI ON

20

30

24

23

22

21

AH

AG

AF

AD

AE

Could not write an index file record
during CP/M 1.4 processing. Possible
causes are: disk full or directory full.

Could not write an index file record
during CP/M 2.x processing. See ¹20.

Could not read index file record during
CP/M 1.4 processing. Possible cause is
attempting to use a newly created index
file which has not been properly closed.

Could not read index file record during
C P/M 2.x p r o c e s s i ng . S e e ¹ 22 .

No more directory space. Occurred while
trying to create new index file.

KEY.N0% out of range. KEY.N0% must satisfyAN

0 < = KEY. N0% < NO. KEYS%

31 AO Illegal INDEX. FILES parameter in call to
ACCESS. Most likely causes are a null
index file name, or an exceptionally long

36

35

33

34

BC

BB

BA

index file name.

Attempt to reuse a KEY.NO% already
assigned to an ACCESSed index file.

KEY.LENGTH% parameter in ACCESS exceeds
maximum allowable value of 48.

INDEX. KEYS parameter used in SEARCH,
SUCESR, an d P RDESR ha s n ot b e e n p r op e r l y
initialized. INDEX. KEYS must be a t l e as t
as " long" as the k e y l en g th .

LOAD.FACTOR% out of range. LOAD.FACTOR%
must satisfy

BD

MAX • KV%/2 < = LOAD • FACTORS < MAX. KV%

37

38

BE INTLOD called before ACCESS.

BLDIND not properly called.BF

48

MICRO B+™ PROGRAMMER ' S GUIDE: LINK-80

BG

VALUE CODE EXPL A NATI ON

39 MAX.KV% too large for KEY.LENGTH% and

50

40

51

53

52

54

60

55

CB

BH

CC

CE

CD

CF

CG

NO.NODE.SECTORS%.

Corrupted index file detected during call
to ACCESS. Index file becomes corrupted if
it is updated (i.e., additions or dele
tions have occurred), and not subsequently
closed via RSTRCT. Index file must be
r ebui l t .

Could not write data file record during
CP/M 1.4 processing. Possible causes are:
disk full or directory full.

Could not write data file record during
C P/M 2.x p r o c e s s i ng . S e e ¹ 50 .

Could not read data file record during
CP/M 1.4 processing. Possible causes are:
an attempt to use a newly created data f ile
which has not been properly CLOSED, or a
read past end-of-file.

Could not read data file record during
CP/M 2. x p r o c e s s i n g . Se e ¹ 5 2 .

No more directory space. Occurred while
trying to create new data file.

Could not close data file. Occurred during
call to CLOSED.

FILE.N0% out of range. FILE.NO% must
sat i s f y :

CL

0 < = F I L E . N 0% < NO. DA T A . F I L ES%

61 CM

63

65

CO

Illegal FILE. NAMES parameter in call to
OPEND or O P ENR. Se e ¹ 3 1 .

Attempt to reuse a FILE.N0% assigned to a
data file in use.

Too many RECORD.SECTORS% in call to OPEND
or OPENR. RECORD.SECTORS% must be no
g rea t e r t h a n 3 2 .

DA

49

M ICRO B+" P ROGRAMMER' S GUIDE: L I N K -8 0

DE

VALUE CODE EXPLA NATI ON

69

70

to use a data file which has not been

NEWDAT attempted to reuse a data record
whose first byte was not set to FF (hex).
Note that the first byte of a data record
is set by RETDAT. Possible causes: attempt

properly CLOSED, or has been tampered with.

Corrupted data file detected during call
to OPEND. Data file becomes corrupted if
it is updated (i.e., written to), and not
subsequently closed via CLOSED. Once cor
rupted, the data file can only be opened
with a call to OPENR.

DF

50

MICRO B+" PROGRAMMER' S GUIDE: LINK-80

9 • 0 RECREATE R DATABASE T WO USEFUL EXAMPLES

The two example programs presented here are useful in their own
right as well as demonstrating the use of MICRO B+ . RECREA T E . B A S
can be used to easily recreate a data file and its associated index
files if either the data file or its indices become c or r u p t e d .

database entries may be examined, updated, and/or listed. The
program itself can be expanded to meet your particular require

DATABASE.BAS allows one to build a name and address database. The

ments.

9 l R E CREATE BAS

RECREATE.BAS is designed to permit easy reconstruction of a data
file and its associated indices. As presented, it assumes that the
data file and the indices must be recreated. It can be changed so
that only the indices are rebuilt.

Both RECREATE.BAS and RECREATE.COM will be found on your MICRO B+"
disk. RECREATE.COM can be used to rebuild files even if they were
created by application programs written in a language other than
MICROSOFT BASIC, provided that the data files are compatible with
the routines described in Section 6. Of course, R ECREATE.BAS can b e
adapted to almost any programming environment, and any data file
o rgani z a t i o n .

The version of RECREATE.BAS on your disk may be a latter version
than that presented below. You should consider the version on your
disk to be the definitive version.

Please note that the underlines (" ") are continuation marks; they
permit a logical program line to be spread over multiple physical
l i nes .

~~x-' . "->*** * x x * xx ** * * * * * %ax* * * * ** * * * x* x * * * * * * * * * * %900 REM
901 REM
902 REM
903 REM
904 REM

1000 DIM
1010 DIM

1100 INPUT "Enter OLD Data File Name:",CUR.DAT.FILE$
1110 INPUT "Enter NEW Data File Name:",REP.DAT.FILE$

RECREATE UTILITY VERS ION 2 . 1 2/1 9/ 81

* a** +* * %'** * * x * * * * * x * * x * * * * * x x * x x x * * x w* * * *

INDEX.NAME$(9) ,KEY.LENGTH%(9),KEY.TYPE%(9),MAX • KV%(9)
REC.SUFFIX$(9),KEY.POSITION%(9),KEY,VALUE$(9)

1120 INPUT
"Enter the number of 128 byte sectors per data file r ecord : " ,

REC.SECTORS%

"Enter beginning data record number (e.g.,l or 2):",

B EG.REC% 'You ca n s k i p he a d e r r ec o r d s

1130 INPUT

51

MICRO B+ PROGRAMMER' S GUIDE: LINK-80

1140

1150
1160
1170

1220
1230

1200
1210

INPUT

DEL.FF$ 'RETDAT automatically sets 1st byte to ffH
IF DEL.FF$ ="y" THEN DEL.FF$="Y"

NO.DAT.FILES%=2

PRINT

INPUT "Enter the number of Key Fields:",NO.KEYSX

INPUT "Enter the number of Node Sectors & Header Sectors:",
NODE.SECTORSX,HEADER.SECTORS%

INPUT "Enter the number of Index File Buffers:",NO.BUFFERS%

REQ.BUFFERX= (NO • KEYS%+NO.DAT.FILESX)*36+
NO.BUFFERS%*(NODE.SECTORS%*128+50)

IF REQ • BUFFERX > 8192 T HEN

"Do you want to eliminate records beginning with ffH (Y/N):",

1240

1270
1280

1260

ELSE

ERROR CODE% 1

PRINT :PRINT "NOT ENOUGH BUFFER SPACE":
GOTO 1160

PRINT :PRINT TAB(5);REQ.BUFFER%;
" bytes of buffer space utilized."

NO.DAT.FILESX) 'Initialize MICRO B+(tm)

CALL SETERR(ERROR.CODE%) 'Enable error trapping

CUR.DAT.FILEX =O 'Assign data file number

REP.DAT.FILEX =1 'Assign data file number

REM Note how OPENR has been used to open a potentially cor
REM rupted data file.
CALL OPENR(CUR.DAT.FILE% 0CUR.DAT.FILES,REC.SECTORSX)
IF ERROR.CODE%<>0 THEN ERROR.TYPE%=1:GOTO 9000
CALL OPEND(REP.DAT.FILEX,REP.DAT.FILE $,REC.SECTORS%)

CALL INTREE(NO.BUFFERSX,NO.KEYS%,NODE.SECTORS%,HEADER.SECTORS%,

1300
1310
1315
1316
1320
1330
1340
1350
1360
1370

IF ERROR.CODEX<>0 THEN ERROR.TYPEX=2:GOTO 9000
PRINT
PRINT
"Enter Index Name,Key Length, Type(0/1),MaxKV/Node, Auto Suffix";

(Y/N),Key Position"
1380
1390
1400
1401
1402
1403
1404
1405
1410
1420

PRINT
FOR KEY.N0%=0 TO NO.KEYS%-1 'Input index file parameters

REM Auto Suffix will add a two-byte representation of the data
REM record number to the end of a key (to ensure uniqueness).

REM Key P o s i t i on spe c i f i es t h e s t ar t i ng c o l u m n o f t h e k ey f i e l d .
REM For example, if a key occupies the 5th through 10th bytes of
REM the data record, enter a "5" for Key Position.

P RINT TAB(6); "For Key" ;KEY.NOX;"» " ;
INPUT " ",INDEX.NAME$(KEY.N0%),KEY.LENGTH%(KEY.N0%),KEY.TYPE%(

REM

KEY.NOX),MAX.KVX(KEY.NOX),REC.SUFFIX$(KEY.NOX),
KEY.POSITIONX(KEY.NOX)

1425
1430

IF REC.SUFFIX$(KEY.NOX) ="y" THEN REC.SUFFIX$(KEY.NOX)="Y"
CALL ACCESS(KEY.NOX,INDEX.NAME$(KEY.NOX),KEY.LENGTH%(

KEY.NOX),KEY.TYPEX(KEY.NOX),MAX KV%(KEY.NOX))
1440
1450

IF ERROR. CODEX <> 0 THEN ERROR.TYPEX =3:GOTO 9000
NEXT KEY.NOX

52

MICRO B+ PROGRAMMER' S GUIDE: LINK-80

1500
1505
1506
1510
1520
1530

OPEN "R",1,"DUMMY. $$$",REC. SECTORSX*128

REM A duumy file providesa buffer area and the ability to

FIELD 1, 1 A S DEL.CHK$
FOR KEY.N0%=0 TO NO.KEYS%-1 'Set up key fields

FIELD 1,KEY.POSITION%(KEY.NOX)-1 AS DUMMY$,

KEY.LENGTHX(KEY.NOX) AS KEY.VALUE$(KEY.N0%)

REM use FIELDed variables.

1540
1550
1560
1570

NEXT KEY.NOX
BUFFER.PTRX=VARPTR(f'1) 'Determine position of data file buffer

Please wait while data is processed. = = = " : PRINT

2000
2010
2020
2030

2035
2040
2050
2051
2052
2053
2054
2055
2056
2060
2070

REM

REM

PRINT
PRINT

CUR.REC.NOX=BEG.RECX:REP.REC.NOX=O 'Set s tar ting point in f iles
CALL READD(CUR.DAT.FILE%,CUR.REC.NOX,BUFFER.PTR%)

WHILE ERROR.CODE% = 0 'Loop until end-of-file on old data file
IF DEL.CHK$ =CHR$(255) AND

DEL.FF$ ="Y" THEN GOTO 2140 'Skip deleted records

CALL N EW DAT(REP.DAT.FILE%$REP.REC.NOX)
REP.REC.N0$=MKI $(REP.REC.NOX) 'For use with Auto Suffix
FOR KEY.N0%=0 TO NO.KEYS%-1 'Add each key to index file

REM The calls to READD bring the data into the I/O buffer

REM pointed to by BUFFER.PTR%. This automatically causes
REM the FIELDed variables "KEY.VALUE$()" to be set to the

REM data fields described by KEY.POSITION% and KEY.LENGTHX.

KEY$=KEY. VALUE $ (KEY. NOX)
IF REC.SUFFIX$(KEY.NOX) ="Y" THEN ' Add su f f i x

KEY $=LEF T$ (KEY$, KEY. LENGTH% (
KEY.N0%)-2)+REP.REC.N0$

2080
2090
2100

CALL ENTER(KEY.N0%$KEY$$REP.REC.N0%~RET.CODE%)
IF ERROR.CODE% <> 0 THEN ERROR.TYPE% =4:GOTO 9000
IF RET.CODEX <> 1 THEN ' Should n o t oc c u r

PRINT "RETURN CODE,KEY.N0%,0LD REC 7t,";
"NEW RECf:",RET.CODEX;KEY.NOX,CUR.REC.NOX,

REP.REC.N0%
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280

CLOSE 1

NEXT KEY.NOX

IF ERROR.CODE% <> 0 THEN ERROR.TYPE% =5:GOTO 9000
CUR.REC.NOX=CUR.REC.N0%+1
CALL READD(CUR.DAT.FILE%,CUR.REC.NOX,BUFFER.PTR%)

NEXT KEY.NOX
CALL WRITED(REP.DAT.FILE%,REP.REC.NOX,BUFFER.PTR%)

WEND
FOR KEY.NOX=O TO NO.KEYS%-1

CALL RSTRCT(KEY.NOX)

CALL CLOSED(REP.DAT.FILEX)
PRINT :PRINT " — — RECREATE TERMINATING

CUR.REC.NOX=CUR.REC.NOX-BEG.REC%
PRINT TAB(10);"AFTER";CUR.REC.NOX;"RECORDS PROCESSED"

PRINT TAB (1 0) ~ LAST RECORD IN NEW FILE IS $i j REP • REC • N0%

PRINT TAB(10); "TERMINATION CODE IS"; ERROR. CODEX

KILL "DUMMY.$$$
STOP

53

MICRO B+ PROGRAMMER' S GUIDE: LINK-80

9000 PRINT :PRINT "User Error fk";ERROR.CODEX;

9010 ON ERROR.TYPEX GOTO 9100,9200,9300,9400,9500
9100 PRINT "open file: ";CUR.DAT.FILE$: STOP
9200 PRINT "open file: " ;REP.DAT.FILE$: S TOP
9 300 PRINT "ACCESS index : ";INDEX.NAME$(KEY.NOX) :STOP

9400 PRINT " ad d a k e y v a l ue t o : "; INDEX.NAME$(KEY.NOX)
9410 PRINT "The key value came from record 0"'>CUR.REC.NOX;

"occurred while trying to ";

i n " ; C UR.DAT.FILE$
9420 STOP
9500 PRINT "write a record to ";REP.DAT.FILE$

9510 PRINT "The data came from old record kt' >CUR REC • N0% and was to go"
9520 PRINT "in new record $i'",'REP.REC.N0%

9530 STOP

Some features of RECREATE.BAS worth noting are:

the use of a dummy data file to allow use of a buffer area
a nd F I E L Ded v a r i a b l e s ;

the use of OPENR to allow a corrupted data file to be opened
for rebuilding;

the way in which the data record number can be used as a
" t i e - b r e a k er " f o r n on-unique k e y s ;

the use of "IF" statements to trap possible User Errors;

9 • 2 DATABASE • BAS

DATABASE.BAS allows you to build and maintain a data file nominally
organized by last name, zipcode, and customer number. It has been
designed so that other attributes can be easily made into "keys."
The primary purpose for presenting DATABASE.BAS is to provide a
rich environment for examples of how to use the NICRO B+ rou tines.

The version of DATABASE.BAS on your disk may be a latter version
than that presented below. You should consider the version on your
disk to be the definitive version.

Again, the underlines (" ") represent continuation marks.

54

MICRO B+" PROGRAMMER'S GUIDE: LINK-80

900
901
902
903

1000
1010
1020
1030
1040 R
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140

• •R EM • • • • • • • • •
REM
REM DATABASE EXAMPLE VER SION 2.1 2/19/81

• • • • \ •

1200
1210
1220
1230
1240
1245
1250
1260
1270

MAX.KEY%=2 :NO.KEYS%=MAX.KEYX+1

REM
REM
REM
REM SET-UP DATABASE FIELD 6 KEY DESCRIPTORS
REM

DIM FLD.NAME$(7),FLD.LENX(7),NEW.FLD$(7),OLD.FLD$(7)
MAX • FIELDX 7 NO • FIELDSX MAX • FIELD%+1

FLD.NAME$(0) ="Customer Number" :FLD.LEN%(0) =4

FLD.NAME$(1) ="Fi r s t N a me" :FLD.LENX(1) =16

FLD • NAME$(2) ="Last Name" :FLD.LENX(2) =20
FLD.NAME$(3) = "Str ee t A d d r e s s " :FLD.LENX(3) =20
FLD.NAME$(4) = "Ci t y " : FLD. LEN%(4) =20
FLD.NAME$(5) = "Sta t e " :FLD.LEN%(5) =2

FLD.NAME$(6) ="Zipcode" :FLD.LENX(6) =9

FLD.NAME$(7) ="Customer Status" :FLD.LENX(7) =36

DIM KEY.NAME$(2),KEY.LENX(2),KEY.MAP%(2),KEY. TYPE%(2),MAX.KVX(2)

KEY.LEN%(0) =10:KEY.TYPE%(0) =0:KEY.MAP%(0) =2 ' K EY 0 = L A ST NAME
KEY.LEN%(1) =11:KEY.TYPE%(1) =0:KEY.MAP%(1) =6 ' K E Y 1 = ZI P CODE
KEY.LENX(2) =2 :KEY.TYPEX(2) =1:KEY.MAPX(2) = 0 ' K E Y 2 = CUSTOMER NUMBER
UNIQ • KEY%=2 'USED IN TEST OF UNIQUENESS
FOR KEY%=0 TO MAX.KEY% 'SET KEY NAMES TO CORRESPONDING FIELD NAMES

KEY.NAME$(KEY%) =FLD.NAME$(KEY.MAPX(KEY%))
NEXT KEYX

DIM INDEX.NAME $(2)
INDEX.NAME$(P) ="NAME.IDX"
INDEX.NAME$(1) ="ZIPC. I DX"
INDEX.NAME$(2) ="NUMB.IDX"

1300
1310
1320
1330

2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100

REM
REM
REM
REM INITIALIZE INDEX FILES
REM
REM
YES%= -1 : N OX=O

INDEX.KEY$=SPACE$(11) 'SET TO LONGEST KEY LENGTH
NO • BUFFERS% 6 'NO • NODE • SECTORS% 2 'NO HEADER SECTORSX 2

NO.DATA.FILES% 1
CALL INTREE(NO.BUFFERS%,NO.KEYSX,NO.NODE.SECTORSX,

NO.HEADER.SECTORS%,NO.DATA.FILES%)
2110 ERROR.CODEX=1 :CALL SETERR(ERROR. CODEX) 'TRAP USER ERRORS

55

MICRO B+ PROGRAMMER' S GUIDE: LINK-80

2120
2130
2140
2150

FOR KEYX=O TO MAX.KEY% 'OPEN INDEX FILES
MAX.KVX(KEYX) =(NO.NODE.SECTORSX*128-8)/(KEY.LEN%(KEY%)+2)
MAX.KVX(KEY%)=MAX.KVX(KEY%)/2*2 'MAKE SURE ITS EVEN
CALL ACCESS(KEYX,INDEX.NAME$(KEY%),KEY.LENX(KEY%),

IF ERROR.CODE%<>0 THEN ERROR.TYPE%=1:GOTO 9000
KEY.TYPE%(KEYX),MAX.KV%(KEYX))

2160
2170 NEXT KEY%

3000
3010
3020
3030
3040
3050
3060
3070
3080
3090
3100
3110
3120
3130
3140

REM
REM
REM
REM INITIALIZE DATA FILE
REM
REM
FILE.N0%=0 :RECORD.SECTORS%=1 ' 1 2 8 B YTE DATA FILE RECORD LENGTH
FILE.NAME$="CUSTOMER.DAT"
CALL OPEND(FILE • NO%~FILE NAME$~RECORD • SECTORSX)

IF ERROR.CODE%<>0 THEN ERROR.TYPE% =2:GOTO 9000
REM IN ORDER TO ESTABLISH A BUFFER AREA FOR THIS FILE,

REM WE WILL OPEN A 'DUMMY' MBASIC FILE.
OPEN "R",1 "DUMMY.$$$",RECORD.SECTORSX*128

BUFFER.PTRX=VARPTR(fl)
FIELD]/'l,l AS DEL.FLAG$,2 AS GUST.N0$,FLD.LEN%(1) AS F.NAME$,

FLD.LENX(2) AS L • NAME$,FLD.LEN%(3) AS ADDRESS$,FLD.LEN%(4) AS CITY)
DUMMYX=3+FLD.LENX(1)+FLD.LEN%(2)+FLD.LEN%(3)+FLD.LEN%(4)
FIELD Ill,DUMMY% AS DUMMY$,FLD.LENX(5) AS STATE$,FLD.LENX(6) AS ZIPCQDE$,

FLD.LENX(7) AS STATUS$

3150
3160

4000
4010
4020
4030
4040
4050
4060
4070
4080

REM
REM
REM
REM BEGIN DATABASE OPERATION
REM
REM
GOSUB 10000 ' C LEAR SCREEN
GOSUB 11000 'PRINT MAIN MENU & GET CHOICE
ON CHOICEX GOTO 5100,5300,5500,5700,5900,6100

• 0 0 • • • •
• • • • • • • i •

5100
5102
5104
5106
5108
5110 R
5115
5120

REM
R EM
REM
REM ENTER NEW CUSTOMERS
REM

ENTER.MODE$="NEW" :GOSUB 12000 'DATA ENTRY ROUTINE
IF ACTION(="SAVE" THEN

DATA.RECORDX=O : 'SIGNAL NEED FOR A NEW DATA RECORD

GOSUB 13000 : ' UPDATE INDICES 6 DATA FI L E
GOTO 5115

GOTO 4060 'RETURN TO MENU5125

56

MICRO B+ PROGRAMMER' S GUIDE: LINK-80

5300
5302
5304
5306
5308
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5372
5375
53 80
53 85

REM
REM
REM
REM SCAN/UPDATE/DELETE CUSTOMERS
REM
REM
GOSUB 14000 'DETERMINE SEARCH KEY

KEY%=CHOICE%: PRINT
PRINT "Enter target value for ";KEY.NAME$(KEY%);","
LINE INPUT " o r p r e s s 'RETURN' to see main menu»",TARGET$
IF TARGET$="" THEN 4060 ' RETURN TO MAIN MENU
GOSUB 15000 'CONVERT TARGET TO KEY FORMAT
CALL SEARCH(KEY%,CONV.TARGET$,DRN%,INDEX.KEY$)

IF ERROR.CODE%<>0 THEN ERROR.TYPE%=3:GOTO 9000
CONTINUE%=YES%
WHILE CONTINUE% AND DRN%<>0

ENTER.MODE$="OLD" :GOSUB 12000 'DATA ENTRY ROUTINE
DATA.RECORD%=DRN% : SAVE.KEY%=KEY%
IF ACTION$ ="SAVE" THEN GOSUB 13000 'UPDATE INDICES & DATA FILE
IF ACTION$ ="DELT" THEN GOSUB 17000 ' D ELETE ENTRY
IF ACTION$ ="SAVE" OR ACTION$="DELT" THEN 'RESET INTERNAL PTR

• • •

• • • • •

GOSUB 16000 'READ CUSTOMER RECORD ft DRN%

KEY%=SAVE.KEY%
CONV.TARGET$=LEFT$(INDEX.KEY$,KEY.LEN%(KEY%))
CALL SEARCH(KEY%,CONV.TARGET$,DRN%,INDEX.KEY$)
IF ERROR.CODE%<>0 THEN ERROR.TYPE% =13:GOTO 9000

IF ACTION$ ="CONT" THEN CALL SUCESR(KEY%,DRN%,INDEX.KEY$)
IF ACTION$ ="BACK" THEN CALL PRDESR(KEY%,DRN%,INDEX.KEY$)
IF ACTION$ ="STOP" THEN CONTINUE% =NO%

5390
5395
5400
5405
5410
5415
5420
5425

WEND
PRINT
PRINT "SCAN ENDED"
GOSUB 18000 ' P AUSE
GOTO 4060 ' RETURN TO MAIN MENU

5500
5502
5504
5506
5508
5510
5515
5520
5525
5530
5535
5540
5545
5550

PRINT

L.VALUE$ $U.VALUE$

REM
REM
REM
REM LIST CUSTOMERS
REM
REM
GOSUB 14000 'DETERMINE SEARCH KEY
KEY%=CHOICE%
PRINT
LINE INPUT "Do you want listing routed to printer (Y/N)»",ROUTE$

IF ROUTE$ ="y" THEN ROUTE$="Y" 'DEFAULT = NO

PRINT "Enter lower and upper limits for ";KEY.NAME$ (KEY%);" l i s t i n g ; "
INPUT " separate values with a comma »",

TARGET$=L.VALUE$:GOSUB 15000:L .VALUE$ =CONV.TARGET$ 'CONVERT TO KEY FORMAT
TARGET$=U.VALUE$:GOSUB 15000:U.VALUE$ =CONV.TARGET$
CALL SEARCH(KEY%,L.VALUE$,DRN%,INDEX.KEY$)
NO.LISTED%=0

5555
5560
5565
5570

57

MICRO B+ PROGRAMMER' S GUIDE: LINK-80

5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630

GOSUB 16000 'READ CUSTOMER RECORD 0 DRN%

IF DRN%<>0 THEN GOSUB 19000 ' COMPARE INDEX.KEY&U • VALUE. RETURNS COMPARE% •
WHILE DRN%<>0 AND COMPARE%< =0

GOSUB 25000 'PRINT RECORD

NO.LISTED%=NO.LISTED%+1
CALL SUCESR(KEY%~DRN%~INDEX KEY$)
IF DRN%<>0 THEN GOSUB 19000 'COMPARE INDEX.KEY & U.VALUE

WEND
PRINT
PRINT TAB(5);NO.LISTED%;" records listed."

GOSUB 18000 ' P AUSE
GOTO 4060 'RETURN TO MAIN MENU

5700
5702
5704
5706
5708
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785

PRINT :PRINT :PRINT :PRINT

REM
R EM
REM
REM DATABASE STATISTICS
REM
REM
CALL DATAFS(FILE.N0%,FILE.SIZE%) 'NOTE FILE. SIZE INCLUDES HEADER

CALL DATAFU(FILE.N0%,FILE.UTIL%) 'FILE. UTIL DOES NOT

GOSUB 10000 ' C LEAR SCREEN
P RINT TAB(5) ; F I L E . NAME$;" h a s ";FILE.SIZE%;" records; currently,

PRINT FILE. UTIL/;" of them are in use."

PRINT TAB(5) ; " I N DEX" ;TAB(30) ; " E NTRIES"
P RINT TAB(5) ; " " TAB(30)." — — — -"
FOR KEY%=0 TO MAX.KEY%

CALL NMENTR(KEY%~NO • ENTRIES%)

PRINT TAB(5);KEY.NAME$(KEY%);TAB(32);NO.ENTRIES%
NEXT KEY%
PRINT :PRINT :PRINT :PRINT

GOSUB 18000 ' P AUSE
GOTO 4060 'RETURN TO MAIN MENU

5900
5902
5904
5906
5908
5910
5912
5915
5920
5925
5930
5935
5 940
5945
5950
5955
6000
6005
6010

REM
REM
REM
REM
REM
REM
RESTART%=YES%
CALL CLOSED(FILE.N0%)
IF ERROR.CODE%<>0 THEN ERROR.TYPE% =4:GOTO 9000
FOR KEY%=0 TO MAX.KEY%

CALL RSTRCT(KEY%)
IF ERROR.CODE%<>0 THEN ERROR.TYPE% =5:GOTO 9000

SAVE DATABASE UPDATES & RESTART

NEXT KEY%
CLOSE 1 'CLOSE DUMMY FILE
KILL " DUMMY.$$$"
IF RESTART% THEN GOTO 2000
PRINT
PRINT "*** SUCCESSFUL TERMINATION ***"

STOP

58

MICRO B+" PROGRAMMER' S GUIDE: LINK-80

6100
6102
6104
6106
6108
6110
6115
6120

REM
REM
REM
REM
REM
REM
RESTART%=NO%
GOTO 5915

• • • • • 0

SAVE DATABASE UPDATES & TERMINATE

9000
9010 R
9020
9030
9040
9050
9100
9110
9120

REM

9210
9220
9230
9240
9250
9260
9270
9280
9290
9300
9310
9320
9330
9332

PRINT "User Error fi'",ERROR. CODEX;" occurred while trying to

REM
REM ERROR HANDLING
REM
REM
PRINT

ON ERROR.TYPE% GOTO 9210,9220,9230,9240,9250,9260,9270,9280,9290,

9300,9310,9320,9330
PRINT "access ";INDEX.NAME$(KEY%) : GOTO 9700
PRINT "open ";FILE. NAME(: GOTO 9700

PRINT "search ";KEY.NAME$(KEY%);" Index File" : GOTO 9500 'CLOSE FILES
P RINT "c l o s e ";FILE.NAME$: GOTO 9700
PRINT "restrict ";INDEX.NAME$: GOTO 9600 'TRY TO CLOSE REMAINING FILES

PRINT "get a new data record" : GOTO 9700
PRINT "read data record f";DRN% : GOTO 9700
PRINT "delete data record f";DATA.RECORD% : GOTO 9700

PRINT "remove old key from ";INDEX.NAME$(KEY%) : GOTO 9500
PRINT "enter key into ";INDEX.NAME $(KEY%) :GOTO 9500
PRINT "write data record 0";DRN% : GOTO 9700
PRINT "delete key from ";INDEX.NAME$(KEY%) :GOTO 9500

PRINT "re-establish position"
PRINT " i n "; INDEX.NAME$(KEY%);" after update.": GOTO 9500

CALL CLOSED(FILE.N0%) 'TRY TO CLOSE OTHER INDEX FILES
FOR T.KEY%=0 TO MAX.KEY%

9500
9510
9520
9530
9540

IF T.KEY%<>KEY% THEN CALL RSTRCT(T.KEY%)

NEXT T.KEY/
GOTO 9700 ' STOP ERROR MESSAGE

T.KEY%=KEY%+1 ' TRY TO CLOSE REMAINING INDEX FILES
IF T.KEY/>MAX.KEY% THEN STOP

FOR KEY%=T.KEY% TO MAX.KEY%
CALL RSTRCT(KEY%)

9600
9610
9620
9630
9640 NEXT KEY%

9700
9710
9720
9900
9910
9920
9930

PRINT
PRINT "DEMONSTRATION TERMINATING WITH ERROR CODE f";ERROR.CODE%

PRINT 'THESE SHOULD NOT OCCUR. HOWEVER, THEY ARE NOT FATAL.

PRINT "WARNING...Return Code 0";RET.CODE%;" occurred while trying to
ON ERROR.TYPE% GOTO 9930,9940,9950
PRINT "remove old key from ";INDEX.NAME$(KEY%):GOSUB 18000:RETURN

STOP

59

MICRO B+" PROGRAMMER'S GUIDE: LINK-80

9940 PRINT "enter key into ";INDEX.NAME$(KEYX):GOSUB 18000:RETURN
9950 PRINT "delete key from ";INDEX.NAME$(KEYX):GOSUB 18000:RETURN

10000
10010
10020
10030
10040
10050
10060
10070
10080
10090

REM
REM
REM
REM
REM
REM
FOR DUMMYX=1 TO 24

PRINT
NEXT DUMMY%
RETURN

CLEAR SCREEN SUBROUTINE

11000
11010
11020
11030
11040
11050
11060
11070
11080
11090
11100
11110
11120
11130
11140
11150
11160

REM
REM
REM
REM MAIN MENU SUBROUTINE
REM
REM
PRINT TAB(21);"MICRO B+(tm) DEMONSTRATION" :PRINT
PRINT TAB(20);"Customer Database Operations"

P RINT TAB(20) ' " * * * * * * * * * * ~* * * * * * * * * * * * * * * * * " ' PR I N T ' P R I NT
PRINT TAB(5);"l. Enter New Customers"
PRINT TAB(5);"2. Scan/Update/Delete Customer Records"

PRINT TAB(5);"3. List Customer accords"
PRINT TAB(5);"4. Database Statistics"

PRINT TAB(5);"5. Save All Files & Restart Operations"
PRINT TAB(5);"6. Terminate Operations":PRINT :PRINT

INPUT "Enter desired operation number»",CHOICE%
IF CHOICEX<1 OR CHOICE%>6 THEN PRINT :PRINT :GOTO 11090 ELSE RETURN

12000
12010
12020
12030
12040
12050
12060

REM
REM
REM
REM
REM
REM
IF ENTER. MODE(="NEW" THEN 'CLEAR OLD FIELDS IF NEW

FOR FLD% 0 TO MAX • FIELD%

OLD.FLD$(FLD%) = " "

DATA ENTRY SUBROUTINE

12070

NEW.FLD$(FLD%) =OLD.FLD $(FLD%) : 'SET NEW FIELDS

NEXT FLD%
IF ENTER.MODE$="OLD" THEN 'DATA RECORD WILL HAVE BEEN READ

FOR FLDX=O TO MAX.FIELD%

NEXT FLDX
GOSUB 10000 ' C LEAR SCREEN
WHILE ENTER.MODE$ ="NEW"

PRINT TAB(20);"Enter New Customer Information"
PRINT TAB(20) ; " * * * * * * * * * * * * ~* * * * * * * * * * * * * * * * * " : PR I N T : P RI NT
PRINT TAB(5);"[A zero customer number will terminate input.]":PRINT

12080
12090
12095
12096
12097

60

MICRO B+ PROGRAMMER' S GUIDE: LINK-80

12100
12110
12120

FLD.LENX(FLDX)y) STAB(38)

FOR FLD%=0 TO MAX.FIELD%
FLD.NOX=FLD%+1
PRINT TAB(4) ; F L D.NOX;" " ;FLD NAME$(FLDX);TAB(30); " (" ;

LINE INPUT " » " , N E W.FLD$(FLDX)
IF FLD%=0 AND VAL(NEW.FLD$(FLDX))~0 THEN

12130
12132

ACTION$="STOP"
RETURN

12135
12140

NEW+FLD$(FLDX) =LEFT$(NEW.FLD$(FLDX),FLD • LENX(FLDX))

G'3SUB 20000 : 'TEST UNIQUENESS OF GUST 0

F NOT UNIQUE% THEN GOTO 12120

IF FLD%=0 THEN

12150 NE X T F L DX
12160 ENT E R.MODE$="NEWMOD"
12170 WEND

12200
12210
12220
12230
12240
12250
12260

PRINT :PRINT : P RI NT
PRINT TAB(20);"Current customer information" : PRINT
FOR FLDX=O TO MAX.FIELD%

FLD.N0%=FLDX+1
PRINT TAB(4) ; FLD • N0%;" ";FLD NAME$(FLDX);TAB(30);NEW FLD$(FLDX)

IF ENTER.MODE$="NEWMOD" THEN 12500 'NEW DATA HAS FEWER OPTIONS
NEXT FLDX

12300
12310
12320

t o end s c a n " ;

PRINT: PRINT

PRINT "S to save changes, D to delete data, B for back scan, or E";

LINE INPUT "» " OP$
IF OP$ ="" THEN ACTION$="CONT":RETURN
IF OP$ ="S" OR OP $="s" THEN ACTION$="SAVE":RETURN
IF OP$ ="D" OR OP$="d" THEN ACTION $="DELT":RETURN
IF OP$ ="B" OR OP $="b" THEN ACTION$="BACK":RETURN
IF OP$ ="E" OR OP $="e" THEN ACTION$="STOP":RETURN
OP%=VAL (OP$)
IF OP%<1 OR OP%>NO.FIELDS% THEN 12300

GOSUB 21000 ' UPDATE DATA FIELD
GOTO 12200

P RINT "Pr es s ' RETURN' t o c ont i nu e scan, enter Field 7P to change data,"

12330
123 40
12350
12360
12370
123 80
12390
12400
12410
12420

12500
12510
12520
12530
12540
12550
12560
12570
12580
12590

PRINT :PRINT

LINE INPUT "D to delete data, or E to end input»",OP$
IF OP$ ="" OR OP $="S" OR OP $="s" THEN ACTION$="SAVE":RETURN
IF OP$ ="D" OR OP $="d" THEN ACTION$="DELT":RETURN
IF OP$ ="E" OR OP $="e" THEN ACTION$="STOP":RETURN
OPX=VAL (OP$)
IF OPX<1 OR OPX>NO.FIELDSX THEN 12500
GOSUB 21000 ' UPDATE DATA FIELD
GOTO 12200

P RINT "Pres s ' RETURN' t o s a v e d a ta , enter Field 0 to change data,"

61

MICRO B+" PROGRAMMER'S GUIDE: LINK-80

13000
13010
13020
13030
13040
13050
13060
13070
13080
13090
13100
13110
13120
13130
13140

GOSUB 23000: RETURN ' WRITE UPDATED RECORD

REM
REM
REM
REM
REM
REM
IF DATA. RECORD%=O THEN CALL NEWDAT(FILE. NOX, DATA. RECORDX)
IF ERROR.CODE%<>0 THEN ERROR. TYPEX=6:GOTO 9000
DRN%=DATA.RECORDX
FOR KEYX=O TO MAX.KEY%

FLD%=KEY.MAPX(KEYX)
IF OLD.FLD$(FLDX)<>NEW.FLD$(FLD%) THEN GOSUB 22000 'ADD NEW KEY VALUE

NEXT KEY%
FOR FLDX=O TO MAX.FIELD%

IF OLD.FLD$(FLDX)<>NEW.FLD$(FLDX) THEN

NEXT FLD%
RETURN

UPDATE INDICES & DATA FILE SUBROUTINE

• •

13150
13160

14000
14010
14020
14030
14040
14050
14060
14070
14080
14090
14100
14110
14120
14130
14140
14150
14160

15000
15010
15020
15030
15040
15050
15060

FOR KEYX=O TO MAX.KEY%
KEY.NO%=KEY%+1
PRINT TAB(5) ; KEY.NOX;" ";KEY • NAME$(KEYX)

NEXT KEYX
PRINT :PRINT
INPUT "Enter desired key number»",CHOICE%

IF CHOICE%<1 OR CHOICEX>NO.KEYSX THEN 14120

CHOICEX=CHOICE%-1
RETURN

REM
REM
REM
REM
REM
REM
IF KEY.TYPEX(KEYX)~1 THEN 'CONVERT TO INTEGER FORMAT

CONV.TARGET$=MKI $(VAL(TARGET$))

KLX=KEY • LENX(KEYX)
CONV.TARGET$=LEFT$(TARGET$+SPACE$(KLX) SKLX-2)+MKI$(0)

REM
REM
REM
REM
REM
REM
GOSUB 10000 ' C LEAR SCREEN
PRINT TAB(25);"Customer Database Search Keys":PRINT :PRINT

• • • •
• • • • • • \ • • • • • • • • •

SELECT SEARCH KEY SUBROUTINE

• • • • • •
• • • • • • • • •

RETURN

CONVERT TARGET VALUE TO KEY FORMAT SUBROUTINE

0 • • • • • • • • • • • • • • • • • • •

• •

15070
15080
15090 RETURN

62

MICRO B+ PROGRAMMER' S GUIDE: LINK-80

16000
16010
16020
16030
16040
16050
16060
16070
16080
16090
16100
16110
16120
16130

17000
17010
17020
17030
17040
17050
17060
17070
17080
1 7090
17100
17110
17120

RETURN

REM
REM
REM
REM
REM
REM
FOR KEY%=0 TO MAX.KEY%

FLDX=KEY.MAPX(KEY%)
IF OLD.FLD$(FLDX)<>"" THEN GOSUB 24000 'DELETE KEY VALUE

NEXT KEY%
CALL RETDAT(FILE.NOX,DATA.RECORDX) 'RETURN DATA RECORD
IF ERROR.CODE%<>0 THEN ERROR.TYPE% =8:GOTO 9000
RETURN

READ DATA RECORD SUBROUTINE

REM
REM
REM
REM
REM
R M • • • •

• • • • • • • • • • • • • • • • • • •

CALL READD(FILE • N0%~DRN%~BUFFERoPTRX)
IF ERROR.CODE%<>0 THEN ERROR.TYPEX 7:GOTO 9000

OLD.FLD$(0) =MID $(STR$(CVI(GUST.N0$)),2) 'CONVERT CUSTOMER f TO STRING
OLD.FLD$(1) =F.NAME$: OLD.FLD$(2) =L.NAME$: OLD.FLD$(3) =ADDRESS$
OLD.FLD$(4) =CITY $: OLD.FLD$(5) =STATE$: OLD.FLD$(6) =ZIPCODE$
OLD.FLD$(7) =STATUS$
GOSUB 26000 'STRIP TRAILING BLANKS FROM OLD • FLD'S

• • • • • • • • • • • • 0 •

• • • • •

DELETE INDEX 6 DATA FILE ENTRY SUBROUTINE

• • •

18000
1 8010
18020
1 8030
1 8040
1 8050
18060
1 8070
18080

REM
REM
REM
REM
REM
REM
PRINT
L INE INPUT "Pr e s s ' RETURN' t o c on t i nu e
RETURN

PAUSE SUBROUTINE

• 0 • • • • • •

H I PAUSE$

19000
19010
19020
19030
1 9040
19050
19060
19070
19080
19090

REM
REM
REM
REM
REM
REM
IF KEY. TYPE%(KEYX) =1 THEN GOTO 19200 ' GOTO NUMERIC COMPARE
KL%=KEY LEN%(KEYX) 2 AD JUS T FOR LAST TWO BYTES (DATA REC f)
Cl $=LEFT$(INDEX.KEY$+SPACE$(KLX),KLX)
C2$ =LEFT$(U.VALUE$+SPACE$(KL%),KLX)

COMPARE INDEX.KEY & U.VALUE SUBROUTINE

• • • 0 • • • • • • • • • • • • • •

• \ • • • • • 0 • • • 0 • • • •

63

MICRO B+" PROGRAMMER'S GUIDE: LINK-80

19100

19200
19210
19220

19110

IF Cl $ <C2 $ THEN
COMPAREX=-1

ELSE IF C1$>C2$ THEN
COMPARE%=1

ELSE
COMPARE%=0

RETURN

C1%=CVI (INDEX.KEY$)
C2/ =CVI (U.VALUE$)
IF C1% <C2X THEN

COMPAREX=-1

ELSE IF C1%>C2% THEN
COMPARE/ =1

ELSE
COMPARE/ =0

RETURN19230

20000
20010
20020
20030
20040
20050
20060
20070
20080

ELSE

IF TEST%=0 THEN

REM
REM
REM
REM
REM
REM
TEST$=MKI $(VAL(NEW.FLD$(0))) 'CONVERT GUST f TO INTERNAL FORMAT
CALL RTRIEV(UNIQ.KEYX~TEST$~TESTX)

UNIQUE%=YESX

UNIQUE/ =NO%

PRINT " * * * A l r ea d y A s s i g n e d * * * "

CUST 0 UNIQUENESS TEST SUBROUTINE

• •

• • • •

PRINT

PRINT
RETURN20090

21000
21010
21020
21030
21040
21050
21055
21060
21070
21080
21090
21100

RETURN

REM
REM
REM
REM
REM
REM
OPX=OP%-1 'ADJUST FIELD $1 ORIGIN
PRINT
P RINT " I n pu t ne w ";FLD.NAME$(OPX);
LINE INPUT "»",NEW.FLD$(OPX)
NEW.FLD$(OPX) =LEFT$(NEW.FLD$(OPX),FLD • LENX(OPX))
IF OPX<>0 OR NEW.FLD$(OPX) =OLD.FLD$(OPZ) THEN 'SKIP UNQ TEST

GOSUB 20000 'TEST FOR UNIQUE GUST 0

IF NOT UNIQUEX THEN
GOTO 21060

ELSE
RETURN

UPDATE DATA FIELD SUBROUTINE

0 0 • • • • • • • • •

21110
21120

64

MICRO B+ PROGRAMMER' S GUIDE: LINK-80

22100

22200

22090

22020
22030
22040
22050
22055
22060
22070
22080

REM

ELSE

ELSE

ELSE

• • • • •

22000
22010 REM • • • • • • • • • • •

• •

REM
REM ADD NEW KEY VALUE SUBROUTINE
REM
REM • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • •

K.FLDX=KEY.MAPX(KEYX): KLXnKEY.LENX(KEYX) ' S ETUP PARAMETERS
IF KEYX=UNIQ.KEYX THEN 22200 'TRANSFORM TO NUMERIC KEY
SUFFIX$~MKI$(DRNX) 'APPENDED TO NON-NUMERIC KEYS TO MAKE UNIQUE
IF OLD.FLD$(K FLDX)~nn THEN

OLD.KEY$ =nn

OLD. KEY $=LEF T$ (OLD. FLD$ (K. FLDX) +SPACE $ (KLX), KLX-2) +SUFF IX$
IF NEW.FLD$(K,FLDX)~nn THEN

NEW.KEY$=nn

NEW KEY$=LEFT$(NEW FLD$'(K FLDX)+SPACE$(KLX) sKLX-2)+SUFFIX$
GOTO 22300 'SKIP NUMERIC TRANSFORMATION

IF OLD FLD$(K FLDX)~nn THEN
OLD.KEY$~nn

OLD.KEY$=MKI $(VAL(OLDoFLD$(K.FLDX)))
NEW.KEY$=MKI $(VAL(NEW.FLD$(K.FLDX)))

CALL REMOVE (KEYX ~ OLD • KEY $ ~ DRNX ~ RETo CODEX) REMOVE OLD KEY VALUE
IF ERROR.CODEX<>0 THEN ERROR. TYPEX~9:GOTO 9000
IF RET CODEX <>1 THEN ERRORo TYPEX~1 GOSUB 9900 PRINT WARNING

CALL ENTER(KEYX ~ NEW KEY$J DRNX J RETo CODEX) ADD NEW KEY VALUE
IF ERROR.CODEX<>0 THEN ERROR.TYPEX~10:GOTO 9000
IF RET.CODEX<>1 THEN ERROR, TYPEX 2:GOSUB 9900 'PRINT WARNING
RETURN

• • • • • • • • • • •
• •

• • • • • • • • • • • • •

22210

22300
22310
22320
22330
22340
22350
22360

REM23000
23010 REM •

• •

• • • • • • • • • • • • • • • • • •

REM
23020
23030
23040
23050 REM •

LSET GUST.N0$ =MKI $(VAL(NEW.FLD$(0)))
LSET F.NAME$=NEW.FLD$(1)
LSET L.NAME$=NEW.FLD$(2)
LSET ADDRESS$=NEW.FLD$(3)
LSET CITY$ =NEW.FLD$(4)
LSET STATE$=NEW.FLD$(5)
LSET ZIPCODE$=NEW.FLD $(6)
LSET STATUS$=NEW.FLD$(7)
CALL WRITED(FILE NOX iDRNX,BUFFER.PTRX)
IF ERROR.CODEX<>0 THEN ERROR.TYPEX~11:GOTO 9000
RETURN

s • • • •
• •

WRITE NEW DATA RECORD SUBROUTINE

• • • • • • • • • • • • • • • • •

23060
23070
23080
23090
23100
23110
23120
23130
23140
23150
23160

65

MICRO B+ PROGRAMMER' S GUIDE: LINK-80

24000
24010
24020
24030
24040
24050
24060
24070

24100

24200

24080
240 90

ELSE

REM
REM
REM
REM
REM
REM
K.FLD%=KEY.MAP%(KEY%): KLX =KEY.LENX(KEYX) ' S ETUP PARAMETERS
IF KEY%=UNIQ.KEY% THEN 24200 'TRANSFORM NUMERIC KEY

SUFFIX$ =MKI $(DRNX) 'UNIQUE FIELD ADDED TO END OF NON-NUMERIC KEYS
IF OLD.FLD$(K.FLDX) ="" T HEN

OLD.KEY$ = " "

OLD.KEY$=LEFT$(OLD.FLD$(K.FLD%)+SPACE$(KLX) $KLX-2)+SUFFIX$
GOTO 24300 ' SKIP NUMERIC TRANSFORMATION

IF OLD.FLD$(K.FLDX)~" " T H EN
OLD.KEY$ = " "

OLD.KEY$ =MKI $(VAL(OLD.FLD$(K.FLDX)))

24300 CALL REMOVE(KEYX,OLD.KEY$,DRN%,RET • CODE%)
24310 IF ERROR.CODE%<>0 THEN ERROR.TYPEX =12:GOTO 9000
24320 I F R E T.CODEX<>1 THEN ERROR.TYPEX=3:GOSUB 9900 'PRINT WARNING
24330 RETURN

DELETE KEY VALUE FROM INDEX SUBROUTINE

ELS E

25000
25010
25020
25030
25040
25050
25060
25100
25105
25110
25120
25130
25150
25160
25200
25205
25210
25220
25230
25250
25260

PRINT

REM
REM
REM
REM
REM
REM
IF ROUTE$="Y" THEN 25200 'SKIP TO LINE PRINTER ROUTINE

PRINT TAB(5);OLD.FLD$(0);TAB(15);OLD.FLD$(7)
PRINT TAB(25) $0LD.FLD$(1) $" "$0LD.FLD $(2)
PRINT TAB(25);OLD.FLD$(3)
P RINT TAB(25);OLD.FLD$(4); " , " ;OLD.FLD$(5); " ";OLD.FLD$(6)
PRINT
RETURN
LPRINT
LPRINT TAB(5);OLD.FLD$(0); TAB(15);OLD.FLD$(7)
LPRINT TAB(25) % OLD.FLD$(1) ; " "$0LD.FLD $(2)
LPRINT TAB(25);OLD.FLD$(3)
L PRINT TAB(25);OLD.FLD$(4); " , " ;OLD.FLD$(5); " ";OLD • FLD$(6)

LIST CUSTOMER RECORD SUBROUTINE

• • • •
• • • • • • • • • •

LPRINT
RETURN

66

MICRO B+ PROGRAMMER' S GUIDE: LINK-80

26000
26010
26020
26030
26040
26050
26060
26070
26090
26100
26110
26120
26200
26300
26310

REM
REM
REM
REM
REM
REM
FOR FLD%=0 TO MAX.FIELD/

FOR TEST%= FLD.LEN%(FLD/) T O 1 S TEP - 1

NEXT TEST/
OLD.FLD$(FLD/) = " " 'ALL BLANKS
GOTO 26300
OLD • FLD$(FLD%)=LEFT$(OLD.FLD$(FLD%),TEST%)

• • •

IF MID$(OLD • FLD$(FLD%),TEST%,1)<>" " THEN 26200

STRIP TRAILING BLANKS SUBROUTINE

NEXT FLD%
RETURN

67

