CS-2110
 100 MHz
 QUAD-TRACE OSCILLOSCOPE

INSTRUCTION MANUAL

CONTENTS

SAFETY 2
FEATURES 3
SPECIFICATIONS 3
PREPARATION FOR USE 6
CONTROLS AND INDICATORS
FRONT PANEL 7
REAR PANEL 13
operation
[1] NORMAL SWEEP DISPLAY OPERATION. 14
[2] MAGNIFIED SWEEP OPERATION 15
[3] DELAYED SWEEP OPERATION 15
[4] ALTERNATING SWEEP OPERATION 16
[5] DUAL SWEEP OPERATION 16
[6] X-Y OPERATION 17
[7] SINGLE SWEEP OPERATION 17
[8] DUAL AND QUAD TRACE OPERATION 17
[9] CASCADED OPERATION 17
APPLICATION
PROBE COMPENSATION 18
TRACE ROTATION COMPENSATION. 18
DC VOLTAGE MEASUREMENTS 18
MEASUREMENT OF THE VOLTAGE BETWEEN TWO POINTS ON A WAVEFORM 19
ELIMINATION OF UNDESIRED SIGNAL COMPONENTS 19
TIME MEASUREMENTS 20
FREQUENCY MEASUREMENTS 20
PULSE WIDTH MEASUREMENTS 21
PULSE RISETIME AND FALLTIME MEASUREMENTS 21
TIME DIFFERENCE MEASUREMENTS 22
PHASE DIFFERENCE MEASUREMENTS 23
RELATIVE MEASUREMENTS 23
PULSE JITTER MEASUREMENTS 25
SWEEP MULTIPLICATION 25
DELAYED SWEEP TIME MEASUREMENTS 26
PULSE WIDTH MEASUREMENTS USING DELAYED SWEEP 26
FREQUENCY MEASUREMENTS USING DELAYED SWEEP 27
PULSE REPETITION TIME 27
USING DELAYED SWEEP FOR MEASUREMENT OF RISETIMES AND FALLTIMES 28
TIME DIFFERENCE MEASUREMENTS USING DELAYED SWEEP 28
X-Y OPERATION 29
QUAD TRACE APPLICATION 30
DUAL SWEEP APPLICATION 30
ACCESSORIES
STANDARD ACCESSORIES INCLUDED 32
INSTALLING PROBE HOLDER 32
OPTIONAL ACCESSORIES 32
MOUNTING THE PROBE POUCH (MC-78) 33

SAFETY

Symbol in This Manual

This symbol indicates where applicable cautionary or other information is to be found.

Power Source

This equipment operates from a power source that does not apply more than 250 V rms between the supply conductors or between either supply conductor and ground. A protective ground connection by way of the grounding conductor in the power cord is essential for safe operation.

Grounding the Product

This equipment is grounded through the grounding conductor of the power cord. To avoid electrical shock plug the power cord into a properly wired receptacle before connecting to the equipment input or output terminals.

Use the Proper Power Cord

Use only the power cord and connector specified for your product.

Use the Proper Fuse

To avoid fire hazard, use a fuse of the correct type.

Do not Operate in Explosive Atmospheres

To avoid explosion, do not operate this product in an explosive atmosphere.

Do not Remove cover or Panel

To avoid personal injury, do not remove the cover or panel. Refer servicing to qualified personnel.

FEATURES

- Small and compact with high $1 \mathrm{mV} /$ div sensitivity and 100 MHz bandwidth (1 mV /div when X5 GAIN function is used and $500 \mu \mathrm{~V} /$ div for cascaded operation, channel 1 to channel 2).
- Bright 150 mm rectangular CRT with an internal graticule and a 20 kV accelerating potential.
- Vertical axis is capable of single, dual as well as quadtrace display.
- Dual sweep with independent A and B sweeps is provided in addition to single sweep. $\times 10$ magnification, delayed sweep and alternating sweep capability.
- Fast $20 n s / d i v$ sweep speed (2ns/div with X10 magnification).
- A switching type power supply provides stable operation with varying power sources ($90 \mathrm{~V}-264 \mathrm{~V}$).
- A convenient channel 1 sampling output is provided.
- Gate signal outputs for both A sweep and B sweep are provided for use in synchronizing peripheral equipment to these sweeps.
- A convenient beam finder allows you to quickly locate elusive traces.
- CPU controlled switching with LED lighted pushbutton
switches provides easy, reliable switching with setting hold capability when the scope is switched off.
- The 20 MHz bandwidth limiter incorporated eliminates high-frequency noises and stablizes signal waveforms displayed.
- LED indicators provided for the vertical axis, X5 GAIN, UNCAL, horizontal axis, A / B trigger prevent erroneous operations.
- The circuit which varies chop frequency permits to easily observe waveform whose frequency is equal to the chop frequency multiplied or divided by an integer.
- The dual intensity control circuit permits to vary intensities separately for A and B sweeps.
- The VIDEO synchronization circuit permits to observe video signal easily.
- When waveform amplitude varies, the FIX circuit stabilizes triggering automatically so that the operator is free from complicated synchronizing operations.
- Accuracies of vertical axis and horizontal sweeping are as high as $\pm 2 \%$ at $10-35^{\circ} \mathrm{C}$.
- The current CAL terminal ($10 \mathrm{mAp}-\mathrm{p}, 1 \mathrm{kHz}$) permits to calibrate the current probe.

SPECIFICATIONS

CRT	
Model:	150KTM31
Type:	Rectangular, with internal graticule
Accelerating potential:	20kV
Display area:	$8 \operatorname{div} \times 10 \operatorname{div}(1 \operatorname{div}=1 \mathrm{~cm})$
VERTICAL AXIS (Channel 1 and Channel 2 identical specifications)	
Sensitivity	$5 \mathrm{mV} /$ div to $5 \mathrm{~V} / \mathrm{div}$ (X 1 mode)
	$1 \mathrm{mV} / \mathrm{div}$ to 1V/div (X5 mode)
	$500 \mu \mathrm{~V} / \mathrm{div}$ (Cascaded operation, CH 1 to CH 2)
Accuracy:	$\pm 2 \%\left(10 \sim 35^{\circ} \mathrm{C}\right)$
	$\pm 4 \%\left(0 \sim 50^{\circ} \mathrm{C}\right.$)
	$\pm 7 \%$ (Cascaded operation, CH 1 to CH 2$)$
Attenuator:	$5 \mathrm{mV} /$ div to $5 \mathrm{~V} /$ div in 1-2-5 sequence, all 10 ranges with fine adjustment between steps.
Input resistance:	$1 \mathrm{M} \Omega \pm 1 \%$
Input capacitance:	Approx 22pF
Frequency response	
DC:	DC to $100 \mathrm{MHz}(-3 \mathrm{~dB})$
	DC to $140 \mathrm{MHz}(-6 \mathrm{~dB}$)
	(unapplied $\times 5$ GAIN mode)

	DC to $70 \mathrm{MHz}(-3 \mathrm{~dB})$
	Cascaded operation, CH 1 to
	CH2
AC:	5 Hz to $100 \mathrm{MHz}(-3 \mathrm{~dB})$
	5 Hz to $140 \mathrm{MHz}(-6 \mathrm{~dB}$)
	(unapplied $\times 5$ GAIN mode)
	7 Hz to $70 \mathrm{MHz}(-3 \mathrm{~dB}$),
	Cascaded operation,
	CH 1 to CH 2
Risetime:	3.5 ns
Signal delay time:	Approx 10 ns as displayed on CRT screen
Crosstalk:	-40 dB minimum
Operating modes:	
CH1	CH 1 , single trace
CH 2	CH 2 , single trace
DUAL	CH 1 and CH 2 , dual trace
ADD	$\mathrm{CH} 1+\mathrm{CH} 2$ (added) display
QUAD	$\mathrm{CH} 1 \sim \mathrm{CH} 4$, quad trace
ALT	Dual or quad trace alternating
CHOP	Dual or quad trace chopped
CHOP frequency:	Approx 250 kHz , adjustable
Channel polarity:	Normal or inverted, CH2
© Maximum input	: $800 \mathrm{Vp-p}$ or 400V
	(dc + ac peak)

SPECIFICATIONS

B DLY'D	Delayed B sweep
DUAL	Dual sweep - A and B sweeps, independently
X-Y	$\mathrm{X}-\mathrm{Y}$ display mode
A sweep time:	$20 \mathrm{~ns} / \mathrm{div}$ to $0.5 \mathrm{~s} / \mathrm{div}$ in 23 ranges, in 1-2-5 sequence, verninier control provides fully adjustable sweep time between steps.
B sweep time:	$20 \mathrm{~ns} /$ div to $50 \mathrm{~ms} /$ div in 20 ranges, in 1-2-5 sequence.
Accuracy:	$\begin{aligned} & \pm 2 \%\left(10 \sim 35^{\circ} \mathrm{C}\right) \\ & \pm 4 \%\left(0 \sim 50^{\circ} \mathrm{C}\right) \end{aligned}$
Sweep magnification:	$\begin{aligned} \mathrm{X} 10 & \pm 5 \%\left(10 \sim 35^{\circ} \mathrm{C}\right) \\ & \pm 6 \%\left(0 \sim 50^{\circ} \mathrm{C}\right) \end{aligned}$
Linearity:	$20 \mathrm{~ns} / \mathrm{div}$ to $0.5 \mathrm{~s} / \mathrm{div} \pm 3 \%$ ($\pm 5 \%$ with X 10 magnification)
HOLDOFF:	Continuously adjustable for A sweep from NORM to X5
Trace separation:	B positionable up to 4 divisions separated from A sweep, continuously adjustable.
Delay method:	Continuous delay, Trigger delay
Delay time:	0.2 to 10 times the sweep time from 200 ns to 0.5 s , continuously adjustable.
Time difference measurement accuracy:	
	$\begin{aligned} & \pm(1 \% \text { of measurement }+0.1 \% \\ & \text { of full scale) }\left(10 \sim 35^{\circ} \mathrm{C}\right) \\ & \pm 4 \%\left(0 \sim 50^{\circ} \mathrm{C}\right) \end{aligned}$
Delay jitter:	$1 / 20000$ of the full scale sweep time.

TRIGGERING

A TRIG

A trigger modes:	AUTO, NORM, SINGLE,
	FIX: at the center of the
	waveform
Trigger source:	V MODE, CH1, CH2, (EXT)
Coupling modes:	CH3 $1 / 1$ and $1 / 10$, LINE
	AC, LFREJ, HFREJ, DC, VIDEO
	VIDEO-LINE sync automatical-
	ly selected at sweep times of
	$50 \mu \mathrm{~s} /$ div to $20 \mathrm{~ns} /$ div.
	VIDEO-FRAME sync automati-
	cally selected at sweep times
	of $0.5 \mathrm{~s} /$ div to $0.1 \mathrm{~ms} /$ div.
Trigger level:	$\pm 90^{\circ}$ adjustable
Polarity:	$+/-$

SPECIFICATIONS

B TRIG

B trigger modes:	STARTS AFTER DELAY,
	TRIGGERABLE AFTER DELAY
Trigger source:	CH1,CH2, (EXT) CH4 $1 / 1$ and
	$1 / 10$
Coupling modes:	AC, LFREJ, HFREJ, DC
Trigger level:	$\pm 90^{\circ}$ adjustable
Polarity:	$+/-$

TRIGGER SENSITIVITY (A AND B)

COUPLING	FREQ RANGE	MINIMUM SYNC AMPLITUDE		
		INT	EXT	EXT 1/10
DC	$\begin{aligned} & \mathrm{DC} \sim 20 \mathrm{MHz} \\ & \mathrm{DC} \sim 50 \mathrm{MHz} \\ & \mathrm{DC} \sim 100 \mathrm{MHz} \end{aligned}$	0.5 div 1.0 div 1.5 div	$\begin{gathered} 50 \mathrm{mV} \\ 100 \mathrm{mV} \\ 210 \mathrm{mV} \end{gathered}$	$\begin{aligned} & 0.5 \mathrm{~V} \\ & 1.0 \mathrm{~V} \\ & 2.1 \mathrm{~V} \end{aligned}$
AC	Same as for DC but with increased minimum level for below 20 Hz .			
$\underset{\text { HFREJ }}{\substack{\text { AC }}}$	Increased minimum level below 20 Hz and above 30 kHz .			
$\begin{gathered} \text { AC } \\ \text { LFREJ } \end{gathered}$	Increased minimum level below 30 kHz .			
VIDEO	FRAME/LINE	0.5 div	50 mV	0.5 V

AUTO: Same as above specifications for above 50 Hz .
FIX:
$40 \mathrm{~Hz} \sim 20 \mathrm{MHz} 1.0 \operatorname{div}(100 \mathrm{mV})$ $40 \mathrm{~Hz} \sim 100 \mathrm{MHz} 1.5 \operatorname{div}(210 \mathrm{mV})$
Jitter:
0.5 ns maximum at 100 MHz , 2ns/div sweep rate (X10 MAG on)

CALIBRATING VOLTAGE AND CURRENT

$$
\begin{aligned}
1 \mathrm{kHz} & \pm 3 \% \text { Positive square wave } \\
1 \mathrm{~V} & \pm 1 \%\left(10 \sim 35^{\circ} \mathrm{C}\right) \\
& \pm 2 \%\left(0 \sim 50^{\circ} \mathrm{C}\right) \\
10 \mathrm{~mA} & \pm 2 \%\left(10 \sim 35^{\circ} \mathrm{C}\right) \\
& \pm 4 \%\left(0 \sim 50^{\circ} \mathrm{C}\right)
\end{aligned}
$$

INTENSITY MODULATION

Input signal:
Input impedance:
Usable frequency range: $D C$ to 10 MHz
\triangle Maximum input voltage: 50 V (dc + ac peak)

VERTICAL AXIS OUTPUT

> Sampled CH1 output

Output voltage: $\quad 50 \mathrm{mVp}-\mathrm{p} / \mathrm{div}$ (into 50Ω load)
Output impedance: Approx. 50Ω
Frequency response: $\quad \mathrm{DC}$ to $100 \mathrm{MHz}(-3 \mathrm{~dB})$ (into 50Ω load)

GATE OUTPUT (A and B)

Output voltage:

TRACE ROTATION
Electrical, adjustable

POWER SUPPLY

Line voltage: $\quad 90 \sim 264 \mathrm{~V}$
Line frequency: $\quad 45 \sim 400 \mathrm{~Hz}$
Power consumption: Approx. 55 W (at $100 \mathrm{~V}, 50 \mathrm{~Hz}$)

DIMENSIONS

Width: $\quad 284 \mathrm{~mm}(328 \mathrm{~mm})$
Height: $138 \mathrm{~mm}(150 \mathrm{~mm})$
Depth: $\quad 400 \mathrm{~mm}(471 \mathrm{~mm})$
() dimensions include protrusions from basic case outline dimensions.

WEIGHT $\quad 7.4 \mathrm{~kg}$

ACCESSORIES

PC-29 Probes 2
Instruction manual...... 1
Handbook................... 1
AC power cord 1
Panel cover................. 1
Probe holder............... 1

OPTION

Accessory bag (MC-78)

ENVIRONMENT

Operating temperature and
humidity for guaranteed
specifications: $\quad 10 \sim 35^{\circ} \mathrm{C}, 85 \%$ maximum RH
Full operating temperature
and humidity range: $\quad 0 \sim 50^{\circ} \mathrm{C}, 90 \%$ maximum RH
Storage temperature and
humidity range: $\quad-20 \sim+70^{\circ} \mathrm{C}, 80 \%$ maximum
Altitude:
$\begin{array}{lr}\text { Operating: } & 5000 \mathrm{~m} \\ \text { Non-operating: } & 12000 \mathrm{~m}\end{array}$

Circuit and ratings are subject to change without notice due to developments in technology.

PREPARATION FOR USE

SAFETY

Before connecting the instrument to a power source, carefully read the following information, the verify that the proper power cord is used and the proper line fuse is installed for power source. If the power source is not applied to your product, contact your dealer. If the power cord is not applied for specified voltage, there is always a certain amount of danger from electric shock.

Line voltage

This instrument operates using ac-power input voltages that 90 V to 264 V at frequencies from 45 Hz to 400 Hz .

Power cord

The ground wire of the 3 -wire ac power plug places the chassis and housing of the oscilloscope at earth ground. Do not attempt to defeat the ground wire connection or float the oscilloscope; to do so may pose a great safety hazard. The appropriate power cord is supplied by an option that is specified when the instrument is ordered. The optional power cords are shown in Fig. 42.

Line fuse

The fuse holder is located on the rear panel and contains the line fuse. Verify that the proper fuse is installed by replacing the line fuse.

EQUIPMENT PROTECTION

1. Never allow a small spot of high brilliance to remain stationary on the screen for more than a few seconds. The screen may become permanently burned. A spot will occur only when the scope is set up for $\mathrm{X}-\mathrm{Y}$ operation and no signal is applied. Either reduce the intensity so the spot is barely visible, switch back to normal sweep operation when no signal is applied, or set up the scope for spot blanking.
2. Never cover the ventilating holes on the top of the oscilloscope, as this will increase the operating temperature inside the case.
3. Never apply more than the maximum rating to the oscilloscope input jacks.
$\mathrm{CH} 1, \mathrm{CH} 2$ INPUT jacks: $800 \mathrm{Vp}-\mathrm{p}$ or 400 V ($\mathrm{dc}+\mathrm{ac}$ peak)
CH3, CH4 INPUT jacks: $\quad 400 \mathrm{~V}$ (dc + ac peak)
Z axis INPUT jack: $\quad 50 \mathrm{~V}$ (dc + ac peak)
Never apply external voltage to the oscilloscope output terminals.
4. Always connect a cable from the earth ground (GND) jack of the oscilloscope to the chassis of the equipment under test. Without this caution, the entire current for the equipment under test may be drawn through the probe clip leads under certain circumstances. Such conditions could also pose a safety hazard, which the ground cable will prevent.
5. Always use the probe ground clips for best results. Do not use an external ground wire in lieu of the probe ground clips, as undesired signals may be introduced.
6. Operation adjacent to equipment which produces strong ac magnetic fields should be avoided where possible. This includes such devices as large power supplies, transformers, electric motors, etc., that are often found in an industrial environment. Strong magnetic shields can exceed the practical CRT magnetic shielding limits and result interference and distortion.
7. Probe compensation adjustment matches the probe to the input of the scope. For best results, compensation of probe should be adjusted initially, then the same probe always used with the input of scope. Probe compensation should be readjusted whenever a probe from a different scope is used.
8. When power is off, the position of each switch where it was set immediately before power-off is held in memory, backed up by battery. If the battery is dead, the LEDs of the switches indicate as follows when supplying power starts.
Vertical MODE: CH1,
HORIZ DISPLAY: A
TRIG MODE: AUTO

CONTROLS AND INDICATORS

Fig. 1

FRONT PANEL

VERTICAL AXIS CONTROL

VOLTS/DIV Control

Vertical attenuator for channel 1; provides step adjustment of vertical sensitivity. When the VARIABLE control is turned to the CAL position, the vertical sensitivity is calibrated in 10 steps from $5 \mathrm{~V} /$ div to $5 \mathrm{mV} /$ div.

For $\mathrm{X}-\mathrm{Y}$ operation this control provides step adjustment of vertical sensitivity.VARIABLE, PULL X5 GAIN Controls VARIABLE;
Rotation provides fine control of channel 1 vertical sensitivity. In the fully clockwise (CAL) position, the vertical attenuator is calibrated. For $X-Y$ operation, this control serves as the Y axis attenuation fine adjustment.

PULL X5 GAIN;

When pulled out, the VOLTS/DIV setting is multiplied by five and for $X-Y$ operation the Y-axis sensitivity is multiplied accordingly. In X5 GAIN mode, the vertical gain is increased and the trace becomes thickness.
(3) $\triangle \mathrm{CH} 1$ POSITION, $\triangle \mathrm{CH} 3$ Controls
$\stackrel{\Delta}{\nabla} \mathrm{CH} 1$ POSITION;
Rotation adjusts vertical position of channel 1 trace. In $X-Y$ operation, rotation adjusts vertical position of display.
$\triangle \mathrm{CH} 3$;
Rotation adjusts vertical position of channel 3 trace on the screen.
(4) UNCAL Lamp

Glows when channel 1 VARIABLE control (2) is not set to CAL position. Reminds user that channel 1 measurements are not calibrated.
(5) PULL X5 GAIN Indicator

Indicate that the channel 1 VARIABLE control is in the pulled out position, i.e. that the channel 1 sensitivity is five times the VOLTS/DIV setting.

(6) AC-GND-DC switch

Three-position lever switch which operates as follows:
AC: Blocks dc component of channel 1 input signal.
GND: Opens signal path and grounds input to vertical amplifier. This provides a zero-signal base line, the position of which can be used as a reference when performing dc measurements.
DC: Direct input of ac and dc component of channel 1 input signal.

INPUT Jack

Vertical input for channel 1 trace in normal sweep operation. Vertical input for $X-Y$ operation.

CONTROLS AND INDICATORS

VOLTS/DIV Control

Vertical attenuator for channel 2; provides step adjustment of vertical sensitivity, VARIABLE control is turned to the CAL position, the vertical sensitivity calibrated in 10 steps from $5 \mathrm{~V} /$ div to $5 \mathrm{mV} /$ div. For $X-Y$ operation the control provides step adjustment of horizontal sensitivity.
(9) VARIABLE, PULL X5 GAIN Controls VARIABLE;
Rotation provides fine control of channel 2 vertical sensitivity. In the fully clockwise (CAL) position, the vertical attenuator is calibrated. For $X-Y$ operation, this control serves as the X axis attenuation fine adjustment.

PULL X5 GAIN;
When pulled out, the VOLTS/DIV setting is multiplied by five and for X -Y operation the X -axis sensitivity is multiplied accordingly. In X5 GAIN mode, the vertical gain is increased and the trace becomes thickness.
(10) $\mathrm{CH} 2 \stackrel{\Delta}{\nabla}$ POSITION X-Y $-\frac{\Delta}{\nabla} \mathrm{CH} 4$ Controls $\stackrel{\Delta}{\nabla} \mathrm{CH} 2$ POSITION;
Rotation adjusts vertical position of channel 2 trace. In X-Y operation adjusts horizontal position of display.
$\stackrel{\Delta}{\mathrm{\nabla}} \mathrm{CH} 4$;
Rotation adjusts vertical position of channel 4 trace on the screen.
(11) UNCAL Lamp

Glows when channel 2 VARIABLE control (9) is not set to CAL position. Reminds user that channel 2 measurements are not calibrated.

(12) PULL X5 GAIN Indicator

Indicates that the channel 2 VARIABLE control is in the pulled out position, i.e. that the channel 2 sensitivity is five times the VOLTS/DIV setting.

AC-GND-DC Switch

Three-position lever switch which operates as follows:
AC: Blocks dc component of channel 2 input signal.
GND: Opens signal path and grounds input to vertical amplifier. This provides a zerosignal base line, the position of which can be used as a reference when performing dc measurements.
DC: \quad Direct input of ac and dc component of channel 2 input signal.

(14) INPUT Jack

Vertical input for channel 2 trace in normal sweep operation. Horizontal input in $X-Y$ operation.

MODE Switch Assembly

Used to select the basic operating modes of the oscilloscope. LED's indicate what mode has been selected.
CH1: Only the input signal to channel 1 is displayed as a single trace.

CH 2 : Only the input signal to channel 2 is displayed as a single trace.
DUAL: When engaged this button, if either ALT or CHOP switch is pushed in, dual trace mode presents traces of channel 1, channel 2 input waveforms.
ADD: \quad Channel 1 and channel 2 input signals are added and the sum is displayed as a single trace. When the CH 2 INV button is engaged, the waveform from channel 2 is subtracted from the channel 1 waveform and the difference is displayed as a single trace.
QUAD: When engaged this button, if either ALT or CHOP switch is pushed in, quad trace mode presents traces of channel 1 through channel 4 input waveforms
ALT: Alternate sweep is selected regardless of sweep time as dual trace (channel 1 and channel 2) or quad trace (channel 1 through channel 4)
CHOP: Chop sweep is selected regardless of sweep time at approximately 250 kHz as dual trace (channel 1 and channel 2) or quad trace (channel 1 through channel 4).

CH2 INV: In the NORM position (button released), the channel 2 signal is non-inverted. In the INV position (button engaged), the channel 2 signal is inverted.
20 MHzBW : Limits the vertical bandwidth to approximately 20 MHz when engaged this button.

NOTE:
The various vertical mode settings are related to horizontal mode and trigger source. See the sections on HORIZ DISPLAY and SOURCE for a description of this relationship.
(16) BEAM FIND Push Button Switch

Limit the display to within the graticule area, independently of display position.

CONTROLS AND INDICATORS

Fig. 2

POWER SUPPLY/CRT DISPLAY CONTROLS

(17) A INTENSITY, B INTENSITY Controls

Allows adjustment of intensity for the A sweep and B sweep respectively.
A INTENSITY;
Adjusts the trace intensity for the A sweep and the display intensity for $X-Y$ operation.

B INTENSITY;
Adjusts the intensity of the B sweep.
(18) POWER, SCALE ILLUM Controls

Fully counterclockwise rotation (off position) turns off oscilloscope. Clockwise rotation turns on oscilloscope. Further clockwise rotation of the control increases the illumination level of scale.
(19) LED Pilot Lamp

Indicates that the power supply has been turned on.

ASTIG Control

Astigmatism adjustment provides optimum spot roundness when used in conjunction with FOCUS control regardless intensity control.
(21) FOCUS Control

Used to adjust the trace for optimum focus.
Auto-focus circuit keeps waveform in focus with changes in intensity.

TRACE ROTATION Control

Electrically rotates trace to horizontal position. Strong magnetic fields may cause the trace to be tilted. The degree of tilt may vary as the scope is moved from one location to another. In these cases, adjust this control.
(23) CAL, $1 \mathrm{Vp}-\mathrm{p}, \approx 1 \mathrm{kHz}$ Terminal

Provides $1 \mathrm{kHz}, 1$ Volt peak-to-peak square wave signal. This is useful for probe compensation adjustment.

(24) \perp GND Terminal/Binding post.

Ground terminal - use it to connect the instrument to the earth ground.

Fig. 3

HORIZONTAL AXIS CONTROLS

HORIZ DISPLAY Switch assembly

Used to select the horizontal display mode. LED's indicate what mode has been selected.
A: \quad Only A sweep is operative with the B sweep dormant.
ALT: A sweep alternates with the B sweep. For this mode of operation, the B sweep appears as an intensified section on the A sweep.
A-INT-B: Duration of the B sweep appears as an intensified section on the A sweep.
B DLY'D: Only delayed B sweep is operative.
DUAL: A sweep and B sweep operate independently. For this mode the two sweeps are triggered by the A trigger source and B trigger source respectively.
$X-Y$: \quad Channel 1 becomes the Y-axis and channel 2 becomes the X-axis for X - Y operation. The settings of the vertical MODE and TRIG MODE switches have no effect.
(26) A SWEEP TIME/DIV, B SWEEP TIME/DIV Controls
A SWEEP TIME/DIV:
Horizontal coarse A sweep time selector.

Selects calibrated sweep times of $20 \mathrm{~ns} / \mathrm{div}$ to 0.5 s/div in 23 steps when A VARIABLE control (27) is set to CAL position (fully clockwise).

B SWEEP TIME/DIV;

Horizontal coarse B sweep time selector.
Selects sweep times of $20 \mathrm{~ns} /$ div to $50 \mathrm{~ms} / \mathrm{div}$ in 20 steps. B sweep time selector is constructed to make it possible to set the B sweep time slower than A sweep time. No fine adjustment is available for the B sweep time.
(27) A VARIABLE, PULL CHOP F. SELECT Controls A VARIABLE;
Fine A sweep time adjustment. In the fully clockwise (CAL) position, the A sweep time is calibrated.

PULL CHOP F. SELECT

The chopping frequency may be changed by pulling this control outward. This is useful in cases where the input signal is triggered to the chopping frequency.

(28) UNCAL Lamp

Grows when the A VARIABLE control is not set to the CAL position. Reminds user that the A sweep time is not calibrated.

CONTROLS AND INDICATORS

(29) DELAY TIME MULT Control

Adjusts the start time of the B sweep to some delay time after the start of the A sweep.
The delay time may be set to values between 0.2 and 10 times the setting of the A SWEEP TIME/DIV control.
(30) \triangle TRACE SEP, HOLDOFF Controls
\triangle TRACE SEP
Adjusts vertical separation between A sweep and B sweep (control has effect only in the ALT of HORIZ DISPLAY).
Clockwise rotation increases separation; B sweep moves down with respect to A sweep up to 4 divisions.
In this case, HOLDOFF control has no effect. This control is effective when the HORIZ DISPLAY switch is selected to ALT. Even when the HORIZ DISPLAY switch is selected to DUAL, this control is effective with the vertical MODE switch set to $\mathrm{CH} 1, \mathrm{CH} 2$ or ADD position.

HOLDOFF

Rotation adjusts holdoff (trigger inhibit period beyond sweep duration). Counterclockwise rotation increases holdoff period from NORM to max more than five times before the B ENDS A position.
In the B ENDS A position (fully counterclockwise), the A sweep is reset at the end of the B sweep. And therefore intensity of B sweep increases, B ENDS A mode is applicable to the ALT, A-INT-B and B DLY'D modes of HORIZ DISPLAY.
(31) \triangle POSITION, FINE, PULL X1O MAG Controls - POSITION

Rotation adjusts horizontal position of trace.

FINE, PULL X10 MAG

Rotation becomes fine adjustment of horizontal position of trace. Selects $\times 10$ sweep magnification (PULL $\times 10 \mathrm{MAG}$) when pulled out. Do not use $\times 10$ MAG during $\mathrm{X}-\mathrm{Y}$ operation.

TRIGGER SOURCE CONTROLS

(32) SOURCE Switch

Six-position lever switch; selects triggering source for the A sweep, with following positions;
V. MODE: The trigger source for A sweep is determined by vertical MODE selection.
CH 1: Channel 1 signal is used as a trigger source.
CH 2 : Channel 2 signal is used as a trigger source.
ADD: The algebraic sum of channel 1 and
channel 2 signal is the trigger source. (If CH2 INV engaged, the difference becomes the trigger source.)
DUAL: For ALT mode the signals for CH1 QUAD: through CH 4 alternate as the trigger source. For the CHOP mode the chopping signal becomes the trigger source.

NOTE:

1. When the vertical MODE switch is selected to CHOP position, the display cannot be observed with the input since the chopping signal becomes the trigger source.
2. Synchronization is impossible when input signals are not applied to all channels with the vertical MODE switch set to DUAL or QUAD position.

CH 1 : A sweep is triggered by channel 1 signal regardless of vertical MODE selection.
CH 2 : A sweep is triggered by channel 2 signal regardless of vertical MODE selection.
1/1: A sweep is triggered by channel 3 signal.
$1 / 10$: A sweep is triggered by channel 3 signal attenuated to $1 / 10$.
LINE: A sweep is triggered by line voltage.

(3) COUPLING Switch

Five-position lever switch; selects coupling for A trigger signal.
AC: Trigger is ac coupled. Blocks dc component of input signal; most commonly used position.
LFres: Trigger is coupled through a high-pass filter to eliminate low frequency components for stable triggering of high frequency signals.
HFres: Trigger is coupled through a low-pass filter to eliminate high frequency components for a stable triggering of low frequency signals.
DC: \quad Trigger is dc coupled for sync which includes the effects of dc components. For channel 3 and channel 4, the vertical position adjustment has no effect on the trigger point.
VIDEO: For synchronization of video signals. The position of the A SWEEP TIME/DIV control determines whether FRAME or LINE is to be synchronized. Settings between 0.5 s and 0.1 ms result in FRAME while those between 50μ s and $20 n s$ result in LINE sync.

CONTROLS AND INDICATORS

LEVEL, SLOPE, PULL FIX Controls

LEVEL: Rotation adjusts point on waveform where A sweep starts. When COUPLING switch is selected in VIDEO, the trigger level adjustment has no effect.
SLOPE, PULL FIX:
Adjusts the slope of the A trigger signal. +equals most positive point of triggering and -equals most negative point of triggering. When the control is pulled out the FIX mode is selected for auto level adjustment, under which circumstances outer Trigger LEVEL control no longer has any effect.

TRIG'D Lamp

Green LED lights for duration of triggered A sweep; shows when trigger LEVEL control is properly set to obtain triggering.
(36) CH3 or A EXT TRIG Jack

Input terminal of channel 3 signal or A external trigger signal. Channel 3 signal may be observed simultaneously with channel 1,2 and 4 signals when the vertical MODE switch is selected in QUAD.
When the SOURCE switch is set to either EXT (CH3) $1 / 1$ or $1 / 10$, sweep is triggered by this input signal.

(3) SOURCE Switch

Four-position lever switch; selects the triggering source for the B sweep, with following positions;
CH 1 : B sweep is triggered by channel 1 signal.
CH 2 : $\quad \mathrm{B}$ sweep is triggered by channel 2 signal.
1/1: $\quad B$ sweep is triggered by channel 4 signal.
1/10: \quad B sweep is triggered by channel 4 signal attenuated to $1 / 10$.

(38) COUPLING Switch

Four-position lever switch; selects coupling for B trigger signal.
AC: Trigger is ac coupled. Blocks dc component of input signal.
LFres: Trigger is coupled through a high-pass filter to eliminate low frequency components for stable triggering of high frequency signals.
HFres: Trigger is coupled through a low-pass filter to eliminate high frequency components for stable triggering of low frequency signals.
DC: Trigger is dc coupled for sync which includes the effects of dc components.

LEVEL, SLOPE, PULL STARTS AFTER DELAY Controls
LEVEL: Rotation adjusts point on waveform where B sweep starts.
SLOPE: Adjust the slope of the B trigger signal,
+equals most positive point of triggering and -equals most negative point of triggering. For B trigger operation it must be set in its pushed-in position.
PULL STARTS AFTER DELAY:
When it is pulled out, the B sweep starts immediately after the delay time selected by the DELAY TIME MULT and A SWEEP TIME/DIV control, regardless of the trigger LEVEL setting. Even when this switch is in position with the TRIG MODE switch set to AUTO, turning the trigger LEVEL clockwise or counterclockwise release the trigger and set the scope to B STARTS AFTER DELAY operation.

(40) TRIG'D Lamp

Green LED lights for duration of triggered B sweep; shows when trigger LEVEL control is properly set to obtain triggering.

(41) CH4 or B EXT TRIG Jack

Input terminal for the channel 4 signal or B external trigger signal. Channel 4 signal may be observed simultaneously with channel 1,2 and 3 signals when the vertical MODE switch is selected in QUAD.
When the SOURCE switch is set to either EXT (CH4) $1 / 1$, or $1 / 10$, sweep is triggered by this input signal.

TRIG MODE Switch

Push button switch assembly; selects triggering mode.
AUTO: Triggered sweep operation. When trigger signal is present, automatically generates sweep (free runs in absence of trigger signal.)
NORM: Normal triggered sweep operation. No trace is presented when a proper trigger signal is not applied.
SINGLE: Single sweep operation. Note that in this mode, simultaneous observation of both the A and B sweeps is not possible.

NOTE;

For dual or quad trace, single sweep operation, vertical MODE must not be set to ALT. Use the CHOP mode instead.
RESET: When TRIG MODE switch is selected to SINGLE mode, pushing the RESET button initiates a single sweep which will begin when the next sync trigger occurs.

CONTROLS AND INDICATORS

Fig. 4

REAR PANEL

CAL Loop

Current Probe calibration loop. A $10 \mathrm{~mA}, 1 \mathrm{kHz}$ square wave is provided.
(44) A GATE Jack

The output connector for the A sweep gate, a square wave gate signal.
(45) B GATE Jack

The output connector for the B sweep gate, a square wave gate signal.
(46) CH1 OUT Jack

Channel 1 vertical output signal connector. ac coupled output connector. This connector is used to measure the frequency by connecting the frequency counter.
(47) Z. AXIS INPUT Jack

External intensity modulation input; TTL compatible. Positive voltage decreases brightness, negative voltage increases brightness.
(48) POWER LINE CONNECTOR

The input connector for the ac power cord.
(49) FUSE HOLDER

Contain the line fuse. Verify that the proper fuse is installed (1.2A).
(6) Handle (shown in 10 pages)

Carrying handle with comfortable molded finger grip also doubles as tilt stand. Locking detent each 15° allows adjustment of viewing angle.
(51) Feet

Rear feet support oscilloscope in face-up position and double as cord wrap for storing power cord.

OPERATION

Before turning the scope on, set the front panel controls as follows, referring to the section on front panel in this manual.

Fig. 5

[1] NORMAL SWEEP DISPLAY OPERATION

1. Turn the POWER control (18) clockwise - the power supply will be turned on and the pilot lamp will light with the other LED's for the previously set vertical MODE (15), HORIZ DISPLAY (26) and TRIG MODE (42) also lighting.

Set these modes as follows:

Vertical MODE (15)	$:$ CH1
HORIZ DISPLAY (25)	$:$ A
TRIG MODE (4)	$:$ AUTO

2. The trace will appear in the center of the CRT display and can be adjusted by the channel $1 \stackrel{\Delta}{\vee}$ POSITION (3) and 4 POSITION (3) controls. Next, adjust the A INTENSITY (17) and, if necessary, the FOCUS (21) for ease of observation.
3. Vertical MODE

Apply an input signal to channel 1 INPUT jack (7) and adjust VOLTS/DIV (1) for a suitable size display of the waveform. If the waveform does not appear in the display, use the BEAM FIND (16) to locate the waveform adjust the VOLTS/DIV and $\stackrel{\Delta}{\nabla}$ POSITION to bring the waveform comfortably into the center of the CRT display.
Operation with a signal applied to the channel 2 INPUT jack (14) and the vertical MODE set to CH 2 is similar to the above procedure. in the ADD mode the algebraic sum of channel $1+$ channel 2 is displayed as a single trace. If the CH2 INV switch has been pressed,
the algebraic difference of the two waveforms, channel 1 - channel 2 displayed as a single trace. If both channels are set to the same VOLTS/DIV, the difference waveform can be read directly in VOLTS/DIV on the CRT. DUAL mode allows simultaneous observation of channel 1 and channel 2 while QUAD provides viewing of channel 1 through channel 4 simultaneously.
In the DUAL or QUAD mode one of either CHOP or ALT mode applies and should be selected. In the ALT mode, channel 1 and channel 2 or channel 1 through channel 4 are displayed in an alternating fashion.
Note that in the CHOP mode of operation with the SOURCE (32) set to V.MODE, the trigger source is the chopping signal itself, making waveform observation impossible. Use ALT mode instead in such cases. SOURCE must be set to one of $\mathrm{CH} 1, \mathrm{CH} 2$ or CH 3.
4. After setting the SOURCE switch, adjust the LEVEL/ SLOPE control (34). The display on the screen will probably be unsynchronized. Refer to TRIGGERING procedure below for adjusting synchronization and sweep speed to obtain a stable display showing the desired number of waveform.

TRIGGERING

The input signal must be properly triggered for stable waveform observation. Triggering is possible the input signal internally to create a trigger or with an externally provided signal of fixed timing relationship to the observed signal, applying such a signal to the EXT TRIG jack (36).

OPERATION

A TRIGGER

(1) The SOURCE switch selects the signal to be used as the sync trigger. When the V. MODE position is selected, the trigger source is dependent upon the vertical MODE selection. In this manner, each waveform being observed becomes its own trigger signal; e.g., when the vertical MODE is changed from CH 1 to CH 2 , the source signal is also changed from channel 1 to channel 2. This also permits synchronization of waveforms (even without a timing relationship) in the DUAL and QUAD modes. However, when phase or timing comparison is desired in DUAL and QUAD modes, all waveforms must be triggered by the same source, and the V. MODE position is unsuitable. Also, as explained previously, CHOP cannot be used in conjunction with V. MODE in DUAL or QUAD mode. If the SOURCE switch is set to the CH 1 (or CH 2) position, the channel 1 (or CH 2) input signal is the trigger source, regardless of the vertical mode. CH 1 (or CH 2) is often used as the trigger source when timing comparison is desired. If the SOURCE switch is set to the CH 3 position, the signal applied to the CH 3 or A EXT TRIG jack becomes the trigger source. This signal must have a timing relationshiop to the displayed waveforms for a synchronized display. In QUAD mode, the signal applied to the CH 3 or A EXT TRIG jack becomes both the trigger source and the displayed channel 3 signal. If the SOURCE switch is set to LINE position, triggering is derived from the input line voltage. This is useful measurements that are related to line frequency.
(2) After setting SOURCE, adjust the trigger LEVEL control to set the trigger point. Trigering is indicated by the green LED lighting.
As necessary to obtain a stable synchronized signal display, adjust HOLDOFF (30) and COUPLING (33) controls.
If the SLOPE control is pulled out, the trigger level is put into the FIX mode with the trigger point at the center of the waveform.
(3) Adjust the A SWEEP TIME/DIV (26) control for an appropriate display of the signal input. If required, use the A VARIABLE (27) control as well.
This completes the adjustment procedure for normal A sweep display operation.

[2] MAGNIFIED SWEEP OPERATION

Since merely shortening the sweep time to magnify a portion of an observed waveform can result in the desired portion disappearing off the screen, such magnified display should be performed using the MAGNIFIED SWEEP.

Procedure:

Using the POSITION control,adjust the desired portion of waveform to the center of the CRT. Pull out the FINE PULL X10 MAG (31) control to magnify the display 10 times. For this type of display the sweep time is the SWEEP TIME/DIV setting divided by 10.

[3] DELAYED SWEEP OPERATION

Delayed sweep operation is achieved by use of both the A sweep and the B sweep.

Procedure:

1. First select the HORIZ DISPLAY switch to A and adjust the scope for a normal waveform display.
2. Pull out the, PULL STARTS AFTER DELAY (39) control to set the sweep in the STARTS AFTER DELAY mode. Select the HORIZ DISPLAY to the A-INT-B mode and a portion of the B sweep representing the B SWEEP TIME/DIV will appear as an intensified portion of the A sweep. The B sweep intensity is adjusted using the B INTENSITY control (17).
3. Shift the intensified portion of waveform (section to be magnified) along the A sweep by use of the DELAY TIME MULT (99)
4. Select the HORIZ DISPLAY switch to B DLY'D to display the A-INT-B intensified portion as a magnified B DLY'D sweep.

Delay Time (magnified portion) = DELAY TIME MULT setting \times A SWEEP TIME/DIV setting.
5. For STARTS AFTER DELAY operation, apparent jitter increases as magnification increases. To obtain a jitter free display, push in the SLOPE, PULL STARTS AFTER DELAY control. In this mode the signal selected by the B SOURCE switch (3) becomes the B trigger source, making use of the B trigger LEVEL (39) control to set the trigger point. B SOURCE, COUPLING and LEVEL SLOPE are set in a manner similar to that of the corresponding controls for A sweep.

A-INT-B Intensified zone to be magnified

B DLY'D

Fig. 6

OPERATION

Note that for type of operation both the DELAY TIME MULT and trigger LEVEL affect the start of the B sweep so that the delay time is used as a reference point.

[4] ALTERNATING SWEEP OPERATION

A sweep and B sweep are usable in an alternating fashion making it possible to observe both the normal and magnified waveform simultaneously.

Procedure:

1. Select the HORIZ DISPLAY switch to A and adjust for a normal waveform display.
2. Pull out the PULL STARTS AFTER DELAY control and select the HORIZ DISPLAY to ALT. Adjust TRACE SEP (30) for easy observation of both the A and B traces.

The upper trace is the non-magnified portion of the waveform with the magnified portion super-imposed as an intensified section. The lower waveform is the intensified portion displayed magnified.
B INTENSITY can be used to adjust the intensity of the super-imposed waveform.
3. The DELAY TIME MULT control can be used to continuously slide the magnified portion of the waveform across the A sweep period to allow magnification of precisely the desired portion of waveform.
4. Apparent display jitter increases with increased magnification as is the case with delayed sweep discussed above. By cancelling the magnified operating mode by pushing in the PULL STARTS AFTER DELAY control, B trigger LEVEL control can be used to set the trigger point.

Fig. 7

[5] DUAL SWEEP OPERATION

Up until now we have discussed using the B sweep to display only a Delayed sweep of the A sweep signal. In the DUAL mode A and B sweeps are performed independently so that two non time-related signals can be observed at one time.

Procedure:
The A sweep and B sweep are controlled by A trigger and B trigger controls respectively.
While triggering of A and B sweeps independently using the input signals themselves is quite simple and presents no particular problems, use of a common trigger source or use of A to trigger B and vice versa can result in some impossible triggering conditions for signals that are not related to each other in a timing sense.
For DUAL operation the A and B sweeps alternate regardless of the setting of the ALT and CHOP switches.
This A sweep/B sweep/Trigger source/Vertical MODE relationships are outlined in the following tables.

A SOURCE (A sweep)

		MODE					
		CH 1	CH2	DUAL	ADD	QUAD	
$\begin{array}{\|c} S \\ O \\ U \\ R \\ C \\ E \end{array}$	V. MODE	CH 1	CH2	$\begin{gathered} \mathrm{CH} 1, \mathrm{CH}_{(1)} \\ \mathrm{CLL}_{(1)} \end{gathered}$	$\mathrm{CH} 1+\mathrm{CH} 2$	$\begin{aligned} & \mathrm{CH} 1, \mathrm{CH} 4 \\ & \mathrm{ALT}(* 2) \end{aligned}$	Trigger Source
		CH1	CH2	CH 1	$\mathrm{CH} 1+\mathrm{CH} 2$	$\mathrm{CH} 1, \mathrm{CH} 3$	CRT Display
	CH 1	CH 1	CH1	CH 1	CH1	CH1	Trigger Source
		CH 1	CH 2	CH 1	$\mathrm{CH} 1+\mathrm{CH} 2$	\mid	CRT Display
	CH 2	CH 2	CH2	CH2(*)	CH 2	CH2(*)	Trigger Source
		CH 1	CH 2	CH1	$\mathrm{CH} 1+\mathrm{CH} 2$	$\underset{\text { AlT }}{\text { CHIT, }}$	CRT Display
	EXT	CH3	CH3	CH3	CH3	CH3	Trigger Source
	CH3	CH1	CH2	CH 1	$\mathrm{CH} 1+\mathrm{CH} 2$	$\begin{aligned} & \mathrm{CH} 1 \mathrm{CH} \\ & \mathrm{ALT}(*) \end{aligned}$	CRT Display

B SOURCE (B sweep)

*Note 1: A sweep is triggered by alternate signals from channel 1 and channel 2, but only the channel 1 signal on the display is triggered.
*Note 2: A sweep is triggered by alternate signals from channel 1 through channel 2 , but only the channel 1 and channel 3 signals on the display are triggered.
*Note 3: A sweep is triggered by channel 1 signal and channel 1 and channel 3 signals are displayed.
*Note 4: A sweep is triggered by channel 3 signal and channel 1 and channel 3 signals are displayed.
*Note 5: B sweep is triggered by channel 2 signal and channel 2 and channel 4 signals are displayed.
*Note 6: B sweep is triggered by channel 4 signal but channel 2 and channel 4 signals are displayed.
*Note 7: If there is no time relation between channel 1 and channel 2 input, triggering is not possible.
Please bear in mind these relationship when using DUAL mode operation.

OPERATION

NOTE:

For DUAL operation be sure to select the TRIG MODE switch to AUTO to allow sweep of both A and B to be performed.

When A and B sweeps are to be used alternately, set up the scope to provide both sweeps.

[6] X-Y OPERATION

Phase difference measurements may be made by use of the $\mathrm{X}-\mathrm{Y}$ display mode.

Procedure:
Select the HORIZ DISPLAY switch to the $X-Y$ mode. In this mode the channel 1 input becomes the Y-axis input and the channel 2 input the X-axis input for $X-Y$ display. For $X-Y$ operation the X and Y positions are adjusted using the channel 2Δ POSITION, $X-Y$ and channel 1Δ POSITION controls respectively.
X and Y sensitivity are set by using the channel 2 and channel 1 VARIABLE, VOLTS/DIV controls respectively. By pulling out the two above mentioned VARIABLE controls, the sensitivities of both the X and Y axis are magnified by 5 times. A INTENSITY control is used to adjust the intensity of the display during $X-Y$ operation.

[7] SINGLE SWEEP OPERATION

This mode of display is useful for looking at nonsynchronous or one time events.

Procedure:

1. Select the TRIG MODE to either AUTO or NORM, and the SLOPE PULL FIX control to pushed-in position.
Apply a signal of approximately the same amplitude and frequency as the signal that is to be observed as the trigger signal and set the trigger LEVEL.
2. Select TRIG MODE to SINGLE and press the RESET button - observe that the red LED lights to indicate the reset condition. This LED goes out when the A sweep period is completed.
3. After the above set-up is completed the scope is ready to operate in the SINGLE sweep mode of operation after resetting the scope using the RESET button. Input of the trigger signal results in one and only one sweep.

NOTE:
With the HORIZ DISPLAY select to ALT or DUAL, the simultaneous observation of the A sweep and B sweep waveforms at SINGLE sweep mode is not possible. Also for DUAL or QUAD operation simultaneous observation is not possible using ALT mode. Set the scope to the CHOP mode in this case.

[8] DUAL AND QUAD TRACE OPERATION

By setting the vertical MODE to DUAL or QUAD, Dual and Quad trace operations can be achieved. Additionally selecting the HORIZ DISPLAY to ALT produces up to an 8 trace.
Operation of the various controls is for this type of display mode similar to the operation described above for Alternating sweep operation.

[9] CASCADED OPERATION

This mode of operation is used when sensitivity greater than $1 \mathrm{mV} / \mathrm{div}$ is required.

Procedure:

1. Connect the CH 1 OUT jack to the channel 2 input jack using a BNC cable through the 50Ω termination.
2. For cascade operation do not pull the channel 1 and channel 2×5 GAIN switches toward you.
3. Select vertical MODE to CH 2.
4. Set the channel 1 and channel 2 VOLTS/DIV to 5 mV and input a signal for a sensitivity of $500 \mu \mathrm{~V} / \mathrm{div}$ on channel 1.

APPLICATION

PROBE COMPENSATION

If accurate measurements are to be made, the effect of the probe being used must be properly adjusted output of the measurement system using the internal calibration signal or some other squarewave source.

1. Connect the probe to the channel to be used and set the various controls for a normal A sweep display.
2. Adjust the SWEEP TIME/DIV control for display of several cycles of the signal from the calibration output, CAL, terminal.
3. Adjust the probe compensation control for a proper waveform display.
4. The other channels are compensated for in the same way.

Correct compensation

Over compensation

Insufficient compensation

Fig. 8

TRACE ROTATION COMPENSATION

Rotation from a horizontal trace position can be the cause of measurement errors.
Adjust the scope controls for a normal display. Set the AC-GND-DC switch to GND and TRIG MODE switch to AUTO.
Adjust the POSITION control such that the trace is over the center horizontal graduation line.
If the trace appears to be rotated from horizontal, align it with the center graduation line using the TRACE ROTATION control located on the front panel.

DC VOLTAGE MEASUREMENTS

This procedure describes the measurement procedure for dc waveforms.

Procedure:

1. Connect the signal to be measured to the vertical INPUT jack and select the vertical MODE to the channel to be used.
Set the VOLTS/DIV and SWEEP TIME/DIV controls to obtain a normal display of the waveform to be measured. Set the VARIABLE control to the CAL.
2. Select the TRIG MODE switch to AUTO and AC-GNDDC switch to GND, which establishes a trace at the
zero volt reference. Using the 考 POSITION control, adjust the trace position to the desired reference level position, making sure not to disturb this setting once made.
3. Set the AC-GND-DC switch to the DC position to observe the waveform, including its dc component. If an appropriate reference level position was selected in step 3 or an in appropriate or VOLTS/DIV setting was made, the waveform may not be visible on the CRT at this point (deflected completely off the screen). This is especially true when the dc component is large with respect to the waveform amplitude. If so, press BEAM FIND push switch to locate it and reset VOLTS/DIV and/or the POSITION control.
4. Use the POSITION control to bring the portion of the waveform to be measured to the center vertical graduation line of the graticule scale.
5. Measure the vertical distance from the reference level to the point to be measured, (the reference level can be rechecked by momentarily returning the AC-GND-DC switch again to GND).
Multiply the distance measured above by the VOLTS/ DIV setting and is the probe attenuation ratio as well. If " $\times 5$ GAIN" has been set multiply the value by $1 / 5$ as well.
Voltages above and below the reference level are positive and negative values respectively.

Using the formula:
Dc level $=$ Vertical distance in divisions \times (VOLTS/DIV setting) \times (probe attenuation ratio) \times " $\times 5$ GAIN" value $(1 / 5)$

Fig. 9

[EXAMPLE]

For the example shown in Fig. 9, the point being measured is 3.8 divisions from the reference level (ground potential).
If the VOLTS/DIV was set to 0.2 V and a $10: 1$ probe was used.
Substituting the given values:
Dc level $=3.8(\mathrm{div}) \times 0.2(\mathrm{~V}) \times 10=7.6 \mathrm{~V}$

APPLICATION

MEASUREMENT OF THE VOLTAGE BETWEEN TWO POINTS ON A WAVEFORM

This procedure may be used to measure peak-to peak voltages, or for measuring the voltage difference between any two points on a waveform.

Procedure:

1. Apply the signal to be measured to the INPUT jack, select the vertical MODE to the channel to be used and set the AC-GND-DC switch to AC, adjusting VOLTS/ DIV and SWEEP TIME/DIV controls for a normal display. Set the VARIABLE control to CAL.
2. Using the POSITION control adjust the waveform position such that one of the two points falls on a major graduation line.
3. Using the POSITION control, adjust the second point to coincide with the center vertical graduation line.
4. Measure the vertical distance between the two points and multiply the number of divisions by the setting of the VOLTS/DIV control.
If a probe is used, further multiply this by the probe attenuation ratio, if any and if" $\times 5$ GAIN" is used, multiply the value by $1 / 5$ as well.

Using the formula:
Volts Peak-to-Peak
$=$ Vertical distance (div) \times (VOLTS/DIV setting)
\times (probe attenuation ratio) \times " $\times 5$ GAIN" value ${ }^{-1}(1 / 5)$

Fig. 10

[EXAMPLE]

For the example shown in Fig 10, the two points are separated by 4.4 divisions vertically. Let the VOLTS/DIV setting be $0.2 \mathrm{~V} / \mathrm{div}$ and the probe attenuation be $10: 1$.

Substituting the given value:
Voltage between two points $=4.4(\mathrm{div}) \times 0.2(\mathrm{~V}) \times 10$

$$
=8.8 \mathrm{~V}
$$

ELIMINATION OF UNDESIRED SIGNAL COMPONENTS

The ADD feature can be conveniently used to cancel out the effect of an undesired signal component which is superimposed on the signal you wish to observe.

Procedure:

1. Apply the signal containing an undesired component to the channel 1 INPUT jack and the undesired signal itself alone to the channel 2 INPUT jack.
2. Select the vertical MODE switch to DUAL (CHOP) and SOURCE switch to CH2. Verify that channel 2 represents the unwanted signal in reverse polarity. If necessary, reverse polarity by setting CH 2 to INV.
3. Select the vertical MODE switch to ADD, SOURCE switch to V MODE and CH2 VOLTS/DIV and VARIABLE controls so that the undesired signal component is cancelled as much as possible. The remaining signal should be the signal you wish to observe alone and free of the unwanted signal.

Signal containing undesired component (Broken lines: undesired component envelope)

Undesired component signal

APPLICATION

Signal without undesired component

Fig. 11

TIME MEASUREMENTS

This is the procedure for making time measurements between two points on a waveform. The combination of the SWEEP TIME/DIV and the horizontal distance in divisions between the two points is used in the calculation.

Procedure:

1. Apply the signal to be measured to the INPUT jack and select the vertical MODE switch to the channel to be used. Adjust VOLTS/DIV and SWEEP TIME/DIV controls for a normal display.
Be sure that the VARIABLE control is set to CAL.
2. Using the POSITION control set one of the points to be used as a reference to coincide with the horizontal centerline.
Use the $4>$ POSITION control to set this point at the intersection of any vertical graduation line.
3. Measure the horizontal distance between the two points.
Multiply this by the setting of the A SWEEP TIME/DIV control to obtain the time between the two points. If horizontal " $\times 10 \mathrm{MAG}$ " is used, multiply this further by 1/10.

Using the formula:
Time $=$ Horizontal distance (div) $\times($ SWEEP TIME/DIV setting) \times " $\times 10 \mathrm{MAG}^{\prime}$ value ${ }^{-1}(1 / 10)$

[EXAMPLE]

For the example shown in Fig. 12, the horizontal distance between the two points is 5.4 divisions.
If the SWEEP TIME/DIV is $0.2 \mathrm{~ms} / \mathrm{div}$ we calculate.
Substituting the given value:
Time $=5.4($ div $) \times 0.2(\mathrm{~ms})=1.08 \mathrm{~ms}$

Fig. 12

FREQUENCY MEASUREMENTS

Frequency measurements are made by measuring the period of one cycle of waveform and taking the reciprocal of this time value as the frequency.

Procedure:

1. Set the oscilloscope up to display one cycle of waveform (one period).
2. The frequency is the reciprocal of the period measured.

Using the formula:
Freq $=\frac{1}{\text { period }}$

Fig. 13

[EXAMPLE]

For the example shown in Fig. 13, a period of $40 \mu \mathrm{~s}$ is observed and measured:

Substituting the given value:
Freq $=1 /\left[40 \times 10^{-6}\right]=2.5 \times 10^{4}=25 \mathrm{kHz}$

APPLICATION

While the above method relies on the measurement directly of the period of one cycle, the frequency may also be measured by counting the number of cycles present in a given time period.

1. Apply the signal to INPUT jack, setting the vertical MODE switch to the channel to be used and adjusting the various controls for a normal display. Set the VARIABLE control to CAL.
2. Count the number of cycles of waveform between a chosen set of vertical graduation lines.
Using the horizontal distance between the vertical lines used above and the SWEEP TIME/DIV, the time span may be calculated. Multiply the reciprocal of this value by the number of cycles present in the given time span. If " $\times 10 \mathrm{MAG}^{\prime}$ is used multiply this further by 10 .
Note that errors will occur for displays having only a few cycles.

Using the formula:
Freq $=\frac{\# \text { of cycles } \times \text { " } \times 10 \text { MAG" value }}{\text { Horizontal distance }(\text { div }) \times \text { SWEEP TIME/DIV setting }}$

[EXAMPLE]

For the example shown in Fig. 14, within 7 divisions there are 10 cycles.
The SWEEP TIME/DIV setting is $5 \mu \mathrm{~s}$.
Substituting the given value:
Freq $=\frac{10}{7 \times 5(\mu \mathrm{~s})} \fallingdotseq 285.7 \mathrm{kHz}$

Fig. 14

PULSE WIDTH MEASUREMENTS

Procedure:

1. Apply the pulse signal to INPUT jack and select the vertical MODE switch to the channel to be used.
2. Use VOLTS/DIV, VARIABLE and $\stackrel{\wedge}{\nabla}$ POSITION controls to adjust the waveform such that the pulse is easily observed and such that the center pulse width coincides with the center horizontal line on the CRT screen.
3. Measure the distance between the intersection of the pulse waveform and the center horizontal line in divisions. Be sure that the A VARIABLE control is in the

CAL position. Multiply this distance by the A SWEEP TIME/DIV control and by $1 / 10$ is " $\times 10$ MAG" mode is being used.

Using the formula:
Pulse width $=$ Horizontal distance (div) \times (SWEEP TIME/ DIV setting) x " \times MAG 10 " value $^{-1}(1 / 10)$

[EXAMPLE]

For the example shown in Fig. 15, the distance (width) at the center horizontal line is 4.6 divisions and the A SWEEP. TIME/DIV setting is 0.2 ms .

Substituting the given value:
Pulse width $=4.6$ (div) $\times 0.2 \mathrm{~ms}=0.92 \mathrm{~ms}$

Fig. 15

PULSE RISETIME AND FALLTIME MEASUREMENTS

For risetime and falltime measurements, the 10\% and 90\% amplitude points are used as starting and ending reference points.
Procedure:

1. Apply a signal to INPUT jack and select the vertical MODE switch to the channel to be used.
Use the VOLTS/DIV and VARIABLE controls to adjust the waveform peak to peak height to six divisions.
2. Using the $\stackrel{A}{\nabla}$ POSITION control and the other controls, adjust the display such that the waveform is centered vertically in the display. Set the SWEEP TIME/DIV control to as fast a setting as possible consistent with observation of both the 10% and 90% points. Set the A VARIABLE control to CAL.
3. Use the POSITION control to adjust the 10% point to coincide with a vertical graduation line and measure the distance in divisions between the 10% and 90% points on the waveform. Multiply this by the SWEEP TIME/DIV and also by $1 / 10$, if " $\times 10 \mathrm{MAG}$ " made was used.

NOTE:

Be sure that the correct 10% and 90% lines are used. For such measurements the 0,10, 90 and 100% points are marked on the CRT screen.

APPLICATION

Using the formula:
Risetime $=$ Horizontal distance (div) $\times($ SWEEP TIME/DIV setting) \times " $\times 10$ MAG" $^{\text {value }}{ }^{-1}(1 / 10)$

Fig. 16

[EXAMPLE]

For the example shown in Fig. 16, the horizontal distance is 4.0 divisions.
The SWEEP TIME/DIV setting is $2 \mu \mathrm{~s}$
Substituting the given value:
Risetime $=4.0(\mathrm{div}) \times 2(\mu \mathrm{~s})=8 \mu \mathrm{~s}$
Risetime and falltime can be measured by making use of the alternate step 3 as described below as well.
4. Use the $\&$ POSITION control to set the 10% point to coincide with the center vertical graduation line and measure the horizontal distance to the point of the intersection of the waveform with the center horizontal line. Let this distance be D1. Next adjust the waveform position such that the 90% point coincides with the vertical centerline and measure the distance from that line to the intersection of the waveform with the horizontal centerline. This distance is D_{2} and the total horizontal distance is then D_{1} plus D_{2} for use in the above relationship in calculating the risetime or falltime.

Using the formula:
Risetime $=\left(\mathrm{D}_{1}+\mathrm{D}_{2}\right)($ div $) \times($ SWEEP TIME/DIV setting $) \times$ " \times $10 \mathrm{MAG}^{\prime \prime}$ value $^{-1}(1 / 10)$

Fig. 17
[EXAMPLE]
For the example shown in Fig. 17, the measured D_{1} is 1.8 divisions while D_{2} is 2.2 divisions. If SWEEP TIME/DIV setting is 2μ se use the following relationship
Substituting the given value:
Risetime $=(1.8+2.2)(\mathrm{div}) \times 2(\mu \mathrm{~s})=8 \mu \mathrm{~s}$

TIME DIFFERENCE MEASUREMENTS

This procedure is useful in measurement of time differences between two signals that are synchronized to one another but skewed in time.

Procedure:

1. Apply the two signals to channel 1 and channel 2 IN PUT jacks and select the vertical MODE switch to DUAL choosing either ALT or CHOP mode.
Generally for low frequency signals CHOP is chosen with ALT used for high frequency signals.
2. Select the faster of the two signals as the SOURCE and use the VOLTS/DIV and SWEEP TIME/DIV controls to obtain an easily observed display.
Set the A VARIABLE control to CAL.
3. Using the POSITION control set the waveforms to the center of the CRT display and use the POSITION control to set the reference signal to be coincident with a vertical graduation line.
4. Measure the horizontal distance between the two signals and multiply this distance in divisions by the SWEEP TIME/DIV setting.
If " $\times 10 \mathrm{MAG}$ " is being used multiply this again by $1 / 10$.
Using the formula:
Time $=$ Horizontal distance (div) \times (SWEEP TIME/ DIV setting) \times " $\times 10$ MAG" $^{\text {value }}{ }^{-1}(1 / 10)$

Fig. 18

[EXAMPLE]

For the example shown in Fig. 18, the horizontal distance measured is 4.4 divisions. The SWEEP TIME/DIV setting is 0.2 ms .

Substituting the given value:
Time $=4.4(\mathrm{div}) \times 0.2(\mathrm{~ms})=0.88 \mathrm{~ms}$

APPLICATION

PHASE DIFFERENCE MEASUREMENTS

This procedure is useful in measuring the phase difference of signals of the same frequency.

1. Apply the two signals to channel 1 and channel 2 INPUT jacks, selecting the vertical MODE switch to DUAL and choosing either CHOP or ALT mode.
2. Set the SOURCE switch to the signal which is leading in phase and use VOLTS/DIV control to adjust the signals such that they are equal in amplitude. Adjust the other controls for a normal display.
3. Use the SWEEP TIME/DIV and A VARIABLE controls to adjust the display such that one cycle of the signals occupies 8 divisions of horizontal display.
Use the $\stackrel{\Delta}{ }$ POSITION control to bring the signals in the center of the screen.
Having set up the display as above, one division now represents 45° in phase.
4. Measure the horizontal distance between corresponding points on the two waveforms.

Using the formula:
Phase difference $=$ horizontal distance (div) $\times 45^{\circ} / \mathrm{div}$

Fig. 19
[EXAMPLE]
For the example shown in Fig. 19, the horizontal distance is 1.7 divisions.

Substituting the given value:
The phase difference $=1.7($ div $) \times 45^{\circ} / \mathrm{div}=76.5^{\circ}$
The above setup allows 45° per division but if more accuracy is required the SWEEP TIME/DIV setting may be changed and magnified without touching the A VARIABLE control and if necessary the trigger level can be readjusted.

For this type of operation, the relationship of one division to 45° no longer holds. Phase difference is defined by the formula as follow.

Phase difference $=$ horizontal distance of new sweep range (div) $\times 45^{\circ} /$ div
$\times \frac{\text { New SWEEP TIME/DIV setting }}{\text { Original SWEEP TIME/DIV setting }}$
Another simple method of obtaining more accuracy quickly is to simply use " $\times 10 \mathrm{MAG}^{\prime}$ for a scale of $45^{\circ} / \mathrm{div}$

One cycle adjusted to occupy 8 div.

Expanded sweep waveform display.
Fig. 20

RELATIVE MEASUREMENTS

If the frequency and amplitude of some reference signal are known, an unknown signal may be measured for level and frequency without use of the VOLTS/DIV or SWEEP TIME/DIV controls for calibration.
The measurement is made in units relative to the reference signal.

\star Vertical Sensitivity

Setting the relative vertical sensitivity using a reference signal.

1. Apply the reference signal to INPUT jack and adjust the display for a normal waveform display.
Adjust the VOLTS/DIV and VARIABLE controls so that the signal coincides with the CRT face's graduation lines. After adjusting, be sure not to disturb the setting of the VARIABLE control.

APPLICATION

2. The vertical calibration coefficient is now the reference signal's amplitude (in volts) divided by the product of the vertical amplitude set in step 1 and the VOLTS/DIV setting.
Using the formula:
Vertical coefficient
$=\frac{\text { Voltage of the reference signal (V) }}{\text { Vertical amplitude (div) } \times \text { VOLTS/DIV setting }}$
3. Remove the reference signal and apply the unknown signal to INPUT jack, using the VOLTS/DIV control to adjust the display for easy observation. Measure the amplitude of the displayed waveform and use the following relationship to calculate the actual amplitude of the unknown waveform.

Amplitude of the unknown signal (V)
$=$ Vertical distance (div) \times Vertical coefficient
\times VOLTS/DIV setting

[EXAMPLE]

For the example shown in Fig. 21, the VOLTS/DIV setting is 1 V .
The reference signal is 2 Vrms . Using the VARIABLE control, adjust so that the amplitude of the reference signal is 4 divisions.

Substituting the given value:
Vertical coefficient $=\frac{2 \mathrm{Vrms}}{4(\mathrm{div}) \times 1(\mathrm{~V})}=0.5$

Fig. 21

Fig. 22

Then, measure the unknown signal and VOLTS/DIV setting is 5 V and vertical amplitude is 3 divisions. (Fig. 22)

Substituting the given value:
Effective value of unknown signal $=3$ (div) $\times 0.5 \times 5(\mathrm{~V})$

$$
=7.5 \mathrm{Vrms}
$$

* Period

Setting the relative sweep coefficient with respect to a reference frequency signal.

1. Apply the reference signal to INPUT jack, using the VOLTS/DIV and VARIABLE controls to obtain an easily observed waveform display.
Using the SWEEP TIME/DIV and VARIABLE controls, adjust one cycle of the reference signal to occupy a fixed number of scale divisions accurately. After this is done be sure not to distrub the setting of the A VARIABLE control.
2. The sweep (horizontal) calibration coefficient is then the period of the reference signal divided by the product of the number of divisions used in step 1 for setup of the reference and the setting of the SWEEP TIME/ DIV control.

Using the formula:
Sweep coefficient
$=\frac{\text { Period of the reference signal (sec) }}{\text { Horizontal width (div) } \times \text { SWEEP TIME/DIV setting }}$
3. Remove the reference signal and input the unknown signal, adjusting the SWEEP TIME/DIV control or easy observation.
Measure the width of one cycle in divisions and use the following relationship to calculate the actual period.

Using the formula:
Period of unknown signal $=$ Width of 1 cycle (div) \times sweep coefficient \times SWEEP TIME/DIV setting

Fig. 23

APPLICATION

Fig. 24

[EXAMPLE]

For the example shown in Fig. 23, A SWEEP TIME/DIV setting is 0.1 ms and apply 1.75 kHz reference signal. Adjust the A VARIABLE so that the distance of one cycle is 5 divisions.
Substituting the given value:
Horizontal coefficient $=\frac{1.75(\mathrm{kHz})^{-1}}{5 \times 0.1(\mathrm{~ms})}=1.142$
Then, A SWEEP TIME/DIV setting is 0.2 ms and horizontal amplitude is 7 divisions. (Fig. 24)

Substituting the given value:
Pulse width $=7(\mathrm{div}) \times 1.142 \times 0.2(\mathrm{~ms}) \fallingdotseq 1.6 \mathrm{~ms}$

PULSE JITTER MEASUREMENTS

1. Apply the signal to INPUT jack and set the vertical MODE switch to the channel to be used.
Use the VOLTS/DIV control to adjust for an easy to observe waveform display. Special care should be taken to adjust the Trigger group of controls for a stable display.
Set the A VARIABLE control to CAL.
2. Select the HORIZ DISPLAY switch to A-INT-B, and pull out the B SLOPE switch to affect the STARTS AFTER DELAY mode.
Adjust the DELAY TIME MULT control for intensified display of the waveform to be measured.
3. Using the B SWEEP TIME/DIV control, adjust the display for intensification of the entire jitter area of the waveform.
4. Select the HORIZ DISPLAY switch to B DLY'D. Measure the width of the jitter area.
The jitter time is this width in divisions multiplied by the setting of the B SWEEP TIME/DIV control.
Using the formula:
Pulse jitter $=$ Jitter width (div) \times B SWEEP TIME/DIV setting
[EXAMPLE]
For the example shown in Fig. 25, the jitter width was measured at 1.6 divisions wide with the B SWEEP TIME/ DIV setting set at $0.2 \mu \mathrm{~s}$.
Substituting the given value:
Pulse jitter $=1.6 \times 0.2 \mu \mathrm{~s}=0.32 \mu \mathrm{~s}$

Fig. 25

SWEEP MULTIPLICATION (MAGNIFICATION)

The apparent magnification of the delayed sweep is determined by the values set by the A and B SWEEP TIME/DIV controls

1. Apply a signal to INPUT jack and set the vertical MODE to the channel to be used, adjusting VOLTS/DIV control for an easily observed display of the waveform and the other controls if necessary.
2. Set the A SWEEP TIME/DIV control so that several cycles of the waveform are displayed. Set the B SLOPE switch to STARTS AFTER DELAY (pull out).
When the HORIZ DISPLAY switch is select to A-INT-B, the magnified portion of the waveform will appeared intensified on the CRT display.
3. Use the DELAY TIME MULT control to shift the intensified portion of waveform to correspond with the section to be magnified for observation. Use the B SWEEP TIME/DIV control to adjust intensified portion to cover the entire portion to be magnified.
4. Select the HORIZ DISPLAY switch to either ALT or B DLY'D and use the $\frac{\Delta}{\Delta}$ POSITION and $\frac{\Delta}{\Delta}$ TRACE SEP controls to adjust the display for easy viewing.
5. Time measurements are performed in the same manner from the B sweep as was described above for A sweep time measurements.
The apparent magnification of the intensified waveform section is the A SWEEP TIME/DIV control divided by the B SWEEP TIME/DIV control.

Using the formula:
The apparent magnifi- A SWEEP TIME/DIV setting cation of the intensified $=\frac{\text { A SWEEP TIME/DIV setting }}{\text { B SWEEP TIM }}$ waveform

APPLICATION

Fig. 26

[EXAMPLE]

For the example shown in Fig. 26, the A SWEEP TIME/DIV setting is $2 \mu \mathrm{~s}$ and the B SWEEP TIME/DIV setting is 0.2 $\mu \mathrm{s}$.
Substituting the given value:
Apparent magnification ratio $=\frac{2 \times 10^{-6}}{0.2 \times 10^{-6}}=10$
With the above magnification, if the magnification ratio is increased, delay jitter will occur.
To achieve a stable display, cancel the STARTS AFTER DELAY mode and used the triggered mode of operation.

1. Perform the above steps 1 through 3 .
2. Press the SLOPE switch in to cancel the STARTS AFTER DELAY mode and set the B SOURCE switch to the same signal as the A trigger source.
3. Select the HORIZ DISPLAY switch to either ALT or B DLY'D.
The apparent magnification will be the same as described above.
If a proper B trigger signal is not applied, intensification may not occur. If this happens, vary the signal level or trigger with an external signal source.

DELAYED SWEEP TIME MEASUREMENTS

Using the B sweep high accuray time measurements can be made.

1. Apply a signal to INPUT jack and set the vertical MODE switch to the channel to be used. Adjust the VOLTS/ DIV and the other controls if necessary to obtain an easily observed waveform display.
Set the A VARIABLE control to CAL.
2. Adjust the A SWEEP TIME/DIV control to display the portion of waveform to be measured. Pull out the B SLOPE switch to set the STARTS AFTER DELAY mode. Select the HORIZ DISPLAY switch to A-INT-B and adjust the B SWEEP TIME/DIV control for as small as possible an intensified region.
3. Using the POSITION control adjust the waveform position so as to intersect with the center horizontal line on the CRT screen. Use the DELAY TIME MULT control so that the intensified portion of waveform touches the center horizontal line and record the setting of the DELAY TIME MULT control at this point.
4. Use the DELAY TIME MULT control to adjust intensified portion to same point of the second weveform. The waveform period is the second dial reading minus the first dial reading multiplied by the A SWEEP TIME/ DIV setting.

Using the formula:
Period $=$ (2nd dial reading -1 st dial reading $)$
\times Delayed sweep time (A SWEEP TIME/DIV setting)

Fig. 27

[EXAMPLE]

For the example shown in Fig. 27, the first dial setting is 1.01 and the second is 6.04 . The setting of A SWEEP TIME/DIV setting is 2 ms .

Substituting the given value:
Period $=(6.04-1.01) \times 2(\mathrm{~ms})=10.06 \mathrm{~ms}$

PULSE WIDTH MEASUREMENTS USING DELAYED SWEEP

This method is similar to the time measurement method and can be used or high accuracy pluse width measurement.

1. Apply the pulse signal to INPUT jack and set the vertical MODE switch to the channel to be used.
2. Use the VOLTS/DIV, VARIABLE and $\frac{\wedge}{\nabla}$ POSITION controls to adjust the display such that the waveform is easily observable with the center of the pulse width coinciding with the center horizontal graduation line.
Set the A VARIABLE control to CAL.
3. Set the A SWEEP TIME/DIV control to display the portion of the waveform to be measured, pulling out the B SLOPE switch to set up the STARTS AFTER DELAY mode of display.
Select the HORIZ DISPLAY switch to A-INT-B, and adjust the B SWEEP TIME/DIV control for as short as possible an intensified section of waveform.
4. Using the DELAY TIME MULT control, adjust the display so that the intensified portion touches the center horizontal graduation line of the CRT screen and record the dial setting at this point.

APPLICATION

5. Using the DELAY TIME MULT control adjust the falling edge of the pulse so that it touches the center horizontal graduation line and is intensified.
The pulse width is the second dial reading minus the first dial reading multiplied by the A SWEEP TIME/DIV setting.

Using the formula:
Pulse width $=(2 n d$ dial reading -1 st dial reading $)$
\times Delayed sweep time (A SWEEP TIME/DIV setting)

[EXAMPLE]

For the example shown in Fig. 28, the first dial reading is 0.61 and the second is 5.78 with the A SWEEP TIME/DIV setting at $2 \mu \mathrm{~s}$.

Pulse width $=(5.78-0.61) \times 2(\mu \mathrm{~s})=10.34 \mu \mathrm{~s}$

Fig. 28

FREQUENCY MEASUREMENTS USING DELAYED SWEEP

The frequency is obtained as the reciprocal of the period of one cycle.

1. Measure the period of the waveform using the procedure described above for time measurement.
2. The frequency is then the reciprocal of the period measured.

Using the formula:
Freq $=\frac{1}{\text { Period }}$

[EXAMPLE]

For the example shown in Fig. 29, the period measured is $40.2 \mu \mathrm{~s}$, making the frequency simply.

Fig. 29

PULSE REPETITION TIME

Using the delayed sweep feature, reliable time measurements can be made.

1. Apply a signal to INPUT jack and set the vertical MODE switch to the channel to be used.
Adjust the VOLTS/DIV control to obtain a normal easy to view display of the waveform.
2. Adjust the A SWEEP TIME/DIV control so that at least two cycles of the waveform are displayed.
Select the HORIZ DISPLAY switch to A-INT-B and pull out the B SLOPE switch to affect the STARTS AFTER DELAY mode of operation.
Set the B SWEEP TIME/DIV control as fast a sweep speed as possible.
3. Using the DELAY TIME MULT control adjust the intensified portion to coincide with the first pulse.
Select the HORIZ DISPLAY switch to ALT and use the - TRACE SEP control to adjust the waveforms for easy viewing.
4. Using the DELAY TIME MULT control set the pulse to coincide with one of the vertical graduation lines and record the dial setting at this point.
5. Again using the DELAY TIME MULT control, adjust the second pulse in the same manner to the vertical line used in step 4, recording this dial setting as well. The pulse repetition time is the second dial reading minus the first dial reading multiplied by the A SWEEP TIME/ DIV control setting.

Using the formula:
Pulse repetition time $=$ (2 nd dial reading -1 st dial reading)
\times Delayed sweep time (A SWEEP
TIME/DIV setting)

Substituting the given value:
Freq $=1 /\left(40.2 \times 10^{-6}\right) \fallingdotseq 24.88 \mathrm{kHz}$

APPLICATION

Fig. 30

Fig. 31

[EXAMPLE]

For the example shown in Fig. 31, the first dial reading is 1.20 (10% point) and the second is 7.38 (90% point) with the A SWEEP TIME/DIV setting set at $2 \mu \mathrm{~s}$.

Substituting the given value:
Risetime $=(7.38-1.20) \times 2(\mu \mathrm{~s})=12.36 \mu \mathrm{~s}$

TIME DIFFERENCE MEASUREMENTS USING DELAYED SWEEP

Synchronized waveforms which are skewed in time can be accurately measured using the delayed sweep.

1. Apply the two signals to the channel 1 and channel 2 INPUT jacks, setting the vertical MODE switch to DUAL and selecting either ALT or CHOP display.
2. Set the SOURCE switch to the signal that is leading in phase and adjust the VOLTS/DIV and SWEEP TIME/ DIV controls for easy waveform observation. Set the A VARIABLE control to CAL.
3. Pull out the B SLOPE switch to initiate the STARTS AFTER DELAY mode of operation. Select the HORIZ DISPLAY switch to A-INT-B and adjust the B SWEEP TIME/DIV and DELAY TIME MULT controls to make the intensified portion coincide with the rising edge or falling edge of the waveform that is to be used as the reference.
4. Select the HORIZ DISPLAY switch to ALT and use the - TRACE SEP control to adjust the B sweep for easy observation.
5. Using the DELAY TIME MULT control adjust the pulse to any convenient vertical graduation line and record the dial reading at that point.
6. Using the DELAY TIME MULT control adjust the corresponding point on the second signal to the same vertical line and record the reading of the dial at this point as well. The time difference or skew of the two waveforms is then the second dial reading minus the first dial reading multiplied by the A SWEEP TIME/DIV control setting.

Using the formula:
Risetime $=(2 n d$ dial reading -1 st dail reading $) \times$ Delayed sweep time (A SWEEP TIME/DIV setting)

APPLICATION

Using the formula:
Time difference $=(2$ nd dial reading -1 st dial reading $)$ \times Delayed sweep time (A SWEEP TIME/ DIV setting)

Fig. 32

[EXAMPLE]

For the example in Fig. 32, the reference signal dial reading is 1.00 while the second dial reading is 5.34 with the A SWEEP TIME/DIV setting of $2 \mu \mathrm{~s}$.
Substituting the value.
Time difference $=(5.34-1.00) \times 2(\mu \mathrm{~s})=8.68 \mu \mathrm{~s}$

X-Y OPERATION

PHASE MEASUREMENT

Phase measurements may be made with X-Y operation. Typical applications are in circuits designed to produce a specific phase shift, and measurement of phase shift distortion in audio amplifiers or other audio network. Distortion of amplitude is also displayed in the oscilloscope waveform
To make phase measurements, use the following procedure

1. Using an audio signal generator with a pure sinusoidal signal, apply a sine wave test signal at the desired test frequency to the audio network being tested.
2. Set the signal generator output for the normal operating level of the circuit being tested. If desired, the circuit's output may be observed on the oscilloscope. If the test circuit is overdriven, the sine wave display on the oscilloscope is clipped and the signal level must be reduced.

Fig. 33
No amplitude distor-
tion, no out of phase.
No amplitude distortion,
No out of phase.
nom,

Fig. 34
3. Connect the channel 1 probe to the output of the test circuit.
4. Select the HORIZ DISPLAY switch to X-Y.
5. Connect the probe between the channel 2 INPUT jack and the input of the test circuit.
6. Adjust the channel 1 and 2 gain controls for a suitable viewing size.
7. Some typical results are shown in Fig. 34. If the two signals are in phase, the Lissajous' pattern is a straight diagonal line. If the vertical and horizontal gain are properly adjusted, this line is at a 45° angle.
A 90° phase shift produces a circuilar Lissajours' pattern.
Phase shift of less (or more) than 90° produces an elliptical Lissajous' pattern. The amount of phase shift can be calculated from the oscilloscope trace as shown in Fig. 33.

FREQUENCY MEASUREMENT

Frequency measurement may be mode with the Lissajous' pattern, as phase measurement.

Procedure:

1. Connect the sine wave of known frequency to the channel 2 INPUT jack of the oscilloscope and select the HORIZ DISPLAY switch to $X-Y$.
2. Connect the vertical input probe (channel 1 input) to the unknown frequency.

APPLICATION

3. Adjust the channel 1 and 2 gain controls for a convenient, easy-to-read display.
4. The resulting pattern, called a Lissjous' pattern, shows the ratio between the two frequencies.
Unknown frequency to
Vertical Input, Standard
frequency to Horizontal Input
See note
Note: Any one of these figures,

Fig. 35

QUAD TRACE APPLICATION

The sensitivities of channel 1 to channel 4 are calibrated and each channel has 100 MHz band width. The trigger signals of channnel 3 and channel 4 can be obtained from each preamplifiers.
This scope can be used not only for external triggering but also for checking quad-trace at a time.

Application

1. Checking logic signal timing.
2. Monitoring video signal.
3. Measuring audio signal gain and phase characteristics.

The details of the logic signal timing checking are described below.

Logic signal timing indication

Control setting
Vertical MODE:
HORIZ DISPLAY:
A. SOURCE:

QUAD, ALT
A
CH3
To obtain stable synchronization, synchronize with the longest period channel (in this case, channel 3).

Fig. 36

In the above application, when the HORIZ, DISPLAY switch is select to ALT, the main and delay sweep waveforms are displayed on the CRT at a time. The portion in which the intensity is modulated is enlarged to enable easy checking.

Main and delay sweep waveforms (Magnified by 10 times)
Control setting
Vertical MODE:
A. SOURCE:

HORIZ DISPLAY:
QUAD, ALT

STARTS AFTER DELAY: PULL (ON)

Fig. 37

DUAL SWEEP APPLICATION

In this mode, two trigger sweep circuit systems can display different period signals without intensity difference.

Video FRAME and LINE signal waveforms

Control setting

Input signal:	CH1	Vertical MODE:	CH1
HORIZ DISPLAY: DUAL	A. SOURCE:	CH1	
A COUPLING:	VIDEO	B. SOURCE:	CH1
B. COUPLING: AC	A SWEEP TIME/DIV:	5 ms	
B. SWEEP TIME/DIV: $20 \mu \mathrm{~s}$			

In single trace display mode, the A and B. SOURCE switch operation is as described in the front panel item. For dual or quad trace display mode, refer to the next item.

Fig. 38

APPLICATION

Divider circuit waveforms

Control setting
Vertical MODE:
QUAD, ALT
HORIZ DISPLAY:
A. SOURCE:
B. SOURCE:

DUAL
CH1
CH 2
A. SWEEP TIME/DIV: 5 ms
B. SWEEP TIME/DIV: $0.5 \mu \mathrm{~s}$

Channel 1 and Channel 3: 100 Hz signal input
Channel 2 and Channel 4: 1 MHz signal input
With this method, when the sweep ratio is set to 10,000 times, the intensity does not change and different period waveform can be synchronized.
When the HORIZ DISPLAY switch is select to DUAL and two or four waveforms are displayed, the channel 1 and channel 3 waveforms are displayed in A sweep mode and channel 2 and channel 4 waveforms are displayed in B sweep mode.
Therefore, adjust the A and B. SOURCE switches accordingly.

Fig. 39

ACCESSORIES

STANDARD ACCESSORIES INCLUDED

Probe (PC-29)	Y87-1250-00
Attenuation	1/10
Input Impedance	$10 \mathrm{M} \Omega, 18 \mathrm{pF}$ of less
Instruction Manual	B50-7519-10
Handbook	B50-7521-00
AC Power Cord	... See Fig. 42
Panel Cover	.. F07-0923-02
Probe Holder.	.. J21-2903-03

OPTIONAL ACCESSORIES

Probe Pouch (MC-78) Y87-1600-00
AC Power Cord. See Fig. 42

INSTALLING PROBE HOLDER

The probe holder is attached to the handle as shown in Fig. 40. Install the probe holder as follows:

1. Rest the upper two claws of the probe holder on the top surface of the handle (see inset).
2. Push lower claws toward handle to lock probe holder in place.
3. Probe can now be inserted into holder.

CAUTION

When disengaging the probe holder from handle, disengage lower jaw first to prevent breakage.

Fig. 40

ACCESSORIES

MOUNTING THE PROBE POUCH (MC-78)

This soft vinyl pouch attaches to the right side of the oscilloscope housing and provides storage space for two probes and the handbook. Install the probe pouch as follows:

1. Unsnap the probe pouch from the retainer plate.
2. Align the retainer plate with the 4 holes on the right side of the case, with the 4 snaps at the top.
3. Attach the four corners of the retainer plate to the oscilloscope case with the four nylon rivets supplied.
4. Attach the probe pouch to the retainer plate using the snap fastener.

Fig. 41

Plug configuration	Power cord and plug type	Factory installed instrument fuse	Line cord plug fuse	Parts No. for power cord
	North American 120 volt/ 60 Hz Rated 15 amp (12 amp max; NEC)	1.2 A, 250 V Fast blow AGC/3AG	None	E30-1820-05
	Universal Europe 220 volt/ 50 Hz Rated 16 amp	$1.2 \mathrm{~A}, 250 \mathrm{~V}$ Fast blow $5 \times 20 \mathrm{~mm}$	None	E30-1819-05
	U.K. 240 volt/50 Hz Rated 13 amp	$\text { 1.2 A, } 250 \mathrm{~V}$ Fast blow $5 \times 20 \mathrm{~mm}$	1.2 A Type C	
	Australian 240 volt/50Hz Rated 10 amp	$1.2 \mathrm{~A}, 250 \mathrm{~V}$ Fast blow $5 \times 20 \mathrm{~mm}$	None	E30-1821-05
	North American 240 volt/ 60 Hz Rated 15 amp (12 amp max; NEC)	$\begin{aligned} & 1.2 \mathrm{~A}, 250 \mathrm{~V} \\ & \text { Fast blow } \\ & \text { AGC/3AG } \end{aligned}$	None	
	Switzerland 240 volt/50 Hz Rated 10 amp	1.2 A, 250 V Fast blow AGC/3AG $5 \times 20 \mathrm{~mm}$	None	

Fig. 42 Power Input Voltage Configuration

17-5, 2-chome, Shibuya, Shibuya-ku, Tokyo 150, Japan

