NuScope Associates

THE AUTHORITATIVE GUIDE
FOR ASSEMBLING IBM ${ }^{\text {TM }}$ COMPATIBLE MOTHERBOARDS AND PERIPHERAL CIRCUIT CARDS WITH PARTS LIST AND COMPONENT LAYOUT

Other Computer Assembly Manuals by Raymond Kosmic
APPLE-SEED I: Motherboard Assembly Manual
APPLE-SEED II: Peripheral Circuit Card Assembly Manual
SURF-BOARD: Guide for Assembling the 6502 Surf-Board

NuScope Associates

P.O. BOX 742, STN. B. WILLOWDALE, ONTARIO M2K 2R1 •

IMPORTANT NOTICE

All rights are reserved. No part of this manual may be reprinted, or reproduced, or transmitted in any form, including photocopy, without the prior consent of the publisher.

The information presented in this manual has been carefully reviewed and is believed to be entirely correct and reliable. However, the author and publisher assume no responsibility for errors and/or omissions, or for the success or failure of the different applications to which the information presented in this manual may be applied. Neither is any liability assumed for any infringement of patents or other rights of third parties that would result.

Apple is a registered trademark of Apple Computer Inc. IBM PC and XT are registered trademarks of International Business Machines.

Natalie, John, and Andrea

PREFACE

This reference manual was prepared as an aid for those who wish to assemble IBM compatible motherboards and peripheral circuit cards for their own personal use. The guides presented here were originally prepared for various suppliers and distributed along with each card or kit as a parts list with condensed assembly instructions. The suppliers have kindly allowed us to compile these guides together into one reference manual.

Each one of the guides is complete in itself and is independent from the other guides. All have been checked for accuracy by the suppliers and are thought to be correct. However, with approximately six thousand components to be identified and correctly positioned on over thirty boards, errors and/or omissions may occur. In no event will the suppliers or NuScope Associates be liable for damage resulting from the use of the information presented in this manual.

If you lack experience in electronics, you may wish to refer to the "Apple-Seed I: Motherboard Assembly Manual". This selfdirecting guide was designed and written for the first-time hobbyist in mind, as an educational reference for the construction and assembly of electronic devices that use printed circuit boards, integrated circuits, and electronic components.

It is planned to update this reference manual as other circuit boards come to our attention. Any suggestions for improvement would be greatly appreciated.

ACKNOWLEDGEMENTS

I wish to express my appreciation to Tom Bell, Bramalea; Jerry Senczuk, East York; and Andy Szego, Willowdale. Their valuable assistance and technical advice were instrumental in the completion of this manuscript.

ACKNOWLEDGEMENTS (continued)

I also wish to thank the following suppliers for their encouragement and support and for checking the accuracy of the motherboard and peripheral card guides as follows:

Pete Brown and Fred Kohn of Active Surplus Annex, 345 Queen St W, Toronto, Ont, M5V 2A4:

XT-4, EKBM XT System Motherboard; 2-5, EK Disk Controller; 6-1, EK EPROM Burner and Asynch Serial; 6-3, EM-300 Modem

Bill Jackson of Computer Parts Galore Inc., 316 College St, Toronto, Ont, M5T lS3:

XT-2, MBE-XT Motherboard; XT-3, MEGA-Board Motherboard; 2-3, PG Disk Controller; 3-4, 512 K RAM; 4-1, Colour Graphics Display; 4-4, PG-2 Monochrome Graphics; 5-1, Multifunction; 7-2, Memory Prototype; 7-3, Protoplus Prototype; 7-4, Extender

Nirmal Khamba of Electronic Control Systems, 1590 Matheson Rd, Suites 1 \& 2, Mississauga, Ont, L4W lJl: PC-3, ECS Motherboard; XT-7, ECS-7 Grande Motherboard; 2-3, Floppy Disk Adapter; 2-6, ECS-4 Disk Controller; 7-1, Datamax-001

Min-Tsong Chang of Fountain Enterprises, 519 8th Ave, New York, NY, 10018:

XT-6, Super XT Motherboard; 3-3, Explorer Memory/Serial; 4-2, Fountain Monochrome Graphics; 4-3, Colour Graphics Adapter

Bob Kamins of HAL Computer Company, 296 Brunswick Ave, Toronto, Ont, M5S 2M7:

PC-2, HAL Computer Motherboard; 2-4, HAL Drive Parallel/Port; 3-2, HAL Memory/Serial

Joe Sutherland of JLS Research Inc., 94 Beverley St, Toronto, Ont M5T 1X7: 1-1, JLS OBM-100 Motherboard; 3-3, JLS OBM-1 Memory/Serial

Marcello Rocca of Robin Hood Electronics Inc., 20 Strathearn Ave, Brampton, Ont, L6T 4P7:

XT-l, Robin Hood XT Motherboard; XT-5, Prestige I Motherboard; XT-8, Prestige II Motherboard; 2-1, RHE Disk Controller

TABLE OF CONTENTS

PART I GUIDELINES TO SUCCESS 1
Safety 1
Using this Guide 1
Guide to Components 4
Card Installation and Removal 9
Card and Connector Pinouts 11
System Unit Hardware 12
Appendix - Abbreviations 15
PART II MOTHERBOARD AND PERIPHERAL CARD ASSEMBLY GUIDES 17SECTION GUIDES BOARDS AND CARDS

1 Motherboards

2 Disk Controller

PC-1 JLS OBM-100 PC-2 HAL Computer PC-3 ECS

XT-1 Robin Hood XT
XT-2 MBE-XT
XT-3 MEGA-Board
XT-4 EKBM XT System
XT-5 Prestige I XT
XT-6 Super XT
XT-7 ECS-7 Grande XT-8 Prestige II XT
3 Memory 3-3 JLS OBM-1 Memory/Serial
2-1 RHE 2-3 PG 2-3 Floppy Disk Adapter 2-4 HAL Drive/Parallel Port 2-5 EK 2-6 ECS-4
3-2 HAL Memory/Serial
3-3 Explorer Memory/Serial 3-4 512 K RAM
4 Video 4-1 Colour Graphics Display
4-2 Fountain Monochrome Graphics
4-3 Colour/Graphics Adapter
4-4 PG-2 Monochrome Grqaphics
5 Multifunction
6 Miscellaneous 6-1 EK EPROM Burner \& Asynch
7 Prototyping

6-2 Parallel Printer
6-3 EM-300 Modem
7-1 Datamax-001
7-2 Memory Prototype
7-3 Protoplus Prototype
7-4 Extender
5-1 Multifunction
5-2 Super Disk I/O
5-3 Monte Carlo

${ }^{* 1} 5 \frac{1}{4}$ " and/or $8^{\prime \prime}$ drives. *2 2 -card set, external card is $99 \times 67 \mathrm{~mm}$.
(1) pirmaseine $1 / 2$

PART 1

GUIDELINES TO SUCCESS

SAFETY

When cutting excessive wire leads from resistors, diodes, etc., protect your eyes. Wear safety glasses and keep the card at a reasonably safe distance. Turn your head to the side when trimming component leads.

Treat the soldering iron with respect. A hot iron can inflict a nasty burn. Do not touch the soldered connections before they have cooled down. Always rest the hot iron on a soldering stand when not in use. Turn the soldering iron off when you leave your work area.

Work in a well-ventilated area.
Observe all electrical and fire safety precautions.
There's less chance of an accident if your work area is clean and well organized.

USING THIS GUIDE

Examine the various assembly guides presented in this manual and select the motherboards or peripheral cards that you wish to build. Study the printed circuit board (PCB) in detail before mounting any components. Handle the board ONLY by its edges, NEVER by its surface. Fingerprints may leave a fine film of oil on the solder pads and prevent the solder from making a solid joint. If necessary, clean both sides of the boards with a special commercial cleaner or denatured alcohol (methyl alcohol) before soldering.

Visually inspect the PCB for breaks, shorts, etch-flaws, and irregularities in the lands (tracks). Illuminate the board from the solder side with a strong light. Examine the tracks for shorts and hair-line fractures. Pay special attention to the component side where the tracks will be covered over with sockets. You won't get a second chance to inspect these areas once hidden with components. Check the inner surface of the plate-thru holes; a shiny appearance indicates that they are, in fact, plated-thru. On the other hand, a dull appearance suggests a poorly-made circuit board. If flaws exist, either make the necessary repairs or return the board to the dealer.

Compare the silk-screening on the bare board to the silkscreening on the layout in the text. Record all differences. Check the parts list for availability and price. Mentally position each socket and electrical component and device in place before beginning the actual assembly.

Orientate the board so that the component side faces you. The gold-plated fingers of the peripheral cards should be at the lower right-hand corner.

ALL COMPONENTS ARE MOUNTED ON THE COMPONENT SIDE AND SOLDERED TO THE SOLDER SIDE

Study the precautions thoroughly (marked with an asterisk * in the guides) before you begin to assemble a circuit board.

Each one of the guides is complete and independent of the others in this manual.

Use the guide as a shopping list. Refer to Fig. l, A Portion of an Assembly Guide. Check off each component purchased in the space provided on the guide. Circle the appropriate component placement number after it has been installed. Some PCBs have the silk-screened labels printed directly under socket placements making it impossible to know which integrated circuit (IC) to install. If necessary, refer to the component placement layout for IC positioning.

Layout is reduced. Actual si

SUGGESTED SEQUENCE *INDICATES A PRECAUTION

DIODES *Position banded end (cathode) RESISTORS (cont)
of diodes as shown
cathode end banded end

2 - IN4148
RESISTORS $R \frac{1}{4}$ watt, 5%

FIG. 1. A PORTION OF AN ASSEMBLY GUIDE.

The correct sequence of installing components is debatable. Try to keep all the components flush against the board. As a general rule, mount the components that are shortest in height first (diodes, resistors, sockets), followed by the taller components (capacitors, switches, resistor networks, etc.). This helps to keep the components tight against the board when soldering.

It may be more convenient, in some situations, to install sockets first. This may eliminate some confusion as to the placement of the smaller components, especially if the card is inadequately silk-screened or cluttered.

Component leads are NEVER inserted into FEED-THRU holes. On some of the boards illustrated, the FEED-THRU holes are smaller and can thus be distinguished from the larger COMPONENT holes.

The spacing between two solder holes on any one circuit board is often the same for each type of component. Thus resistor leads are bent to the same length. By-pass capacitors (0.1 uF) have a smaller hole-to-hole spacing. This may help you to decide the mounting position of some of the components.

Use a low-wattage (less than 35 watts) soldering iron with a small pencil, pyramid, or screw-driver tip. Use only rosin-core, radio-type solder with a $60 / 40$ or $63 / 37$ tin/lead content. NEVER use acid-core solder! NEVER use a solder gun!

Take care with your soldering. The soldering iron TIP should make firm contact with the PIN or component lead and the solder PAD as illustrated in FIG. 2. Apply solder to the opposite side of the pin touching both the pin and the pad. Follow this sequence:

IRON ON - SOLDER ON - SOLDER OFF - IRON OFF

Excessive heat may damage delicate components. If done correctly, soldering one pin or component lead should take no more than four to five seconds. More heat may be required on multi-layered boards such as the Colour Graphics Adapter Card, GUIDE 4-3.

A. Three-Point Contact

B. Applying the Solder

FIG. 2. SOLDERING TECHNIQUES.

Some boards are "chip-sensitive" and appear to have a preference for devices made by a specific manufacturer. The parts list shows this source in brackets following the device. Other devices that are followed by a manufacturer's name in brackets are made only by that manufacturer.

Some boards require modifications as illustrated in GUIDE PC-1, JLS OBM-100 Motherboard. Modifications are done on the solder side except where indicated. Study the details thoroughly before attempting any modifications.

GUIDE TO COMPONENTS

For a more detailed look at component identification and placement, and for installation techniques, refer to the "AppleSeed: Motherboard Assembly Manual, an Introductory Guide," by the same author.

DIODES AND LIGHT EMITTING DIODES (D)
Diodes are delicate and can be easily damaged by rough handing and excess heat. These devices are polarized and must be correctly oriented on the circuit board. Position the banded (cathode) end of the diode towards the tip of the arrow as shown in the following figure.

fig. 3. IDENTIFYing the cathode on the layout.

The polarity of light emitting diodes (LEDs) may be identified in one of the following ways:

> -ve: a small "dot" on the body of the devịce
> -ve: base of the device is "flat"
> +ve: the "longer" terminal or lead

INDUCTORS
(L)

The numerical value of inductors (coils) may be colour-coded on the body of the device. This value, in microhenries (uH), can be determined using Table 1 Resistor Colour Code Chart.

The resistors used to assemble the majority of boards and cards illustrated in this manual are $1 / 4$ watt, with a tolerance of 5 percent (\%). Refer to the following table, Resistor Colour Code Chart, to determine the ohms value of resistors.

Table I. Resistor Colour Code Chart.

Examples: a) yellow - violet - black refers to

$$
\begin{aligned}
& 4 \\
& \text { b) brown - green - red refers to }
\end{aligned}
$$

a) SINGLE-IN-LINE PACKAGE (SIP) RESISTOR NETWORKS (RN) - BUSSED

The majority of SIP RNs used in this manual are bussed. Pin 1 of SIPs is common and must be correctly positioned in the circuit. Pin 1 of the device may be identified by a "dot", a "bar", or a number.

A bussed SIP resistor with the correct number of pins may not always be available. Purchase one with more pins than required and cut off the extra number of pins as close tc the body of the device as possible. Do NOT REMOVE pin number l. Do NOT allow the cut portion of the pins remaining on the device to touch the circuit card as they may cause a short circuit.
b) SINGLE-IN-LINE PACKAGE RESISTOR NETWORKS (RN) - BUSSED

Other boards described in this manual require isolated SIP resistors as shown in GUIDE 3-4, 512 K RAM Card. If isolated SIPs are not available, substitute the same number of single resistors of the same value. Stand the resistor on its end as shown in Fig. 4. Leave a small gap between the end of the resistor and the circuit card to prevent "solder wicking", i.e., solder creeping along the card and possibly causing a short circuit.

FIG. 4. INSTALLING A RESISTOR ON ITS END.
c) DUAL-IN-LINE PACKAGE (DIP) RESISTOR NETWORKS

Some boards require DIP resistor networks. These should be soldered to the board. If DIP resistors are not available, substitute the appropriate number of single resistors of the same value. Solder these flat against the board or stand them upright depending on the resistance configuration (isolated or bussed).

SOCKETS

It is strongly recommended that ALL integrated circuits be socketed. One of the best forms of trouble-shooting is "chipswapping". Use high-quality dual-in-line package (DIP) soldertail IC sockets.

CHECK AND RECHECK THAT

-pin l of each socket is properly oriented on the card
-each socket is installed in the correct position, i.e., a l4-pin socket is not mounted in a 16 -pin opening
-ALL socket pins have passed thru ALL holes, i.e., no folded-under or folded-out pins
-each socket is flat against the card.
Do NOT attempt to remove a socket if it has been installed with pin 1 positioned incorrectly, i.e., socket turned thru 180°. Instead, apply a very small dab of typewriter correction fluid to the corner of the socket to mark and identify pin number 1.

CAPACITORS
 (C)

Capacitors are either electrolytic (polarized) or nonelectrolytic (non-polarized). Polarized capacitors must be connected in the circuit so that their positive and negative terminals are correctly positioned in the circuit. Match the +ve terminal of these capacitors with the +ve end as shown on the layout. Non-polarized capacitors have neither +ve nor -ve ends and may be positioned in the circuit in any manner. Capacitors of values greater than 0.1 uF are generally polar. Refer to Table II to determine the value and tolerance of capacitors.

Table II. Multiplier and Tolerance Chart for Capacitors.

MULTIPLIER		TOLERANCE		
for the number:	multiply by:	10 pF or less	letter	over 10 pF
0	1	$\pm 0.1 \mathrm{pF}$	B	-
1	10	$\pm 0.25 \mathrm{pF}$	C	-
2	100	$\pm 0.5 \mathrm{pF}$	D	-
3	1,000	$\pm 1.0 \mathrm{pF}$	F	$\pm 1 \%$
4	10,000	$\pm 2.0 \mathrm{pF}$	G	$\pm 2 \%$
5	100,000		-	H
-	-		-	J
8	0.01		-	K
9	0.1			$\pm 3 \%$

Voltage ratings, usually printed on the component, show how much voltage can safely be used without damaging the capacitor. The rating must be higner than the highest voltage in the circuit.

Install variable capacitors (trimmers or trimcaps) so that the common terminals of the device are aligned with the common solder pads on the card.

TRANSISTORS (Q)

Handle transistors with care. Protect them from mechanical injury. Use minimum heat when soldering. Transistors may be destroyed if their three leads are incorrectly positioned in the circuit. Identifying the emitter, collector, and base (EBC) terminals however, presents a problem; the body of the device may or may not be labelled; the circuit board may or may not be silk-screened; different manufacturers arrange the EBC leads differently. If in doubt, check with your dealer.

CRYSTALS AND OSCILLATORS (Y)

Crystals are delicate. A severe jolt may chip the crystal suspended in the metal case. Install crystals last to prevent excessive movement while working on other components. Fold the body of the device flat against the card before soldering if space is available on the card. Secure the crystal to the card with double-sided tape. Alternately, some boards have feedthru holes or "grounding pads" at each side of the crystal so that the device can be soldered in place. Wrap a thin bare wire around the device, install the ends of the wire into the grounding pads, and solder. Use a minimum amount of heat to solder the wire to the case.

INTEGRATED CIRCUITS (IC)

Treat ICs with care. Handle them by the body, not the pins. Protect them from mechanical injury.

The power must be OFF when inserting or removing ICs or other devices. Excessive voltage, reversed polarity, short circuits, etc., can quickly destroy an IC. ICs must be correctly positioned in the circuit. Pin l of ICs can be identified by a "dot", a "triangle", a "l", a "notch", etc. Match pin 1 of ICs with pin 1 on the layout.

Metal-Oxide-Silicon (MOS) and Complementary Metal-Oxide-Silicon (CMOS) integrated circuits are very sensitive to static electrical discharge, and require special handling. Store them in their original shipping tubes or with their pins embedded in special conductive foam. Linear ICs are moderately sensitive, whereas Transistor-Transistor Logic (TTL) ICs are relatively insensitive to static discharge.

Firmware, software written into PROMs (Programmable Read-Cnly Memory), EPROMS (Erasable ROM), EEPROMS (Electrical EPROM), and PALs (Programmed Array Logic), is the responsibility of the builder and can be programmed according to the requirements of the individual. These devices are sensitive to static discharge.

Keep EPROMs away from direct sunlight. Ultraviolet (UV) radiation of sunlight may partially erase some of the information programmed in an EPROM. Protect them by applying a nontransparent piece of tape or label over the transparent window on top of the device.

Some boards are "chip sensitive" - i.e. they require ICs made by a specific manufacturer. They will not run unless the correct combination of chips are installed. This involves "chipswapping" using ICs from different manufacturers.

CARD INSTALLATION AND REMOVAL

CARD INSTALLATION

Turn the POWER OFF before installing or removing devices, peripheral cards or hardware, or when changing switch settings. Failure to so so will likely result in circuit damage to the card, other cards, and the motherboard.

Discharge STATIC ELECTRICITY in your body by touching the metal case of the power supply.

Orientate the peripheral card so that the COMPONENT SIDE faces the power supply. Position the card carefully in the slot so that no "sliding" FRONT-TO-BACK movement occurs. This abrasive movement may strip the thin gold layer from the fingers of the card. On the other hand, if a card runs intermittently, try cleaning the gold contacts by gently rubbing them with a soft eraser.

Insert the fingers of the card into the appropriate edge connector. Rock the card from FRONT-TO-BACK while gently applying downward pressure. Refer to Fig. 5 for the front-toback orientation. The card must be firmly seated in the slot before turning on the power.

CARD REMOVAL
POWER OFF
DISCHARGE STATIC ELECTRICITY
ROCK FRONT-TO-BACK WHILE APPLYING UPWARD PRESSURE

PRECAUTIONS

- Do NOT rock the card from side-to-side.
- Do NOT touch the gold-plated contact fingers of the card.
- Do NOT unnecessarily install and remove cards. Some poor quality card-edge connectors may break down, creating poor or non-existent contacts.
- Do NOT apply excessive force: you may flex the motherboard sufficiently to break one or more of the tracks.

A to back of computer

$\boldsymbol{\gamma}$ TO FRONT OF COMPUTER \boldsymbol{V}
FIG. 5. A PORTION OF THE TOP UIEW OF THE MOTHERBOARD SHOWING FRONT-TO-BACK ORIENTATION AND LOCATION OF THE POWER SUPPLY.

CARD AND CONNECTOR PINOUT

Refer to Fig. 6 for the edge connector and peripheral card pinouts. The reproductions are close to original size. To quickly identify any one of the pins or contacts, lay the card along the edge of the centre diagram and directly read off the pin number. Do NOT mistakenly interchange the component side with the solder side. Note that the relative position of the power supply is normally to the right of the motherboard.

SYSTEM UNIT HARDWARE

POWER SUPPLY

A switching-type power supply provides power to the system motherboard, peripheral cards, disk drives, and keyboard. Select one with sufficient reserve power to handle all present and future options. Memory and disk drives are the major current users. Refer to Table III for a comparison of various units.

Table III. Comparison of Various Power Supplies (current in amperes)

power supply	potential difference (volts DC)				power(watts)	power for
	+5	+12	-12	-5		
$\begin{gathered} \text { IBM PC } \\ \text { original } \end{gathered}$	7.0	2.0	0.25	0.3	63.5	basic system
IBM XT original	15	4.2	0.25	0.3	129.9	all peripherals incluaing hard drive
Apple-type	7	3	1	1	88.0*	basic system
compatible 100 watt	10	3.5	0.5	0.5	100.5	all peripherals plus lo-power slim-line hard disk drive
compatible 130 watt	15	4.5	0.5	0.5	137.5	all peripherals including hard drive

*To determine the total power, multiply the current times the voltage and add:

amperes x	volts $=$	watts
7	+5	35.0
3	+12	36.0
1	-12	12.0
1	-5	$\frac{5.0}{83.0}$ watts

The power supply is connected to the motherboard by means of a l2-pin Molex-type connector. Some motherboards illustrated in this manual, e.g. GUIDE XT-2, MBE motherboard, have an optional "P3" connector for use with the popular Apple-type power supply.

Usually two 4-pin drive connectors are available to supply power to a pair of $51 / 4^{\prime \prime}$ floppy disk drives. A third drive connector, found on the 130 watt power supply, is used to power a hard disk drive. Some power supplies have four disk drive connectors. The following figure illustrates the pinouts for the power to the motherboard and disk drive.

B. DISK DRIVE CONNECTOR PINOUT
A. MOTHERBOARD POWER SUPPLY PINOUT

FIG. 7. PINOUTS FOR A. MOTHERBOARD AND B. DISK DRIVE CONNECTOR.

CASE
Purchase a case and power supply together as a matched pair. Check that the cutouts in the case align with the switch, power cord connector, AC outlet, and fan vent of the power supply.

Select a case with slot spacings that match those on the motherboard. PC-compatible cases normally have five slots with a slot spacing of 25 mm . On the other hand, XT-compatible cases have eight slots with a slot spacing of 20 mm . Furthermore, rear panel adapters differ in width: a PC adapter is 25 mm , whereas an XT adapter is 18 mm wide.

FIG. 8. XT AND PC MOTHERBOARD SLOT SPACING (center-to-center)

FAN

The power supply should have a built-in fan to circulate air and prevent overheating. Replace the fan with a more powerfull one if the surface of the case becomes too hot, especially when using a hard disk drive. Install a fan in the case when using the Apple-type power supply.

Orient the fan so that hot air is drawn from the top of the case and exhausted out the rear or out the bottom when using the Apple-type power supply.

APPENDIX

ABBREVIATIONS
Alt - Alternate
B - Base (Transistor)
BIT - Binary digIT
BYTE - a group of 8 BITs
C - Collector (Transistor)
C - letter code for Capacitor
CharGen - Character Generator
CMOS - Complementary Metal-Oxide-Silicon
Cont - Controller
CP/M - Control Program for Microprocessors
CPU - Central Processing Unit
CRT - Cathode Ray Tube
D - letter code for Diode
DIN - European type connector
DIP - Dual In-line Package
D.C. - Direct Current

DOS - Disk Operating System
DRAM - Dynamic RAM
DPDT - Double-Pole, Double-Throw
DUART - Dual Asynchronous Receiver Transmitter
E - Emitter (Transistor)
EPROM - Erasable PROM
FDC - Floppy Disk Controller
FET - Field Effect Transistor
GND - Ground
HIRES - High Resolution
Hz - Hertz
IC - Integrated Circuit
IEEE - Institute of Electrical and Electronic Engineers
I/O - Input/Output
J - Jumper
K - Kilobyte, l,024 bytes
L - letter code for Coil or Inductor
LED - Light Emitting Diode
LPT - Line PrinTer
M - Megabyte, l,024,000 bytes
MOS - Metal-Oxide-Silicon
MPU - Microprocessing Unit
-ve - negative
NiCad - Nickel Cadmium
ns - nano second
+ve - positive
P - post
PAL - Programmed Aray Logic
PC - Printed Circuit
PCB - Printed Circuit Board
PG - Power Good
PROM - Programmable ROM

```
Q - letter code for Transistor
R - letter code for Resistor
R - Ring
RAM - Random-Access Memory
RF - Radio Frequency
RGB - Red, Green, Blue
RN - Resistor Network
ROM - Read-Only Memory
RTN - Return
S - Schottky
S, SW - Switch
S,SPKR - Speaker
SIP - Single In-line Package
SPDP - Single-Pole, Double-Throw
TP - Terminal Post
Trimcap - Trim capacitor
Trimpot - Trim potentiometer
TTL - Transistor-Transistor Logic
UV - Ultra Violet
V - Volt
Vid - Video
VR - Variable Resistor
XTAL - Crystal
XTL - Crystal
Y - letter code for Crystal
ZIF - Zero Insertion Socket
```

METRIC PREFIXES Decimal points and large numbers are avoided.

p	pico	10^{-12}
n	nano	10^{-9}
	micro	10^{-6}
m	milli	10^{-3}
-	-	10^{0}
k	kilo	10^{3}
M	mega	10^{6}
G	giga	10^{9}

PART II

MOTHERBOARD AND PERIPHERAL CARD

ASSEMBLY GUIDES

Study PART I, GUIDELINES TO SUCCESS, before attempting to assemble any of the following bare cards or boards.

LS OBM-100 MOTHERBOARD: Features include: 8088 MPU with socket for optional 8087 co-processor; five I/O expansion slots, PC spacing of 25 mm ; no on-board memory; six ROM sockets; cassette port available; schematics available from supplier.

àctual size
$29.1 \mathrm{~cm} \times 25.7 \mathrm{~cm}$
(layout is reduced)

NuScope Associates

GGESTED SEQUENCE *indICATES A PRECAUTION *MODIFICATION REQUIRED

DDES D *Position banded (cathode) end TRANSISTORS *Position EBC terminals of diode as shown as shown on the layout 1-1N4001

ISTORS

R $\frac{1}{4}$ watt, 5%
1-150 Ω
$1-220 \Omega$
4-330 Ω
2-510 Ω

- $1-1.2 \mathrm{k} \Omega$
$1-3.9 \mathrm{~K} \Omega$
—13 - $4.7 \mathrm{~K} \Omega$ *Install a 4.7 K resistor as shown on the layout
$4-18 K_{\Omega}$
- 1 - $47 \mathrm{~K} \Omega$
-1 - $1 \mathrm{M} \Omega$
— 3 - $4.7 \mathrm{~K} \Omega 8$-pin SIP*
- 1-4.7 K Ω 9-pin SIP*
*Match pin 1 of SIPs as shown on the layout
KETS *Match pin 1 of sockets with pin 1 on the layout. Check that ALL pins have passed thru ALL holes 1-8-pin
16-14-pin

- 1 - $0.047 \mu \mathrm{~F}$
-21 - $0.1 \mu \mathrm{~F}$ Monolithic @ o
- 1-5-50 pF Trimcap © 5-60
Match + of the following capacitors with + on the layout 1 - $\quad 10 \mu \mathrm{~F} / 16 \mathrm{~V}$ Tantalum 1 - $47 \mu \mathrm{~F} / 16 \mathrm{~V}$ Tantalum*

INTEGRATED CIRCUITS (continued)
\qquad 2-2N2222
CRYSTAL Y *Fold crystal flat against the board before soldering
\qquad 1-14.31818 MHz
SWITCH
_2-8-position DIP @ SW 1,2
CONNECTORS *Cassette connector optional
\qquad 1-12-pin male, straight (Molex) for power
\qquad 1-1×4 header, male, 90° for speaker 1-5-pin DIN, for keyboard *Drill two small holes © locations marked - to support the connector __ 5-62-pin edge card connectors
INTEGRATED CIRCUITS *Match pin 1 of ICs with pin 1 on the layout
 2-74LS00 @ U52,81 2-74LS02 @ U27,50

- 3 - 74LSO4 @ U51,99,99/86
—— 1 - 74LS08 @ U97/50
- 1-74LS10 @ U84

1-74LS20 @U64 1-74LS30 @U5
1-74LS38 @ U63
3-74LS74 @ U67,74,82
1-74LS125 @ U80

- 2 - 74LS138 @ U48,66
- 2 - 74LS175 @ U26,98
- 4 - 74LS244 @ U15,16,17,23

3-74LS245 @ U8,13,14
1-74LS322 @ U42
4-74LS373 @ U7,9,10,18
\qquad 1-74LS670@U19

MODIFICATIONS *ON THE SOLDER SIDE
-1 - Cut trace between pin 3 \& 4 of U82 (74LS74) on the SOLDER SIDE (if required)

```
S OBM-100 MOTHERBOARD (continued):
```

WITCH \# 1 SETTINGS:
OSITION 2: remains off-reserved for the co-processor
OSITIONS $2 \& 4$: remain off - indicate a minimum configuration of 64 K bytes
OSITIONS 5 \& 6: define video board type as follows:
video board type settings
colour $(40 \times 25) \ldots .$. off 6
colour (80×25) $\ldots .$. ... on off
black/white or both.. off off
none on on
OSITIONS 1, 7 \& 8: define the number of floppy disc drives in use:
number of drives settings
$\begin{array}{llccc} & & 1 & 7 & 8 \\ 0 & \text { on } & \text { on } & \text { on }\end{array}$
1...... off on on
$2 . . .$. off off on
$3 \ldots .$. off on off
4 off off off
NITCH \# 2 SETTINGS:
OSITIONS 5, 6, 7 \& 8: always remain off
JSITIONS $1,2,3 \& 4$: qualify memory as follows:

memory	settings			
		2	3	4
64K	on	on	on	on
128K	on	off	on	on
192K	on	on	off	on
256K	on	off	off	on

SET \# 5 to on when using a hard disk drive

COMPUTER MOTHERBOARD: Features include: 8088 MPU with socket for optional 8087 co-processor; five I/0 expansion slots, PC spacing of 25 mm ; no on-board memory; six ROM sockets; cassette port available; documentaion and schematics available from supplier.

. COMPUTER MOTHERBOARD (continued):
SWITCH SETTINGS - MOTHERBOARD SWITCH 1
1 positions 1,7 and 8 are set to indicate the number of floppy disks:

Number of Drives	Switch Positions		
	1	7	8
0	ON	ON	ON
1	OFF	ON	ON
2	OFF	OFF	ON
3	OFF	ON	OFF
4	OFF	OFF	OFF

' 1 position 2 is always ON and SW1 positions 3 and 4 are always OFF.
' 1 positions 5 and 6 are set to the type of monitor in use:

Monitor Type	Switch	Positions
	5	6
None (40 by 25)		
Color (40	ON	
Color (80 by 25) (or both)	OFF	ON
Black and White (on	ON	OFF

SWITCH SETTINGS - MOTHERBOARD SWITCH 2
' 2 position 1 is always set ON.
2 positions 2, 3 and 4 indicate memory used:

Amount of Memory	Switch Positions		
	2	3	4
$64 k$	ON	ON	ON
128 k	OFF	ON	ON
$192 k$	ON	OFF	ON
$256 k$	OFF	OFF	ON
$320 k$	ON	ON	OFF
$384 k$	OFF	ON	OFF
$448 k$	ON	OFF	OFF
$512 k$	OFF	OFF	OFF

positions 5, 6, 7 and 8 are always set OFF.

CS MOTHERBOARD: Features include: 8088 MPU with socket for optional 8087 co-processor; five I/O expansion slots, PC spacing of 25 mm ; no on-board memory; six ROM sockets; cassette port available.

actual size
$29.3 \mathrm{~cm} \times 26.0 \mathrm{~cm}$
(1ayout is reduced)

MOTHERBOARD (continued):
DES D *Position banded
(cathode) end of diode
towards the arrow cathode
$1-1$ N4001

ISTORS R $\frac{1}{4}$ watt, 5%

- 1 - 47Ω @ R10
- 2 - 150 』@R6,25

1-220 』 @ R11

- 1 - 330Ω @ R12
- 3 - 1.2 K Ω @ R7,26,27
- 1 - $3.9 \mathrm{k} \Omega$ @ R9
_13-4.7 K Ω @ R8,13,14,15,16,17,18,
R19,20,21,22,23,24
4-18 K Ω R1,2,3,4
- 1 - $1 \mathrm{M} \Omega$ @ R2
- 2 - 4.7 K Ω 16-pin DIP @ RN1,2
*Solder directly to the board
ETS *Match pin 1 of sockets witl
pin 1 (dot) on the layout. Check
that ALL pins have passed thru

CRYSTAL Y *Fold crystal flat against the board before soldering
$1-14.31818 \mathrm{MHz}$ @ Y 1
SWITCH
2 - 8-position DIP © SW1,2
CONNECTORS
_1-1X4 header, male, 90° @ P3 for speaker (pins 1\&4)
\qquad 1-5-pin DIN © 37
for keyboard
\qquad 5-62-pin card edge connectors @ J1,2,3,4,5
\qquad 1-12-pin Molex, straight @ P1 for power
PINOUT FOR POWER:

pin	for
1	-
2	-
3	+12
4	-12
$5,6,7,8$	GND
9	-5
$10,11,12$	+5

INTEGRATED CIRCUITS *Match pin 1 of ICs

vim Pe-2g2 2

WITCH \# 1 SETTINGS:

OSITION 2: remains off-reserved for the co-processor
OSITIONS 3 \& 4: remain off - indicate a minimum configuration of 64 K bytes
OSITIONS 5 \& 6: define video board type as follows:
video board type settings
cour (40x25)
colour $(80 \times 25) \ldots \ldots$ on off
black/white or both.. off off
none on on
OSITIONS 1, $7 \& 8$: define the number of floppy disc drives in use:
number of drives settings

	1	7	8
0	on	on	on
1	off	on	on
2	off	off	
3		on	off

NITCH \# 2 SETTINGS:
JSITIONS 5, 6, 7 \& 8: always remain off
ISITIONS $1,2,3 \& 4$: qualify memory as follows:
memory settings

64k	1	2	3

$64 \mathrm{~K} \ldots \ldots$ on on on on
128K on off on on
192K on on off on
256K on off off on XT spacing of 20 mm ; on-board memory in blocks of 64 K to a maximum of 256 K using 4164 or equivalent RAM ICs; eight ROM sockets; documentaion and schematics available from supplier.

actual size
$30.3 \mathrm{~cm} \times 21.6 \mathrm{~cm}$ (layout is reduced)

IN HOOD XT MOTHERBOARD: DES D *Position banded (cathode) end of diode towards the bar
1-1N4148 (1N914) @CR1 © cathode
ISTORS R $\frac{1}{4}$ watt, 5%
3- 27Ω @ R3,4,5
2-510 Ω @ R1,

- 1 - $1 \mathrm{k} \Omega$ @ R6
33Ω 16-pin DIP @ U63,78 Solder directly to the board sixteen 33Ω resistors may be substitued for the two DIP packages

> 4-4.7 K Ω 10-pin SIP* @ $\mathrm{Z1,2,3,4}$ \star Match pin 1 of SIPs with pin 1 (square) on the layout

KETS * Match pin 1 of sockets with pin 1 on the layout. Check that
ALL pins have passed thru ALL holes 1-8-pin
-19 - 14-pin

- 47 - 16-pin

1-18-pin
-15-20-pin

- 1 - 24-pin
- 9 - 28-pin
-

ACITORS C

- 3 - $47 \mathrm{pF}(50 \mathrm{pF}) @ C 7,8,9$
$0.01 \mu \mathrm{HF}$ (Cl 9
- 64 - $0.1 \mu \mathrm{~F}$ Monolithic*
*Note TWO different spacing between pads. Select correct pads

_ 14 - $10 \mu \mathrm{~F} / 25 \mathrm{~V}$ Tantalum*

(d $C 2,3,4,5,6,10,11,12,13,14,15$, C16,17,18 *Match + of
Tantalum with + on the layout
1-5-50 pF Trimcap @ C1

SUGGESTED SEQUENCE *indicates A PRECAUTION
CRYSTAL Y *Fold crystal flat against the INTEGRATED CIRCUITS *Match pin 1 of ICs board before soldering. Solder the crystal case to the grounding pad on the board
——
\qquad $1-14.31818 \mathrm{MHz}$ @ Y 1

SWITCHES

The following switch (SW1) is used to select the system configuration 1-8-position DIP

- The following TWO switches (W) are used to select EPROM/ROM type. Install 74LS138 IC @ U23 (A,B or C) accordingly.
\qquad 1-8-position DIP @ W (WI to 8) (or 2×8 header)
\qquad 1-4-position DIP o W (W9 to 12) (or 2×4 header)

CONNECTORS

\qquad 2-1x3 header, male, straight @ JP2 strap 2-3
1 - jumper plug on pins 2 \& 3 of JP11-1x4header, male 90° @ P4 for speaker
\qquad 1-12-pin power connector d P1,P2 1-6-pin power connector @ P3 (Apple-type supply)
\qquad
\qquad 8-62-pin edge card connectors @ J1,2,3,4,5,6,7
\qquad 1-5-pin DIN Keyboard connector @ P5
PINOUT FOR POWER SUPPLY
AT P1-P2 AT P3

pin \#	for	pin \#	for
1	power good	1,2	+5 V
2	key	3	$-12 V$
3	$+12 V$	4	$-5 V$
4	$-12 V$	5	$+12 V$
$5,6,7,8$	GND	6	GND

DELAY LINE
1-100 ns @ U95 with pin 1 on the layout
\qquad $\begin{array}{ll}1-74 L S 00 & \text { @ U85 } \\ 2-74 L S 02 & \text { @ U24,97 }\end{array}$
$=$ 2-74LS04 @ U18,67 1-74LS10 @ U84
\square
$-$ 2 - 74LS20 @ U12,66 1-74LS27 @ U17 1-74LS32 @ U50 2-74LS74 @ U52,82

- 3 - 74LS138 @ U23,51,81
- 2 - 74LS175 @ U27,83
- 4 - 74LS245 @ U2,13,14,22
- 1 - 74LS322 @ U53
- 3 - 74LS373 @ U5,7,15
-1 - 74LS670 @ U26
_ $2-74500$ @ 496,99
- 2-74S08 @ U79,98
- 1 - 74S74 @ U65
-

- 1 - 7407 @ U19
- 1-75477 @ U68
_ 1 - 8088 @ U3 MPU
——1-8087 $1-8237 \mathrm{~A}-5$ @ $\begin{aligned} & \text { @ U36 }\end{aligned}$ (optional)
——1 - 8253-5 @ U49
——1 - 8255A-5 @ U37
- 1-8259A @ U48
- 1 - 8284A @ U1
_1-8288 @ U8
- 18-4164 DRAM 200ns standard
(U38-46 \& U54-62
_18-4164 DRAM 200 ns optiona 1
© U69-77 \& U86-94
_1-2764 Boot EPROM 250 ns
(ROM 7
_7-2764 EPROMs optional
@ ROM $0,1,2,3,4,5,6$

ROBIN HOOD XT MOTHERBOARD（continued）
SWITCH SW1 SETTINGS：SYSTEM CONFIGURATION

SWITCH \＃	1	2	3.4	56	$7 \quad 8$
$\stackrel{y}{\Sigma}$		8087	RAM	monitor	drive \＃
穴完	normal off	$\begin{array}{ll}\text { no } 8087 & \text { on } \\ \text { with } 8087 & \text { off }\end{array}$	128K off on 192K on off	none on on 40×25 colour off on	$\begin{array}{lll} 1 & \text { on on } \\ 2 & \text { off } & \text { on } \end{array}$
訔			256 K off off	80×25 colour on off	3 on off
				monochrome off off	4 off off

EPROM／ROM SELECTION（SWITCHES W）；LOCATION OF MEMORY DECODER（U23 74LS138）：

MBE-XT MGTHERBOARD: Features include: 8088 MPU with socket for optional 8087 co-processor; eight I/O expansion slots XT spacing of 20 mm ; on-board memory in blocks of 64 K to a maximum of 256 K using 4164 or equivalent RAM chips; eight ROM sockets; documentaion and schematics available from supplier.

MBE-XT MOTHERBOARD (continued)
DIODE D *Position banded (cathode) end of diode towards the arrow
\qquad 1-1N4148 @ CR1
RESISTORS R $\frac{1}{4}$ watt, 5%
$3-27 \Omega @ R 3,4,5$
$2-510 ~ \Omega @ R 1,2$

- $2-4.7 \mathrm{k} \Omega$ @ R 7,8

A

- cathode
end
\qquad 1-10 K 2 @ R6
4-4.7 K Ω 10-pin SIP* @ $\mathrm{Z1,2,3,4}$ *Match pin 1 of SIPs with pin 1 (square) on the layout
-2 - $\begin{gathered}33 ~ \\ * \text { Solder directly to the board }\end{gathered}$
SOCKETS *Match pin 1 of sockets with pin 1 on the layout. Check that ALL pins have passed thru ALL holes 1-8-pin
$19-14-\mathrm{pin}$
$-45-16$ pin 45-16-pin 1-18-pin

\qquad 5-20-pin
pin 1
for ALL sockets
-1-24-pin
and ICs
- 4 - 40-pin

CAPACITORS C
__ 3 - $50 \mathrm{pF}(47 \mathrm{pF})$ @ $\mathrm{C} 7,8,9$

- 13 - $\quad 10 \mu \mathrm{~F} / 25 \mathrm{~V}$ Tantalum* $\mathrm{ac}^{\mathrm{C}} \mathrm{C} 2,3,4,5,6$ C $10,11,12,13,14,15,16,17$
*Match + of Tantalum
with + on the layout
x
$\underset{1}{\prime}$
N
o \qquad 1-5-50 pF Trimcap @ C1
CRYSTAL *Fold crystal flat against the board before soldering. Solder the case to the grounding pad under crystal
\qquad $1-14.31818 \mathrm{MHz} @ \mathrm{Y} 1$

SWITCHES 1-8-position DIP @ U20	INTEGRATED CIRCUITS *Match pin 1 of ICs with pin 1 on the layout
- for board setup	1-74LS00 @ U85
for EPROM/ROM switch settings	- 2-74LS02 @ U24,97
use EITHER DIP switches OR headers	- 2-74LS04 @ U18,67
1-8-position DIP @ W1-8	1-74LS10 @ U84
1-4-position DIP @ W9-12	2-74LS20 @ U12,66
OR	1-74LS27 @ U17
1-2x8 header, male straight	1-74LS32 @ U50
@ W1-8	2-74LS74 @ U52,82
1-2x4 header, male straight	3-74LS138 @ U23,51,81
er plugs © W9-12	2-74LS175 @ U27,83
	6 - 74LS244 @ U6,9,10,11,16,21
CONNECTORS	4-74LS245 @ U2,13,14,22
2 - 1x3 header, male, straight	1-74LS322 @ U53
@ JP1 for power reset	3-74LS373 @ U5,7,15
@ JP2	1-74LS670 @ U26
1-1x4 header, male, straight	2-74S00 @ U96,99
P4 for speaker	2-74S08 @ U79,98
$\begin{aligned} & 1 \text { - 12-pin power connector } \\ & 0 \mathrm{P} 1, \mathrm{P} 2 \end{aligned}$	1-74S74 @ U65
1-6-pin power connector	- 1-74S138 @ U80
@ P3 (Apple-type supply)	[2-74S157 ${ }^{\text {2 C U47,64 }}$
- 62-pin card edge connectors	
(a J1,2,3,4,5,6,7,8 1-5-pin DIN keyboard connector	$\begin{array}{ll} 1-7407 & \text { @ U19 } \\ 1-75477 & \text { @ U68 } \end{array}$
@ P5	1-8088 @ U3 MPU
DELAY LINE	1-8087 @ U4 (optional)
1-100 ns @ U95	1-8237A-5 @ U36
*Solder directly to the board	1-8253-5 @ U49
	1-8255A-5 @ U37
	1-8259A @ U48
	1-8284A @ Ul
	1-8288 @ U8
	18-4164 RAM 200 ns (standard)
	@ U38-46 \& U54-62
	18 - 4164 RAM 200 ns (optional)
	@ U69-77 @ U86-94
	1-2764 Boot EPROM 250 ns (standard)
	(ROM 7
	7-2764 EPROMs (optional)

MBE-XT MOTHERBOARD (continued)
SWITCH SW1 SETTINGS: SYSTEM CONFIGURATION

EPROM/ROM SELECTION AND LOCATION OF MEMORY DECODER (U23 74LS138):

MEGA-BOARD MOTHERBOARD; Features include: 8088 MPU with socket for optional 8087 co-processor; eight I/0 expansion slots, XT spacing of 20 mm (connector $J l$ provides external bus expansion via a $62-\mathrm{pin}$ gold-plated card edge connector; on-board memory in blocks of 64 K to a maximum of 256 K using 4164 or equivalent ICs, or to a maximum of 1 M using 256 K RAM ICs; five ROM sockets jumper programmable to accept 8,16,32,64 K ROM and EEPROM ICs; hardware reset switch; wire-wrap area; documentaion and schematics available from supplier.

*Not ALL bus bar pin numbers are shown
actual size

MEGA-BOARD MOTHERBOARD (continued)

SUGGESTED SEQUENCE *INDICATES A PRECAUTION

Use the bare board as a guide to prepare CAPACITORS (continued) the three bus bars. Install later.

DIODES D *Position banded (cathode)

 end of diode as shown 1-1N4148 @ CR1HEADERS (continued)
$1-2 \times 7$ pins @ E8 *Remove pin 14

RESIS TORS R $\frac{1}{4}$ watt, 5% $\begin{array}{lllll}1-33 & \Omega & @ & R 7 \\ 1-100 & \Omega & @ & R 1\end{array}$
$\begin{array}{llll}1-100 & \Omega \\ 1-180 & \Omega & R 1 \\ 1\end{array}$
1-220 Ω @R5
2-510 Ω @ R3,4
1-100 K Ω @ R2
2-4.7 K 6-pin SIP* @ RN1,2 *Match pin 1 of SIPs with pin 1 on the layout
*Solder the following DIP resistor networks directly to the board
$\ldots \quad 1$ - 330Ω 16-pin DIP @ RN6,7 - 2 - 4.7 K Ω 16-pin DIP @ RN3,4 _1-8.2 1 K 16 -pin DIP © RN5
 pin 1 on the layout. Check that ALL pins have passed thru ALL holes 1-8-pin
21-14-pin
-53-16-pin
1-18-pin
-14-20-pin

- 24-pin 6-28-pin 4-40-pin

pin 1 (square pad) for ALL sockets and ICs

APACITORS C

_ 3 - 47 pF Monolithic @ C2,3,4
1 - 100 pF Monolithic @ C13
\qquad 1 - 5600 pF Monolithic @ C9*
*For EEPROM programming only

\qquad

_ 14 - $10 \mu \mathrm{~F} / 16 \mathrm{~V}$ Tantalum* $\mathrm{C}_{\mathrm{Cl}} \mathrm{Cl}, 5,6$, C7,11 \& positions CD *Match + of Tantalums with + on the layout
\qquad 1 - before installing 1 - 2×9 pins @ $E 9$ *Add one pin at 13
——1 - 1 - 1×4 pin @ VPP
 CONNECTORS
CONNECTORS 1 - 12-pin Molex, straight @ P1
CRYSTAL Y *Fold crystal flat against \qquad the board before soldering. Solder case to grounding pad under crystal
\qquad 1-14.31818 MHz@ Y1
SWITCH
___ 1 - Minature PB , momentary contact
___ 1-8-position DIP @ SW2
BUS BARS

PINOUT	FOR POWER
pin	for
1	Reset
2	Key
3	+12
4	-12
$5,6,7,8$	GND
9	-5
$10,11,12$	+5

_3-bus bars, 10 pins per inch - Prepare in the following manner: Cut bus bars to length. Mark pins \qquad 1-5-pin DIN - 62-pin card edge-connectors to be used with a felt pen. Remove DELAY LINES *Solder to the board unused pins with needle-nosedpliers. \qquad 1 - 100 ns digital @ TDl *Install Check that tabs are cleanly removed and cannot cause a short circuit with the bar installed. Install and solder.
___ BUS 1: 30.0 cm Use pins 1,7,10, $19,39,51,59,71,83,87,88,100$, 107,119
\qquad BUS 2: 12.9 cm Use pins $1,7,17$, 23,39,51
\qquad BUS 3: 11.1 cm Use pins $1,2,4,10$, 22,28,32,36,40,44
HEADERS All are male, straight
$2-1 \times 2$ pins @ E2,3
$3-2 \times 5$ pins © E4,5,6

- 1 - 2×4 pins @ E7 *E8 \& E9 are non-standard

BM XT SYSTEM MOTHERBOARD: Features include: 8088 MPU with socket for optional 8087 co-processor; eight I/0 expansion slots, PC spacing of 25 mm ; on-board memory in blocks of 64 K to a maximum of 256 K using 4164 or equivalent chips; eight ROM sockets; documentation available from supplier.

actual size $30.3 \mathrm{~cm} \times 21.6 \mathrm{~cm}$ (layout is reduced)

XT SYSTEM MOTHERBOARD (continued)
E D *Position banded

(cathode) end of diode

towards the arrow
1-1N4148@CR1
STORS R $\frac{1}{4}$ watt, 5%
3-27 Ω @ R3,4,5

- 2 - 510Ω @ R1,2

1-10 K Ω @ R6

- 4-4.7 K Ω 10-pin (9 resistor) SIP* @ Z1,2,3,4 *Match pin 1 of SIPs with the square on the layout
2 - $33 \Omega 16$-pin DIP @ U63,78 Ter directly to the board. (Eight 33Ω resistors may be substituted for each DIP)
ETS *Match pin 1 of sockets with pin 1 on the layout. Check that ALL pins have passed thru ALL holes 1-8-pin
21-14-pin
$45-16-\mathrm{pin}$
-1-18-pin
$15-20-\mathrm{pin}$

1-24-pin
9-28-pin
4-40-pin
CITORS C
3 - $47 \mathrm{pF} @ \mathrm{C} 7,8,9$
1-300 pF @ Cl8
j5-0.1 $\mu \mathrm{F}$ Monolithic @
13 - $10 \mu \mathrm{~F} / 25 \mathrm{~V}$ Tantalum* @ $\mathrm{C} 2,3,4,5,6$

$$
\mathrm{C} 10,11,12,13,14,15,16,17
$$

with + on the layout
1 - 5-50 pF Trimcap @ C1
AL Y *Fold crystal flat against the board before soldering. Solder the case to the two grounding pads 1-14.31818 MHz @ Y1

SWITCHES
_1-8-position DIP @ SW1 for system configuration
_1-8-position DIP @ SW2
for ROM selection
_1-4-position DIP @ SW3 for ROM selection

CONNECTORS

___ 1 - 1×3 header, male, straight © JP1
\qquad 1-1x4 header, male, 90°
(P3 for speaker
1-12-pin, male, Molex
© P1 for power
8-62-pin edge card connectors
@ $31,2,3,4,5,6,7,8$
\qquad 1-5-pin DIN, 90°
@ P2 *Position © either position PC or XT
DELAY LINE
1-100 ns e U95 *Install in socket *SoTder directly to the board

INTEGRATED CIRCUITS *Match pin 1 of ICs with pin 1 on the layout
1-74LS00 @ U85
$2-74 L S 02$ @ U24,97
$2-74 L S 04$ @ U18,67
1-74LS10 @ U84
2-74LS20 @ U12,66
1-74LS27 @ U17
1-74LS32 @ U50
2-74LS74 @ U52,82
3 - 74LS138 @ U23,51,81
2-74LS175 @ U27,83
6 - 74LS244 @ U6,9,10,11,16,21
4-74LS245 @ U2,13,14,22
1-74LS322 @ U53
3-74LS373 @ U5,7,15
1-74LS670 @ U26
2-74S00 @ U96,99
2-74S08 @ U79,98
1-74S74 @ U65
1-74S138 @ U80
2-74S157 @ U47,64
1-74S280 @ U25
2-7404 @ U100,101
1-7407 @ U19
1-75477 @ U68
1-8088 @ U3 MPU
$1-8087$ @ U4 (optional)
1 - 8237A-5 @ U36
1-8253-5 @ U49
1-8255A-5 @ U37
1-8259A © U48
1-8284A @ U1
1-8288 @ U8
$\begin{aligned} 9-4164 & \text { RAM, } 200 \mathrm{~ns} \\ -27-4164 \text { RAM (optional) }) & \stackrel{\text { @ BNK } 0}{@} \text { BNK1,2,3 } \end{aligned}$
1-2764 EPROM, 200 ns
@ U23 BIOS R0M
7 - 2764 EPROM (optional)
@ U28,29,30,31, $22,33,34$

KBM XT SYSTEM MOTHERBOARD (continued)

WITCH \#	1	2	4	56		78
${ }^{\circ}$		8087	RAM	monitor	drive	
谷	normal off	$\begin{aligned} & \text { no } 8087 \\ & \text { with } 8087 \end{aligned} \begin{gathered} \text { on } \\ \text { off } \end{gathered}$	$\begin{array}{ll}128 \mathrm{~K} & \text { off on } \\ 192 \mathrm{~K} & \text { on off }\end{array}$	$\text { none } \quad \text { on on }$		on on
${\stackrel{\text { \% }}{ }{ }^{2}}^{2}$				80x25 colour on off	2	off on
				monochrome off off	4	off off

PROM SELECTION SW2,3 - LOCATION OF MEMORY DECODER (U23 74LS138)

				RROM	ROM	SEL	ctio							OCATION	OF U23
			Sk:	!2						SW3				te posit	tion of
switch no	2	3	4	5	6	7	8	9	10	111	1	12		in 1 on	layout
2764 EPROM	on off	on	off	on	off	on			on	n of				A	
27128 EPROM	on off	off	on			on	off		off	f of				B	
3Kx8 ROM	on off	on	off	off	on	off		off	on	n of		on		A	
32Kx8 ROM	off on	off	on	on	off	on	off		off	f on	n	off		C	

TIGE I XT: Features include: 8088 MPU with socket for optional 8087 co-processor; seven I/0 expansion siots, PC spacing of 25 mm ; on-board memory in blocks of 64 K to a maximum of 256 K using 4164 or equival ent RAM chips; eight ROM sockets. Documentation and schematics are available from supplier. Requires modification.

actual size
$30.3 \times 21.6 \mathrm{~cm}$
(layout is
reduced)

STIGE I XT MOTHERBOARD (cont)

DE D *Position banded
(cathode) end of diode
towards the square
1-1N4148@4148
ISTORS $R \quad \frac{1}{4}$ watt, 5
$3-27 \Omega$
$-1-33 \Omega$
$-2-510 \Omega$
$1-4.7 \mathrm{k} \Omega$

- 1 - 10 k
- 4 - 4.7 KS 10 -pin SIP @ RN1,2,3,4 *Match pin 1 of SIPs with pin $1(+)$ on the layout
? - 33Ω 16-pin DIP @ U63,78 *Solder directly to the board *Sixteen 33Ω resistors may be substituted at U63,78
KETS *Match pin 1 of sockets with pin 1 on the layout. Check that ALL pins have passed thru ALL holes 21-14-pin
47-16-pin
1-18-pin
- 15 - 20-pin

1-24-pin

pin 1

- 9 - 28-pin
4-40-pin
ACITORS C
$3-50 \mathrm{pF}$
75-0.1 $\mu \mathrm{F}$ Monolithic © . 1
1 - 5-50 pF Trimcap
*Match + of the following caps
with + on the layout
1 - $10 \mu \mathrm{~F} / 25 \mathrm{~V}$ Axial*
7 - $10 \mu \mathrm{~F} / 25 \mathrm{~V}$ Tantalum* $\mathfrak{d}+$

TAL *Fold crystal flat against the board before soldering. Solder the case to the grounding pads 1 - $14.31818 \mathrm{MHz} @ Y \mathrm{I}$
suggested sequence *indicates a precaution "modification required
SWITCHES SW
$1-4$-position OIP @ SW2
$1-8$-position DIP @ SW1,3

CONNECTORS

1- 2×9 header, male, straight © JP1
1 - 1×3 header, male, straight @ JP2
1-1×4 header, male, straight @ P3
-1-12-pin power connector @ P1, P2
-8-62-pin card-edge connectors
(1) $11,2,3,4,5,6,7,8$
\qquad 1-5-pin DIN Keyboard connector © KBRD

POWER PINOUT	pin \#	for
P1:	1	power good
	2	ky
	3	+12
	4	-12
	5,6	GND
P2:	1,2	GND
3	-5	
	$4,5,6$	+5

INTEGRATED CIRCUITS *Match pin 1 1-74LS00 @ U85
\qquad 2-74LS02 @ U26,98 2-74LS04 @ U18,67 1-74LS08 @ U99 1 - 74LS10 @ U84 2-74LS20 @ U12,66 1 - 74LS27 @ U17, 1-74LS32 @ U50 2-74LS74 @ U52,82 3-74LS138 @ U23,51,81 2 - 74LS175 @ U27,83 6-74LS244 @ U6,9,10,11,16,21
4 - 74LS245 @ U2,13,14,22 1-74LS299 @ U53
3-74LS373 @ U5,7,15
1-74LS670 @ U25
2-74S00 @ U97,100
1-74S08 @ U79

- 74574 @ $\cup 65,95,96$
- 74S138 @ U80

2-74S157 @ U47,64
of IC with pin 1 on the layout

- 74S280 @ U24

1-7407 @ U19
_ 1 - 75462 @ 468
_- 1 - 8088 © U3 MPU
-1
-1

- 8087 @ U4 (op
- 8237A-5 @ U36
- 1 - 8253-5 @ U49
\qquad
- 8255A-5 @ U37
\qquad
$1-8259 A$ @ U48
\qquad
- 8284A © U1

1-8288 @ U8
18-4164 DRAM 150 ns standard
@ U38-46 \& U54-62
18 - 4164 DRAM 150 ns (optional)
(U69-77 \& U86-94
_1-2764 Boot EPROM 250 ns a U35
-7-2764 EPROMs 250 ns
@ $428,29,30,31,32,33,34$

IGE I XT MOTHERBOARD (continued)

SW1 SETTINGS: SYSTEM CONFIGURATION

OS DECODER (SW2, SW3, and JP1)

EPROM/ROM SELECTION												
ch no	SW3								SW2			
	1	2	3	4	5	6	7	8	1	2	3	4
EPROM	on	off	on	off	on	off	on	off		on	off	
EPROM	on	off	off	on	on	off	on	off		off	off	on
ROM	on	off	on	off	off	on	off	on	off	on	off	on
ROM	off	on	off	on	on	off	on	off		off	on	off

;4 EPROM or $8 \mathrm{~K} \times 8$ ROM strap across $1,2,3$ @ JP1

MODIFICATION ON THE SOLDER SIDE
(U97)

CUT as shown
STRAP A to A

SUPER XT MOTHERBOARD: Features include: 8088 MPU with socket for optional 8087 co-processor; eight I/0 expansion slots, XT spacing of 20 mm ; on-board memory in blocks of 64 K to a maximum of 256 K using 4164 or equivalent RAM chips; eight ROM sockets; documentaion and schematics available from supplier.

XT MOTHERBOARD (continued)

D *Position banded (cathode) end of diode towards the arrow

- 1N4148 @ CR1

TORS R $\frac{1}{4}$ watt, 5%
3-27 Ω @R3,4,5
2-510 @ @ R1,2

- $\quad 1 \mathrm{~K} \Omega$ @ R 7

1 - $1 M \Omega$ @ R6
4 - $4.7 \mathrm{~K} \Omega$ 10-pin SIP* @ Z1,2,3,4
*Match pin 1 of SIPs with
pin 1 on the layout
2 - $33 \Omega 16$-pin DIP* @ U63,78
*Solder directly to the board
*Sixteen 33Ω resistors may be substituted
TS *Match pin 1 of sockets with oin 1 on the layout. Check that
ALL pins have passed thru ALL holes
0-14-pin
7 - 16-pin

- 18-pin
; - 20-pin
- 24-pin
- 28-pin
- 40-pin

TORS C

- $\quad 50 \mathrm{pF}$
- $0.01 \mu \mathrm{~F}$ @ C19
- 0.1 $\mu \mathrm{F}$ Monolithic* @
*Note TWO different spacings between solder pads.
Select CORRECT PADS
- $10 \mu \mathrm{~F} / 25 \mathrm{~V}$ Tantalum* @ $\mathrm{C} 2,3,4$, C5,6,10,11,12,13,14,15,16, C17,18 *Match + of caps with + on the layout
- 5-50 pF Trimcap © C1
jTOR Q *Position EBC leads as shown - 2N3904 @ n3904

SUGGESTED SEQUENCE *indICATES A PRECAUTION

ER XT MOTHERBOARD: (continued)
CH SW1 SETTINGS: SYSTEM CONFIGURATION

OM/ROM SELECTION (SWITCHES W): LOCATION OF MEMORY DECODER (U23, 74LS138)

7 GRANDE MOTHERBOARD: Features include: 8088 MPU with socket for optional 8087 co-processor; eight I/0 expansion slots, XT spacing of 20 mm (J 1 allows for bus expansion via a 2×31 header); on board memory in blocks of 64 K to a maximum of 256 K using 4164 or equivalent chips, or to a maximum of 1 M using 256 K RAM chips; five ROM sockets jumper programmable to accept $8,16,32,64 \mathrm{~K}$ ROM or EEPROM ICs; hardware reset switch; wire-wrap area.

actual size
344. x 268 mm
(layout is reduced)
*Not ALL bus bar pins are shown!

ested sequence "indicates a precaution *Modification required

IFICATION ON THE SOLDER SIDE p pin 9 of U13 to the feed-thru directly below as shown on the ut. Altho the mod is shown on COMPONENT SIDE, the strapping 1d be done on the SOLDER SIDE.
the bare board as a guide to are the three bus bars. Insta r.
E D *Position banded (cathoce) end of diode as shown 1-1N4148 @CR1 - cathode

SOCKETS (continued)
$53-16$-pin
$-14-18-$ pin
$-14-20$-pin

\qquad

- 4 - 40-pin

CAPACITORS C
\square 3 - 47 pF Monolithic @ C2,3,4 1 - 100 pF Monolithic @ C13
-_ 1 - 5600 pF Monolithic @ C9

SITORS $R \frac{1}{4}$ watt, 5%
1-33 Ω @R7
1-100 Ω @ R1
1-180 Ω @ R6
1-220 Ω @ R5
2-510 Ω @R3,4
1-100 K Ω R2
2-4.7 K Ω 6-pin SIP* @ RN1,2 *Match pin 1 of SIPs with pin 1 on the layout
der the following DIP resistor orks to the board. Single stors may be substituted-solder e directly to the board 2-330 Ω 16-pin DIP @ RN6,7 2 - $4.7 \mathrm{k} \Omega$ 16-pin DIP @ RN3,4 1 - 8.2 K Ω 16-pin DIP @ RN5

ETS \#Match pin 1 of sockets with I (square pad) on the layout. < that ALL pins have passed thru toles before soldering
1 - 8-pin
?1-14-pin
end

$10 \mu \mathrm{~F} / 16 \mathrm{~V}$ Tantalum* @ $\mathrm{C} 1,5,6,7,11$ and positions CD *Match + with + on the layout
\qquad 1-6-30 pF Trimcap @ C8
CRYSTAL Y *Fold crystal flat against the board before soldering. Solder the case to the grounding pads
\qquad 1-14.31818 MHz @ YI

SWITCH

_1 - Minature PB , momentary contact © SW1 1-8-position DIP @ SW2
BUS BARS ten pins per inch
Prepare in the following manner: Cut bus bars to length. Mark pins to be used with a felt pen. Remove unused pins with needle nosed pliers. Check that tabs are cleanly removed \& cannot cause shorts with bus bar installed. Install \& solder.
\qquad BUS $1-30 \mathrm{~cm}$. Use pins $1,7,10,19,39$, 51,59,71,83,87,88,100,107,119
___ BUS 2 - 12.9 cm . Use pins $1,7,17,23$, 39,51
__ BUS 3-11.1 cm. Use pins $1,2,4,10,22$,

- $28,32,36,40,44$
HEADERS All are male straight
_ 2 - 1×2 pins @ E2,3
- 3 - 2×5 pins @ E4,5,6
——1-2x4 pins @ E8 NON-STANDARD* remove pin 14 before installing
1 - 2×9 pins @ E9 NON-STANDARD* add one pin at 13
_1-1 pin @ VPP
_1 - 1×4 pins $@$ P2 Use pins 1 \& 4
CONNECTORS
-1 - 12-pin Molex © P1
PINOUT FOR POWER

pin	for
1	reset
2	key
3	+12
4	-12
$5,6,7,8$	GND
9	-5
$10,11,12$	+5

-7 - 62-pin card edge-connectors
_ 1 - 2×31 header, male, straight.
© Jl for bus expansion
DELAY LINE *Solder directly to the board
1-100 ns digital a TD1 in socket 1 - 7 ns inductive @ TD2* *TD2 required only for 256 K RAM chips. Otherwise substitute a 150Ω resistor and a 56 pF cap as shown below

STIGE II XT MOTHERBOARD: Features include: 8088 MPU with socket for optional 8087 co-processor; eight expansion slots, XT spacing of 20 mm ; on-board memory in blocks of 64 K to a maximum of 256 K using 4164 or equivalent RAM chips; eight ROM sockets. Documentaion and schematics are available from supplier. Modification required.

PRESTIGE II XT MOTHERBOARD (cont)

DIODE D *Position banded
(cathode) end of diode
towards the square
1-1N4148 @4148
RESISTORS $R \frac{1}{4}$ watt, 5%
\qquad 3-27 ת
$1-33 \Omega$
2-510 Ω
$=1-4.7 \mathrm{k} \Omega$
-1 - 10 K
4-4.7 KSS 10-pin SIP @ RN1,2,3,4 *Match pin 1 of SIPs with pin $1(+)$ on the layout
2 - 33Ω 16-pin DIP @ U63,78
*Solder directly to the board
*Sixteen 33Ω resistors may be substituted at U63,78
SOCKETS *Match pin 1 of sockets with pin 1 on the layout. Check that
ALL pins have passed thru ALL holes
21-14-pin
47-16-pin
-1 - 18-pin
5-20-pin
1-24-pin

pin 1

SUGGESTED SEQUENCE *indicates a precaution *modification required

$1-2 \times 9$ header, male, straight @ JP1
1 - 1×3 header, male, straight @ JP2

- 1 - 1×4 header, male, straight a P31-12-pin power connector @ P1,P2 8 - 62-pin card•edge connectors
© $11,2,3,4,5,6,7,8$
_1 - 5-pin DIN Keyboard connector © KBRD
POWER PINOUT pin \# for

P1	1	power good
	2	key
	3	+12
	4	-12
	5,6	GND
P2	1,2	GND
	3	-5
	4,5,6	+5

PRESTIGE II XT MOTHERBOARD（continued）

SWITCH SWI SETTINGS：SYSTEM CONFIGURATION

SWITCH \＃	1	2	3.4	56	78
		8087	RAM	monitor	drive \＃
客夏	normal off	no 8087 on	128 K off on	none．on on	on on
穹를		with 8087 off	192K on off	40×25 colour off on	2 off on
－			256K off off	80×25 colour on off	3 on off
				monochrome off off	4 off off

OM BIOS DECODER（SW2，SW3，and JP1）

EPROM／ROM SELECTION												
switch no	SW3								SW2			
	1	2	3	4	5	6	7	8	1	2	3	4
2764 EPROM	on	off	on	off	on	off	on	off	off	on	off	on
27128 EPROM	on	off	off	on	on	off		off	on		off	on
8 Kx 8 ROM	on	off	on	off	off	on			off			on
$32 \mathrm{Kx8}$ ROM	off	on	off	on	on	off	on	off	on	off	on	off

MODIFICATION ON THE SOLDER SIDE

CUT as shown
STRAP A to A

HE DISK CONTROLLER CARD: Allows user to run up to four $5 \frac{1}{4}$ " floppy disk drives. With power off, install in any available slot. Requires firmware (one PROM). To run $8^{\prime \prime}$ drives, extra devices are required (not shown). Position DIP switch on motherboard according to the number of drives in use. Schematics are available from supplier.

UGGESTED SEQUENCE *indICATES A PRECAUTION
Actual size is $24.2 \times 10.8 \mathrm{~cm}$.
ESISTORS $R \frac{1}{4}$ watt 5% SOCKETS *Match pin 1 of sockets with pin 1 CAPACITORS C
_ 1 - 150Ω @ Rb

- 1 - $4.7 \mathrm{~K} \Omega$ @ Ra on the layout. Check that ALL pins have passed thru ALL holes
1-4.7 K $@$ Rc *Position resistor as shown on the layout
1-1 K 26 -pin SIP @ RPk *Match pin 1 of SIP with pin 1 on the layout
_ 9 - $0.1 \mu \mathrm{~F}$ Monolythic @ positions 0
——2 - $10 \mu \mathrm{~F} / 25 \mathrm{~V}$ Radial O positions *Match + of Radials with + on layout
OSCILLATOR (crystal)
_1-16.0000 MHz © CRY

```
RHE DISK CONTROLER CARD(CONTINUED)
CONNECTORS
__1-2-pin header, male, straight
```

\qquad

``` - 2-pin header, male, straight © J1
```

```1 - jumper plug - install @ J1 for \(5 \frac{1}{4}\) " drive operation
```

\qquad

``` 1 - rear panel adaptor
INTEGRATED CIRCUITS *Match pin 1 of ICs with pin 1 on the layout
```



```
- 74LS00 @ Ul
- 74LS04 @ U10,12,23
- 74LS08 @ U5
1-74LS30 @ U7
- 74LS32 @ U2,6
- 74LS74 @ U3
```

INTEGRATED CIRCUITS (continued)

THE FOLOWING CARD IS IDENTICAL EXCEPT FOR THE SILK-SCREENING. Use the preceding parts list. Delete components labelled "D".

RHE DISK CONTROLER CARD (continued):

USING THE CARD:
The RHE Disk Controller Card does not use the same disk select scheme as IBM. IBM uses a twist in the ribbon cable connecting the drives to the controller to select between drives. On the other hand, the RHE uses a more conventional approach of using jumpers on the drive to do drive select. IBM has a separate line for "motor select" while the RHE uses "drive select" to turn the

IBMPC

 wires 10-16 turited on Drive A motor on. Since "drive select" is gated by "motor select", the operation of the drive motor is identical for both the RHE and the IBM disk contorller.*If no drives are selected by a DS\#, then none will run. *If two are selected by the same DS\# then erratic operation or damage may result.

1) TANDON $\frac{1}{2}$ HEIGHT

$$
\begin{array}{lll}
1---16 & \text { HS } & \text { In } \\
2---15 & \text { DSO } & \\
3---14 & \text { DS1 } & \\
4---13 & \text { DS2 } & \\
5---12 & \text { DS3 } & \\
6---11 & \text { AUX OUT } \\
8---9 & \text { HM IN }
\end{array}
$$

2) SHUGART $\frac{1}{2}$ HEIGHT

DG

BS 2
DG 3
BS 4
BX OUT
MS IN
2) TEAC $\frac{1}{2}$ HEIGHT

DSO
DSt
BS
BS
MY OUT
MS IN
ST IN
WT OUT
3) PANASONIC $\frac{1}{2}$ HEIGHT

PG DISK CONTROLER CARD: Allows user to run up to four 51/4" floppy disk drives. With power off, install in any available slot. Position DIP switch on motherboard according to the number of disk drives in use.

SUGGESTED SEQUENCE *indICATES A PRECAUTION *MODIFICATION MAY BE REQUIRED

[^0]DIODES D *Position banded end of diode RESISTORS (continued)

- 1 - 1 K SIP*, 9-pin @ RP
- *Match pin 1 of SIP with pin 1 (square) on the layout

SOCKETS *Match pin l of sockets with pin 1 on the layout. Check that ALL pins have passed thru ALL holes

CAPACITORS C *Delete VC *See MOD.

- 30 - $0.1 \mu \mathrm{~F}$ Monolythic a C 1 to 30 - 1 - $47 \mu \mathrm{~F} / 16 \mathrm{~V}$ Radial* @ C33 SEE *Match + of Radial with NeTE + on the layout
$\begin{array}{r}16-14-\text { pin } \quad \text { pin } 1 \\ =3-16-\operatorname{pin} \\ -1-20-\operatorname{pin} \\ \hline\end{array} \quad \square$

*MODIFICATION MAY BE REQUIRED
Drives may not run as 82 pF capacitor @ C31
is critical. REPLACE 82 pF with a 47 pF cap AND:
a) ON COMPONENT SIDE: install one $5-50 \mathrm{pF}$ trimcap @ VC;
b) ON SOLDER SIDE: strap A to A, and B to B, as shown on the layout
Adjust trimcap @ VC until drives run

SOLDER SIDE

FLOPPY DISK ADAPTER: Allows user to run up to four $5 \frac{1}{4}$ " floppy disc drives. With power off, install in any available slot. Position DIP switch on motherboard according to the number of drives in use.

L DRIVE CONTROLLER/PARALLEL PORT CARD: Supplies an interface between the computer and a) up to four $5 \frac{1}{4}{ }^{\prime \prime}$ disk drives, and b) a parallel printer or other device that uses a parallel port. With power off, install in any free slot. Documentaion availabe from supplier.

HAL DRIVE CONTROLLER/PARALLEL PORT CARD (continued)
CRYSTAL Y *Match pin 1 of oscillator INTEGRATED CIRCUITS (continued
with pin 1 (dot) on the layout
1-8.0000 MHZ oscillator package @ U33
CONNECTORS
2-1x3 headers, male, straight @ J1 TEST
© $J 2$ parallel port select
1-2x13 header, male, straight

- J3

1-DB25S female, 90°, PCB mount @ J4
1 - jumper plug for J 2
1 - rear panel adapter

with pin 1 on the layout

*The ICs @ U8,9,19,20,21,22,31 are associated with the parallel port
ALIGNMENT: Without correct alignment, the controller may appear to function normally but may produce diskettes that cannot be used on other computers ALIGNMENT PROCEDURE: Refer to Jl TEST. Ground pin 2. Connect an oscilloscope to pin $1 \&$ adjust R1 for $1.35 \pm 0.05 \mathrm{~V}$. Connect scope to pin $3 \&$ adjust R2 for 4 MHz display.

1-74LS00 @U18
1-74LS02 @ U28
1-74LS04 @ U34
2-74LS08 @ U7,26
1-74LS20 @ U30
1-74LS109 © U25
1-74LS123 @ U3
1-74LS125 @ U9
1-74LS126 @ U27
1-74LS138 @ U29
1-74LS153 @ U13
1-74LS155 @ U31
1-74LS174 @ U19
2-74LS175 @ U12,15
4-74LS240 @ U6,10,20,32
1-74LS244 @ U21
1-74LS245 @ U35
1-74LS273 @ U17
1-74LS293 @ U24
1-74LS374 @ U22
1-74LS629 @ U1

ISK CONTROLER CARD: Allows user to run up to four $5 \frac{1}{4} "$ floppy disc drives. With power off, install in any vacant slot. Position DIP switch on motherboard according to the number of disk drives in use.

ESTED SEQUENCE *INDICATES A PRECAUTION
:S D *Position banded end (cathode) SOCKETS *Match pin 1 of sockets with

CAPACITORS (continued)

of diode as shown
 banded end

 iTORS R $\frac{1}{4}$ watt, 5%1-470 Ω @ R3
2 - $2 \mathrm{~K}_{2} @ \mathrm{R} 1,6$
$1-3.3 \mathrm{~K} \Omega$ @ R2
1 - $2 \mathrm{~K} \Omega$ 16-pin DIP @ RP2
1 - 220/330 Ω 16-pin DIP @ RP1
pin 1 on the layout. Check that ALL pins have passed thru ALL holes. 14-14-pin

15-0.047 $\mu \mathrm{F}$ Monolithic a $\mathrm{C} 1,2,3$, C4,5,6,7,8,9,10,12,13, C14,15,16
\qquad 2 -


```
JISK CONTROLER CARD (continued)
ILLATOR
_ 1-16.000 mHz
NECTORS +
_1-DC37S female, 90}\mp@subsup{}{}{\circ}\mathrm{ , PCB mount
    for two 5\frac{1}{4}}\mathrm{ external drives
1 - rear panel adapter
EGRATED CIRCUITS *Match pin 1 of ICs
with pin l on the layout
2 - 74LSO2
1 - 74LS04
    3-74LS08
1 - 74LS30
- 1 - 74LS32
1 - 74LS93
-1 - 74LS109
2 - 74LS112
1-74LS153
-1 - 74LS161
-2 - 74LS175
-1 - 74LS191
- 1 - 74LS240
-1 - 74LS245
1 - 74LS273
1 - 74S153
4 - 7438
- 1 - MC3487
- 1 - MC4024
-1 - MC4044
-1 - D765AC
```

DISC CONTORLLER CARD: Allows user to run up to four $5 \frac{1}{4} "$ floppy disk drives. With power off, install in any available slot. Set DIP switches on motherboard according to the number of drives in use.

Actual size is $14.8 \times 10.8 \mathrm{~cm}$.
STED SEQUENCE *indicates A PRECATION

TORS R $\frac{1}{4}$ watt, 5\%	
8-150	$\Omega @$ co-ordiates: A2-3;
	three @ A4; two @ B4-5; B5-6
	D3-4
2	K Ω @ A3; D1-2; D5-6
- 4.7	$\mathrm{K} \Omega$ @ B2
TS *Match pin 1 of sockets with pin	
1 on the layout. Check that ALL pins	
	d thru ALL hol

SOCKETS (continued)

CAPACITORS C
9-0.1 $\mu \mathrm{F}$ Monolithic o - $3-3.3 \mu \mathrm{~F} / 16 \mathrm{~V}$ Tantalum* $\mathrm{e}+$ *Match + of Tantalum with + on the layout

SWITCH
-1-8-position DIP @ SW1 CONNECTORS
___ 1 - DB37S 37-pin female, 90°, PCB mount, @ J2
OSCILLATOR *Install oscillator in socket _1-8.000 MHz @ A6
INTEGRATED CIRCUITS *Match pin 1 of ICs

SWITCH SW1 SETTINGS:
number of drives settings

$$
\begin{array}{ccccc}
& & 1 & 1 & 7 \\
0 & 8 \\
0 & \ldots & \text { on } & \text { on } & \text { on } \\
1 & \ldots & \text { off } & \text { on } & \text { on } \\
2 & \ldots & \text { off off on on } \\
3 & \ldots & \text { off on off } \\
4 & \ldots & \text { off off off }
\end{array}
$$

OBM-1 MEMORY/SERIAL CARD: Allows user to add a) 64 K , 128K, 192K, or 256 K bytes of dynamic RAM, and b) one RS-232 serial port using the optional ICs indicated in the parts list, to the motherboard. Schematics are available from the supplier.

Layout is reduced. Actual size is $32.9 \times 10.8 \mathrm{~cm}$.
ested sequence *indicates a precaution *Modification required

STORS \quad R $\frac{1}{4}$ watt, 5%
9 - 33Ω *Note poition of one of the resistors on the layout
$1-1.5 \mathrm{~K} \Omega$
$8-10 \mathrm{~K} \Omega$
$1-1 \mathrm{M} \Omega$
ETS *Match pin 1 of sockets with pin 1 on the layout. Check that ALL pins have passed thru ALL holes
16-14-pin
+1 - 16-pin
$3-20-\mathrm{pin}$
1 - 40-pin

CAPACITORS C
 $1-22 \mathrm{pF}$
——45-0.1 $\mu \mathrm{F}$ Monolithic @ o
_ 8 - $10 \mu \mathrm{~F} / 16 \mathrm{~V}$ Tantalum *Match + with + on the layout
CRYSTAL Y *Fold crystal flat against the card before soldering
\qquad $1-1.8432 \mathrm{MHz} @ 1.843$

SWITCH

_1-8-position DIP © SW1

CONNECTORS

1 - DB25P male, 90°, PCB mount @ $\mathbf{1 2}$
——1 - rear panel adapter
—_ 1- - 2×3 header, male, straight @ Jl
Strap Jl as follows:
i FOR MODEM
$\operatorname{strap}\{. .\} s t r a$.
ii FOR TERMINAL

OBM-1 MEMORY/SERIAL CARD (continued) :

GRATED CIRCUITS *Match pin 1 of ICs with pin 1 on the layout
2-74LS00
1-74LS02
1-74LS04
1-74S08* (or 74LS08)
1-74LS11

- 2 - 74LS14

1-74LS30

- 1 - 74LS74

2-74LS85
2-74LS125 (optional)
\qquad 1-74LS155 1-74LS244
 2-74LS245

- 1 - 74LS280* (or 74S280)2-74S157 (no substitute)
\qquad 1 - 148157 (no substitute) 1-1488 (optional) 2-1489 (optional)
- 1-8250B (optional) —36-4164 dynamic RAM, 200 ns

If parity error exists, substitute 74LS08 for 74S08 74S280 for 74LS280

CH SWI SETTINGS:

switch, SW-1, located at co-ordinates 2-F, addresses memory anywhere in a

MODIFICATION: *ON THE SOLDER SIDE

\qquad cut trace between pin 1 of 8250 and ground on the solder side as shown
 megabyte field through a continuous bank. Set the switches according to the owing protocol:

starting	settings				ending bank	ending address	settings			
address	1	2	3	4			5	6	7	8
ØK	on	on	on	on		64 K	on	on	on	on
64 K	off	on	on	on		128K	off	on	on	on
128K		off	on	on		192K			on	n
192K	off	off	on	on		256K	off		on	

IPLE 1: for 0 K to 64 K bytes (one bank) set $1,2,3,4$ to on; set $5,6,7,8$ to on
IPLE 2; for $\emptyset \mathrm{K}$ to 256 K bytes (four banks) set $1,2,3,4$ to on; set 5,6 off $\& 7,8$ on
motherboard switch settings (SW2) must be set accordingly.

EMORY/SERIAL CARD: Allows user to add: a) $64 \mathrm{~K}, 128 \mathrm{~K}$, 192 K , or 256 K bytes of dynamic RAM, and b) one RS-232 serial port (using the optional ICs indicated in the parts list), to the motherboard. Documentation and schematics are available from the supplier.

ITED SEQUENCE *INDICATES A PRECAUTION Layout is reduced. Actual size is $32.8 \times 11.7 \mathrm{~cm}$.

3-33 Ω @ R11a,11,12,13,14,15 R16,17,18

l - $1.5 \mathrm{~K} \Omega @ \mathrm{R} 9$

3 - 10 K Ω @ $1,2,3,4,5,6,7,8$

- $\quad 1$ M Ω @ R10
-S *Match pin 1 of sockets with sin 1 on the layout. Check that ILL pins have passed thru ALL holes :-8-pin
- 14-pin
b-16-pin
- 20-pin
- 40-pin
pin $1=$

CAPACITORS C

$1-22 \mathrm{pF}$ @ C 1
\ldots

-_4 $45-0.1 \mu \mathrm{~F}$ Monolithic 0 •ס.

- 8 - $10 \mu \mathrm{~F} / 16 \mathrm{~V}$ Tantalum *Match + © $\stackrel{+}{+}$ with + on the layout

CRYSTAL *Fold crystal flat against the card before soldering
__ 1-1.8432 MHz @ 1.8432
SWITCH
_1-8-position DIP @ SW1

CONNECTORS
_1-DB25, male, 90°, PCB mount a J2

- 4 - jumper pins, straight @ 01
i for modem connection: jumper a to c,
\& b to d
ii for terminal connection: jumper a to d,
\& b to c
_ 1 - rear panel adapter

```
MEMORY/SERIAL CARD (continued)
EGRATED CIRCUITS *Match pin l of
    ICs with pin 1 on the layout
2-74LS00
    1-74LS02
    1 - 74LS04
    1 - 74LS08 (74S08)
    1 - 74LS11
    2 - 74LS14
    1 - 74LS30 (optional)
    1 - 74LS74
    -2-74LS85
-2 - 74LS125
    1-74LS155
SWITCH SETTINGS - MEMORY BOARD SWITCH
```

Switch SW1 is used to set the memory anywhere in the allowable one egabyte field in a continuous 64 k to 256 k block. Switch posistions 1 to 4 dicate the starting 64 k bank number (starting with bank 0), and switch ositions 5 to 8 indicate the highest 64 k bank in use.

Note that the motherboard switch SW2 must be set to agree with the emory board switch settings.

Memory	Starting	Switch		Positions		Ending	Switch		Positions	
Range	Bank	1	2	3	4	Bank	5	6	7	8
: -64 k	0	ON	ON	ON	ON	0	ON	ON	ON	ON
k-128k	1	OFF	ON	ON	ON	1	OFF	ON	ON	ON
8k-192k	2	ON	OFF	ON	ON	2	ON	OFF	ON	ON
2k-256k	3	OFF	OFF	ON	ON	3	OFF	OFF	ON	ON
6k-320k	4	ON	ON	OFF	ON	4	ON	ON	OFF	ON
0k-384k	5	OFF	ON	OFF	ON	5	OFF	ON	OFF	ON
4k-448k	6	ON	OFF	OFF	ON	6	ON	OFF	OFF	ON
8k-512k	7	OFF	OFF	OFF	ON	7	OFF	OFF	OFF	ON
2k-576k	8	ON	ON	ON	OFF	8	ON	ON	ON	OFF
6k-640k	9	OFF	ON	ON	OFF	9	OFF	ON	ON	OFF
0k-704k	10	ON	OFF	ON	OFF	10	ON	OFF	ON	OFF
4k-768k	11	OFF	OFF	ON	OFF	11	OFF	OFF	ON	OFF
8k-832k	12	ON	ON	OFF	OFF	12	ON	ON	OFF	OFF
2k-896k	13	OFF	ON	OFF	OFF	13	OFF	ON	OFF	OFF
6k-960k	14	ON	OFF	OFF	OFF	14	ON	OFF	OFF	OFF
0k-1024k	15	OFF	OFF	OFF	OFF	15	OFF	OFF	OFF	OFF

ER MEMORY/SERIAL CARD: Allows user to add: a) 64 K , 128 K , 192 K , or 256 K bytes of dynamic RAM, and b) one RS232 erial port (using optional ICs shown in the parts list), to the motherboard.

Layout is reduced. Actual size is $33.7 \times 11.9 \mathrm{~cm}$
TED SEQUENCE *indICATES A PRECAUTION *SOLDER HOLES ARE LARGER THAN PLATED-THRU HOLES

33Ω @ R11, 12,13,14,15,16,
R17,18,19

CRYSTAL Y *Fold crystal flat against the card before soldering. Solder the body of the crystal to the grounding pads

- 45 - $0.1 \mu \mathrm{~F}$ Monolithic @ $\mathrm{C} 11,12,13,14$, C15,16,17,54,55
- 1 - 1.8432 MHz @ $Y 1$

C18 to 26 between sockets of $\overline{\text { SWITCH }}$
C27 to 35 between sockets of _1-8-position DIP a SW1
BANKS 2 \& 1 CONNECTORS
C36 to 44 between sockets of _1-DB25P 90°, male, PCB mount @ J2 BANKs 1 \& \emptyset
C45 to 53 below sockets of BANK \emptyset
8 - $10 \mu \mathrm{~F} / 16 \mathrm{~V}$ Tantalum* @ $\mathrm{C} 3,4,5,6,7$, C8,9,10
*Match + of Tantalums with

+ on the layout

```
EXPLORER MEMORY/SERIAL CARD (continued):
INTEGRATED CIRCUITS *Match pin 1 of
    ICs with pin 1 (dot) on the layout
    2-74LS00 @ U16,24
    1 - 74LS02 @ U23
    1-74LS04 @ U11
    1 - 74LS08 @ U26 (or 74S08)
    1-74LS11 @U17
    2 - 74LS14 @ U10,15
    1-74LS30 @ U7
    1 - 74LS74 @ U19
    2 - 74LS85 @ U21,22
    2 - 74LS125 @ U14,18
    1 - 74LS155 @ U2,5
```

$1-74 L S 244$	@ U20
-	$-74 L S 245$
@ U6,12	

ICs marked + are optional (serial port)
*Replace 74LS280 @ U13 with 74S280
if parity error exists

SWITCH SETTINGS

```
he switch SW-1, located at co-ordinates 2-F, addresses memory anywhere in a ne megabyte field through a continuous bank. Set the switches according to the ollowing protocol:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline tarting & starting & \multicolumn{4}{|c|}{settings} & \multirow[t]{2}{*}{\begin{tabular}{l}
ending \\
bank
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
ending \\
address
\end{tabular}} & \multicolumn{4}{|c|}{settings} \\
\hline bank & address & 1 & 2 & 3 & 4 & & & 5 & 6 & 7 & 8 \\
\hline \(\emptyset\) & 0 K & & on & on & on & & 64K & on & on & on & on \\
\hline 1 & 64K & off & on & on & on & & 128K & off & on & on & on \\
\hline 2 & 128K & on & off & on & on & & 192K & on & off & on & on \\
\hline 3 & 192K & off & off & on & on & & 256K & off & off & on & on \\
\hline
\end{tabular}
XAMPLE 1: for \(\emptyset K\) to 64 K bytes (one bank) set \(1,2,3,4\) to on; set \(5,6,7,8\) to on
XAMPLE 2; for \(\emptyset K\) to 256 K bytes (four banks) set \(1,2,3,4\) to on; set 5,6 off \(\& 7,8\) on
Motherboard switch SW2 must be set to agree with the memeory switch settings.
```

512K RAM CARD: Allows user to add 512 K bytes of dynamic RAM in steps of 64 K bytes. With power off, install in
any free slot. Switch settings correspond to memory banks: set. SW1 on for BANK \varnothing; SW2 on for BANKs $\emptyset, 1$; SW3 on for BANKs $\emptyset, 1,2, \ldots .$. etc. Motherboard switch settings must agree with memory on the card. Requires firmware (one PROM).

Layout is reduced. Actual size is $33.4 \times 10.8 \mathrm{~cm}$.

SUGGESTED SEQUENCE *indicates A PRECAUTION

RESISTORS $R \frac{1}{4}$ watt, 5% 2-33 Ω @ R1,2
*Match pin 1 of the following SIP resistors with pin 1 (dot) on the layout
1-330 Ω 10-pin SIP bussed @ RP1
3-22 Ω 4-resistor SIP isolated @ RP2,3,5
_1-22 Ω 5-resistor SIP isolated
SOCKETS *Match pin 1 of sockets with pin 1 (square pad) on the layout. Check that ALL pins have passed thru ALL

SOCKETS (continued)
\qquad

$$
14-\mathrm{pin}
$$ 1-16-pin

pin 1

INTEGRATED CIRCUITS *Match pin 1 of ICs with pin 1 on the layout
 1-74LS11 @ Z7 *Z6 is not equipped

CAPACITORS C
12-0.1 $\mu \mathrm{F}$ Monolithic @ C 1 to 16

- $72-0.1 \mu \mathrm{~F}$ Monolithic @

1-74LS30 @ Z1
1-74LS74 @ Z4 1-74LS125 @ Z11 1-74LS245 @ Z12
1-74S00 @ Z2

- 1-74S74 @ 23
*Match + of axial
with + on the layout

SWITCH

 1-8-position DIP @ SWA CONNECTORS 2 - 2-pin header, male @ $A B \& C D$
holes before soldering

COLOUR GRAPHICS DISPLAY CARD: Allows user to interface the following with the computer: monochrome or coiour composite monitor, RF modulator, lightpen. Card contains 16 K of dynamic RAM for storage information \& operates in medium or high-resolution graphics mode, or low or high-resolution alphanumeric mode (40 or 80 characters by 25 rows). Requires firmware (one EPROM). With power off, install in any vacant slot. *CAUTION: Damage may result if more than one colour adapter is installed in the system.

Layout is reduced. Actual size is $33.5 \times 10.4 \mathrm{~cm}$
SUGGESTED SEQUENCE *indICATES A PRECUATION

RESISTORS $R \frac{1}{4}$ watt, 5%	SOCKETS *Match pin 1 of sockets with pin 1
1-100 ${ }^{\text {® }}$ - R 5	on the hayout. ${ }^{\text {pins }}$ hassed thru ALL holes
$1-2.2 \mathrm{k} \Omega$ @ R4	$24-14-\mathrm{pin}$
	21-16-pin
1-5.6 K 2 @ R2	2-18-pin
1-13 K 2 @ R3 remel 12k	14-20-pin pin 1
*Match pin 1 of SIP \& DIP resistors	1-24-pin lower left
with pin 1 (square pad) on the	- 40-pin for ALL sockets
	CAPACITORS ${ }^{\text {C }}$
1 - 33Ω SIP, isolated, 6-pin	2-18 pF @ positions shown on lavout
RM3 or three 33Ω on end	6-47 pF @ C31,32,33,34,35,36 28-0.1 $\mu \mathrm{F}$ Monolithic a C1-23,25,26,27
1-33 Ω DIP, 16-pin @ RM4	C28,38

*Match + of radials with

+ on the layout
TRANSISTOR Q *Match the EBC transistor leads as shown
\qquad 1-2N3904 on
$25 c 945^{\circ}$
CAPACITORS C
- 2 - 18 pF @positions shown on layout
_- 28 - $0.1 \mu \mathrm{~F}$ Monolithic a C1-23,25,26,27
C28,38

LOUR GRAPHICS DISPLAY CARD (continued)
)NNECTORS *All headers are male, straight
1-1x2 header © E1,E2 (Character Set Selection)
1-1x4 header @ P2 (RF Modulator Strip) remove pin 2
1-1x6 header © P3 (Lightpen Strip) remove pin 2 1-1-pin @ P4 (Composite Video) connect to hot of phono jack,
_ 1 -DE9S 9-position female receptacle, PCB mount @ P5 (Direct Drive - RGB)
1 - phono jack (Composite Video)
connect ground of jack to ground on card
_ 1 - jumper plug: with plug on E1,E2 vertical lines of characters are two dots wide; without plug, lines are one dot wide

- rear panel adapter

F MODULATOR - with television set colour card modulator

$+12 V$	1
not used	2
video output	3
logic ground	4

: : LIGHTPEN. PINOUT - with lightpen colour card lightpen

INTEGRATED CIRCUITS *Match pin 1 of ICs with pin 1 (square pad) on the layout. Leave $\mathrm{Z1}, 2,4$ blank

	2-74LS00	
	1-74LS02	(Z12 - 11
	1-74LS08	C 745
	2-74LS10	© 214,55
	1-74LS51	(23
	3-74LS74	© $25,38,52$
	1-74LS86	(226
	1-74LS125	(254
	3-74LS138	@ $244,48,56$
	1-74LS163	@ 28
	1-74LS164	${ }^{\text {@ } 26}$
二	3-74LS166	@ $228,29,30$
	2-74LS174	$0^{+} \mathrm{Z} 19,20$
	1-74LS175	d 251
	3-74LS244	($259,60,61$
	- 74LS245	(Z62
	5-74LS273	(d $223,24,31,35,36$
	3-74LS374	(242,43,58
	1-74LS393	@ $\mathrm{Z37}$

	- 74500	(a) 213
	- 74S02	($\mathrm{Z11}$
	- 74S04	(d) $29,10,53$
	- 74S32	(246
	- 74S51	(216
	- 74S74	(a $27,21,39,57$
	- 74S151	@ 227
	- 74S153	@ Z17,18
7	- 74S157	(215
	- 74S175	@ 234
	- 74S257	(Z49,50
	74S37	

_ 1 - 2732A EPROM @ Z22 Character

 generator_ 1 - 6845SP (Hitachi) @ Z32 CRT cont. 2 - TMS4416-15 ns (T.I.)
@ 240,41 Display memory

CONNECTOR PINOUTS

P4 : PHONO JACK - with composite video monitor

P5: DIRECT DRIVE - with direct drive monitor (RGB) colour card monitor

$\mathbf{1}$	ground	1
2	ground	2
3	red	3
4	green	4
5	blue	5
6	intensity	6
7	reserved	7
8	horizontal drive	8
9	vertical drive	9

INTAIN MONOCHROME GRAPHICS CARD: Offers: a) video - text mode (80×25 lines); graphics mode (720 columns $\times 348$ addressable dots), B) paraflel printer port, \& c) 64 K bytes of display buffer. Do NOT use this card together with another monochrome card or colour card. Do NOT run the diagnostics program without making appropriate changes. With power off, install in any available slot. Documentaion \& schematics available from supplier. Requires EPROM.

igested sequence ${ }^{\text {* }}$ INDICATES A PRECAUTION

ISTORS R $\frac{1}{4}$ watt, 5%
CAPACITORS C

- 33 @@R5,6

2-820 Ω @ R1,2

- $10-0.01 \mu \mathrm{~F}$ @ $\mathrm{C} 1,8,9,10,11,12,13,14$,
_ 30 - $0.1 \mu \mathrm{~F}$ Monolithic ©
_6 6-10 $\quad 10 \mathrm{~F} / 25 \mathrm{~V}$ Tantalum*
© $\mathbf{C 4}, 5,6,7,17,18$
*Match + of Tantalums
KETS *Match pin 1 of sockets with
pin 1 on the layout. Check that ALL
pins have passed thru ALL holes
$22-14$-pin
$-27-16-$ pin
13-20-pin
1-24-pin
_1-40-pin

```
ITAIN MONOCHROME GRAPHICS CARD (continued)
GRATED CIRCUITS *Match pin 1 of ICs
with pin 1 on the layout
2-74LS00 @ U18,51
-1 - 74LS02 @ U32
-2 - 74LS04 @ U40,64
-1 - 74LS05 @ U19
-2 - 74LS08 @ U17,36
- 1 - 74LS11 @ U60
-1 - 74LS27 @ U46
-1 - 74LS112 @ U35
-2 - 74LS125 @ U20,47
-3 -74LS138 @ U48,49,50
-2 - 74LS155 @ U33,55
- 3 - 74LS166 @ U11,30,31
-2 - 74LS174 @ U38,59
-1 - 74LS175 @ U53
- 6 - 74LS244 @ U8,28,37,39,54,57
-1 - 74LS245 @ U52
-2 - 74LS273 @ U9,29
-4 - 74LS374 @ U7,44,45,56
-1 - 74LS393 @ U13
2 - 74S00 @ U22,62
-2 - 74S04 @ U2,42
-1 - 74S08 @ U43
- 3-74S10 @ U1,15,16
-1 - 74S32 @ U23
- 3-74S112 @ U34,41,58
1-74S138 @ U63
1 - 74S153 @ U12
-2-74S175 @ U14,21
1 - 6845 CRT Controller @ U61
- 8 - }4164\mathrm{ RAM, 150 ns @ U3,4,5,6,
                    U24,25,26,27
1-2732 EPROM, Character generator
                @ U10
```

OR/GRAPHICS ADAPTER CARD: Four-layered PCB with a) colour video \& b) 16 k bytes of display buffer. Video mode: alphanumeric mode (40 columns $\times 25$ rows or 80 columns $\times 25$ rows); graphics mode (200 rows $\times 320$ dots or
200 rows $\times 640$ dots. Other video features include: interface with composite video port, direct drive (RGB) port, RF modulator \& light pen. With power off, install in any available slot. Documentation \& schematics availatle from supplier. Requires firmware (one EPROM).

Layout is reduced. Actual size is $33.8 \times 11.5 \mathrm{~cm}$.
jested sequence *indicates a precaution *modification required

STORS R $\frac{1}{4}$ watt, 5%
1-51 Ω @ R9

- 1 - 100 』 @ R1
- 1 - $2.2 \mathrm{k} \Omega$ @ R 4
- 1 - $3.3 \mathrm{~K} \Omega @ \mathrm{R} 2$
$1-5.6 \mathrm{k} \Omega$ @ R8
- 1 - 13 K Ω @ R6

ETS * Match pin 1 of sockets with pin 1 on the layout. Check that
ALL pins have passed thru ALL holes
39 - 14-pin
18-16-pin
12-20-pin
1-24-pin
${ }^{A}$ pin 1

1-40-pin

CAPACITORS C
4-2.2 $\mu \mathrm{F} / 16 \mathrm{~V}$ Axial* @ $\mathrm{C} 1,11,14,75$ *Match + of Axial with + on the layout 50-0.1 F Monolithic @ all other positions labelled C

TRANSISTOR Q *Install the three EBC leads as shown
\qquad 1-2N3904 @ Q1

CONNECTORS
\qquad 1-DE9S 9-pin female, 90°, PCB mount, @ J1 (RGB) $1-1 \times 4$ header, male, straight, (a) J2 (RF modulator)
_ 1 - 1×6 header, male, straight,
© J3 (light pen)
_1-RCA phono jack
@ J4 (composite video)
_ 1 - rear panel adapter

1

```
R/GRAPHICS ADAPTER CARD: (continued)
GRATED CIRCUITS *Match pin 1 of ICs
with pin 1 on the layout
2-74LS00 @ IC27,29
-2 - 74LS02 @ IC5,67
4 - 74LS04 @ IC26,28,30,34
-3-74LS08 @ IC24,40,47
1 - 74LS10 @ IC25
1-74LS14 @ IC8
-2 - 74LS30 @ IC59,70
-4 - 74LS32 @ IC37,44,48,56
2 - 74LS51 @ IC45,53
4 - 74LS74 @ IC3,9,19,20
-3 - 74LS86 @ IC17,18,35
1-74LS125@ IC39
1-74LS138 @ IC38
1-74LS151@ IC14
-2 - 74LS153@ IC51,52
1 - 74LS158 @ IC6
1-74LS164@ IC15
3 - 74LS166 @ IC2,23,42
-3-74LS174 @ IC16,54,68
1 - 74LS175 @ IC10
4 - 74LS244 @ IC31,49,55,65
1-74LS245 @ IC71
2 - 74LS273 @ IC12,22
-5 - 74LS374 @ IC46,57,58,66,69
1 - 74LS393 @ IC64
2-74S74 @ IC4,13
1-74S164 @ IC7
1 - 74S174 @ IC43
1 - 74S175 @ IC60
1 - 2716 2Kx8 EPROM @ IC33
8-4116 200 ns RAM @ IC1,11,21,32
    IC41,50,61,62
1-6845SP(Hitachi)@ IC36
```

```
CONNECTOR SPECIFICATIONS (pinout)
J1: DIRECT-DRIVE (RGB) MONITOR
        color card monitor
            lll
            red 3
            green 4
            blue 5
            Mintensity 
            Mntensity 
            8 horizontal drive 8
            9 vertical drive 9
    J2: RF MODULATOR
        color card modulator
            1 +l2V 
            2 not used 2
            video output 3
            logic ground 4
J3: LIGHT PEN
        color card lightpen
            1}\mathrm{ pen input 1
            2 not used 2
            pen switch 3
            logic ground 4
                +5V 
J4: RCA JACK
        color card video monitor
        1 }\begin{array}{l}{\mathrm{ video }}
            6 +12V 6
```

2 MONOCHROME/GRAPHICS: Features a) both composite and monochrome video output - i) text mode, 80×25 lines, ii) graphics mode, 720 columns $x 348$ dots; b) 4 K bytes of display buffer. Requires firmware (one EPROM).

Layout is reduced. Actual size is 33.5×11.8 cm.

IGGESTED SEQUENCE *INDICATES A PRECAUTION

SISTORS R $\frac{1}{4}$ watt, 5% *R6, 13 are not 2-22 Ω @R3,4 shown

6-4.7 K Ω @ $\mathrm{R} 1,2,12,14,15$, R16,17
R2,5,7 to 11 are reserved for composite video

CKETS *Match pin 1 of sockets with pin 1 on the layout. Check that ALL pins have passed thru ALL holes 21-14-pin 12-16-pin 9-20-pin 3-24-pin — 1 - 40-pin

CAPACITORS C *C24 - not equipped

- 1 - 47 pF @ C 22

- 2 - 100 pF @ $\mathrm{C4}, 5$
- 18 - $\quad 0.1 \mu \mathrm{~F}$ Monolithic © $\mathrm{C} 1,2,3,8$, C $9,10,11,13,14,15,16,17$, C18,20,21,26,27,28
_ 5 - $10 \mu \mathrm{~F} / 16 \mathrm{~V}$ Tantalum* @ $\mathrm{C} 6,7$, C12,19,25
*Match + of Tantalums with + on the layout
TRANSISTOR Q reserved for composite video

CRYSTAL Y *Fold crystal flat against the card before soldering. Solder the case to the grounding pads 1 - 16.0000 MHz @ Y 1
CONNECTORS
1 - DE9S female, 90°, PCB mount
@ P1 for video
1 - RCA phono jack

- @ P2 for composite video

4 - jumper pins @ J1,2,3,4
Strap J1 to J3
J 2 to J 4
__ 1 - rear pane1 adapter
-2 MONOCHROME/GRAPHICS CARD (continued):
EGRATED CIRCUITS *Match pin 1 of ICs
with pin 1 on the layout
2-74LS00 @U28,36

- 2-74LS02 @ U24, 35
- 3-74LS04 @ U1,27,38
- 2-74LS08 @ U37,44
1-74LS10 @U43
- $1-74$ LS11 @ U39
1-74LS32 @U34
- 5 - 74LS74 @ U31,32,33,41,46
1-74LS86 @ U30
- 2 - 74LS125 @ U2,42
- 3 - 74 LS138 @ U12,20,22
2-74LS139@U17,23
- 3-74LS157@ U11,13,14
- 1-74LS166@ U25
- 3 - 74LS174@ U26,29,40
- 4-74LS244 @ U3,6,7,21
— 1-74LS245 @U8
1-74LS273 @ U9
- 3 - 74LS374 @ U4,5,15
- 1-74LS393@U45
_ 2 - TMM2016@ U10,16 static RAM
- $1-6845 \mathrm{SP}$ @ U19
- 1 - 2732 EPROM @ U18

LLTIFUNCTION CARD: Provides: RAM memory expansion from 64 K to 256 K (increments of 64 K); clock/calendar (battery backed); one Centronics parallel printer port; two RS232 asynchronous communication ports. With power off, install in any slot. Requires software (one DOS disk) \& firmware (two PROMs). Documentation available from supplier.

GGESTED SEQUENCE *indicates A PRECAUTION

ODES *Position banded end (cathode) RESISTORS (cont)

of diodes as shown
cathode end
banded end
$2-I N 4148$

- *Match pin 1 of SIPs with pin 1
(square pad) on the layout
SOCKETS *Match pin 1 of sockets with pin 1 (square soder pad) on the layout. Check that ALL pins have passed thru ALL holes

19-14-pin
42-16-pin
1-18-pin
6-20-pin
1-24-pin
2-40-pin

pin 1
lower left for
ALL sockets

CAPACITORS C
$2-18 \mathrm{pF}$ @ $\mathrm{C} 27,28$
$-1-22 \mathrm{pF} \mathrm{@} \mathrm{C60}$

_— $9-470 \mathrm{pF} @ \mathrm{C}, 6,7,8,9,10,11,12,72$

- 8-4.7 $\mu \mathrm{F} / 25 \mathrm{~V}$ Tantalum* @ $\mathrm{Cl}^{2}, 3,36$, C57,59,67,69,71
*Match + of Tantalum with
+ on the layout
[$50-0.1 \mu \mathrm{~F}$ Monolithic @ all other positions
SWITCH
___ 1 - 8-position DIP © D-SW

```
UUTIFUNCTION CARD (cont)
ATTERY
    1 - 3.6V NiCd, rechargable
    @ BATTERY *Match + & -
    terminals of battery with
    + & - on the layout
RYSTALS Y *Fold crystals flat
        against the card before
        soldering
    - 32.768 KHz @ Y2
    1 - 1.8432 MHz @ Y1
ONNECTORS
    1- DB25 male, 90}\mp@subsup{}{}{\circ}\mathrm{ , PCB mount
        @ J22 (serial port #1)
    2 - 2xl3 male header strip,
        straight, @ J23 (serial
        port # 2), & @ J24
        (parallel port)
    -4 - 1x2 male header strip,
        straight, @ TP21,J2,3,4
        1 - . 1x3 male header strip,
        straight, @ Jl
    1 - 2x4 male header strip,
        statight, @ J5,6,7,8
        1 - 2x3 male header strip,
        straight, @ J9,10,11
    2 - 2x9 male header strip,
        straight, @ J12-20
    - - shorting clips
    1 - rear panel adapter
```

ER DISK PLUS I/O CARD: A general purpose card used to interface the computer to: a) up to four 53/4" floppy disk drives, b) one parallel printer, and c) one asynchronous serial device. With power off, install in any available slot. Documentation and schematics are available from the supplier.

Arrows on the layout indicate pin 1

IGESTED SEQUENCE *INDICATES A PRECAUTION Layout is reduced. Actual size is $29.9 \times 11.7 \mathrm{~cm}$.
IISTORS $R \frac{1}{4}$ watt, $5 \% \quad$ SOCKETS *Match pin 1 of sockets with pin 1 CRYSTALS Y *Fold crystals flat against

1-100 $\mathrm{S}^{\text {@ }}$ (R5	on the layout. Check that ALL pi
4-820 Ω @ R9,10,11	have passed thru ALL holes
$2-2 \mathrm{~K} \Omega$ @ R12,13	21 - 14-pin
$1-2.2 \mathrm{k} \Omega$ @ 77	10-16-pin
1-4.7 K Ω @ R14	9-20-pin
1-12 $\mathrm{K} \Omega$ @ R6	2-40-pin
1-47 K ${ }^{\text {@ }}$ R4	
1-68 K ${ }^{\text {- }}$ @ R3	CAPACITORS 2 - 47 pF @ C2,3
- 2 - $50 \mathrm{~K} \Omega$ Trimpot @ R1,2	
tch pin 1 of the following SIPs h pin 1 (solid line) on the layout	8-0.0022 $\mu \mathrm{F}$ @ CL
$2-150 \Omega \text { 10-pin SIP @ RN1,2 }$	23 - $0.1 \mu \mathrm{~F}$ Monolithic © Cx
$1-4.7 \mathrm{~K} \Omega \mathrm{~B}^{\text {8-pin SIP @ RN3}}$	1 - $0.68 \mu \mathrm{~F} / 25 \mathrm{~V}$ Tantalum* @ Cl

the card before soldering. Solder the case to the grounding pads
$21-14$-pin pin $1-\square$
$-10-16-\mathrm{pin} \quad=1$ 1 - $16.0000 \mathrm{MHz}{ }^{0} \mathrm{Y} 1$
-2-40-pin $\quad \square$

-1-1 $\quad 10 \mu \mathrm{~F} \% 25 \mathrm{~V}$ Tantalum* @ C7

* 0 +
SUPER DISK PLUS I/O CARD (continued):

MONTE CARLO CARD; Features: RAM Memory expansion from 64 K to 1 M bytes; one RS -232C Asynchronous Communication Port, programmable from 50 to 9,600 baud; one Centronics parallel printer port; battery-backed clock/calender, with alarm features; two joystick ports. Requires software (one disk) and firmware (one PROM).. Documentation and schematics are available from supplier.
$\because E R I A=$
Ger

DIODES D *Position banded end (cathode) RESISTORS (continued)

of diode as shown
\qquad 1-1N6263 @ DI
1-1N4454 @ D2

RESISTORS R $\frac{1}{4}$ watt, 5%
 _ 2 - 33Ω @ R5,10
 2-470 Ω @R8,9
 1 - $1 \mathrm{~K} \Omega$ @ Rb
 4-2.2 $\mathrm{K}_{\Omega} @ \mathrm{R} 1,2,3,4$
 1-200 K Ω @ R7* Install only if using "mini" crystal @ Y1 1-33 Ω 8-resistor DIP @ RP4 Install in socket. Eight single resistors may be substituted

*Match pin 1 of the following SIP RN
with pin 1 (1) on the layout

- 1 - 1 K Ω g-pin SIP © RP1
__ 2 - 2 K Ω 9-pin SIP @ RP2,3
SOCKETS *Match pin 1 of sockets with pin 1 on the layout. Check that ALL pins have passed thru ALL holes

CAPACITORS C

*Match + with + on layout
_ 1 - $5-50 \mathrm{pF}$ Trimcap © C 78

IONTE CARLO CARD (continued)

RANSISTOR Q *Match EBC transistor INTEGRATED CIRCUITS *Match pin 1 of ICs leads with EBC in the layout 1-2N3904

RYSTAL Y

- of appropriate size. Match
+ of battery with + on layout \qquad 1-74LS377 @ U68
ONNECTORS
1-1x6 header, male, straight, below SOCKET, for COM1,2 \& LPT
1,2 select
$1-1 \times 5$ header, male, straight,
\qquad 1-74S00 @ U52 ।
\qquad 1-74S04 @U56
\qquad

$$
\begin{array}{lll}
\text { @ } & 5 & 1
\end{array}
$$ near SERIAL PORT, as voltage \qquad 1-74157 @ U40,41-2 test pins (not required) 1 - DB25P male, 90°, PCB mount @ SERIAL PORT

\qquad 2 - modular telephone jacks, 6 -conductor, PCB mount, @ JOYSTICKS A \& B
\qquad 1-1488 @ U70 2-1489 @ U59,71
1 - MM58167 @ U57 (NAT) !
1-16-pin socket @ SOCKET
1 - 8250 O UG3 (NAT)
$\begin{array}{ll}1-8250 & \text { @ U63 } \\ 1-82 S 129 & \text { (PROM) @ U442 ! }\end{array}$
for prallel port interface
NOT EQUIPPED:
W1
W2
3-pin between U30 \& C49
2-pin between C76 \& C77

EPROM BURNER \& ASYNCHRONOUS SERIAL CARD (two-card set): Consists of (i) RS-232-C serial port - operates from 110 to 9600 baud, and (ii) EPROM programmer that can burn 2716-32-32A-64-128 as well as TMS2508-16-32-64 EPROMs. With power off, install in any vacant slot. Requires software (one disk). Documentation available from supplier. *Will NOT program 2764A or 27128A.

NTERNAL CARD
:tual size is $6 \times 10.6 \mathrm{~cm}$

GGESTED SEQUENCE *INDICATES A PRECAUTION

TERNAL CARD:

ODES D *Position banded (cathode) enc of diode as shown
1-1N4148

RESISTORS (continued)

INDUCTOR L
_ 1 - $68 \mu \mathrm{H}, \frac{1}{2}$ watt
SOCKETS *Match pin 1 of sockets with pin 1 on the layout. Check that ALL pins have passed thru ALL holes
\qquad 9-14-pin
2-16-pin

- 20-pin

1-40-pin
CAPACITORS C
$-2-0.001 \mu \mathrm{~F}$
5-0.047 $\mu \mathrm{F}$ ($0.1 \mu \mathrm{~F}$) @ \square Monolithic 2 - $\quad 10 \mu \mathrm{~F} / 25 \mathrm{~V}$ Axial* *Match + of Axials 1 - $10 \mu \mathrm{~F} / 50 \mathrm{~V}$ Axial* with + on the layout
TRANSISTORS Q *Position EBC terminals as shown on the layout 3-2N2222A

SWITCH
1-8-position DIP
CRYSTAL Y *Fold crystal flat against the card before soldering 1-18.4320 MHz @ XTAL

CONNECTORS
\qquad 1-DE9S female, 90°, PCB mount 1 - DB25S female, 90°, PCB mount
— 2 - header @ TP1,2
-1 - rear panel adapter
iISTORS R $\frac{1}{4}$ watt, 5%
$1-3.9 \Omega$
—2-330 Ω
-3-820 Ω

EPROM BURNER \& ASYNCHRONOUS SERIAL CARD (continued)

TERNAL CARD (continued)

TEGRATED CIRCUITS *Match pin 1 of with pin 1 on the layout
1-74LS08
1-74LS74
1-74LS90
1-74LS125

- 74LS138

1-74LS245

1-74S04
1-1488
2-1489

- 1 - TL497A (T.I.)

1-8250 (NAT)

NOUT FOR DE9S SERIAL CONNECTOR:

function
ring indicator receive data transmit data clear to send request to send data set ready carrier detect signal ground data ready terminal
ERNAL CARD SWITCH SETTINGS: NCHRONOUS COMMUNICATIONS:
$\begin{array}{lllll}\text { tch } & 1 & 2 & 3 & 4\end{array}$ n 1 off on off on $\begin{array}{ll}12 & \text { off on on off } \\ x\end{array}$ $\begin{array}{llll}x & \text { on } & \text { off } & \text { off } \\ \text { ce } \\ \text { ce } & \text { on } & \text { off } & \text { on } \\ \text { off }\end{array}$
ERNAL EPROM BURNER:

tch	5	6	7	8

V VPP off on off -
V VPP off off. on -

1 VPP up to +5 V on
1 VPP down to ground... off

CALIBRATION OF EPROM PROGRAMMER VPP VOLTAGES:**

Before using the EPROM burner, adjust the VPP voltages. Select "calibrate" from software menu. Adjust the two trimpots using TP1 GND and TP2 VPP. NB: Lower justify all 24-pin EPROMs in the 28-pin ZIF socket.
*To program 24-pin 2716 \& 2732 jumper 5V; for 28 -pin 2764 \& 27128 jumper GND

EXTERNAL CARD Actual size is $9.9 \times 6.7 \mathrm{~cm}$

EXTERNAL CARD:
SOCKETS

CAPACITORS

$4-0.047 \mu \mathrm{~F}$ Monolithic
\ldots

SWITCH

__ 1 - 8-position DIP

CONNECTORS

\qquad 1 - DB25P, male, 90°
*Mount on SOLDER side 1 - 1×3 header, ma1e, straight 1 - jumper plug

INTEGRATED CIRCUITS

$2-74$ LS244
$3-74 L S 374$ 3-74LS374

MOUNT EXTERNAL CARD with four standoffs on an appropriate base leaving sufficient space for access to DB25 connector. Connect the EXTERNAL CARD to the INTERNAL CARD by means of a ribbon cable of appropriate length.
SWITCH SETTINGS FOR EPROM BURNER: *Will NOT program 2764A or 27128A EPROMs external card switch settings
internal card switch settings

EPROM type	1	2	3	4	5	6	7	8	6	7	8
2716	off	on	off	on	off	off	off	off	on	off	on
2732	on	off	on	off	off	off	off	off	on	off	off
$2732 A$	on	off	on	off	off	off	off	off	off	on	off
2764	on	off	off	off	on	on	off	off	off	on	on
27128	on	off	off	off	on	on	off	off	off	on	on
TMS2508	off	on	off	on	off	off	off	off	on	off	on
TMS2516	off	on	off	on	off	off	off	off	on	off	on
TMS2532	off	on	off	on	off	off	off	off	on	off	on
TMS2564	on	off	off	on	off	off	on	off	on	off	on

*Check EPROM specifications for chip enable and pull up to +5 V or pull down to ground. Set jumper on External card accordingly.

ARALLEL PRINTER CARD: Allows interface to parallel printers. With power off, install in any free slot. Card will fit in "short slot". Schematics available from supplier.

Actual size is

 $10.9 \times 10.6 \mathrm{~cm}$

UGGESTED SEQUENCE *iNDICATES A PRECAUTION

CONNECTORS
_ 1 - DB25S, 25-pin female, 90°, PCB mount, a J1
1 - rear pane1 adapter
INTEGRATED CIRCUITS *Match pin 1 of ICs with pin 1 on the layout
\qquad 2-74LS04 a U6,11
1-74LS05 @ U5

- 74LS30 @ U10
- 74LS32 @ U1

1-74LS125 @ U3

- 1 - 74LS139 @ U2
- 1-74LS174 @U4
- 1 - 74LS240 @ U7
- 1 - 74LS244 @ U8
- 1 - 74LS374 @ U9

PARALLEL PORT:
Parallel port address is configured as LPT2: (378-37F)
To reconfgure as LPT1: (278-27F)
i cut trace at A8
ii strap feed thru holes at $\overline{A 8}$

```
CAPACITORS C
ESISTORS R \frac{1}{4} watt, 5%
```

- $9-0.001 \mu \mathrm{~F}$ @ $\mathrm{C} 8,9,10,11,12,13$,
6 - $\quad 0.1 \mu \mathrm{~F}$ Monolithic © $\mathrm{Cl}, 2,3$,
$\begin{aligned} & 1-4,7 \mathrm{~K} \Omega 8 \text {-pin SIP* @ Z1 } \\ & \text { *Match pin } 1 \text { of SIP with pin } 1\end{aligned}$
on the layout
\qquad
C4,5,6
OCKETS *Match pin l of sockets with
pin 1 on the layout. Check that
\qquad 1 - $\quad 4.7 \mu \mathrm{~F} / 16 \mathrm{~V}$ Tantalum* © C 7 *Match + of Tantalum with + on the layout
6 - $0.1 \mu \mathrm{~F}$ Monolithic @ $\mathrm{C} 1,2,3$, C4,5,6
pin 1 on the layout. Check that

300 MODEM: Answer/originate modem operating on a $2-1$ ine telephone line at 300 baud in optional half or full duplex. Requires DOS 2.0; 64K RAM memory minimum; 80-column display; software (one disk). With power off and COMPONENT SIDE FACING THE POWER SUPPLY, install in any slot. Documentation available from supplier.
tual size is
$8 \times 10.4 \mathrm{~cm}$

igested sequence *indicates a precautiond

DES D *Position banded end (cathode) RESISTORS (continued)

towards the arrow on the layout

```
2 - 1N751A @ D1,
```

- 1 - 1N4148@D3
1-1N4001 @ D4
ISTORS R $\frac{1}{4}$ watt, 5%
- 2 - 1 @@ R12,13
1-560 几@R5
1 - $1 \mathrm{k} \Omega @ \mathrm{R} 1$
1-2.2 K Ω @ R17

$1-2.2 \mathrm{~K} \Omega \frac{1}{2}$ watt* @ R18
1-4.7 K Ω @ R9
$1-6.8 \mathrm{~K} \Omega$ @ R 4
8 - 10 K $\Omega @ R 3,6,7,8,10,11,14,15$
1-22 K Ω R16
- 1 - 4.7 M Ω @ R2

SOCKETS *Match pin 1 of sockets with pin CONNECTORS
1 (1) on the layout. Check that ALL pins have passed thru ALL holes

*Match + of the following with + on layout
_1-2.2 $\mu \mathrm{F} / 35 \mathrm{~V}$ Tantalum* @ C7

- 1 - $4.7 \mu \mathrm{~F} / 35 \mathrm{~V}$ Tantalum* @ C 12

TRANSISTOR Q *Position metal part of device flat against the card before soldering 1 - TIP125 or TIP127 @ Q1
CRYSTAL Y *Fold crystal flat against the card before soldering
\qquad 1-4.032000 MHz @ X1
VARISTOR
_ 1-V120ZA1 (GE) @ VR1
RELAY
1-G2V-2 5V (Omron) @ RLY 1
TRANSFORMER
__ 1 - 141H (Hammond) 600CT/600CT 1 ine matching © T1
\qquad 1 - modular telephone jack, PCB 6-pin, PCB mount, © J1

```
300 MODEM (continued)
EGRATED CIRCUITS *Match pin 1 of ICs
with pin 1 on the layout
1-74LS14 @ U3
1 - 74LS30 @ U2
-1 - 74LS245 @ U1
1 - 4N32 @ U
- 1 - MC1458 @ U6
1 - TMS99532 (T.I.) @ U5 Modem IC
- 1 - 2681A (SIG.) @ U4 DUART 40-pin
```

GUIDE 7-1
DATAMAX-001: Allows user to design prototype hardware. Approximately 4600 holes (10 holes per inch on 0.1 inch

SIDE	B	A	SIDE
GND	1	1	$\overline{1 / O C H K}$
RESET	2	2	D7
+5V	3	3	D6
IRQ2	4	4	D5
-5V	5	5	D4
DRQ2	6	6	D3
-12V	7	7	D2
NC	8	8	D1
+12V	9	9	DD
GND	10	10	I/OCHRDY
MEMW	11	11	AEN
MEMR	12	12	A19
IOW	13	13	A18
$\overline{\mathrm{I} O R}$	14	14	A17
DACK3	15	15	A16
DRQ3	16	16	A15
DACK1	17	17	A14
DRQ1	18	18	A13
DACKD	19	19	Al2
CLK	20	20	A11
IRQ7	21	21	A10
IRQ6	22	22	A9
IRQ5	23	23	A8
IRQ4	24	24	A7
IRQ3	25	25	A6
DACK2	26	26	A5
T/C	27	27	A4
ALE	28	28	A3
+5V	29	29	A2
OSC	30	30	A1
GND	31	31	AD

GUIDE 7-2
CARD
PROTOTYPE

V

SIDE	B	A	SIDE
GND	1	1	I7OCHK
RESET	2	2	D7
+5V	3	3	D6
IRQ2	4	4	D5
-5V	5	5	D4
DRQ2	6	6	D3
-12V	7	7	D2
NC	8	8	D1
+12V	9	9	DØ
GND	10	10	I/0CHRDY
MEMW	11	11	AEN
MEMR	12	12	A19
IOW	13	13	A18
IOR	14	14	A17
DACK3	15	15	A16
DRQ3	16	16	A15
DACK1	17	17	A14
DRQ1	18	18	A13
DACKD	19	19	A12
CLK	20	20	A11
IRQ7	21	21	A10
IRQ6	22	22	A9
IRQ5	23	23	A8
IRQ4	24	24	A7
IRQ3	25	25	A6
DACK2	26	26	A5
T/C	27	27	A4
ALE	28	28	A3
+5V	29	29	A2
OSC	30	30	A1
GND	31	31	AD

GUIDE 7-3
2OTOPLUS PROTOTYPE CARD: Allows user to design prototype hardware. Completely covered with holes (approximately

SIDE	B	A	
SIDE			
GND	1	1	I/OCHK
RESET	2	2	D7
+5V	3	3	$D 6$
IRQ2	4	4	$D 5$
-5V	5	5	D4
DRQ2	6	6	D3
-12V	7	7	D2
NC	8	8	D1
+12V	9	9	DØ
GND	10	10	I/0CHRDY
MEMW	11	11	AEN
MEMR	12	12	A19
IOW	13	13	A18
IOR	14	14	A17
DACK3	15	15	A16
DRQ3	16	16	A15
DACK1	17	17	A14
DRQ1	18	18	A13
DACKD	19	19	A12
CLK	20	20	A11
IRQ7	21	21	A10
IRQ6	22	22	A9
IRQ5	23	23	A8
IRQ4	24	24	A7
IRQ3	25	25	A6
DACK2	26	26	A5
T/C	27	27	A4
ALE	28	28	A3
+5V	29	29	A2
OSC	30	30	A1
GND	31	31	AD

SOLDER CARD EDGE CONNECTOR

 TOP OF BOARD

[^0]: 10 I 6d $2-2$
 \qquad 2-1N914 or 1N4148 (d D1,2

 ## RESISTORS $R \frac{1}{4}$ watt, 5%

 2-330 Ω @R7,8 1-470 Ω @R1 4 - $\quad 1$ K Ω @ R2,4,9,11
 3-1.8 K Ω @ $5,6,10$
 -1 - $3.3 \mathrm{k} \Omega$ @ R3
 \qquad

