

12 MHz Zero-Wait 80286 Turbo Main Board

MBVLSI-168 (V.2)

The information in this manual is subject to change without notice.

TABLE OF CONTENTS

I.	GENERAL SPECIFICATION	
11.	MAIN BOARD JUMPER SELECT 4–7	(
Ш.	MEMORY COMBINATION 8-9	
IV.	HOW TO CHANGE THE SYSTEM SPEED BY SOFTWARE	
V.	SYSTEM MEMORY MAP11	
VI.	I/O CHANNEL SLOTS	
VII.	HARDWARE COMPATIBILITY	
VIII.	ATTACHMENT I: FUNCTION OF JP13/JP14/JP15/JP1822	(
	ATTACHMENT II: BLOCKDIAGRAM	
	ATTAQUATENT UL	

ATTACHMENT III: BOARD LAYOUT AND JUMPER POSITION . . 24

WHAT WE POSSESSIVE THAT OTHERS WITHOUT !

- * 5 chips set full CMOS process low power consumption
- * Zero wait state read operations
- * One wait state write operations
- * 20 mA, 200pF slot drive (system bus) capability
- * 8 mA, 150pF DRAM drive capability
- * Four layer implementation for low noise operation.
- Most powerful memory combination available: —Using 44256/41256 memory chip, up to 512K/1024K —Using 4164/41256/1M bit memory chip, up to
 - 512K/640K/1024K/2048K/4096K
 - -Using RAM Modular, UP TO 512K/1024K/2048K/ 4096K

* * * * * * * * * * * * * * * * * * * *	* * *
*	*
* NOTE: In this manual,	*
* 80286: means Personal Computers that	*
* use 80286 CPU	*
*	*

I. GENERAL SPECIFICATION

- * Fully compatible with 80286 system
- * 8/12 MHz speed hardware and software selectable
- * RAM access time 0-wait and 1-wait switchable
- * Up to 4 mega byte memory on board
- * 16 mega byte expandable memory in the protect, virtual address mode
- * 2 sockets for BIOS.
- * 8 I/O expansion slots
- * Socket for 80287 math processor
- * CMOS clock and calendar circuit with rechargable battery support
- * 24-bit addressing and 16-bit data path capabilities
- * 16-level interrupts
- * 7-channel DMA (Direct memory access)
- * 3-programmable timers
- * 1/0 speed: 8MHz
- * Most powerful memory combination available: -Using 44256/41256 memory chip, up to 512K/1024K
 - -Using 4164/41256/1M bit memory chip, up to 512K/640K/1024K/2048K/4096K
 - -Using RAM Modular, UP TO 512K/1024K/2048K/ 4096K

II. MAIN BOARD JUMPER SELECTION

CONNECTORS AND JUMPERS:

Power supply connector Keyboard connector Hardware reset switch Keylock/Power LED Speaker connector Turbo hardware switch Turbo LED indicator
Hardware reset switch Keylock/Power LED Speaker connector Turbo hardware switch Turbo LED indicator
Keylock/Power LED Speaker connector Turbo hardware switch Turbo LED indicator
Speaker connector Turbo hardware switch Turbo LED indicator
Turbo hardware switch Turbo LED indicator
Turbo LED indicator
Memory speed Jumper
Memory size select
Zero wait/One wait select
EPROM size select
Display adapter select
Keyboard controller select
Power good select
External battery connector

*: Jumper JP13/JP14/JP15/JP18 is default-set for software speed change, which according to the "BIOS" used in this board.

It is not necessary for user to adjust the jumper setting, unless user would like to change the "BIOS".

More technical information, please refer to ''ATTACH-MENT I''

- JP1: Hardware reset switch It's a reset button
- JP4: Turbo hardware switch It's a Turbo button
- JP5: Trubo LED indicator LED lights on for Turbo mode
- JP6: Memory speed select Short Pin 1 & Pin 2 of Jumper JP6: using 100ns speed memory chips (DEFAULT)

JP7/JP8/JP9: Memory size select

JP7/JP8/JP9	Amount	(Base memory/Expansion	
	memory		memory)
open/short/short	4096K (4MB)	640K	/3456K)
short/open/open	2048K (2MB)	(640K	/1408K)
short/open/short	1024K (1MB)	(640K	/384K))
short/short/open	640K	(640K	/0)
short/short/short	512K	(512K	/0)

- JP10: Zero wait/One wait select Short JP10: Zero wait Open JP10: One wait
- JP11: EPROM size select Short JP11: Using 256K EPROM Open JP11: Using 128K EPROM
- JP12: Display adapter select Short JP12: Using Color display adapter Open JP12: Using Monographics display adapter
- JP16: Power good select Short Pin 1 & Pin 2 of JP16: Power good provided by Mother Board (default) Short Pin 2 & Pin 3 of JP16: Power good provided by Power supplier itself
- JP17: External battery connector The connector is for connecting for size "AA" batteries instead of the blue barrel shaped rechargable battery. Pin assignments as followings:
 - PINASSIGNMENT16Vdc2Not used3GND4GND

JP13/JP14/JP15/JP18: Keyboard controller

Jumper JP13/JP14/JP15/JP18 is default-set to

change speed via software, and which according to the ''BIOS'' used in this board.

Unless you would like to change the "BIOS", it is not necesory for you to adjust the Jumper setting. More technical information, please refer to "ATTACHMENT I".

III MEMORY COMBINATION

0

III-1: Using 44256/41256 memory chip combination:

Memory size	Jumper setting	Bank 0 socket position	Bank 1 socket position	
512K	short/short/short	44256 x 4 pcs (U47-U50) 41256 x 2 pcs (U29 & U38)		
1024K (1MB)	short/open/short	44256 x 4 pcs (U47-U50) 44256 x 4 pcs (U29 & U38)	44256 x 4 pcs (U41-U44) 41256 x 2 pcs (U11 & U20)	

III-2: Using 4164/41256/1Mbbyte memory chip combination:

Memory size	JP7/JP8/JP9	Bank 0	Bank 1	
512K	short/short/short	41256 x 18 pcs (U21-U38)		
640K	short/short/open	41256x18 pcs (U21-U38)	4164 x 18 pcs (U3-U20)	
1024K (1MB)	short/open/short	41256 x 18 pcs (U21-U38)	41256 x 18 pcs (U3-U20)	
2048K (2MB)	short/open/open	1M byte x 18 pcs (U21-U38)		
4096K (4MB)	open/short/short	1M byte x 18 pcs (U21-U38)	1M byte x 18 pcs (U3-U20)	

III-3 Using RAM MODULAR Chip combination:

Memory size	JP7/JP8/JP9	Bank 0	Bank 1	
512K	short/short/short	256K x 2 sets (U1 & U2)		
1024K (1MB)	short/open/short	256Kx2 sets (U1 & U2)	256K x 2 sets (U39 & U40)	
2048K (2MB)	short/open/open	1MB x 2 sets (U1 & U2)		
4096K (4MB)	open/short/short	1MB x 2 sets (U1 & U2)	1MB x 2 sets (39 x& U40)	

* *		***************************************
*		
*	NOTE:	User cannot combinate each of Item III-1/III-2/III-3
*		for total amount memory.
*		Each item III-1/III-2/III-3 works independently.
*		
* *	* * * * * * *	***************************************

IV HOW TO CHANGE THE SYSTEM SPEED BY SOFTWARE

This mother board has two system clock i.e. 8MHz and 12MHz, User can change speed via hardware or software controller.

IV-1 Hardware controller:

Hardware controller: refer to JP4, press "Turbo switch button" for Turbo/Normal mode

- IV-2 Software controller:
- IV-2-1 When the equipment of mother board used "AMI BIOS" Press and hold down (CTRL) & (ALT) key and hit the (+)or (-)key for Turbo/Normal speed change.
- IV-2-2 When the equipment of mother board used "AWARD BIOS" Press and hold down (CTRL) & (ALT) key and hit the $\langle + \rangle$ or $\langle - \rangle$ key for Turbo/ Normal mode.
- IV-2-3 When the equipment of mother board used "PHONIX BIOS" Press and hold down (CTRL) & (ALT) key and hit the (\) key for Turbo/Normal mode.

Due to different version of PHONIX BIOS, user may press and hold down $\langle \text{CTRL} \rangle$ & $\langle \text{ALT} \rangle$ key and hit the $\langle + \rangle$ or $\langle - \rangle$ key for Turbo/Normal mode.

9

V. SYSTEM MEMORY MA)

ADDRESS RANGE	START-END	NAME	FUNCTION
000000-03FFFF	000K-256K	Bank 0	System memory (256K)
040000-07FFFF	256K-512K	Bank1	System memory (256K)
080000-09FFFFF	512K-640K	Bank2	System memory (128K)
OAFFFF-OBFFFF	640K-768K	Video	Display card buffer
	· · · ·		(128K)
0C0000-0DFFFF	768K-869K	I/O ROM	Expansion ROM (128K)
0E0000-0EFFFF	896K - 960K	ROM	System usage (64K)
0F0000-0FFFFF	960K-1024K	ROM	BIOS (64K)
	i. mita		
100000-11FFFF	1024K-1152K	Bank 2	System memory (128K)
120000-15FFFF	1152K-1408K	Bank 3	System memory (128K)
160000-FDFFFF	1408K-16146K	RAM	Expansion RAM (14870K)
FE0000-FEFFFF	16146K-16210K	ROM	System usage (64K)
FF0000-FFFFFF	16210K-16274K	ROM	BIOS (64K)

VI. I/O CHANNEL SLOTS

The I/O channel supports:

- * I/O address space hex 100 to hex 3FF
- * 24-bit memory addresses (16MB)
- * Refresh of system memory from channel microprocessors
- * Selection of data accesses (eigher 8 bit or 16 bit)
- * Interrupt
- * DMA channels
- * I/O wait-state generation
- * Open-bus structure (allowing multiple microprocessors to share the system's resources, including memory)

I/O ADDRESS MAP

HEX RANGE	DEVICES	USAGE
000-01F	DMA controller 1	System
020-03F	Interrupt controller 1	System
040-05F	Timer	System
060-06F	8042 (Keyboard)	System
070-07F	Real time clock, NMI mask	System
080-09F	DMA page register	System
0A0-0BF	Interrupt controller 2	System
0C0-0DF	DMA controller 2	System
OFO	Clear Math Coprocessor busy	System
0F1	Reset Math Coprocessor	System
0F8-0FF	Math Coprocessor	System
1F0-1F8	Fixed disk	1/0
200-207	Game I/O	1/0
278-27F	Parallel printer port 2	1/0
2F8-2FF	Serial port 2	1/0
300-31 F	prototype card	1/0
360-36F	Reserved	1/0

I/O ADDRESS MAP

HEX RANGE	DEVICES	USAGE
378-37F	Parallel printer port 1	1/0
380-38F	SDLC, bisynchronus 2	1/0
3A0-3AF	Bisynchronus 1	1/0
3B0-3BF	Monochrome display and printer adapter	1/0
3C0-3CF	Reserved	1/0
3D0-3DF	Color/graphic monitor adapter	1/0
3F0-3F7	Floppy diskette controller	1/0
3F8-3FF	Serial port 1	1/0

Numbering of the I/O slots is as follows:

REARPANEL

GND	B1	T	E	A1	-1/0 CH CK
RESET DRV	B2	1	1	A2	SD7
+5Vdc	B3	1	I	A3	SD6
IRQ2	B4	1	- E	A4	SD5
-5Vdc	B5	1	1	A5	SD4
DRQ2	B6	T	1	A6	SD3
-12Vdc	B7	L.	1	A7	SD2
OWS	B8	1	1	A8	SD1
+12Vdc	B9	1	1	A9	SD0
GND	B10	Τ.	1	A10	-I/O CH RDY
-SMEMW	B11	1	1	A11	AEN
-SMEMR	B12	1	1	A12	SA19
-IOW	B13	1	1	A13	SA18
-IOR	B14	1	1	A14	SA17
-DCK3	B15	1	1	A15	SA16
DRQ3	B16	1	1	A16	SA15
-DACK1	B17	1	1	A17	SA14
DRQ1	B18	1	1	A18	SA13
-REFRESH	B19	I	1	A19	SA:12
CLK	B20	1	1	A20	SA11
IRQ7	B21	1	1	A21	SA10
IRQ6	B22	1	1	A22	SA9
IRQ5	B23	1	1	A23	SA8
IRQ4	B24	I	1	A24	SA7
IRQ3	B25	I	1	A25	SA6
-DACK2	B26	1	1	A26	SA5
T/C	B27	I	- I	A27	SA4
BALE	B28	1	1	A28	SA3
+5Vdc	B29	1	1	A29	SA2
OSC	B30	I	1	A30	SA1
GND	B31	I	1	A31	SA0

I/O CHANNEL J1 – J8

VII. HARDWARE COMPATIBILITY

SYSTEM TIMERS

The system has three programmable timer/counters controlled by an Intel 8254-2 timer/counter chip. These are channels 0 through 2, defined as follows:

Channel 0	System Timer
GATE 0 CLK IN 0 CLK OUT 0	Tied on 1.190 MHz OSC 8259A IRQ
Channel 1	Refresh Request Generator
GATE 1	Tied on

GATE 1	Tied on
CLK IN 1	1.190MHz OSC
CLK OUT 1	Request Refresh Cycle

Note: Channel 1 is programmed to generate a 15 microsecond period signal.

Channel 2	Tone Generation for Speaker
GATE 2	Controlled by bit 0 of port hex 61 PPI bit
CLK IN 2 CLK OUT 2	1.190 MHz OSC Used to drive the speaker

REARPANEL

	1				
-MEM CS16	D1	1	1	C1	SBHE
1/0 CS16	D2	1	1	C2	LA23
IRQ16	D3	1	1	C3	LA22
IRQ11	D4	1	1	C4	LA21
IRQ12	D5	1 :	1	C5	LA20
IRQ15	D6	1	1	C6	LA19
IRQ14	D7	1	1	C7	LA18
-DACK0	D8	1	1	C8	LA17
DRQ0	D9	1	1	C9	-MEMR
-DACK5	D10	1	1	C10	-MEMW
DRQ5	D11	1	1	C11	SD08
-DACK6	D12	1	1	C12	SD09
DRQ6	D13	11	1	C13	SD10
- DACK7	D14	1 -	1	C14	SD11
DRQ7	D15	1	1	C15	SD12
+5Vdc	D16	1	1	C16	SD13
-MASTER	D17	1	1	C17	SD14
GND	D18	L	1	C18	SD15
				1	

I/O CHANNEL J2 – J7

SYSTEM INTERRUPTS

Sixteen levels of system intrrupts are provided by the 80286 NMI and two 8259A Interrupt Controller chips. The following shows the interrupt-level assignments in decreasing Priority:

LEVEL	FUNCTION
Microprocessor NMI Interrupt controllers CTLR 1 CTLR 2	Parity or I/O channel check
IRQ 0 IRQ 1 IRQ 2	Timer output 0 Keyboard (Output buffer full) Interrupt from CTLR 2
IRQ8 IRQ9 IRQ10 IRQ11 IRQ12 IRQ13 IRQ14 IRQ15	Realtime clock interrupt Software redirected to INT OAh (IRQ2) Reserved Reserved Coprocessor Fixed disk controller Reserved
IRQ 3 IRQ 4 IRQ 5 IRQ 6 IRQ 7	Serial port 2 Serial port 1 Parallel port 2 Diskette controller Parallel port 1

DIRECT MEMORY ACCESS

Eight DMA channels are supported by the system. Two Intel 8237-5 DMA controller chips (four channels in each chip) are used. DMA channels are assigned as follows:

CTLR1	CTLR2
Ch 0 – Spare	Ch 4 — Cascade for CTRL 1
Ch 1 – SDLC	Ch 5 — Spare
Ch 2 – Diskette	Ch 6 — Spare
Ch 3 – Spare	Ch 7 — Spare

Channels 0 through 3 are contained in DMA controller 1. Transfers of 8-bit data, 8-bit I/O adapters and 8-bit or 16-bit system memory are supported by these channels. Each of these channels will transfer data in 64KB blicks throughout the 16-megabyte system address space.

Channel 4 through 7 are contained in DMA conroller 2. To cascade channels 0 through 3 to the microprocessor, use channel 4. Transfers of 16-bit data between 16-bit adapters and 16-bit system memory are supported by channels 5, 6, 7. DMA channels 5 through 7 will transfer data in 128KB blocks throughout the 16-megabyte system address space. These channels will not transfer data on odd-byte boundaries.

The addresses for the page register are as follows:

17

PAGE REGISTER	I/O HEX ADDRESS
DMA channel 0 DMA channel 1 DMA channel 2 DMA channel 3 DMA channel 5 DMA channel 6 DMA channel 7 Refresh	0087 0083 0081 0082 008B 0089 008A 008F

Address generation for the DMA channels is as follows:

* For DMA channels 3 through 0

SOURCE	DMA PAGE REGISTERS	8237A-5
Address	A23 - A16	A15 – A0

- Note: To generate the addressing signal "byte high enable" (BHE) invert address line A0.
- * For DMA channels 7 through 5

SOURCE	DMA PAGE REGISTERS	8237A- 5
Address	A23 – A17	A16 – A1

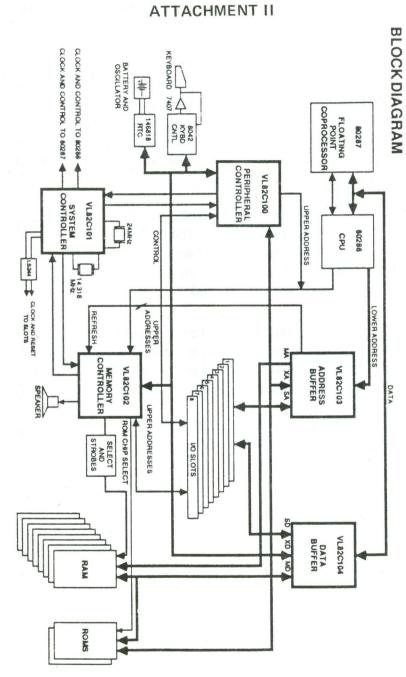
Note: The BHE and A0 addressing signals are forced to a logic 0. DMA channel addresses do not increase or decrease through page boundaries (64KB for channels 0 throught 3 and 128KB for channels 5 through 7).

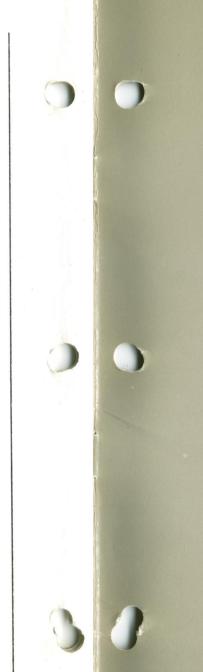
REAL TIME CLOCK AND NONVOLATILE RAM

The real time clock MC146818 and its 64 bytes of RAM information are backed up by 6V DC battery. the internal colock circuitry uses 14 bytes while the rest is allocated to system configuration.

ADDRESS	DESCRIPTION
00	Seconds
01	Second alarm
02	Minutes
03	Minute alarm
04	Hours
05	Hour alarm
06	Day of week
07	Date of month
08	Month
09	Year
0A	Status register A
OB	Status register B
0C	Status register C
0D	Status register D
0E	Diagnostic status byte
OF	Shutdown
10	Diskette drive type byte-driver A and B
11	Reserved
12	Fixed disk type byte – driver C and D
13	Reserved
14	Equipment byte
15	Low base memory
16	High base memory
17	Low expansion memory byte
18	High expansion memory byte

DESCRIPTION ADDRESS 19 – 2D Reserved 2 byte CMOS checksum 2E - 2FLow expansion memory byte 30 High expansion memory byte 31 Data century byte 32 Information flags (set during power on) 33 Reserved $\cdot 34 - 3F$


ATTACHMENT I FUNCTION OF JUMPER JP13/JP14/ JP15/JP18


In this mother board, Jumper setting of JP13/JP14/JP15/ JP18 is provide to enable user to change speed via software. As different ''BIOS'' and ''keyboard controller'' makes different Jumper setting of JP13/JP14/JP15/JP18. Before you choose the specific ''BIOS'' for this mother board, be sure that the keyboard controller (8042 controller) is compatible with this ''BIOS''.

Once the "BIOS" and "Keyboard controller" are selected, it is necessary to short one of these Jumper JP13/JP14/ JP15/JP18 for software speed change, and which according to the "controller pin" that this specific "BIOS" and "keyboard controller" supported.

a) Short JP13: menas keyboard controller is set on "PIN 30"
b) Short JP14: means keyboard controller is set on "PIN 23"
c) Short JP15: means keyboard controller is set on "PIN 27"
d) Short JP18: means keyboard controller is set on "PIN 32"

While the Jumpers JP13/JP14/JP15/JP18 is set correctly, you can change the system speed by software.

