Delta User's Manual

THE POWER BEHIND THE PRINTED WORD.

Federal Communications Commission Radio Frequency Interference Statement

This equipment generates and uses radio frequency energy and if not installed and used properly, that is, in strict accordance with the manufacturer's instructions, may cause interference to radio and television reception. It has been type tested and found to comply with the limits for a Class B computing device in accordance with the specifications in Subpart J of Part 15 of FCC Rules, which are designed to provide reasonable protection against such interference in a residential installation. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient the receiving antenna
- Relocate the computer with respect to the receiver
- Move the computer away from the receiver
- Plug the computer into a different outlet so that computer and receiver are on different branch circuils.
If necessary, the user should consult the dealer or an experienced radio/television technician for additional suggestions. The user may find the following booklet prepared by the Federal Communications Commission helpful: "How to Identify and Resolve Radio-TV Interference Problems." This booklet is available from the U.S. Government Printing Office, Washington, D.C., 20402, Stock No. 004-000-00345-4.

A note about the programs in this manual:

This manual contains several programs that help to demonstrate the versatility of the Delta printers. Star Micronics has made every effort to insure that the programs are functional and accurate. However, Star Micronics cannot guarantee their accuracy or suitability to any particular application.

Trademark Acknowledgement
Deita-10, Delta-15, grafstar, Universal/Atari Parallel Interface, Universal/Commodore Parallel Interface: Star Micronics

Apple, Apple II, Apple II + , Apple IIe, Applesoft: Apple Computer Inc.
Atari 400, Atari 800, Atari 850: Atari Inc., a Warner Communications Company
Commodore, VIC-20, C-64: Commodore Business Machines, Inc.
Compaq: Compaq Computer Corporation
CP/M: Digital Research
EasyWriter: Information Unlimited Software, Inc.
IBM Personal Computer, IBM PC, IBM XT: International Business Machines Corp.
Kaypro: Kaypro Computer Corporation
Microsoft BASIC: Microsoft Corporation
Osborne 1: Osborne Computer Corporation
SuperCalc: Sorcim Corporation
TRS-80: Radio Shack, a division of Tandy Corporation
WordStar: MicroPro International Corporation

©Copyright 1983 Star Micronics, Inc.

A Special Message to the New Owner

Your new Delta printer and this manual are both setting new standards for the computer printer industry - and you're part of it! Congratulations, and welcome aboard!

First, about this manual. It's another first in our industry the first to be truly written not just for the person who does his own programming, but for the first-time user or anyone else who prefers to leave the programming to others, and simply inserts his store-bought programs (software) into his computer/printer system. Someone very much like you, perhaps.

You'll find using this manual easy and pleasant. We've gone to great lengths to make it so, as it's master-minded by solid experts in the arcane art of computer science, and written by equally proficient practitioners in the art of Plain English!

As a first example, look over the Table of Contents and you'll see what we mean. Whether you're a greenhorn or a wizard, everybody will find what they need to know to fulfill their expectations. We suggest that each new owner/user, before you even unpack the box, read or at least scan Chapters 1 and 2 - "A Closer Look" and "Getting Started with Delta" - as well as Appendix A, "Unpacking and Installation." Now you can unpack the box and start putting things together.

When you're ready to connect up your computer to your Delta, look at Appendices B through G for directions applying to your make of computer. Remember, Delta has both serial and parallel interfaces, so there's nothing extra to buy!

Which leads naturally to a few words of praise for some other special features that make the new Delta so satisfactory to own. Features like the high speed 160-character per second printout, the capability to design your own characters, do your own plotting, your own infinite variety of dot graphics patterns and densities. You'll have a ball! For you, Chapters 3 through 8 are a must, and of course everybody should look at Chapter 10 which tells how to maintain your Delta for a long and carefree life.

We'll end this as we began, with congratulations for your wise buying, and a most cordial welcome to the wonderful world of Delta printing. . . fast, clean and beautiful!

Table of Contents

Chapter 1 A Closer Look 1Components and ControlsPaper Selection and LoadingLoading single sheetsLoading roll paperLoading sprocket-feed paperBottom feeding Delta-15
Ribbon InstallationAdjusting the GapSelf-Test
Chapter 2 Getting Started With Delta 17
Using Commercial Software
First, some terminology
Using Delta with SuperCalc
Using Delta with word processors
Using this book without learning BASIC
Some Basics about BASIC
Establishing communications
The CHR\$ function
Control codes
The escape code
Some problem codes
Chapter $3 \quad$ Printing Text With Delta 29
Changing the print pitch Expanded print
Making Delta print darker
Some Special Kinds of Text
Italic printing
Underlining
Superscripts and subscripts Mixing modes
Summary
Chapter 4 Line Spacing and Forms Control 43
Starting New Lines
Changing Line Spacing
Moving down the page without a carriage return
Forms ControlsForm feed
Changing the Page Length
Top and Bottom Margins
Summary
Chapter 5 Formatting Your Output 55
A one-shot tab command
Setting Left and Right Margins
Using Vertical Tabs
A one-shot vertical tab command
Summary
Chapter 6 Special Features of the Delta Printer 61Now hear thisInitializing DeltaPutting Delta to sleepPrinting to the bottom of the sheetUnidirectional printing
Backspace and delete
The seven bit dilemma
Block graphics characters andspecial symbolsInternational character setsThe macro control codeSummary
Chapter 7 Creating Your Own Characters 73
Dot Matrix Printing
The Print Matrix
Defining Your Own Characters
Rule 1: Download characters are seven
dots high
Rule 2: Dots cannot overlap
Add up each column of dots
Assigning a value to your character
Download character definitioncommandPrinting Download CharactersProportional CharactersDefining proportional characters
Printing proportional charactersConnecting characters
Mixing Print Modes with Download
Characters
A Utility Program
Summary
Chapter 8 Printing With Dot Graphics 99
Comparing dot graphics with download characters
Using the Dot Graphics CommandsSpecifying the number of columns ofdotsSpecifying the graphics dataCombining text and graphics
Printing a Design or Logo
Plotting with DeltaHow the program worksUsing Delta for business graphics
High Resolution Graphics
If You Have Problems with BASIC
Summary
Chapter 9 Getting It All Together 119
Chapter 10 Maintenance 123
Cleaning Delta
Removing the Upper Case
Replacing a Fuse
Replacing the Print Head
Appendix A Setting Up Delta 131
Where shall we put it?
What have we here?
Removing the shipping screws
Removing the packing from inside the printerInstalling the platen knob
Removing the tractor unitAttaching the paper separator and paperguideInstalling the ribbonInstalling the printer coverConnecting Delta to your computer
Appendix B IBM Personal Computer and Compaq 139
Recommended DIP switch settings for IBM-PC
BASIC programming
Listing programsProgram listings
Appendix C Apple II Computers 143
Setting the switches
Applesoft BASIC
Listing programs
Program listings
Chart program
Special character chart program
Macro program
Bridge hand program
Numeral program
Download utility program
Delta plot program
Pie chart program
Appendix D TRS-80 Computers 161Recommended DIP switch settings forTRS-80
TRS-80 BASIC
Chart program
Special character chart program
Macro program
Bridge hand program
Numeral program
Download utility program
Delta plot program
Pie chart program
Appendix E Osborne, Kaypro and CP/M Computers 177
Setting the switches
Using MBASIC
Program listings
Chart program
Special character chart program
Macro program
Bridge hand program
Numeral program
Download utility program
Delta plot program
Pie chart program
Appendix F Atari 400/800 Computers 193
Setting the switches
Using Atari BASIC
Listing programs
Program listings
Chart program
Special character chart programMacro programBridge hand programNumeral programDownload utility programDelta plot programPie chart program
Appendix G Commodore VIC-20 and C-64 Computers 211Setting the switchesUsing Commodore BASICListing programs
Program listings
Chart program
Special character chart program
Macro program
Bridge hand program
Numeral program
Download utility program
Delta plot program
Pie chart program
Appendix H DIP Switch Settings 227
Switch Functions
Appendix I ASCII Codes 233
Appendix J Character Style Charts 239
Appendix K Function Code Reference 251
Commands to Control Print StyleFont style controls
Font pitch controls
Special print modes
Commands to Control Vertical Position of PrintHead
Line feed controls
Form feed controls
Vertical tabs
Commands to Control Horizontal Position ofPrint HeadDownload Character CommandsCommands to Control GraphicsMacro Instruction CommandsOther Commands
Appendix L Command Summary in Numeric Order 279
Appendix M ASCII Code Conversion Chart 283
Appendix \mathbf{N} Technical Specifications 291
Appendix 0 The Parallel Interface 293
Functions of the Connector Signals
Appendix P Serial Interface Specifications 297
Configuring the Serial Interface Delta's Serial Protocols
Serial busy protocols XON/XOFF protocol
ACK protocol
Index 303
Consumer Response 309
DIP Switch Quick Reference 311
Warranty Inside back cover
Command Quick Reference Inside back cover

Table of Tables

Table 3-1 Print pitch commands 30
Table 3-2 Expanded print commands 32
Table 3-3 Print emphasis commands 33
Table 3-4 Italic commands 34
Table 3-5 Underline commands 35
Table 3-6 Superscript and subscript commands 36
Table 4-1 Line spacing commands 46
Table 4-2 Form length commands 49
Table 4-3 Top and bottom margin commands 50
Table 5-1 Left and right margin commands 57
Table 6-1 Bell commands 62
Table 6-2 Some miscellaneous commands 63
Table 6-3 Printing direction 64
Table 6-4 Eighth bit controls 66
Table 6-5 International character set commands 68
Table 6-6 International character sets 69
Table 6-7 Macro instruction commands 69
Table 7-1 Download character definition commands 88
Table 7-2 Download character printing commands 91
Table 7-3 Mixing download characters with various print modes 95
Table 8-1 Calculating n 1 and n 2 for graphics 101
Table 8-2 Dot graphics commands 115
Table B-1 IBM serial switch settings 141
Table H-1 DIP switch settings 228
Table H-2 International character sets 231
Table O-1 Delta parallel interface 295
Table P-1 Serial interface pin functions 298
Table P-2 DIP switch 3 298
Table P-3 Handshaking protocols 300
Table P-4 Data transfer rates 300

Chapter 1

A Closer Look

In this chapter, we'll introduce you to your Delta printer. We'll cover:

- Components and controls
- Paper selection and loading
- Adjusting the gap-for different paper thickness
- Self-test-print-out of available characters

Components and Controls

First, the components. You saw most of these when you unpacked your printer. Now we'll give you a brief explanation of
what they do. (For directions on how to set up Delta, see Appendix A.)

Figure 1-1. For instructions on attaching the various components, see Appendix A.

Printer cover - protects ribbon and print head from dust and dirt - and also reduces the sound level.

Paper separator and paper guide - used with roll paper and sprocket-feed paper.

Roll paper holder and holder shaft - used only with roll paper.

Tractor unit - feeds sprocket-feed paper with its drive gear and sprocket units.

Platen - this is the rubber cylinder that carries paper to the print head.

Now let's take a tour around the controls. You'll find that all of the operating controls are on the right side of the printer.

On/off power switch - towards the backside. This turns on the electricity to your machine.

Platen knob - middle, right side. Lets you manually turn the platen, just like a typewriter.

CAUTION: Turn this knob only with power switch off. Turning it with the power on could damage the platen drive gears.

Figure 1-2. All of Delta's controls are on the right side.

Control panel - on top right corner. These three buttons and four "status" lamps are your day-to-day operational controls. Here's what they do:

Power lamp - glows green when the power is on.
Ready lamp - glows green when the printer is ready to accept data. This light flickers during transmission. Don't worry about the flicker; it's normal!

On Line lamp - glows green when data transmission is possible.

Paper Out lamp - glows red when printer is out of paper and stops printing.

On Line button - lets you change the "mode" from on-line to off-line. When it's on-line, the printer can receive data from the computer. When it's off-line, you can advance the paper with the form feed and line feed buttons.
F.F. button - stands for "Form Feed." When you're off-line you can tap this button and advance the paper to the top of a new page or "form."
L.F. button - stands for "Line Feed." When you're off-line this allows you to advance the paper one line at a time. If you hold the button down, you'll get multiple line feeds, one after the other.

Around the backside are some important components and connectors. From right to left, they are:

Figure 1-3. Around on the back of Delta you'll find the interface connectors.

DIP switches - primarily, these switches are used in interfacing the Delta printer to your particular brand of computer. See the appendix for directions on doing this.

Parallel interface connector - the place where you "hook up" your computer to the Delta so they are "interfacing" and thus able to communicate with each other.

Serial interface connector - this interface allows you to connect Delta with a computer using serial communications.

Power cord - you know what it is for, don't you? It furnishes the electrical power to run the printer.

Paper Selection and Loading

That's it for components and connectors. The next thing we'll look at is the variety of papers available for Delta, and how to load
them, ready to print. For starters, Delta can handle single sheetswhether standard-size stationery, envelopes, multi-part carbonless business forms, or almost any other kind of individual sheets. You can also print on continuous paper-either in rolls or fanfolded perforated paper.

Here's a good place to spend a minute talking about the release lever, which you'll be using often. This lever controls the pressure of the paper against the platen. It has two settings - " F " and " T ".

Figure 1-4. The paper release lever has two settings: " F " for friction feed and " T " for tractor feed.

The " F "' setting stands for "Friction Feed" and this setting is always used when running single sheets or roll paper. The " T " position stands for "Tractor Feed" and is used only with sprocketfeed paper. " F " tightens the pressure of the paper against the platen, while " T "' loosens this pressure, so it's easier to move the paper around.

Loading single sheets

Paper width must always be between 8 and 10 inches (8 and 15 inches for the Delta-15), and paper thickness between .07 mm and .10 mm .

Figure 1-5. Inserting a single sheet of paper can be done "under power" with the line feed button.

Now, instead of rolling the paper in manually by turning the platen knob, we're going to use the L.F. button, with the power switch turned on. (This means we'll have to use the " F " (friction feed) position of the release lever.) Remember what we told you about that L.F. (line feed) button? This allows you to advance the paper one line at a time, and if you hold the button down, you'll get multiple line feeds, one after the other.

OK? Now let's start.

1. Remove the printer cover and tractor unit (you can leave the paper guide and paper separator on if you have installed them).
2. Turn the power switch on.
3. Lift up the paper press bar.
4. Set the release lever to the " F "' position.
5. Insert the sheet from the back side of the platen (between the paper chute and the platen cover plate).
6. Press the ON LINE button until the ON LINE light goes off.
7. Press the L.F. button to roll the paper in until it appears on the front side of the platen, about where you want the first line to start printing.

NOTE: To straighten paper (if it's in crooked):

- Move the release lever to "T" position.
- Position the sheet where you want it, moving right or left if necessary to get the paper located between the margins of the printing area.
- Move release lever back to " F " position.

8. Push the paper press bar back to its original position, flush against the paper.
9. Replace the printer cover.
10. Presto! You're ready to start printing!

Loading roll paper

Roll paper, like single sheets, is fed into the printer by "friction feed," using the platen as motive power. Thus, when using roll paper, you must first remove the tractor unit. However, you will need the three components of paper separator, paper guide, and roll paper holder in place. Appendix A tells you how to install the first two. We'll explain here how to attach the roll paper holder and shaft.

The paper holder is (surprise!) the rack that holds the roll of paper. It is inserted into the two holes that you'll find in the back of the printer. (On the Delta-15, the holder attaches the same way, but instead of at the middle, it's over to one side, away from the electrical power cord. The roll of paper is placed on the holder shaft and mounted on the wire rack holder as shown in Figure 1-6.

Roll paper specs are the same for both Delta-10 and Delta-15 ($88^{1 / 21}$ " wide, .07 to .10 mm thickness, and maximum $5^{\prime \prime}$ diameter roll).

Let's start to load the Delta. It's done almost the same way as loading single sheets, except that the "single sheet" in this case is quite long!

1. Remove the printer cover and tractor unit.
2. Turn the power switch on.
3. Lift up the paper press bar.
4. Set the release lever in the " F " position (Figure 1-5).
5. Pull the paper separator upright (Figure 1-7).
6. Load paper roll onto wire rack holder, so that the paper unrolls toward the printer from the bottom of the roll.
7. Unroll some paper, and pass it above the paper guide and beneath the up-ended paper separator.
8. Insert the end of the roll into the paper chute, located at the back side of the platen.
9. Press the ON LINE button until the ON LINE light is off.

Figure 1-6. The roll paper holder is attached to the back of Delta.

Figure 1-7. Inserting roll paper into Delta is similar to loading single sheets.
10. Press the L.F. button to move the paper in until the leading edge appears on the front side of the platen, about where you want the first line to start printing.
NOTE: To straighten roll paper (if it's in crooked):

- Move the release lever to the "T" position.
- Position the sheet where you want it, moving it right or left if necessary to get the paper located between the margins of the printing area.
- Move the release lever back to " F " position.

11. Push the paper press bar back to its original position, flush against the paper.
12. Replace the printer cover.
13. Presto! You're ready to start printing!

Loading sprocket-feed paper

This is the familiar perforated paper, with the holes along both sides, also called sprocket, punched, fan-fold, or just plain "computer paper." It can be as narrow as $3^{\prime \prime}$, and up to $10^{\prime \prime}$ wide (5 " to $151^{1 / 2^{\prime \prime}}$ on Delta-15).

To use this kind of paper, you'll need to install the tractor unit, with its two "sprocket" wheels to carry the paper along.

To install the tractor, identify the two "snap levers" shown in Figure 1-8. At the same time, identify the two "stoppers," nickelplated bars over which the hooked or cut-out bottom edge of the tractor frame fits.

OK? Now pick up the tractor unit. While depressing the two snap levers, guide it down to the two stoppers; when the hooks slide over the stopper bars, let go of the snap levers to lock it in place.

Next, if you haven't already, install the paper separator and - paper guide (see Appendix A), and we're ready to start loading.

1. Turn the power switch off and remove the printer cover.
2. Pull the release lever (on left side) to position " T ".
3. Raise the paper press bar; lift the paper separator upright.
4. Place the stack of fan-fold paper behind the printer.
5. Open the tractor covers, atop the right and left sprocket units, as shown in Figure 1-9.
6. Flip the clamp levers forward. This allows the two sprocket units to move freely right and left, so you can align them with the holes in the paper.
7. Pick up the top sheet, and feed it between the paper chute and platen cover plate.
8. Push the paper down and forward, so it wraps around the platen.

Figure 1-8. Replace the tractor unit by placing the hooks against the stoppers and lower the front into place while holding the snap levers.

Figure 1-9. Open the tractor covers to expose the sprocket teeth.
9. Return the paper separator to its original flat position.
10. Pull the paper up, past the sprocket units.
11. When holes fit snugly over the nubby teeth in both sprockets, close the tractor covers and snap the clamp levers back into their locked position (Figure 1-10).
12. With the platen knob, roll the paper up or down until the correct "start-print" position is reached. You do this by lining up the horizontal perforation (where you tear apart individual sheets) with the top of the ribbon guide (as shown in Figure 111).
13. Now you're ready to roll! Replace the printer cover and turn the power switch on. Rapid printing!

Figure 1-10. Delta ready to run with sprocket-feed paper.

Bottom feeding Delta-15

The Delta-15 can be loaded with sprocket paper in two different ways-either from the back, as with Delta-10, or through a slot in the bottom. To load Delta-15 from the back, follow the steps shown in the previous section. But for loading through the bottom slot, you position the Delta-15 above the stack of fan-fold paper, with the paper being fed up through the bottom of the printer and on out the back.

Figure 1-11. The perforation should be lined up with the top of the ribbon guide.

To use Delta-15 this way, you'll need to install the tractor unit, the paper separator, and the paper guide if you haven't already. If you're unsure how to do it, see Appendix A and Figure 1-8.

The steps for bottom loading Delta-15:

1. Turn the power switch off and remove the printer cover.
2. Pull the release lever to position " T " (Figure 1-4).
3. Raise the paper press bar.
4. Place the stack of sprocket-feed paper below the printer, ideally on a specially-built printer table with a built-in slot.
5. Open the tractor covers, right and left (Figure 1-9).
6. Flip the clamp levers forward. This allows the two sprocket units to move freely right and left, so you can align them with the holes in the paper.
7. Pick up the first "sheet" and lift it up and through the slot in the bottom of the Delta-15.
8. Push the paper up to the front of the platen roller.
9. Feed the top sheet inside the paper press bar and past the platen, high enough so you can grip the paper from above the printer.
10. Pull the paper up past the sprocket wheels.
11. When the holes fit snugly over the nubby teeth, close tractor covers and snap the clamp levers back into the locked positions.
12. With the platen knob, roll the paper up or down until the correct "start-print" position is reached. This position is achieved by lining up the horizontal perforation with the top of the ribbon guide as shown in Figure 1-11.
13. Now we're ready to roll - replace the printer cover, and turn on the power switch. Speedy printing!

Figure 1-12. Delta-15 can be loaded from the back like Delta-10 or from the bottom, as shown here.

- Ribbon Installation

Installing the ink ribbon with its two spools is described in detail in Appendix A. Just follow the diagrams.

Adjusting the Gap

What's the gap? The gap is the space between the print head and the platen. Adjusting the gap is simply adjusting the printer to take different thicknesses of paper.

Figure 1-13. Adjusting the print head gap lever allows you to obtain optimum print quality on paper ranging from .07 mm to .28 mm thick-even 3-part carbonless sets.

To make the adjustment, move the "thickness adjustment lever" which is immediately in front of the "release lever" shown in Figure 1-13. Pulling the thickness adjustment lever towards you will widen the gap; pushing it away from you will narrow the gap.

Five positions are available; you can feel the lever clicking into the various notches. The second step (illustrated) is the one most commonly used for single sheets of paper. The lever is straight up in this position.

You shouldn't encounter any difficulty in getting the right gap setting to fit your paper. If necessary, experiment; you'll soon find the best position for the paper you're using.

Self-Test

The "self-test" is a trial run of your beautiful new machine. Delta carries a built-in program that prints out sample lines of letters, numbers, and other characters-to show you that everything's in good working order. It also serves as a display of all the characters available in the Delta. And, finally it's a "warm-up" that permits you to check your installation of ribbon and paper, and the adjustment of the print head gap.

Best of all，you don＇t have to wait another minute－you can print the self－test without hooking up the Delta to your computer！ It＇s as simple as $1,2,3 \ldots$
1．Plug the printer＇s power cord into a 120 VAC outlet．
2．Insert a sheet of paper．
3．While holding down the L．F．button，turn the power switch on．
Surprised you，didn＇t it？How did you like that blinding speed
-160 characters per second！And the amazing array of type faces， symbols，and graphics！The sample print－out contains characters in the following sizes and type faces，all of them stored in the printer＇s permanent memory．


```
grstuvN:vz!!
```



```
\squareтトリ准+***
```



```
fqr=tuwwNyz(%)
```



```
pqrstuvwxyz(!)*
```


Figure 1－14．The self－test gives a hint of what＇s to come．

1．Standard pica type－ 10 characters per inch
2．Standard elite type -12 characters per inch
3．Condensed type－ 17 characters per inch
4．Italic pica style－ 10 characters per inch
5．Emphasized pica－ 10 characters per inch
What next？Chapter 2 takes up the timely subject of＂Com－ municating with Delta．＂Now you＇ll learn how to make your com－ puter put your printer through its many paces．

Chapter 2

Getting Started With Delta

You have assembled and tested your printer, and seen a quick sample of Delta's capabilities in the self-test. Now it's time to do what you bought Delta to do: print information from your computer.

But first you need to connect Delta to your computer. Figure 2-1 shows where the cables connect, but there's more that you need to know. Complete instructions for connecting Delta to many popular computers are given in the appendix. Find the appendix that covers your computer and follow the instructions for connecting Delta and for setting the DIP switches. If your computer isn't listed in the appendix, then ask your Star dealer which computer that is listed is most like yours. If none of the listed computers are similar to yours, then your Star dealer will give you
advice on connecting Delta to your computer.
When everything is connected, come back here and we will check it out!

Figure 2-1. Delta has both serial and parallel interfaces.

Using Commercial Software

Many of you purchased Delta to use with commercial software. You made a good choice because Delta is compatible with most commercial programs, from word processing programs to spreadsheet programs to accounting programs.

Many of these programs have a routine for describing your printer. These routines are often in "installation programs". They typically give you a choice of printers or printer types to pick from. Some typical descriptions that you might pick for Delta are: "TTY type printer with backspace", "IBM-dot matrix printer", "Centronics-type printer", "Dot matrix ASCII printer". Delta should work fine with any of these descriptions.

Many of these lists of printers are not very clear, and may not include anything that you think describes Delta. If you can't decide which description best fits Delta, we recommend that you narrow the list to two or three choices (you can quickly eliminate all the daisy-wheel printer types) and then experiment. You won't hurt anything if you guess wrong; it just won't work right. This should quickly tell you if your guess is right. If all else fails, though, your Star dealer will be happy to give you some advice.

Some programs don't ask you what kind of printer you have, but instead they ask some questions about what your printer can do. Here are the answers to the "most asked" questions. Delta can do a "backspace". Delta can do a "hardware form feed".

With these questions answered, you are ready to start printing. Read the manual that came with your commercial software to see how to make it send information for Delta to print. This is all you need to know to use Delta as a regular printer. But Delta isn't just a regular printer. Delta has many capabilitics that your commercial software isn't aware of. A little later we will see what it takes to use some of Delta's advanced features with commercial software.

First, some terminology

Delta knows what to print because it knows how to interpret the codes that the computer sends to it. These codes are numbers that the computer sends to Delta. Both the computer and Delta know the meaning of these codes because they are a set of standard codes used by almost all microcomputers. This set of codes is the American Standard Code for Information Interchange, which is usually referred to as ASCII (pronounced ask-key). There are ASCII codes for all the letters of the alphabet, both lower case and capital, the numbers from 0 to 9 , most punctuation marks, and some (but not all) of Delta's functions.

ASCII codes are referred to in several different ways, depending on the way they are used. Some times these codes are treated as regular numbers. For example, the letter " A " is represented by the number 65 in ASCII. Appendix M shows all of the ASCII codes.

In BASIC, ASCII codes are used in the CHR\$ function. This function is used to print the character that is represented by the number in the CHR\$ function. The BASIC statement PRINT $C H R \$(65)$ will print an " A " on the terminal.

In some other programming languages, ASCII codes are referred to by their hex value. "Hex" is short for hexadecimal which is a base-16 number system. (Our usual numbers are base-
10) Since hex needs 16 digits, it uses the numbers 0 through 9 and then it uses the letters A through F for digits. The ASCII code for the letter " A " is 41 in HEX.

Of course, most of the time we don't even need to think about this code system. Our computers are smart enough to know that when we press the " A " key on our keyboard we want to print the letter " A ". The computer takes care of all the rest.

But there are a number of ASCII codes that don't have keys on the keyboard. The most important of these codes are the codes that have ASCII values below 32. These codes control many of Delta's functions. Even though there aren't keys for these codes, most keyboards can send these codes. It's done by holding down the "control" key (many times marked CTRL) and simultaneously pressing a letter key. The particular letter key that is pressed determines what code is sent. Control and A sends ASCII code 1, control and B sends ASCII code 2, and so on. Because of the way they are created, these codes are often referred to as "control-A" etc.

So there are four common ways of referring to the same set of codes: the character or name of the code, the decimal ASCII value, the hexadecimal ASCII value, and the "control-" value.

For example, the code that causes Delta to advance the paper one line is ASCII 10 (decimal). This code is commonly referred to by all the following names:

line feed	- its name
〈LF	- the abbreviation of its name
ASCII 10	- its decimal value
ASCII 0AH	- its hex value (the H signifies hex)
CHR\$(10)	- the way it's used in BASIC
control-J	- the way you send it from a keyboard.

There's a chart in Appendix M that shows these side-by-side so that you can convert back and forth.

The reason that we are telling you all this about ASCII codes is that people are not very consistent about how they describe ASCII codes. We are going to help you use Delta with commercial software, but we don't know what its documentation is going to call the various codes. So if you know all the different things that the codes might be called it will be easier to figure out what it is trying to tell you.

Now, armed with the knowledge of what to look for, you can delve into the manuals of your commercial software and dig out the secrets of how to send "control codes" to your printer. When
you find the method that your program uses, then you can shop through this manual to find the function that you want to use. By translating the codes from the system that we use, to the system that your commercial software uses, you should be able to use many of Delta's advanced features. It may help, however if we look at a couple of examples.

Using Delta with SuperCalc

SuperCalc is typical of the many spreadsheet programs that are now available. It has the capability of using several of the advanced features of Delta. Perhaps the most often used feature with spreadsheet programs is compressed printing. Let's see how to use compressed printing with SuperCalc.

In SuperCalc, the /Output command provides output to the printer. One of the options of the /Output command is S(etup). This option provides you with a menu of functions to configure SuperCalc to match your printer. You can change the number of characters that SuperCalc will print on a line and the number of lines that will print on a page. You should be sure that these values match your printer. Delta-10's print 80 characters per line of pica type, or 136 characters of condensed type. Delta-15 can print 136 characters per line of pica type, or 233 characters per line of condensed type. One of the other options on this menu is "send setup codes to printer". This is how we tell Delta that we want to use condensed print. The code to switch Delta into condensed print is ASCII 15, or control-O. So to switch on condensed type, use the /Output command and, after selecting D (isplay) and entering the range to print, select the S(etup) option, and the S(etup)-"Manual setup codes" sub option. Then, at the prompt that says "Enter codes (CR when done)", type control-O. Remember, to enter con-trol-O you hold down the CTRL key while you press the O key (That's the letter Oh, not the number zero). Then just press return and select P(rint) to print your report.

You only need to go through this procedure once each time you use SuperCalc because Delta will stay in compressed print until it's turned off or reset.

You might also wish to use some of Delta's other features with SuperCalc. Find the code for the feature you wish to use in Appendix K and use the same procedure given here. Remember that Appendix M can be used to translate between the different names for the codes.

Using Delta with word processors

Not many word processing programs recognize the advanced
features of printers like Delta. They usually provide for some method of making bold characters and underlining. But Delta can do much more than that. The people that write word processing programs do, however, know that there are a lot of different printers on the market, and so they usually, (but not always) provide a way of sending special codes to a printer. We will study one example of this to see how a typical word processor handles it. Once you understand the concept you should be able to use your program manual to figure out how your word processor does it.

The program that we will study is the EasyWriter word processor for the IBM Personal Computer. This uses a fairly typical method of handling special codes. Generaily, word processing programs don't want you to put non-printing codes in the file. They "know" that they won't print anything, and so they "protect" you by not letting you use them. But the non-printing codes are the ones that you need to use Delta's features. So EasyWriter provides a way to override this protection. If you precede a special code with a "control-O" then EasyWriter will accept the next non-printing code.

Let's look at a specific example. Suppose you want to print the title of a book in italic. The code sequence to select italic type is Escape 4 (that's two separate characters). Entering the 4 is no problem; it's a printing character so EasyWriter won't object (although in this case it's not going to print). The Escape, however, is a non-printing character so it requires special handling. To enter the Escape code first enter control-O (hold the Ctrl key while you press the letter O). Then press the Esc key. The Escape character shows on the screen as a left pointing arrow. Now just type the number 4 and you're done.

When you want to end the italic, you need to enter Escape 5. Use the same procedure: enter control-O, Esc, and then 5.

You can use many of Delta's features this way. Find the codes that you need in Appendix K, and then if necessary, use Appendix M to translate the codes into the form your word processor uses.

A note to WordStar users: WordStar is probably the most popular word processing program in the world. But it provides no way to enter special printer control codes from the keyboard. WordStar does, however, provide you with a way to use some of Delta's advanced features. WordStar has four special commands that you can use to access Delta's features. These are called "user printer controls" and are control-P Q, control-P W, control-P E, and control-P R. You might use two of these to turn italic on and off and the other two for some other function. The process of setting up these codes is called "patching" and is done with the
install program that comes with WordStar. The procedure is fairly involved, but it is explained in the WordStar manual. If you have trouble figuring it out, ask for assistance where you bought WordStar.

Using this book without learning BASIC

Throughout most of this book we will be teaching you how to use Delta's features using the BASIC programming language in our examples. This is because it is easy to communicate with Delta from BASIC and because, despite its shortcomings, BASIC is the nearest thing to a universal language among users of personal computers. But it's not the only way to communicate with Delta, as we have already seen. Even if you don't know BASIC, you can learn how to use Delta's features by reading on. When you find a function that you want to use, just apply what you already know about translating from one name for codes to another. The examples will still show you how the commands are used, even if you are not using BASIC.

Some Basics About BASIC

Probably the simplest thing to do with your printer in BASIC is to list a program on the printer. But in this world of proliferating microcomputers even this presents a problem. It seems that every computer uses a different system of communicating with the printer. We are going to tell you about some of the more common ways, and hope that between this and your computer's BASIC manual you will be able to stay with us.

First on our list is Microsoft BASIC's way of communicating with the printer. They just add an " L " to the beginning of the LIST and PRINT commands, making them LLIST and LPRINT. This method is used by more computers than any other and so we will use it throughout this book, after telling the rest of you how to follow along.

Microsoft BASIC is used by TRS-80 computers, IBM-PC computers, many CP/M computers, and many other computers. (Look in your BASIC manual; it will probably say if it's Microsoft BASIC.)

Next we need to talk about Apple II computers. They have a real simple system. To list a program that you have loaded into
memory, just type:

PR\#1
LIST
PR\#Ø

The PR\#1 says "send everything to the printer", the LIST sends it, and the PR\#0 says "Ok, back to the screen now". (There are some slightly different versions of these commands in Appendix C.)

Some other computers require you to open the printer as a numbered device, and then direct the output to that device. For example, to list a program on the printer with a Commodore C-64 computer you type the following:

```
OPEN4,4
CMD4
LIST
PRINT#4 : CLOSE4
```

This says that the printer is device 4 , directs the output to it, lists the program, and finally closes device 4.

The appendix gives more information about listing programs on various computers. Find the appendix that tells how your computer works, and try it.

Now that we all know how our computers address the printer, let's try listing a BASIC program. Load a BASIC program and LLIST it (or however your computer does it).

We've crossed the first major hurdle-learning how to list programs on Delta. Now we are ready to jump into the world of programming with Delta. But first, there are a few fundamentals that we need to cover.

Establishing communications

We've learned something about communicating with our printer. Now we need to adapt what we know to printing in a BASIC program. Generally, computers use about the same procedure for printing in a program as they do to list a program. Again take a few moments to look at the appendix that relates to your computer. We'll continue when you have it all figured out.

Welcome back. Let's try what we learned. Type the following:

```
NEW
1\emptyset LPRINT "TESTING"
RUN
```

Remember-we use LPRINT; you may have to use something else!

At any rate, you should have the word "TESTING" on your printer. Quite an achievement, isn't it? Let's get done with this simple stuff so that we can go on to something interesting.

The CHR\$ function

We mentioned CHR\$ earlier as one way to express ASCII codes. We are going to use it a lot in communicating with Delta. Delta uses many of the ASCII codes that don't represent letters and numbers. The CHR\$ function gives us an easy way to send these codes to the printer. Try this to see how the CHR\$ function works:

```
NEW
1\emptyset LPRINT CHR$(68)
RUN
```

That should print a "D" for Delta. If you check the chart in Appendix I you will see that 68 is the ASCII code for " D ".

Control codes

Delta uses many of the non-printing ASCII codes for control codes. These codes perform a function rather than printing a character. Let's try an easy one right now:

NEW

$1 \varnothing$ LPRINT CHR $\$$ (7)
RUN

Who made that noise? That's Delta's bell. We will learn more
about it in Chapter 6 ．We just wanted to illustrate a code that causes Delta to perform a function．

The escape code

There＇s one particular ASCII code that we are going to be using more than all the rest．This is ASCII 27，which is called escape．In BASIC it＇s CHR\＄（27）．With all of Delta＇s advanced fea－ tures，there weren＇t enough single ASCII codes to go around．So escape is used to start sequences of control codes that open a wider range of functions to us．

While you must call this code CHR\＄（27）in BASIC，we are going to refer to it as 〈ESC〉 in this book．This will make it much easier to recognize when we use it．

A typical escape code sequence starts with 〈ESC〉 which is followed by one or more CHR $\$$ codes．As an example，the escape code sequence to turn on italic print is：

```
〈ESC> CHR$(52)
```

In a program，this would look like this：

```
NEW
1\emptyset LPRINT CHR$(27) CHR$(52);
2\emptyset LPRINT "TESTING"
RUN
```

Try this program，it will print the word TESTING in italic．
Some of you fast students may have noticed that CHR\＄（52）is the same as＂ 4 ＂．That＇s right，the program will work just as well if line 10 is changed like this：
$1 \varnothing$ LPRINT CHR\＄（27）＂4＂；

That＇s just another form of the same ASCII code，and it＇s all the same to Delta．

Here＇s another shortcut for BASIC programmers：since〈ESC〉 is used so often，assign it to a variable．In a long program， typing ESC $\$$ is much easier than typing CHR\＄（27）each time！Now
our program looks like this:
$5 \mathrm{ESC} \$=\mathrm{CHR} \(27)
10 LPRINT ESC\$ "4";

Turn your printer off and back on now, or you will be printing in italic for quite a while!

Some problem codes

Before we go too far we need to mention some codes that may cause you problems. Like most of the subjects in this chapter, we have to be a little vague because of the differences in computers.

Nearly all BASICs change some of the ASCII codes between your BASIC program and your printer. Some turn CHR $\$(10)$ (a line feed) into a CHR $\$(13)$ (a carriage return) before sending it on. Some other problem codes are 0 , and 9 through 13. Once again we refer you to the appendix about your computer, where some more specific information awaits.

That's it for the basics. You are ready to learn how to use the many features of Delta.

Chapter 3

Printing Text With Delta

Beginning with this chapter we will be exploring all the features of Delta. All our examples will be given in Microsoft BASIC as used by the IBM Personal Computer, but remember that you don't need to know BASIC to use Delta's features. Just use the same ASCII codes as we do in our examples.

If your computer doesn't use Microsoft BASIC, look in the appendix to see what changes you need to make for your BASIC. The appendix tells you how to change the short example programs, and gives complete listings of the longer programs, already converted for your computer.

You have already printed a few lines on your Delta printer. Now it's time to start looking at the many variations of printing style that you have available to you. The first technique that we
will investigate is changing the width of the characters that Delta prints.

Changing the print pitch

In "printer talk," character width is called pitch. Normally, Delta prints 10 characters per inch. This is called pica pitch because it's the same spacing as a standard pica typewriter.

Delta can also print 12 characters per inch. This is called elite pitch because it is the same spacing as an elite typewriter.

Condensed print is approximately 17 characters per inch (actually it's 17.14 characters per inch). Condensed pitch allows you to get 136 columns of printing on an $81 / 2$ inch page.

You tell Delta which pitch you want to use with the 〈ESC〉 " B " command. The table below shows the three options of this command.

Table 3-1
Print pitch commands

Pitch	Characters/inch	Control code
Pica	10	$\langle E S C\rangle " B "$ CHR\$(1)
Elite	12	$\langle E S C\rangle$ "B" CHR\$(2)
Condensed	17	$\langle E S C\rangle$ "B" CHR\$(3)

Let's see how these three pitches look. Try this program:
NEW
$1 \emptyset$ LPRINT CHR $\$(27)$ "B" CHR\$(2)
$2 \emptyset$ LPRINT "THIS IS ELITE PITCH PRINTING"
$3 \emptyset$ LPRINT CHR\$(27) "B" CHR\$(3)
$4 \emptyset$ LPRINT "CONDENSED IS THE NARROWEST PITCH"
$5 \emptyset$ LPRINT CHR\$(27) "B" CHR\$(1)
$6 \emptyset$ LPRINT "NOW WE ARE BACK TO PICA PITCH PRINTING"

When you run this program you should get this:

THIS IS ELITE FITCH FRINTING
condensed is the marrowest pitch

NOW WE AFEE EACE TO FICA FITCH FFINTING

Line 10 turns on elite pitch with 〈ESC〉＂B＂CHR\＄（2）．Line 20 prints a line at 12 characters per inch．The 〈ESC〉＂B＂CHRS（3）in line 30 changes Delta to condensed pitch and line 40 prints a line in condensed pitch．Line 50 resets Delta to pica pitch and line 60 prints a line in pica pitch．

Pica pitch and condensed pitch can be set with＂shortcut＂ codes．Instead of using 〈ESC〉＂B＂CHR\＄（n），you can set them with a single code．CHR\＄（18）sets pica pitch and CHR\＄（15）sets condensed pitch．You can not set elite pitch with a single code．

Expanded print

Each of Delta＇s three print pitches can be enlarged to twice its normal width．This is called expanded print．Try this program to see how it works：

```
NEW
1\varnothing LPRINT CHR$(14) "THIS LINE IS EXPANDED"
2\emptyset LPRINT "BUT THIS LINE IS NOT"
```

THIS LIME ISEMFMMED
EUT THIS LINE IS NOT

Expanded print set with CHR\＄（14）is automatically canceled at the end of the line．This is convenient in many applications， such as for one line titles．Note that you don＇t need to put an〈ESC＞in front of the CHR\＄（14），although 〈ESC〉 CHR\＄（14）works just the same．

Sometimes you may wish to stay in expanded print for more than one line．Change your program to this：

```
1\emptyset LPRINT CHR$(27) "W" CHR$(1) "THIS LINE IS
    EXPANDED"
2\emptyset LPRINT "AND SO IS THIS ONE"
3\emptyset LPRINT CHR$(27) "W" CHR$(\emptyset) "NOW WE'RE BACK TO
    NORMAL"
```

Now the results look like this：

When you turn on expanded print with 〈ESC〉＂W＂CHR\＄（1）it stays on until you turn it off with 〈ESC〉＂W＂CHR\＄（0）．That＇s what we added line 30 for．

Table 3－2
Expanded print commands

Function	Control code
One line expanded	CHR\＄（14）
Expanded ON	$\langle E S C\rangle$＂W＂CHR\＄（1）
Expanded OFF	$\langle E S C\rangle$＂W＂CHR\＄（0）

By combining expanded print with the three pitches，Delta has six different character widths available．

Enter this program to see how the print pitches and expanded print can be combined：

```
10 LPRINT CHR$(14) "EXPANDED PICA PITCH"
2\emptyset LPRINT CHR$(27) "B" CHR$(2)
30 LPRINT CHR$(14) "EXPANDED ELITE PITCH"
4 0 \text { LPRINT CHR\$(27) "B" CHR\$(3)}
50 LPRINT CHR$(14) "EXPANDED CONDENSED PITCH"
60 LPRINT CHR$(27) "B" CHR$(1)
7\emptyset LPRINT "NOW WE ARE BACK TO UNEXPANDED PICA
    PRINTING"
```

Here＇s what you should get from this program：

```
EXFFMNDED FICA FITEH
```

EXFANDED ELITE F*ITEH
EXPANDED CONDENSED FITCH

NDW WE AFE BACK TO UNEXFANDED FICA FRINTING

Making Delta print darker

Delta has very good print density when it＇s just printing regu－ larly．But sometimes you may want something to stand out from the rest of the page．Delta provides two ways to do this：double－ strike and emphasized print．Both of these go over the characters
twice，but they use slightly different methods to darken the char－ acters．Let＇s try them and see what the difference is．

The following table shows the control codes for getting into and out of double－strike and emphasized modes．

Table 3－3
Print emphasis commands

Function	Control code
Double－strike ON	\langle ESC＂G＂
Double－strike OFF	$\langle E S C\rangle$＂H＂
Emphasized ON	$\langle E S C\rangle$＂E＂
Emphasized OFF	$\langle E S C\rangle$＂F＂

Try them now with this little program：
NEW
$1 \emptyset$ LPRINT CHR\＄（27）＂G＂
$2 \emptyset$ LPRINT＂THIS IS DOUBLE－STRIKE PRINTING＂
$3 \emptyset$ LPRINT CHR\＄（27）＂H＂CHR\＄（27）＂E＂；
$4 \emptyset$ LPRINT＂THIS IS EMPHASIZED PRINTING＂
$5 \emptyset$ LPRINT CHR\＄（27）＂G＂；
$6 \emptyset$ LPRINT＂AND THIS IS BOTH AT ONCE＂
$7 \emptyset$ LPRINT CHR\＄（27）＂H＂CHR\＄（27）＂F＂

Run this program．The results will look like this：

THIS IS DOUBLE－STRIKE FRINTING THIS IS EMFHASIZED PRINTING AND THIS IS BOTH AT ONCE

Line 10 turns on double－strike with 〈ESC〉＂ G ＂and line 20 prints a line of text．In line 30 double－strike is turned off with〈ESC〉＂ H ＂and then emphasized is turned on with 〈ESC〉＂E＂． Line 40 prints a line of emphasized text．Line 50 then turns dou－ ble－strike back on so that line 60 can print in both at once．Finally， line 70 turns both off，so that Delta is set for normal printing．

Look closely at the different lines of printing．In the line of double－strike printing each character has been printed twice，and they are moved down just slightly the second time they are
printed. In emphasized printing, they are moved slightly to the right the second time Delta prints. The last line combined both of these so that each character was printed 4 times. Now that's pretty nice printing, isn't it?

Some Special Kinds of Text

We're just getting started on the kinds of text that Delta can print. Still to come are italic characters, underlined characters, superscripts and subscripts.

Italic printing

Italic letters are letters that are slanted to the right. Delta can print all the kinds of letters that we have seen so far in italic as well as the roman (standard) letters we have been using. Italics can be used to give extra emphasis to certain words. The command codes to turn italic on and off are shown in Table 3-4.

Table 3-4
Italic commands

Function	Control code
Italic ON	$\langle\mathrm{ESC}\rangle$ "4"
Italic OFF	$\langle\mathrm{ESC}\rangle$ " 5 "

Use this program to see italic characters:

NEW
10 LPRINT CHR\$(27) "4";
$2 \emptyset$ LPRINT "THIS LINE IS PRINTED IN ITALIC"
$3 \varnothing$ LPRINT CHR\$(27) "5";
40 LPRINT "THIS LINE IS NORMAL PRINTING"

Here is what you should get:

This program is easy；line 10 turns italic on with 〈ESC〉＂ 4 ＂， and line 30 turns it off with 〈ESC〉＂ 5 ＂．

Underlining

Not only can Delta print all the styles of printing that we have seen in both roman and italic，but it can underline them too．The control codes are shown in Table 3－5．

Table 3－5
Underline commands

Function	Control code
Underline ON	$\langle\mathrm{ESC}\rangle$＂－＂ $\mathrm{CHR} \mathrm{\$(1)}$
Underline OFF	$\langle\mathrm{ESC}\rangle$＂- ＂CHR\＄（0）

Again，that＇s simple．Let＇s try it with this program：

```
NEW
10 LPRINT CHR$(27) "-" CHR$(1);
2\emptyset LPRINT "THIS IS UNDERLINED";
3\emptyset LPRINT CHR$(27) "-" CHR$(\emptyset);
4\varnothing LPRINT " AND THIS IS NOT"
```

It should come out like this：

```
THIS IS UNDEFLINED AND THIS IS NOT
```

In this program underline is turned on in line 10 with 〈ESC〉 ＂－＂CHR\＄（1），and then off in line 30 with 〈ESC〉＂－＂CHR\＄（0）． There＇s a new little wrinkle in this program，though．It all printed on one line．The semicolons at the end of the first three lines told BASIC that those lines were to be continued．Therefore，BASIC didn＇t send a carriage return and line feed at the end of those lines． We just did this to illustrate that all these control codes can be used in the middle of a line．It＇s easy to underline or italicize only part of a line．

Superscripts and subscripts

We have seen how Delta can print in 6 different widths．Delta
can also print in two different heights of characters．The smaller characters are called superscripts and subscripts and are half the height of normal characters．Superscripts print even with the tops of regular printing while subscripts print even with the bottom of regular printing．They are frequently used to reference footnotes， and in mathematical formulas．

Table 3－6 has the codes for using superscripts and subscripts．

Table 3－6
Superscript and subscript commands

Function	Control code
Superscript ON	$\langle E S C\rangle$＂S＂CHRS（0）
Subscript ON	$\langle E S C\rangle$＂S＂CHR\＄（1）
Super \＆subscript OFF	$\langle E S C\rangle$＂T＂

Try this program to see them work：

NEW
$1 \emptyset$ LPRINT＂THIS LINE USES＂；
$2 \emptyset$ LPRINT CHR\＄（27）＂S＂CHR\＄（ \varnothing ）；
30 LPRINT＂SUPERSCRIPTS＂；
40 LPRINT CHR $\$(27)$＂T＂；
50 LPRINT＂AND＂；
60 LPRINT CHR\＄（27）＂S＂CHR\＄（1）；
$7 \varnothing$ LPRINT＂SUBSCRIPTS＂；
$8 \emptyset$ LPRINT CHR $\$(27)$＂T＂；
90 LPRINT＂BOTH＂

THIS LINE USES BuFEREcififte AND sumbcmipte EOTH

Here line 20 turns on superscripts with 〈ESC〉＂ S ＂CHR\＄（0）． It＇s turned off in line 40 with 〈ESC〉＂T＂．Then，between printing text，subscripts are turned on in line 60 with 〈ESC〉＂S＂CHR\＄（1）， and finally off in line 80 ．Again，everything prints on one line because of the semicolons．

Mixing modes

We have learned how to use Delta＇s many different printing modes individually．Now let＇s see how we can combine these
modes for even more printing effects. Condensed, italic, doublestrike, underlined subscripts are something that you are probably just itching to print!

There are 288 "theoretical" combinations of the modes that we have learned. Of these, a mere 112 will work! (Some combinations, like expanded superscripts, just don't work.) Instead of trying to list all the combinations that work, we have a program that prints a chart showing all the combinations. There is a sample of each of the 112 possible combinations on the chart. (The dots just indicate the few combinations that don't work.) Enter the following program and run it to make your own chart.

00 WIDTH "LPT1:", 255 'CANCEL AUTO CR \& LF AFTER 80 CHAR'S	
	GOSUB $10 \emptyset \emptyset$ 'build instruction SET REQu
	GOSUB $2 \not \emptyset \emptyset \quad$ 'PRINT HEADING
130 LPRINT "*REGULAR*"	
$14 \emptyset$ GOSUB $30 \emptyset \emptyset$ 'PRINT FOUR LINES REGULAR	
150 LPRINT "*DOUBLE STRIKE*"	
$16 \emptyset$ LPRINT DOUBLE.STRIKE\$;	
$17 \emptyset$ GOSUB $3 \varnothing \emptyset \emptyset$ 'PRINT FOUR LINES DOUBLE STRIKE $18 \emptyset$ LPRINT "*EMPHASIZED*"	
190 EMPHASIZED $=$ TRUE	
$2 \emptyset \emptyset$ GOSUB $3 \emptyset \emptyset \emptyset$ 'PRINT FOUR LINES EMPHASIZED	
$21 \varnothing$ LPRINT "*DOUBLE STRIKE \& EMPHASIZED*"	
220 LPRINT DOUBLE.STRIKE\$ EMPHASIZED\$;	
	GOSUB $30 \emptyset \emptyset$ 'PRINT DOUBLE STRIKE \& EMPHASIZED
240 END	
250	'****
$26 \square^{\prime}{ }^{*} * * *$	
$1 \emptyset \emptyset \emptyset$ ''''''	
$1010{ }^{\prime}$	
1020	BUILD INSTRUCTION SET
1030	
1050 ''''''FONT (CHARACTER) STYLES''	
1060 ITALIC\$ $=\operatorname{CHR}$ (27) + CHR\$(52)	
$107 \varnothing$ ROMAN $\$=\operatorname{CHR} \$(27)+\mathrm{CHR} \$(53)$	
1090	ENLARGED\$ $=\operatorname{CHR}$ \$(27) $+\operatorname{CHR} \$(87)+\operatorname{CHR}$ (1)
1190	NOT.ENLARGED\$ $=\operatorname{CHR}$ (27) $+\mathrm{CHR} \$(87)+\mathrm{CHR} \$\left({ }^{(1)}\right.$
1110	PICA\$ $=$ CHR\$(27) + CHR\$(66) $+\mathrm{CHR} \$(1)$
$112 \varnothing$	ELITE\$ $=\operatorname{CHR}$ (27) $+\operatorname{CHR} \$(66)+\operatorname{CHR} \(2)
1130	CONDENSED\$ $=\operatorname{CHR} \$(27)+\operatorname{CHR} \$(66)+\operatorname{CHR} \(3)

1140 '1'1:1'SPECIAL PRINT MODES'1111111111
1150 EMPHASIZED $\$=\operatorname{CHR} \$(27)+\operatorname{CHR} \(69)
$116 \emptyset$ NOT.EMPHASIZED $\$=\operatorname{CHR} \$(27)+\operatorname{CHR} \$(7 \emptyset)$
$117 \varnothing$ DOUBLE.STRIKE $\$=\operatorname{CHR} \$(27)+\operatorname{CHR} \(71)
$118 \emptyset$ NOT.DOUBLE.STRIKE $\$=\operatorname{CHR} \$(27)+\mathrm{CHR} \$(72)$
$119 \emptyset$ UNDERLINED $\$=\operatorname{CHR} \$(27)+\operatorname{CHR} \$(45)+$ CHR $\$$ (1)
$12 \emptyset \emptyset$ NOT.UNDERLINED $\$=\operatorname{CHR} \$(27)+\operatorname{CHR} \$(45)+$ CHR $\$(\varnothing)$
$121 \varnothing$ SUPERSCRIPT $\$=\operatorname{CHR} \$(27)+\operatorname{CHR} \$(83)+$ CHR $\$(\emptyset)$
$122 \emptyset$ SUBSCRIPT\$ $=\operatorname{CHR} \$(27)+\operatorname{CHR} \$(83)+$ CHR $\$$ (1)
1230 NOT.SCRIPTED $\$=\operatorname{CHR} \$(27)+\operatorname{CHR} \(84)
1240 RESET.ALL\$ $=$ NOT.EMPHASIZED $\$+$ NOT.UNDERLINED\$ + NOT.DOUBLE.STRIKE\$
125 (RESET.ALL\$ = RESET.ALL\$ + ROMAN\$ + PICA\$ + NOT.ENLARGED\$

$127 \emptyset$ TRUE $=1$:FALSE $=\varnothing$
$128 \emptyset$ REGULAR.HEADING $\$=\operatorname{STRING} \$(27, " * ")+$ "REGULAR" $+\operatorname{STRING} \$(27, " * ")$
$129 \emptyset$ RETURN

$201 \varnothing^{\prime}$
$2 \not 2 \emptyset^{\prime}$ PRINT HEADING '
2030

2050 LPRINT RESET.ALL\$
$2 \emptyset 6 \emptyset$ LPRINT ENLARGED\$ " NORMAL ENLARGED "
$207 \emptyset$ LPRINT RESET.ALL\$;
$2 \emptyset 8 \emptyset$ LPRINT UNDERLINED\$;
$299 \emptyset$ LPRINT CONDENSED\$ "CONDENSED ";
$210 \emptyset$ LPRINT ELITE\$ " ELITE ";
2110 LPRINT PICA\$ " PICA ";
$212 \emptyset$ LPRINT CONDENSED\$ "CONDENSED ";
2130 LPRINT ELITE $\$$ " ELITE ";
214 LPRINT PICA\$ " PICA "
2150 LPRINT RESET.ALI\$
2160 RETURN

3010 ' '
$302 \emptyset$ PRINT FOUR LINES
3030 ' 1


```
3050 ITALICS = FALSE :LPRINT ROMAN$;
3060 UNDERLINED = FALSE :LPRINT
    NOT.UNDERLINED$;
307\varnothing ENLARGED = FALSE :LPRINT NOT.ENLARGED$;
3080 PICA = FALSE
```



```
310\emptyset LPRINT CONDENSED$;
311\varnothing GOSUB 35\emptyset\emptyset 'PRINT AS REQUIRED
312\emptyset LPRINT ELITE$;
3130 GOSUB 350\emptyset 'PRINT AS REQUIRED
314\varnothing LPRINT PICA$; :PICA = TRUE
3150 GOSUB 35ø\emptyset 'PRINT AS REQUIRED
3160 '"'"'1''SEE WHAT HAS BEEN DONE'\"\'1"'1"'
3170 IF ENLARGED = TRUE THEN LPRINT :GOTO 319\varnothing
    'CHECK IF UNDERLINED
318\varnothing LPRINT ENLARGED$; :ENLARGED = TRUE :GOTO 308\emptyset
    'ELSE CONTINUE LINE
319\emptyset IF UNDERLINED = TRUE THEN LPRINT :GOTO 321\emptyset
    'CHECK IF ITALICS
32\emptyset\emptyset LPRINT UNDERLINED$; :UNDERLINED = TRUE :GOTO
    307\emptyset 'ELSE PRINT UNDERLINE
3210 IF ITALICS = TRUE THEN LPRINT RESET.ALL$
    :RETURN
322\emptyset LPRINT ITALIC$; :ITALICS = TRUE :GOTO 306\varnothing
    'REPEAT WITH ITALICS
```



```
3510 ' '
352\emptyset ' PRINT AS REQUIRED
3530 ' '
```



```
3550 BLANK$ = STRING$(6,32) :FOUR.DOT$ = "...."
3560 IF EMPHASIZED = FALSE THEN LPRINT "ABcd";
    :GOTO 3610
357\emptyset IF PICA = FALSE THEN LPRINT FOUR.DOT$;
    :GOTO 3590
358\varnothing LPRINT EMPHASIZED$ "ABcd" ;
3590 IF ENLARGED = TRUE THEN LPRINT " ";
    :ELSE LPRINT BLANK$;
3600 RETURN
361\varnothing '''"'''''EMPHASIZED = FALSE'"'\"'|'''''
362\emptyset IF ENLARGED = TRUE THEN LPRINT " ";
    :RETURN
363\emptyset LPRINT SUPERSCRIPT$; "Xx";
3640 LPRINT SUBSCRIPT$; "Yy ";
3650 LPRINT NOT.SCRIPTED$;
3660 RETURN
```

Here is the chart it produces：
NOFFMAL EMDENSED ELITE FICA COMDENSED ELITE FICA FICA
＊FEGULAF＊

ABCd ${ }^{x} y_{y} A B C d^{x x_{y}} y_{y} A B C d^{x x} y_{y}$ ABCd AECD AECD
$A B d^{x x} y, A B C d^{x x} y, A B E d^{x x_{y} y} \quad A B C d \quad A B \in d \quad A B \leq$

＊DOUELE STFIKE＊
ABCd ${ }^{x_{y_{y}}} A B C d^{x_{x}} r_{y} A B C d x^{x} y_{y}$ ABCd ABCD AECEC

＊EMFHASIZED＊

Summary

Control code
〈ESC〉＂B＂CHR\＄（1）
〈ESC〉＂B＂CHR\＄（2）
〈ESC〉＂B＂CHR\＄（3）
CHR\＄（18）

Function
Sets pica pitch
Sets elite pitch
Sets condensed pitch
Sets pica pitch

CHR\＄（15）
CHR\＄（14）
〈ESC〉 CHR\＄（14）
〈ESC〉＂W＂CHR\＄（1）
〈ESC〉＂W＂CHR\＄（0）
〈ESC〉＂G＂
〈ESC〉＂＂H＂
〈ESC〉＂E＂
〈ESC〉＂F＂
〈ESC〉＂4＂
〈ESC〉＂ 5 ＂
〈ESC〉＂－＂CHR\＄（1）
〈ESC〉＂－＂CHR\＄（0）
〈ESC〉＂S＂CHR\＄（0）
〈ESC〉＂S＂CHR\＄（1）
〈ESC〉＂T＂

Sets condensed pitch
One line expanded
One line expanded
Expanded on
Expanded off
Double－strike on
Double－strike off
Emphasized on
Emphasized off
Italic on
Italic off
Underline on
Underline off
Superscript on
Subscript on
Super \＆subscript off

Chapter 4

Line Spacing and Forms Control

We have learned how to print in many different ways, but so far we haven't looked at how to position the printing on the page. In this chapter we will learn how to change the vertical spacing and the length of the page.

Starting New Lines

Up until now the only time we have thought about printing on a new line is when we didn't want it to happen. We learned that putting a semicolon (;) at the end of a BASIC line will not end the line of printing. So somehow, the computer is telling the printer
when to end one line and start another.
There are two codes that are used to end one line and start another. They are carriage return (CHR\$(13)) and line feed (CHR\$(10)). The codes are simple, but their action is a little confusing (especially with BASIC). Carriage return is the easiest. Each time that the printer receives a CHR $\$(13)$ it returns the print head to the left margin. It does not advance the paper (if DIP switch 2-4 is off; see below).

Line feed is more complicated. Each time the printer receives a CHR $\$(10)$ it both advances the paper one line and returns the print head to the left margin, ready to start a new line.

Now to add a little confusion-most (but not all) versions of BASIC add a line feed (CHR\$(10)) to every carriage return (CHR\$(13)) that they send. If your version of BASIC doesn't do this, then you should turn DIP switch 2-4 on so that Delta will add the line feed for you. When you have DIP switch 2-4 on the printer will do the same thing when it receives a carriage return as it does when it receives a line feed.

If you find that your printer double spaces when it should single space, then you probably need to turn DIP switch 2-4 off.

Changing Line Spacing

When you turn Delta on the line spacing is set to 6 lines per inch (or 8 lines per inch if DIP switch 1-5 is off). This is fine for most printing applications, but sometimes you may want something different. Delta makes it easy to set the line spacing to whatever value you want.

Try this program to see how easy it is to change the line spacing:

```
NEW
1\varnothing FOR I = 1 TO 25
2\emptyset IF I = 13 THEN 5\emptyset
30 LPRINT CHR$(27) "A" CHR$(I);
4\emptyset LPRINT "DELTA HAS VARIABLE LINE SPACING"
5\emptyset NEXT
6\emptyset LPRINT CHR$(27) "2"
```

This is what you will get：

			ENNE	
DELTA	HAS	VAFIAELE	LINE	SFACING
DELTA	HAS	VAFiAble	LINE	SFACING
DELTA	HAS	VARIAELEE	LINE	SF＇ACING
DELTA	HAS	VARIAELE	LINE	SFACING
DELTA	HAS	VAFitable	LINE	SFACING
DELTA	HAS	VAFIABLE	LINE	SFACING
DELTA	HAS	VAFit ABLE	LINE	SFACING
DELTA	Has	variable	LINE	SFACING
delta	HAS	VARi dable	LINE	SFACING
deleta	HAS	VARIABLE	LINE	SFACIng
DELTA	HAS	VAFiIABLE	LINE	SFACING
delta	HAS	VARiABLE	LINE	SFACINE
DELTA	HAS	VAfiIAELE	LINE	SFACING
dELTA	HAS	VAFiable	LINE	SFACING
DELTA	HAS	VAFIIAELE	IN	SFACING

Line 30 changes the line spacing．The command 〈ESC〉＂A＂ CHR $\$(n)$ changes the line spacing to $n / 72$ of an inch．The loop that is started in line 10 increases the value of n（the variable I in the program）each time it is executed．So the line spacing increases as the program continues．Line 20 just shortcuts the loop when $I=$ 13，since BASIC won＇t let us send CHR\＄（13）without adding an unwanted CHR $\$(10)$ to it．Finally，the 〈ESC〉＂ 2 ＂in line 60 resets the line spacing to 6 lines per inch．This is a shortcut that is the same as 〈ESC〉＂A＂CHR\＄（12）．

You may wonder why they picked $1 / 72$ of an inch as the incre－ ment for the line spacing command．There＇s a good reason：the dots that the printer makes are 1／72 inch apart．So this means that you can vary the line spacing in increments as fine as one dot－ unless you want finer spacing，like one half dot spacing．

The 〈ESC〉＂ 3 ＂CHR $\$(n)$ command sets the line spacing in
increments of $1 / 144$ inch．Change line 30 in your program so it is like this：

```
3\emptyset LPRINT CHR$(27) "3" CHR$(I);
```

and run the program again．Now the results will look like this：

The program works just the same as before，but the line spac－ ings are just half what they were．This is because 〈ESC〉＂ 3 ＂ CHR\＄（n）sets the line spacing to $n / 144$ inch．

Here are all the line spacing commands，including several ＂shortcut＂commands for commonly used line spacings．

Table 4－1
Line spacing commands

Function	Control code
Set line spacing to $n / 72$ inch	$\langle E S C\rangle$＂A＂CHR\＄（n）
Set line spacing to $n / 144$ inch	$\langle E S C\rangle$＂ 3 ＂CHR\＄（n）
Set line spacing to $1 / 8$ inch	$\langle E S C\rangle$＂ 0 ＂
Set line spacing to $7 / 72$ inch	$\langle E S C\rangle$＂$"$
Set line spacing to $1 / 6$ inch	$\langle E S C\rangle$＂ $2 "$
One－time line feed of $n / 144$ inch	$\langle E S C\rangle$＂$J " C H R \$(n)$

Let＇s take a look at the last command in the table，which gives a one－time line feed of $n / 144$ inch．The 〈ESC〉＂J＂CHR\＄（n）com－
mand does not change the setting of the line spacing，but it does cause the printer to make one line feed of $n / 144$ inch．Try this program to see how it works：

```
NEW
1\varnothing LPRINT "LINE NUMBER 1"
2\emptyset LPRINT "LINE NUMBER 2";
30 LPRINT CHR$(27) "J" CHR$(1\emptyset\emptyset);
4\emptyset LPRINT "LINE NUMBER 3"
5\emptyset LPRINT "LINE NUMBER 4"
```

Here is what Delta will produce：

```
LINE NUMEEF: 1
LINE NUMEEF 2
LINE NUMEEF ד
LINE NUMEEF }
```

The 〈ESC〉＂J＂CHR\＄（100）in line 30 changes the line spacing to $100 / 144$ for one line only．The rest of the lines are printed with the normal line spacing．Notice that both line 20 and line 30 end with semicolons．This prevents the normal line feed from occur－ ring．

The value of n in all three commands（ $\langle E S C\rangle$＂A＂，〈ESC \rangle＂ 3 ＂， and 〈ESC〉＂ J ＂）can range from 0 to 255 ．A value of 0 means that there is no line spacing．This allows you to print multiple lines in the same position on the page．This is useful when you want to overprint graphics and text．

Moving down the page without a carriage return

So far，all the commands that move the paper also move the print head to the left margin．And normally this is what you want． Sometimes，though，you may wish to move down the page with－ out moving the printhead back to the left margin．The 〈ESC〉＂a＂ CHR\＄（n）command does just that．This command advances the
paper n lines (using whatever the current line spacing is) without moving the printhead. Change line 30 of your program so that it is like this:

30 LPRINT CHR\$(27) "a" CHR\$(3);

Now when you run the program the results will look like this:

LINE NUMBEF 1

LINE NUMEER 2

LINE NUMEER Ξ
LINE NUMEEF 4

The new line 30 moves the paper up 3 lines, but the printhead doesn't move. Therefore, line 40 prints its message starting in the column that the printhead was left in at the end of line 20.

Forms Controls

We have seen how to control the spacing between lines on a page. Delta also has commands that control the placement of printing on the page, and even adjust for different size pages.

Form feed

The simplest forms control code is the form feed. Form feed is CHR\$(12) and causes the printer to move the paper to the top of the next sheet. Try it by changing line 30 to this:

30 LPRINT CHR\$(12);

Before you run the program, turn your printer off and adjust the paper so that the top of the sheet is even with the top of the ribbon guide on the print head, then turn the printer back on. If you don't remember how to do this, review Chapter 1. When you
run the program，the results will look like this：

The form feed（CHR\＄（12））in line 30 caused the printer to move to the top of a new page before printing the last two lines．

A note to TRS－80 users：CHR\＄（12）is a problem code for the TRS－80．To send a form feed command to Delta you must add 128 to it making it CHR $\$(140)$ ．Use CHR $\$(140)$ where we use CHR\＄（12）in these programs．

Changing the Page Length

You may have some computer forms that you wish to use with Delta that are not 11 inches high．That＇s no problem，because you can tell Delta how high the forms are that you are using．There are two commands for doing this，shown in this table：

Table 4－2
Form length commands

Function	Control code
Set the page length to n lines	〈ESC〉＂C＂CHR\＄（n）
Set the page length to n inches	＜ESC〉＂C＂CHR\＄（0）CHR\＄（n）

Let's set up a 7 inch high form length, which is typical of many computer checks. The following program will do it.

```
NEW
10 LPRINT CHR$(27) "C" CHR$(\varnothing) CHR$(7);
2\emptyset LPRINT "PAY TO THE ORDER OF:"
30 LPRINT CHR$(12);
4\emptyset LPRINT "PAY TO THE ORDER OF:"
```

This program should print "PAY TO THE ORDER OF:" twice, and they should be 7 inches apart. Line 10 sets the form length to 7 inches. After line 20 prints, line 30 sends a form feed to advance the paper to the top of the next form. Line 40 then prints its message.

After you have run this program, turn off the printer and adjust the top of form position. When you turn the printer back on the page length will be reset to its normal setting (usually 11 inches).

Top and Bottom Margins

Many programs that use a printer don't keep track of where they are printing on the page. This causes a problem when you get to the bottom of a page because these programs just keep on printing, right over the perforation. This makes it very hard to read, especially if a line happens to fall right on the perforation. And if you separate the pages then you are really in trouble.

Of course Delta has a solution to this predicament. Delta can keep track of the position on the page, and advance the paper so that you won't print too near the perforation. There are two commands to do this. One controls the space at the top of the page and the other controls the space at the bottom of the page. The control codes are given in the following table.

Table 4-3
Top and bottom margin commands

Function	Control code
Set top margin	\langle ESC "R" CHR\$(n)
Set bottom margin	\langle ESC "N" CHR\$(n)
Clear top and bottom margins	$\langle E S C\rangle$ "O"

In both cases the value of n tells Delta how many lines to skip， although there is a slight difference in the usage．When you set the top margin with 〈ESC〉＂R＂CHR\＄（n），the value of n tells Delta what line to start printing on．When you set the bottom margin with 〈ESC〉＂N＂CHR\＄（n），the value of n tells Delta how many blank lines should be left at the bottom of the page．

Let＇s try a simple application to see how these margins work． Enter this program，which will print 150 lines without top and bottom margins．

```
NEW
30 FOR I = 1 TO 150
4 0 \text { LPRINT "THIS IS LINE "; I}
50 NEXT
7\emptyset LPRINT CHR$(12);
```

When you run this program it will print 150 lines right down the page and across the perforations．When it＇s done line 70 sends a form feed to advance the paper to the top of the next page．Look at the lines that have printed near the perforations．Separate the sheets and see if any of the lines have been torn in half．These are the problems that the top and bottom margins will solve．

Now add the following lines to your program．（Don＇t forget the semicolons or you won＇t get quite the same results that we did．）

```
10 LPRINT CHR$(27) "N" CHR$(6);
2\emptyset LPRINT CHR$(27) "R" CHR$(6);
60 LPRINT CHR$(27) "O";
```

Now when you run the program Delta will skip the first six lines and the last six lines on each page（except for the first page， where Delta started printing at the top）．That＇s because the top margin only works after a form feed，and we didn＇t send Delta a form feed after we set the top margin．

Line 10 sets the top margin，line 20 sets the bottom margin， and line 60 clears both margins when we are done．

Summary

Control code
CHR\＄（10）
CHR\＄（13）
〈ESC＞＂A＂CHR\＄（n）
〈ESC〉＂ 3 ＂CHR\＄（n）
〈ESC〉＂ 0 ＂
〈ESC〉＂ 1 ＂
〈ESC〉＂ 2 ＂
〈ESC〉＂ l ＂CHR\＄（n）
〈ESC〉＂a＂CHR\＄（n）

Function
Line feed
Carriage return
Set line spacing to $\mathrm{n} / 72$ inch
Set line spacing to $\mathrm{n} / 144$ inch
Set line spacing to $1 / 8$ inch
Set line spacing to 7／72 inch
Set line spacing to $1 / 6$ inch
One－time line feed of $n / 144$ inch
Advance the paper n lines

CHR\＄（12）	Form feed
〈ESC〉＂C＂CHR\＄（n）	Set page length to n lines
〈ESC〉＂C＂CHR\＄（0）CHR\＄（n）	Set page length to n inches
〈ESC＞＂R＂CHR\＄（n）	Set top margin；start printing on line n
〈ESC〉＂N＂CHR\＄（n）	Set bottom margin；leave n lines blank
〈ESC〉＂O＂	Clear top and bottom margins

Chapter 5

Formatting Your Output

You have probably used the tab and margin features on a typewriter. They make it easier to format the text on a page. Delta also has tabs and margins that you can set. But it goes beyond the capabilities of a typewriter because besides having tabs that go across the page, called horizontal tabs, Delta has vertical tabs that go down the page. In this chapter we will discover how to use the tabs and margins on Delta.

When you turn Delta on there are horizontal tabs set automatically every ten spaces. If you start counting at column 1 they are at columns $10,20,30,40$, etc. It's easy to use these tabs; you just send a CHR\$(9) to Delta and the print head will move to the next tab position. CHR\$(9) is the ASCII code $\langle\mathrm{HT}\rangle$ for horizontal tab.

Try this one line program to demonstrate the use of the default horizontal tabs.

```
NEW
2\emptyset LPRINT "ONE" CHR$(9) "TWO" CHR$(9) "THREE"
    CHR$(9) "FOUR"
```

Here's what will print:
DNE TWO THREE FOUR

Even though the words are different lengths, they are spaced out evenly by the horizontal tabs.

CHR\$(9) is a problem with some computers. Some BASICs convert CHR\$(9) to a group of spaces that act like a sort of pseudotab. This is fine if the computer and the printer have the same tab settings, but it doesn't allow us to use our own tab settings on Delta. We can "outsmart" these computers by adding 128 to the ASCII value that we use. Instead of using CHR\$(9), use CHR\$(137) for a tab command. Even this trick won't work for Apple II computers, for they use CHR\$(9) for something else entirely. Apple users can get some help in Appendix C.

Now add the following line to your program to set different horizontal tabs.

```
1\varnothing LPRINT CHR$(27) "D" CHR$(8) CHR$(16) CHR$(24)
    CHR$( }\varnothing\mathrm{ )
```

〈ESC〉 "D" is the command to begin setting horizontal tabs. It must be followed by characters representing the positions that you want the tabs set. In our program we are setting tabs in columns 8,16 , and 24 . The CHR $\$(0)$ at the end ends the string of tabs. In fact, any character that is not greater than the previous one will stop setting tabs. This means that you must put all your tab values in order, from least to greatest, or they won't all get set. (It also means that a CHR $\$(1)$ is just as good as a $\operatorname{CHR} \$(0)$ for ending a group of tabs; some computers have trouble sending CHR\$(0).)

When you run the program now it produces this:

ONE TWQ THFEE FOUF:

The words are now closer together, but still evenly spaced. Turn your printer off and on again to reset the default tabs.

If you set tabs in one pitch, such as pica, and then change the pitch, say to elite, the tab settings will also change. If, for example, the tabs are set every eight spaces, when you change pitch they will still be set every eight spaces, but the spaces will be a different width.

A one-shot tab command

Suppose you need to move to a position across the page, but you only need to do it once. It doesn't make much sense to set up a tab to use only one time. There must be an easier way-and of course there is.

The solution is called a one-time tab and is 〈ESC〉 "b" CHR $\$(n)$. This command moves the print head n columns to the right. It has the same effect as sending n spaces to the printer.

Setting Left and Right Margins

Delta's left and right margins work just like a typewriteronce they are set all the printing is done between them. The commands to set the margins are given in the following table:

> Table 5-1
> Left and right margin commands

Function	Control code
Set left margin at column n	$\langle E S C\rangle$ "M" CHR\$(n)
Set right margin at column n	\langle ESC "Q" CHR\$(n)

Try setting Delta's margins with this program:

NEW
$1 \varnothing$ GOSUB $1 \varnothing \emptyset$
$2 \emptyset$ LPRINT CHR\$(27) "M" CHR\$(1 \varnothing);

```
30 LPRINT CHR$(27) "Q" CHR$(70)
40 GOSUB 1ø\varnothing
5\emptyset END
10\emptyset FOR I = 1 TO 8\emptyset
11\varnothing LPRINT "X";
12\emptyset NEXT I
130 LPRINT
14\emptyset RETURN
```

The first thing that this program does is to branch to the subroutine that starts in line 100 . This subroutine prints 80 X 's in a row. The first time that the subroutine is used, all the X's fit in one line. Then line 20 sets the left margin to 10 , and line 30 sets the right margin to 70 . Once again the subroutine is used, but this time the X's won't all fit on one line since there is now only room for 61 characters between the margins. (There's room for 61 (instead of 60) characters because you can print in both the first and last column that you name.)

Run the program. The results will look like this:

When you want to reset the margins to the default values, you have two choices. You can either turn the printer off and back on, or you can set margin values equal to the default values. This means that you should set a left margin of 1 and a right margin of 80 on Delta-10 or 136 on Delta-15.

If you change the pitch of your printing after you set your margins, the margins will not change. They stay at the same place on the page. So if you set the margins to give you 65 columns of printing when you are using pica type, and then you change to elite type you will have room for more than 65 columns of elite printing between the margins.

Using Vertical Tabs

Vertical tabs have the same kinds of uses that horizontal tabs do-they just work in the other direction. Horizontal tabs allow you to reach a specific column on the page no matter where you start from. Vertical tabs are the same. If you have a vertical tab set
at line 20，a 〈VT〉（or vertical tab）will move you to line 20 whether you start from line 5 or line 19.

The default vertical tab settings are every six lines．If you send a CHR\＄（11），which is the ASCII code for 〈VT〉，before we have set up tabs it will advance the paper to one of these preset tabs．Enter this program to see how this works．

```
NEW
20 LPRINT CHR$(11) "FIRST TAB"
30 LPRINT CHR$(11) "SECOND TAB"
4\emptyset LPRINT CHR$(11) "THIRD TAB"
5\emptyset LPRINT CHR$(11) "FOURTH TAB"
```

The CHR $\$(11)$ in each line advances the paper to the next vertical tab．The lines should be spaced evenly，six lines apart．

Now let＇s set some vertical tabs of our own．Add this line to the program：

```
1\emptyset LPRINT CHR$(27) "P" CHR$(1\emptyset) CHR$(2\emptyset) CHR$(4\emptyset)
    CHR$(5\emptyset) CHR$(\varnothing);
```

〈ESC〉＂ P ＂is the command to set vertical tabs．Like the hori－ zontal tab setting command，tab positions must be defincd in ascending order．Our example sets vertical tabs at lines 10，20， 40 and 50 ．Then the CHR\＄（11）in each of the following lines advances the paper to the next vertical tab．Figure 5－1 is what you get．

Add one more line to the program to demonstrate one more feature of vertical tabs．

60 LPRINT CHR $\$(11)$＂FIFTH TAB＂

Now when you run the program the first page looks just like before，but line 60 sends one more 〈VT〉 than there are tabs．This doesn＇t confuse Delta－it advances the paper to the next tab posi－ tion which happens to be the first tab position on the next page． That＇s nice，isn＇t it？

Figure 5－1．

A one－shot vertical tab command

There＇s a one－time vertical tab command that works just like the one－time horizontal tab command．It is 〈ESC〉＂a＂CHR\＄（n）， and it causes the paper to advance n lines．It doesn＇t change the settings of the vertical tabs．

Summary

Control code

Function

CHR\＄（9）
Horizontal tab
〈ESC〉＂D＂n1 n2 n3 ．．CHR\＄（0）Set horizontal tabs
〈ESC〉＂b＂n
〈ESC〉＂M＂n
One－time horizontal tab of n spaces

〈ESC＞＂N＂n
CHR\＄（11）
Set left margin

〈ESC〉＂P＂n1 n2 n3 ．．．CHR\＄（0）Set vertical tabs
〈ESC〉＂a＂$n \quad$ One－time vertical tab of n lines

Chapter 6

Special Features of

 the Delta PrinterIn the previous chapters we have learned about several groups of control codes. In this chapter we will look at more control codes. These codes don't fit neatly into any of the groupings that we have studied, but they add a lot of capability to Delta. So here goes.

Now hear this

You may have heard Delta's bell if you have ever run out of paper. And you may have wondered why it's called a bell when it beeps instead of ringing! It's a long story that goes back to the early
days of computers，when teletype machines were used for com－ puter terminals．These mechanical marvels had a bell in them that could be heard for blocks．This bell was used to signal the operator that something needed attention．The code that the computer sent to the teletype machine to ring the bell was，reasonably enough， called a bell code．Well the name bell code is still with us，even if the bell has changed to a beeper，and a lot of people still call the beeper a bell，even if it doesn＇t sound like one．So with our trivia lesson out of the way，let＇s see how we can＂ring the bell．＂

The code to sound Delta＇s＂bell＂is CHR\＄（7），which is ASCII code 7 or $\langle\mathrm{BEL}\rangle$ ．Any time Delta receives this code it will sound the bell for a quarter of a second．This can be used to remind an operator to change the paper or to make another adjustment to the printer．

You can try this by typing：

LPRINT CHR\＄（7）；

There are two other codes that affect the bell．One disables the bell，so that Delta will ignore a CHR\＄（7），and the other turns the bell back on．All three codes that affect the bell are shown in the following table．

Table 6－1
Bell commands

Function	Control code
Sound bell	CHRS（7）
Disable bell	$\langle\mathrm{ESC}\rangle$＂Y＂CHR\＄（0）
Enable bell	$\langle\mathrm{ESC}\rangle$＂Y＂CHR\＄（1）

Initializing Delta

Up to now when we wanted to reset Delta to the power on condition we have had to either turn the printer off and then on again，or to send the specific codes that reset the particular fea－ tures．There is an easier way．The control code 〈ESC〉＂＠＂will reset all of Delta＇s features to the power on condition（as deter－ mined by the DIP switches），with two exceptions．Those excep－ tions are that 〈ESC〉＂＠＂will not erase any characters that you have stored in Delta＇s RAM memory（Chapter 7 tells you how to create your own characters），and it won＇t erase the macro if you
have one stored in Delta＇s RAM（this chapter will tell you how to create a macro）．

Putting Delta to sleep

You know how to put Delta off－line with the ON LINE button so that you can use the FF and LF buttons．Delta has another off－ line state that can be controlled from your computer．When you turn Delta off－line from your computer，Delta will ignore anything that you send it，except for the code to go on－line again．CHR\＄（19） is the code to turn Delta off－line；CHR\＄（17）returns Delta to on－line status．

Printing to the bottom of the sheet

Sometimes when you are using individual sheets of paper you may want to print near the bottom of a sheet．The paper－out detec－ tor usually stops Delta when you are about $2^{1 / 2}$ inches from the bottom of the sheet．This is to notify you if you are running out of continuous paper．

Delta has the ability to print right to the bottom of the sheet． You can disable the paper－out detector so that it doesn＇t stop the printer．This will allow you to print to the end of the sheet，and even beyond if you are not careful．The codes to control the paper－ out detector，along with the other codes that we have just learned are in the following table．

Table 6－2
Some miscellaneous commands

Function	Control code
Master reset	〈ESC〉＂＠＂
Off－line	CHR\＄（19）
On－line	CHR\＄（17）
Paper－out detector off	〈ESC）＂8＂
Paper－out detector on	（ESC）＂9＂

Unidirectional printing

Unidirectional printing is a big word that means printing in one direction only．Delta normally prints when the printhead is moving in both directions．But once in a while you may have an application where you are more concerned about how the vertical lines align than with how fast it prints．Delta lets you make this choice．The table below shows the commands for controlling how Delta prints．

Table 6-3
Printing direction

Function	Control code
Print in one direction	$\langle E S C\rangle$ "U" CHR\$(1)
Print in both directions	$\langle E S C\rangle$ "U" CHR\$(0)

Try this program to see the difference that printing in one direction makes.

```
NEW
1\emptyset LPRINT CHR$(27) "A" CHR$(7);
2\emptyset FOR I = 1 TO 1\varnothing
30 LPRINT ""
4\emptyset NEXT I
5\emptyset LPRINT : LPRINT
6\emptyset LPRINT CHR$(27) "U" CHR$(1);
7\emptyset FOR I = 1 TO 1\varnothing
8\emptyset LPRINT "!"
90 NEXT I
1\emptyset\emptyset LPRINT CHR$(12) CHR$(27) "@";
```

Here is what you will get. The top line is printed bidirectionally, and the bottom is printed unidirectionally. You will have to look hard because there isn't much difference.

Let's analyze the program. Line 10 sets the line spacing to $7 / 72$ of an inch so that the characters that we print will touch top to bottom. Lines $20-40$ print 10 vertical line characters. Then line 60 sets one-direction printing and the vertical lines are printed again. Finally line 100 sends a form feed to advance the paper to the top of a new page, and then uses the master reset to restore Delta to the power-on condition.

Backspace and delete

Backspace (CHR\$(8)) "backs up" the printhead so that you can print two characters right on top of each other. Each time Delta receives a backspace it moves the printhead one character to the left, instead of to the right. You can strike over multiple letters by sending more than one backspace code.

Delete (CHR $\$(127)$) also "backs up" one character, but then it "erases" the previous character (it's erased from Delta's buffer, not from the paper).

The following program shows how these two codes work.

```
NEW
10 LPRINT "BACKSPACE DOES NOT";
2\emptyset LPRINT CHR$(8) CHR$(8) CHR$(8);
30 LPRINT "=== WORK"
40 LPRINT "DELETE DOES NOT";
50 LPRINT CHR$(127) CHR$(127) CHR$(127);
6 0 ~ L P R I N T ~ " W O R K " ~
```

Here is what this program will print:

> BACKSFACE DOES RGF WORK DELETE DOES WORK

The backspace codes in line 20 move the printhead a total of three spaces to the left so that the first part of line 30 will overprint the word "NOT". The delete codes in line 50 "erase" the three letters in the word "NOT" so that it doesn't even print.

The seven bit dilemma

Certain computers (most notably the Apple II) don't have the capability to send eight bits on their parallel interface. They can only send seven bits. This would make it impossible for these
computers to use Delta's block graphics characters and special symbols if Star's engineers hadn't thought of a solution. (All of these characters have ASCII codes greater than 127 which means that the eighth bit must be on to use them.) The solution lies in the three control codes given in the following table.

Table 6-4
 Eighth bit controls

Function	Control code
Turn the eighth bit ON	\langle ESC \rangle " \rangle "
Turn the eighth bit OFF	\langle ESC $\rangle="$
Accept the eighth bit "as is" from the computer	\langle ESC " "\#"

Block graphics characters and special symbols

Besides the upper and lower case letters and symbols that wo are by now familiar with, Delta has a whole different set of characters that are for special uses. These characters include block graphics characters for drawing forms and graphs, and special symbols for mathematical, engineering and professional uses. The following program will print out all of the graphics characters available.

```
NEW
10 FOR J = 16\emptyset TO 255 STEP 8
2\emptyset FOR I = J TO J + 7
```

160	161	$162=-$	163
$168=0$	169	170	171
$176=\mathrm{T}$	$177=\dot{A}$	$178= \pm$	$179=$
$184=\Sigma$	$185=6$	$186={ }^{(x)}$	187
$192=\bar{A}$	193 = a	$194=5$	195
$200=t$	$201=3$	$202=E$	$203=$
$208=$	$209=A$	$210=0$	211
$216=\mathrm{u}$	$217=F$	$218=$ e	219
224	225	226	227
$232=$	$23 \pm$	$234=$	235
240	241	$242=7$	243
48	$249=-1$	250	251

Figure 6-1.

```
30 LPRINT I "= " CHR$(I) CHR$(9);
4\varnothing NEXT I : LPRINT : NEXT J
```

Figure 6-1 shows what this program will print. If your chart doesn't look like this because it has regular letters and numbers instead of the special symbols, then your computer is only using seven bits (unless you have set DIP switch 2-3 on by mistake). You can get the correct printout by changing line 30 to this:

```
30 LPRINT I "= " CHR$(27) ">" CHR$(I) CHR$(27) "="
    CHR$(9);
```

So how are all of these strange characters used? Here is a short program that demonstrates how the graphics characters can be combined to create figures. If you have a 7 -bit interface, add lines 5 and 70 shown below the main listing.

NEW
10 LPRINT CHR\$(27) "A" CHR\$(6);
$2 \emptyset$ LPRINT $\operatorname{CHR} \$(235) \operatorname{CHR} \$(231) \operatorname{CHR} \$(231) \operatorname{CHR} \(236)
30 LPRINT CHR\$(233) CHR\$(163) CHR\$(161) CHR\$(234)
$4 \varnothing$ LPRINT CHR\$(233) CHR\$(162) CHR\$(16Ø) CHR\$(234)
50 LPRINT CHR $\$(237) \mathrm{CHR} \$(232) \mathrm{CHR} \$(232) \mathrm{CHR} \(238)
$6 \emptyset$ LPRINT CHR\$(27) "2";

164	$165=4$	$100=$	167
172	$173=*$	$174=$ *	$175=0$
$180=:$	$181=*$	$182=5$	$183=3$
$188= \pm$	$189=J$	$190=x$	$191=\div$
$196=$ 플	$197=H$	198	199
$204=4$	$205=7$	$206=5$	$207=11$
$212=4$	$21-\mathrm{H}$	$214=$ a	$215=6$
$220=4$	$221=0$	$222=\square_{1}$	22.5
228	$229={ }^{\text {m }}$	$2 \mathrm{O}={ }^{\mathbf{1}}$	2 S 1
$2 \mathrm{Sb}=$ "	$237=4$	$238=$	$239=$ \#
$244=$	$245=$	246	$247=$
52 = -	$25=$ -	254	25

If you have a 7 －bit interface，add the following lines to the program given above．

```
5 LPRINT CHR$(27) ">";
7\emptyset LPRINT CHR$(27) "=";
```

In this program line 10 sets the line spacing to 6 dots which is the height of the graphics characters．Then lines $20-50$ print the figure，and line 60 resets the line spacing to $1 / 6$ inch．Here is what this program prints：

International character sets

Delta is a multi－lingual printer for it can speak in eight lan－ guages！Delta changes languages by changing 11 characters that are different for the different languages．These sets of characters are called international character sets．The control codes to select the international character sets are given in the following table．

Table 6－5
International character set commands

Country	Control code
U．S．A．	〈ESC〉＂7＂CHR\＄（0）
England	〈ESC〉＂7＂CHR\＄（1）
Germany	〈ESC〉＂7＂CHR\＄（2）
Denmark	〈ESC〉＂7＂CHR\＄（3）
France	〈ESC）＂7＂CHR\＄（4）
Sweden	〈ESC〉＂7＂CHR\＄（5）
Italy	〈ESC〉＂7＂CHR\＄（6）
Spain	〈ESC〉＂7＂CHR\＄（7）

The characters that change are shown in Table 6－6．

The macro control code

The last of our group of miscellaneous control codes is defini－ tely not the least．It is a user－defined control code，called a macro

Table 6-6
 International character sets

Country	35	64	91	92	93	94	96	123	124	125	126
U.S.A.	\#	@	[1]	\wedge	,	\{	;	\}	\sim
England	£	@	[1]	\wedge	,	\{	;	\}	\sim
Germany	\#	§	Ä	Ö	Ü	\wedge	,	ä	ö	ü	β
Denmark	\#	(1)	F.	Φ	\AA	\wedge	,	æ	\varnothing	á	\sim
France	£	à	-	c	§	\wedge	.	é	ù	è	.
Sweden	\#	É	$\ddot{\text { Ä }}$	\ddot{O}	A	Ü	é	ä	ö	å	ü
Italy	\#	§	-	Ç	é	\wedge	ù	à	ò	è	ì
Spain	\#	@	1	$\overline{\mathrm{N}}$	¿	\wedge	,	.	ñ	,	\sim

control code. The term macro is from the jargonese macro-instruction which refers to an instruction that "calls," or uses a group of normal instructions. In computer programming macro-instructions (which are similar to subroutines) save programmers a lot of time and effort. Delta's macro can save you a lot of time and effort also.

Here is how Delta's macro works. You define your macro by telling Delta what normal control codes are to be included in the macro. Then you can use the macro any time that you want and Delta will do all the things that you included in the macro definition. You can include up to 16 codes in a single macro. You can even use the macro to store a frequently used word or phrase. There are two control codes for the macro: one to define it, and one to use it. They are given in the table below.

Table 6-7
Macro instruction commands

Function	Control code
Define macro	\langle ESC $\rangle+" \ldots$ codes you include . . CHR\$(30)
Use macro	\langle ESC \rangle "!"

To see how this works we can build a macro that will reset the printing style to normal, no matter what style it may be to start with. The following program will define a macro to do this.

As the comments in the program listing show this will define a macro that will reset all the print style functions. Delta will remember this macro until the power is turned off or until a new macro is defined. A macro can hold up to 16 bytes (characters) of information. The one that we defined contains fifteen.

Now that you have defined a macro, let's see how to use it. This program will print one line using several printing style features. Then it "calls" the macro in line 50 . When line 60 prints the style is "plain vanilla" because the macro has reset it.

```
10 LPRINT CHR$(27) "4"; ' ITALIC
2\emptyset LPRINT CHR$(27) "G"; ' DOUBLE-STRIKE
30 LPRINT CHR$(27) "W" CHR$(1); ' EXPANDED
40 LPRINT "TESTING ONE, TWO, THREE"
50 LPRINT CHR$(27) "!"; ' USE THE MACRO
60 LPRINT "TESTING FOUR, FIVE, SIX"
```

TESTING ONE TMO THREE TESTING FOUF, FIVE, SIX

In this chapter we have learned many different commands that have many different uses. In the next chapter we will make up for this diversity-the whole chapter only covers three commands! But they are some of the most powerful that Delta offers. They give you the ability to create your own characters.

Summary

Control code	Function
CHR\＄（7）	Bell
〈ESC〉＂Y＂CHR\＄（0）	Disable bell
〈ESC〉＂Y＂CHR\＄（1）	Enable bell
〈ESC〉＂＠＂	Reset
CHR\＄（19）	Off－line
CHRS（17）	On－line
〈ESC＞＂ 8 ＂	Paper－out detector off
〈ESC〉＂9＂	Paper－out detector on
〈ESC〉＂U＇CHR\＄（1）	Unidirectional printing
〈ESC〉＇U＂CHR\＄（0）	Bidirectional printing
CHR\＄（8）	Backspace
CHR\＄（127）	Delete
〈ESC〉＂〉＂	Eighth bit on
〈ESC〉＂＝＂	Eighth bit off
〈ESC〉＂\＃＂	Eighth bit as－is
〈ESC〉＂ 7 ＂n	Select international character set
〈ESC〉＂＋＂．．CHR\＄（30）	Define macro
〈ESC〉＂！＂	Use macro

Chapter 7

Creating Your Own Characters

In the previous four chapters of this manual you've learned how to control the Delta printer to give you dozens of different typefaces. By using various combinations of pitches, character weights, and font selections, you can create nearly any effect you want to in text. And with international character sets and the special text and graphics characters described in Chapter 6, you can print almost any character you can think of.

But if "almost any character" isn't good enough for you, then it's a good thing you have a Delta printer! With it you can actually create your own characters. As you'll see in this chapter, download characters can be used to print a logo, special characters for foreign languages, scientific and professional applications, or any other specific printing task.

Dot Matrix Printing

In order to create download characters, you'll need some understanding of how dot matrix printers work. They're called "dot matrix" because each character is made up of a group of dots. Look closely at some printed characters produced by your Delta and you will see the dots. Figure 7-1 shows how the letter " A " is formed by printing 17 dots.

Figure 7-1. The letter " A " is created by printing 17 dots.

The printhead in Delta consists of nine thin wires stacked one atop the other. Figure 7-2 shows an enlarged schematic view of the front of the printhcad, showing the ends of the wires and their relationship to the printed characters. As you can see, the capital letters use the top seven wires of the printhead, and the descenders (such as the lower case " g " shown) use the bottom seven pins. As the printhead moves across the page (in either directionthat's what is meant by bi-directional printing) it prints one column of dots at a time. Each time a dot is supposed to print an electromagnet inside the printhead causes the appropriate wire to strike the ribbon (making Delta an impact printer).

The Print Matrix

All of the standard characters that Delta prints are formed from patterns of dots that are permanently stored in the printer's ROM (read-only memory). This includes all of the standard ASCII characters, the block graphics and special characters, the international character sets, and the italic characters.

But there is another area of memory in Delta reserved for

Figure 7-2. As the printhead moves across the page, each of the wires prints one row of dots.
user-defined characters. These are characters that you design and download into Delta. When download characters are defined they are stored in RAM (random access memory), which allows you to define or modify them at any time.

Each of these characters, whether it is from the standard character ROM or in download RAM, is constructed on a grid which is six "boxes" wide by nine "boxes" high. The dots used to print a character can be inside any of the boxes. In addition, a dot can straddle any of the vertical lines. As an example, take a look at the enlarged " 9 " superimposed on the grid in Figure 7-3. As you can sec, some dots are inside the boxes, and some are centered on the vertical lines. This, in effect, makes the character grid 11 dots wide by 9 dots high. To see how the rest of the characters in the standard character ROM are constructed, take a look at Appendix J.

Figure 7-3. Dots can be inside boxes or straddle the vertical lines of the grid.

Defining Your Own Characters

You've seen how the engineers at Star designed their characters by using a grid to lay out the dots. Now you can define characters exactly the same way. Make up some grids (photocopy Figure 7-4 if you wish) and get ready to be creative! (Just in case you are not feeling creative, and to make our explanations a little clearer, we'll be using a heart as an example of a download character. You can see how we've laid it out in Figure 7-5. You'll find this especially useful if you've always wanted to write a bridge column like Charles Goren.)

Figure 7-4. Use this grid (or one similar to it) to define your own characters.

You'll notice that Figure 7-4 includes a lot of information around the grid. Don't be intimidated; we'll explain each item as we come to it in our discussion of defining and actually printing download characters. You may have noticed another difference between this grid and the one shown in Figure 7-3: it's only seven boxes high. Which leads us to. . .

Rule 1: Download characters are seven dots high

As you noticed in Figure 7-2, capital letters, most lowercase
letters, and most special characters use only the top seven pins of the printhead. This is also the standard for download characters, so our grid is only seven dots high.

It's also possible to use the bottom seven pins, just as the " g ", " p ", " q ", and " y " of the standard character sets do. These are called descenders (because the bottom of the character descends below the baseline of the rest of the characters).

One bit in the download character definition command is used to tell Delta whether a character is to be treated as a descender or not. We'll get to the command in due time. For now, if your character uses the top seven dots, write in a zero next to the word "Descender" on the layout grid; if it uses the bottom seven dots, write in a one. In our example, we'll want the bottom of the heart to line up with the baseline of the other characters, so it will not be a descender. As shown in Figure 7-5, we've written in a " 0 " on our grid.

Figure 7-5. We've designed a character and decided that it would not be a descender, hence the " 0 " written in.

Rule 2: Dots cannot overlap

As you can see in Figure 7-5 our heart will print fairly solid. But, you may ask, why not make it really solid and print all the intermediate dots, as shown in Figure 7-6? Because the dots that straddle the vertical lines in the grid actually overlap those inside
the boxes. If we tried to print overlapping dots, Delta's print head would have to slow down and back up to print both dots-not very efficient! To avoid this inefficiency, Delta will not allow you to define a character like Figure 7-6. (Actually, you can define it, but when it prints, Delta will leave out the overlapping dots, so that it would print like Figure 7-5.)

Figure 7-6. Dots cannot overlap; those in immediately adjacent "half columns" will be ignored when the character is printed.

Add up each column of dots

Now it's time to give our creative side a break and get down to some basic arithmetic. That's where the numbers down the left side of the grid come in. Notice that there is a number for each row of dots and that each number is twice the previous number. By making these numbers powers of two we can take any combination of dots in a vertical column and assign them a unique value. Some examples will make this clearer. As shown in Figure 7-7, if we add the numbers for the dots that print in a column, the sum will be a number in the range of 0 to 127. Each number from 0-127 represents a unique combination of dots.

So add up the values of the dots in each column using this system. This way it takes one number to describe each column of dots. In Figure 7-8 we've shown our grid with the sums of the columns filled in across the bottom (see if these agree with your

1		- - 1	- - 1
2	- - 2	- - 2	- - 2
4		- - 4	- - 4
8	- - 8		- - 8
16			- - 16
32	- - 32		- - 32
64		- - 64	- - 64
Sum	42	71	127

Figure 7-7. By adding the values of each dot in a column, you'll gel a unique description for any combination of dots.
answers!). Across the top of the grid you've probably noticed the cryptic labeling of each column: m1, m2, m3, etc. These labels correspond to the labels in the command syntax statement, which we'll get to shortly.

Figure 7-8. Add the values of the dots in each column and write the sum of each column at the bottom.

Assigning a value to your character

We've done a pretty thorough job of designing and describing a user-defined character. But the Delta has room for 189 download characters-how does it know which user-defined character we want to print? Exactly the same way it knows which standard character we want to print: every character is assigned a unique number.

The standard characters are assigned the ASCII codes-numbers from 0 to 255 . For the download character sets there are two banks of characters that can be defined: values from 33 to 126 and 160 to 254. This means that once a character is defined and assigned a value (and the download character set is selected), you can use that character on the printer the same way you would any standard character. You can send the character with the same ASCII value (for instance, if you had assigned your character a code of 66 , it would print each time you sent a character " B " to the printer). You can also access the character from a BASIC program with the CHR\$ function-in this case LPRINT CHRS(66) would print the character.

Except for the limitation that download characters must be assigned values in the range of 33 to 126 or 160 to 254 , there are no rules or restrictions on the use of numbers. This means you can use whatever is most convenient for you-perhaps seldom-used keys can be replaced by more useful characters. In our example, we'll assign the heart a value of 72 , which is the ASCII value for the letter " H ". This way, when we want to print a heart, all we have to do is send the printer an " H "-that's easy to remember!

We could hardly write bridge columns with just a heart, so in Figure 7-9 we've made completed grids for all four card suits. In order to make them easy to use, we've assigned the club a value of 67 (the ASCII value for "C"), the diamond is 68 (" D "), and the spade is 83 (" S "). The information on the grids is now completc (except for proportional width data-a more advanced topic we'll take up shortly).

Download character definition command

You've read through a long explanation of download characters and we haven't even told you the command syntax yet! Now the wait is over. This is the most complex command in the Delta repertoire and now you've got the necessary knowledge to implement it. Here it is:

Figure 7-9. Character designs for the four card suits.
Like the other Delta commands, it starts with an 〈ESC〉 (CHR\$(27)). The next character is an asterisk (*), which is CHR\$(42), followed by a CHR\$(1).
$n 1$ is the value we assign to the character-in the case of the heart it is CHR\$(72).
n 2 is called the attribute byte, for it describes two attributes of the character we have designed: descender data and proportional width information. A byte consists of eight bits. In the attribute byte, the first three (high order) bits are unused, the fourth bit is used for the descender data, and the last four bits are used for proportional widths. We'll be discussing proportional character widths in detail later in this chapter; for now, we'll leave it at 11. The descender data was discussed earlier: to use the top seven pins, this bit should be 0 ; to use the bottom seven pins this bit should be 1. Figure $7-10$ shows the bits of the attribute byte as we'll use them for our heart character. Since the descender data is 0 , the value of the byte is equal to the value of the proportional data11. By now you've probably seen an easier way to determine the value of the attribute byte. Instead of translating everything to binary, merely assign the descender data a value of 16 (the value of the fourth bit) if you want descenders, or 0 if you don't want descenders. Then just add the descender data to the proportional width. This way, it's simply a matter of adding two decimal numbers. (In our case, it's $0+11=11$.)

Figure 7-10. The attribute byte (n2) for our heart character.

You'll probably recognize m1. . .m11 from the top of our layout grid. That's right, each column is described by one byte. Now we've got everything we need to download one character to the printer. The complete command for our heart character is shown in Figure 7-11.

```
CHR$(27)CHR$(42) CHR$(1) CHR$(72)CHR$(11) CHR$(4)
    Escape * 1 n n
CHR$(10) CHR$(20) CHR$(10) CHR$(52) CHR$(72)
    m
CHR$(52) CHR$(10) CHR$(20) CHR$(10) CHR$(4)
    m
```

Figure 7-11. This is the complete command to send our heart character to the Delta printer.

Now let's send the information to the printer. The following program will send the character definitions for all four characters to the printer. Enter the program and run it.

```
10 FOR I=1 TO 4
2\emptyset LPRINT CHR$(27) "*" CHR$(1);
30 READ N1,N2
40 LPRINT CHR$(N1) CHR$(N2);
50 FOR M=1 TO 11
60 READ M1
70 LPRINT CHR$(M1);
80 NEXT M
9 0 ~ N E X T
```

$1 \emptyset \emptyset$ LPRINT
$11 \emptyset$ DATA $72,11,4,1 \emptyset, 2 \emptyset, 1 \emptyset, 52,72,52,1 \emptyset, 2 \emptyset, 1 \emptyset, 4$
$12 \emptyset$ DATA $83,11,16,8,2 \emptyset, 8,86,41,86,8,2 \emptyset, 8,16$
$13 \emptyset$ DATA $67,11,8,16,8,18,65,62,65,18,8,16,8$
$14 \emptyset$ DATA $68,11,8, \emptyset, 28, \varnothing, 62,65,62, \emptyset, 28, \emptyset, 8$

When you run this program，it looks like nothing happens． That＇s OK．We＇ll see why in just a moment．Save this program． We＇ll need it again shortly．

Printing Download Characters

You＇ve now defined and sent four characters to the Delta．But how do you know that？If you try printing those characters now （type LPRINT＂HCDS＂）you don＇t get a heart，club，diamond and spade．Instead you get．．．HCDS．That＇s because the download characters are stored in a different part of Delta＇s memory．To tell it to look in download character RAM instead of standard charac－ ter ROM it requires another command：

```
〈ESC> "$" CHR$(n)
```

This command is used to select the download character set（if $n=1$ ）or to select the standard character set（if $n=0$ ）．Let＇s try it out．Enter this command：

LPRINT CHR\＄（27）＂\＄＂CHR\＄（1）＂HCDS＂

Voila！It should have printed out the four characters we defined．Your printout should look like this：
（If it doesn＇t，check the last program we ran for errors，then re－ run it．）

Let＇s find out if there are any other characters in the download RAM．Try this program：

```
10 LPRINT CHR$(27) CHR$(36) CHR$(1)
2\emptyset FOR I=33 TO 126 : LPRINT CHR$(I); : NEXT I
30 FOR I=160 TO 254 : LPRINT CHR$(I); : NEXT I
4 0 \text { LPRINT}
50 LPRINT CHR$(27) CHR$(36) CHR$(0)
```

Nope！Just four characters in the download set．This is incon－ venient for a couple of reasons．First，every time you wanted to use a download character you would have to switch back and forth between character sets．Knowing that you wouldn＇t want to do that，Delta won＇t even allow it．Standard characters and download characters cannot be mixed in a line．If you want to use download characters，the command should appear at the begin－ ning of the line．All subsequent characters（even on following lines）are printed with the download set until you return to the standard characters with an $\langle E S C\rangle$＂$\$$＂CHR\＄（0）．（Note that the〈ESC〉＂\＄＂CHR\＄（1）command can be in the middle of a line，and that entire line will be printed with the download characters．Like－ wise，if you select the standard character set anywhere in a line， the entire line will be printed with the standard characters．Con－ flicting commands within a line can cause unpredictable results．）

So does that mean that in order to print something meaning－ ful with our card suits we have to define an entire alphabet？Fear not．The engineers at Star have made it an easy task to use mostly standard characters with just a few special characters thrown in． This command copies all the characters from the standard char－ acter ROM into download RAM：

〈ESC〉＂＊＂CHR\＄（ø）

Since it will copy all characters into the download area，it will wipe out any characters that are already there．So it＇s important to send this command to the printer before you send any download characters you want to define．With that in mind，add this line to the program we used to send the characters to Delta：

5 LPRINT CHR\＄（27）＂＊＂CHR\＄（ \varnothing ）

Now try the download printout test program again．Your results should look like Figure 7－12．You probably noticed that our
printout test includes the characters with ASCII values from 160 to 254 , but nothing prints. The 〈ESC〉 "*" CHR\$(0) command copies only the standard ASCII characters (those in the range of 33 to 126) to download RAM; it does not copy any block graphics characters.
 I JKLMNOFOF\&TUUWXYZ[\]*_zacdefghi jkimnop qrstuv*

Figure 7-12. Printout of the download character set, into which all the standard characters have been copied, and the C, D, H, and S have been changed.

To demonstrate how to use these characters, let's use this character set to print a typical bridge hand. This program will do just that:

$1 \varnothing$ 'Program to deal bridge hands and print on Delta
$2 \emptyset$ GOSUB $1 \varnothing \emptyset \emptyset$ 'Initialize variables
$3 \varnothing$ GOSUB 2øø 2 'Initialize printer
40 GOSUB $30 \emptyset \emptyset$ ' Deal cards
50 GOSUB $40 \emptyset$ ' Print hands
60 END
$1 \varnothing \emptyset \emptyset$ 'Initialize variables
1010 DEFINT A-Z
$102 \emptyset$ DIM $\operatorname{HAND}(4), \operatorname{DECK}(52), \operatorname{CARD}$ (13), SUIT\$(3)
$\begin{gathered} 103 \emptyset \operatorname{CARD} \$(1)=" 2^{\prime \prime}: \operatorname{CARD} \$(2)=" 3^{\prime \prime}: \operatorname{CARD} \$(3)=" 4 ": \\ \operatorname{CARD} \$(4)=" 5^{\prime \prime}: \operatorname{CARD} \$(5)=" 6^{\prime \prime} \end{gathered}$
$\begin{aligned} & 105 \emptyset \operatorname{CARD} \$(1 \emptyset)=" \mathrm{J"}: \operatorname{CARD} \$(11)=" \mathrm{Q"}: \operatorname{CARD} \$(12)=" \\ & \mathrm{~K} ": \operatorname{CARD} \$(13)=" \mathrm{~A} " \end{aligned}$
$\begin{gathered} 106 \emptyset \operatorname{SUIT} \$(\varnothing)=" \mathrm{~S} ": \operatorname{SUIT} \$(1)=" H ": \operatorname{SUIT} \$(2)=" D ": \\ \operatorname{SUIT} \$(3)=" C " \end{gathered}$
1070 INPUT "Random number seed"; 1
1080 RANDOMIZE I
1090 RETURN
$20 \emptyset \emptyset$ 'Initialize printer
$2 \emptyset 1 \emptyset$ LPRINT $\operatorname{CHR} \$(27) \mathrm{CHR} \$(68) \mathrm{CHR} \$(2 \emptyset) \mathrm{CHR} \$(4 \emptyset)$
CHR $\$(\varnothing)$ 'Set tabs

$2 \not 02 \emptyset$ LPRINT CHR $\$(27)$ CHR\$(43) CHP\$(27) CHR\$(36) $\operatorname{CHR\$ }(\phi) \operatorname{CHR} \$(27) \operatorname{CHR} \$(69) \operatorname{CHR\$ (3\varnothing)} \quad$ Macro
instruction is used to select standard
characters, emphasized
$2 \emptyset 3 \varnothing$ LPRINT CHR $\$(27) \operatorname{CHR} \$(42) \operatorname{CHR} \(\varnothing)
'Load standard characters in RAM
2040 FOR I=1 TO 4
'This loop reads data for the four
$205 \emptyset$ LPRINT CHR $\$(27)$ CHR\$(42) CHR\$(1);
'card suit characters and sends it
$2 \not 06$ FOR J=1 TO 13 'to the printer
$2 \emptyset 7 \emptyset$ READ X : LPRINT CHR $\$(\mathrm{X})$;
$2 \emptyset 8 \emptyset$ NEXT J
2090 NEXT I
2100 LPRINT
2110 RETURN
$212 \emptyset$ DATA $72,11,4,1 \emptyset, 2 \emptyset, 1 \emptyset, 52,72,52,1 \emptyset, 2 \emptyset, 1 \emptyset, 4$
$213 \emptyset$ DATA $83,11,16,8,2 \emptyset, 8,86,41,86,8,2 \emptyset, 8,16$
2140 DATA $67,11,8,16,8,18,65,62,65,18,8,16,8$
$215 \emptyset$ DATA $68,11,8, \emptyset, 28, \emptyset, 62,65,62, \emptyset, 28, \emptyset, 8$
3000 'Deal cards
$301 \varnothing$ FOR CARD $=1$ TO 52
$3 \not 02 \emptyset \mathrm{X}=\operatorname{INT}(\mathrm{RND} * 4+1)$
3030 IF $\operatorname{HAND}(\mathrm{X})=13$ THEN $3020 \operatorname{ELSE} \operatorname{Hand}(\mathrm{X})=\operatorname{Hand}(\mathrm{X})+1$
$304 \varnothing$ DECK (CARD) $=\mathrm{X}$
3050 NEXT CARD
3060 RETURN
$400 \varnothing$ 'Print four hands
$401 \varnothing$ LPRINT CHR\$(27) "!" CHR\$(9) "NORTH"
$402 \emptyset$ LPRINT CHR\$(27) "\$" CHR\$(1) CHR\$(27) CHR\$(7Ø);
4030 HAND $=1$
$4 \varnothing 4 \varnothing$ FOR SUIT $=\emptyset$ TO 3
4050 LPRINT CHR $\$(9)$;
4060 GOSUB $430 \varnothing$
$4 \varnothing 7 \varnothing$ LPRINT
$4 \emptyset 8 \emptyset$ NEXT SUIT
$409 \varnothing$ LPRTNT CHR\$(27) "!" "WEST" CHR\$(9) CHR\$(9) "EAST"
$410 \emptyset$ LPRTNT CHR $\$(27)$ "\$" CHR\$(1) CHR\$(27) CHR\$(7ø);
$411 \varnothing$ FOR SUIT $=\emptyset$ TO 3
4120 HAND $=2$
4130 GOSUB $43 \varnothing \varnothing$
4140 LPRINT CHR\$(9) CHR\$(9);
$415 \varnothing$ HAND $=3$
$416 \emptyset$ GOSUB $43 \varnothing \varnothing$

```
4 1 7 0 ~ L P R I N T
4 1 8 \emptyset ~ N E X T ~ S U I T ~
4 1 9 0 ~ L P R I N T ~ C H R \$ ( 2 7 ) ~ " ! " ~ C H R \$ ( 9 ) ~ " S O U T H " ~
42\emptyset\emptyset LPRINT CHR$(27) "$" CHR$(1) CHR$(27) CHR$(7\emptyset);
4 2 1 0 ~ H A N D ~ = ~ 4 ~
422\emptyset FOR SUIT = \emptyset TO 3
423\emptyset LPRINT CHR$(9);
424\emptyset GOSUB 430\emptyset
4 2 5 \emptyset ~ L P R I N T
4 2 6 0 ~ N E X T ~ S U I T ~
427\emptyset LPRINT CHR$(27) "$" CHR$(\emptyset) CHR$(27) CHR$(7\emptyset)
4 2 8 \emptyset ~ R E T U R N
4290 'Print one line
430\emptyset LPRINT SUIT$(SUIT);
4310 FOR CARD = 13 TO 1 STEP -1
432\emptyset IF DECK(SUIT*13+CARD)=HAND THEN LPRINT
        CARD$(CARD);
4 3 3 0 ~ N E X T ~ C A R D ~
4 3 4 0 ~ R E T U R N
```

Note that we didn't have to re-enter the download characters, since they were already sent to the printer with the previous program. They will stay with the printer until you download new characters to replace them or turn the printer off. Even the 〈FSC.〉 "@" command, which initializes the printer, does not destroy the contents of download RAM.

Figure 7-13. The card program shuffles, deals, and prints out a bridge hand.

Table 7-1
Download character definition commands

Function	Control code
Define download character	$\langle\mathrm{ESC}\rangle$ "*" CHR\$(1) n1 n2 m1 ...m11
Copy ROM to download RAM	$\langle\mathrm{ESC}\rangle$ " $*$ " CHR\$(0)

Proportional Characters

Up until now, all the characters that your Delta has printed have been of a fixed width-either 10, 12, or 17 (or 5,6 or 8.5 in enlarged mode) characters per inch. Whichever pitch you select, all the characters are the same width. You'll notice though, that in typeset books, such as this one, each character has a slightly different width. For instance, the " i " is quite narrow, and the " W " is very wide. This is more pleasing to the eye and easier to read.

So, if you're going to go to the trouble of designing your own download characters for Delta, you might as well make them pleasing to the eye! Proportional download characters allow you to do just that. As you'll remember from our initial discussion of download character definition, part of the attribute byte is for proportional width data. We skipped over that, with the promise of describing it later. Well now is the time!

Defining proportional characters

Except for the actual width, defining characters for proportional printing is exactly the same as defining normal width download characters. Characters can range from 4 to 11 dots wide. This means that characters can be as narrow as one-third the normal width. The examples in Figure $7-14$ show characters of different widths. These characters are defined in the program that follows.

```
1\varnothing DATA 77,11,1,126,1,2,4,8,4,2,1,126,1
2\emptyset DATA 105,4,64,61,64,\emptyset,\emptyset,\emptyset,\emptyset,\emptyset,\emptyset,\emptyset,\emptyset
3\emptyset DATA 112,23,127,\emptyset,17,\emptyset,17,14,\emptyset,\emptyset,\emptyset,\emptyset,\emptyset
4\emptyset DATA 115,6,8,84,\emptyset,84,32,\emptyset,\emptyset,\emptyset,\emptyset,\emptyset,\emptyset
50 DATA -1
60 READ CHR
7\emptyset IF CHR < \emptyset THEN 15\emptyset
8\emptyset READ CODE
90 LPRINT CHR$(27) "*" CHR$(1) CHR$(CHR) CHR$(CODE) ;
```


Figure 7-14. These download characters are defined as proportional characters.

```
10\emptyset FOR I = 1 TO 11
110 READ BITS
12\emptyset LPRINT CHR$(BITS) ;
130 NEXT I
140 GOTO 60
150 LPRINT " Mississippi"
155 LPRINT
160 LPRINT "Standard characters without proportional
    spacing"
17\emptyset LPRINT
175 LPRINT
180 LPRINT CHR$(27) "$" CHR$(1) " Mississippi"
19\varnothing LPRINT CHR$(27) "$" CHR$(\emptyset)
2\emptyset\emptyset LPRINT "Download characters without proportional
    spacing"
21\emptyset LPRINT
215 LPRINT
22\emptyset LPRINT CHR$(27) "X" CHR$(1) " Mississippi"
23\varnothing LPRINT CHR$(27) "X" CHR$(\varnothing)
240 LPRINT "Download characters with proportional
    spacing"
```

One thing to remember about defining proportional charac－ ters：a character cannot be wider than the specified width．That seems obvious enough！For example，if you specify a width of 6 for a character，the seventh through eleventh columns of dots（if you specified any）will not print．You must，however，send information （even if it is 0 ）for those columns when you define a character； Delta expects eleven characters following the 〈ESC〉＂＊＂CHR\＄（1） n 1 n 2 sequence．

In most cases，the width you select should actually be one dot wider than the number of columns that the character actually occupies．This is so that there will be a space（of one dot）between characters when you print them．If you specify a width which is exactly the same as the number of columns in the character defini－ tion，the characters will touch when they print（this is sometimes desirable－for border characters or for large download characters that are more than eleven dots wide）．

Printing proportional characters

Printing with proportional download characters is much like using normal width download characters：one command is used to select the download set or the standard character set．Here＇s the command：

```
〈ESC> "X" CHR$(n)
```

If n is 1 ，then the download character set is selected，and pro－ portional widths are used．If n is 0 ，the standard character set is selected．

It should be noted that it is possible to use the same character definitions for either normal width or proportional download char－ acters（if a valid proportional width is included in the attribute byte）． The only difference is the way they are accessed：〈ESC〉＂\＄＂ CHR\＄（1）for normal width or 〈ESC〉＂X＂CHR\＄（1）for proportional width．The two commands work independently of each other，so that 〈ESC〉＂$\$$＂CHR\＄（0）will not turn off proportional download characters，and 〈ESC〉＂X＂CHR\＄（0）will not turn off normal width download characters．If you have selected both normal and propor－ tional download characters，proportional will print until you send the printer an $\langle E S C\rangle$＂ X ＂ $\mathrm{CHR} \$(0)$ ．The printer will then continue to print with normal width download characters（rather than returning to the standard character set）until you send an 〈ESC〉＂\＄＂CHR\＄（0）． This can lead to confusion if you have accidentally specified both types of download characters．

```
    Mississippi
Standard characters without proportional spacing
    Mississippi
Download characters without proportional spacing
    Mississippi
Download characters with proportional spacing
```

Figure 7－15．This printout shows the same text，printed with the same download characters，in both normal and proportional widths．

Table 7－2
Download character printing commands

Function	Control code
Normal download characters ON	\langle ESC \rangle＂$\$ "$ CHR $\$(1)$
Normal download characters OFF	〈ESC＂＂\＄＂CHR\＄（0）
Proportional download characters ON	\langle ESC \rangle＂X＂CHR\＄（1）
Proportional download characters OFF	\langle ESC \rangle＂X＂CHR\＄（0）

Connecting characters

As we noted earlier，it＇s possible to connect proportional width characters．This can be useful for creating logos or other characters which are larger than one normal character．It also makes it possible to create connecting scripts，like handwriting． The trick to this is to specify the width in the attribute byte to be exactly the same as the number of columns of dots that the charac－ ter（or partial character）occupies．And，if you change the vertical spacing to $7 / 72$＂（use the 〈ESC〉＂ 1 ＂command），you can make characters connect vertically．This allows you to make very large characters indeed！

In the program that follows，we＇ve used this technique to cre－ ate some large numbers．Each digit is actually made up of four characters－two horizontally by two vertically．This means，of course，that you must define and print four characters for each finished digit．We assigned the upper left quadrant of each digit to ASCII codes from 160 to 169，the upper right quadrant to codes 170 to 179，and so on．Figure 7－16 shows how one digit is defined， and Figure 7－17 shows the final output of our program．

Figure 7-16. Each digit is made up of four individual characters.

```
10 'Program to define and print numerals
2\emptyset 'Each numeral is made up of 4 characters (2 wide
    x 2 high)
3\emptyset DEF.DOWN.CHAR$ = CHR$(27)+CHR$(42)+CHR$(1)
4\emptyset DOWN.CHAR.PROP$ = CHR$(27) +CHR$(88)+CHR$(1)
5\emptyset NOT.DOWN.CHAR.PROP$ = CHR$(27)+CHR$(88)+CHR$(\emptyset)
60 LINE.7$ = CHR$(27)+CHR$(49) : LINE.12$ =
    CHR$(27)+CHR$(5\emptyset)
7\emptyset FOR N1 = 16\emptyset TO 2\emptyset\emptyset 14 ASCII CHARS/NUMERAL
8\emptyset LPRINT DEF.DOWN.CHAR$;
9\emptyset LPRINT CHR$(N1);
10\emptyset READ N2
11\emptyset LPRINT CHR$(N2);
12\emptyset FOR S = 1 TO 11
13\emptyset READ MS
14\emptyset LPRINT CHR$(MS);
15\emptyset NEXT S
16\emptyset NEXT N1
17\varnothing
18\emptyset ASCII = 16\emptyset 'START OF DOWN CHARACTERS
19\emptyset FOR NUM = \emptyset TO 9 'NUMERALS }\varnothing\mathrm{ THRU 9
2\emptyset\emptyset NUMERAL.TOP$(NUM) = CHR$(ASCII + \emptyset) +
    CHR$(ASCII + 1)
```

$21 \emptyset$ NUMERAL.BOT $\$($ NUM $)=\operatorname{CHR} \$(A S C I I+2)+$ CHR $\$($ ASCTT +3$)$
220 ASCII $=$ ASCII +4
230 NEXT NUM
$24 \emptyset$ BLANK $\$=\operatorname{CHR} \$(2 \emptyset \emptyset)$
$25 \emptyset$ LPRINT DOWN.CHAR.PROP\$; LINE.7\$
$26 \emptyset$ FOR NUM $=\emptyset$ TO 9
$27 \emptyset$ LPRINT NUMERAL.TOP $\$($ NUM $)$;BLANK $\$$
280 NEXT NUM
290 LPRINT
$3 \emptyset \emptyset$ FOR NUM $=\varnothing$ TO 9
$31 \emptyset$ LPRINT NUMERAL.BOT\$(NUM);BLANK\$;
$32 \emptyset$ NEXT NUM
$33 \varnothing$ LPRINT NOT.DOWN.CHAR.PROP\$; LINE.12\$
340 'ZERO
$35 \emptyset$ DATA $11, \emptyset, 96,16,1 \emptyset 4,16,44,3 \emptyset, 14, \emptyset, 2,1$
360 DATA $11,2,1,2,1,6,8,38,88,32,88,32$
$37 \emptyset$ DATA $11,3,12,19,12,51, \emptyset, 96, \emptyset, 96, \emptyset, 96$
$38 \emptyset$ DATA $11, \emptyset, 32, \emptyset, 48, \emptyset, 28,3,12,3,4,3$
390 'ONE
$4 \emptyset \emptyset$ DATA $11, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, 4, \emptyset, 4, \emptyset, 4,126$
$41 \emptyset$ DATA $9,12,114,12,114,12,2, \emptyset, \varnothing, \emptyset, \emptyset, \emptyset$
$42 \emptyset$ DATA $11,64, \emptyset, 64, \varnothing, 64, \emptyset, 64,32,8 \emptyset, 47,8 \emptyset$
$43 \emptyset$ DATA $9,47,8 \emptyset, 47,64, \emptyset, 64, \emptyset, 64, \emptyset, \emptyset, \emptyset$
$44 \varnothing$ ' TWO
$45 \emptyset$ DATA $11, \varnothing, \varnothing, \varnothing, \emptyset, \varnothing, 12,16,14, \emptyset, 6, \varnothing$
$46 \emptyset$ DATA $11,3, \varnothing, 3, \varnothing, 7 \emptyset, 56,7 \emptyset, 56,4,24, \varnothing$
$47 \emptyset$ DATA 11,64, $\varnothing, 64,32,64,32,8 \emptyset, 32,8 \emptyset, 4 \emptyset, 64$
$48 \emptyset$ DATA $11,44,64,38,65,34,65,32,8 \emptyset, 32,88, \emptyset$
$49 \varnothing$ ' THREE
$5 \emptyset \emptyset$ DATA $11, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, 4,2,4,2,4$
$51 \emptyset$ DATA 11,34,84,34,92,34,76,34,68,2,64, \varnothing
$52 \emptyset$ DATA $11,16, \emptyset, 48, \emptyset, 56,64,48,64,32,64,32$
$53 \emptyset$ DATA $11,64,32,64,48,9,54,9,22,9,6,1$
540 ' FOUR
$55 \emptyset$ DATA $11, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, 64,36,88,32,16$
$56 \emptyset$ DATA $11, \emptyset, \emptyset, 64,32,64,56,64,6 \emptyset, 2,12, \emptyset$
$57 \emptyset$ DATA $11, \varnothing, 8,4,1 \emptyset, 5,1 \emptyset, 5,8,4,72,4$
$58 \emptyset$ DATA $11,88,38,89,38,89,6,73,4,8,6, \emptyset$
590 ' FIVE
$6 \emptyset \emptyset$ DATA $11, \emptyset, \emptyset, \emptyset, \emptyset, 64,32,84,5 \emptyset, 76,34,68$
$61 \emptyset$ DATA $1 \emptyset, 34,68,34,68,34,68,2,68,2, \emptyset, \emptyset$
$62 \emptyset$ DATA $1 \emptyset, \emptyset, 32,24,1 \emptyset 1,24,97, \emptyset, 64, \emptyset, 64, \emptyset$

```
630 DATA 11,64,0,96,1,48,15,48,15,16,15,\emptyset
640 ' SIX
65\emptyset DATA 11,\emptyset,96,\emptyset,112,\emptyset,12\emptyset,\emptyset,92,\emptyset,1\emptyset2,\emptyset
66\emptyset DATA 11,98,\emptyset,98,\emptyset,98,\emptyset,7\emptyset,\emptyset,14,\emptyset,6
67\emptyset DATA 11,7,8,23,8,55,8,99,\emptyset,65,\emptyset,64
68\emptyset DATA 11,\emptyset,96,\emptyset,112,1,62,1,3\emptyset,1,14,\emptyset
690 ' SEVEN
7\emptyset\emptyset DATA 11,\emptyset,16,8,6,8,6,8,6,8,6,8
71\emptyset DATA 9,7\emptyset,8,1\emptyset2,8,54,8,6,\emptyset,2,\emptyset,\emptyset
72\emptyset DATA 11,\emptyset,64,\emptyset,96,\emptyset,12\emptyset,\emptyset,124,\emptyset,3\emptyset,1
73\emptyset DATA 9,6,1,\emptyset,\emptyset,\emptyset,\emptyset,\emptyset,\emptyset,\emptyset,\emptyset,\emptyset
74\varnothing ' EIGHT
75\emptyset DATA 11,\emptyset,\emptyset,\emptyset,\emptyset,24,36,24,1\emptyset2,24,1\emptyset2,\emptyset
76\emptyset DATA 11,67, },67,\emptyset,99,28,34,28,34,28,
77\emptyset DATA 11,12,18,44,19,108,19,96,1,64,\emptyset,64
78\emptyset DATA 11, },96,1,112,15,48,15,16,14,\emptyset,
790 ' NINE
8\emptyset\emptyset DATA 11,\emptyset,\emptyset,12\emptyset,4,12\emptyset,6,12\emptyset,6,\emptyset,3,\emptyset
81\emptyset DATA 11,3,\emptyset,3,\emptyset,67,4,123,4,122,4,12\emptyset
82\emptyset DATA 11,48,\emptyset,56,\emptyset,113,\emptyset,99,\emptyset,99,\emptyset,99
83\emptyset DATA 11,\emptyset,115,\emptyset,57,\emptyset,31,\emptyset,15,\emptyset,7,\emptyset
84\emptyset ' SPACE
85\emptyset DATA 11,\emptyset,\emptyset,\emptyset,\emptyset,\emptyset,\emptyset,\emptyset,\emptyset,\emptyset,\emptyset,\emptyset
```


0123456739

Figure 7-17. The output for characters like this must be carefully planned.

Mixing Print Modes with Download Characters

It's possible to get even more printing effects by combining download characters with the various print modes available with Delta. Most of the commands that you learned in Chapter 3 work with normal width download characters as well as standard characters. A few of them will work with proportional download characters as well. Table $7-3$ summarizes the various print modes and their compatibility with download characters.

Table 7-3
Mixing download characters with various print modes

	Normal width (Escape \$)	Proportional (Escape X)
Standard Characters	$*$	$*$
Italic	-	-
Pica	$*$	$*$
Elite	$*$	-
Condensed	$*$	-
Expanded	$*$	-
Double-strike	$*$	-
Emphasized	$*$	-
Underline	$*$	$*$
Super/subscript	$*$	-

A Utility Program

If you've followed along this far you've probably become pretty proficient at designing download characters. And even the addition is getting easier! But this is a good computer applica-tion-Computer Aided Design (CAD) for download characters. The program below allows you to design and edit characters on the screen. You can make changes (no erasing!) until it's the way you like it, and then the program makes the necessary calculations and sends the character to Delta.

```
10 DIM Z(8,12),MM(11)
20 CLS:GOSUB 660
30 CS$=CHR$(16)+CHR$(17):SC$=STRING$(2,219):BIT=\varnothing
40 A ==INKEY$:IF A = "" THEN 4 
50 IF A$=CHR$(27) THEN COLOR 7,\emptyset:CLS:END
```



```
7\emptyset IF A$="e" OR A$="E" THEN CLS:GOSUB 9\emptyset:GOSUB
    260:GOTO 40
80 BEEP:GOTO 4\varnothing
9\emptyset X=1:Y=1:G=1:H=1 : REM **** THIS SUBROUTINE
    DRAWS THE MATRIX ****
1\emptyset\emptyset FOR I=1 TO 11:MM(I)=\emptyset:NEXT I
11\varnothing J=2:FOR I=1\emptyset TO 2\emptyset:LOCATE 2,I+J :J=J+2:PRINT
    "M";:NEXT I
12\emptyset J=1:FOR I=1\varnothing TO 2\emptyset:LOCATE 3,I+J :J=J+2:PRINT
    I-9;:NEXT I
```

```
130 P1=1:M$=CHR$(179)+
    STRING$(2,32):N$=STRING$(2,196)+
    CHR$(197):L$=STRING$(2,196)+CHR$(193)
140 LOCATE 4,10:PRINT CHR$(218);CHR$(196);
150 FOR I=1 TO 1\emptyset:PRINT
    CHR$(196);CHR$(194);CHR$(196); :NEXT I
160 PRINT CHR$(196);CHR$(191):LOCATE 5,1\emptyset:FOR K=1 TO
    12:PRINT M$;:NEXT K:PRINT
17\varnothing FOR J=1 TO 6:LOCATE 5+P1,10:P1=P1+1:PRINT
    CHR$(195);
18\emptyset FOR K=1 TO 10:PRINT N$;:NEXT K
190 PRINT CHR$(196);CHR$(196);CHR$(18\emptyset):LOCATE
    5+P1,1\emptyset:P1=P1+1
2\emptyset\emptyset FOR K=1 TO 12:PRINT M$;:NEXT K
21\emptyset PRINT:NEXT J:LOCATE 18,1\emptyset:PRINT CHR$(192);
22\emptyset FOR I=1 TO 1\varnothing:PRINT L$;:NEXT I
23\emptyset PRINT CHR$(196);CHR$(196);CHR$(217)
24\emptyset FOR I=\emptyset TO 6:LOCATE 5+I*2,6:PRINT 2^I;:NEXT I
25\emptyset RETURN : REM **** END OF MATRIX SUBROUTINE
    ****
260 REM **** SINGIE CHARACTER INPUT @ EDIT LEVEL
    ****
27\emptyset LOCATE 5,11:PRINT CS$;:GOSUB 59\emptyset
28\emptyset A$=INKEY$:IF A$="" THEN 28\emptyset
290 B$=RIGHT$(A$,1)
30\emptyset IF B$=CHR$(75) THEN GOSUB 390:GOTO 37\emptyset
310 IF B$=CHR$(77) THEN GOSUB 410:GOTO 370
320 IF B$=CHR$(8\emptyset) THEN GOSUB 430:GOTO 37\emptyset
330 IF B$=CHR$(72) THEN GOSUB 450:GOTO 370
34\varnothing IF B$=CHR$(82) THEN GOSUB 470:GOTO 37\emptyset
350 IF B$=CHR$(83) THEN GOSUB 490:GOTO 370
36\emptyset IF B$=CHR$(79) THEN GOSUB 50\emptyset:GOTO 38\varnothing
370 GOTO 28\emptyset
38\emptyset RETURN : REM **** END OF INPUT ****
390 GOSUB 920:Y=Y-3:H=H-1:IF Y<1 THEN BEEP:Y=1:H=1
400 GOSUB 95\emptyset:RETURN
410 GOSUB 92\emptyset:Y=Y+3:H=H+1:IF Y>31 THEN
    BEEP:Y=31:H=11
42\emptyset GOSUB 950:RETURN
430 GOSUB 92\emptyset:X=X+2:G=G+1:IF X>13 THEN BEEP:X=13:G=7
440 GOSUB 950:RETURN
450 GOSUB 920:X=X-2:G=G-1:IF X<1 THEN BEEP:X=1:G=1
460 GOSUB 950:RETURN
47\emptyset IF Z(G,H-1)=1 OR Z(G,H+1)=1 THEN BEEP:RETURN
```

$48 \emptyset \mathrm{Z}(\mathrm{G}, \mathrm{H})=1:$ COLOR $31,1:$ LOCATE $\mathrm{X}+4, \mathrm{Y}+1 \emptyset:$ PRINT SC\＄；：COLOR 7，$\emptyset:$ RETURN
$49 \varnothing \mathrm{Z}(\mathrm{G}, \mathrm{H})=\varnothing$ ：COLOR 7，\varnothing ：LOCATE $\mathrm{X}+4, \mathrm{Y}+1 \varnothing$ ：PRINT
CS\＄；：COLOR 7，\varnothing ：RETURN
$5 \emptyset \emptyset$ REM＊＊＊＊GET OUT OF EDIT MODE＊＊＊＊
510 FOR I＝2 TO 10：LOCATE I，55：PRINT
STRING $\$(2 \varnothing, 32)$ ；：NEXT I
$52 \emptyset$ IF $Z(G, H)=1$ THEN LOCATE $X+4, Y+1 \varnothing: C O L O R 7, \varnothing: P R I N T$ SC\＄；：GOTO $54 \varnothing$
530 IF $Z(G, H)=\varnothing$ THEN LOCATE $X+4, Y+1 \varnothing:$ COLOR 7，$\varnothing:$ PRINT ＂＂；
$54 \emptyset$ REM＊＊＊＊PRINT THE COLUMN－VALUES＊＊＊＊ 550 FOR I＝1 TO 11：FOR J＝1 TO 7
$560 \mathrm{MM}(\mathrm{I})=\mathrm{MM}(\mathrm{I})+Z(\mathrm{~J}, \mathrm{I}) * 2^{\wedge}(\mathrm{J}-1):$ NEXT J：NEXT I
$57 \emptyset \mathrm{~J}=\varnothing$ ：FOR $\mathrm{I}=1$ TO 11：LOCATE 19，1 $1+\mathrm{J}:$ PRINT
RIGHT\＄（STR\＄（MM（I）），3）；：J＝J＋3：NEXT I
580 GOSUB $66 \emptyset$ ：RETURN
590 REM＊＊＊＊DISPLAY MENU FOR EDIT MODE＊＊＊＊
$60 \emptyset$ LOCATE 2，55：PRINT＂cursor movement＂；
610 LOCATE 4，6ø：PRINT CHR（24）；：LOCATE 5，58：PRINT
CHR\＄（27）；＂＂；
620 PRINT CHR $\$(26) ;:$ LOCATE 6，60：PRINT CHR\＄（25）
630 LOCATE 8，55：PRINT＂〈ins〉 insert＂；
640 LOCATE 9，55：PRINT＂〈del〉 delete＂；
650 LOCATE 10，55：PRINT＂〈end〉 exit edit＂；：RETURN
660 FOR $I=1$ TO 7：FOR $J=1$ TO 11：Z（I，J）＝ø：NEXT J：NEXT I
$67 \varnothing$ LOCATE 24，2：PRINT＂E）EDIT P）PRINTER 〈ESC〉 ）END＂；：RETURN
$68 \emptyset$ REM＊＊＊＊PRINT MODE＊＊＊＊
$69 \emptyset$ LOCATE 2 $2,5:$ INPUT＂NORMAL OR PROPORTIONAL（N／ P）－＞＂；AN $\$$
$7 \emptyset \emptyset$ IF AN\＄＝＂N＂THEN PR＝Ø：GOTO $75 \emptyset$
$71 \varnothing$ IF AN\＄＝＂P＂THEN GOTO $73 \varnothing$
$72 \emptyset$ BEEP：GOTO $69 \varnothing$
730 LOCATE 21，5：INPUT＂ENTER THE PROPORTIONAL DATA （4－11）－＞＂；PR
740 IF PR〈4 OR PR〉11 THEN 730
750 LOCATE 22，5：INPUT＂IF SHIFTED DOWN ENTER 1 ELSE ENTER \varnothing－＞＂；SH
$76 \varnothing$ IF SH〈 \varnothing OR SH＞1 THEN BEEP：GOTO $75 \varnothing$
$77 \varnothing$ LOCATE 23，5：INPUT＂ENTER YOUR ASCII CODE（33－126 OR 160－254）－＞＂；AS
$78 \emptyset$ IF（AS〈32 AND AS >126 ）OR（AS〈16ø AND AS〉254）
THEN $77 \varnothing$

```
\(79 \varnothing\) FOR I=2ø TO 23:LOCATE I,5:PRINT
    STRING\$(55,32);:NEXT I
\(8 \emptyset \emptyset\) IF \(\mathrm{SH}=1\) THEN SH=16 ELSE \(\mathrm{SH}=\varnothing\)
810 N1=AS:N2=PR+SH
\(82 \not\) FOR \(\mathrm{I}=1\) TO 11:MM\$=MM\$+CHR\$(MM(I)):NEXT I
830 LPRINT
    CHR\$(27);"*";CHR\$(1);CHR\$(N1);CHR\$(N2);MM\$
\(84 \emptyset\) IF AN\$="N" THEN LPRINT CHR\$(27);"\$";CHR\$(1)
    :GOTO 860
\(85 \emptyset\) LPRINT CHR\$(27);"X";CHR\$(1)
860 FOR I=1 TO 2ø:LPRINT CHR\$(N1);" ";:NEXT I:LPRINT
\(87 \varnothing\) LPRINT CHR \(\$(14) ;:\) FOR \(I=1\) TO \(1 \varnothing: L P R I N T\) CHR \((N 1) ; "\)
    ";:NEXT I:LPRINT CHR\$(2ø)
\(88 \emptyset\) LPRINT CHR\$(15);:FOR \(I=1\) TO 2ø:LPRINT CHR\$(N1);"
    ";:NEXT I:LPRINT CHRS(18)
890 IF AN \(\$=" \mathrm{~N} "\) THEN LPRINT CHR \(\$(27)\);"\$";CHR \(\$(\varnothing): G O T O\)
    \(91 \varnothing\)
\(9 \emptyset \emptyset\) LPRINT CHR\$(27);"X";CHR\$(ø)
\(91 \varnothing\) LPRINT CHR \((27) ; " @ ": M M \$=" 1: R E T U R N\) :REM **** END
    OF PRINT MODE ****
\(92 \emptyset\) IF \(Z(G, H)=\varnothing\) THEN LOCATE \(X+4, Y+1 \emptyset:\) PRINT " ";
930 IF \(Z(G, H)=1\) THEN LOCATE \(X+4, Y+1 \varnothing:\) COLOR \(7, \varnothing:\) PRINT
    SC\$;
940 RETURN
\(95 \varnothing\) IF \(Z(G, H)=1\) THEN COLOR 31,1: LOCATE
    X+4,Y+1申:PRINT CS\$;: COLOR 7, \(\varnothing\)
960 IF \(Z(G, H)=\varnothing\) THEN COLOR \(7, \varnothing\) : LOCATE
    X+4,Y+1申:PRINT CS \(\$ ;\) : COLOR \(7, \emptyset\)
\(97 \emptyset\) RETURN
```


Summary

Control code
〈ESC〉＂＊＂CHR\＄（1）n1 n2 m1 ．．．m11
Defines download character into RAM
〈ESC〉＂＊＂CHR\＄（0）Copies fonts in ROM into download RAM
〈ESC〉＂X＂CHR\＄（1）Selects the download character set and uses proportional spacing
〈ESC〉＂X＂CHR\＄（0）Cancels proportional download charac－ ter set
〈ESC〉＂\＄＂CHR\＄（1）Selects the download character set and uses normal spacing
〈ESC〉＂＂\＄＂CHR\＄（0）Cancels normal download character set

Chapter 8

Printing Dot Graphics

In Chapter 7 you were introduced to a form of computer graphics; you were able to actually define characters dot by dot. In this chapter you'll learn to use the same principles to make Delta print whole pages of dot graphics! We'll show you how to use dot graphics to create "super download characters." In addition, you'll see how your Delta printer can be used as a graphics plotter. This can have some practical business applications as well as create some terrific computer art!

Comparing Dot Graphics with Download Characters

A good understanding of dot graphics requires an understanding of how dot matrix printers work; you may want to
review the first few pages of Chapter 7. The principles for dot graphics are the same as those for download characters.

There are some differences in the way they are implemented however. While download commands can be used to define a character between four and eleven columns of dots wide, dot graphics commands can be used to define a shape as narrow as one column of dots wide or as wide as 3264 dots on a Delta-15!

There is no "descender data" with dot graphics; graphics images are always printed with the top seven or eight pins of the print head, depending on whether you have a 7 -bit or 8 -bit interface (if you're not sure which type of interface your computer has, check the appendix for your computer).

So when do you use graphics and when do you use download characters? Practically anything you can do with graphics you can do with download characters, and vice versa. A clever programmer could actually plot a mathematical curve using download characters or use strings of graphics data as userdefined characters. But why do it the hard way? There are several instances when dot graphics is clearly the best way to approach the problem:

- If the graphic image to be printed is wider than 11 dots or higher than 7 dots
- If an image is to be printed just one time, as opposed to a frequently used "text" character
- If you want higher resolution (Delta can print as many as 240 dots per inch in dot graphics mode; text mode, which includes download characters, prints 60 dots per inch)

Using the Dot Graphics Commands

The command to print normal density (60 dots per inch horizontal; $\mathbf{7 2}$ dots per inch vertical) dot graphics uses this format:

〈ESC〉 "K" n1 n2 m1 m2. . .

Just like many of the other codes you have learned, the command starts with an escape sequence ($\langle E S C\rangle$ " K " in this case). But unlike Delta's other codes there can be any number of graphics data bytes following the command. That's where n1 and n2 come in; they are used to tell Delta how many bytes of graphics data to expect.

Specifying the number of columns of dots

To figure the values of $n 1$ and $n 2$, you'll need to figure out how wide your graphic image will be (remember that there are 60 columns of dots per inch in normal density). Then comes the fun part: converting one number (the number of columns of dots) into two! Why is it necessary to use two numbers to tell Delta the number of graphics codes to expect? Because the largest number we can send in one byte (that's what the BASIC CHR\$() function sends: one byte) is 255 . And with normal density graphics it's possible to have a graphics image as wide as 480 dots on Delta-10 or 816 dots on Delta-15. So to figure out how many columns of graphics data to expect, Delta multiplies n2 by 256 and adds the value of $n 1$. If you divide the number of columns by 256 , then $n 2$ is the quotient and n 1 is the remainder (why not let your computer figure it out for you: if the number of columns is assigned to variable X , then $\mathrm{N} 1=\mathrm{X}$ MOD 256 and $\mathrm{N} 2=\mathrm{INT}(\mathrm{X} / 256)$). Table 8-1 might make things even easier.

Table 8-1
Calculating n1 and n2

If the number of columns, x, ranges from:	then n 1 is:	and n 2 is:
$\mathbf{1}$ to 255	x	0
256 to 511	$\mathrm{x}-256$	1
512 to 767	$\mathrm{x}-512$	2
768 to 1023	$x-768$	3
1024 to 1279	$x-1024$	4
1280 to 1535	$x-1280$	5
1536 to 1791	$x-1536$	6
1792 to 2047	$x-1792$	7
2048 to 2303	$x-2048$	8
2304 to 2559	$x-2304$	9
2560 to 2815	$x-2816$	10
2816 to 3071	$x-3072$	11
3072 to 3264		12

Specifying the graphics data

Now that we've told Delta data how much data to expect, we better figure out how to send that information! Just as you do with download characters, with dot graphics you have control over the firing of every single pin on Delta's print head. In Figure 8-1, you can see that we've labeled each pin on the print head with a number, as we did with download characters (you should note one
important difference: this time the top pin has the highest value; for download character definitions it is the bottom pin). And specifying pins to fire is done in the same way: to fire the second pin from the top, for instance, send a CHR $\$(64)$. Firing several pins at once is done in a similar fashion. For example, to print the first, third, and fourth dots, add their values $(128+32+16)$ to send this total: CHR\$(176).

Figure 8-1. Starting with the most significant bit at the top, each pin of the print head is assigned a value which is a power of two. Note that for 7-bit computers, the top pin has a value of 64, and the bottom two pins are unused.

A short program should demonstrate how to implement the graphics command. The program below gave us this printout:

```
1\varnothing 'PRINT GRAPHIC PATTERN
2\emptyset WIDTH "LPT1:",255
3\emptyset LPRINT CHR$(27) CHR$(75) CHR$(94) CHR$(1);
4\varnothing FOR I = 1 TO 25
5\emptyset FOR J = \emptyset TO 6
6\emptyset LPRINT CHR$(2^J);
7\emptyset NEXT J
8\emptyset FOR J = 6 TO \emptyset STEP -1
90 LPRINT CHR$(2^J);
10\emptyset NEXT J
110 NEXT I
```

```
12\emptyset WIDTH "LPT1:",8\emptyset
130 LPRINT
```

In line 30 we've selected normal density graphics and said that 350 characters of graphics data would follow ($94+(1 * 256$) $=350$). The loop between lines 40 and 110 is repeated 25 times; this is what gives us the "zigzag" effect. The loop from line 50 to line 70 creates the lines that slope up; the loop between lines 80 and 100 prints the downward sloping lines. This is an example of plotting a very simple mathematical function to create a design. Later in this chapter we'll show something more complex.

Combining text and graphics

It's also possible to mix text and graphics in one line. This can be useful for labeling charts or graphs, or even inserting fancy graphics in text. Try adding these lines to our program:

```
25 LPRINT "WOW!";
115 LPRINT "THIS IS GREAT!";
```

Now if you run the program you should get a printout that looks like this:

WOW Wras is breat!

But there is one thing to be careful of: all graphics data must print on the same line. The graphics command is turned off at the end of each line, even if you have specified that more graphics codes follow. To see what we mean, change line 25 as shown and run the program.

25 LPRINT "WOW! THE DELTA-10 IS SIMPLY AMAZING.";

WOW: THE DELTA-10 IS SIMF'LY AMAZING.
THIS IS GREAT:
(To get the same effect, Delta-15 users should change two program lines:

$$
\begin{aligned}
& 3 \emptyset \text { LPRINT CHR }(27) \operatorname{CHR} \$(75) \operatorname{CHR} \$(188) \operatorname{CHR} \$(2) ; \\
& 4 \emptyset \text { FOR } I=1 \text { TO } 5 \emptyset
\end{aligned}
$$

This will make the zigzag pattern long enough to go off the page.)

As you can see, Delta printed graphics up to the end of the line, then ignored the rest of the graphics data and returned to normal text on the next line.

Printing a Design or Logo

Since you control the firing of every pin, you can print nearly anything with Delta that you can draw (and probably better, if you're like most computer users!). This can be used for creating "computer art" or drawing maps. Or, as we'll show you here, you can use dot graphics to print your logo at the top of each letter you print.

Designing an image to print with dot graphics is much like designing download characters. The best way to start is to lay out your image on graph paper. Since you can print eight rows (seven with a 7 -bit interface) of dots with each pass of the print head, draw a heavy horizontal line every eight rows on your graph paper. And it may be helpful to write the dot values (128, 64, 32, etc.) down the left side of each row. Then after you've filled in the "dots" that you want to print, it's time to get out the old calculator again! Just as you did with download characters, add up the values of each column of dots; this makes up one byte.

In the program below, we've taken the logo graphics information and put it into BASIC DATA statements. The program itself is short and simple. The loop starting at line 160 reads the data statements into a string array variable called LOGO\$. In line 230 we change the line spacing to $8 / 72$ inch so that the lines of graphics data will connect vertically. The actual printing is done in the loop between lines 250 and 280; line 260 sends the graphics control code to Delta and line 270 sends one line of graphics data.

The printout from the program is shown right below the program.

S\&W
Figure 8-2. By laying out the logo on graph paper, you can calculate all of the graphics data.

```
1\emptyset\emptyset ' PRINT S&W LOGO
11\varnothing LINE. 8$ = CHR$(27)+CHR$(65)+CHR$(8) 'Set line
    spacing to }8\mathrm{ dots
12\emptyset LINE.12$ = CHR$(27)+CHR$(5\emptyset) 'Set line
    spacing to 1/6"
130 GRAPHIC$ = CHR$(27)+CHR$(75) 'Select dot
    graphics
140 DIM LOGO$(4)
15\emptyset WIDTH "LPT1:",255
160 ' READ DATA
17\emptyset FOR ROW = 1 TO 4
18\emptyset FOR COLUMN = 1 TO 1\emptyset\emptyset
190 READ P
20\emptyset LOGO$(ROW) = LOGO$(ROW) + CHR$(P)
21\emptyset NEXT COLUMN
22\emptyset NEXT ROW
230 ' PRINT LOGO
24\emptyset LPRINT LINE.8$;
250 FOR ROW = 1 TO 4
26\emptyset LPRINT GRAPHIC$;CHR$(1\emptyset\emptyset);CHR$(\emptyset);
270 LPRTNT IOGO$(ROW)
280 NEXT ROW
```

290 LPRINT LINE. $12 \$$
$30 \emptyset$ 'ROW 1
$31 \emptyset$ DATA $\emptyset, \emptyset, \emptyset, \emptyset, 1,3,7,7,7,15,14,14,14$,
$14,14,7,7,3,3,15$
$32 \emptyset$ DATA $15,15, \varnothing, \varnothing, \varnothing, \emptyset, \varnothing, \varnothing, \varnothing, \varnothing$,
$\emptyset, 1,3,3,7,7,15,14,14,14$
$33 \emptyset$ DATA $14,15,7,7,7,3, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \emptyset, \varnothing, \varnothing, \emptyset, \varnothing, \varnothing, \varnothing, \varnothing$
$34 \emptyset$ DATA $\varnothing, 6,7,7,7,7,7,7,7,7,6,6, \varnothing, \varnothing, 7,7,7,7,7,7$
$35 \emptyset$ DATA $7,7,7,7,7, \emptyset, \emptyset, 7,7,7,7,7,7,7,7,7,7, \varnothing, \varnothing, \varnothing$
360 ' ROW 2
$37 \emptyset$ DATA $\varnothing, \emptyset, 6 \emptyset, 255,255,255,255,255,143,15,7,7,7,7$, 3,3,3,131,193,241
$38 \emptyset$ DATA $24 \emptyset, 24 \emptyset, \emptyset, \emptyset, \emptyset, \varnothing, \emptyset, \emptyset, \emptyset, 1,121,253$, 253,255,255,255,143,7,7,7
$39 \emptyset$ DATA $31,253,252,248,248,24 \emptyset, 192, \varnothing, 7,15$, $31,31,15,7,3, \emptyset, \emptyset, \varnothing, \varnothing, \emptyset$
$4 \emptyset \emptyset$ DATA $\emptyset, \emptyset, \emptyset, 224,255,255,255,255,255,31, \emptyset$, $\emptyset, \emptyset, 1,3,31,255,255,255,255$
$41 \emptyset$ DATA $255,255,1, \emptyset, \emptyset, \emptyset, 1,7,31,255,252,24 \emptyset, 192$, $128, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$
$42 \emptyset$ 'ROW 3
' $43 \emptyset$ DATA $\emptyset, 31,31,3,129,128,192,192,192,192$
440 DATA 192,224,224,224,224,240,255,255,255,255
$45 \emptyset$ DATA $255,127, \emptyset, \varnothing, \emptyset, \emptyset, 63,127,255,255$
$46 \emptyset$ DATA $255,255,193,128,128,128,128,192,224,24 \varnothing$
$47 \emptyset$ DATA $252,255,255,255,127,63,31,7,7,31$
$48 \emptyset$ DATA $254,252,248,224,128, \emptyset, \emptyset, 3,7,7,7,3, \emptyset, \emptyset$, 192,255,255,255,255,255
490 DATA $15,15,63,252,24 \emptyset, 192, \emptyset, 24 \emptyset, 255,255$
$5 \emptyset \emptyset$ DATA 255,255,255,7,15,127,252,24 ,192,,\emptyset,
$\emptyset, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \emptyset, \varnothing, \varnothing$
$51 \varnothing$ 'ROW 4
$52 \emptyset$ DATA $\emptyset, 248,248,24 \varnothing, 224,224,112,112,56,56$
$53 \emptyset$ DATA $56,56,56,12 \emptyset, 12 \emptyset, 24 \emptyset, 24 \emptyset, 224,224,192,128$, $\emptyset, \emptyset, \emptyset, \emptyset, \varnothing, 192,224,24 \varnothing, 24 \emptyset$
$54 \emptyset$ DATA $24 \emptyset, 248,248,248,12 \emptyset, 12 \emptyset, 56,56,56,56$
550 DATA $48,112,224,224,224,224,24 \emptyset, 240,248,248$
$56 \emptyset$ DATA $12 \emptyset, 12 \emptyset, 56,56,56,56,12 \emptyset, 24 \emptyset, 224,224$
$57 \emptyset$ DATA $192,128, \emptyset, \emptyset, \emptyset, 128,248,248,248,248,24 \emptyset$,
192, $\varnothing, \emptyset, \varnothing, \emptyset, \emptyset, \varnothing, 24 \emptyset, 248$
$58 \emptyset$ DATA $248,248,248,24 \emptyset, 192, \emptyset, \emptyset, \varnothing, \varnothing, \emptyset, \emptyset, \varnothing, \varnothing$,
$\emptyset, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$

S\&W

Plotting with Delta

This section of the manual gets into more serious BASIC programming just because it's required in order to have the computer act as a plotter driver. Don't be intimidated; while it's beyond the scope of this manual to teach BASIC, if you try the examples and take it slowly you should be doing some fancy plotting of your own before you know it.

If designing and calculating dot graphics images by laying them out on graph paper seems too tedious to you, then let the computer do the work for you! With your computer doing the calculations and Delta plotting the output, you can come up with some terrific business graphs, charts, and mathematical function plots.

The best way to do this is to set up an array in memory. This is your "graph paper." The first thing to do is to determine how big you want your output to be; this will determine the size of your array. (If you have grandiose plans to fill an entire page with plotter output, you better have lots of memory in your computer. With 60 dots per inch horizontally and 72 dots per inch vertically, it takes at least 540 bytes of memory for each square inch of plotted area. That doesn't sound so bad-but an area 8 inches square requires over 32 K !)

Your array should be two-dimensional (just like graph paper) where one dimension will be the number of columns of dots and the other dimension is the number of printing lines (remember that you can have up to eight rows of dots per printed line).

Here's a program that will use calculated-shape graphics to plot a circle. As you'll see, by changing a few lines it can be used to plot virtually any shape.

```
1\emptyset\emptyset ' DELTA-PLOT
1\emptyset\emptyset\emptyset ' Set program constants
1\emptyset10 MAXCOL% = 75 : MAXROW% = 14
1\emptyset2\emptyset DIM BIT%(MAXCOL%,MAXROW%)
103\emptyset MASK%(1) = 64 : MASK%(4) = 8
1040 MASK%(2) = 32 : MASK%(5) = 4
105\emptyset MASK%(3) = 16 : MASK% (6) = 2
1\emptyset6\emptyset LX = 2\emptyset : LY = 2\emptyset
```

```
107\emptyset LXFAC = 72/LX : LYFAC = 87/LY
200\emptyset ' Plot curve
201\emptyset RAD = 9
2\emptyset2\emptyset X1 = 19 : Y1 = 1\emptyset
2\emptyset3\emptyset FOR ANG% = \emptyset TO 36\emptyset STEP 1\emptyset
204\emptyset RANG = ANG%*6.28/36\emptyset
2\emptyset5\emptyset X2 = RAD*COS(RANG)+1\emptyset: Y2 = RAD*SIN(RANG) +1\varnothing
206\emptyset GOSUB 40\emptyset\emptyset
2\emptyset7\emptyset NEXT ANG%
30\emptyset\emptyset ' Send bit image map to printer
301\emptyset LPRINT CHR$(27) "A" CHR$(6)
302\emptyset FOR ROW% = \emptyset TO MAXROW%
3030 A$ = "'"
3\emptyset4\emptyset LPRINT CHR$(27) "K" CHR$(MAXCOL%) CHR$(\emptyset);
305\emptyset FOR COL% = 1 TO MAXCOL%
306\emptyset A$ = A$ + CHR$(BIT%(COL%,ROW%))
307\emptyset NEXT COL%
308\emptyset LPRINT A$ " "
3090 NEXT ROW%
31\emptyset\emptyset LPRINT CHR$(27) "2"
3110 END
409\emptyset ' Draw a line from X1,Y1 to X2,Y2
401\emptyset XL = X2 - X1 : YL = Y2 - Y1
402\emptyset NX = ABS(XL*LXFAC) : NY = ABS(YL*LYFAC)
403\emptyset IF NX < NY THEN NX = NY
4040 NS% = INT(NX+1)
4050 DX = XL/NS% : DY = YL/NS%
406\emptyset FOR I% = 1 TO NS%
4070 X1 = X1 + DX : Y1 = Y1 + DY
4080 GOSUB 500\emptyset
4090 NEXT I%
410\emptyset RETURN
5\emptyset\emptyset\emptyset ' Plot a point at X1,Y1
5010 XX = X1 * LXFAC : YY = Y1 * LYFAC
5\emptyset2\emptyset COL% = INT(XX) + 1
5030 ROW% = INT(YY/6)
504\emptyset XIT% = INT(YY - ROW% * 6) +1
505\emptyset BIT%(COL%,ROW%) = BIT%(COL%,ROW%) OR
    MASK%(XIT%)
506\emptyset RETURN
```


How the program works

In the program above, we've created an array called BIT\%, which is dimensioned in line 1020. You'll note that instead of

using numeric constants to dimension the array, we used the variables MAXCOL\% and MAXROW\%. This way, if your computer has enough memory and you want to plot a larger image, all you need to change are the values in line 1010. The array MASK\% contains the values of the dots. (In order to make this program run on the most computers, we're using only six pins for graphics. With many computers, you can use all eight available pins.) In lines 1060 and 1070 we've defined some other variables you'll be interested in: LX, LXFAC, LY, and LYFAC are used as scaling factors. By changing these values, you can change the size of your printed image or even distort it (you can, for example, make our circle print as an ellipse). Experiment a little bit!

The main calculations for plotting the image are done starting at program line 2000. This is where you put the formulas that you want to plot. By changing just the lines between 2000 and 3000 (with some creative mathematics!) you can plot any functionlimited only by your imagination. Some examples are shown at the end of this section.

What the program section starting at 2000 actually does is to calculate starting and ending points for a line (in our circle the "lines" are very short-sometimes the starting and ending points are the same). The coordinates of the starting point of the line are assigned to variables X 1 and Y 1 . The line ends at point $\mathrm{X} 2, \mathrm{Y} 2$. When these coordinates have been calculated, a subroutine call is made to line 4000 . This subroutine calculates the coordinates of individual points along that line.

After these coordinates have been determined, the subroutine at line 5000 is called. This routine turns "on" an individual dot in our array called BIT\%. (Keep in mind that no printing has been done yet; the computer is still drawing the image on its "graph paper" in memory.) The way an individual dot is turned on is using the logical OR function in line 5050.

When all the points have been plotted in memory, printing begins at line 3000 . We first set the line spacing to $6 / 72$ inch using the 〈ESC〉 " A " command. This is so that there are no gaps between rows of dots. Then the loop from line 3020 to line 3090 prints the dot graphics image one line (which is six dots high) at a
time. The variable $\mathrm{A} \$$ is used to build a string of all the columns of BIT\% in a given row.

As you can see, by taking the program in small pieces and analyzing it, graphics programming does not have to be difficult. If you want to try some other plots, try these (replace lines between 2000 and 3000 with the lines below). The printouts from each program are shown below the listing.

```
2\emptyset\emptyset\emptyset ' Plot curve
2\emptyset1\emptyset RAD = 9
2\emptyset2\emptyset FOR ANG% = \emptyset TO 360 STEP 15
2\emptyset3\emptyset RANG = ANG%*6.28/36\emptyset
2\emptyset4\emptyset RANG2 = (ANG%+15\emptyset)*6.28/36\emptyset
2\emptyset5\emptyset X1 = RAD*COS(RANG)+1\emptyset: Y1 = RAD*SIN(RANG) +1\emptyset
206\emptyset X2 = RAD*COS(RANG2)+1\emptyset: Y2 =
    RAD*SIN(RANG2)+1\varnothing
2\emptyset7\emptyset GOSUB 4\emptyset\emptyset\emptyset
2\emptyset8\emptyset NEXT ANG%
```


$2 \emptyset \emptyset \emptyset$ ' Plot curve
$2 \emptyset 1 \varnothing \mathrm{X} 1=\emptyset: \mathrm{Y} 1=1 \varnothing: \mathrm{X} 2=2 \emptyset: \mathrm{Y} 2=1 \varnothing:$ GOSUB
4006
$2 \emptyset 2 \emptyset \mathrm{X} 1=1 \varnothing: \mathrm{Y} 1=\varnothing: \mathrm{X} 2=1 \varnothing: \mathrm{Y} 2=2 \varnothing: \mathrm{GOSUB}$
4096
$2 \emptyset 3 \varnothing \mathrm{X} 1=\emptyset: \mathrm{Y} 1=1 \varnothing:$ FOR X2 $=\varnothing$ TO $2 \emptyset$ STEP .2
$2 \emptyset 40 \mathrm{Y} 2=1 \varnothing-9 * \operatorname{SIN}(3.14159 * \mathrm{X} 2 / 1 \varnothing):$ GOSUB
4000
$205 \emptyset$ NEXT X2

$\frac{7}{1}$

Using Delta for business graphics

You don't have to be a mathematician, scientist, or computer hacker/artist to use Delta's graphics capabilities. It can be used for business graphics too-line graphs, bar charts, pie charts, and more! There are many commercially available graphics programs that support Delta's graphics. And, of course, you can write your own. To get you started, we've written a program that prints a pie chart. Here it is:

```
100 ' PIECHART
110 ESC$ = CHR$(27) : LF$ = CHR$(10)
12\emptyset FF$ = CHR$(12) : VTAB$ = CHR$(11)
13\emptyset EMPHASIZED$ = ESC$ + "E" : NOT.EMPHASIZED$ =
    ESC$ + "F"
1\emptyset\emptyset\emptyset ' Set program constants
101\emptyset OPEN "LPT1:" AS #1 : WIDTH #1,255
1\emptyset2\emptyset DIM BIT%(190,36),A$(36), PCT%(25),TEXT$(42),
    PIECETEXT$(25)
103\emptyset MASK%(1) = 64 : MASK%(4) = 8
1040 MASK%(2) = 32 : MASK%(5) = 4
1050 MASK%(3) = 16 : MASK%(6) = 2
106\emptyset LX = 2\emptyset : LY = 2\emptyset
107\emptyset LXFAC = 190/LX : LYFAC = 216/LY
1080 FOR I= 1 TO 42
109\emptyset TEXT$(I) = SPACE$(8\emptyset)
110\emptyset NEXT I
1 1 1 \emptyset \text { GOSUB 70冃冃}
2\emptyset\emptyset\emptyset ' Plot curve
2\emptyset10 RAD = 9
2\emptyset2\emptyset X1 = 19 : Y1 = 1\emptyset
203\emptyset PRINT " ";
2\emptyset4\emptyset FOR ANG% = \emptyset TO 36\emptyset STEP 5
2050 RANG = ANG%*6.28/360
2\emptyset60 X2 = RAD*COS(RANG)+1\emptyset: Y2 = RAD*SIN(RANG) +1\varnothing
2\emptyset7\emptyset GOSUB 4\emptyset\emptyset\emptyset
```

```
208\emptyset NEXT ANG%
2090 FOR PIECE% = 1 TO NUMBER.PIECES%
21\emptyset\emptyset X1 = 1\emptyset : Y1 = 1\emptyset
211\emptyset TOTAL.PCT%=TOTAL.PCT%+PCT%(PIECE%)
212\emptyset ANG%=36\emptyset*TOTAL.PCT%*.\emptyset1
213\emptyset RANG = ANG%*6.28/36\emptyset
214\emptyset X2 = RAD*COS(RANG)+1\varnothing: Y2 = RAD*SIN(RANG) +1\varnothing
215\emptyset GOSUB 4\emptyset\emptyset\emptyset
2 1 6 0 \text { GOSUB 60øø}
217\emptyset NEXT PIECE%
3000 ' Send bit image map to printer
301\emptyset PRINT
302\emptyset FOR ROW% = \emptyset TO 35
3030 A$(ROW%) = ""
3040 FOR COL% = 1 TO 19\emptyset
305\emptyset A$(ROW%) = A$(ROW%) + CHR$(BIT%(COL%,ROW%))
3060 NEXT COL%
307\emptyset PRINT CHR$(176);CHR$(176);
308\emptyset NEXT ROW%
3090 PRINT
3091 PRINT#1,SPACE$(40-LEN(TITLE$)/2);EMPHASIZED$;
    TITLE$;NOT.EMPHASIZED$;LF$
3100 PRINT#1,VTAB$;VTAB$;VTAB$
3110 PRINT#1,ESC$;"A";CHR$(6)
312\emptyset PRINT#1,TEXT$(1);LF$;TEXT$(2);LF$;TEXT$(3);LF$
3130 FOR ROW% = \varnothing TO 35
314\varnothing PRINT#1," ";ESC$;"K";
    CHR$(190);CHR$(\emptyset);
3150 PRINT#1,A$(ROW%)
3160 PRINT#1,TEXT$(ROW%+4);LF$
3170 PRINT CHR$(176);CHR$(176);
318\emptyset NEXT ROW%
319\emptyset PRINT#1,TEXT$(4\emptyset);LF$
32\emptyset\emptyset PRINT#1,TEXT$(41);LF$
3210 PRINT#1,TEXT$(42);LF$
3220 PRINT#1,ESC$;"2";FF$
3230 END
4000 ' Draw a line from X1,Y1 to X2,Y2
4010 XL = X2 - X1 : YL = Y2 - Y1
402\varnothing NX = ABS(XL*LXFAC) : NY = ABS(YL*LYFAC)
4030 IF NX < NY THEN NX = NY
404\emptyset NS% = INT(NX+1)
4050 DX = XL/NS% : DY = YL/NS%
4 0 6 0 ~ F O R ~ I \% ~ = ~ 1 ~ T O ~ N S \% ~
407\varnothing X1 = X1 + DX : Y1 = Y1 + DY
```

```
408\emptyset GOSUB 50\emptyset\emptyset
4090 NEXT I%
41\emptyset\emptyset PRINT CHR$(29);CHR$(2\emptyset5);CHR$(175);
4 1 1 0 ~ R E T U R N
50\emptyset\emptyset ' Plot a point at X1,Y1
501\emptyset XX = X1 * LXFAC : YY = Y1 * LYFAC
502\emptyset COL% = INT(XX) + 1
5030 ROW% = INT(YY/6)
504\emptyset XIT% = INT(YY - ROW% * 6) +1
505\emptyset BIT%(COL%,ROW%) = BIT%(COL%,ROW%) OR
    MASK%(XIT%)
506\emptyset RETURN
60\emptyset\emptyset ' Place text fields in the proper location
601\emptyset MIDANG%=(ANG%+PREVANG%)/2
602\emptyset RANG = MIDANG%*6.28/36\emptyset
6030 X3 = INT(2\emptyset*SIN(RANG)) : Y3 =
    INT(22*COS(RANG))
604\emptyset X4 = 22 + X3 : Y4 = 40 + Y3
605\emptyset IF MIDANG%>27\emptyset OR MIDANG<9\emptyset THEN
    MID$(TEXT$(X4),Y4) = PIECETEXT$(PIECE%) ELSE
    MID$(TEXT$(X4),Y4-LEN(PIECETEXT$(PIECE%)))=
    PIECETEXT$(PIECE%)
606\emptyset PREVANG%=ANG%
6070 RETURN
7\emptyset\emptyset\emptyset ' Accept Data from Screen
7\emptyset1\varnothing CLS: PRINT : PRINT : PRINT :
7\emptyset2\emptyset INPUT "ENTER TITLE FOR CHART: ",TITLE$
7\emptyset3\emptyset AMT.SOFAR%=\emptyset : AMT.LEFT%=1\varnothing\emptyset
7040 FOR I=1 TO 24
7\emptyset5\emptyset CLS: PRINT " ENTER PARAMETERS FOR
    PIE-CHART"
706\emptyset PRINT " TOTAL SO FAR : ";
7\emptyset7\emptyset PRINT USING "###";AMT.SOFAR%
7\emptyset80 PRINT " TOTAL REMAINING: ";
7090 PRINT USING "###";AMT.LEFT%
71\emptyset\emptyset PRINT :PRINT :PRINT :PRINT
7 1 1 \emptyset ~ I N P U T ~ " E N T E R ~ P E R C E N T A G E ~ F O R ~ F I E L D : ~ " , P C T \% ( I )
712\emptyset IF PCT%(I)>AMT.LEFT% OR PCT%(I)=\emptyset THEN
    PCT%(I)=AMT . LEFT%
7130 AMT.LEFT%=AMT.LEFT%-PCT%(I)
714\emptyset AMT.SOFAR%=AMT.SOFAR%+PCT% (I)
7 1 5 0 ~ P R I N T ~ : P R I N T
7 1 6 \emptyset ~ I N P U T ~ " E N T E R ~ D E S C R I P T I O N ~ O F ~ F I E L D : ~ " ,
    PIECETEXT$(I)
```

```
717ด IF LEN(PIECETEXT$(I))>15 THEN PRINT "FIELD TOO
    LONG - 15 CHAR. MAX": GOTO 716\emptyset
718\emptyset IF AMT.LEFT%=\emptyset GOTO 72\emptyset\emptyset
7190 NEXT I
72\emptyset\emptyset NUMBER.PIECES%=I
721\emptyset IF NUMBER.PIECES%=1 THEN 7\emptyset3\emptyset
722\emptyset CLS
7230 RETURN
```

You should recognize many sections of code from the plotting program. We've just expanded on that program framework to include routines for inputting data to be graphed (starts at line 7000) and placing labels next to the pie chart (starts at line 6000).

The output from our program is shown below.

High Resolution Graphics

Up until now all of the dot graphics printing we have done has been with Delta＇s normal density mode．This can give you some pretty sharp images at great speed．Sometimes though，you may want to create an image with even higher resolution．Delta has four density modes you can use；they＇re summarized in Table 8－2．

Table 8－2
Dot graphics commands

Function	Control code
Normal density（ 60 dots／inch）	〈ESC〉＂K＂n1 n2 m1 m2．．．
Double density（120 dots／inch）	〈ESC〉＂L＂ $\mathrm{n} 1 \mathrm{n} 2 \mathrm{~m} 1 \mathrm{~m} 2 \ldots$.
Double density／double speed	〈ESC〉＂y＂n1 n2 m1 m2．．．
Quadruple density（240 dots／inch）	〈ESC〉＂z＂n1 n2 m1 m2 ．．．

Note：If your computer does not support lowercase characters，use CHR\＄（121） and CHR\＄（122）for＂y＂and＂z＂，respectively．

The command syntax for all of the commands is the same－ just as you have learned it for the 〈ESC〉＂K＂（normal density） command．The number of columns to be printed is $n 1+256 * n 2$ ．

So what do these different modes do？On the following pages are actual size reproductions of printouts of the same image printed in each of the four different densities．They were all printed using the plotting program in this chapter（with a rather complex set of formulas starting at line 2000！）．

Normal density graphics

So if quadruple density looks so great, why not use it all the time? Let's try an experiment on your printer which will show just how the different density modes work. Using the first program in this chapter, change line 30 to try each of the different modes. Just change the CHR\$(75) (which is the ASCII code for "K") to " L ", " y ", and " z " in turn. Your printouts should look something like this:

〈ESC〉"y"

MUWUWUWUWUWM

As you can see, the different modes seem to condense the printed image. So, to get the same image in a higher density mode, you must plot more points. This requires twice as much memory for your array, twice as much computing time, and twice as much printing time (but the results may be worth it!).

Star's engineers have given programmers a unique shortcut for program development though-double density double speed mode. Although this mode requires just as much memory and computing time as double density, it prints at the same speed as normal density graphics. Amazing, you say? Well, it is-until you know the secret. Every other column of dots is ignored, so the output is actually the same as normal density graphics. The advantage is that you can write and debug your programs at double speed, then change to double density graphics for terrific output.

If You Have Problems with BASIC

You may write some graphics programs that look just right in the listing, but the printouts aren't quite what you expected. A common problem is that the BASIC interpreter in your computer is inserting a few of its own codes. For instance, if your program generates a CHR\$(13) as valid graphics data, BASIC may follow it
with a CHR $\$(10)$ ．Another problem arises with certain computers that replace horizontal tabs（CHR\＄（9））with a series of spaces （CHR\＄（32））．A possible solution to these problems is to not use the bottom dot（which has a value of 1）．This way，you will never produce an odd number，hence，you will never have a CHR\＄（13） or CHR $\$(9)$ ．（This is why we used only six pins in our plotting program．）

That＇s one solution to one problem．You＇ll find more of each （with specific information for your computer）in the appropriate appendix．

Summary

Control code Function
〈ESC〉＂K＂n1 n2 m1 m2 ．．Print n1＋ $256 * n 2$ columns of nor－ mal density graphics
〈ESC〉＂L＂n1 n2 m1 m2 ．．．Print double density graphics
〈ESC〉＂y＂$n 1 \mathrm{n} 2 \mathrm{~m} 1 \mathrm{~m} 2 \ldots$ Print double density graphics at double speed
〈ESC〉＂ z ＂ $\mathrm{n} 1 \mathrm{n} 2 \mathrm{~m} 1 \mathrm{~m} 2 \ldots$ ．．Print quadruple density graphics

Chapter 9

Getting it All Together

You have now seen how all of Delta's functions work. You surely have some good ideas of ways to use some of Delta's many capabilities. With all the different printing styles available you won't run out of variations for quite a while. And if there is a style of printing that Delta doesn't have built-in, you can develop your own with Delta's download characters.

Four different modes of graphics provide you with limitless ways to create pictures with Delta. You have learned how to create both stored-data and calculated shapes using Delta's graphics capabilities.

The calendar on the following page is a demonstration of just some of Delta's abilities. You will recognize many of the things
that you have learned while reading this book. The globe was created the same way as the calculated-shape graphics that you learned about. The S\&W logo was used to illustrate stored-data graphics. And you are sure to recognize many of the print styles used at the top of the calendar. Those shaded bars are created by using different graphics densities.

The numbers in the calendar itself are the ones that you created with download characters. And the lines creating the boxes are made with Delta's block graphics characters.

Delta's flexibility in line spacing and its ability to mix many types of printing on one line make it possible to create complex forms like this calendar. With Delta's advanced features it's easy to create a business form or letterhead, and fill it out at the same time. That's a productive printer.

S\&W

Smith Be Wili iams 123 Burritt Street
Hackensack, Nem Jersey 07602

Micmocomputer Consultents to the Morlo

Chapter 10
Maintenance
As almost any good mechanic will tell you, dust and heat are the prime enemies of any mechanism, and Delta is no exception. The best maintenance is preventive. So, to start with, we hope you've found a clean, dust-free location with a comfortable temperature range for your computer printer system, and that you'll keep the printer's dust-cover where it belongs - in its place atop the printer! Appendix A gives you further tips on locating Delta.

Cleaning Delta

The second rule for long life is periodic cleaning. Both inside
and outside of the case respond gratefully to periodic cleaning with a damp rag and alcohol. Do this whenever the case appears to be getting dirty, always being careful to avoid dripping alcohol on the printer mechanism. To clean the inside of dust and paper lint, use a nice soft brush, after first removing the printer's upper case in the following manner.

Removing the Upper Case

First, turn the power switch off and unplug Delta.
Remove the tractor unit.
Remove the platen knob.
Next, remove the two Phillips screws, per Figure 10-1. (You'll find three screws on the larger Delta-15.)

Figure 10-1. To remove Delta's upper case, remove the screws.

Lift up the upper case from the back; then "pop out" the front of the case by pushing outward with your thumbs where the plastic tabs fit into the bottom case.

Then stand the upper case on its end, right next to the printer so the short colored wires attached to the control panel remain connected. It's a good idea to keep the case from falling over by
setting the corner of the printer on the edge of the case as shown in Figure 10-2.

Figure 10-2. Tilt the cover up so that you don't have to disconnect the control panel wires.

NOTE TO THE UNWARY: When cleaning the inside of Delta, be very careful not to bend or injure any of those tiny wires or other little gizmos that lie exposed and defenseless against a heavy-handed touch.

Besides the periodic cleanings, the only other maintenance you'll encounter will be changing the ink ribbon (see Appendix A for these directions), and replacing an occasional blown fuse or replacement of the print head after a long period of use.

Replacing a Fuse

How can you tell when you've blown a fuse? Well, when the printer won't operate and the power lamp on the control panel isn't lit, even though you're sure the power switch is on and the printer is plugged in - it's likely a blown fuse.

Figure 10-3. The secondary fuses are a little tricky to reach.

To check out the fuses (there are two), turn the power switch off, and disconnect the power plug. Then remove the platen knob and the upper case, as described in the preceding section.

When the case is off, check for the correct fuse locations on Figure 10-3. Remove the primary fuse first, held in its clamps near the power switch. The fuse is a commonly used type, with a metal strip suspended in a glass and metal case. If the strip is broken, the fuse is blown.

Replace this fuse with a $2 \mathrm{~A} / 125 \mathrm{~V}$ slow-blow type fuse; then test-run the printer. Still immobile? Check the secondary fuse, which is still further inside the "works," as shown in Figure 10-3. If that's blown, replace it with a $3 \mathrm{~A} / 125 \mathrm{~V}$ slow-blow type fuse.

Then if the printer still isn't working, better call on your Delta dealer for help.

Incidentally, it makes it easier to remove and replace the fuses if you have a long, flat screwdriver and some needlenose pliers handy. The fuses are small, and the secondary fuse is sort of hard to get at without these particular tools. (But be careful not to crush the glass fuses with the pliers.)

We've found the following technique works pretty well for replacing the secondary fuse. Using the long flat screwdriver, pop one end of the fuse loose from its holding clamp and stand it on end. Then grab the loose end with the needle nose pliers and pull it out. To insert the new fuse, lower it into place with the pliers, so that it lies flat against the two holding clamps. Then use the long screwdriver to push each metal end of the fuse into its adjacent holding clamp.

Replacing the Print Head

As mentioned earlier, the print head has a long life, printing perhaps $100,000,000$ characters before it wears out. You'll know when that happens when the printout is too faint for your taste even after replacing the ink ribbon.

WARNING: The print head gets hot during operation, so let it cool off for awhile, if necessary, to avoid burning your fingers.

To replace the print head, start by removing the printer cover and the ink ribbon. Then unplug the print head cable (see Figure 10-4) while holding down the head cable board. Next, remove the two screws and washers which fasten the print head. Then place the new print head in position, and attach it with the same two screws. Apply "screw lock," (an adhesive available at hardware stores) to the heads of the screws. Finally, insert the head cable, with the printed side up, tightly into the head connector on the cable board. Be sure that it's a good solid connection, or it could cause problems.

Figure 10-4. Replacement of Delta's print head is simple.

Back to perfect printing!

Appendix

Appendix A Setting Up Delta

In this appendix, we'll show you how to unpack your new Delta printer, set it up in the right location, and get it ready for you to load it with paper and start printing! But first . . .

Where shall we put it?

Before you do anything else, give some thought to where you'll be using your printer. Obviously, it will be somewhere near your computer. And both computer and printer will lead longer, healthier lives if they like their environment. For instance, we recommend . . .

- Placing the printer on a flat surface
- Keeping it out of direct sunlight and away from heat-producing appliances
- Using it only in temperatures where you are comfortable
- Avoiding areas with a lot of dust, grease, or humidity
- Giving it "clean" electricity. Don't connect it to the same circuit as large, noise-producing motors
- Providing the right voltage, which is not over 10% more or less than 120 volts AC .

WARNING: Extremely high or low voltage can damage your printer.

What have we here?

Let's take a look at what's in the box. Take it slow and easy, and check each item in the box against Figure A-1. There should be exactly 11 items. One important item is the printer registration and warranty card. Now is the time to fill it in and mail it. It's a good warranty, and you'll like the protection it gives you.

Let's move on to the next step . . .

Removing the shipping screws

There are two shipping screws on the bottom of the printer,

Figure A-1. Inside the carton you should find: 1) printer, 2) printer cover, 3) paper guide, 4) paper separutor, 5) roll paper holder, 6) roll paper shaft, 7) ink ribbon, 8) platen knob, 9) spare fuses, 10) User's Manual, 11) warranty card.
used to hold the internal chassis to the external frame during shipping. To get at these, carefully place the printer upside down on a soft surface like a foam cushion. Remove the two screws with a Phillips screwdriver as shown in Figure A-2.

Figure A-2. Remove the shipping screws before using Delta.

Removing the packing from inside the printer

Remove three cardboard pieces: a large flat piece protecting the print head, and two smaller pieces stuck in at either end of the platen (the rubber cylinder that feeds the paper through the printer).

You'll want to save the screws, along with the rest of the packing material and the shipping box, in case you ever have to ship the printer. Tape the screws somewhere on the box or packing. (You did fill in that registration card, didn't you?)

Installing the platen knob

This is the knob that turns the rubber platen cylinder. It fits into the hole on the right side of the printer case. Just match the odd-shaped hole in the knob with the same shape on the shaft you'll see inside the hole in the case, and press on firmly. Give the knob a few twirls to see that it's turning the platen easily and smoothly.

Removing the tractor unit

The tractor unit, shown in Figure A-4, comes mounted on the printer during shipment. It is used only with sprocket-feed paper. When other papers are used, such as single sheets or roll paper,

Figure A-3. There are three pieces of cardboard to remove.
the unit should be removed, in the following manner:
Remove the printer cover (if attached).
Identify the "snap levers" as shown in Figure A-4.
Pull both snap levers forward, and at the same time...
Rock the tractor unit up and towards you about half an inch.
Now lift the tractor up and away from the printer.
Up to this point, we've been clearing the decks for action, so to speak. Only two more things are left to do before we can start printing. They are, 1) attach the paper separator and paper guide racks, and 2) install the ink ribbon. Actually, if you're planning to print on single sheets only, you won't need to use the paper separator and paper guide, which are designed expressly to guide continuous paper (roll or sprocket-feed) through the printer.

Attaching the paper separator and paper guide

First, identify the paper separator (the large metal rack), shown in Figure A-5. Insert one protruding end into the hole shown in the diagram, then gently bend the other protruding end until it snaps into the opposite hole. Follow the same procedure with the smaller metal rack, which is the paper guide.

Figure A-4. Remove the tractor by pulling the snap levers towards you and tilting the tractor unit back.

Figure A-5. Attach the paper guide and paper separator.

Important news: If you get these in upside down, they won't work. So take another sharp look at Figure A-5 before we pass on to the final act--installing the ink ribbon.
(NOTE: If you're wondering about the wire roll paper holder and holder shaft, we'll explain these in Chapter 1, where we discuss the whole subject of paper selection, paper feed, and related topics.)

Installing the ribbon

Telling you how to set the ribbon is like writing a set of instructions on how to tie your shoelaces. It takes a lot longer to describe it than it does to do it! So, you'll be smart to study the several figures shown here; they'll tell you all you really need to know.

Nevertheless, if you feel better following written instructions, read on . . .

Figure A-6. You'll find this diagram of the ink ribbon path inside your Delta for easy reference when you change ribbons.

After looking carefully at the Figure A-6, begin by turning the power off, and removing the printer cover. Then slide the print

Figure A-7. The eyelet should be between the ribbon spool and the changeover lever.

Figure A-8. You may want to use a ballpoint pen to press the ribbon guide lowards the platen and work the ribbon down beside it.
head gently to the center of the printer. Next, set one of the ribbon spools on a ribbon spool post, being careful to have it wind/ unwind exactly as shown in the figures. The spool should fit so that the drive pins engage the spool.

Next, you start threading the ribbon. The only tricky part is around the print head, so pay particular attention to Figure A-8. The ribbon should fit in the slot between the print head and the ribbon guide. Use a ballpoint pen to work the ribbon down between the print head and the ribbon guide.

The other thing to watch is the position of the eyelet near the end of the ribbon. This works exactly like a typewriter ribbon eyelet; it can't get by the slotted guide, which causes the ribbon to automatically reverse its direction.

Finally, set the other spool snugly on the opposite spool holder; then turn the spools by hand four or five turns in each direction to verify that everything is properly set and ready to roll.

Installing the printer cover

Now that you've completed the steps described in this Appendix A, you may want to mount the printer cover in place to keep dust and dirt away. It's a simple procedure. Merely fit the two tabs at the back edge of the cover into the two slots right next to the two holes where you fastened the wire rack paper separator. Then drop the other end down gently until it sits firmly on the printer. That's all!

To remove the cover just reverse the process: lift up the front and pull it out of the slots at the back.

Connecting Delta to your computer

To complete the installation, you'll need to connect Delta to your computer. In Appendixes B through G, we've described the procedure, including specific guidelines for making connections with several of the most popular computers used by Delta owners.

Appendix B

IBM Personal Computer and Compaq Computer

Both the IBM Personal Computer and the Compaq computer function the same when connected to Delta. We will discuss the IBM-PC, knowing that all we say works just as well for the Compaq.

Delta can connect to either a serial or a parallel interface in the IBM-PC or IBM-XT computers. IBM calls a parallel interface a "Parallel Printer Adapter", and they call a serial interface an "Asynchronous Communications Adapter."

You only need a cable to connect Delta to your IBM-PC. Your Delta dealer can furnish this cable, or you can use a standard IBMPC parallel printer cable for the parallel interface.

We recommend that you set the DIP switches in Delta as shown below when connecting it to an IBM-PC parallel interface.

Recommended DIP Switch Settings for IBM-PC

Switch	Setting	Function
$1-1$	ON	11 inch page size
$1-2$	ON	Normal print density
$1-3$	ON	10 CPI pitch
$1-4$	ON	Normal characters
$1-5$	ON	$1 / 6$ inch line feed
$1-6$	ON	U.S.A. Character set
$1-7$	ON	
$1-8$	ON	
$2-1$	ON	Parallel interface
$2-2$	OFF	8-bit interface
$2-3$	OFF	No auto line feed
$2-4$	OFF	

IBM-PC Parallel Cable

Delta		IBM-PC Parallel	
Pin No.	Function	Pin No.	Function
1	STROBE	1	STROBE
2	D1	2	Do
3	D2	3	D1
4	D3	4	D2
5	D4	5	D3
6	D5	6	D4
7	D6	7	D5
8	D7	8	D6
9	D8	9	D7
10	ACK	10	ACK
11	BUSY	11	BUSY
12	PAPER END	12	PAPER END
13	SELECTED	13	SELECT
16	GROUND	18-25	GROUND
31	RESET	16	RESET
32	ERROR	15	ERROR

The IBM-PC expects its printer to be connected to the parallel interface. If you are using the serial interface, then you will need to instruct your computer to send information to the serial interface instead of to the parallel interface. This is done with the MODE command. You must use the following two commands each time you turn on your computer.

```
MODE COM1:48,N,8,1,P
MODE LPT1:=COM1:
```

The first "sets up" the asynchronous adapter to match the settings of DIP switch 3 in Delta. The second re-directs printer output to the serial port. The switches on DIP switch 3 must be set as shown below to use this MODE command. (The IBM-DOS manual tells you how to create a different MODE command for different DIP switch settings.) You can put these two MODE commands into a file named AUTOEXEC.BAT and it will execute automatically each time you start your computer.

Table B-1
Serial switch settings

Switch	Setting	Function
$3-1$	OFF	
$3-2$	OFF	No parity
$3-3$	ON	Serial busy, block mode
$3-4$	OFF	
$3-5$	either	4800 baud
$3-6$	ON	
$3-7$	ON	
$3-8$	OFF	

The serial cable shown below will work with DIP switch 3 set as shown above to connect Delta to a serial interface on the IBM.

IBM-PC Serial Cable

	Delta		IBM-PC	
Pin No.	Function		Pin No.	Function
2	TRANSMIT DATA	-	3	RECEIVE DATA
3	RECEIVE DATA	-	2	TRANSMIT DATA
4	REQUEST TO SEND	-	5	CLEAR TO SEND
5	CLEAR TO SEND	-	4	REQUEST TO SEND
7	SIGNAL GROUND	-	7	SIGNAL GROUND
8	CARRIER DETECT	-	4	REQUEST TO SEND
20	DATA TERMINAL READY	-	6	DATA SET READY

BASIC programing

All the programs in this book are written in the BASIC used by the IBM-PC. That makes it easy to do the things that we show you. But when you start writing your own programs there are several things that you should know.

IBM BASIC defaults to a printer width of 80 . This means that it will automatically insert a carriage return and line feed after every 80 characters. If you want to print lines longer than 80 characters you will need to change the width of the printer. If you set the printer width to 255 , then the IBM will never insert a line feed and carriage return, unless you start a new line. (This is what you want usually.) To set the width of the printer to 255 , use this statement:

IBM BASIC has one other little trick that will mess up your graphics if you let it. IBM BASIC is very insistent about adding a line feed to a carriage return. This is fine if you are printing text, but if an ASCII 13 pops up in the middle of your graphics printout, IBM BASIC will still add a line feed to it. This will put strange things in the middle of your graphics, and leave you with extra characters at the end of your line.

There is an easy way to avoid this problem. You just open the printer as a random file. The following program shows how this is done.

$1 \emptyset$ OPEN "LPT1:" AS \#1	' RANDOM ACCESS
$2 \emptyset$ WIDTH \#1, 255	SET WIDTH TO 255
$3 \emptyset$ PRINT \#1, "TESTING"	' PRINT A LINE
$4 \emptyset$ PRINT \#1, CHR\$(1 $)$	' ADD YOUR OWN LF

Listing programs

To list programs on the IBM-PC, use the LLIST command. This directs the listing to the printer instead of the screen.

Program listings

There are no program listings given here for the IBM-PC because all the programs in the book are written for the IBM-PC.

Appendix C

Apple II Computers

Apple II computers require an interface board (mounted inside the Apple II) and a cable to run Delta. Star recommends that you use the grafstar ${ }^{\text {rM }}$ interface for the Apple II, II + , and IIe, by Star Micronics. It comes complete with a cable and is easily installed. A unique feature of the grafstar ${ }^{\text {ru }}$ makes it possible to do some fancy dot graphics programming.

You can, of course, use many of the available parallel interface boards for the Apple II, and an appropriate cable.

Setting the switches

We recommend that you set the DIP switches in Delta as shown below when connecting it to an Apple II.

Recommended DIP Switch Settings for Apple

Switch	Setting	Function
$1-1$	ON	11 inch page size
$1-2$	ON	Normal print density
$1-3$	ON	10 CPI pitch
$1-4$	ON	Normal characters
$1-5$	ON	$1 / 6$ inch line feed
$1-6$	ON	U.S.A. Character set
$1-7$	ON	
$1-8$	ON	
$2-1$	ON	Paper-out detector active
$2-2$	OFF	Parallel interface
$2-3$	ON	7-bit interface
$2-4$	OFF	No auto line feed

Applesoft BASIC

The Apple II computer, using Applesoft BASIC, does not

Apple Parallel Cable

Delta		Apple Board	
Pin No.	Function	Pin No.	Function
25	SIG GND	1	SIG GND
26	SIG GND	2	SIG GND
27	SIG GND	3	SIG GND
1	STROBE	4	STROBE
28	SIG GND	5	N/C
2	DATA1	6	DATA1
3	DATA2	7	DATA2
4	DATA3	8	DATA3
5	DATA4	9	DATA4
6	DATA5	10	DATA5
7	DATA6	11	DATA6
8	DATA7	12	DATA7
9	DATA8	13	DATA8
10	ACK	14	ACK
29	SIG GND	15	SIG GND

have different types of PRINT statements for the screen and printer. You must add commands to your programs that direct the output of the PRINT statements to the printer. To direct output to the printer (with the interface board in slot \#1) you must use the PR\# 1 command. Depending on the version of Applesoft BASIC that you are using this command can take various forms. It is usually one of the following:

```
1\emptyset PR# 1
or
10 PRINT "<Ctrl-D>PR#1"
or
1\emptyset PRINT CHR$(4) "PR#1"
```

To return output to the screen, the command is PR\#0, in the same form that works for PR\# 1.

To allow line lengths longer than the Apple II usually uses you must add the following statement to your programs:

This allows lines of any length to be sent to the printer and is especially important for dot graphics. (The number 255 in the BASIC statement above could be replaced by any number from 0 to 255 and would set the line length to that value.)

Two codes are a particular problem on the Apple II: CHR\$(7) and CHR $\$(9)$. Try to avoid using these in dot graphics programs.

The Apple II computer uses CHR $\$(9)$ as a printer initialization code. It won't send it on to the printer. There is a way to bypass this problem, however. You can change the printer initialization code to a value other than CHR\$(9) like this:

```
PR#1
PRINT CHR$(9); CHR$(1)
```

This makes CHR\$(1) the printer initialization code (and transfers the problems to that code) and allows you to use Delta's tabs.

There is one more way to sneak problem codes past the Apple II's operating system and that's to poke the codes directly to the output port. To send ASCII code 9 , for example, you could do this:

```
10\emptyset N = 9
11\emptyset IF PEEK(496\emptyset1))127 THEN 11\emptyset
12\emptyset POKE 49296,N
```

Line 110 checks the printer's status, and when it's ok, line 120 pokes the code to the printer.

Listing programs

To make a listing of your BASIC programs on Delta from your Apple II computer you must take the following steps:

1. Be sure that the program that you wish to list is in the memory of the Apple II.
2. Direct the output to the printer by typing PR\#1.
3. Type LIST to start the listing.
4. When the listing is finished, type PR\#0 to redirect the output to the screen.

Program listings

Following are program listings in Applesoft BASIC for the main programs used in the tutorial section of this book. The only
modifications that you might have to make are to the PR\#1 and PR\#0 commands as discussed above.

Chart program


```
210\emptyset PRINT EL$;" ELITE ";
2110 PRINT PI$;" PICA ";
212\emptyset PRINT CO$;"CONDENSED ";
2130 PRINT EL$;" ELITE ";
2140 PRINT PI$;" PICA ";
215\emptyset PRINT RA$
216\emptyset RETURN
30\emptyset0 REM
305\varnothing IT = FALSE: PRINT RO$;
3060 UN = FALSE: PRINT CU$;
307\varnothing EN = FALSE: PRINT CE$;
308\emptyset PI = FALSE:
31\emptyset\emptyset PRINT CO$;
3110 GOSUB 3500:
312\emptyset PRINT EL$;
3130 GOSUB 3500
314\emptyset PRINT PI$;:PI = TRUE
3150 GOSUB 35ø\emptyset
317\emptyset IF EN = TRUE THEN PRINT : GOTO 3190
318\emptyset PRINT EN$;:EN = TRUE: GOTO 308\emptyset
3190 IF UN = TRUE THEN PRINT : GOTO 321\varnothing
320\emptyset PRINT UN$;:UN = TRUE: GOTO 307\emptyset
321\varnothing IF IT = TRUE THEN PRINT RA&: RETURN
322\emptyset PRINT IT$;:IT = TRUE: GOTO 305\varnothing
3500 REM
3550 BL$=" ":FD$="...."
3560 IF EM = FALSE THEN PRINT "AB" + CHR$ (99) +
    CHR$ (1\varnothing\emptyset);: GOTO 361\varnothing
357\emptyset IF PI = FALSE THEN PRINT FD$;: GOTO 359\varnothing
358\emptyset PRINT EM$;"AB"; CHR$ (99) + CHR$ (100);
3590 IF EN = TRUE THEN PRINT " ";: RETURN
360\emptyset IF EN = FALSE THEN PRINT BL$;: RETURN
3610 REM
362\varnothing IF EN = TRUE THEN PRINT " ";: RETURN
363\emptyset PRINT SP$;"X" + CHR$ (12\emptyset);
364\emptyset PRINT SB$;"Y" + CHR$ (121) + " ";
365\emptyset PRINT CS$;
366\emptyset RETURN
```


Special character chart program

```
10 L$ = CHR$ (27) + ">"
2\emptyset Z$ = CHR$ (27) + "="
25 PR# 1
27 PRINT CHR$(9);"255N"
30 FOR J = 160 TO 255 STEP 8
```

```
4\emptyset FOR I = J TO J + 7
5\emptyset PRINT I;"= ";L$; CHR$ (I);Z$;" ";
6 \emptyset ~ N E X T ~ I : ~ P R I N T ~ : ~ N E X T ~ J ~
7\emptyset PR# \emptyset
8\emptyset END
```


Macro program

```
1\emptyset PR# 1
15 PRINT CHR$ (9);"255N"
2\emptyset PRINT CHR$ (27);"+";
3\emptyset PRINT CHR$ (18);
4\emptyset PRINT CHR$ (27);"W"; CHR$ (\emptyset);
5\emptyset PRINT CHR$ (27);"F";
60 PRINT CHR$ (27);"H";
7\emptyset PRINT CHR$ (27);"-"; CHR$ (\emptyset);
80 PRINT CHR$ (27);"T";
90 PRINT CHR$ (27);"5";
1\emptyset\emptyset PRINT CHR$ (3\emptyset)
11\emptyset PR# \emptyset
12\emptyset END
```


Bridge hand program

```
10 HOME
2\emptyset GOSUB 1\emptyset\emptyset\emptyset
3\emptyset GOSUB 2\emptyset\emptyset\emptyset
4\varnothing GOSUB 30\emptyset\emptyset
5\emptyset GOSUB 4\emptyset\emptyset\emptyset
6\emptyset END
1\emptyset\emptyset\emptyset REM
1\emptyset1\emptyset DIM HA(4),DE(52),CA$(13),SU$(3)
102\emptyset CA$(1) = " 2":CA$(2) = " 3":CA$(3) = " 4":
    CA$(4) = " 5" : CA$(5) = " 6"
1030 CA$(6) = " 7":CA$(7) = " 8":CA$(8) = " 9":
    CA$(9) = " 10"
1\varnothing4\emptysetCA$(1\emptyset) = "J":CAS(11) = "Q":CA$(12) = " K":
    CA$(13) = "A"
1\emptyset5\emptyset SU$(\varnothing) = "S":SU$(1) = "H":SU$(2) = "D":
    SU$(3) = "C"
108\emptyset RETURN
2\emptyset\emptyset\emptyset REM
201\emptyset PR# 1
2015 PRINT CHR$ (9); CHR$ (25)
2016 PRINT CHR$ (25);"255N"
```

$2 \emptyset 2 \emptyset$ PRINT CHR\$ (27); CHR\$ (68); CHR\$ (2ø);
CHR\$ (4 \varnothing); CHR\$ (\varnothing)
$2 \emptyset 3 \varnothing$ PRINT CHR\$ (27); CHR\$ (43); CHR\$ (27); CHR\$ (36); CHR\$ (\emptyset) $\operatorname{CHR\$ (27);~CHR\$ ~(69);~}$ CHR\$ (3ø)
$2 \emptyset 4 \emptyset$ PRINT CHR\$ (27); CHR\$ (42); CHR\$ (\emptyset)
2045 FOR I = 1 TO 4
$205 \varnothing$ PRINT CHR\$ (27); CHR\$ (42); CHR\$ (1);
2060 FOR J = 1 TO 13
$2 \not 07 \varnothing$ READ X: PRINT CHR\$ (X);
2080 NEXT J
2090 NEXT I
$21 \varnothing \emptyset$ PRINT
$211 \varnothing$ RETURN
$212 \emptyset$ DATA $72,11,4,1 \emptyset, 2 \emptyset, 1 \emptyset, 52,72,52,10,2 \emptyset, 1 \emptyset, 4$
$213 \emptyset$ DATA $83,11,16,8,2 \emptyset, 8,86,41,86,8,2 \emptyset, 8,16$
2140 DATA 67,11,8,16,8,18,65,62,65,18,8,16,8
$215 \emptyset$ DATA $68,11,8, \emptyset, 28, \varnothing, 62,65,62, \emptyset, 28, \emptyset, 8$
3000 REM
3010 FOR CA $=1$ TO 52
$302 \emptyset \mathrm{X}=\mathrm{INT}(\operatorname{RND}(1) * 4+1)$
3030 IF HA (X) $=13$ THEN 3020:
$3035 \mathrm{HA}(\mathrm{X})=\mathrm{HA}(\mathrm{X})+1$
$3040 \mathrm{DE}(\mathrm{CA})=\mathrm{X}$
$305 \varnothing$ NEXT CA
$306 \emptyset$ RETURN
$40 \varnothing \varnothing$ REM
4010 PR\# 1
4012 PRINT CHR\$ (9); CHR\$ (25)
4014 PRINT CHR\$ (25);"255N":
4015 PRINT CHR\$ (27);"!"; CHR\$ (9);"NORTH"
$4 \emptyset 2 \emptyset$ PRINT CHR\$ (27);"\$"; CHR\$ (1); CHR\$ (27);
CHR\$ (7Ø) ;
$4030 \mathrm{HA}=1$
$404 \varnothing$ FOR SU $=\varnothing$ TO 3
4050 PRINT CHR\$ (9);
4060 GOSUB 4300
$407 \emptyset$ PRINT
4080 NEXT SU
$409 \emptyset$ PRINT CHR\$ (27);"!";"WEST"; CHR\$(9);
CHR\$ (9);"EAST"
$41 \emptyset \emptyset$ PRINT CHR\$ (27);"\$"; CHR\$ (1); CHR\$ (27); CHR\$ (7ø);
$411 \varnothing$ FOR SU $=\varnothing$ TO 3
$4120 \mathrm{HA}=2$
4130 GOSUB $43 \varnothing \varnothing$
$414 \varnothing$ PRINT $\operatorname{CHR} \$(9) ; \operatorname{CHR} \$(9) ;$
$4150 \mathrm{HA}=3$
$416 \emptyset$ GOSUB $430 \emptyset$
$417 \emptyset$ PRINT
$418 \emptyset$ NEXT SU
$419 \emptyset$ PRINT CHR\$ (27);"!"; CHR\$ (9);"SOUTH"
$42 \emptyset \emptyset$ PRINT CHR\$ (27);"\$"; CHR\$ (1); CHR\$ (27);
CHR\$ (7 \varnothing);
$421 \emptyset \mathrm{HA}=4$
$422 \emptyset$ FOR SU $=\emptyset$ TO 3
4230 PRINT CHR\$ (9);
4240 GOSUB 4300
$425 \emptyset$ PRINT
$426 \emptyset$ NEXT SU
$427 \emptyset$ PRINT CHR $\$(27) ; " \$ " ; \operatorname{CHR} \$(\varnothing) ; \operatorname{CHR} \$(27) ;$
CHR\$ (7 7)
$428 \emptyset$ RETURN
$430 \emptyset$ PRINT SU\$(SU);
4310 FOR CA $=13$ TO 1 STEP - 1
$432 \emptyset \mathrm{H} 1=\mathrm{HA}: \operatorname{IF} \mathrm{DE}(\mathrm{SU} * 13+\mathrm{CA})=\mathrm{H} 1$ THEN PRINT CA\$(CA) ;
4330 NEXT CA
4340 RETURN

Numeral program

```
1\varnothing REM
2\emptyset PR# 1
25 PRINT CHR$ (9);"255N"
27 PRINT CHR$ (9); CHR$ (25)
30 DC$ = CHR$ (27) + CHR$ (42) + CHR$ (1)
4\emptyset DP$ = CHR$ (27) + CHR$ (88) + CHR$ (1)
5\emptyset CP$ = CHR$ (27) + CHR$ (88) + CHR$ ( }0
60 L7$ = CHR$ (27) + "1":L12$ = CHR$ (27) +
        CHR$ (50)
70 FOR N1 = 33 TO 73
8\emptyset PRINT DC$;
9\emptyset PRINT CHR$ (N1);
10\emptyset READ N2
110 PRINT CHR$ (N2);
12\emptyset FOR S = 1. TO 11
13\emptyset READ MS
140 PRINT CHR$ (MS);
150 NEXT S
```

$16 \emptyset$ NEXT N1
$18 \emptyset \mathrm{AS}=33$
$19 \emptyset$ FOR NU $=\emptyset$ TO 9
$21 \emptyset \mathrm{NT} \$(\mathrm{NU})=\operatorname{CHR} \$(\mathrm{AS}+\emptyset)+\operatorname{CHR} \$(\mathrm{AS}+1)$
$22 \emptyset \mathrm{NB} \$(\mathrm{NU})=\operatorname{CHR} \$(\mathrm{AS}+2)+\operatorname{CHR} \$(\mathrm{AS}+3)$
$225 \mathrm{AS}=\mathrm{AS}+4$
230 NEXT NU
$240 \mathrm{BL} \$=\mathrm{CHR} \(73)
$25 \emptyset$ PRINT DP\$;L7\$
$26 \emptyset$ FOR NU $=\varnothing$ TO 9
$27 \emptyset$ PRINT NT\$(NU); BL\$;
$28 \emptyset$ NEXT NU
290 PRINT
$3 \emptyset \emptyset$ FOR NU $=\emptyset$ TO 9
310 PRINT NB $\$(\mathrm{NU}) ; \mathrm{BL} \$$;
$32 \emptyset$ NEXT NU
330 PRINT CP\$;I12\$
$34 \varnothing$ REM ZERO
$35 \emptyset$ DATA $11, \emptyset, 96,16,1 \emptyset 4,16,44,3 \emptyset, 14, \emptyset, 2,1$
$36 \emptyset$ DATA $11,2,1,2,1,6,8,38,88,32,88,32$
$37 \emptyset$ DATA $11,3,12,19,12,51, \varnothing, 96, \emptyset, 96, \emptyset, 96$
$38 \emptyset$ DATA $11, \emptyset, 32, \emptyset, 48, \emptyset, 28,3,12,3,4,3$
390 REM ONE
$4 \emptyset$ DATA $11, \emptyset, \emptyset, \emptyset, \varnothing, \emptyset, 4, \emptyset, 4, \varnothing, 4,126$
$41 \emptyset$ DATA $9,12,114,12,114,12,2, \varnothing, \varnothing, \varnothing, \emptyset, \varnothing$
$42 \emptyset$ DATA $11,64, \emptyset, 64, \varnothing, 64, \varnothing, 64,32,8 \emptyset, 47,8 \emptyset$
$43 \emptyset$ DATA $9,47,8 \varnothing, 47,64, \varnothing, 64, \varnothing, 64, \emptyset, \varnothing, \varnothing$
$44 \varnothing$ REM TWO
$45 \emptyset$ DATA $11, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, 12,16,14, \emptyset, 6, \varnothing$
$46 \varnothing$ DATA $11,3, \emptyset, 3, \varnothing, 7 \emptyset, 56,7 \emptyset, 56,4,24, \varnothing$
$47 \emptyset$ DATA $11,64, \emptyset, 64,32,64,32,8 \emptyset, 32,8 \emptyset, 4 \emptyset, 64$
$48 \emptyset$ DATA $11,44,64,38,65,34,65,32,8 \emptyset, 32,88, \emptyset$
490 REM THREE
$5 \emptyset \emptyset$ DATA $11, \emptyset, \emptyset, \emptyset, \varnothing, \emptyset, \varnothing, 4,2,4,2,4$
$51 \varnothing$ DATA 11,34,84,34,92,34,76,34,68,2,64, \varnothing
$52 \emptyset$ DATA 11,16, $\varnothing, 48, \emptyset, 56,64,48,64,32,64,32$
530 DATA 11,64,32,64,48,9,54,9,22,9,6,1
540 REM FOUR
$55 \emptyset$ DATA $11, \emptyset, \varnothing, \varnothing, \varnothing, \varnothing, \emptyset, 64,36,88,32,16$
$56 \emptyset$ DATA $11, \emptyset, \varnothing, 64,32,64,56,64,6 \emptyset, 2,12, \varnothing$
$57 \emptyset$ DATA $11, \emptyset, 8,4,1 \emptyset, 5,1 \emptyset, 5,8,4,72,4$
$58 \emptyset$ DATA $11,88,38,89,38,89,6,73,4,8,6, \emptyset$
590 REM FIVE
$6 \emptyset \emptyset$ DATA $11, \emptyset, \emptyset, \emptyset, \emptyset, 64,32,84,5 \emptyset, 76,34,68$
$61 \emptyset$ DATA $1 \emptyset, 34,68,34,68,34,68,2,68,2,0, \emptyset$
$62 \emptyset$ DATA $1 \emptyset, \emptyset, 32,24,1 \emptyset 1,24,97, \emptyset, 64, \varnothing, 64, \emptyset$
$63 \emptyset$ DATA $11,64, \emptyset, 96,1,48,15,48,15,16,15, \varnothing$
$64 \emptyset$ REM SIX
$65 \emptyset$ DATA $11, \emptyset, 96, \emptyset, 112, \emptyset, 12 \emptyset, \emptyset, 92, \emptyset, 1 \emptyset 2, \emptyset$
$66 \emptyset$ DATA $11,98, \varnothing, 98, \varnothing, 98, \varnothing, 7 \emptyset, \emptyset, 14, \emptyset, 6$
$67 \emptyset$ DATA $11,6,8,23,8,55,8,99, \emptyset, 65, \emptyset, 64$
$68 \emptyset$ DATA $11, \emptyset, 96, \emptyset, 112,1,62,1,3 \emptyset, 1,14, \emptyset$
690 REM SEVEN
$7 \emptyset \emptyset$ DATA $11, \emptyset, 16,8,6,8,6,8,6,8,6,8$
$71 \varnothing$ DATA $9,7 \emptyset, 8,1 \emptyset 2,8,54,8,6, \emptyset, 2, \varnothing, \emptyset$
$72 \emptyset$ DATA $11, \emptyset, 64, \emptyset, 96, \emptyset, 12 \emptyset, \emptyset, 124, \emptyset, 3 \emptyset, 1$
$73 \emptyset$ DATA $9,6,1, \varnothing, \emptyset, \emptyset, \emptyset, \varnothing, \emptyset, \varnothing, \varnothing, \emptyset$
$74 \emptyset$ REM EIGHT
$75 \emptyset$ DATA $11, \emptyset, \emptyset, \emptyset, \varnothing, 24,36,24,1 \emptyset 2,24,1 \varnothing 2, \varnothing$
$76 \emptyset$ DATA $11,67, \emptyset, 67, \emptyset, 99,28,34,28,34,28, \emptyset$
$77 \emptyset$ DATA $11,12,18,44,19,1 \varnothing 8,19,96,1,64, \emptyset, 64$
$78 \emptyset$ DATA $11, \emptyset, 96,1,112,15,48,15,16,14, \emptyset, \emptyset$
$79 \varnothing$ REM NINE
$8 \emptyset \emptyset$ DATA $11, \emptyset, \emptyset, 12 \emptyset, 4,12 \emptyset, 6,12 \emptyset, 6, \emptyset, 3, \emptyset$
$81 \varnothing$ DATA $11,3, \emptyset, 3, \varnothing, 67,4,123,4,122,4,12 \emptyset$
$82 \emptyset$ DATA $11,48, \emptyset, 56, \emptyset, 113, \emptyset, 99, \emptyset, 99, \emptyset, 99$
$83 \emptyset$ DATA $11, \emptyset, 115, \emptyset, 57, \varnothing, 31, \emptyset, 15, \varnothing, 6, \emptyset$
$84 \emptyset$ REM SPACE
$85 \emptyset$ DATA $11, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \varnothing, \varnothing, \emptyset$

Download utility program

10 DIM $2(8,12), \operatorname{MM}(11)$
15 CS\$ = "*":SC\$ = "@":ST\$ = "
$2 \emptyset$ HOME : GOSUB $66 \emptyset$
$3 \varnothing$ VTAB 24: HTAB 34
$4 \emptyset$ GET A $\$$
50 IF A\$ = "P" THEN GOSUB 680: GOTO $3 \varnothing$
60 IF $A \$=" E "$ THEN HOME : GOSUB 9øø: GOSUB 260: GOTO 30
$7 \emptyset$ IF A\$ = CHR $\$(27)$ THEN HOME : END
$8 \emptyset$ PRINT CHR\$ (7) : : GOTO $3 \varnothing$
260 REM
265 FOR I = 1 TO 11:MM(I) = \varnothing : NEXT I
$27 \varnothing$ VTAB 3: HTAB 6: PRINT CS\$;
$28 \emptyset$ GET A\$
290 IF A\$ = "J" THEN GOSUB 390: GOTO $37 \emptyset$
$30 \emptyset$ IF A\$ $=$ "K" THEN GOSUB 410: GOTO $37 \emptyset$
310 IF $A \$=$ "M" THEN GOSUB 430: GOTO $37 \emptyset$

```
32\varnothing IF A$ = "I" THEN GOSUB 45\emptyset: GOTO 37\emptyset
33\emptyset IF A$ = CHR$ (13) THEN GOSUB 470: GOTO 37\emptyset
34\emptyset IF A$ = CHR$ (32) THEN GOSUB 49\emptyset: GOTO 37\emptyset
350 IF A$ = CHR$ (27) THEN GOSUB 50\emptyset: GOTO 38\emptyset
37\varnothing GOTO 28\emptyset
38\emptyset RETURN
39\varnothing GOSUB 1\varnothing\varnothing\varnothing:Y = Y - 2:H = H - 1: IF Y < 1 THEN
    PRINT CHR$ (7);:Y = 1:H = 1
40\emptyset GOSUB 1\varnothing5\varnothing: RETURN
41\emptyset GOSUB 1\varnothing\varnothing\emptyset:Y = Y + 2:H = H + 1: IF Y >21 THEN
    PRINT CHR$ (7);:Y = 21:H = 11
420 GOSUB 105\emptyset: RETURN
430 GOSUB 10\varnothing\varnothing:X = X + 2:G = G + 1: IF X > 13 THEN
    PRINT CHR$ (7);:X = 13:G = 7
440 GOSUB 1050: RETURN
45\varnothing GOSUB 1\varnothing\emptyset\emptyset:X = X - 2:G=G - 1: IF X < 1 THEN
    PRINT CHR$(7);:X = 1:G = 1
4 6 0 ~ G O S U B ~ 1 9 5 0 : ~ R E T U R N ~
47\emptyset IF Z(G,H - 1) = 1 OR Z(G,H + 1) = 1 THEN PRINT
    CHR$ (7);: RETURN
48\emptyset Z(G,H) = 1: INVERSE : VTAB X + 2: HTAB Y + 5:
    PRINT SC$;: NORMAL : RETURN
490 Z(G,H)= \emptyset: NORMAL : VTAB X + 2: HTAB Y + 5:
    PRINT CS$;: RETURN
5 0 \emptyset ~ R E M
510 FOR I = 2 TO 12: VTAB I: HTAB 29: PRINT
                                    ";: NEXT I
52\emptyset IF Z(G,H) = 1 THEN VTAB X + 2: HTAB Y + 5:
    NORMAL : PRINT SC$;: GOTO 540
53\emptyset IF Z(G,H) = \emptyset THEN VTAB X + 2: HTAB Y + 5:
    NORMAL : PRINT " ";
54\emptyset REM
550 FOR I = 1 TO 11: FOR J = 1 TO 7
560 MM(I) = MM(I) + Z(J,I) * 2^ (J - 1): NEXT J:
    NEXT I
567 FOR I = 1 TO 11:S$ = STR$ (MM(I)): FOR J = 1 TO
    LEN (S$)
568 VTAB J + 16: HTAB I * 2 + 4: PRINT
    MID$ (S$,J,1);: NEXT J: NEXT I
580 GOSUB 660: RETURN
66\emptyset FOR I = 1 TO 7: FOR J = 1 TO 11:Z(I,J) = \emptyset:
    NEXT J: NEXT I
67\varnothing VTAB 24: HTAB 2: PRINT "E)DIT P)RINTER 〈ESC〉)
    END ";: RETURN
68 REM
```

690 VTAB 21：HTAB 2：INPUT＂NORMAL OR PROPORTIONAL （N／P）－－＞＂；AN\＄
$7 \emptyset \emptyset$ IF AN\＄＝＂N＂THEN PR＝\varnothing ：GOTO $75 \varnothing$
$71 \varnothing$ IF AN\＄＝＂P＂THEN $73 \varnothing$
$72 \emptyset$ PRINT CHR\＄（7）；：GOTO $69 \emptyset$
730 VTAB 21：HTAB 2：PRINT ST\＄；：VTAB 21：HTAB 2：
735 INPUT＂PROPORTIONAL DATA（4－11）－－＞＂；PR
740 IF PR 〈 4 OR PR 〉 11 THEN $73 \varnothing$
750 VTAB 21：HTAB 2：PRINT ST\＄；：VTAB 21：HTAB 2：
755 INPUT＂SHIFTED DOWN 1 ELSE ENTER $\emptyset-->$＂；SH
$76 \emptyset$ IF SH＜\varnothing OR SH 〉 1 THEN PRINT CHR\＄（7）；：GOTO $75 \emptyset$
$77 \emptyset$ VTAB 21：HTAB 2：PRINT ST\＄；：VTAB 21：HTAB 2：
775 INPUT＂ENTER YOUR ASCII（33－126）－－－＂；AS
780 IF AS（ 33 OR AS＞ 126 THEN $77 \varnothing$
785 VTAB 21：HTAB 2：PRINT ST\＄；：VTAB 23：HTAB 38
790 IF SH $=1$ THEN SH $=16$
$8 \emptyset \emptyset \mathrm{~N} 1=\mathrm{AS}: \mathrm{N} 2=\mathrm{PR}+\mathrm{SH}$
$81 \varnothing$ FOR $I=1$ TO 11：MM\＄$=M M \$+\operatorname{CHR} \$(M M(I)):$ NEXT I
815 PR\＃ 1
816 PRINT CHR\＄（9）；＂255N＂
$82 \emptyset$ PRINT CHR\＄（27）；＂＊＂；CHR\＄（1）；CHR\＄（N1）； CHR\＄（N2）；MM\＄
825 IF AN\＄＝＂N＂THEN PRINT CHR\＄（27）；＂\＄＂； CHR \＄（1）：GOTO 830
827 PRINT CHR\＄（27）；＂X＂；CHR\＄（1）
830 FOR I＝ 1 TO 2 $:$ PRINT CHR\＄（N1）；＂＂；：NEXT I： PRINT
$84 \emptyset$ PRINT CHR\＄（14）；：FOR I＝ 1 TO 1ø：PRINT CHRS（N1）；＂＂；：NEXT I：PRINT
850 PRINT CHR\＄（15）；：FOR I＝ 1 TO 20：PRINT CHR\＄（N1）；＂＂；：NEXT I：PRINT CHR\＄（18）
860 IF AN\＄$=$＂N＂THEN PRINT CHR\＄（27）；＂\＄＂ CHR\＄（ \varnothing ）：GOTO $87 \varnothing$
865 PRINT CHR\＄（27）；＂X＂；CHR\＄（ \varnothing ）
$87 \varnothing$ PRINT CHR\＄（27）；＂＠＂；：MM\＄＝＂＂：RETURN
$9 \emptyset \emptyset \mathrm{X}=1: Y=1: G=1: H=1$
901 HOME
992 FOR I＝ 2 TO 16 STEP 2：VTAB I：HTAB 5：FOR J＝ 1 TO 23：PRINT＂－＂；：NEXT J：PRINT ：NEXT I
904 FOR J $=3$ TO 16 STEP 2：VTAB J：FOR $I=5$ TO 27 STEP 2：HTAB I：PRINT＂！＂；：NEXT I：PRINT ： NEXT J
$9 \not 5 \mathrm{~K}=1:$ VTAB 1：HTAB 5

```
906 FOR K = 1 TO 11: PRINT K;" ";: NEXT K
907 K = \varnothing
908 FOR V = 3 TO 15 STEP 2: VTAB V: HTAB 2:
    PRINT 2 ^ K:K = K + 1: NEXT V
910 VTAB 3: HTAB 30: PRINT "CURSER "
912 VTAB 4: HTAB 29: PRINT "MOVEMENT"
913 VTAB 5: HTAB 29: PRINT "--------"
914 VTAB 6: HTAB 29: PRINT "〈I\rangle UP "
916 VTAB 7: HTAB 29: PRINT "〈M> DOWN"
918 VTAB 8: HTAB 29: PRINT "〈J\rangle LEFT"
920 VTAB 9: HTAB 29: PRINT "〈K\rangle RIGHT"
922 VTAB 10: HTAB 29: PRINT "〈RET\rangle INSERT"
924 VTAB 11: HTAB 29: PRINT "〈SPACE> DEL"
925 VTAB 12: HTAB 29: PRINT "〈ESC〉 EXIT"
9 2 6 ~ R E T U R N
1\emptyset\emptyset\emptyset IF Z(G,H) = \emptyset THEN VTAB X + 2: HTAB Y + 5:
    PRINT " ";
1ø1\emptyset IF Z(G,H) = 1 THEN VTAB X + 2: HTAB Y + 5:
    PRINT SC$;
102\emptyset RETURN
105D IF Z(G,H) = 1 THEN INVERSE : VTAB X + 2:
    HTAB Y + 5: PRJNT CS$;: NORMAL
1060 IF Z(G,H)=\varnothing THEN NORMAL : VTAB X + 2:
    HTAB Y + 5: PRINT CS$;: NORMAL
107\emptyset RETURN
```


Delta Plot program

```
4 HOME : PRINT " ": PRINT " "
5 PRINT " ": PRINT " "
6 PRINT "THIS PROGRAM TAKES ABOUT"
7 PRINT "1 MINUTE TO RUN. PLEASE"
8 PRINT " TURN ON YOUR PRINTER AND"
9 PRINT "STAND BY................."
10 A = 24576
2\emptyset FOR I = A TO A + 12
30 READ B
35 POKE I,B
4\varnothing NEXT I
50 DATA 32,74,255,165,250,5,251
60 DATA 133,252,32,63,255,96
10\emptyset REM DELTA-PLOT
110 DIM BIT%(75,14)
1\emptyset\emptyset\emptyset REM SET PROGRAM CONSTANTS
1010 MASK%(1) = 64:MASK%(4) = 8
1\emptyset2\emptyset MASK%(2) = 32:MASK%(5) = 4
```

```
\(1030 \operatorname{MASK} \%(3)=16: \operatorname{MASK} \%(6)=2\)
\(104 \emptyset \mathrm{LX}=2 \emptyset: L Y=2 \emptyset\)
\(105 \emptyset \mathrm{XFAC}=72 / \mathrm{LX}: Y F A C=87 / \mathrm{LY}\)
\(2 \emptyset \emptyset \emptyset\) REM PLOT CURVE
\(2 \emptyset 1 \varnothing \mathrm{RAD}=9\)
\(2 \emptyset 2 \emptyset \mathrm{X} 1=19: \mathrm{Y} 1=1 \varnothing\)
\(2 \emptyset 3 \emptyset\) FOR ANG \(=\emptyset\) TO \(36 \emptyset\) STEP \(1 \varnothing\)
\(2040 \mathrm{R} 1=\mathrm{ANG} * 6.28 / 36 \emptyset\)
\(2 \not 05 \emptyset \mathrm{X} 2=\mathrm{RAD} * \operatorname{COS}(\mathrm{R} 1)+1 \varnothing: \mathrm{Y} 2=\mathrm{RAD} * \operatorname{SIN}(\mathrm{R} 1)\)
    \(+1 \varnothing\)
\(206 \emptyset\) GOSUB 400ø
\(207 \varnothing\) NEXT ANG.
\(309 \emptyset\) REM SEND BIT IMAGE MAP TO PRINTER
3005 PR\# 1
\(30 \emptyset 6\) PRINT CHR\$ (9);"ØN"
\(301 \emptyset\) PRINT CHR \(\$\) (27);"A"; CHR\$ (6)
\(302 \emptyset\) FOR ROW \(=\emptyset\) TO 14
\(3022 \mathrm{~A} \$=" 1\)
\(305 \emptyset\) FOR COL \(=1\) TO 75
\(3060 \mathrm{~A} \$=\mathrm{A} \$+\mathrm{CHR} \$(\mathrm{BIT} \mathrm{\%}(\mathrm{COL}, \mathrm{ROW}))\)
\(397 \varnothing\) NEXT COL
\(398 \emptyset\) PRINT CHR\$ (27);"K"; CHR\$ (75); CHR\$ ( \(\varnothing\) ) ; A\$
\(399 \varnothing\) NEXT ROW
\(31 \emptyset \emptyset\) PRINT
\(31 \emptyset 2\) PR\# \(\emptyset\)
\(323 \emptyset\) END
\(4 \emptyset \emptyset \emptyset\) REM DRAW A LINE FROM X1,Y1 TO X2,Y2
\(4 \emptyset 1 \emptyset \mathrm{XL}=\mathrm{X} 2-\mathrm{X} 1: Y \mathrm{Y}=\mathrm{Y} 2-\mathrm{Y} 1\)
\(402 \emptyset \mathrm{NX}=\mathrm{ABS}(\mathrm{XL} * \mathrm{XFAC}): N Y=A B S(Y L * Y F A C)\)
\(403 \varnothing\) IF NX ( NY THEN NX = NY
\(4 \emptyset 4 \emptyset \mathrm{NS} \%=\mathrm{INT}(\mathrm{NX}+1)\)
\(405 \emptyset \mathrm{DX}=\mathrm{XL} / \mathrm{NS} \%: \mathrm{DY}=\mathrm{YL} / \mathrm{NS} \%\)
\(406 \emptyset\) FOR I = 1 TO NS\%
\(4 \emptyset 7 \emptyset \mathrm{X} 1=\mathrm{X} 1+\mathrm{DX}: Y 1=Y 1+\mathrm{DY}\)
\(498 \emptyset\) GOSUB \(59 \emptyset \emptyset\)
4090 NEXT I
\(41 \emptyset \emptyset\) RETURN
\(5 \not 0 \emptyset \emptyset\) REM PLOT A POINT AT X1,Y1
\(5010 \mathrm{XX}=\mathrm{X} 1\) * XFAC: YY \(=\mathrm{Y} 1\) * YFAC
\(5020 \mathrm{COL}=\mathrm{INT}(\mathrm{XX})+1\)
5030 ROW \(=\mathrm{INT}(\mathrm{YY} / 6)\)
\(504 \emptyset \mathrm{XIT} \%=\mathrm{INT}(\mathrm{YY}-(6 * \mathrm{ROW}))+1\)
5042 POKE 250,BIT\% (COL,ROW)
5044 POKE 251,MASK\% (XIT\%)
5046 CALL 24576
```

```
5050 BIT%(COL,ROW) = PEEK (252)
506\emptyset RETURN
```


Pie chart program

```
HOME
5 PRINT " PLEASE STAND BY"
10 A = 768
2\emptyset FOR I = A TO A + 12
30 READ B
35 POKE I,B
4 0 ~ N E X T ~ I ~
50 DATA 32,74,255,165,250,5,251
6\emptyset DATA 133,252,32,63,255,96
10\emptyset REM PIECHART
11\varnothing DIM BIT%(19\emptyset,36),A$(36),PCT%(25),TXT$(42),
    PTXT$(25)
12\emptyset ES$ = CHR$ (27):LF$ = CHR$ (1\emptyset)
130 FF$ = CHR$ (12):VT$ = CHR$ (11)
140 EM$ = ES$ + "E":CE$ = ES$ + "F"
15\emptyset FOR I = 1 TO 168:SP$ = SP$ + CHR$ ( }\varnothing): NEXT I
1\emptyset\emptyset\emptyset REM SET PROGRAM CONSTANTS
102\emptyset MASK%(1) = 64:MASK%(4) = 8
102\emptyset MASK%(2) = 32:MASK%(5) = 4
103\emptyset MASK%(3) = 16:MASK%(6) = 2
1\emptyset4\emptyset LX = 2\emptyset:LY = 2\emptyset
105\emptyset XFAC = 19\emptyset / LX:YFAC = 216 / LY
1060 FOR I = 1 TO 42
107\emptyset FOR J = 1 TO 8\emptyset:TXT$(I) = TXT$(I) + " "
1\emptyset8\emptyset NEXT J: NEXT I
1090 GOSUB 70\emptyset\emptyset
1092 HOME : PRINT " ": PRINT " "
1094 PRINT " ": PRINT " "
1096 PRINT "THIS PROGRAM TAKES ABOUT"
1097 PRINT "4 MINUTES TO RUN. PLEASE"
1098 PRINT "TURN ON YOUR PRINTER AND"
1099 PRINT "STAND BY................"
2\emptyset\emptyset\emptyset REM PLOT CURVE
2010 RAD = 9
2\emptyset2\emptyset X1 = 19:Y1 = 1\emptyset
2025 PRINT " ";
2\emptyset3\emptyset FOR ANG = \emptyset TO 36\emptyset STEP 5
204\emptyset R1 = ANG * 6.28 / 360
2\emptyset5\emptyset X2 = RAD * COS (R1) + 1\emptyset:Y2 = RAD * SIN (R1) +
    1\emptyset
```

```
2\emptyset60 GOSUB 4\emptyset\emptyset\emptyset
2 0 7 0 ~ N E X T ~ A N G ~
2\emptyset8\emptyset FOR PI = 1 TO NP%
2\emptyset90 X1 = 10:Y1 = 10
2100 TP% = TP% + PCT%(PI)
211\emptyset ANG = 360 * TP% * . }0
212\emptyset R1 = ANG * 6.28 / 36\emptyset
2130 X2 = RAD * COS (R1) + 10:Y2 = RAD * SIN (R1)
    +10
2140 GOSUB 40\emptyset\emptyset
2150 GOSUB 60\emptyset\emptyset
2160 NEXT PI
30\emptyset\emptyset REM SEND BIT IMAGE MAP TO PRINTER
302\emptyset FOR ROW = \emptyset TO 35
3022 A$(ROW) = ""
305\varnothing FOR COL = 1 TO 19\varnothing
3060 A$(ROW) = A$(ROW) + CHR$ (BIT%(COL,ROW))
3070 NEXT COL
308\emptyset NEXT ROW
3690 PR# 1
310\emptyset PRINT CHR$ (9);"ØN"
3110 X = (40 - LEN (T1$) / 2)
312\emptyset FOR I = 1 TO X: PRINT " ";: NEXT I
3130 PRINT EM$:TI$:CE$:LF$
3140 PRINT VT$;VT$;VT$
3150 PRINT ES$;"A"; CHR$ (3)
316\emptyset PRINT TXT$(1);LF$;TXT$(2);LF$;TXT$(3);LF$
317\emptyset FOR ROW = \emptyset TO 35
318\emptyset PRINT ES$;"K"; CHR$ (1\emptyset2); CHR$ (1);
    SP$;A&(ROW)
32\emptyset\varnothing PRINT TXT$(ROW + 4)
3210 NEXT ROW
322\emptyset PRINT TXT$(40);LF$
3230 PRINT TXT$(41);LF$
324\varnothing PRINT TXT$(42);LF$
3250 PRINT ES$;"2";FF$
3255 PR# \emptyset
3257 HOME
3260 END
40\emptyset\emptyset REM DRAW A LINE FROM X1,Y1, TO X2,Y2
4010 XL = X2 - X1:YL = Y2 - Y1
402\varnothing NX = ABS (XL * XFAC):NY = ABS (YL * YFAC)
4030 IF NX < NY THEN NX = NY
404\emptyset NS% = INT (NX + 1)
4050 DX = XL / NS%:DY = YL / NS%
```

```
406\emptyset FOR I = 1 TO NS%
4\emptyset7\emptyset X1 = X1 + DX:Y1 = Y1 + DY
408\emptyset GOSUB 50\emptyset\emptyset
4 0 9 0 ~ N E X T ~ I ~
41\emptyset\emptyset RETURN
50\emptyset\emptyset REM PLOT A POINT AT X1,Y1
5010 XX = X1 * XFAC:YY = Y1 * YFAC
502\emptyset COL = INT (XX) + 1
5030 ROW = INT (YY / 6)
504\emptyset XIT% = INT (YY - (6 * ROW)) + 1
5042 POKE 250,BIT%(COL,ROW)
5044 POKE 251,MASK%(XIT%)
5046 CALL 768
5050 BIT%(COL,ROW) = PEEK (252)
5060 RETURN
600\emptyset REM
6010 MA% = (ANG + PA%) / 2
602\emptyset R1 = MA% * 6.28 / 360
603\emptyset X3 = INT (2\emptyset* SIN (R1)):Y3 =
    INT (22 * COS (R1))
6040 X4=22 + X3:Y4 = 40 + Y3
605\emptyset IF MA% > 27\emptyset OR MA% < 90 THEN GOSUB 6100:
    GOTO 6\emptyset7\emptyset
6060 GOSUB 62\emptyset\emptyset
6070 PA% = ANG
608\emptyset PETURN
610\emptyset MM$ = TXT$(X4)
6102 LL$ = LEFT$ (MM$,Y4)
6104 PP = LEN (PTXT$(PI))
6106 RR$ = RIGHT$ (MM$,8\emptyset - (Y4 + PP))
61\emptyset8 TXT$(X4) = LL$ + PTXT$(PI) + RR$
6 1 1 \emptyset ~ R E T U R N
620\emptyset MM$ = TXT$(X4)
6202 PP = LEN (PTXT$(PI))
62\emptyset4 LL$ = LEFT$ (MM$, (Y4 - PP))
62\emptyset6 RR$ = RIGHT$ (MM$,(8\emptyset - Y4))
62\emptyset8 TXT$(X4) = LL$ + PTXT$(PI) + RR$
6 2 1 0 ~ R E T U R N
700\emptyset REM
7005 I = 1
701\emptyset HOME : PRINT : PRINT : PRINT
7\emptyset2\emptyset INPUT "ENTER TITLE FOR CHART ";TI$
7\emptyset3\emptyset AS% = \emptyset:AL% = 1\emptyset\emptyset
7040 HOME
7050 PRINT "TOTAL SO FAR : ";AS%
```

```
\(796 \emptyset\) PRINT "TOTAL REMAINING : ";AL\%
\(7 \emptyset 7 \emptyset\) INPUT "ENTER \% FOR FIELD ";PCT\% (I)
\(7 \emptyset 8 \emptyset\) IF PCT\% (I) >AL\% OR PCT\% (I) \(=\varnothing\) THEN
    \(\mathrm{PCT} \%(\mathrm{I})=\mathrm{AL} \%\)
\(799 \emptyset \mathrm{AL} \%=\mathrm{AL} \%-\mathrm{PCT} \%(\mathrm{I})\)
\(710 \emptyset\) AS\% \(=\) AS\% + PCT\% (I)
\(711 \varnothing\) INPUT "ENTER DESCRIPTION OF FIELD : ";PTXT\$(I)
\(712 \emptyset\) IF LEN (PTXT\$(I)) > 15 THEN PRINT "FIELD TOO
    LONG - 15 CHAR. MAX": GOTO 711ø
\(713 \emptyset\) IF AL\% \(=\emptyset\) THEN GOTO 72øø
\(7140 \mathrm{I}=\mathrm{I}+1\)
7150 GOTO \(7 \not \boxed{40}\)
\(72 \not 0 \emptyset \mathrm{NP} \%=\mathrm{I}\)
\(721 \emptyset\) IF NP\% = 1 THEN \(7 \emptyset 4 \emptyset\)
\(722 \emptyset\) HOME
7230 RETURN
```


Appendix \mathbf{D}

TRS-80 Computers

All that's required to connect Delta to your TRS-80 is a cable. It is available at your Delta dealer.

When connecting Delta to a TRS-80 we recommend that you set the DIP switches in Delta as shown below.

Recommended DIP Switch Settings for TRS-80

Switch	Setting	Function
$1-1$	ON	11 inch page size
$1-2$	ON	Normal print density
$1-3$	ON	10 CPI pitch
$1-4$	ON	Normal characters
$1-5$	ON	$1 / 6$ inch line feed
$1-6$	ON	U.S.A. Character set
$1-7$	ON	
$1-8$	ON	
$2-1$	ON	Paper-out detector active
$2-2$	OFF	Parallel interface
$2-3$	OFF	8-bit interface
$2-4$	ON	Auto line feed

TRS-80 Model I Parallel Cable

Delta		TRS-80 Model I	
Pin No.	Function	Pin No.	Function
1	STROBE	1	STROBF
2	D1	3	D1
3	D2	5	D2
4	D3	7	D3
5	D4	9	D4
6	D5	11	D5
7	D6	13	D6
8	D7	15	D7
9	D8	17	D8
11	BUSY	21	READY

TRS-80 Model II Parallel Cable

Delta		TRS-80 Model II	
Pin No.	Function	Pin No.	Function
1	STROBE	1	STROBE
2	D1	3	D1
3	D2	5	D2
4	D3	7	D3
5	D4	9	D4
6	D5	11	D5
7	D6	13	D6
8	D7	15	D7
9	D8	17	D8
10	ACK	19	ACK
11	BUSY	21	BUSY

TRS-80 BASIC

You may have to initialize your Model II to direct LPRINT statements to the printer. Use the SYSTEM "FORMS" command to do it.

TRS-80 uses another version of Microsoft Basic. Most of the programs in this book will work just as they are, but the TRS-80 does have a few unique "problem codes". They are $0,10,11$, and 12. None of these are passed properly to the printer.

You can bypass the TRS-80's BASIC and send these codes directly to the printer with the following short routine. The variable N must be set equal to the code that you wish to pass (in our example it's 0).

```
90N = \varnothing
10\emptyset IF PEEK(14312)<>63 THEN 100
110 POKE 14312,N
```

Or you can use this special printer driver that will solve all your problems. Just run this program first, and then any codes sent by a BASIC program will be sent directly to the printer. This program is for the TRS-80 Model III.

$$
5 \text { REM DRIVER FOR TRS-8 } \emptyset \text { III }
$$

$10 \mathrm{AD}=16571$
$2 \emptyset$ FOR $\mathrm{I}=\varnothing$ TO 14
30 READ A:POKE AD+I,A

```
4\emptyset NEXT I
50 POKE 16422,187
60 POKE 16423,64
7\emptyset DATA 33,232,55,2\emptyset3,126,32,252,33,17,
    \emptyset,57,126,211,251,2\emptyset1
80 END
```

And here is a version for the TRS-80 Model I.

```
5 REM DRIVER FOR TRS-8\emptyset I
10 AD=16571
2\emptyset FOR I=\emptyset TO 15
30 READ A:POKE AD+I,A
4\varnothing NEXT I
50 POKE 16422,187
60 POKE 16423,64
7\emptyset DATA 33,232,55,203,126,32,252,33,17,
    \emptyset,57,126,5\emptyset,232,55,2\emptyset1
8\emptyset END
```


Chart program

100 CLEAR $10 \emptyset 0$
$11 \varnothing$ GOSUB $19 \varnothing \varnothing$
$12 \varnothing$ GOSUB $2 \varnothing \varnothing \varnothing$
$13 \varnothing$ LPRINT "*REGULAR*"
140 GOSUB $30 \varnothing \emptyset$
$15 \emptyset$ LPRINT "*DOUBLE STRIKE*"
$16 \emptyset$ LPRINT DS $\$$
170 GOSUB $300 \varnothing$
$18 \emptyset$ LPRTNT "*EMPHASIZED*"
190 EM = TRUE
$20 \varnothing$ GOSUB $30 \varnothing \varnothing$
210 LPRINT "*DOUBLE STRIKE \& EMPHASIZED*"
$22 \emptyset$ LPRINT DS\$ EM\$;
230 GOSUB $3 \varnothing \varnothing \varnothing$
240 END
1000 REM
1060 IT\$ $=\operatorname{CHR} \$(27)+\operatorname{CHR} \(52)
$107 \emptyset$ RO\$ $=\operatorname{CHR} \$(27)+\operatorname{CHR} \(53)
$198 \emptyset$ REM
$1090 \operatorname{EN\$ }=\operatorname{CHR} \$(27)+\operatorname{CHR\$ (87)}+\operatorname{CHR\$ (1)}$
$1100 \mathrm{NW} \$=\operatorname{CHR} \$(27)+\operatorname{CHR\$ (87)}+\operatorname{CHR\$ (~} \varnothing$)
$111 \varnothing \operatorname{PIS}=\operatorname{CHR} \$(27)+\operatorname{CHR} \$(66)+\operatorname{CHR} \(1)

```
112\emptysetEL$ = CHR$(27) + CHR$(66) + CHR$(2)
1130}\operatorname{CO$ = CHR$(27) + CHR$(66) + CHR$(3)
1140 REM
115\emptyset EM$ = CHR$(27) + CHR$(69)
116\emptyset NE$ = CHR$(27) + CHR$(7\emptyset)
117\emptyset DS$ = CHR$(27) + CHR$(71)
1180 ND$ = CHR$(27) + CHR$(72)
119\emptyset UN$ = CHR$(27) + CHR$(45) + CHR$(1)
120\emptyset NU$ = CHR$(27)+CHR$(45)+\operatorname{CHR$( }\varnothing)
121\varnothing SP$ = CHR$(27) + CHR$(83) + CHR$( }\varnothing
1220 SB$ = CHR$(27) + CHR$(83) + CHR$(1)
1230 NS$ = CHR$(27) + CHR$(84)
1240 RA$ = NE$+NU$+ND$
1250 RA$ = RA$ + RO$ + PI$ +NW$
1260 REM
127\varnothing TRUE = 1 : FALSE = }
1290 RETURN
2\emptyset\emptyset\emptyset REM
2050 LPRINT RA$
206\emptyset LPRINT EN$ " NORMAL ENLARGED "
2\emptyset7\emptyset LPRINT RA$;
2080 LPRINT UN$;
2090 LPRINT CO$ "CONDENSED ";
210\emptyset LPRINT EL$ " ELITE ";
211\varnothing LPRINT PI$ " PICA ";
212\varnothing LPRINT CO$ "CONDENSED ";
213\emptyset LPRINT EL$ " ELITE ";
214\emptyset LPRINT PI$
2160 RETURN
30\emptyset\emptyset REM
3050 IT = FALSE :LPRINT RO$;
3060 UN = FALSE :LPRINT NU$;
3070 EN = FALSE :LPRINT NW$;
3080 PI = FALSE
3090 REM
3100 LPRINT CO$;
3110 GOSUB 350\emptyset 'PRINT AS REQUIRED
312\emptyset LPRINT EL$;
3130 GOSUB 350\emptyset 'PRINT AS REQUIRED
3140 LPRINT PI$; :PI = TRUE
3150 GOSUB 350\emptyset 'PRINT AS REQUIRED
3160 REM
317\emptyset IF EN = TRUE THEN LPRINT :GOTO 319\varnothing
318\varnothing LPRINT EN$; :EN = TRUE :GOTO 308\emptyset
```

```
319\emptyset IF UN = TRUE THEN LPRINT :GOTO 321\varnothing
32\emptyset\emptyset LPRINT UN$; :UN = TRUE :GOTO 3\varnothing7\emptyset
321\emptyset IF IT = TRUE THEN LPRINT RA$ :RETURN
322\emptyset LPRINT IT$; :IT = TRUE :GOTO 3\varnothing6\emptyset
3500 REM
3550 BL$ = STRING$(6,32) :FD$ = "...."
3560 IF EM = FALSE THEN LPRINT "ABcd"; :GOTO 3610
357\emptyset IF PI = FALSE THEN LPRINT FD$; :GOTO 3590
3580 LPRINT EM$ "ABcd" ;
3590 IF EN = TRUE THEN LPRINT " "; :ELSE
    LPRINT BL$;
3600 RETURN
3610 REM
362\emptyset IF EN = TRUE THEN LPRINT " "; :RETURN
363\emptyset LPRINT SP$; "Xx";
3640 LPRINT SB$; "Yy ";
3650 LPRINT NS$;
366\emptyset RETURN
```

Special character chart program
$1 \emptyset$ FOR J $=16 \emptyset$ TO 255 STEP 8
$2 \emptyset$ FOR I = J TO J +7
30 LPRINT I "=" CHR\$(I) CHR\$(9);
$4 \emptyset$ NEXT I : LPRINT : NEXT J

Macro program

Bridge hand program

$2 \emptyset$ GOSUB $1 \emptyset \emptyset \emptyset$
$3 \emptyset$ GOSUB $2 \emptyset \emptyset \emptyset$
$4 \emptyset$ GOSUB $30 \emptyset \emptyset$
$5 \emptyset$ GOSUB $4 \emptyset \emptyset \emptyset$

```
70 END
1\emptyset\emptyset\emptyset REM INITIALIZE VARIABLES
101\emptyset DIM HA(4), DE(52), CA$(13), SU$(3)
102\emptyset CA$(1)=" 2" : CA$(2)=" 3" : CA$(3)=" 4"
103\emptyset CA$(4)=" 5" : СА$(5)=" 6" : CA$(6)= " 7"
104\emptyset CA$(7)=" 8" : СА$(8)=" 9" : CA$(9)=" 1D"
105\emptyset CA$(1\emptyset)=" J" : CA$(11)=" Q" : CA$(12)=" K" :
    CA$(13)=" A"
1060 SU$(\notD)="S" : SU$(1)="H" : SU$(2)="D" :
    SU$(3)="C"
107\emptyset RETURN
2\emptyset\emptyset\emptyset REM INITIALIZE PRINTER
2\emptyset1\emptyset LPRINT CHR$(27); CHR$(68); CHR$(2\emptyset); CHR$(4\emptyset);
    CHR$(\emptyset)
2\emptyset2\emptyset LPRINT CHR$(27) CHR$(43); CHR$(27) CHR$(36)
    CHR$(\emptyset); CHR$(27) CHR$(69) CHR$(3\emptyset)
2\emptyset3\emptyset LPRINT CHR$(27) CHR$(42) CHR$(\emptyset)
204\emptyset FOR I=1 TO }
2\emptyset5\emptyset LPRINT CHR$(27); CHR$(42); CHR$(1);
2060 FOR J=1 TO 13
2\emptyset7\emptyset READ X : LPRINT CHR$(X);
208\emptyset NEXT J
2090 NEXT I
21\emptyset\emptyset LPRINT
2110 RETURN
212\emptyset DATA 72,11,4,1\emptyset,2\emptyset,1\emptyset,52,72,52,1\emptyset,2\emptyset,1\emptyset,4
213\emptyset DATA 83,11,16,8,2\emptyset,8,86,41,86,8,2\emptyset,8,16
2140 DATA 67,11,8,16,8,18,65,62,65,18,8,16,8
215\emptyset DATA 68,11,8,\emptyset,28,\emptyset,62,65,62,\emptyset,28,\emptyset,8
300\emptyset REM DEAL CARD
301\emptyset FOR CA = 1 TO 52
302\emptyset X = INT(RND ( }) * 4 + 1)
3030 IF HA(X)=13 THEN 302\emptyset
3035 HA(X)=HA(X) + 1
3040 DE(CA)=X
3050 NEXT CA
306\emptyset RETURN
400\emptyset REM PRINT FOUR HANDS
4\emptyset1\emptyset LPRINT CHR$(27); "!"; CHR$(9); "NORTH"
4ø2\emptyset LPRINT CHR$(27); "$"; CHR$(1); CHR$(27);
    CHR$(70);
4030 HA = 1
404\emptyset FOR SU = \emptyset TO 3
4050 LPRINT CHR$(9);
4060 GOSUB 430\emptyset
```

```
407\emptyset LPRINT
408\emptyset NEXT SU
409\emptyset LPRINT CHR$(27); "!"; "WEST"; CHR$(9); CHR$(9);
    "EAST"
41\emptyset\emptyset LPRINT CHR$(27); "$"; CHR$(1); CHR$(27);
    CHR$(7\emptyset);
411\emptyset FOR SU = \emptyset TO 3
412\emptyset HA = 2
4 1 3 0 ~ G O S U B ~ 4 3 0 \emptyset ~
414\emptyset LPRINT CHR$(9) CHR$(9);
4150 HA = 3
4 1 6 \emptyset \text { GOSUB 430Ø}
4 1 7 \emptyset ~ L P R I N T ~
4180 NEXT SU
419\emptyset LPRINT CHR$(27); "!"; CHR$(9); "SOUTH"
42\emptyset\emptyset LPRINT CHR$(27); "$"; CHR$(1); CHR$(27);
    CHR$(7\emptyset);
421\varnothing HA = 4
422\emptyset FOR SU = \emptyset TO 3
4230 LPRINT CHR$(9);
4240 GOSUB 4300
4 2 5 0 \text { LPRINT}
4 2 6 0 ~ N E X T ~ S U ~
427\emptyset LPRINT CHR$(27); "$"; CHR$(\emptyset); CHR$(27);
    CHR$(7\emptyset)
428\emptyset RETURN
4 2 9 0 ~ R E M ~ P R I N T ~ O N E ~ L I N E ~
4300 LPRINT SU$(SU);
4 3 1 0 \text { FOR CA = 13 TO 1 STEP -1}
432\emptyset IF DE(SU*13+CA)=HA THEN LPRINT CA$(CA);
4 3 3 0 ~ N E X T ~ C A ~
4340 RETURN
```


Numeral program

10 REM PROGRAM TO DEFINE AND PRINT NUMERAL
$2 \emptyset$ REM EACH NUMERAL IS MADE UP OF 4 CHARACTERS (2 WIDE X 2 HIGH)
$3 \emptyset \mathrm{DD} \$=\operatorname{CHR} \$(27)+\mathrm{CHR} \$(42)+\operatorname{CHR} \(1)
$4 \emptyset \mathrm{DP} \$=\operatorname{CHR} \$(27)+\mathrm{CHR} \$(88)+\mathrm{CHR} \$(1)$
$5 \emptyset \mathrm{ND} \$=\operatorname{CHR} \$(27)+\mathrm{CHR} \$(88)+\mathrm{CHR} \$(\emptyset)$
$6 \emptyset \mathrm{~L} 7 \$=\operatorname{CHR} \$(27)+\operatorname{CHR} \$(49): \mathrm{L} 12 \$=$ CHR $\$(27)+\mathrm{CHR} \$(5 \emptyset)$
$7 \emptyset$ FOR N1 = $16 \emptyset$ TO $2 \emptyset \emptyset$
$8 \emptyset$ LPRINT DD\$;

90 LPRINT CHR $\$(\mathrm{~N} 1)$;
$10 \emptyset$ READ N2
110 LPRINT CHRS(N2);
$12 \emptyset$ FOR $S=1$ TO 11
130 READ MS
$14 \varnothing$ LPRINT CHR $\$(\mathrm{MS})$;
150 NEXT S
$16 \emptyset$ NEXT N1
180 AS $=160$
$19 \emptyset$ FOR NUM $=\varnothing$ TO 9
$2 \emptyset \emptyset \mathrm{NT} \$(\mathrm{NUM})=\operatorname{CHR} \$(\mathrm{AS}+\emptyset)+\operatorname{CHR} \$(\mathrm{AS}+1)$
$210 \mathrm{NB} \$(\mathrm{NUM})=\mathrm{CHR} \$(\mathrm{AS}+2)+\mathrm{CHR} \$(\mathrm{AS}+3)$
$22 \emptyset$ AS $=A S+4$
$23 \varnothing$ NEXT NUM
$24 \emptyset \mathrm{BK} \$=\operatorname{CHR} \$(2 \emptyset \emptyset)$
250 LPRINT DP $\$$; 7 \$
$26 \emptyset$ FOR NUM $=\varnothing$ TO 9
$27 \emptyset$ LPRINT NT\$(NUM);BK\$;
280 NEXT NUM
290 LPRINT
$30 \emptyset$ FOR NUM $=\emptyset$ TO 9
$31 \varnothing$ LPRINT NB $\$$ (NUM); BK\$;
$32 \emptyset$ NEXT NUM
$33 \emptyset$ LPRINT ND $\$$ L $12 \$$
340 REM ZERO
$35 \emptyset$ DATA 11, $\emptyset, 96,16,1 \varnothing 4,16,44,3 \emptyset, 14, \varnothing, 2,1$
360 DATA $11,2,1,2,1,6,8,38,88,32,88,32$
$37 \emptyset$ DATA $11,3,14,19,14,51, \varnothing, 96, \emptyset, 96, \emptyset, 96$
$38 \emptyset$ DATA $11, \emptyset, 32, \emptyset, 48, \emptyset, 28,3,14,3,4,3$
390 REM ONE
$4 \emptyset \emptyset$ DATA $11, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, 4, \emptyset, 4, \emptyset, 4,126$
$41 \emptyset$ DATA $9,14,114,14,114,14,2, \emptyset, \varnothing, \varnothing, \varnothing, \varnothing$
$42 \emptyset$ DATA $11,64, \emptyset, 64, \emptyset, 64, \emptyset, 64,32,8 \emptyset, 47,8 \emptyset$
$43 \emptyset$ DATA $9,47,8 \emptyset, 47,64, \emptyset, 64, \emptyset, 64, \emptyset, \emptyset, \emptyset$
440 REM TWO
$45 \emptyset$ DATA $11, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, 14,16,14, \emptyset, 6, \emptyset$
$46 \emptyset$ DATA $11,3, \varnothing, 3, \varnothing, 7 \emptyset, 56,7 \emptyset, 56,4,24, \varnothing$
$47 \emptyset$ DATA $11,64, \emptyset, 64,32,64,32,8 \emptyset, 32,8 \emptyset, 4 \emptyset, 64$
$48 \emptyset$ DATA 11,44,64,38,65,34,65,32,8ø,32,88, \varnothing
$49 \varnothing$ REM THREE
$5 \emptyset \emptyset$ DATA $11, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, 4,2,4,2,4$
$51 \varnothing$ DATA 11,34,84,34,92,34,76,34,68,2,64, \varnothing
$52 \emptyset$ DATA $11,16, \emptyset, 48, \varnothing, 56,64,48,64,32,64,32$
530 DATA 11,64,32,64,48,9,54,9,22,9,6,1
540 REM FOUR
$55 \emptyset$ DATA $11, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, 64,36,88,32,16$
$56 \emptyset$ DATA $11, \emptyset, \varnothing, 64,32,64,56,64,6 \emptyset, 2,14, \emptyset$
$57 \emptyset$ DATA $11, \varnothing, 8,4,1 \emptyset, 5,1 \emptyset, 5,8,4,72,4$
$58 \emptyset$ DATA $11,88,38,89,38,89,6,73,4,8,6, \varnothing$
590 REM FIVE
$6 \emptyset \emptyset$ DATA $11, \varnothing, \varnothing, \emptyset, \emptyset, 64,32,84,5 \emptyset, 76,34,68$
$61 \varnothing$ DATA $1 \varnothing, 34,68,34,68,34,68,2,68,2, \varnothing, \varnothing$
$62 \emptyset$ DATA $1 \varnothing, \emptyset, 32,24,1 \emptyset 1,24,97, \emptyset, 64, \emptyset, 64, \emptyset$
$63 \emptyset$ DATA $11,64, \emptyset, 96,1,48,15,48,15,16,15, \emptyset$
$64 \emptyset$ REM SIX
$65 \emptyset$ DATA $11, \emptyset, 96, \emptyset, 112, \emptyset, 12 \emptyset, \emptyset, 92, \emptyset, 1 \emptyset 2, \emptyset$
$66 \emptyset$ DATA $11,98, \emptyset, 98, \emptyset, 98, \emptyset, 7 \emptyset, \emptyset, 14, \emptyset, 6$
$67 \emptyset$ DATA $11,7,8,23,8,55,8,99, \emptyset, 65, \emptyset, 64$
$68 \emptyset$ DATA $11, \emptyset, 96, \emptyset, 112,1,62,1,3 \emptyset, 1,14, \emptyset$
$69 \emptyset$ REM SEVEN
$7 \emptyset \emptyset$ DATA 11, $\emptyset, 16,8,6,8,6,8,6,8,6,8$
$71 \emptyset$ DATA $9,7 \emptyset, 8,1 \emptyset 2,8,54,8,6, \emptyset, 2, \emptyset, \emptyset$
$72 \emptyset$ DATA $11, \emptyset, 64, \emptyset, 96, \emptyset, 12 \emptyset, \emptyset, 124, \emptyset, 3 \emptyset, 1$
$73 \emptyset$ DATA $9,6,1, \emptyset, \emptyset, \emptyset, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$
$74 \emptyset$ REM EIGHT
$75 \emptyset$ DATA $11, \emptyset, \emptyset, \emptyset, \emptyset, 24,36,24,1 \varnothing 2,24,1 \emptyset 2, \emptyset$
$76 \emptyset$ DATA $11,67, \emptyset, 67, \varnothing, 99,28,34,28,34,28, \emptyset$
$77 \emptyset$ DATA $11,14,18,44,19,1 \emptyset 8,19,96,1,64, \emptyset, 64$
$78 \emptyset$ DATA $11, \emptyset, 96,1,112,15,48,15,16,14, \emptyset, \emptyset$
$79 \varnothing$ REM NINE
$8 \emptyset \emptyset$ DATA $11, \emptyset, \emptyset, 12 \emptyset, 4,12 \emptyset, 6,12 \emptyset, 6, \varnothing, 3, \varnothing$
$81 \emptyset$ DATA $11,3, \varnothing, 3, \varnothing, 67,4,123,4,122,4,12 \emptyset$
$82 \emptyset$ DATA $11,48, \varnothing, 56, \varnothing, 113, \varnothing, 99, \varnothing, 99, \emptyset, 99$
$83 \emptyset$ DATA $11, \emptyset, 115, \emptyset, 57, \emptyset, 31, \emptyset, 15, \emptyset, 7, \emptyset$
$84 \emptyset$ REM SPACE
$85 \emptyset$ DATA $11, \emptyset, \emptyset, \varnothing, \emptyset, \varnothing, \varnothing, \emptyset, \varnothing, \varnothing, \varnothing, \emptyset$

Download utility program

4 CLEAR $1 \not 0 \emptyset \emptyset$
5 ME $\$=$ "E)DIT P)RINT Q)UIT
$6 \mathrm{BL} \$=\operatorname{STRING} \$(63, "$ ")
$1 \emptyset \operatorname{DIM} \mathrm{Z}(8,12), \mathrm{MM}(11)$
$2 \emptyset$ CLS:GOSUB $66 \emptyset$
$3 \emptyset$ CS\$="@":SC\$=CHR\$(143):SS\$="*"
$4 \emptyset A \$=I N K E Y \$: I F A \$=" "$ THEN $4 \varnothing$
$5 \emptyset$ IF $A \$=" Q "$ THEN CLS:END
$6 \emptyset$ IF A $\$=$ "P" THEN GOSUB 68 0 :GOTO 40
$7 \emptyset$ IF A $\$=" E "$ THEN CLS:GOSUB 9 $9:$ GOSUB 26ø:GOTO $4 \emptyset$ $8 \emptyset$ GOTO $4 \emptyset$
$9 \varnothing \mathrm{X}=1: \mathrm{Y}=1: \mathrm{G}=1: \mathrm{H}=1$ ：
$1 \not \varnothing$ FOR $I=1$ TO $11: \mathrm{MM}(\mathrm{I})=\varnothing:$ NEXT I
105 CLS
120 FOR $I=\emptyset$ TO 7 : PRINT " ";
125 FOR J=1 TO 11:PRINT "!---";:NEXT J:PRINT "!":IF
I<7 THEN PRINT:
126 NEXT I
130 FOR $\mathrm{I}=\emptyset$ TO 6:PRINT @64*I $+64 * \mathrm{I}+64,2^{\wedge} \mathrm{I} ;:$ NEXT I
140 PRINT @7D,CS\$;
150 PRINT @18ø,"〈R〉RIGHT";
$16 \emptyset$ PRINT @244,"〈L〉 LEFT";
179 PRINT e3ø8,"〈U〉 UP";
$18 \emptyset$ PRINT ©372,"〈D〉 DOWN";
190 PRINT @436,"〈I〉 INSERT";
200 PRINT @50日,"〈C〉 CLEAR";
210 PRINT @564,"〈Q〉QUIT";
220 RETURN
260 REM EDIT LEVEL
$27 \emptyset$ A $\$=I N K E Y \$: I F A \$=" "$ THEN $27 \emptyset$
280 IF A $\$=$ "L" THEN GOSUB 390:GOTO 370
290 IF A $\$=$ "R" THEN GOSUB 410:GOTO $37 \varnothing$
300 IF A\$="D" THEN GOSUB 430:GOTO 370
$31 \varnothing$ IF A\$="U" THEN GOSUB 45ø:GOTO $37 \varnothing$
320 IF A\$="I" THEN GOSUB 47Ø:GOTO $37 \varnothing$
330 IF A $\$=" C "$ THEN GOSUB 490:GOTO 370
340 IF A\$="Q" THEN GOSUB 5ø日:GOTO $38 \varnothing$
$37 \varnothing$ GOTO $27 \emptyset$
389 RETURN
390 GOSUB 92ø:Y=Y-4:H=H-1:IF Y<1 THEN $Y=1: H=1$
400 GOSUB 950:RETURN
410 GOSUB $920: \mathrm{Y}=\mathrm{Y}+4: \mathrm{H}=\mathrm{H}+1: \mathrm{IF}$ Y 741 THEN $\mathrm{Y}=41: \mathrm{H}=11$
420 GOSUB 950:RETURN
430 GOSUB 920:X=X+2:G=G+1:IF X>13 THEN X=13:G=7
440 GOSUB 950:RETURN
450 GOSUB 920:X=X-2:G=G-1:IF X<1 THEN X=1:G=1
460 GOSUB 950:RETURN
$47 \varnothing$ IF $Z(G, H-1)=1$ OR $Z(G, H+1)=1$ THEN RETURN
$48 \emptyset \mathrm{Z}(\mathrm{G}, \mathrm{H})=1$:PRINT @X*64+Y+5,SS\$;:RETURN
$49 \varnothing Z(G, H)=\varnothing$: PRINT @X*64+Y+5,CS\$;:RETURN
$5 \emptyset \emptyset$ REM GET OF EDIT MODE
$51 \varnothing$ IF $Z(G, H)=1$ THEN PRINT @X* $64+Y+5, S C \$$;
$52 \emptyset$ IF $\mathrm{Z}(\mathrm{G}, \mathrm{H})=\emptyset$ THEN PRINT @X*64+Y+Y," ";
524 PRINT @X*64+Y+5, " ";
530 FOR I=1 TO 11:FOR $\mathrm{J}=1$ TO 7:
$M M(I)=M M(I)+Z(J, I) * 2[(J-1): N E X T J: N E X T ~ I$

540 CLS
542 FOR I＝1 TO 11：PRINT＂M＂；I；TAB（5）；＂＝＂；MM（I）：
NEXT I
550 GOSUB 660：RETURN
$66 \emptyset$ FOR $I=1$ TO 7：FOR $J=1$ TO 11：Z $(I, J)=\varnothing:$ NEXT J：
NEXT I
$67 \emptyset$ PRIN＇T＠96ø，ME $\$$ ：RETURN
$68 \emptyset$ REM PRINT MODE
$69 \emptyset$ PRINT＠832，＂＂；：INPUT＂NORMAL OR PROPORTIONAL－－＞ ＂；AN\＄
$7 \emptyset \emptyset$ IF AN $\$=" \mathrm{~N} "$ THEN PR＝\varnothing ：GOTO $75 \emptyset$
$71 \emptyset$ IF AN\＄＝＂P＂THEN GOTO $73 \emptyset$
$72 \emptyset$ GOSUB $1 \emptyset \emptyset \emptyset:$ GOTO $69 \emptyset$
$73 \emptyset$ GOSUB 1øøø：PRINT＠832，＂＂；：INPUT＂PROPORTIONAL
DATA（4－11）－－＞＂；PR
$74 \emptyset$ IF PR〈4 OR PR＞ 11 THEN 730
750 GOSUB 1øดด：PRINT＠832，＂＂；：INPUT＂IF SHIFTED
ENTER $1-$ ELSE ENTER \varnothing－－＞＂；SH
$76 \emptyset$ IF SH〈 \varnothing OR SH〉 1 THEN $75 \emptyset$
$77 \emptyset$ GOSUB 1øøø：PRINT＠832，＂＂；：INPUT＂ASCII（33－126） （160－254）＂；AS
780 IF（AS〈33 OR AS >126 ）AND（AS〈16Ø OR AS >254 ）THEN $77 \emptyset$
$79 \varnothing$ GOSUB $1 \emptyset \emptyset \emptyset$
$8 \emptyset \emptyset$ IF $\mathrm{SH}=1$ THEN $\mathrm{SH}=16$ ELSE $\mathrm{SH}=\emptyset$
810 $\mathrm{N} 1=\mathrm{AS}: \mathrm{N} 2=\mathrm{PR}+\mathrm{SH}$
$82 \emptyset$ FOR $\mathrm{I}=1$ TO 11：MM $\$=\mathrm{MM} \$+\operatorname{CHR} \$(\mathrm{MM}(\mathrm{I})): \operatorname{NEXT} \mathrm{I}$
830 LPRINT $\operatorname{CHR} \$(27) ; " * " ; \operatorname{CHR} \$(1) ; \operatorname{CHR} \$(\mathrm{~N} 1) ; \operatorname{CHR} \$(\mathrm{~N} 2) ;$ MM\＄
84の IF AN $\$=" N "$ THEN LPRINT CHR $\$(27) ; " \$ " ; \operatorname{CHR} \$(1): G O T O$ $86 \emptyset$
$85 \emptyset$ LPRINT CHR\＄（27）；＂X＂；CHR\＄（1）
$86 \emptyset$ FOR I＝1 TO 2 $2: I P R I N T$ CHR $\$(N 1) ; "$＂；：NEXT I：IPRINT
$87 \emptyset$ LPRINT CHR $\$(14)$ ；：FOR $I=1$ TO 1ø：LPRINT
CHR ${ }^{(N 1)}$ ；：NEXT I：LPRINT
$88 \emptyset$ LPRINT CHR $\$(15)$ ；：FOR $I=1$ TO 2ø：LPRINT
CHR $\$(\mathrm{~N} 1)$ ；：NEXT I：LPRINT
$89 \emptyset$ IF AN\＄＝＂N＂THEN LPRINT CHR\＄（27）；＂\＄＂；CHR\＄（ \varnothing ）：GOTO 896
894 LPRINT CHR\＄（27）；＂X＂；CHR\＄（ \varnothing ）
896 LPRINT CHR $\$(27)$ ；＂＠＂：MM\＄＝＂＂：GOSUB 66ø：RETURN
$92 \emptyset$ IF $Z(G, H)=\emptyset$ THEN PRINT＠X＊64＋Y＋5，＂＂；
$93 \emptyset$ IF $Z(G, H)=1$ THEN PRINT＠X＊64＋Y＋5，SC\＄；
940 RETURN
$95 \emptyset$ IF $Z(G, H)=1$ THEN PRINT＠X＊64＋Y＋5，SS\＄；
$96 \emptyset$ IF $Z(G, H)=\emptyset$ THEN PRINT @X*64+Y+5,CS\$;
970 RETURN
$1 \not \emptyset \emptyset$ PRINT @832,BL\$;:RETURN

Delta Plot program

5 CLEAR $19 \emptyset \emptyset$
$1 \varnothing$ CLS:PRINT "":PRINT "":PRINT ""
$2 \emptyset$ PRINT "THIS PROGRAM TAKES ABOUT 1 MINUTE TO RUN"
$3 \emptyset$ PRINT "PLEASE TURN ON YOUR PRINTER AND STAND BY"
$1 \emptyset \emptyset$ DIM BIT\% $(76,14)$
$11 \emptyset \operatorname{MASK} \%(1)=128: \operatorname{MASK} \%(4)=16$
$12 \emptyset \operatorname{MASK} \%(2)=64 \quad: \operatorname{MASK} \%(5)=8$
$13 \emptyset \operatorname{MASK}(3)=32 \quad: \operatorname{MASK} \%(6)=4$
$14 \emptyset \quad L X=2 \emptyset \quad: L Y=2 \emptyset$
$150 \mathrm{XFAC}=72 / \mathrm{LX} \quad: \mathrm{YFAC}=87 / \mathrm{LY}$
$190 \emptyset$ REM PLOT CURVE
$1 \not 01 \emptyset \mathrm{RAD}=9$
$102 \emptyset \mathrm{X} 1=19 \quad: \mathrm{Y} 1=1 \emptyset$
$103 \emptyset$ FOR ANG $=\varnothing$ TO $36 \emptyset$ STEP $1 \varnothing$
$104 \emptyset \mathrm{RI}=\mathrm{ANG} * 6.28 / 36 \emptyset$
$1 \varnothing 5 \emptyset \mathrm{X} 2=\mathrm{RAD} * \operatorname{COS}(\mathrm{R} 1)+1 \emptyset: \mathrm{Y} 2=\mathrm{RAD} * \operatorname{SIN}(\mathrm{R} 1)+1 \emptyset$
$106 \emptyset$ GOSUB $390 \emptyset$
$107 \emptyset$ NEXT ANG
$2 \emptyset \emptyset \emptyset$ REM
$2 \emptyset 1 \emptyset$ LPRINT CHR\$(27) "A" CHR\$(6)
$2 \emptyset 2 \emptyset$ FOR ROW= \varnothing TO 14
2030 A $\$=" "$
$2 \emptyset 4 \emptyset$ LPRINT CHR\$(27);"K";CHR\$(75);CHR\$(ø);
$2 \emptyset 50$ FOR COL=1 TO 75
$2 \emptyset 60 \mathrm{MM}=(\mathrm{BIT} \%$ (COL, ROW)
2065 IF MM=12 THEN MM=14ø
$207 \varnothing \mathrm{~A} \$=\mathrm{A} \$+\mathrm{CHR} \(MM)
2090 NEXT COL
$21 \emptyset \emptyset$ LPRINT A\$
211ø NEXT ROW
2120 LPRINT CHR $\$(27)$ " 2 "
2130 END
$39 \emptyset \emptyset$ REM DRAW A LINE FROM X1,Y1 TO X2,Y2
$3010 \mathrm{XL}=\mathrm{X} 2$ - X1 : YL=Y2 - Y1
3020 NX=ABS (XL*XFAC) : NY=ABS (YL*YFAC)
$303 \emptyset$ IF NX (NY THEN NX=NY
3040 NS\% $=$ INT $(N X+1)$
$3050 \mathrm{DX}=\mathrm{XL} / \mathrm{NS} \% \quad: \mathrm{DY}=\mathrm{YL} / \mathrm{NS} \%$
3060 FOR $\mathrm{I}=1$ TO NS\%
$397 \emptyset \mathrm{X} 1=\mathrm{X1}+\mathrm{DX} \quad: \mathrm{Y} 1=\mathrm{Y} 1+\mathrm{DY}$

```
308\emptyset GOSUB 400\emptyset
3090 NEXT I
31\emptyset\emptyset RETURN
4000 REM PLOT A POINT AT X1,Y1
401\emptyset XX=X1 * XFAC : YY=Y1 * YFAC
402\emptyset COL=INT(XX) + 1
4030 ROW=INT(YY/6)
4\emptyset4\varnothing XIT%=INT(YY-(6*ROW))+1
405\emptyset BIT%(COL,ROW)=BIT%(COL,ROW) OR MASK%(XIT%)
4 0 6 \emptyset ~ R E T U R N
```


Pie chart program

40 CIS

45 PRINT " PLEASE STAND BY"
$5 \emptyset$ CLEAR $1 \emptyset \emptyset \emptyset \emptyset$
$10 \emptyset$ ' PIECHART
$11 \varnothing \operatorname{ESC} \$=\operatorname{CHR} \$(27) \quad: \mathrm{LF} \$=\operatorname{CHR} \$(1 \varnothing)$
$12 \emptyset \mathrm{FF} \$=\mathrm{CHR} \$(12): \mathrm{VT} \$=\operatorname{CHR} \$(11)$
$130 \mathrm{EM} \$=\mathrm{ESC} \$+$ "E" : NE $\$=\mathrm{ESC} \$+\mathrm{F} "$
$1 \emptyset \emptyset \emptyset$ ' Set program constants
$1 \emptyset 2 \emptyset \operatorname{DIM} \operatorname{BIT} \%(19 \emptyset, 36), \mathrm{A} \$(36), \mathrm{PCT} \%(25)$,
TXT\$(42), $\operatorname{PXT} \$(25)$
1030 MASK\% (1) $=128: \operatorname{MASK} \%(4)=16$
$1040 \operatorname{MASK} \%(2)=64 \quad: \operatorname{MASK} \%(5)=8$
$1050 \operatorname{MASK} \%(3)=32: \operatorname{MASK} \%(6)=4$
$1 \varnothing 6 \emptyset \mathrm{LX}=2 \emptyset \quad: \mathrm{LY}=2 \emptyset$
$1 \emptyset 7 \emptyset \mathrm{XFAC}=19 \emptyset / \mathrm{LX} \quad: Y F A C=216 / \mathrm{LY}$
$1 \emptyset 8 \emptyset$ FOR $I=1$ TO 42
1085 REM THERE ARE $8 \emptyset$ SPACES IN TXT $\$(\mathrm{I})$
$1 \varnothing 9 \emptyset$ TXT\$(I) = " (80 spaces) " :
1100 NEXT I
1110 GOSUB $790 \emptyset$
$112 \emptyset$ CLS:PRINT " THIS PROGRAM TAKES ABOUT 5 MINUTES TO RUN"
1130 PRINT "SO TURN ON YOUR PRTNTER AND STAND BY....."'
$2 \emptyset \varnothing \emptyset$ ' Plot curve
$2 \not 01 \emptyset \mathrm{RD}=9$
$2 \emptyset 2 \emptyset \mathrm{X} 1=19: \mathrm{Y} 1=1 \emptyset$
$2 \emptyset 4 \emptyset$ FOR ANG\% $=\varnothing$ TO $36 \emptyset$ STEP 5
2050 RANG $=$ ANG\%*6.28/36
$2060 \mathrm{X} 2=\mathrm{RD} * \operatorname{COS}(\mathrm{RANG})+1 \emptyset: \mathrm{Y} 2=\mathrm{RD} * \operatorname{SIN}(\mathrm{RANG})+1 \emptyset$
$207 \emptyset$ GOSUB $40 \emptyset \emptyset$
2680 NEXT ANG\%
$2 \emptyset 9 \emptyset$ FOR PIE $=1$ TO NP\%

```
21\emptyset\emptyset X1 = 1\emptyset : Y1 = 1\emptyset
2110 TP%=TP%+PCT%(PIE)
2120 ANG%=360*TP%*.01
213\emptyset RANG = ANG%*6.28/36\emptyset
214\emptyset X2 = RD*COS(RANG)+1\emptyset:Y2 = RD*SIN(RANG) +1\varnothing
215\emptyset GOSUB 4\emptyset\emptyset\emptyset
2160 GOSUB 600\emptyset
2170 NEXT PIE
30日\emptyset ' SEND BIT IMAGE MAP TO PRINTER
3\emptyset2\emptyset FOR ROW% = \emptyset TO 35
3030 A$(ROW%) = ""
304\emptyset FOR COL% = 1 TO 19\emptyset
3045 MM=BIT%(COL%,ROW%)
3047 IF MM=12 THEN MM=140
3050 A$(ROW%) = A$(ROW%) + CHR$(MM)
3060 NEXT COL%
3080 NEXT ROW%
3090 LL=LEN (TT$):NN=4\emptyset-LL/2:FOR I=1 TO NN:LPRINT
    " ";:NEXT I
3091 LPRINT EM$;TI$;NE$;LF$
31\emptyset\emptyset LPRINT VT$;VT$;VT$
3110 LPRINT ESC$;"A";CHR$(3)
312\emptyset LPRINT TXT$(1);LF$;TXT$(2);LF$;TXT$(3);LF$
313\emptyset FOR ROW% = \emptyset TO 35
3140 LPRINT " ";
    ESC$;"K";CHR$(19\emptyset);CHR$(\varnothing);
315\emptyset LPRINT A$(ROW%)
316\emptyset LPRINT TXT$(ROW%+4)
318\emptyset NEXT ROW%
319\emptyset LPRINT TXT$(4\emptyset);LF$
32\emptyset\emptyset LPRINT TXT$(41);LF$
321\emptyset LPRINT TEXT$(42);LF$
322\emptyset LPRINT ESC$;"2";FF$
3230 END
4\emptyset\emptyset\emptyset ' DRAW A LINE FROM X1,Y1 TO X2,Y2
401\emptyset XL = X2 - X1 : YL = Y2 - Y1
402\emptyset NX = ABS(XL*XFAC) : NY = ABS(YL*YFAC)
403\emptyset IF NX < NY THEN NX = NY
4040 NS% = INT(NX+1)
405\emptyset DX = XL/NS% : DY = YL/NS%
406\emptyset FOR I% = 1 TO NS%
407\emptyset X1 = X1 + DX : Y1 = Y1 + DY
4\emptyset8\emptyset GOSUB 50\emptyset\emptyset
4 0 9 0 ~ N E X T ~ I \% ~
4110 RETURN
```

```
5000 ' PLOT A POINT AT X1,Y1
5010 XX = X1 * XFAC : YY = Y1 * YFAC
502\varnothing COL% = INT(XX) + 1
5030 ROW% = INT(YY/6)
5040 XIT% = INT(YY - ROW% * 6)+1
5050 BIT%(COL%,ROW%) = BIT%(COL%,ROW%) OR
    MASK% (XIT%)
5060 RETURN
6000 ' Place text fields in the proper location
6010 MA%=(ANG%+PA%)/2
602\emptyset RANG = MA%*6.28/36\emptyset
6030 X3 = INT(20*SIN(RANG)) :
    Y3 = INT(22*COS(RANG))
6040 X4 = 22 + X3 : Y4 = 40 + Y3
605\emptyset IF MA%)27\emptyset OR MA%<9\emptyset THEN MID$(TXT$(X4),Y4) =
    PXT$(PIE) ELSE MID$(TXT$(X4),Y4-
    LEN(PXT$(PIE)))=PXT$(PIE)
6060 PA%=ANG%
6070 RETURN
70\emptyset\emptyset ' ACCEPT DATA FROM SCREEN
7\emptyset1\emptyset CLS: PRINT : PRINT : PRINT
702\emptyset INPUT "ENTER TITLE FOR CHART: ";TT$
703\emptyset AS%=\emptyset : AL%=1\emptyset\emptyset
7040 I=1
7050 CLS: PRINT " ENTER PARAMETERS FOR
    PIE-CHART"
7060 PRINT " TOTAL SO FAR : ";
707\emptyset PRINT USING "###";AS%
708\emptyset PRINT " TOTAL REMAINING: ";
709\emptyset PRINT USING "###";AL%
71\emptyset\emptyset PRINT :PRINT :PRINT :PRINT
7110 INPUT "ENTER PERCENTAGE FOR FIELD: ";PCT%(I)
712\emptyset IF PCT%(I)>AL% OR PCT%(I)=\varnothing 'THEN PCT%(I)=AL%
7130 AL%=AL%-PCT%(I)
7140 AS%=AS%+PCT% (I)
7 1 5 \emptyset ~ P R I N T ~ : P R I N T ~
7160 INPUT "ENTER DESCRIPTION OF FIELD: ";PXT$(I)
7170 IF LEN(PXT$(I))>15 THEN PRINT "FIELD TOO LONG -
    15 CHAR. MAX": GOTO 716\emptyset
718\emptyset IF AL%=\emptyset GOTO 72\emptyset\emptyset
7 1 8 5 \mathrm { I } = \mathrm { I } + 1
7 1 9 0 \text { GOTO 7050}
72\emptyset\emptyset NP%=I
7210 IF NP%=1 THEN 7030
```

7220 CLS
7230 RETURN

Appendix E

Osborne, Kaypro and Other CP/M Computers

All that you need to connect Delta to an Osborne 1 or Kaypro computer is a cable. Your Delta dealer can provide the cable that you need.

Setting the switches

When connecting Delta to an Osborne 1, Kaypro, or other CP/M computer, we recommend that you set the DIP switches in Delta as shown below. (Although our chart indicates switch 2-2 set for a parallel interface, a serial interface will work also.)

Recommended DIP Switch Settings for Osborne 1

Switch	Setting	Function
$1-1$	ON	11 inch page size
$1-2$	ON	Normal print density
$1-3$	ON	10 CPI pitch
$1-4$	ON	Normal characters
$1-5$	ON	$1 / 6$ inch line feed
$1-6$	ON	U.S.A. Character set
$1-7$	ON	
$1-8$	ON	
$2-1$	ON	Parallel interface
$2-2$	OFF	8-bit interface
$2-3$	OFF	No auto line feed
$2-4$	OFF	

When you connect your printer to your Osborne 1 you must use the SETUP program to tell the computer whether Delta is connected to the Osborne 1's serial or parallel interface (either will work).

Osborne 1 Parallel Cable

Delta		Osborne 1	
Pin No.	Function	Pin No.	Function
2	DATA1	1	DATA0
6	DATA5	2	DATA4
3	DATA2	3	DATA1
7	DATA6	4	DATA5
4	DATA3	5	DATA2
8	DATA7	6	DATA6
5	DATA4	7	DATA3
9	DATAB	8	DATA7
1	STROBE	11	STROBE
11	BUSY	15	BUSY
16	SIG GND	16	SIG GND

Kaypro Parallel Cable

Delta		Kaypro	
Pin No.	Function	Pin No.	Function
1	STROBE	1	STROBE
2	DATA1	2	ПATA1
3	DATA2	3	DATA2
4	DATA3	4	DATA2
5	DATA4	5	DATA2
6	DATA5	6	DATA2
7	DATA6	7	DATA2
8	DATA7	8	DATA2
9	DATA8	9	DATA8
11	BUSY	11	BUSY
16	SIG GND	16	SIG GND

Using MBASIC

Many CP/M computers use Microsoft BASIC (called MBASIC). If you have a CP/M-80 computer that uses Microsoft BASIC the program listings given here should work with your computer also.

MBASIC is a very close relative of the IBM-Microsoft BASIC used in this book. The only difference is that MBASIC "interprets" CHR $\$(9)$ and substitutes a group of spaces to simulate a tab. You can send a horizontal tab to Delta by using CHR\$(137) instead of CHR\$(9).

Microsoft BASIC uses the "L" prefix on several commands to
direct them to the printer. To list programs on the printer, just type LLIST. To direct program output to the printer, use LPRINT in place of PRINT.

Some versions of Microsoft BASIC will add a carriage return and line feed at the end of every 80 (or sometimes 132) characters. To print lines longer than 80 (or 132) characters (as when doing dot graphics) you must define a wider printer width. The following statement will prevent the computer from inserting unwanted codes.

10 WIDTH LPRINT 255

Program listings

The following programs are in Microsoft BASIC for the Osborne 1.

Chart program

```
10\emptyset WIDTH IPRINT }25
110 GOSUB 10\emptyset\emptyset
12\emptyset GOSUB 2\emptyset\emptyset\emptyset
13\emptyset LPRINT "*REGULAR*"
140 GOSUB 30\varnothing\emptyset
150 LPRINT "*DOUBLE STRIKE*"
16\emptyset LPRINT DOUBLE.STRIKE$;
17\varnothing GOSUB 30\varnothing\varnothing
180 LPRINT "*EMPHASIZED*"
190 EMPHASIZED=TRUE
2\emptyset\varnothing GOSUB 3\varnothing\varnothing\varnothing
21\varnothing LPRINT "*DOUBLE STRIKE AND EMPHASIZED*"
22\emptyset LPRINT DOUBLE.STRIKE$ EMPHASIZED$;
230 GOSUB 3\varnothing\varnothing\varnothing
240 END
10\emptyset\emptyset REM
1060 ITALIC$=CHR$(27) + CHR$(52)
107\varnothing ROMAN$=CHR$(27) + CHR$(53)
109\varnothing ENLARGED$ =CHR$(27) +CHR$(87)+CHR$(1)
11\emptyset\emptyset NOT.ENLARGED$=CHR$(27)+CHR$(87)+CHR$( }0
111\emptyset PICA$=CHR$(27)+CHR$(66)+CHR$(1)
112\emptyset ELITE$=CHR$(27)+CHR$(66)+CHR$(2)
1130 CONDENSED$=CHR$(27)+CHR$(66)+CHR$(3)
1150 EMPHASIZED$=CHR$(27)+CHR$(69)
1160 NOT.EMPHASIZED$=CHR$(27)+CHR$(70)
1170 DOUBLE.STRIKE$=CHR$(27)+CHR$(71)
```

$118 \varnothing$ NOT.DOUBLE.STRIKE $\$=\operatorname{CHR} \$(27)+\operatorname{CHR} \(72)
1190 UNDERLINED $=$ CHR $\$(27)+$ CHR $\$(45)+$ CHR\$ (1)
$12 \emptyset \emptyset$ NOT. UNDERLINED $\$=$ CHR $\$(27)+$ CHR $\$(45)+$ CHR $\$(\emptyset)$
1210 SUPERSCRIPT $=$ CHR $\$(27)+$ CHR $\$(83)+$ CHR $\$(\phi)$
$122 \emptyset$ SUBSCRIPT $\$=\operatorname{CHR} \$(27)+$ CHR $\$(83)+C H R \(1)1230 NOT. SCRIPTED $\$=\operatorname{CHR} \$(27)+\operatorname{CHR} \$$ (84)1240 RESET.ALL\$=NOT.EMPHASIZED\$+NOT.UNDERLINED\$+NOT.DOUBLE.STRIKE\$
1250 RESET.ALL\$=RESET.ALL\$+ROMAN\$+PICA\$+NOT.ENLARGED\$
$127 \emptyset$ TRUE=1: FALSE= $\varnothing$$128 \emptyset$ REGULAR.HEADING\$=STRING\$(27,"*")+"REGULAR"+STRING\$(27,"*")
1290 RETURN
$2 \emptyset \emptyset \emptyset$ REM
$205 \emptyset$ LPRINT RESET.ALL\$2060 LPRINT ENLARGED ${ }^{\prime \prime}$ NORMAL ENLARGED"
$2 \emptyset 7 \emptyset$ LPRINT RESET.ALI\$;
$208 \emptyset$ LPRINT UNDERLINED\$;2090 LPRINT CONDENSED\$ "CONDENSED ";
2100 LPRINT ELITE\$ " ELITE ";
$211 \varnothing$ LPRINT PICA\$ " PICA ";$212 \emptyset$ LPRINT CONDENSED\$ "CONDENSED ";
2130 LPRINT ELITE $\$ \quad "$ ELITE ";
$214 \varnothing$ LPRINT PICA\$" PICA ";$215 \emptyset$ LPRINT RESET.ALL\$
$216 \emptyset$ RETURN
3000 REM
3050 ITALICS=FALSE:LPRINT ROMAN\$;
$306 \emptyset$ UNDERLINED=FALSE:LPRINT NOT.UNDERLINED\$;
$307 \emptyset$ ENLARGED=FALSE:LPRINT NOT.ENLARGED\$;
$308 \emptyset$ PICA=FALSE
$31 \emptyset \emptyset$ LPRINT CONDENSED\$;
$311 \emptyset$ GOSUB 35øØ
$312 \emptyset$ LPRINT ELITE\$;
3130 GOSUB 3500
3140 LPRINT PICA\$;:PICA=TRUE
3150 GOSUB $350 \emptyset$
$317 \emptyset$ IF ENLARGED=TRUE THEN LPRINT:GOTO $319 \emptyset$
$318 \emptyset$ LPRINT ENLARGED\$;:ENLARGED=TRUE:GOTO $308 \emptyset$
$319 \emptyset$ IF UNDERLINED=TRUE THEN LPRINT:GOTO $321 \emptyset$
$32 \emptyset \emptyset$ LPRINT UNDERLINED\$;:UNDERLINED=TRUE:GOTO $307 \emptyset$
$321 \varnothing$ IF ITALICS=TRUE THEN LPRINT RESET.ALI\$:RETURN$322 \emptyset$ LPRINT ITALIC $\$:$ ITALICS=TRUE:GOTO $306 \emptyset$3500 REM

```
3550 BLANK$=STRING$(6,32):FOUR.DOT$="...."
356\emptyset IF EMPHASIZED=FALSE THFN LPRTNT"ABcd";:GOTO
    3610
357\emptyset IF PICA=FALSE THEN LPRINT FOUR.DOT$;:GOTO 359\emptyset
358\emptyset LPRINT EMPHASIZED$ "ABcd ";
359\emptyset IF ENLARGED=TRUE THEN LPRINT " ";:ELSE LPRINT
    BLANK$;
360\emptyset RETURN
3610 REM
362\emptyset IF ENLARGED=TRUE THEN LPRINT " ";:RETURN
3630 LPRINT SUPERSCRIPT$; "Xx";
3640 LPRINT SUBSCRIPT$; "Yy ";
3650 LPRINT NOT.SCRIPTED$;
366\emptyset RETURN
```


Special character chart program

$1 \varnothing$ FOR J=16 TO 255 STEP 8
$2 \emptyset$ FOR I=J TO J+7
$3 \emptyset$ LPRINT I "= "CHR\$(I);" ";
$4 \emptyset$ NEXT:LPRINT:NEXT

Macro program

```
10 LPRINT CHR$(27)"+";
2\emptyset LPRINT CHR$(18);
3\emptyset LPRINT CHR$(27)"W"CHR$(\varnothing);
40 LPRINT CHR$(27)"F";
5\emptyset LPRINT CHR$(27) "H";
6\emptyset LPRINT CHR$(27) "-" CHR$(\emptyset);
7\emptyset LPRINT CHR$(27) "T";
8\emptyset LPRINT CHR$(27) "5";
9\emptyset LPRINT CHR$(3\emptyset);
```


Bridge hand program

$1 \emptyset$ WIDTH LPRINT 255

$2 \emptyset$ GOSUB $19 \emptyset \emptyset$
$3 \varnothing$ GOSUB $29 \varnothing \emptyset$
$4 \emptyset$ GOSUB $30 \emptyset \emptyset$
$5 \emptyset$ GOSUB $4 \emptyset \emptyset \emptyset$
60 END
$10 \emptyset \emptyset$ REM
$1 \not 02 \emptyset \operatorname{DIM} \operatorname{HAND}(4), \operatorname{DECK}(52), \operatorname{CARD} \$(13), \operatorname{SUIT} \(3)
$1 \varnothing 3 \emptyset \operatorname{CARD} \$(1)=" 2 ": \operatorname{CARD} \$(2)=" 3 ": \operatorname{CARD} \$(3)="$
4": $\operatorname{CARD} \$(4)=" 5^{\prime \prime}: \operatorname{CARD} \$(5)=" 6 "$

```
104\emptyset CARD$(6)=" 7":CARD$(7)=" 8":CARD$(8)="
    9":CARD$(9)=" 10"
105\emptyset CARD$(1\emptyset)=" J":CARD$(11)=" Q":CARD$(12)="
    K":CARD$(13)=" A"
1\varnothing6\emptyset SUIT$(\emptyset)="S":SUIT$(1)="H":SUIT$(2)="D":
    SUIT$(3)="C"
1\emptyset7\emptyset INPUT "Random number seed ";I
1\emptyset8\emptysetRANDOMIZE I
1090 RETURN
2\emptyset\emptyset\emptyset REM
2\emptyset1\emptyset LPRINT CHR$(27)CHR$(68)CHR$(2\emptyset)CHP$(4\emptyset)CHR$(\emptyset)
2\emptyset2\emptyset LPRINT CHR$(27)CHR$(43)CHR$(27)CHR$(36)CHR$( }\varnothing\mathrm{ )
    CHR$(27)CHR$(69)CHR$(30)
2\emptyset3\emptyset LPRINT CHR$(27)CHR$(42)CHR$( }0
2040 FOR I=1 TO 4
2050 LPRINT CHR$(27)CHR$(42)CHR$(1);
2060 FOR J=1 TO 13
2\emptyset7\emptyset READ X:LPRINT CHR$(X);
2\emptyset8\emptyset NEXT J
2090 NEXT I
21\emptyset\emptyset LPRINT
211\varnothing RETURN
212\emptyset DATA 72,11,4,1\emptyset,2\emptyset,1\emptyset,52,72,52,1\emptyset,2\emptyset,1\emptyset,4
213\emptyset DATA 83,11,16,8,2\emptyset,8,86,41,86,8,2\emptyset,8,16
214\emptyset DATA 67,11,8,16,8,18,65,62,65,18,8,16,8
215\emptyset DATA 68,11,8,\emptyset,28,\emptyset,62,65,62,\emptyset,28,\emptyset,8
30\emptyset\emptyset REM
301\emptyset FOR CARD=1 TO 52
3020 X=INT(RND*4+1)
3030 IF HAND(X)=13 THEN 302\emptyset ELSE HAND (X) = HAND (X)+1
304\emptyset DECK(CARD)=X
3050 NEXT CARD
306\emptyset RETURN
4 0 0 \emptyset ~ R E M
401\emptyset LPRINT CHR$(27) "!" SPC(2\emptyset) "NORTH"
402\emptyset LPRINT CHR$(27) "$" CHR$(1) CHR$(27)CHR$(7\emptyset);
4030 HAND=1
404\varnothing FOR SUIT=\emptyset to 3
405\emptyset LPRINT SPC(2\emptyset);
4 0 6 0 \text { GOSUB 4300}
407\emptyset LPRINT
4080 NEXT SUIT
409\emptyset LPRINT CHR$(27) "!" "WEST" SPC(4\emptyset) "EAST"
410\emptyset LPRINT CHR$(27) "$" CHR$(1) CHR$(27)CHR$(7\emptyset);
411\emptyset FOR SUIT=\emptyset TO 3
```

$412 \emptyset$ HAND $=2$
4130 GOSUB 4300
4140 LPRINT TAB(45);
4150 HAND $=3$
4160 GOSUB $430 \emptyset$
$417 \emptyset$ LPRINT
4180 NEXT SUIT
$419 \varnothing$ LPRINT CHR\$(27) "!" SPC(2ø) "SOUTH"
$42 \emptyset \emptyset$ LPRINT CHR\$(27) "\$" CHR\$(1)CHR\$(27)CHR\$(7ø);
$4210 \mathrm{HAND}=4$
4220 FOR SUIT= $=\varnothing$ TO 3
4230 LPRINT SPC(2ø);
4240 GOSUB $43 \varnothing \varnothing$
4250 LPRINT
4260 NEXT SUIT
4270 LPRINT CHR $\$(27)$ " $\$$ " CHR\$(\varnothing) CHR\$(27)CHR\$(7 $)$
4280 RETURN
$430 \emptyset$ LPRINT SUIT\$(SUIT);
4310 FOR CARD=13 TO 1 STEP -1
$432 \varnothing$ IF DECK(SUIT*13+CARD)=HAND THEN LPRINT CARD\$(CARD);
4330 NEXT CARD
4340 RETURN

Numeral program

$$
3 \emptyset \text { DEF. DOWN } . \text { CHAR } \$=\text { CHR } \$(27)+\text { CHR } \$(42)+C H R \$(1)
$$

$4 \emptyset$ DOWN. CHAR.PROP $=$ CHR $\$(27)+$ CHR $\$(88)+$ CHR $\$(1)$
$5 \emptyset$ NOT. DOWN. CHAR.PROP $=\operatorname{CHR} \$(27)+\mathrm{CHR} \$(88)+\mathrm{CHR} \$(\varnothing)$
$6 \varnothing \operatorname{LINE} .7 \$=\operatorname{CHR} \$(27)+\operatorname{CHR} \$(49): \operatorname{LINE} .12 \$=\operatorname{CHR} \$(27)+$ CHR $\$(5 \emptyset)$
$7 \emptyset$ FOR N1=16 0 TO $2 \emptyset \emptyset$
$8 \emptyset$ LPRINT DEF.DOWN.CHAR $\$$
$9 \emptyset$ LPRINT CHR $\$(\mathrm{~N} 1)$;
$10 \emptyset$ READ N2
$11 \varnothing$ LPRINT CHR\$(N2);
$12 \emptyset$ FOR $S=1$ TO 11
130 READ MS
$14 \varnothing$ LPRINT CHR\$(MS);
$15 \emptyset$ NEXT S
160 NEXT N1
180 ASCII $=16 \emptyset$
$19 \varnothing$ FOR NUM $=\varnothing$ to 9
200 NUMERAL.TOP $\$($ NUM $)=$ CHR $\$($ ASCII $+\varnothing$ $)+$ CHR $\$($ ASCII +1$)$
210 NUMERAL.BOT $\$($ NUM $)=$ CHR $\$(A S C I I+2)+C H R \$(A S C I I+3)$
$22 \emptyset$ ASCII $=$ ASCII +4

230 NEXT NUM
$24 \emptyset$ BLANK $\$=$ CHR $\$(2 \emptyset \emptyset)$
$25 \emptyset$ LPRINT DOWN.CHAR.PROP $\$$;LINE. $7 \$$
$26 \emptyset$ FOR NUM $=\emptyset$ TO 9
$27 \varnothing$ LPRINT NUMERAL.TOP\$(NUM);BLANK\$;
$28 \emptyset$ NEXT NUM
290 LPRINT
$3 \emptyset \emptyset$ FOR NUM $=\emptyset$ TO 9
$31 \emptyset$ LPRINT NUMERAL.BOT\$(NUM);BLANK\$;
$32 \emptyset$ NEXT NUM
$33 \emptyset$ LPRINT NOT.DOWN.CHAR.PROP\$;LINE. $12 \$$
$34 \emptyset$ REM ZERO
$35 \emptyset$ DATA $11, \emptyset, 96,16,1 \emptyset 4,16,44,3 \emptyset, 14, \emptyset, 2,1$
360 DATA $11,2,1,2,1,6,8,38,88,32,88,32$
$37 \emptyset$ DATA $11,3,12,19,12,51, \emptyset, 96, \emptyset, 96, \emptyset, 96$
$38 \emptyset$ DATA $11, \emptyset, 32, \emptyset, 48, \emptyset, 28,3,12,3,4,3$
$39 \emptyset$ REM ONE
$4 \emptyset \emptyset$ DATA $11, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, 4, \emptyset, 4, \emptyset, 4,126$
$41 \emptyset$ DATA $1 \varnothing, 12,114,12,114,12,2, \varnothing, \varnothing, \emptyset, \varnothing, \emptyset$
$42 \emptyset$ DATA $11,64, \emptyset, 64, \emptyset, 64, \emptyset, 64,32,8 \emptyset, 47,8 \emptyset$
$43 \emptyset$ DATA $1 \emptyset, 47,8 \emptyset, 47,64, \emptyset, 64, \emptyset, 64, \emptyset, \varnothing, \emptyset$
$44 \emptyset$ REM TWO
$45 \emptyset$ DATA $11, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, 12,16,14, \emptyset, 6, \emptyset$
$46 \emptyset$ DATA $11,3, \emptyset, 3, \emptyset, 7 \emptyset, 56,7 \emptyset, 56,4,24, \emptyset$
$47 \emptyset$ DATA $11,64, \emptyset, 64,32,64,32,8 \emptyset, 32,8 \emptyset, 4 \emptyset, 64$
$48 \emptyset$ DATA $11,44,64,38,65,34,65,32,8 \emptyset, 32,88, \emptyset$
490 REM THREE
$5 \emptyset \emptyset$ DATA 11, $\varnothing, \emptyset, \varnothing, \varnothing, \varnothing, \emptyset, 4,2,4,2,4$
510 DATA $11,34,84,34,92,34,76,34,68,2,64, \emptyset$
$52 \emptyset$ DATA $11,16, \varnothing, 48, \varnothing, 56,64,48,64,32,64,32$
$53 \emptyset$ DATA $11,64,32,64,48,1 \emptyset, 54,1 \emptyset, 22,1 \emptyset, 6,1$
540 REM FOUR
$55 \emptyset$ DATA $11, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, 64,36,88,32,16$
$56 \emptyset$ DATA 11, $\varnothing, \emptyset, 64,32,64,56,64,6 \emptyset, 2,12, \emptyset$
$57 \emptyset$ DATA $11, \emptyset, 8,4,1 \emptyset, 5,1 \emptyset, 5,8,4,72,4$
$58 \emptyset$ DATA $11,88,38,89,38,89,6,73,4,8,6, \emptyset$
590 REM FIVE
$6 \emptyset \emptyset$ DATA $11, \emptyset, \varnothing, \emptyset, \emptyset, 64,32,84,5 \emptyset, 76,34,68$
$61 \emptyset$ DATA $1 \varnothing, 34,68,34,68,34,68,2,68,2, \emptyset, \emptyset$
$62 \emptyset$ DATA $1 \varnothing, \emptyset, 32,24,1 \emptyset 1,24,97, \emptyset, 64, \varnothing, 64, \emptyset$
$63 \emptyset$ DATA $11,64, \emptyset, 96,1,48,15,48,15,16,15, \emptyset$
$64 \emptyset$ REM SIX
$65 \emptyset$ DATA $11, \emptyset, 96, \emptyset, 112, \varnothing, 12 \emptyset, \varnothing, 92, \emptyset, 1 \emptyset 2, \emptyset$
$66 \emptyset$ DATA $11,98, \varnothing, 98, \varnothing, 98, \varnothing, 70, \emptyset, 14, \emptyset, 6$
$67 \emptyset$ DATA $11,7,8,23,8,55,8,99, \emptyset, 65, \emptyset, 64$
$68 \emptyset$ DATA $11, \emptyset, 96, \emptyset, 112,1,62,1,3 \emptyset, 1,14, \emptyset$
690 REM SEVEN
$7 \not \emptyset$ DATA $11, \emptyset, 16,8,6,8,6,8,6,8,6,8$
$71 \emptyset$ DATA $1 \emptyset, 7 \emptyset, 8,1 \emptyset 2,8,54,8,6, \emptyset, 2, \emptyset, \emptyset$
$72 \emptyset$ DATA $11, \emptyset, 64, \emptyset, 96, \emptyset, 12 \emptyset, \emptyset, 124, \emptyset, 3 \emptyset, 1$
$73 \emptyset$ DATA $1 \varnothing, 6,1, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$
$74 \emptyset$ REM EIGHT
$75 \emptyset$ DATA $11, \emptyset, \emptyset, \emptyset, \emptyset, 24,36,24,1 \emptyset 2,24,1 \emptyset 2, \emptyset$
$76 \emptyset$ DATA $11,67, \emptyset, 67, \emptyset, 99,28,34,28,34,28, \emptyset$
$77 \emptyset$ DATA $11,12,18,44,19,1 \emptyset 8,19,96,1,64, \varnothing, 64$
$78 \emptyset$ DATA $11, \emptyset, 96,1,112,15,48,15,16,14, \emptyset, \emptyset$
790 REM NINE
$8 \emptyset \emptyset$ DATA 11, $\varnothing, \emptyset, 12 \emptyset, 4,12 \emptyset, 6,12 \emptyset, 6, \emptyset, 3, \emptyset$
$81 \emptyset$ DATA $11,3, \varnothing, 3, \emptyset, 67,4,123,4,122,4,12 \emptyset$
$82 \emptyset$ DATA $11,48, \emptyset, 56, \emptyset, 113, \varnothing, 99, \emptyset, 99, \emptyset, 99$
$83 \emptyset$ DATA $11, \emptyset, 115, \emptyset, 57, \emptyset, 31, \emptyset, 15, \emptyset, 7, \emptyset$
$84 \emptyset$ REM SPACE
$85 \emptyset$ DATA $11, \varnothing, \varnothing$,

Download utility program

$10 \operatorname{DIM} \mathrm{Z}(8,12), \mathrm{MM}(11)$
15 DEF FNLOCATE $\$(\mathrm{X}, \mathrm{Y})=\operatorname{CHR} \$(27)+\operatorname{CIR} \$(61)+\mathrm{CHR} \$(\mathrm{X})+$ CHR $\$(\mathrm{Y}+32)$
$2 \emptyset$ PRINT CHR $\$(26)$: $:$ GOSUB $66 \emptyset$
$3 \varnothing$ CS $\$="\langle \rangle ": S C \$="[] ": B I T=\varnothing: S S \$=" 00 "$
$4 \emptyset \mathrm{~A} \$=I N K E Y \$: I F A \$=" 1$ THEN $4 \varnothing$
$5 \emptyset$ IF $A \$=" Q "$ THEN PRINT $\operatorname{CHR} \$(26):$ END
$6 \emptyset$ IF A $\$=$ "P" THEN GOSUB 680: GOTO $4 \varnothing$
$7 \emptyset$ IF A\$="E" THEN PRINT CHR $\$(26)$:GOSUB $9 \varnothing:$ GOSUB $26 \emptyset:$
GOTO $4 \emptyset$
$8 \emptyset$ GOTO $4 \emptyset$
$9 \emptyset$ REM EDIT MODE
$95 \mathrm{H}=1: \mathrm{G}=1: \mathrm{X}=1: \mathrm{Y}=1$
96 FOR $I=1$ TO 11:MM (I) $=\varnothing:$ NEXT I
$1 \emptyset \emptyset$ PRINT CHR $\$(26)$
$11 \emptyset$ PRINT
$12 \emptyset$ PRINT " M1 M2 M3 M4 M5 M6 M7 M8 M9 M1ø M11"
$13 \emptyset$ for $I=\emptyset$ to $7: P R I N T$ " $": F O R \quad J=1$ TO 11:
$14 \varnothing$ PRINT "!==";:NEXT J:PRINT "!":IF I〈7 THEN PRINT $2^{\wedge} \mathrm{I}$
150 NEXT I
$16 \emptyset$ PRINT FNLOCATE $\$(2 \emptyset, 1)$;"R)IGHT L)EFT U)P D)OWN C) LEAR Q)UIT"
$18 \emptyset$ RETURN
$26 \emptyset$ REM **** SINGLE CHARACTER INPUT @ EDIT LEVEL****
$27 \emptyset$ PRINT FNLOCATE $(4,7) ;:$ PRINT CS\$;:PRINT
FNLOCATE $\$(2 \emptyset, 4 \emptyset)$;
$28 \emptyset A \$=I N K E Y \$:$ IF $A \$=" "$ THEN $28 \emptyset$
$30 \emptyset$ IF A\$="L" THEN GOSUB 390:GOTO $37 \emptyset$
$31 \emptyset$ IF $A \$=" R$ " THEN GOSUB 41ø:GOTO 37ø
$32 \emptyset$ IF A $\$=$ "D" THEN GOSUB 430:GOTO $37 \emptyset$
$33 \emptyset$ IF A\$="U" THEN GOSUB 45ø:GOTO 37ø
$34 \emptyset$ IF AS="I" THEN GOSUB 470:GOTO $37 \emptyset$
350 IF A $\$=$ "C" THEN GOSUB 490:GOTO 370
$36 \emptyset$ IF AS="Q" THEN GOSUB 5甲ø:GOTO 38ø
$37 \emptyset$ GOTO 28申
$38 \emptyset$ RETURN: REM ****END OF INPUT****
390 GOSUB $92 \emptyset: Y=Y-3: H=H-1: I F \quad Y<1$ THEN $Y=1: H=1$
400 GOSUB 950 : RETURN
410 GOSUB $920: Y=Y+3: H=H+1: I F \quad Y>31$ THEN $Y=31: H=11$
420 GOSUB 950:RETURN
430 GOSUB $920: \mathrm{X}=\mathrm{X}+2: \mathrm{G}=\mathrm{G}+1: \mathrm{IF} \mathrm{X}>13$ THEN $\mathrm{X}=13: \mathrm{G}=7$
440 GOSUB 950:RETURN
450 GOSUB 920:X=X-2:G=G-1:IF X<1 THEN X=1:G=1
460 GOSUB $950:$ RETURN
$47 \emptyset$ IF $Z(G, H-1)=1$ OR $Z(G, H+1)=1$ THEN RETURN
$48 \emptyset Z(G, H)=1:$ PRINT FNLOCATE $\$(X+3, Y+6)$; SS\$;:RETURN
$49 \emptyset \mathrm{Z}(\mathrm{G}, \mathrm{H})=\emptyset:$ PRINT FNLOCATE $\$(\mathrm{X}+3, \mathrm{Y}+6) ; \mathrm{CS} \$;:$ RETURN
$5 \emptyset \emptyset$ REM $* * * * G E T$ OUT OF EDIT MODE****
$52 \emptyset$ IF $Z(G, H)=1$ THEN PRINT FNLOCATE $\$(X+3, Y+6)$;
SC\$;:GOTO 540
$53 \emptyset$ IF $Z(G, H)=\emptyset$ THEN PRINT FNLOCATE $\$(X+3, Y+6) ; "$ ";
$54 \varnothing$ REM $* * * *$ PRINT THE COLUMN - VALUES****
550 FOR $I=1$ TO 11: FOR $J=1$ TO 7
$56 \emptyset \operatorname{MM}(\mathrm{I})=\mathrm{MM}(\mathrm{I})+Z(\mathrm{~J}, \mathrm{I}) * 2^{\wedge}(\mathrm{J}-1):$ NEXT $\mathrm{J}:$ NEXT I
$57 \emptyset \mathrm{~J}=\emptyset:$ FOR $\mathrm{I}=1$ TO 11:PRINT FNLOCATE $\$(19,6+\mathrm{J})$;
RIGHT\$(STR $\$(\operatorname{MM}(I)), 3) ;: J=J+3: \operatorname{NEXT}$ I
572 PRINT
575 PRINT FNLOCATE $\$(2 \emptyset, 1) ; \operatorname{STRING} \$(45, " 1)$;
580 GOSUB 660:RETURN
660 FOR $I=1$ TO 7:FOR $J=1$ TO $11: Z(I, J)=\varnothing:$ NEXT $J: N E X T$ I
$67 \emptyset$ PRINT FNLOCATE $\$(22,2) ;:$ PRINT "E) EDIT P)
PRINTER Q) QUIT ";:RETURN
$68 \emptyset$ REM $* * * * P R I N T$ MODE $* * * *$
$69 \emptyset$ PRINT FNLOCATE $\$(2 \emptyset, 1)$; INPUT "NORMAL OR
PROPORTIONAL (N/P) ";AN\$
$\emptyset \emptyset$ IF AN $\$=" N "$ THEN PR= \varnothing :GOTO $75 \emptyset$
710 IF AN\$="P" THEN GOTO 730
$72 \emptyset$ GOTO $69 \emptyset$

730 GOSUB 2øøด：PRINT FNLOCATE $\$(2 \emptyset, 1)$ ；：INPUT＂THE
PROPORTIONAL DATA（4－11）＂；PR
$74 \varnothing$ IF PR〈4 OR PR〉 11 THEN $73 \varnothing$
$75 \emptyset$ GOSUB 2øりด：PRINT FNLOCATE $(2 \emptyset, 1)$ ；：INPUT＂IF
SHIFTED ENTER 1 ELSE ENTER \emptyset＂；SH
$76 \emptyset$ IF SH〈 \emptyset OR SH〉 1 THEN GOTO $75 \emptyset$
$77 \varnothing$ GOSUB 2øøด：PRINT FNLOCATE $\$(2 \emptyset, 1)$ ；：INPUT＂ASCII
CODE（33－126 OR 160－254）＂；AS
$78 \varnothing$ IF（AS〈33 OR AS >126 ）AND（AS〈160 OR AS >254 ）THEN $77 \varnothing$
785 PRINT
790 PRINT FNLOCATE $\$(2 \emptyset, 1) ; \operatorname{STRING} \$(5 \emptyset, "$＂）
$8 \emptyset \emptyset$ IF SH＝1 THEN SH＝16 ELSE $S H=\varnothing$
$810 \mathrm{~N} 1=\mathrm{AS}: \mathrm{N} 2=\mathrm{PR}+\mathrm{SH}$
820 FOR $\mathrm{I}=1$ TO 11：MM $\$=\mathrm{MM} \$+\mathrm{CHR} \$(\mathrm{MM}(\mathrm{I}))$ ：NEXT I
830 LPRINT
CHR\＄（27）；＂＊＂；CHR\＄（1） $\operatorname{CHR\$ (N1);CHR\$ (N2);MM\$ ~}$
$84 \varnothing$ IF AN\＄＝＂N＂THEN LPRINT CHR\＄（27）；＂\＄＂；CHR\＄（1）：GOTO $86 \emptyset$
$85 \emptyset$ LPRINT CHR\＄（27）；＂X＂；CHR\＄（1）
$86 \emptyset$ FOR I＝1 TO 2ø：LPRINT CHR\＄（N1）；＂＂；：NEXT I：LPRINT
$87 \emptyset$ LPRINT CHR $\$(14) ;:$ FOR $I=1$ TO $10: I P R T N T$ CHR $\$(N 1) ; "$ ＂；：NEXT I：LPRINT CHR $\$(2 \emptyset)$
$88 \emptyset$ LPRINT CHR $\$(15) ;:$ FOR $I=1$ to $2 \emptyset: L P R I N T$ CHR $\$(N 1) ; "$
＂；：NEXT I：LPRINT CHR\＄（18）
$89 \varnothing$ IF AN\＄＝＂N＂THEN LPRINT CHR\＄（27）；＂\＄＂；CHR\＄（ \varnothing ）：GOTO 910
$9 \emptyset \emptyset$ LPRINT CHR\＄（27）；＂X＂；CHR\＄（ø）
$91 \emptyset$ LPRINT CHR\＄（27）；＂＠＂：MM\＄＝＂＂：RETURN：REM＊＊＊＊END OF PRINT MODE＊＊＊＊
$92 \emptyset$ IF $Z(\mathrm{G}, \mathrm{H})=\varnothing$ THEN PRINT FNLOCATE $\$(\mathrm{X}+3, \mathrm{Y}+6)$ ；＂＂；
930 IF $Z(G, H)=1$ THEN PRINT FNLOCATE $\$(X+3, Y+6)$ ；SC $\$$ ；
940 RETURN
950 IF $\mathrm{Z}(\mathrm{G}, \mathrm{H})=1$ THEN PRINT FNLOCATE $\$(\mathrm{X}+3, \mathrm{Y}+6)$ ；SS\＄；
960 IF $Z(G, H)=\varnothing$ THEN PRINT FNLOCATE $\$(\mathrm{X}+3, \mathrm{Y}+6)$ ；CS\＄；
970 RETURN
$2 \not 0 \emptyset$ PRINT FNLOCATE $\$(2 \emptyset, 1) ; \operatorname{STRING} \$(5 \emptyset, " ")$
$2 \not 10$ RETURN

Delta Plot program

10 PRINT CHR\＄（26）
$2 \emptyset$ PRINT＂＂：PRINT＂＂：PRINT＂＂
30 PRINT＂THIS PROGRAM TAKES ABOUT TWO＂
$4 \emptyset$ PRINT＂MINUTES TO RUN，PLEASE TURN＂
$5 \varnothing$ PRINT＂ON YOUR PRINTER AND STAND BY＂

```
1\emptyset\emptyset REM DELTA-PLOT
110 DIM BIT%(76,14)
1\emptyset\emptyset\emptyset REM SET PROGRAM CONSTANTS
1010 MASK%(1)=128:MASK%(4)=16
1\emptyset2\emptyset MASK%(2)=64 :MASK%(5)=8
103\emptyset MASK%(3)=32 :MASK%(6)=4
104\emptyset LX=2\emptyset :LY=2\emptyset
105\emptyset XFAC=72/LX :YFAC=87/LY
2\emptyset\emptyset\emptyset REM PLOT CURVE
2010 RAD=9
2\emptyset2\emptyset X1=19 : Y1=1\emptyset
2\emptyset3\emptyset FOR ANG%=\emptyset TO 36\emptyset STEP 1\emptyset
2\emptyset4\emptyset R1=ANG%*6.28/36\emptyset
2050 X2=RAD*COS(R1)+1\emptyset :Y2=RAD*SIN(R1)+1\varnothing
206\emptyset GOSUB 4\emptyset\emptyset\emptyset
2\emptyset7\emptyset NEXT ANG%
3000 REM SEND BIT IMAGE MAP TO PRINTER
3010 LPRINT CHR$(27):"A";CHR$(6)
302\emptyset FOR ROW%=\emptyset TO 14
3030 A$=""
3\emptyset4\emptyset LPRINT CHR$(27);"K";CHR$(75);CHR$(\varnothing);
3050 FOR COL% = 1 to 75
306\emptyset LPRINT CHR$(BIT%(COL%,ROW%));
3070 NEXT COL%
3080 LPRINT
3090 NEXT ROW%
310\emptyset LPRINT CHR$(27);"A";CHR$(12)
3110 END
4\emptyset\emptyset\emptyset REM DRAW A LINE FROM X1,Y1 TO X2,Y2
4\emptyset1\emptyset XL=X2-X1 :YL=Y2-Y1
4\emptyset2\emptyset NX=ABS(XL*XFAC) : NY=ABS(YL*YFAC)
403\emptyset IF NX<NY THEN NX=NY
404\emptyset NS%=INT(NX+1)
4050 DX=XL/NS% : DY=YL/NS%
4\emptyset6\emptyset FOR I%=1 TO NS%
4\emptyset7\emptyset X1=X1+DX : Y1=Y1+DY
408\emptyset GOSUB 50\emptyset\emptyset
4090 NEXT I%
41\emptyset\emptyset RETURN
500\emptyset REM PLOT A POINT AT X1,Y1
501\emptyset XX=X1*XFAC :YY=Y1*YFAC
502\emptyset COL%=INT(XX)+1
5030 ROW%=INT(YY/6)
504\emptyset XIT%=INT(YY-ROW%*6)+1
```

```
5050 BIT%(COL%,ROW%)=BIT%(COL%,ROW%) OR MASK%(XIT%)
506 RETURN
```


Pie chart program

```
11\emptyset ESC$=CHR$(27):LF$=CHR$(1\emptyset)
12\emptyset FF$=CHR$(12):VTAB$=CHR$(11)
130 EMPHASIZED$=ESC$="E":NOT.EMPHASIZED$=ESC$+"F"
1\emptyset2\emptyset DIM BIT%(190,36),A$(36),PCT%(25),TEXT$(42),
    PIECETEXT$(25)
1030 MASK%(1)=128:MASK%(4)=16
104\emptyset MASK%(2)=64 :MASK%(5)=8
105\emptyset MASK%(3)=32 :MASK%(6)=4
106\emptyset LX=2\emptyset:LY=2\emptyset
107\emptyset LXFAC=190/LX:LYFAC=216/LY
1080 FOR I=1 TO 42
109\emptyset TEXT$(I)=SPACE$(8\emptyset)
1 1 0 0 ~ N E X T ~ I ~
```



```
112\emptyset PRINT CHR$(26)
1130 PRINT "THIS PROGRAM TAKES ABOUT FIVE MINUTES"
1140 PRINT "PLEASE HAVE YOUR PRINTER READY AND "
1150 PRINT "STAND BY "
2\emptyset10 RAD=9
2\emptyset2\emptyset X1=19:Y1=1\varnothing
2\emptyset3\emptyset PRINT " ";
2\emptyset40 FOR ANG%=\emptyset TO 36\emptyset STEP 5
2050 RANG=ANG%*6.28/36\emptyset
206\emptyset X2=RAD*COS(RANG)+1\emptyset:Y2=RAD*SIN(RANG)+1\emptyset
2ø70 GOSUB 40\emptyset\emptyset
208\emptyset NEXT ANG%
2\emptyset90 FOR PIECE%=1 TO NUMBER.PIECES%
2100 X1=10:Y1=10
2110 TOTAL.PCT%=TOTAL.PCT%+PCT%(PIECE%)
212\emptyset ANG%=36\emptyset*TOTAL.PCT%*. }0
2130 RANG=ANG%*6.28/360
214\emptyset X2=RAD*COS(RANG)+1\emptyset:Y2=RAD*SIN(RANG)+1\varnothing
2150 GOSUB 4ø\emptyset\emptyset
2160 GOSUB 60ø\emptyset
217\emptyset NEXT PIECE%
301\emptyset PRINT
302\varnothing FOR ROW%=\varnothing TO 35
3030 A$(ROW%)=""
3040 FOR COL%=1 TO 190
3050 A$(ROW%)=A$(ROW%)+CHR$(BIT%(COL%,ROW%))
3060 NEXT COL%
```

```
3070 PRINT CHR$(176);CHR$(176);
3080 NEXT ROW%
3090 PRINT
3091 LPRINT SPACE$(40-LEN(TITLE$)/
    2);EMPHASIZED$;TITLE$;NOT. EMPHASIZED$;LF$
31\emptyset\emptyset LPRINT VTAB$;VTAB$;VTAB$
3110 LPRINT ESC$;"A";CHR$(3)
312\emptyset LPRINT TEXT$(1);LF$;TEXT$(2);LF$;TEXT$(3):LF$
313\emptyset FOR ROW%=\emptyset TO 35
3140 LPRINT "
    "ESC$;"K";CHR$(190)CHR$(\emptyset);
3150 LPRINT A$(ROW%)
3160 LPRINT TEXT$(ROW%+4)
317\emptyset LPRINT CHR$(176);CHR$(176);
3180 NEXT ROW%
3190 LPRINT TEXT$(40);LF$
320\emptyset LPRINT TEXT$(41);LF$
321\emptyset LPRINT TEXT$(42);LF$
322\emptyset LPRINT ESC$;"2";FF$
3230 END
4000 '
401\emptyset XL=X2-X1:YL=Y2-Y1
402\emptyset NX=ABS(XL*LXFAC):NY=ABS(YL*LYFAC)
4030 IF NX<NY THEN NX=NY
4040 NS%=INT(NX+1)
4050 DX=XL/NS%:DY=YL/NS%
406 FOR I%=1 TO NS%
407\emptyset X1=X1+DX:Y1=Y1+DY
4 0 8 0 ~ G O S U B ~ 5 0 0 \emptyset ~
4090 NEXT T%
410\emptyset PRINT CHR$(29);CHR$(205);CHR$(175);
4 1 1 0 ~ R E T U R N
5000
501\emptyset XX=X1*LXFAC:YY=Y1*LYFAC
502\emptyset COL%=INT(XX)+1
5030 ROW%=INT(YY/6)
504\emptyset XIT%=INT(YY-ROW%*6)+1
5050 BIT%(COL%,ROW%)=BIT%(COL%,ROW%) OR MASK%(XIT%)
5060 RETURN
6 0 9 0 \text { REM}
6010 MIDANG%=(ANG%+PREVANG%)/2
602\emptyset RANG=MIDANG%*6.28/36\emptyset
6030 X3=INT(2\emptyset*SIN(RANG)):Y3=INT(22*COS(RANG))
604\emptyset X4=22+X3:Y4=40+Y3
```

$605 \varnothing$ IF MIDANG\% >27め OR MIDANG\% (9め THEN MID\$(TEXT\$(X4),Y4)=PIECETEXT\$(PIECE\%) ELSE
MID\$(TEXT\$(X4),Y4-LEN(PIECETEXT\$(PIECE\%)))
=PIECETEXT\$(PIECE\%)
$606 \varnothing$ PREVANG\%=ANG\%
$607 \varnothing$ RETURN
$70 \varnothing \square$ '
$701 \emptyset$ PRINT CHR $\$(26):$ PRINT:PRINT:PRINT
$7 \varnothing 2 \emptyset$ INPUT"ENTER TITLE FOR CHART: ";TITLE\$
$7 \emptyset 3 \varnothing$ AMT.SOFAR\% $=\varnothing$;AMT. LEFT\% $=1 \varnothing \varnothing$
7040 FOR I=1 TO 24
7950 PRINT CHR $\$(26)$;" ENTER PARAMETERS FOR
PIE CHART"
$706 \emptyset$ PRINT " TOTAL SO FAR";
$7 \varnothing 7 \emptyset$ PRINT AMT.SOFAR\%
$7 \emptyset 8 \emptyset$ PRINT " TOTAL REMAINING";
7090 PRINT AMT.LEFT\%
$71 \emptyset \emptyset$ PRINT:PRINT:PRINT:PRINT
7110 INPUT "ENTER PERCENTAGE FOR FIELD: ";PCT\% (I)
$712 \emptyset$ IF PCT\%(I) A AMT.LEFT\% OR PCT\%(I) $=\varnothing$ THEN PCT\% (I) =AMT.LEFT\%
7130 AMT.LEFT\%=AMT.LEFT\%-PCT\% (I)
$714 \varnothing$ AMT.SOFAR\%=AMT.SOFAR\%+PCT\% (I)
7150 PRINT:PRINT
7160 INPUT "ENTER DESCRIPTION OF FIELD:
";PIECETEXT\$(I)
$717 \emptyset$ IF LEN(PIECETEXT\$(I)) 15 THEN PRINT "FIELD TOO LONG - 15 CHAR. MAX":GOTO 7160
$718 \emptyset$ IF AMT.LEFT\% $=\varnothing$ THEN $72 \emptyset \emptyset$
7190 NEXT I
$720 \emptyset$ NUMBER.PIECES\%=I
$721 \varnothing$ IF NUMBER.PIECES\% $\%=\varnothing$ THEN $7 \varnothing 3 \varnothing$
$722 \emptyset$ PRINT CHR\$(26)
7230 RETURN

Appendix F

Atari 400/800 Computers

The best way to connect your Atari to Delta is with the Universal/Atari Parallel Interface by Star Micronics. It comes complete with its own cable. Or Delta will connect to the Atari 850 interface, using a cable that is available from your dealer.

Setting the switches

We recommend that you set the DIP switches in Delta as shown below when connecting it to an Atari 400 or 800.

Recommended DIP Switch Settings for Atari

Switch	Setting	Function
$1-1$	ON	11 inch page size
$1-2$	ON	Normal print density
$1-3$	ON	10 CPI pitch
$1-4$	ON	Normal characters
$1-5$	ON	$1 / 6$ inch line feed
$1-6$	ON	U.S.A. Character set
$1-7$	ON	
$1-8$	ON	
$2-1$	ON	Parallel interface
$2-2$	OFF	8-bit interface
$2-3$	OFF	Auto line feed
$2-4$	ON	

Using Atari BASIC

While the Atari computers don't have any real problems in using the full capabilities of Delta, there are a couple of fairly unique things to keep in mind. Atari BASIC requires that all strings be dimensioned. The maximum string length is 99 characters, so Atari users must break up their dot graphics strings into 99 character sections.

Atari 850 Interface Module Parallel Cable

Delta		Atari 850	
Pin No.	Function	Pin No.	Function
1	STROBE	1	STROBE
2	DATA1	2	DATA1
3	DATA2	3	DATA2
4	DATA3	4	DATA3
5	DATA4	5	DATA4
6	DATA5	6	DATA5
7	DATA6	7	DATA6
8	DATA7	8	DATA7
16	SIG GND	11	SIG GND
11	BUSY	13	BUSY
9	DATA8	15	DATA8

To join two strings together, as when building a string of dot graphics data, the following format must be used:

$$
A \$(\operatorname{LEN}(A \$)+1)=B \$
$$

(This adds B\$ to the end of A\$.)
The Atari adds spaces to print lines when you use the LPRINT command. We recommend that you use the PRINT \# command instead. You must open the printer as a device first. For example:
$1 \varnothing$ OPEN \#4,8, \varnothing,"P"
$2 \emptyset$ PRINT \#4;"TESTING"

It's a good idea to close the printer when your program is done using it, like this:

90 CLOSE \#4

Atari BASIC also requires that you use semicolons between elements in a print statement where most BASICs will accept a
space. Your print commands must look like this:
$4 \varnothing$ PRINT CHR\$(27); "B"; CHR\$(3); "CONDENSED"

Listing programs

Listing BASIC programs to Delta from an Atari computer is relatively easy; just add "P:" to the normal LIST command so that it looks like this:

```
LIST "P:"
```


Program listings

The following programs were translated to work with the Atari 400 and 800 computers.

Chart program

```
1\emptyset REM ATARI 40\emptyset & 80\emptyset & 120\emptysetXL
2\emptyset DIM BL$(6),FD$(4)
30 TRUE=1:FALSE=\varnothing
1\emptyset\emptyset OPEN #4,8,\emptyset,"P"
12\emptyset GOSUB 1ø\emptyset\emptyset
13\emptyset PRINT #4;"*REGULAR*"
14\varnothing GOSUB 2\emptyset\varnothing\emptyset
150 PRINT #4;"*DOUBLE STRIKE*"
16\emptyset PRINT #4;CHR$(27);"G";
17\emptyset GOSUB 2\emptyset\emptyset\emptyset
18\emptyset PRINT #4;"*EMPHASIZED*":
190 EM=TRUE
2\emptyset\emptyset GOSUB 2\emptyset\emptyset\emptyset
210 PRINT #4;"*DOUBLE STRIKE & EMPHASIZED*"
22\emptyset PRINT #4;CHR$(27);"G";CHR$(27);"E";
230 GOSUB 200\emptyset
240 CLOSE #4
250 END
10\emptyset\emptyset PRINT #4;CHR$(27);"@"
1010 PRINT #4;CHR$(14);" NORMAL ENLARGED "
1020 PRINT #4;CHR$(27);"-";CHR$(1);
1030 PRINT #4;CHR$(27);"B";CHR$(3);"CONDENSED ";
104\emptyset PRINT #4;CHR$(27);"B";CHR$(2);" ELITE ";
1050 PRINT #4;CHR$(27);"B";CHR$(1);" PICA ";
1060 PRINT #4;CHR$(27);"B";CHR$(3);"CONDENSED ";
1\varnothing7\varnothing PRINT #4;CHR$(27);"B";CHR$(2);" ELITE ";
```

$108 \emptyset$ PRINT \#4;CHR\$(27);"B";CHR\$(1);" PICA "
$199 \emptyset$ PRINT \#4;CHR\$(27);"@":RETURN
$2 \emptyset \emptyset \emptyset$ IT=FALSE:PRINT \#4;CHR\$(27);"5";
$2 \emptyset 1 \emptyset$ UN=FALSE:PRINT \#4;CHR\$(27);"-";CHR\$(\varnothing);
$2 \emptyset 2 \emptyset$ EN=FALSE:PRINT \#4;CHR\$(27);"W";CHR\$($)$;
$203 \varnothing$ PI=FALSE
$2 \emptyset 4 \emptyset$ PRINT \#4;CHR\$(27);"B";CHR\$(3);:GOSUB $213 \emptyset$
$2 \emptyset 5 \emptyset$ PRINT \#4;CHR\$(27);"B";CHR\$(2);:GOSUB $213 \emptyset$
$2 \emptyset 6 \emptyset$ PRINT \#4;CHR\$(27);"B";CHR\$(1);:PI=TRUE:GOSUB 2130
$2 \emptyset 7 \emptyset$ IF EN=TRUE THEN PRINT \#4:GOTO 2ø9
$2 \emptyset 8 \emptyset$ PRINT \#4;CHR\$(27);"W";CHR\$(1);:EN=TRUE:GOTO $2 \emptyset 3 \varnothing$
$2 \emptyset 9 \emptyset$ IF UN=TRUE THEN PRINT \#4:GOTO 211ø
$21 \emptyset \emptyset$ PRINT \#4; $\operatorname{CHR} \$(27) ; "-"$ CHR $\$(1) ;:$ UN=TRUE:GOTO $2 \emptyset 2 \emptyset$
2110 IF IT=TRUE THEN PRINT \#4;CHR\$(27);"@":RETURN
$212 \emptyset$ PRINT \#4;CHR\$(27);"4";:IT=TRUE:GOTO 2ø1ø
2130 BL $\$=" \quad$ ":FD $=$ "...."
$214 \emptyset$ IF EM=FALSE THEN PRINT \#4;"ABcd";:GOTO $219 \varnothing$
$215 \emptyset$ IF PI=FALSE THEN PRINT \#4;FD $\$$: GOTO $217 \emptyset$
2160 PRINT \#4;"ABcd";
$217 \emptyset$ IF EN=TRUE THEN PRINT \#4;" ";:RETURN
$218 \emptyset$ IF EN=FALSE THEN PRINT \#4;BL\$;:RETURN
2190 IF EN=TRUE THEN PRINT \#4;" ";:RETURN
$22 \emptyset \emptyset$ PRINT \#4;CHR\$(27);"S";CHR\$(ø);"Xx";
2210 PRINT \#4;CHR\$(27);"S";CHR\$(1);"Yy";" ";
$222 \emptyset$ PRINT \#4;CHR\$(27);"T";
2230 RETURN

Special character chart program

$1 \emptyset$ REM PRINT SPECIAL CHAR.SET
$2 \emptyset$ OPEN \#4,8, \varnothing, "P"
$3 \emptyset$ FOR $J=16 \emptyset$ to 255 STEP 8
$4 \emptyset$ FOR I=J TO J+7
5 PRRINT \#4;I;"= ";CHR\$(I);" ";
$6 \emptyset$ NEXT I:PRINT \#4:NEXT J
$7 \emptyset$ CLOSE \#4

Macro program

5 REM DEFINE MACRO INSTRUCTION
$1 \emptyset$ OPEN \#4,8, $\varnothing, " P "$
$2 \emptyset$ PRINT \#4,CHR\$(27);"+";
$3 \emptyset$ PRINT \#4,CHR\$(18);

```
4\emptyset PRINT #4,CHR$(27);"W";CHR$(\emptyset);
5\emptyset PRINT #4,CHR$(27);"F";
6\emptyset PRINT #4,CHR$(27);"H";
7\emptyset PRINT #4,CHR$(27);"-";CHR$(\emptyset);
8\emptyset PRINT #4,CHR$(27);"T";
9\emptyset PRINT #4,CHR$(27);"5";
95 PRINT #4,CHR$(30)
```


Bridge hand program

```
1\varnothing OPEN #4,8,\emptyset,"P"
2\emptyset GOSUB 1\emptyset\emptyset\emptyset
30 GOSUB 2\emptyset\emptyset\emptyset
4\emptyset GOSUB 30\emptyset\emptyset
50 GOSUB 40\emptyset\emptyset
60 CLOSE #4
70 END
1\emptyset\emptyset\emptyset REM INITIALIZE VARIABLES
1\emptyset1\emptyset DIM HA(4),DE(52),CA$(5\emptyset),SU$(2\emptyset)
102\emptyset SU$="SHDC"
1\emptyset30 СА$=" 2 3 3 4 5 5 6 7 7 8 8 9 10 J Q K A
#
1\emptyset35 FOR I=\emptyset TO 4:HA(I)=\emptyset:NEXT I
1040 RETURN
2\emptyset\emptyset\emptyset REM INITIALIZE PRINTER
2\emptyset1\emptyset PRINT #4;CHR$(27);CHR$(68);CHR$(2\emptyset);CHR$(4\emptyset);
    CHR$(\varnothing)
2\emptyset2\emptyset PRINT #4;CHR$(27);CHR$(43);CHR$(27);CHR$(36);
    CHR$( }\varnothing\mathrm{ );
2030 PRINT #4;CHR$(27);CHR$(69);CHR$(30)
2\emptyset35 PRINT #4;CHR$(27);CHR$(42); CHR$( }\varnothing\mathrm{ )
204\emptyset FOR I=1 TO 4
2050 PRINT #4;CHR$(27); CHR$(42); CHR$(1);
2060 FOR J=1 TO 13
2\emptyset7\emptyset READ X:PRINT #4;CHR$(X);
208\emptyset NEXT J
2090 NEXT I
21\emptyset\emptyset PRINT #4
211\emptyset RETURN
212\emptyset DATA 72,11,4,1\emptyset,2\emptyset,1\emptyset,52,72,52,1\emptyset,2\emptyset,1\emptyset,4
213\emptyset DATA 83,11,16,8,2\emptyset,8,86,41,86,8,2\emptyset,8,16
2140 DATA 67,11,8,16,8,18,65,62,65,18,8,16,8
215\emptyset DATA 68,11,8,\emptyset,28,\emptyset,62,65,62,\emptyset,28,\emptyset,8
30\emptyset\emptyset REM DEAL CARD
3010 FOR CA=1 TO 52
```

```
302\emptyset X = INT(RND ( }\varnothing)*4+1
303\emptyset IF HA(X)=13 THEN 302\emptyset
3035 HA}(X)=HA(X)+
3040 DE(CA)=X
3050 NEXT CA
3060 RETURN
4\emptyset\emptyset\emptyset REM PRINT FOUR HANDS
4\emptyset1\emptyset PRINT #4;CHR$(27);"!";CHR$(9);"NORTH"
4\emptyset2\emptyset PRINT #4;CHR$(27);"$";CHR$(1);CHR$(27);
    CHR$(70);
4030 HA=1
4\emptyset4\emptyset FOR SU=\emptyset TO 3
4050 PRINT #4;CHR$(9);
4060 GOSUB 430\emptyset
407\emptyset PRINT #4
4 0 8 0 ~ N E X T ~ S U ~
4\emptyset9\emptyset PRINT #4;CHR$(27);"!";"WEST";CHR$(9);CHR$(9);
    "EAST"
41\emptyset\emptyset PRINT #4;CHR$(27);"$";CHR$(1);CHR$(27);
    CHR$(7\emptyset);
411\varnothing FOR SU=\emptyset TO 3
412\emptyset HA=2
4 1 3 0 \text { GOSUB 430ø}
414\emptyset PRINT #4;CHR$(9);CHR$(9);
4150 HA=3
4 1 6 0 ~ G O S U B ~ 4 3 0 \emptyset ~
4 1 7 0 ~ P R I N T ~ \# 4
4 1 8 0 ~ N E X T ~ S U ~
4190 PRINT #4;CHR$(27);"!";CHR$(9);"SOUTH"
42\emptyset\emptyset PRINT #4;CHR$(27);"$";CHR$(1);CHR$(27);
    CHR$(7\emptyset);
4210 HA=4
422\emptyset FOR SU=\emptyset TO 3
423\emptyset PRINT #4;CHR$(9);
4240 GOSUB 430\emptyset
4250 PRINT #4
4 2 6 0 ~ N E X T ~ S U
427\emptyset PRINT #4;CHR$(27);"$";CHR$(\emptyset);CHR$(27);CHR$(7\emptyset)
4 2 8 0 ~ R E T U R N
4 2 9 0 ~ R E M ~ P R I N T ~ O N E ~ L I N E ~
4300 PRINT #4;SU$(SU+1,SU+1);
4310 FOR CA=13 TO 1 STEP -1
432\emptyset IF DE(SU*13+CA) =HA THEN PRINT #4;
    CA$(CA*3,CA*3+2);
```

4330 NEXT CA
$434 \varnothing$ RETURN

Numeral program

10 REM PROGRAM TO DEFINE AND PRINT NUMERALS
$2 \emptyset$ OPEN \#4,8, \varnothing,"P"
30 FOR N1=16ø TO $2 \emptyset \emptyset$
$4 \emptyset$ PRINT \#4;CHR\$(27);CHR\$(42);CHR\$(1);
50 PRINT \#4;CHR\$(N1);
61 READ N2
70 PRINT \#4;CHR\$(N2);
$8 \emptyset$ FOR S=1 TO 11
96 READ MS
100 PRINT\#4;CHR\$(MS);
$11 \varnothing$ NEXT S
$12 \emptyset$ NEXT N1
$13 \varnothing$ PRINT \#4;CHR\$(27);CHR\$(88);CHR\$(1)
135 PRINT \#4;CHR\$(27);"1"
140 FOR I=160 TO $2 \not 0$ STEP 4
$15 \emptyset$ PRINT \#4;CHR\$(I);CHR\$(I+1);CHR\$(2ФØ);
$16 \emptyset$ NEXT I
165 PRINT \#4
$17 \varnothing$ FOR $I=162$ TO $2 \not 0 \emptyset$ STEP 4
$18 \emptyset$ PRINT \#4;CHR\$(I);CHR\$(I+1);CHR\$(2øり);
$19 \emptyset$ NEXT I
$2 \emptyset \emptyset$ PRINT \#4;CHR\$(27);"@"
210 CLOSE \#4
220 END
$34 \varnothing$ REM ZERO
$35 \emptyset$ DATA $11, \emptyset, 96,16,104,16,44,30,14, \varnothing, 2,1$
$36 \emptyset$ DATA $11,2,1,2,1,6,8,38,88,32,8,32$
$37 \emptyset$ DATA $11,3,12,9,12,51, \emptyset, 96, \varnothing, 96, \emptyset, 96$
$38 \emptyset$ DATA $11, \emptyset, 32, \emptyset, 48, \emptyset, 28,3,12,3,4,3$
390 REM ONE
$4 \emptyset \emptyset$ DATA $11, \emptyset, \emptyset, \varnothing, \emptyset, \emptyset, 4, \varnothing, 4, \emptyset, 4,126$
$41 \emptyset$ DATA $9,12,114,12,114,12,2, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset$
$42 \emptyset$ DATA $11,64, \varnothing, 64, \emptyset, 64, \emptyset, 64,32,8 \emptyset, 47,8 \emptyset$
$43 \varnothing$ DATA $9,47,8 \varnothing, 47,64, \emptyset, 64, \varnothing, 64, \varnothing, \varnothing, \varnothing$
440 REM TWO
$45 \emptyset$ DATA $11, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, 12,16,14, \emptyset, 6, \emptyset$
$46 \emptyset$ DATA $11,3, \varnothing, 3, \varnothing, 7 \emptyset, 56,7 \emptyset, 56,4,24, \varnothing$
$47 \emptyset$ DATA $11,64, \emptyset, 64,32,64,32,8 \emptyset, 32,8 \emptyset, 4 \emptyset, 64$
$48 \emptyset$ DATA $11,44,64,38,65,34,65,32,8 \emptyset, 32,88, \varnothing$
490 REM THREE
$5 \emptyset \emptyset$ DATA $11, \varnothing, \emptyset, \varnothing, \emptyset, \varnothing, \emptyset, 4,2,4,2,4$
$51 \varnothing$ DATA $11,34,84,34,92,34,76,34,68,2,64, \varnothing$
$52 \emptyset$ DATA $11,16, \emptyset, 48, \emptyset, 56,64,48,64,32,64,32$
530 DATA $11,64,32,64,48,9,54,22,9,6,1$
$54 \varnothing$ REM FOUR
$55 \emptyset$ DATA $11, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, 64,36,88,32,16$
$56 \emptyset$ DATA $11, \emptyset, \emptyset, 64,32,64,56,64,6 \emptyset, 2,12, \varnothing$
$57 \emptyset$ DATA $11, \varnothing, 8,4,10,5,10,5,8,4,72,4$
$58 \emptyset$ DATA $11,88,38,89,38,89,6,73,4,8,6,0$
590 REM FIVE
$6 \emptyset \emptyset$ DATA $11, \emptyset, \emptyset, \emptyset, \emptyset, 64,32,84,5 \emptyset, 76,34,68$
$61 \emptyset$ DATA $1 \varnothing, 34,68,34,68,34,68,2,68,2, \varnothing, \varnothing$
$62 \emptyset$ DATA $1 \emptyset, \varnothing, 32,24,1 \emptyset 1,24,97, \varnothing, 64, \varnothing, 64, \varnothing$
630 DATA $11,64, \varnothing, 96,1,48,15,48,15,16,15, \varnothing$
640 REM SIX
$65 \emptyset$ DATA $11, \emptyset, 96, \emptyset, 112, \emptyset, 12 \emptyset, \emptyset, 92, \emptyset, 1 \emptyset 2, \emptyset$
$66 \emptyset$ DATA $11,98, \emptyset, 98, \emptyset, 98, \emptyset, 7 \emptyset, \emptyset, 14, \emptyset, 6$
$67 \varnothing$ DATA $11,7,8,23,8,55,8,99,0,65, \emptyset, 64$
$68 \emptyset$ DATA $11, \varnothing, 96, \emptyset, 112,1,62,1,3 \emptyset, 1,14, \varnothing$
690 REM SEVEN
$7 \emptyset \emptyset$ DATA $11, \emptyset, 16,8,6,8,6,8,6,8,6,8$
$71 \varnothing$ DATA $9,7 \emptyset, 8,1 \emptyset 2,8,54,8,6, \varnothing, 2, \emptyset, \varnothing$
$72 \emptyset$ DATA $11, \emptyset, 64, \emptyset, 96, \emptyset, 12 \emptyset, \emptyset, 124, \emptyset, 3 \emptyset, 1$
$73 \varnothing$ DATA $9,6,1, \emptyset, \emptyset, \varnothing, \emptyset, \varnothing, \emptyset, \emptyset, \emptyset, \varnothing$
$74 \varnothing$ REM EIGHT
$75 \emptyset$ DATA 11, $, \emptyset, \emptyset, \emptyset, 24,36,24,1 \varnothing 2,24,1 \emptyset 2, \varnothing$
$76 \emptyset$ DATA $11,67, \emptyset, 67, \emptyset, 99,28,34,28,34,28, \emptyset$
$77 \emptyset$ DATA $11,12,18,44,19,108,19,96,1,64, \emptyset, 64$
$78 \emptyset$ DATA $11, \emptyset, 96,1,112,15,48,15,16,14, \varnothing, \varnothing$
790 REM NINE
$8 \emptyset \emptyset$ DATA $11, \emptyset, \emptyset, 12 \emptyset, 4,12 \emptyset, 6,12 \emptyset, 6, \emptyset, 3, \emptyset$
$81 \emptyset$ DATA $11,3, \emptyset, 3, \emptyset, 67,4,123,4,122,4,12 \emptyset$
$82 \emptyset$ DATA $11,48, \varnothing, 56, \emptyset, 113, \emptyset, 99, \varnothing, 99, \emptyset, 99$
$83 \emptyset$ DATA $11, \emptyset, 115, \emptyset, 57, \emptyset, 31, \emptyset, 15, \emptyset, 7, \emptyset$
840 REM SPACE
$85 \emptyset$ DATA $11, \emptyset, \emptyset$

Download utility program

$5 \operatorname{DIM} \operatorname{CS\$ }(1), \operatorname{SC}(1), \mathrm{Z}(9,13), \mathrm{MM}(11), \mathrm{MM} \(11),
SS\$(1), $\operatorname{BL} \$(4 \emptyset), \operatorname{SH} \$(35), \operatorname{PR\$ (35)}$
6 DIM PD\$(35), AS\$(35), AN\$(1)
10 CS\$="@":SC\$="*":SS\$="0"
15 BL $\$="$ (40 characters) "
16 AS\$="ASCII (33-126) (160-254) -->"
17 SH $\$==$ IF SHIFTED ENTER 1 ELSE $\emptyset-->"$

18 PR\$="NORMAL OR PROPORTIONAL $-->$ "
19 PD $\$=$ "PROPORTIONAL DATA $(4-11)-->"$
$2 \emptyset$ GRAPHICS $\varnothing:$ GOSUB $66 \emptyset$
$3 \emptyset$ GOSUB $2 \emptyset \emptyset \emptyset$
$4 \varnothing$ IF KEY=47 THEN GRAPHICS $\varnothing:$ END
$5 \emptyset$ IF KEY $=1 \emptyset$ THEN GOSUB 68ø:GOTO $3 \emptyset$
$6 \emptyset$ IF KEY=42 THEN GOSUB $9 \varnothing \emptyset:$ GOSUB $26 \emptyset:$ GOTO $3 \emptyset$
$7 \emptyset$ GOTO $3 \emptyset$
$12 \emptyset$ IF $Z(G, H)=\emptyset$ THEN POSITION $Y+5, X+2:$ PRINT " ";:GOSUB $3 \varnothing \varnothing \emptyset$
$13 \emptyset \operatorname{IF} \mathrm{Z}(\mathrm{G}, \mathrm{H})=1$ THEN POSITION Y+5,X+2:PRINT SC $\$$; : GOSUB $39 \varnothing \varnothing$
140 RETURN
$15 \emptyset \operatorname{IF} Z(G, H)=1$ THEN POSITION $Y+5, X+2: P R I N T$ SS $\$$;
GOSUB $3 \varnothing \varnothing \varnothing$
$16 \emptyset \operatorname{IF} \mathrm{Z}(\mathrm{G}, \mathrm{H})=\emptyset$ THEN POSITION Y+5,X+2:PRINT CS $\$$;
GOSUB $30 \emptyset \emptyset$
$17 \emptyset$ RETURN
260 REM EDIT LEVEL
$265 \mathrm{X}=1: \mathrm{Y}=1: \mathrm{G}=1: \mathrm{H}=1$
267 FOR I=1 TO 11:MM(I) $=\varnothing$:NEXT I
268 FOR $I=1$ TO 12:FOR $J=1$ TO $8: Z(J, I)=\varnothing: N E X T ~ J: N E X T$ I
$27 \emptyset$ GOSUB 2øดด
$28 \emptyset$ IF KEY $=\varnothing$ THEN GOSUB $39 \emptyset:$ GOTO $37 \emptyset$
$29 \varnothing$ IF KEY $=4 \varnothing$ THEN GOSUB 41ø:GOTO $37 \emptyset$
300 IF KEY $=58$ THEN GOSUB 43ø:GOTO $37 \varnothing$
310 IF KEY=11 THEN GOSUB 45ø:GOTO $37 \emptyset$
$32 \emptyset$ IF KEY=13 THEN GOSUB 47ø:GOTO $37 \emptyset$
330 IF KEY=18 THEN GOSUB 490:GOTO $37 \emptyset$
$34 \emptyset$ IF KEY $=47$ THEN GOSUB 5øø:GOTO $38 \emptyset$
$37 \emptyset$ GOTO $27 \emptyset$
380 RETURN
$39 \emptyset$ GOSUB 12ø:Y=Y-3:H=H-1:IF Y<1 THEN $Y=1: H=1$
$4 \emptyset \emptyset$ GOSUB $15 \emptyset:$ RETURN
$41 \varnothing$ GOSUB $120: Y=Y+3: H=H+1: I F \quad Y>31$ THEN $Y=31: H=11$
$42 \emptyset$ GOSUB 150:RETURN
430 GOSUB $12 \emptyset: X=X+2: G=G+1: I F \quad X>13$ THEN $X=13: G=7$
$44 \emptyset$ GOSUB $15 \emptyset:$ RETURN
$45 \emptyset$ GOSUB 12ø:X=X-2:G=G-1:IF X<1 THEN $X=1: G=1$
$46 \emptyset$ GOSUB $15 \emptyset:$ RETURN
470 IF $Z(G, H-1)=1$ OR $Z(G, H+1)=1$ THEN RETURN
$48 \emptyset Z(\mathrm{G}, \mathrm{H})=1:$ POSITION $\mathrm{Y}+5, \mathrm{X}+2:$ PRINT SS\$;:GOSUB $3 \emptyset \emptyset \emptyset:$ RETURN
$49 \varnothing \mathrm{Z}(\mathrm{G}, \mathrm{H})=\emptyset:$ POSITION Y＋5，X＋2：PRINT CS\＄；：GOSUB 3 $3 \emptyset \emptyset:$ RETURN
$5 \emptyset \emptyset$ REM GET OUT OF EDIT MODE
$51 \varnothing$ IF $Z(G, H)=1$ THEN POSITION $Y+5, X+2$ ：PRINT SC $\$$ ； GOSUB 3øøø
$52 \emptyset$ IF $Z(G, H)=\emptyset$ THEN POSITION $Y+5, \mathrm{X}+2:$ PRINT ＂＂；：GOSUB 3 $3 \not \square \emptyset$
525 GOSUB $4 \emptyset \emptyset \emptyset$
530 FOR I＝1 TO 11：FOR J＝1 TO 7：
$\operatorname{MM}(I)=M M(I)+Z(J, I) *\left(\operatorname{INT}\left(2^{\wedge}(J-1)\right)+1\right)$
535 NEXT J：NEXT I
536 GOSUB 5ดดด
$54 \varnothing$ FOR $\mathrm{I}=1$ TO 11 POSITION $2+\mathrm{I} * 3,18: \operatorname{PRINT}$ MM（I）；： NEXT I
550 GOSUB 660：RETURN
$66 \emptyset$ FOR $I=1$ TO 7：FOR $J=1$ TO $11: Z(I, J)=\varnothing:$ NEXT $J: N E X T$ I
$67 \emptyset$ POSITION 1，23：PRINT ＂E）DIT P）RINTER Q）UIT＂；
675 RETURN
$68 \emptyset$ REM PRINT MODE
$69 \emptyset$ GOSUB 7 $7 \emptyset \emptyset:$ PRINT PR\＄；：INPUT AN $\$$
$7 \emptyset \emptyset$ IF AN $\$=" \mathrm{~N} "$ THEN PR＝\varnothing ：GOTO $75 \varnothing$
$71 \varnothing$ IF AN $\$=" \mathrm{P}$＂THEN $73 \emptyset$
720 GOTO 69ด
$73 \emptyset$ GOSUB 7 $7 \emptyset \emptyset:$ PRINT PD $\$:$ INPUT PR
$74 \emptyset$ IF PR〈4 OR PR〉11 THEN 730
750 GOSUB 790ø：PRINT SH\＄；：INPUT SH
$76 \emptyset$ IF SH〈 \varnothing OR SH〉1 THEN GOTO $75 \emptyset$
$77 \emptyset$ GOSUB 7 $79 \emptyset: P R I N T$ AS $\$:$ ：INPUT AS
$78 \emptyset$ IF（AS〈33 OR AS 126 ）AND（AS〈160 OR AS〉254）THEN－－ $77 \varnothing$
$79 \varnothing$ GOSUB 7ดดด
$8 \emptyset \emptyset$ IF $\mathrm{SH}=1$ THEN $\mathrm{SH}=16$
$81 \varnothing \mathrm{~N} 1=\mathrm{AS}: \mathrm{N} 2=\mathrm{PR}+\mathrm{SH}$
$82 \emptyset$ FOR $I=1$ TO 11： $\operatorname{MM} \$(\operatorname{LEN}(M M \$)+1)=\operatorname{CHR} \$(M M(I)): N E X T I$
$83 \emptyset$ OPEN \＃4，8，$\varnothing, " P "$
835 PRINT \＃4， $\mathrm{CHR} \$(27)$ ；＂＊＂； $\mathrm{CHR} \$(1) ; \operatorname{CHR} \$(\mathrm{~N} 1) ; \operatorname{CHR} \$(\mathrm{~N} 2)$ ； MM\＄
$84 \emptyset$ IF AN $\$=" \mathrm{~N} "$ THEN PRINT \＃4；CHR\＄（27）；＂\＄＂；CHR\＄（1）： GOTO 86ø
$85 \emptyset$ PRINT \＃4； $\operatorname{CHR} \$(27) ; " X " ; \operatorname{CHR} \(1)
$86 \emptyset$ FOR I＝1 TO 2ø：PRINT \＃4；CHR\＄（N1）；＂＂；：NEXT I： PRINT \＃4
$87 \emptyset$ PRINT \#4; $\operatorname{CHR} \$(14)$;:FOR $I=1$ TO 10:PRINT \#4;
CHR\$(N1);" ";:NEXT I:PRINT \#4
88ø PRINT \#4; CHR\$(15);:FOR I=1 TO 20:PRINT \#4;
CHR\$(N1);" ";:NEXT I:PRINT \#4
$89 \emptyset$ IF AN $\$=" N "$ THEN PRINT \#4; $\operatorname{CHR} \$(27) ; " \$ " ; \operatorname{CHR} \$(\varnothing):$
GOTO 895
892 PRINT \#4;CHR\$(27);"X";CHR\$(\varnothing)
895 PRINT \#4;CHR\$(27);"@":CLOSE \#4:GOSUB 660:MM\$="":
RETURN
$9 \varnothing \emptyset$ GRAPHICS \varnothing
904 PRINT
995 PRINT " M1 M2 M3 M4 M5 M6 M7 M8 M9 M1ø M11"
$91 \emptyset$ FOR I=ø TO 7:PRINT " ";:FOR J=1 TO 11
915 PRINT "!--";:NEXT J:PRINT "!":IF I〈7 THEN PRINT $\operatorname{INT}\left(2^{\wedge} \mathrm{I}\right)+1$: NEXT I
$92 \emptyset$ PRINT :PRINT :PRINT
930 PRINT "R)IGHT L)EFT D)OWN U)P "
940 PRINT "I)NSERT C)LEAR Q)UIT"
950 POSITION 6,3:PRINT CS\$;
955 GOSUB $30 \emptyset \emptyset$
$96 \emptyset$ RETURN
$2 \emptyset \emptyset \emptyset$ REM SINGLE CHAR INPUT
$2 \emptyset 1 \emptyset$ KEY=PEEK (764):IF KEY=255 THEN $2 \emptyset 1 \emptyset$
$2 \emptyset 2 \emptyset$ POKE 764,255
2030 RETURN
$30 \emptyset \emptyset$ POSITION 35,21
$301 \emptyset$ PRINT " ";
$302 \emptyset$ RETURN
$4 \emptyset \emptyset \emptyset$ POSITION 15,18
$401 \emptyset$ PRINT "PLEASE STAND BY";
$402 \emptyset$ RETURN
$50 \emptyset \emptyset$ POSITION 1,18
$5 \emptyset 1 \emptyset$ FOR I=1 TO 5:PRINT BL\$;:NEXT I
$502 \emptyset$ RETURN
$7 \emptyset \emptyset \emptyset$ POSITION 1,2ø
$7 \emptyset 1 \emptyset$ PRINT BL\$;
$7 \emptyset 2 \emptyset$ POSITION 1,2ø
7930 RETURN

Delta Plot program

2 GRAPHICS \emptyset
3 PRINT " ":PRINT " ":PRINT " "
4 PRINT " THIS PROGRAM TAKES ABOUT"
5 PRINT " 1 MINUTE TO RUN, PLEASE"
6 PRINT " TURN ON YOUR PRINTER AND "

```
7 PRINT " STAND BY .............."
8 PRINT " ":PRINT " ":PRINT " "
10 FOR I=1536 TO 1553
2\emptyset READ O
30 POKE I,O
4 \emptyset ~ N E X T ~ I ~
5\emptyset DATA 104,104,133,205,104,133,204
60 DATA 104,5,2\emptyset5,133,213,104,5,2\emptyset4
70 DATA 133,212,96
1\emptyset\emptyset REM MICRO-PLOT
11\varnothing DIM M(76,14),MASK(6)
12\emptyset DIM A$(1\emptyset\emptyset)
13\emptyset DIM B$(1\emptyset)
1 3 2 ~ F O R ~ I = \varnothing ~ T O ~ 1 4 ,
133 FOR J=1 TO 76
134 M(J,I)=\emptyset
1 3 5 ~ N E X T ~ J ~
136 NEXT I
1\emptyset\emptyset\emptyset REM SET PROGRAM CONSTANT
1010 MASK}(1)=128:\operatorname{MASK}(4)=1
102\emptyset MASK(2)=64:MASK (5)=8
1\varnothing3\emptyset MASK (3)=32:MASK(6)=4
1\emptyset4\emptyset LX=2\emptyset:LY=2\emptyset
105\emptyset XFAC=72/LX:YFAC=87/LY
2\emptyset\emptyset\emptyset REM PLOT CURVE
201\emptyset LET RAD=9
2\emptyset2\emptyset X1=19:Y1=1\emptyset
203\emptyset FOR ANG=\varnothing TO 36\emptyset STEP 1\varnothing
2040 R1=ANG*6.28/36\emptyset
2\emptyset5\emptyset X2=RAD*COS(R1)+1\emptyset
2\emptyset55 Y2=RAD*SIN(R1)+1\emptyset
2\emptyset6\emptyset GOSUB 4\emptyset\emptyset\emptyset
2\emptyset7\emptyset NEXT ANG
3\emptyset\emptyset\emptyset REM SEND BIT IMAGE TO PRINTER
3005 OPEN #4,8,\emptyset,"P"
301\emptyset PRINT #4;CHR$(27);"A";CHR$(6)
302\emptyset FOR ROW=\emptyset TO 14
3030 A$=""
304\emptyset PRINT #4;CHR$(27);"K";CHR$(75);CHR$(\varnothing);
3050 FOR COL=1 TO 75
3054 RE=INT(M(COL,ROW))
3055 B$=CHR$(RE)
3060 A$(\operatorname{LEN}(A$)+1)=B$
3070 NEXT COL
3080 PRINT #4;A$;" "
```

```
3090 NEXT ROW
31\emptyset\emptyset PRINT #4;CHR$(27);"A";CHR$(12)
311\emptyset CLOSE #4
3150 END
4\emptyset\emptyset\emptyset REM DRAW A LINE FROM X1,Y1 TO X2,Y2
4\emptyset1\emptyset XL=X2-X1:YL=Y2-Y1
4\emptyset2\emptyset NX=ABS(XL*XFAC):NY=ABS(YL*YFAC)
403\emptyset IF NX<NY THEN NX=NY
404\emptyset NS=INT(NX+1)
405\emptyset DX=XL/NS
4 0 5 5 ~ D Y = Y L / N S ~
406\emptyset FOR I=1 TO NS
4\emptyset7\emptyset X1=X1+DX:Y1=Y1+DY
408\emptyset GOSUB 50\emptyset\emptyset
4 0 9 0 ~ N E X T ~ I ~
410\emptyset RETURN
50\emptyset\emptyset REM PLOT A POINT AT X1,Y1
501\emptyset XX=X1*XFAC:YY=Y1*YFAC
502\emptyset COL=INT(XX)+1
5030 ROW=INT(YY/6)
504\emptyset XIT=INT(YY-ROW*6)+1
5050 A1=M(COL,ROW)
5060 A2=MASK(XIT)
507\emptyset M(COL,ROW)=USR(1536,A1,A2)
508\emptyset RETURN
```


Pie chart program

2 GRAPHICS \varnothing
3 PRINT "PLEASE STAND BY"
$1 \emptyset$ FOR $I=1536$ TO 1553
$2 \emptyset$ READ 0
30 POKE I,0
$4 \emptyset$ NEXT I
$5 \emptyset$ DATA $104,104,133,2 \emptyset 5,104,133,2 \emptyset 4$
$6 \emptyset$ DATA $104,5,205,133,213,104,5,204$
$7 \emptyset$ DATA 133,212,96
$1 \emptyset \emptyset$ REM MICRO-PLOT
$110 \operatorname{DIM} \operatorname{M}(76,11), \operatorname{MASK}(6), \operatorname{BL} \$(80), \mathrm{N} \$(99)$
$12 \emptyset \operatorname{DIM} \mathrm{~A} \$(1 \emptyset \emptyset), \mathrm{T} \$(99), \mathrm{TT}(2 \emptyset), \mathrm{RR}(2 \emptyset), \mathrm{TI} \(99)
$13 \emptyset \operatorname{DIM} \mathrm{~B} \$(1 \varnothing), \operatorname{PCT}(1 \emptyset), \mathrm{T} 1 \$(99), \mathrm{T} 2 \$(99)$
132 FOR $\mathrm{I}=\varnothing$ TO 11
133 FOR J=1 TO 76
$134 M(J, I)=\emptyset$
135 NEXT J
136 NEXT I

```
140 GOSUB 7\emptyset\emptyset\emptyset
1 4 1 \text { GRAPHICS Ø}
142 PRINT " ":PRINT " ":PRINT " "
143 PRINT " THIS PROGRAM TAKES ABOUT"
144 PRINT " 2 MINUTES TO RUN, PLEASE"
145 PRINT " TURN ON YOUR PRINTER AND "
146 " STAND BY .............."
147 PRINT " ":PRINT " ":PRINT " "
150 T1$=" (40 characters) "
160 T1$(\operatorname{LEN}(T1$)+1)=T1$
170 T2$=T1$
180 BL$=" (40 characters) "
190 BL$(LEN(BL$)+1)=BL$
195 FOR I=1 TO 20:TT(I)=1:NEXT I
198 FOR I=1 TO 20:RR(I)=\varnothing\:NEXT I
10\emptyset\emptyset REM SET PROGRAM CONSTANT
101\emptyset MASK(1)=128:MASK (4)=16
102\emptyset }\operatorname{MaSK}(2)=64:\operatorname{MASK}(5)=
103\emptyset MASK(3)=32:MASK(6)=4
104\varnothing LX=2\emptyset:LY=2\varnothing
105\emptyset XFAC=72/LX:YFAC=75/LY
20\emptyset0 REM PLOT CURVE
2010 LET RAD=9
202\emptyset X1=19:Y1=1\varnothing
203\varnothing FOR ANG=\varnothing TO 36\emptyset STEP 5
204\varnothing R1=ANG*6.28/36\emptyset
2\emptyset5\emptyset X2=RAD*COS(R1)+1\emptyset
2055 Y2=RAD*SIN(R1)+1\varnothing
2\emptyset6\emptyset GOSUB 40\emptyset\emptyset
2\emptyset7\emptyset NEXT ANG
2080 FOR PI=1 TO NP
2\emptyset90 X1=1\varnothing:Y1=1\varnothing
210\emptyset TP=TP+PCT(PI)
2110 ANG=360*TP*\emptyset.ø1
2120 R1=ANG*6.28/36\emptyset
2130 X2=RAD*COS(R1)+1\emptyset:Y2=RAD*SIN(R1)+1\emptyset
214\emptyset GOSUB 4\varnothing\emptyset\emptyset
216\emptyset GOSUB 6\emptyset\emptyset\emptyset
2 1 7 \emptyset ~ N E X T ~ P I ~
218\emptyset IF LEN(T1$)<99 THEN T1$(LEN(T1$)+1)=" ":GOTO
    218\emptyset
2190 IF LEN(T2$)<99 THEN T2$(LEN(T2$)+1)=" ":GOTO
    2190
30\emptyset0 REM SEND BIT IMAGE TO PRINTER
3005 OPEN #4,8,\emptyset,"P"
```

```
301\emptyset PRINT #4;CHR$(27);"A";CHR$(3)
3012 WW=LEN(TI$)
3013 VV=INT((80-WW)/2)
3014 PRINT #4;BL$(1,VV);TI$:FOR I=1 TO 25:PRINT #4:
    NEXT I
3015 PRINT #4;BL$(1,TT(1));T1$(1,9);CHR$(1\varnothing)
3016 PRINT #4;BL$(1,TT(2));T1$(10,19);CHR$(10)
3017 PRINT #4;BL$(1,TT(3));T1$(2\emptyset,29);CHR$(1\emptyset)
302\emptyset FOR ROW=\emptyset TO 11
3030 A$=""
3035 PRINT #4;BL$(1,35);
304\emptyset PRINT #4;CHR$(27);"K";CHR$(75);CHR$(\emptyset);
3050 FOR COL=1 TO 75
3054 RE=INT(M(COL,ROW))
3055 B$=CHR$(RE)
3060 A$(\operatorname{LEN}(A$)+1)=B$
3070 NEXT COL
3080 PRINT #4;A$
3085 IF ROW>5 THEN GOSUB 8\emptyset\emptyset\emptyset:GOTO 309\emptyset
3086 HH=(ROW+3)*1\varnothing
3087 PRINT #4;BL$(1,TT(ROW+4));T1$(HH,HH+9)
3090 NEXT ROW
3095 PRINT #4;BL$(1,TT(16));T2$(60,69);CHR$(10);
3096 PRINT #4;BL$(1,TT(17));T2$(70,79);CHR$(10);
3097 PRINT #4;BL$(1,TT(18));T2$(8\emptyset,89)
31\varnothing\emptyset PRINT #4;CHR$(27);"A";CHR$(12)
3110 CLOSE #4
3150 END
4\emptyset\emptyset\emptyset REM DRAW A LINE FROM X1,Y1 TO Y2,Y2
4\emptyset1\emptyset XL=X2-X1:YL=Y2-Y1
402\emptyset NX=ABS(XL*XFAC):NY=ABS(YL*YFAC)
4030 IF NX<NY THEN NX=NY
4040 NS=INT(NX+1)
4 0 5 0 ~ D X = X L / N S ~
4 0 5 5 ~ D Y = Y L / N S ~
4060 FOR I=1 TO NS
4\emptyset7\emptyset X1=X1+DX:Y1=Y1+DY
408\emptyset GOSUB 5\emptyset\emptyset\emptyset
4090 NEXT I
4 1 \emptyset \emptyset ~ R E T U R N
5\emptyset\emptyset\emptyset REM PLOT A POINT AT X1,Y1
501\emptyset XX=X1*XFAC:YY=Y1*YFAC
502\emptyset COL=INT(XX)+1
5030 ROW=INT(YY/6)
5\emptyset4\emptyset XIT=INT(YY-ROW*6) +1
```

```
\(5050 \mathrm{~A}=\mathrm{M}(\mathrm{COL}, \mathrm{ROW})\)
\(5060 \mathrm{~A} 2=\operatorname{MASK}(\mathrm{XIT})\)
\(507 \emptyset \mathrm{M}(\mathrm{COL}, \mathrm{ROW})=\operatorname{USR}(1536, \mathrm{~A} 1, \mathrm{~A} 2)\)
\(508 \emptyset\) RETURN
6090 REM
\(6010 \mathrm{MA}=(\mathrm{ANG}+\mathrm{PA}) / 2\)
\(602 \emptyset \mathrm{R} 1=\mathrm{MA*} 6.28 / 36 \emptyset\)
\(6030 \mathrm{X3}=\operatorname{INT}(8 * \operatorname{SIN}(\mathrm{R} 1))\)
\(6035 \mathrm{Y} 3=\operatorname{INT}(10 * \operatorname{COS}(\mathrm{R} 1))\)
\(6040 \mathrm{X} 4=10+\mathrm{X} 3: \mathrm{Y} 4=40+\mathrm{Y} 3\)
6041 GOSUB \(99 \emptyset \emptyset: R R(P I)=X 4\)
6045 IF MA> \(27 \emptyset\) OR MA〈9 9 THEN TT(X4) \(=\mathrm{Y} 4:\) GOTO \(6 \emptyset 5 \emptyset\)
\(6047 \mathrm{TT}(\mathrm{X} 4)=\mathrm{Y} 4-1 \emptyset\)
6050 IF X4>9 THEN GOSUB 6500:GOTO 6060
\(6052 \mathrm{DD}=(\mathrm{X} 4-1) * 10+1\)
\(6054 \mathrm{DF}=(\mathrm{PI}-1) * 10+1\)
\(6056 \mathrm{~T} 1 \$(\mathrm{DD}, \mathrm{DD}+9)=\mathrm{T} \$(\mathrm{DF}, \mathrm{DF}+9)\)
6060 PA=ANG
6070 RETURN
\(6500 \times 4=X 4-9\)
\(6502 \mathrm{DD}=(\mathrm{X} 4-1) * 1 \varnothing+1\)
\(6504 \mathrm{DF}=(\mathrm{PI}-1) * 10+1\)
\(6506 \mathrm{~T} 2 \$(\mathrm{DD}, \mathrm{DD}+9)=\mathrm{T} \$(\mathrm{DF}, \mathrm{DF}+9)\)
6508 RETURN
\(7 \emptyset \emptyset \emptyset\) GRAPHICS \(\emptyset\)
\(7 \emptyset \emptyset 1\) PRINT "TITLE CAN BE UP TO \(8 \emptyset\) CHARACTERS LONG"
\(7 \emptyset \emptyset 2\) PRINT "ENTER TITLE ";:INPUT TI\$
\(7 \emptyset \emptyset 4\) IF LEN \((\mathrm{TI} \$)>80\) THEN \(\operatorname{TI} \$=\mathrm{TI} \$(1,8 \emptyset)\)
\(7 \emptyset \emptyset 5\) AS= \(\emptyset: A L=1 \emptyset \emptyset: F L=9: 00=1\)
\(7 \emptyset 1 \emptyset\) GRAPHICS \(\emptyset\)
\(7 \emptyset 2 \emptyset\) PRINT "YOU CAN HAVE UP TO 9 FIELDS AND EACH
    FIELD CAN BE UP TO NINE CHARACTERS LONG"
7925 IF LEN (T\$) <99 THEN T\$(LEN (T\$) +1) =" ": GOTO 7925
\(7 \emptyset 3 \emptyset\) PRINT "AMOUNT SO FAR ";AS
\(794 \emptyset\) PRINT "AMOUNT LEFT ";AL
7050 PRINT "FIELD LEFT ";FL
\(7 \emptyset 6 \emptyset\) PRINT :PRINT
\(7 \emptyset 7 \emptyset\) PRINT "FIELD SIZE \% ";:INPUT FS
\(7 \emptyset 8 \emptyset\) IF FS \(>\) AL OR FS \(=\emptyset\) THEN FS=AL
\(7990 \mathrm{AL}=\mathrm{AL}-\mathrm{FS}: \mathrm{AS}=\mathrm{AS}+\mathrm{FS}\)
\(71 \emptyset \emptyset\) PRINT "ENTER FIELD NAME ";:INPUT N\$
\(711 \varnothing\) IF LEN \((\mathrm{N} \$)>9\) THEN \(\mathrm{N} \$=\mathrm{N} \$(1,9)\)
\(712 \emptyset\) IF LEN \((N \$)<9\) THEN \(N \$(\operatorname{LEN}(N \$)+1)="\) ":GOTO \(712 \emptyset\)
\(7130 \operatorname{PCT}(00)=F S\)
\(714 \emptyset \mathrm{TR}=(00-1) * 1 \emptyset+1\)
```

```
715\emptyset T$(TR,TR+9)=N$
7160 00=00+1
717\emptyset IF 00>9 THEN PCT(00-1)=PCT(00-1)+AL:GOTO 720\emptyset
718\emptyset if AL=\varnothing THEN 72\emptyset\emptyset
7185 FL=FL-1
7 1 9 0 \text { GOTO 7010}
72\emptyset\emptyset NP=00-1
721\varnothing GRAPHICS }
722\emptyset RETURN
8\emptyset\emptyset\emptyset HH=(ROW-6)*10+1
801\emptyset PRINT #4;BL$(1,TT(ROW+4));T2$(HH,HH+9)
802\emptyset RETURN
9000 FOR I=1 TO PI
901\emptyset IF RR(I)=X4 THEN YY=1
9020 NEXT I
9025 IF YY=\emptyset THEN 908\emptyset
9030 IF YY=1 THEN X4=X4-1
9040 IF X4<1 THEN X4=X4+2
9050 YY=\varnothing:GOTO 90ø\emptyset
9080 RETURN
```


Appendix G

Commodore VIC-20 and C-64 Computers

The best way to connect Delta to your Commodore computer is with a Universal/Commodore Parallel Interface by Star Micronics. Or you can use many of the other available parallel interface adapters for the Commodore computers.

Setting the switches

We recommend that you set the DIP switches in Delta as shown below when connecting it to a Commodore computer.

Recommended DIP Switch Settings for Commodore VIC-20 and C-64

Switch	Setting	Function
$1-1$	ON	11 inch page size
$1-2$	ON	Normal print density
$1-3$	ON	10 CPI pitch
$1-4$	ON	Normal characters
$1-5$	ON	$1 / 6$ inch line feed
$1-6$	ON	U.S.A. Character set
$1-7$	ON	
$1-8$	ON	
$2-1$	ON	Paper-out detector active
$2-2$	OFF	Parallel interface
$2-3$	OFF	8-bit interface
$2-4$	ON	Auto line feed

Using Commodore BASIC

Commodore computers can use the full capabilities of Delta. Commodore BASIC does, however, have a few differences from other BASICs.

Commodore BASIC has no LPRINT statement. You must
open the printer as a file and then direct your print statements to that file, like this:

```
10 OPEN 4,4
2\emptyset PRINT#4, "TESTING"
```

When the program is done printing, you should clear the buffer and close the file like this:

90 PRINT\#4 : CLOSE 4

Listing programs

To list a program on the Commodore computers you must open the printer as a file and redirect screen output to the printer before issuing the LIST command. The correct sequence looks like this:

```
OPEN 4,4
CMD }
LIST
```

When you are done listing your program you must close the printer channel to stop sending output to the printer. To do this, type:

PRINT\#4 : CLOSE 4

Program listings

The following programs have been converted to run on Commodore computers.

Chart program

10 REM COMMODORE 64 〈〉DELTA 10
$10 \emptyset$ OPEN4,4:CMD4
$11 \varnothing$ GOSUB $1 \varnothing \varnothing \varnothing$
$12 \varnothing$ GOSUB $2 \not 0 \varnothing$
130 PRINT "*REGULAR*"
$14 \varnothing$ GOSUB $30 \varnothing \varnothing$

```
\(15 \varnothing\) PRINT "*DOUBLE STRIKE*"
\(16 \emptyset\) PRINT DS \(\$\)
170 GOSUB \(3 \varnothing \emptyset\)
\(18 \emptyset\) PRINT "*EMPHASIZED*"
190 EM=TRUE
200 GOSUB \(30 \emptyset \emptyset\)
\(21 \emptyset\) PRINT "*DOUBLE STRIKE \& EMPHASIZED*"
\(22 \emptyset\) PRINT DS\$;EM\$;
230 GOSUB \(30 \varnothing \varnothing\)
240 PRINT\#4:CLOSE4
250 END
\(10 \emptyset \emptyset\) REM
\(101 \emptyset\) IT \(\$=\) CHR \(\$(27)+\mathrm{CHR} \$(52)\)
\(192 \emptyset \mathrm{RO} \$=\mathrm{CHR} \$(27)+\mathrm{CHR} \$(53)\)
\(1030 \mathrm{EN} \$=\mathrm{CHR} \$(27)+\mathrm{CHR} \$(87)+\mathrm{CHR} \$(1)\)
\(1 \varnothing 4 \varnothing \mathrm{NW} \$=\mathrm{CHR} \$(27)+\mathrm{CHR} \$(87)+\mathrm{CHR} \$(\varnothing)\)
\(1050 \mathrm{PI} \$=\mathrm{CHR} \$(27)+\mathrm{CHR} \$(66)+\mathrm{CHR} \$(1)\)
\(1060 \mathrm{EL} \$=\mathrm{CHR} \$(27)+\mathrm{CHR} \$(66)+\mathrm{CHR} \$(2)\)
\(1 \varnothing 7 \emptyset\) CO\$ \(=\operatorname{CHR} \$(27)+\mathrm{CHR} \$(66)+\mathrm{CHR} \$(3)\)
\(1 \varnothing 8 \emptyset \mathrm{EM} \$=\mathrm{CHR} \$(27)+\mathrm{CHR} \$(69)\)
1990 NE \(\$=\operatorname{CHR} \$(27)+\mathrm{CHR} \$(7 \emptyset)\)
\(119 \varnothing\) DS \(\$=\operatorname{CHR} \$(27)+\operatorname{CHR} \$(71)\)
1110 ND \(\$=\) CHR \(\$(27)+\mathrm{CHR} \$(72)\)
\(112 \emptyset \mathrm{UN} \$=\operatorname{CHR} \$(27)+\mathrm{CHR} \$(45)+\mathrm{CHR} \$(1)\)
\(113 \emptyset \mathrm{NU} \$=\mathrm{CHR} \$(27)+\mathrm{CHR} \$(45)+\mathrm{CHR} \$(\phi)\)
\(1140 \mathrm{SP} \$=\mathrm{CHR} \$(27)+\mathrm{CHR} \$(83)+\mathrm{CHR} \$(\varnothing)\)
\(1150 \mathrm{SB} \$=\mathrm{CHR} \$(27)+\mathrm{CHR} \$(83)+\mathrm{CHR} \$(1)\)
\(116 \emptyset\) NS \(\$=\) CHR \(\$(27)+C H R \$(84)\)
\(117 \emptyset\) RA \(\$=\mathrm{NE} \$+\mathrm{NU} \$+\mathrm{ND} \$+\mathrm{RO} \$+\mathrm{PI} \$+\mathrm{NW} \$\)
\(118 \emptyset\) TRUE \(=1:\) FALSE \(=\varnothing\)
1190RETURN
\(20 \emptyset 0\) PRINT RA\$
\(2 \emptyset 1 \varnothing\) PRINT EN\$;" NORMAL ENLARGED "
\(2 \emptyset 2 \emptyset\) PRINT RA\$;UN\$;
\(203 \varnothing\) PRINT CO\$;"CONDENSED ";
\(204 \varnothing\) PRINT EL\$;" ELITE ";
2050 PRINT PI\$;" PICA ";
2060 PRINT CO\$;"CONDENSED ";
\(2 \emptyset 7 \emptyset\) PRINT EL\$;" ELITE ";
\(2 \emptyset 8 \emptyset\) PRINT PI\$;" PICA ";RA\$
2090 RETURN
\(30 \emptyset 1\) IT=FALSE:PRINT RO\$;
301ø UN=FALSE:PRINT NU\$;
\(302 \emptyset\) EN=FALSE:PRINT NW\$;
\(3030 \mathrm{PI}=\mathrm{FALSE}:\)
```

$304 \varnothing$ PRINT CO\＄；：GOSUB 3130
$305 \varnothing$ PRINT EL\＄；：GOSUB $313 \varnothing$
3060 PRINT PI\＄；：PI＝TRUE：GOSUB 3130
3070 IF EN＝TRUE THEN PRINT：GOTO 3090
$308 \emptyset$ PRINT EN\＄；：EN＝TRUE：GOTO $303 \varnothing$
$309 \varnothing$ IF UN＝TRUE THEN PRINT：GOTO $311 \varnothing$
$31 \varnothing \emptyset$ PRINT UN\＄；：UN＝TRUE：GOTO $302 \varnothing$
$311 \varnothing$ IF IT＝TRUE THEN PRINT RA\＄：RETURN
$312 \emptyset$ PRINT IT\＄；：IT＝TRUE：GOTO 301ø
$3130 \mathrm{BL} \$=" \quad$＂：FD\＄＝＂．．．．＂
$314 \emptyset$ IF EM＝FALSE THEN PRINT＂AB＂＋CHR\＄（99）＋CHR\＄（10Ø）；：GOTO $319 \varnothing$
$315 \emptyset$ IF PI＝FALSE THEN PRTNT FD\＄；：GOTO $317 \emptyset$－
$316 \emptyset$ PRINT＂AB＂；CHR\＄（99）；CHR\＄（1øø）；
$317 \emptyset$ IF EN＝TRUE THEN PRINT＂＂；：RETURN－
3180 IF EN＝FALSE THEN PRINT BL $\$$ ；：RETURN
3190 IF EN＝TRUE THEN PRINT＂＂；：RETURN
$32 \emptyset \emptyset$ PRINT SP\＄；＂X＂；CHR\＄（12Ø）；
$321 \varnothing$ PRINT SB\＄；＂Y＂；CHR\＄（121）；＂＂；
3220 PRINT NS $\$$
3230 RETURN
Special character chart program
5 REM COMMODORE 64 〈〉 DELTASET
10 OPEN4，4：CMD4
$2 \emptyset$ FOR J＝16ø TO 255 STEP 8
30 FOR I＝J TO J＋7
$4 \emptyset$ PRINT I；＂＝＂；CHR\＄（I）；CHR\＄（9）；
$5 \emptyset$ NEXT I：PRINT：NEXT J
60 PRINT\＃4：CLOSE4
$7 \varnothing$ END
Macro program
10 REM COMMODORE 64〈〉 DELTAMACRO
$2 \emptyset$ OPEN4，4：CMD4

$3 \varnothing$ PRINT CHR $\$(27) ; "+" ;$

$4 \emptyset$ PRINT CHR $\$(18)$;

$5 \emptyset$ PRINT CHR\$(27);"W"CHR\$(Ø);

$6 \emptyset$ PRINT CHR\$(27);"F";

$7 \emptyset$ PRINT CHR\$(27);"H";

$8 \varnothing$ PRINT CHR $\$(27) ; "-" ; C H R \(\varnothing);

99 PRINT CHR\$(27);"T";

95 PRINT CHR\$(27);"5";

98 PRINT CHR\$(30)
99 PRINT\#4:CLOSE4:END

Bridge hand program

10 REM COMMODORE 64 〈〉 DELTA BRIDGE
15 OPEN4,4:CMD4
$2 \emptyset$ GOSUB $1 \varnothing \emptyset \varnothing$
$3 \varnothing$ GOSUB $2 \emptyset \emptyset$
40 GOSUB $30 \varnothing 1$
$5 \emptyset$ GOSUB $4 \varnothing \varnothing \varnothing$
60 PRINT\#4:CLOSE4
79 END
$1 \not 0 \emptyset$ REM INITIALIZE VARTABLES
1010 DIM HA(4), DE(52), CA\$(13), SU\$(3)
$102 \varnothing \operatorname{CA\$ }(1)=" 2 ": \operatorname{CA\$ }(2)=" 3 ": \operatorname{CAS}(3)=" 4 "$
1030 CA\$(4)=" $5 ": \operatorname{CA\$ (5)="~6":CA\$ (6)="~7"~}$
$104 \varnothing$ CA\$(7)=" 8":CA\$(8)=" 9":CA\$(9)=" 10"
$1650 \mathrm{CA}(10)=" \mathrm{~J} ": \mathrm{CA} \$(11)=" \mathrm{Q} ": \mathrm{CA}(12)=" \mathrm{K":}$
CA\$(13) =" A"
$1 \varnothing 6 \emptyset \operatorname{SU}(\varnothing)=" S ": S U \$(1)=" H ": S U \$(2)=" D ": S U \$(3)=" C "$
$197 \emptyset$ RETURN
$2 \emptyset \emptyset$ REM INITIALIZE PRINTER
$2 \emptyset 1 \emptyset$ PRINT CHR\$(27);CHR\$(68);CHR\$(2Ø);CHR\$(4Ø);
CHR $\$(\varnothing)$
$2 \emptyset 2 \emptyset$ PRINT CHR\$(27)CHR\$(43);CHR\$(27)CHR\$(36)CHR\$(\varnothing);
CHR\$(27)CHR\$(69)CHR\$(30)
$2 \varnothing 3 \varnothing$ PRINT $\operatorname{CHR\$ (27)} ; \operatorname{CHR\$ (42)} ; \operatorname{CHR\$ (~} \varnothing$)
2040 FOR I=1 TO 4
$2 \not 65$ PRINT CHR $\$(27)$; $\operatorname{CHR} \$(42) ; \operatorname{CHR} \(1);
2060 FOR J=1 TO 13
$297 \emptyset$ READ X:PRINT CHR\$(X);
2080 NEXT J
2090 NEXT I
$210 \emptyset$ PRINT
2110 RETURN
$212 \emptyset$ DATA $72,11,4,10,2 \emptyset, 10,52,72,52,10,2 \emptyset, 10,4$
2130 DATA $83,11,16,8,2 \emptyset, 8,86,41,86,8,2 \emptyset, 8,16$
2140 DATA $67,11,8,16,8,18,65,62,65,18,8,16,8$
$215 \emptyset$ DATA $68,11,8, \emptyset, 28, \emptyset, 62,65,62, \emptyset, 28, \emptyset, 8$
3000 REM DEAL CARD
3010 FOR CA=1 TO 52
$302 \emptyset \mathrm{X}=\mathrm{INT}(\mathrm{RND}(1) * 4+1)$
3030 IF HA $(X)=13$ THEN $302 \emptyset$
$3035 \mathrm{HA}(\mathrm{X})=\mathrm{HA}(\mathrm{X})+1$
$3040 \mathrm{DE}(\mathrm{CA})=\mathrm{X}$

3050 NEXT CA
3060 RETURN
$4 \emptyset \emptyset \emptyset$ REM PRINT FOUR HANDS
$401 \emptyset$ PRINT CHR\$(27);"!";CHR\$(9);"NORTH"
$4 \emptyset 2 \emptyset$ PRINT CHR\$(27);"\$";CHR\$(1);CHR\$(27);CHR\$(7ด);
$4030 \mathrm{HA}=1$
$4 \emptyset 4 \emptyset$ FOR SU= \emptyset TO 3
$405 \emptyset$ PRINT CHR $\$(9)$;
4060 GOSUB $430 \emptyset$
$4 \emptyset 7 \emptyset$ PRINT
$408 \emptyset$ NEXT SU
$4 \emptyset 9 \emptyset$ PRINT CHR\$(27);"!";"WEST"; CHR\$(9);CHR\$(9);
"EAST"
$41 \emptyset \emptyset \operatorname{PRINT} \operatorname{CHR} \$(27) ; " \$ " \operatorname{CHR} \$(1) ; \operatorname{CHR} \$(27) ; \operatorname{CHR} \$(7 \emptyset) ;$
$411 \varnothing$ FOR SU= \varnothing TO 3
$412 \emptyset \mathrm{HA}=2$
$413 \emptyset$ GOSUB $43 \varnothing \emptyset$
$414 \emptyset$ PRINT CHR $\$(9) \operatorname{CHR}$ (9) ;
$4150 \mathrm{HA}=3$
$416 \emptyset$ GOSUB $430 \emptyset$
$417 \emptyset$ PRINT
4180 NEXT SU
$419 \emptyset$ PRINT CHR\$(27);"!";CHR\$(9);"SOUTH"
$42 \emptyset \emptyset$ PRINT CHR\$(27);"\$";CHR\$(1);CHR\$(27);CHR\$(7ด);
$4210 \mathrm{HA}=4$
$422 \emptyset$ FOR SU=ø TO 3
$423 \emptyset$ PRINT CHR $\$(9)$;
$424 \emptyset$ GOSUB $430 \emptyset$
4250 PRINT
4260 NEXT SU
$427 \emptyset$ PRINT CHR\$(27);"\$"CHR\$(\varnothing); $\operatorname{CHR} \$(27) ; \operatorname{CHR} \$(7 \emptyset)$
$428 \emptyset$ RETURN
4290 REM PRINT ONE LINE
$430 \emptyset$ PRINT SU\$(SU);
4310 FOR CA=13 TO 1 STEP -1
$432 \emptyset$ IF DE $(S U * 13+C A)=H A$ THEN PRINT CA\$ $(C A)$;
4330 NEXT CA
$434 \varnothing$ RETURN

Numeral program

5 REM COMMODORE $64 〈\rangle$ DELTANUMERAL
10 REM PROGRAM TO DEFINE AND PRINT NUMERALS
$2 \emptyset$ REM EACH NUMERAL IS MADE UP OF 4 CHARACTERS (2 WIDE * 2 HIGH)
25 OPEN4,4:CMD4

```
30 DD$=CHR$(27) + CHR$(42) + CHR$(1)
4\emptyset DP$ = CHR$(27) + CHR$(88) + CHR$(1)
5\emptyset NDP$ = CHR$(27) + CHR$(88) + CHR$( }\varnothing
60 L7$ = CHR$(27) + CHR$(49): L12$ = CHR$(27) +
    CHR$(5\emptyset)
7\emptyset FOR N1= 16\emptyset T0 2\emptyset\emptyset
8\emptyset PRINT DD$;
9\varnothing PRINT CHR$(N1);
10\emptyset READ N2
11\emptyset PRINT CHR$(N2);
12\emptyset FOR S = 1 TO 11
130 READ MS
14\emptyset PRINT CHR$(MS);
150 NEXT S
16\emptyset NEXT N1
17\emptyset REM
18\emptyset AS = 16\emptyset
19\emptyset FOR NUM = \emptyset TO 9
2\emptyset\emptyset NT$(NUM) =CHR$(AS + \emptyset) + CHR$(AS + 1)
210 NB$(NUM) =CHR$(AS + 2) + CHR$(AS + 3)
22\emptyset AS = AS + 4
230 NEXT NUM
24\emptyset BK$= CHR$(2\emptyset\emptyset)
250 PRINT DP$;L7$
26\emptyset FOR NUM = \emptyset TO 9
27\emptyset PRINT NT$(NUM);BK$;
289 NEXT NUM
290 PRINT
30\emptyset FOR NUM = \emptyset TO 9
31\emptyset PRINT NB$(NUM); BK$;
32\emptyset NEXT NUM
330 PRINT NP$;L12$
335 PRINT#4:CLOSE4
34\emptyset REM ZERO
35\emptyset DATA 11,\emptyset,96,16,1\emptyset4,16,44,3\emptyset,14,\emptyset,2,1
360 DATA 11,2,1,2,1,6,8,38,88,32,88,32
37\emptyset DATA 11,3,12,19,12,51,\emptyset,96,\emptyset,96,\emptyset,96
38\emptyset DATA 11,\emptyset,32,\emptyset,48,\emptyset,28,3,12,3,4,3
390 REM ONE
4\emptyset\emptyset DATA 11,\emptyset,\emptyset,\emptyset,\emptyset,\emptyset,4,\emptyset,4,\emptyset,4,126
41\emptyset DATA 9,12,114,12,114,12,2,\emptyset,\emptyset,\emptyset,\emptyset,\emptyset
42\emptyset DATA 11,64,\emptyset,64,\emptyset,64,\emptyset,64,32,8\emptyset,47,8\emptyset
43\emptyset DATA 9,47,8\emptyset,47,64,\emptyset,64,\emptyset,64,\emptyset,\emptyset,\emptyset
440 REM TWO
45\emptyset DATA 11,\emptyset,\emptyset,\emptyset,\emptyset,\emptyset,12,16,14,\emptyset,6,\emptyset
```

$46 \varnothing$ DATA $11,3, \varnothing, 3, \varnothing, 7 \emptyset, 56,7 \emptyset, 56,4,24, \varnothing$
$47 \emptyset$ DATA $11,64, \emptyset, 64,32,64,32,8 \emptyset, 32,8 \emptyset, 4 \emptyset, 64$
$48 \emptyset$ DATA 11,44,64,38,65,34,65,32,80,32,88,
$49 \varnothing$ REM THREE
$5 \emptyset \emptyset$ DATA 11, $, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, 4,2,4,2,4$
$51 \emptyset$ DATA $11,34,84,34,92,34,76,34,68,2,64, \varnothing$
$52 \emptyset$ DATA $11,16, \emptyset, 48, \emptyset, 56,64,48,64,32,64,32$
530 DATA 11,64,32,64,48,9,54,9,22,9,6,1
$54 \emptyset$ REM FOUR
$55 \emptyset$ DATA $11, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, 64,36,88,32,16$
$56 \emptyset$ DATA $11, \emptyset, \emptyset, 64,32,64,56,64,6 \emptyset, 2,12, \emptyset$
$57 \emptyset$ DATA $11, \varnothing, 8,4,1 \varnothing, 5,1 \emptyset, 5,8,4,72,4$
$58 \emptyset$ DATA $11,88,38,89,38,89,6,73,4,8,6, \varnothing$
590 REM FIVE
$6 \emptyset \emptyset$ DATA $11, \emptyset, \emptyset, \emptyset, \emptyset, 64,32,84,5 \emptyset, 76,34,68$
$61 \emptyset$ DATA $1 \emptyset, 34,68,34,68,34,68,2,68,2, \emptyset, \emptyset$
$62 \emptyset$ DATA $1 \emptyset, \emptyset, 32,24,1 \varnothing 1,24,97, \emptyset, 64, \emptyset, 64, \emptyset$
$63 \emptyset$ DATA $11,64, \emptyset, 96,1,48,15,48,15,16,15, \emptyset$
$64 \varnothing$ REM SIX
$65 \emptyset$ DATA $11, \emptyset, 96, \emptyset, 112, \emptyset, 12 \emptyset, \emptyset, 92, \varnothing, 1 \emptyset 2, \emptyset$
$66 \emptyset$ DATA $11,98, \emptyset, 98, \emptyset, 98, \emptyset, 7 \emptyset, \emptyset, 14, \emptyset, 6$
$67 \emptyset$ DATA $11,7,8,23,8,55,8,99, \emptyset, 65, \emptyset, 64$
$68 \emptyset$ DATA $11, \emptyset, 96, \emptyset, 112,1,62,1,3 \emptyset, 1,14, \emptyset$
690 REM SEVEN
$7 \emptyset \emptyset$ DATA $11, \emptyset, 16,8,6,8,6,8,6,8,6,8$
$71 \emptyset$ DATA $9,7 \emptyset, 8,1 \emptyset 2,8,54,8,6, \varnothing, 2, \emptyset, \varnothing$
$72 \emptyset$ DATA $11, \emptyset, 64, \emptyset, 96, \emptyset, 12 \emptyset, \emptyset, 124, \emptyset, 3 \emptyset, 1$
$73 \emptyset$ DATA $9,6,1, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset$
$74 \emptyset$ REM EIGHT
$75 \emptyset$ DATA $11, \varnothing, \emptyset, \emptyset, \emptyset, 24,36,24,1 \emptyset 2,24,1 \emptyset 2, \varnothing$
$76 \emptyset$ DATA $11,67, \emptyset, 67, \emptyset, 99,28,34,28,34,28, \emptyset$
$77 \emptyset$ DATA $11,12,18,44,19,1 \emptyset 8,19,96,1,64, \emptyset, 64$
$78 \emptyset$ DATA $11, \emptyset, 96,1,112,15,48,15,16,14, \emptyset, \emptyset$
790 REM NINE
$8 \emptyset \emptyset$ DATA $11, \emptyset, \emptyset, 12 \emptyset, 4,12 \emptyset, 6,12 \emptyset, 6, \emptyset, 3, \emptyset$
$81 \emptyset$ DATA $11,3, \varnothing, 3, \varnothing, 67,4,123,4,122,4,12 \emptyset$
$82 \emptyset$ DATA $11,48, \emptyset, 56, \emptyset, 113, \emptyset, 99, \emptyset, 99, \emptyset, 99$
$83 \emptyset$ DATA $11, \emptyset, 115, \emptyset, 57, \emptyset, 31, \emptyset, 15, \emptyset, 7, \emptyset$
$84 \emptyset$ REM SPACE
$85 \emptyset$ DATA $11, \emptyset, \emptyset, \emptyset, \varnothing, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \varnothing, \varnothing$

Download utility program

4 ED $\$=$ " E)DIT P)RINTER Q)UIT
5 POKE 53281, \varnothing :POKE 5328甲,
6 PRINT CHR\$(5)

```
7 DD=115\emptyset
Y=\emptyset:X=\varnothing
1\emptyset DIM Z (8,12) ,MM(11),ML$(11), KK$(11,5)
15 AD=1984
2\emptyset PRINT CHR$(147):GOSUB 66\emptyset
3\emptyset CS }=\operatorname{CHRS}(\emptyset):SC$=CHR$(42):SS$=CHR$(15
4\emptyset GET A$:IF A$=""THEN 4\emptyset
5\emptyset IF A$="Q" THEN PRINT CHR$(147):END
6\emptyset IF A$="P" THEN GOSUB 68\emptyset:GOTO 4\emptyset
7\emptyset IF A$="E" THEN GOSUB 9\varnothing\emptyset:GOSUB 26\emptyset:GOTO 4\emptyset
8\emptyset GOTO 4\emptyset
12\emptyset IF Z(G,H)=\emptyset THEN C$=" ":GOSUB 11\emptyset\emptyset\emptyset
13\emptyset IF Z(G,H)=1 THEN C$=SC$:GOSUB 11\emptyset\emptyset\emptyset
140 RETURN
15\emptyset IF Z(G,H)=1 THEN C }$=SS$:GOSUB 11\emptyset\emptyset\emptyset
16\emptyset IF Z (G,H)=\emptyset THEN C $=CS$:GOSUB 11\varnothing\emptyset\emptyset
17\emptyset RETURN
260 REM EDIT LEVEL
265 H=1:G=1:X=\emptyset:Y=\varnothing
266 FOR I=1 TO 11:ML$(I)="":MM(I)=\varnothing: NEXT I
267 FOR I=1 TO 11:FOR J=1 TO 5:KK$(I,J)="":NEXT J:
    NEXT I
27\emptyset GET A$:IF A$=""THEN 27\emptyset
30\emptyset IF A$="L"THEN GOSUB 390:GOTO 37\emptyset
31\emptyset IF A$="R" THEN GOSUB 41\emptyset:GOTO 37\emptyset
32\emptyset IF A$="D" THEN GOSUB 430:GOTO 370
33\emptyset IF A$="U" THEN GOSUB 450:GOTO 370
34\emptyset IF A$="I" THEN GOSUB 47\emptyset:GOTO 37\emptyset
350 IF A$="C" THEN GOSUB 490:GOTO 370
360 IF A$="Q" THEN GOSUB 500:GOTO 380
37\emptyset GOTO 27\emptyset
380 RETURN
39\emptyset GOSUB 12\emptyset:Y=Y-3:H=H-1:IF Y<\emptyset then Y=\emptyset:H=1
40\emptyset GOSUB 150:RETURN
41\emptyset GOSUB 12\emptyset:Y=Y+3:H=H+1:IF Y) 30 THEN Y=30:H=11
42\emptyset GOSUB 15\emptyset:RETURN
430 GOSUB 12\emptyset:X=X+8\emptyset:G=G+1:IF X>48\emptyset THEN X=48\emptyset:G=7
44\emptyset GOSUB 15\emptyset:RETURN
4 5 \emptyset ~ G O S U B ~ 1 2 \emptyset : x = x - 8 \emptyset : G = G - 1 : I F ~ X < \emptyset ~ T H E N ~ X = \emptyset : G = 1
46\emptyset GOSUB 150:RETURN
4 7 \emptyset ~ I F ~ Z ( G , H - 1 ) = 1 ~ O R ~ Z ( G , H + 1 ) = 1 ~ T H E N ~ R E T U R N
48\emptyset Z(G,H)=1:C$=SS$:GOSUB 11\emptyset\emptyset\emptyset:RETURN
49\emptyset Z(G,H)=\emptyset:C$=CS$:GOSUB 11\emptyset\emptyset\emptyset:RETURN
5\emptyset\emptyset REM GET OF EDIT MODE
51\emptysetC$=ED:GOSUB 1\varnothing\emptyset\emptyset
```

$52 \emptyset$ IF $Z(G, H)=1$ THEN $C \$=S C \$: G O S U B 11 \emptyset \emptyset \emptyset: G O T O 54 \varnothing$
$53 \emptyset$ IF $Z(G, H)=\emptyset$ THEN C $\$="$＂：GOSUB $11 \emptyset \varnothing \emptyset$
540 REM PRINT COLUMN VALUES
550 FOR $I=1$ TO 11：FOR J＝1 TO 7
$560 \mathrm{MM}(\mathrm{I})=\mathrm{MM}(\mathrm{I})+\mathrm{Z}(\mathrm{J}, \mathrm{I}) * 2^{\wedge}(\mathrm{J}-1): \mathrm{NEXT} \mathrm{J}:$ NEXT I
$57 \emptyset \mathrm{~J}=\varnothing: \operatorname{PRINT} \mathrm{CHR} \$(19): \mathrm{FOR} \mathrm{I}=1$ TO 8 ：PRINT CHR\＄（17）：
NEXT I
574 PRINT＂＂；
575 FOR $I=1$ TO 11：ML $\$(\mathrm{I})=\operatorname{STR} \$(\operatorname{MM}(\mathrm{I})):$ NEXT I
$58 \emptyset$ FOR $\mathrm{I}=1$ TO 11：FOR J＝1 TO $\operatorname{LEN}(\operatorname{ML} \$(\mathrm{I})):$
KK\＄（I，J）$=\mathrm{MID} \$(\mathrm{ML} \$(\mathrm{I}), \mathrm{J}, 1): \mathrm{NEXT} \mathrm{J}$
585 NEXT I
590 FOR $\mathrm{I}=1$ TO 11：D1＝1707：FOR J＝1 TO $\operatorname{LEN}(\mathrm{ML} \$(\mathrm{I}))$
592 POKE D1＋I＊3，ASC（KK\＄（I，J））：D1＝D1＋4ø：NEXT J
594 NEXT I
600 GOSUB 660：RETURN
$66 \emptyset \mathrm{~B} \$=\mathrm{ED} \$: \mathrm{GOSUB} 1 \not 0 \emptyset$
$67 \varnothing$ FOR I＝1 TO 7：FOR J＝1 TO 11：Z（I，J）＝ø：NEXT J：NEXT I：RETURN
$68 \varnothing$ REM PRINT MODE
69 PRINT CHR\＄（19）：FOR I＝1 TO 22：PRINT CHR\＄（17）；： NEXT I
695 INPUT＂NORMAL OR PROPORTIONAL（N／P）＂；AN\＄
$70 \emptyset$ IF AN $=$＝＂N＂THEN PR＝ $0: G O T 075 \varnothing$
$71 \varnothing$ IF AN\＄＝＂P＂THEN GOTO $73 \varnothing$
$72 \emptyset$ PRINT CHR $\$(145)$ ；：GOTO 695
730 GOSUB 12øøø：PRINT CHR\＄（145）；
732 INPUT＂PROPORTIONAL DATA（4－11）＂；PR
740 IF $\operatorname{PR}(4$ OR PR＞ 11 THEN $73 \varnothing$
750 GOSUB 12øめด：PRINT CHR\＄（145）；
755 INPUT＂SHIFTED ENTER 1 ELSE ENTER \varnothing＂；SH
$76 \varnothing$ IF SH〈 \varnothing OR SH $) 1$ THEN 750
770 GOSUB 12000：PRINT CHR $\$(145)$ ；
775 INPUT＂ASCII CODE（33－126）（160－254）＂；AS
777 IF（AS〈33 OR AS >126 ）AND（AS〈160 OR AS）254）
THEN $77 \emptyset$
779 GOSUB $12 \not 0 \emptyset \emptyset$
$78 \emptyset$ IF $\mathrm{SH}=1$ THEN $\mathrm{SH}=16$
790 FOR $\mathrm{I}=1$ TO 11：MM\＄＝MM\＄＋CHR\＄（MM（I））：NEXT I
$80 \emptyset \mathrm{~N} 1=\mathrm{AS}: \mathrm{N} 2=\mathrm{PR}+\mathrm{SH}$
810 OPEN4，4：CMD4
$82 \emptyset$ PRINT CHR\＄（27）；＂＊＂；CHR\＄（1）；CHR\＄（N1）；CHR\＄（N2）；MM\＄
$83 \varnothing$ IF AN $\$=" \mathrm{~N} "$ THEN PRINT CHR $\$(27) ; " \$ " ; \operatorname{CHR} \$(1): G O T O$ 850
$84 \varnothing$ PRINT CHR\＄（27）；＂X＂；CHR\＄（1）

850 FOR I=1 TO 20:PRINT CHR\$(N1);" ";:NEXT I:PRINT $86 \emptyset \operatorname{PRINT} \operatorname{CHR} \$(14) ;:$ FOR $I=1$ TO 1ф:PRINT CHR $\$(N 1) ; "$ ";:NEXT I:PRINT
$87 \emptyset$ PRINT CHR $\$(15) ;:$ FOR $I=1$ TO 2 2 :PRINT $\operatorname{CHR} \$(N 1) ;:$ NEXT I:PRINT
$88 \emptyset$ IF AN $\$=" \mathrm{~N} "$ THEN PRINT CHR $\$(27) ; " \$ " ; \operatorname{CHR} \$(\varnothing) ;: G O T O$ $89 \emptyset$
885 PRINT CHR $\$(27)$; "X"; CHR $\$(\varnothing)$
89ø PRINT CHR\$(27);"@":MM\$="":PRINT\#4:CLOSE4:RETURN
$9 \not 0 \emptyset$ PRINT CHR $\$(147)$
$92 \emptyset$ PRINT " M1 M2 M3 M4 M5 M6 M7 M8 M9 M1ø M11"
$93 \varnothing$ FOR I=ø TO 7 :PRINT " ";:FOR J=1 TO 11
$94 \emptyset$ PRINT ":--";:NEXT J:PRINT "!":IF I<7 THEN
PRINT $2^{\wedge} I$
$95 \emptyset$ NEXT I
$96 \emptyset \mathrm{~B} \$=$ "R) GT L)FT U)P D)WN I)NSRT C)LEAR Q)UIT"
$97 \varnothing$ GOSUB $1 \emptyset \emptyset \emptyset$
$975 \mathrm{X}=\varnothing: \mathrm{Y}=\emptyset: \mathrm{C} \$=\mathrm{CS} \$:$ GOSUB $11 \varnothing \emptyset \emptyset$
980 RETURN
$1 \not \emptyset \emptyset \emptyset$ FOR $\mathrm{I}=1 \mathrm{TO} \mathrm{LEN}(\mathrm{B} \$)$
$1 \emptyset 1 \emptyset Z=\operatorname{ASC}(\operatorname{MID} \$(B \$, I, 1))$
$102 \emptyset$ IF $Z>64$ AND $Z\langle 91$ THEN $Z=2-64$
$1 \emptyset 3 \emptyset$ POKE AD+I,Z
1040 NEXT I
1050 RETURN
$11 \not 0 \emptyset$ POKE DD $+\mathrm{X}+\mathrm{Y}, \mathrm{ASC}(\mathrm{C} \$):$ RETURN
$12 \emptyset \emptyset \emptyset$ FOR $I=1$ TO $4 \emptyset:$ POKE $I+1943,32:$ NEXT I:RETURN

Delta Plot program

10 REM COMMODORE $64 〈\rangle$ DELTAPLT
$5 \emptyset$ PRINT CHR $\$(147$)
60 FOR I=1 TO 5:PRINT " ":NEXT I
$7 \emptyset$ PRINT "THIS PROGRAM TAKES ABOUT ONE MINUTE "
$8 \emptyset$ PRINT "TO RUN, SO PLEASE TURN ON YOUR PRINTER"
$9 \emptyset$ PRINT "AND STAND BY..................................
$1 \emptyset \emptyset$ REM DELTA-PLOT
$11 \emptyset$ DIM BIT\% $(76,14)$
$1 \emptyset \emptyset \emptyset$ REM SET PROGRAM CONSTANTS
$1 \not 1 \emptyset \operatorname{MASK} \%(1)=64: \operatorname{MASK} \%(4)=8$
$1 \emptyset 2 \emptyset \operatorname{MASK} \%(2)=32: \operatorname{MASK} \%(5)=4$
$1 \emptyset 3 \emptyset \operatorname{MASK} \%(3)=16: \operatorname{MASK} \%(6)=2$
$104 \emptyset \mathrm{LX}=2 \emptyset \quad: \mathrm{LY}=2 \emptyset$
$1050 \mathrm{XFAC}=72 / \mathrm{LX} \quad: \mathrm{YFAC}=87 / \mathrm{LY}$
$2 \emptyset \emptyset \emptyset$ REM FLOT CURVE
$2 \emptyset 1 \emptyset \mathrm{RAD}=9$

```
2\emptyset2\emptyset X1 = 19 : Y1 = 1\emptyset
2\emptyset3\emptyset FOR ANG = \emptyset TO 36\emptyset STEP 1\emptyset
2\emptyset4\emptyset R1 = ANG*6.28/36\emptyset
2\emptyset5\emptyset X2 = RAD*COS(R1)+1\emptyset : Y2 = RAD*SIN(R1)+1\emptyset
2\emptyset6\emptyset GOSUB 4\emptyset\emptyset\emptyset
2\emptyset7\emptyset NEXT ANG
30\emptyset\emptyset REM SEND BIT IMAGE MAP TO PRINTER
3005 OPEN 4,4,5
301\emptyset PRINT#4, CHR$(27) "A" CHR$(6)
302\emptyset FOR ROW = \emptyset TO 14
3022 A$=""
3025 PRINT #4,CHR$(27);"K",CHR$(75 );CHR$(\varnothing);
305\emptyset FOR COL = 1 TO 75
3060 A$=A$+ CHR$(BIT% (COL, ROW))
307\emptyset NEXT COL
308\emptyset PRINT#4,A$
3090 NEXT ROW
3095 PRINT#4,CHR$(27);"2"
3100 PRINT#4 : CLOSE4
3110 END
4\emptyset\emptyset\emptyset REM DRAW A LINE FROM X1,Y1, TO X2,Y2
401\emptyset XL = X2 - X1 : YL = Y2 = Y1
402\emptyset NX = ABS(XL*XFAC) : NY = ABS(YL*YFAC)
4030 IF NX < NY THEN NX = NY
404\emptyset NS% = INT(NX+1)
405\emptyset DX = XL/NS% : DY = YL/NS%
406\emptyset FOR I=1 TO NS%
407\emptyset X1 = X1 + DX : Y1 = Y1 + DY
408\emptyset GOSUB 50\emptyset\emptyset
4090 NEXT I
41\emptyset\emptyset RETURN
5\emptyset\emptyset\emptyset REM PLOT A POINT AT X1,Y1
501\emptyset XX = X1 * XFAC : YY = Y1 * YFAC
502\emptyset COL% = INT(XX)+1
5030 ROW% = INT(YY/6)
504\emptyset XIT% = INT(YY - ROW% * 6) + 1
505\emptyset BIT%(COL%,ROW%) = BIT%(COL%,ROW%) OR
    MASK%(XIT%)
506\emptyset RETURN
```

Pie chart program
50 PRINT CHR\$(147);"PLEASE STAND BY" $1 \emptyset \emptyset$ REM PIECHART
$11 \emptyset$ DIM BIT\% (190,36), A\$(36), PCT\% (25), TXT\$(42), PTXT\$(25)
$12 \emptyset \mathrm{ES} \$=\operatorname{CHR} \$(27): \mathrm{LF} \$=\operatorname{CHR} \$(1 \varnothing)$
$13 \emptyset \mathrm{FF} \$=\operatorname{CHR} \$(12): \mathrm{VT} \$=\operatorname{CHR} \$(11)$
$140 \mathrm{EM} \$=\mathrm{ES} \$+\mathrm{E}=\mathrm{CE}=\mathrm{ES} \$+\mathrm{F}$ "
$15 \emptyset$ FOR I $=1$ TO 168:SP\$=SP\$ $+\operatorname{CHR} \$(\varnothing): \operatorname{NEXT}$ I
$1 \emptyset \emptyset \emptyset$ REM SET PROGRAM CONSTANTS
$1 \not 10$ MASK $\%(1)=64: \operatorname{MASK} \%(4)=8$
$102 \emptyset \operatorname{MASK} \%(2)=32: \operatorname{MASK} \%(5)=4$
$103 \emptyset \operatorname{MASK} \%(3)=16: \operatorname{MASK} \%(6)=2$
$1 \varnothing 4 \emptyset$ LX $=2 \emptyset: L Y=2 \emptyset$
$105 \emptyset \mathrm{XFAC}=19 \emptyset / \mathrm{LX}: Y F A C=216 / \mathrm{LY}$
1060 FOR $I=1$ TO 42
$107 \emptyset$ FOR $J=1$ TO $8 \emptyset: \operatorname{TXT} \$(\mathrm{I})=\operatorname{TXT} \$(\mathrm{I})+" "$
$1 \emptyset 8 \varnothing$ NEXT J:NEXT I
1990 GOSUB $7 \emptyset \emptyset \emptyset$
1092 PRINT CHR\$(147): PRINT " ":PRINT " "
1094 PRINT " ":PRINT " "
1096 PRINT "THIS PROGRAM TAKES ABOUT"
1097 PRINT "4 MINUTES TO RUN. PLEASE"
1998 PRINT "TURN ON YOUR PRINTER AND"
1099 PRINT "STAND BY..................."
$2 \emptyset \emptyset \emptyset$ REM PLOT CURVE
2010 RAD $=9$
2ด2ด X1=19:Y1=1 \varnothing
$2 \not 025$ PRINT " ";
$2 \emptyset 3 \emptyset$ FOR ANG= \varnothing TO $36 \emptyset$ STEP 5
$2 \emptyset 40 \mathrm{R} 1=\mathrm{ANG} * 6.28 / 36 \emptyset$
$2 \emptyset 5 \emptyset \mathrm{X} 2=\mathrm{RAD} * \operatorname{COS}(\mathrm{R} 1)+1 \emptyset: \mathrm{Y} 2=\mathrm{RAD} * \operatorname{SIN}(\mathrm{R} 1)+1 \varnothing$
$2 \emptyset 6 \emptyset$ GOSUB $4 \emptyset \emptyset \emptyset$
$207 \emptyset$ NEXT ANG
$2 \emptyset 8 \emptyset$ FOR PI $=1$ TO NP\%
$2 \emptyset 90 \mathrm{X} 1=10: \mathrm{Y} 1=1 \varnothing$
$21 \emptyset \emptyset \mathrm{TP} \%=\mathrm{TP} \%+\mathrm{PCT} \%(\mathrm{PI})$
$211 \emptyset \mathrm{ANG}=36 \not{ }^{\circ} * \mathrm{TP} \mathrm{\%} * .01$
$212 \emptyset$ R1=ANG*6.28/360
$213 \emptyset \mathrm{X} 2=\mathrm{RAD} * \operatorname{COS}(\mathrm{R} 1)+1 \emptyset: \mathrm{Y} 2=\mathrm{RAD} * \operatorname{SIN}(\mathrm{R} 1)+1 \emptyset$
$214 \emptyset$ GOSUB $4 \emptyset \emptyset \emptyset$
2150 GOSUB 6ดดด
2160 NEXT PI
$300 \emptyset$ REM SEND BIT IMAGE MAP TO PRINTER
$302 \emptyset$ FOR ROW $=\emptyset$ TO 35
$3022 \mathrm{~A} \$(\mathrm{ROW})=" 1$
$305 \emptyset$ FOR COL= 1 TO $19 \varnothing$
$3060 \mathrm{~A} \$(\mathrm{ROW})=\mathrm{A} \$(\mathrm{ROW})+\mathrm{CHR} \$(\mathrm{BIT} \%(\mathrm{COL}, \mathrm{ROW}))$

```
3070 NEXT COL
398\emptyset NEXT ROW
3100 OPEN4,4:CMD4
311\emptyset X=(4\emptyset-LEN(T$)/2)
312\emptyset FOR I= 1 TO X: PRINT " ";:NEXT I
3130 PRINT EM$;T$ ;CE$;LF$
3140 PRINT VT$;VT$;VT$
315\emptyset PRINT ES$;"A";CHR$(3)
316\emptyset PRINT TXT$(1);LF$;TXT$(2);LF$;TXT$(3);LF$
317\emptyset FOR ROW= \emptyset TO 35
318\emptyset PRINT ES$;"K";CHR$(1\emptyset2);CHR$(1);SP$;A$(ROW)
32\emptyset\emptyset PRINT TXT$(ROW + 4)
321\emptyset NEXT ROW
322\emptyset PRINT TXT$(4\emptyset);LF$
3230 PRINT TXT$(41);LF$
3240 PRINT TXT$(42);LF$
325\emptyset PRINT ES$;"2";FF$
3254 PRINT#4:CLOSE4
3255 PRINT CHR$(147)
3260 END
4\emptyset\emptyset\emptyset REM DRAW A LINE FROM X1,Y1 TO X2,Y2
401\emptyset XL=X2-X1:YL=Y2-Y1
402\emptyset NX=ABS(XL*XFAC):NY=ABS(YL*YFAC)
4030 IF NX<NY THEN NX=NY
4040 NS%=INT(NX + 1)
4\emptyset5\emptyset DX=XL/NS%:DY=YL/NS%
406\emptyset FOR I= 1 TO NS%
407\emptyset X1=X1 + DX:Y1=Y1+DY
4 0 8 0 ~ G O S U B ~ 5 0 0 \emptyset ~
4 0 9 0 ~ N E X T ~ I ~
4 1 0 \emptyset ~ R E T U R N
50\emptyset\emptyset REM PLOT A POINT AT X1,Y1
501\emptyset XX=X1*XFAC:YY=Y1*YFAC
502\emptyset COL=INT(XX) + 1
5030 ROW=INT(YY/6)
5040 XIT%=INT(YY-(6*ROW)) + 1
5050 BIT%(COL,ROW)=BIT%(COL,ROW) OR MASK%(XIT%)
5060 RETURN
600\emptyset REM
601\emptyset MA%=(ANG + PA%)/2
602\emptyset R1=MA%*6.28/36\emptyset
603\emptyset X3=INT(2\emptyset*SIN(R1)):Y3=INT(22*COS(R1))
604\emptyset X4=22 + X3: Y4 = 40 + Y3
605\emptyset IF MA%>27\emptyset OR MA%<9\emptyset THEN GOSUB 61\emptyset\emptyset: GOTO 6\emptyset7\emptyset
6060 GOSUB 62\emptyset\emptyset
```

```
607\emptyset PA%=ANG
6080 RETURN
61ø\emptyset MM$=TXT$(X4)
6102 LL$=LEFT$(MM$,Y4)
6104 PP=LEN(PTXT$(PI))
61\emptyset6 RR$=RIGHT$(MM$,8\emptyset-(Y4+PP))
6108 TXT$(X4)=LL$ + PTXT$(PI) +RR$
6110 RETURN
6200 MM$=TXT$(X4)
6 2 \emptyset 2 ~ P P = L E N ~ ( P T X T \$ ( P I ) ) ~
6204 LL$=LEFT$(MM$,(Y4 - PP))
62\emptyset6 RR$=RIGHT$(MM$, (80 - Y4))
6208 TXT$(X4) = LL$ + PTXT$(PI) +RR$
6 2 1 \emptyset ~ R E T U R N ~
70\emptyset\emptyset REM
7065 I=1
701\emptyset PRINT CHR$(147): PRINT:PRINT:PRINT:PRINT
702\emptyset INPUT "ENTER TITLE FOR CHART ";T$
703\varnothing AS%=\varnothing:AL%=1\varnothing\varnothing
7040 PRINT CHR$(147)
7050 PRINT "TOTAL SO FAR : ";AS%
7060 PRINT "TOTAL REMAINING : ";AL%
707\emptyset INPUT "ENTER % FOR FIELD ";PCT%(I)
798\emptyset IF PCT%(I)>AL% OR PCT%(I)=\emptyset THEN PCT%(I)=AL%
7090 AL%=AL%-PCT%(I)
7100 AS%=AS%+PCT%(I)
7110 INPUT "ENTER DESCRIPTION OF FIELD : ";PTXT$(I)
712\emptyset IF LEN(PTXT$(I))) 15 THEN PRINT "FIELD TOO LONG
    - 15 CHAR. MAX": GOTO 711\varnothing
7130 IF AL%=\varnothing THEN GOTO 72\emptyset\emptyset
714\emptyset I= I+1
7 1 5 0 \text { GOTO 7040}
72\emptyset\emptyset NP%=I
721\varnothing IF NP%=1 THEN 7040
722\emptyset PRTNT CHR$(147)
7 2 3 0 ~ R E T U R N
```


Appendix H

DIP Switch Settings

The DIP (dual in-line package) switches control some of the functions of Delta. A DIP switch actually contains several individual switches. Delta has two DIP switches with 8 individual switches in them and one DIP switch with 4 individual switches. Figure $\mathrm{H}-1$ is a drawing of a typical DIP switch.

Figure H-1. A DIP switch is actually a series of several small switches.

DIP switch 2 is accessible from the rear of the printer, but to get to DIP switch 1 and DIP switch 3 you must remove the upper case. Chapter 10 tells you how to remove it.

Never change the settings of any of the DIP switches when the power is on. Turn off both the printer and your computer.

Table $\mathrm{H}-1$ summarizes the functions of DIP switches 1 and 2. DIP switch 3 controls the serial interface and is covered in Appendix P. The individual switches on DIP switch 1 are called 1-1 through 1-8; those on switch 2 are 2-1 through 2-4.

Table H-1
 DIP Switch Settings

Switch	ON	OFF	
Switch 1			
$1-1$	$11^{\prime \prime}$ page length	$12^{\prime \prime}$ page length	
$1-2$	Normal print	Emphasized print	
$1-3$	10 CPI (pica pitch)	17 CPI (condensed pitch)	
$1-4$	Normal	Italic	
$1-5$	$1 / 6^{\prime \prime}$ line feed	$1 / 8^{\prime \prime}$ line feed	
$1-6$	International character set selection		
$1-7$	Switch 2		
$1-8$			
$2-1$	Paper-out detector on	Ignore paper-out	
$2-2$	Serial interface	Parallel interface	
$2-3$	7-bit interface	8-bit interface	
$2-4$	Auto LF with CR	LF must be from host	

DIP switch 1 controls the default settings for printing functions. It is located inside the case at the left rear. Figure $\mathrm{H}-2$ shows the location of this switch. You must open the case to change the settings of this switch.

DIP switch 2 controls the interface. It can be reached from the back of the printer without opening the case. Figure $\mathrm{H}-3$ shows the location of switch 2 .

Switch Functions

Switch Function
1-1 Switch 1-1 sets the default page length for Delta. If switch $1-1$ is ON, the page length is set to $11^{\prime \prime}$. When switch $1-1$ is OFF the page length is set to $12^{\prime \prime}$. This switch is set ON at the factory.
1-2 This switch selects either normal or emphasized print for the default. If this switch is ON then Delta will print normal type when the power is turned on. If this switch is OFF then Delta will print emphasized type when the power is turned on. This switch is set ON at the factory.

Figure H-2. DIP switch 1, located inside Delta's case, controls default printing functions

Figure H-3. DIP switch 2, which controls the interface, is located on the back of the printer.

1-3 This switch selects the default character pitch. If this switch is ON the default pitch is 10 CPI . If this switch is OFF the default pitch is 17 CPI . This switch is set ON at the factory.
1-4 Switch 1-4 selects the default character style. If this switch is ON then the default character style is normal characters. If this switch is OFF then the default character style is italic. This switch is set ON at the factory.
1-5 This switch sets the default line spacing. When this switch is ON the default line spacing is set to $1 / 6$ inch. This means that Delta will advance the paper $1 / 6$ inch each time it receives a line feed. When this switch is OFF the default line spacing is $1 / 8$ inch. This switch is set ON at the factory.
1-6 - 1-8 These three switches determine the default international character set as shown in Table H-2. These switches are all set ON at the factory.

Table H-2
 International character sets

Switch	USA	England	Germany	Denmark	France	Sweden	Italy	Spain
$1-6$	ON	OFF	ON	OFF	ON	OFF	ON	OFF
$1-7$	ON	ON	OFF	OFF	ON	ON	OFF	OFF
$1-8$	ON	ON	ON	ON	OFF	OFF	OFF	OFF

2-1 This switch disables the paper-out sensor. If this switch is ON the printer will signal the computer when it runs out of paper and will stop printing. If this switch is off the printer will ignore the paper-out sensor and will continue printing. This switch is set ON at the factory.
This switch selects the active interface. Turn this switch ON to use the serial interface. Turn this switch OFF to use the parallel interface. This switch is set OFF at the factory.
2-3 This switch controls the eighth bit of the parallel interface. If this switch is ON the printer will only read the first seven bits on the parallel interface and ignores the eighth bit. If this switch is OFF all eight bits will be read. This switch is set OFF at the factory. When this switch is ON, Delta will automatically advance the paper one line every time it receives a carriage return. When this switch is OFF, the computer must send a line feed command every time the paper is to advance. (Most BASICs send a line feed with every carriage return, therefore, this switch should usually be off.) This switch is set OFF at the factory.

Appendix I ASCII Codes

Standard and Italic Characters

Decimal	Character	Function	Decimal	Character
0	NUL	End tab settings	47	／
7	BEL	Bell	48	ف
8	BS	Backspace	49	± 1
9	HT	Horizontal tab	50	$2 \quad 2$
10	LF	Line feed	51	$\square 3$
11	VT	Vertical tab	52	4 4
12	FF	Form feed	53	E $三$
13	CR	Carriage return	54	66
14	SO	Expanded print on	55	$7 \quad 7$
15	SI	Condensed print on	56	E \％
17	DC1	On line	57	$9 \quad 9$
18	DC2	Pica pitch	58	；
19	DC3	Off line	59	；：
20	DC4	Expanded print off	60	＜
27	ESC	Escape	61	$=$
30	RS	End macro	62	＞
32		Space	63	$\cdots \quad 7$
33	！		64	E ${ }^{\text {a }}$
34	：		65	$A \quad A$
35	\＃\＃	＊	66	E B
36	F		67	$\square C$
37	$\%$ \％		68	D
38	2 \％		69	$E \quad E$
39	，	Apostrophe	70	$F F$
40	i ¢		71	06
41	；		72	H H
42	＊ 2		73	1 I
43	$+$		74	3.3
44	．．	Comma	75	ド A
45	－－	Hyphen	76	－
46	：\quad r	Period	77	H

＊These characters may be different if you are using an interna－ tional character set other than the USA set．The characters for each set are shown on the next page．

Decimal	Ch	acter		Decima	Ch	acter	
78	N	H		103	9	2	
79	O	\％		104	H	ir	
80	F＇	p		105	1	2	
81	\square	α		106	：	．	
82	A	e		107	1.	＊	
83	6	\％		108	1.	－	
84	T	7		109	in	π	
85	U	B		110	\square	$\stackrel{T}{ }$	
86	V	v		111	－	0	
87	W	H		112	F	prex	
88	x	8		113	q	9	
89	Y	\％		114	r	\cdots	
90	z	$\underset{\sim}{2}$		115	Ξ	\cdots	
91	E	E	＊	116	＋	t	
92	\checkmark	！	＊	117	4	${ }^{4}$	
93	J	7	＊	118	\because	\％	
94	\because	\cdots	＊	119	4	\cdots	
95	．．．	－．．		120	\because	\％	
96	：	－	＊	121	ϑ	$\stackrel{ }{*}$	
97	$=$	$=$		122	z	$\underline{\square}$	
98	\square	\％		123	\vdots	¢	＊
99	－	：－		124	！	i	＊
100	d	－		125	2	γ	＊
101	E	$\dot{\square}$		126	\cdots	\cdots	＊
102	\％	7		127			Delete
＊Thes tional each	ch ch set	aract aract are sh		you ar A set．		ng a char	interna－ cters fo

International Character Sets

Decimal	USA	England	Germany	Denmark	France	Sweden	Italy	Spain
35	\＃	王	\＃	\＃	\pm	\＃	\＃	\＃
64	in	－	5	0	\＃	E	3	E
91	C	！	A	4	－	\ldots	＊	．
92	－	气	σ	18	9	E	\％	8
93	3	］	4	\％	\cdots	$\underset{\sim}{2}$	ϵ	\therefore
94	\therefore	\cdots	\cdots	\because	\therefore	U	\cdots	
96	\because	－	\because	＊	＂	e	\％	－
123	\％	\because	兰	玉	E	z	＊	
124	；		B	\ldots	a	8	i	\％
125	3	3	4	\pm	e	$\stackrel{y}{*}$	\pm	\％
126	－	\cdots	B	\cdots		i	－	\cdots

Special Characters

Decimal	Character	Function	Decimal	Character
135	BEL	Bell	185	\%
136	BS	Backspace	186	($)^{\text {a }}$
137	HT	Horizontal tab	187	I
138	LF	Line feed	188	\pm
139	VT	Vertical tab	189]
140	FF	Form feed	190	\%
141	CR	Carriage return	191	\div
142	SO	Expanded print on	192	\bar{A}
143	SI	Condensed print on	193	a
145	DC1	On line	194	G
146	DC2	Pica pitch	195	\pm
147	DC3	Off line	196	玉
148	DC4	Expanded print off	197	H
155	ESC	Escape	198	13
158	RS	End macro	199	*
160	\cdots		200	\dagger
161	-		201	3
162	-		202	E
163	\cdots		203	0
164	$+$		204	4
165	4.		205	-
166	\div		206	1
167	*		207	11
168	\square		208	\ddagger
169	\rightarrow		209	A
170	\cdots		210	6
171	5		211	i
172	4		212	¢
173	\cdots		213	H
174	*		214	3
175	\square		215	6
176	Ts		216	i
177	$\stackrel{3}{4}$		217	F
178	中		218	E
179	φ		219	\pm
180	i-		220	4
181	F		221	-
182	?		222	$\bar{\square}$
183	B		223	f
184	¥			

Block Graphics Characters

Decimal Character			Decimal Character	
224		Space	240	r
225	*		241	\cdots
226	*		242	7
227	*		243	\cdots
228	*		244	+
229	${ }^{1 / 4}$		245	1
230	m***		246	$\stackrel{\text { L }}{ }$
231	*		247	\cdots
232	**		248	\cdots
233	\#		249	$+$
234	1		250	$+$
235	" ${ }^{\prime \prime}$		251	; ${ }^{\text {c }}$
236	"		252	*
237	Hew		253	4
238	*		254	年.
239	䅾			

Appendix J
 Character Style Charts

Standard Characters

Italic Characters

37

53

61

55

International Characters

Special Characters

Block Graphics Characters

 239

247

251

Appendix K

Function Code Reference

The purpose of this Appendix is to provide a quick reference for the various functions available on the Delta-10 and Delta-15. The descriptions of the codes appear in the following format:

PURPOSE: Tells what the function code does.

CODE:
(decimal ASCII)
(hex ASCII)
REMARKS
REFERENCE: Tells which chapter of the manual describes the command in greater detail

There are several commands that require that you specify a value (or values) to Delta. In these cases, we have used an italic " n " or " m " to indicate a variable. You should insert the ASCII code for proper value here.

Commands to Control Print Style

These commands are used to control the font style, the print pitch, and special effects.

Font style controls

PURPOSE: Select the standard character set.
CODE:
(decimal ASCII)
(hex ASCII)
REMARKS: This command causes the printer to cancel the italic character set and select instead the standard character set. You can select the standard character set as the power-on default by turning DIP switch 1-4 on.
REFERENCE: Chapter 3
PURPOSE: Select the italic character set.
CODE:
(decimal ASCII)
〈ESC〉
"4"
(hex ASCII)
27
52

REMARKS: This command selects the italic character set. You can select the italic character set as the power-on default by turning DIP switch 1-4 off.

REFERENCE: Chapter 3

PURPOSE: Select an international character set.

CODE:
(decimal ASCII)
(hex ASCII)
REMARKS:

$\langle\mathrm{ESC}\rangle$	$" 7 "$	n
27	55	n
$1 B$	37	n

This command causes the printer to select an international character set determined by the value of n as shown in the table below:

n	Character set
0	U.S.A.
1	England
2	Germany
3	Denmark
4	France
5	Sweden
6	Italy
7	Spain

You can select a particular international character set as a power-on default, by adjusting the settings of DIP switches 1-6, 1-7, and 1-8.
REFERENCE: Chapter 6

Font pitch controls

PURPOSE: Set the print pitch to pica (10 characters/ inch).

CODE:
(decimal ASCII)
(hex ASCII)
〈ESC〉 "B" 1

REMARKS: This command causes all subsequent printing to be done in pica type. This command also sets the maximum number of print columns to 80 on the Delta-10 and 136 on the Delta-15. You can select pica type as the power-on default by turning DIP switch 1-3 on.

REFERENCE: Chapter 3

PURPOSE：\quad| Set the print pitch to elite（12 characters／ |
| :--- |
| inch）． |

CODE：
（decimal ASCII）
（hex ASCII）
REMARKS：

REFERENCE：Chapter 3

PURPOSE：Set the print pitch to condensed（17 charac－ ters／inch）．

CODE：
（decimal ASCII）
（hex ASCII）
REMARKS：

REFERENCE：Chapter 3

PURPOSE：Set the print pitch to pica（10 characters／ inch）．

〈DC2〉
18
（decimal ASCII）
（hex ASCII）
REMARKS：
This command is the same as 〈ESC〉＂B＂1， but can be used in applications where a sin－ gle－character command is required．
REFERENCE：Chapter 3.

PURPOSE: $\begin{aligned} & \text { Set the print pitch to condensed (17 charac- } \\ & \text { ters/inch). }\end{aligned}$

CODE:
(decimal ASCII)
(hex ASCII)
REMARKS:

REFERENCE: Chapter 3

PURPOSE:

CODE:
(decimal ASCII)
(hex ASCII)
REMARKS:

PURPOSE:
CODE:
(decimal ASCII)
(hex ASCII)
REMARKS: ters/inch).

Set the print pitch to condensed (17 charac-
This command is the same as 〈ESC〉 " B " 3 , but can be used in applications where a sin-gle-character command is required.

PURPOSE: Set the printer to expanded print for the remainder of the current line.

CODE:
(decimal ASCII)
(hex ASCII)
REMARKS:

REFERENCE:

PURPOSE:
CODE:
(decimal ASCII)
(hex ASCII)
REMARKS:
REFERENCE:

PURPOSE:
CODE:
(decimal ASCII)
(hex ASCII)
REMARKS:

REFERENCE: Chapter 3

PURPOSE: Cancels expanded print.
CODE:
(decimal ASCII)
(hex ASCII)
REMARKS: This command is the same as 〈ESC〉 "W" 0, but can be used in applications where a sin-gle-character command is required.
REFERENCE: Chapter 3

Special print modes

PURPOSE：Select double－strike printing．

CODE
（decimal ASCII）
（hex ASCII）
REMARKS：

$\langle\mathrm{ESC}\rangle$	$" \mathrm{G} "$
27	71
1 B	47

1B $\quad 47$
This command causes all subsequent charac－ ters to be printed in double－strike mode．Dou－ ble－strike mode causes all characters to be printed once，the paper moved up 1／144 inch， and the characters reprinted．Shifting in and out of double－strike mode on the same line can cause the line to slant slightly．

REFERENCE：Chapter 3

PURPOSE：Cancel double－strike printing．
CODE：
（decimal ASCII）
（hex ASCII）
REMARKS：

REFERENCE：Chapter 3

PURPOSE：Select emphasized printing．
CODE：
（decimal ASCII）
（hex ASCII）
REMARKS：

〈ESC〉	＂H＂
27	72
1 B	48

This command cancels double－strike printing and returns the printer to normal printing．
〈ESC〉＂E＂
$27 \quad 69$
1B
45
This command causes all subsequent charac－ ters to be printed in emphasized print．Em－ phasized print can only be used with pica－sized characters，or enlarged pica－sized characters（10 CPI and 5 CPI），and cannot be used with superscripts or subscripts．Empha－ sized print can，however，be used with dou－ ble－strike mode to obtain＂correspondence quality＂printing．You can select emphasized printing as the power－on default by turning DIP switch 1－2 off．

REFERENCE：Chapter 3

PURPOSE: Cancel emphasized printing.

CODE:
(decimal ASCII)
(hex ASCII)
REMARKS:

〈ESC〉 "F"
$27 \quad 70$
1B 46
This command cancels emphasized printing and returns the printer to normal printing. You can select normal printing as the poweron default by turning DIP switch 1-2 on.

REFERENCE: Chapter 3

Select underlining.

$\langle E S C\rangle$	$"-"$	1
27	45	1
$1 B$	$2 D$	01

This command causes all subsequent characters printed to be automatically underlined. Spaces are also underlined.

REFERENCE: Chapter 3

PURPOSE: Cancel underlining.
CODE:
(decimal ASCII)
(hex ASCII)
REMARKS:

REFERENCE: Chapter 3

PURPOSE：Select superscripts．
CODE：
（decimal ASCII）
（hex ASCII）
REMARKS：This command causes all subsequent charac－ ters to be printed as superscripts．While in su－ perscript mode，the normal bi－directional printing is cancelled and replaced with uni－ directional printing．Printing is also set to double－strike mode．Superscripts may be used in conjunction with the italic font，and in pica，elite，and condensed pitches．It may not，however，be used in conjunction with emphasized or enlarged print．
REFERENCE：Chapter 3

PURPOSE：Select subscripts．
CODE：
（decimal ASCII）
（hex ASCII）
REMARKS：This command causes all subsequent charac－ ters to be printed as subscripts．The same conditions and restrictions apply for sub－ scripts as do for superscripts．

REFERENCE：Chapter 3

PURPOSE：Cancel superscripts and subscripts．
CODE：
（decimal ASCII）
（hex ASCII）
REMARKS：

〈ESC〉＂S＂
$27 \quad 83$
531

1B
1
〈ESC〉＂T＂

27
84
1B
54
This command cancels either superscript or subscript mode．It also cancels the uni－direc－ tional printing and double－strike which the mode had set．
REFERENCE：Chapter 3

Commands to Control Vertical Position of Print Head

These commands are used to move the paper relative to the location of the print head. By moving the paper up, the print head, in effect, moves down the page.

Line feed controls

PURPOSE: Advance the paper one line (Line Feed).

CODE:
(decimal ASCII)
(hex ASCII)
REMARKS: The actual distance advanced by the line feed is set either through the setting of DIP switch $1-5$ or through various codes which can be sent (see below). When DIP switch 2-4 is "on" a line feed is automatically generated whenever the printer receives a carriage return.
REFERENCE: Chapter 4

PURPOSE: Change the line spacing to $1 / 8$ inch.
CODE:
(decimal ASCII)
(hex ASCII)
REMARKS: This command sets the distance the paper advances during all subsequent line feeds to $1 / 8$ inch. You can select $1 / 8$ inch line spacing as the power-on default by turning DIP switch 15 off.

REFERENCE: Chapter 4

PURPOSE:	Change the line spacing to $7 / 72$ inch.	
CODE:	$\langle\mathrm{ESC}\rangle$	$" 1 "$
(decimal ASCII)	27	49
(hex ASCII)	$1 B$	31

REMARKS: This command sets the actual distance the paper advances during all subsequent line feeds to 7/72 inch.

REFERENCE: Chapter 4

PURPOSE: \quad Change the line spacing to $\mathbf{1 / 6}$ inch.

CODE:
(decimal ASCII)
(hex ASCII)
REMARKS:
〈ESC〉
" 2 "
27
1B
50
$1 B \quad 32$
This command sets the actual distance the paper advances during all subsequent line feeds to $1 / 6$ inch. You can select $1 / 6$ inch line spacing as the power-on default by turning DIP switch 1-5 on.

REFERENCE: Chapter 4

CODE:
(decimal ASCII)
(hex ASCII)
REMARKS:

PURPOSE: \quad Change the line spacing to $\mathbf{n} / \mathbf{7 2}$ inch.

$\langle E S C\rangle$	$" A "$	n
27	65	n
1B	41	n

This command sets the distance the paper advances during all subsequent line feeds to $\mathrm{n} /$ 72 inch. The value of n must be between 0 and 255.

REFERENCE: Chapter 4

PURPOSE：Change the line spacing to $n / 144$ inch．
CODE：
（decimal ASCII）
（hex ASCII）
〈ESC）
27
1B
＂ 3 ＂
n
51
33
n
REMARKS：This command sets the actual distance trav－ eled during all subsequent line feeds to be $n /$ 144 inch．The value of n must be between 0 and 255.
REFERENCE：Chapter 4
PURPOSE：
CODE：
（decimal ASCII）
（hex ASCII）
REMARKS：
Send a one－time line feed of $\mathbf{n} / \mathbf{1 4 4}$ inch．
〈ESC〉
27
1B
This command causes the printer to advance the paper $n / 144$ inch．It does not change the current value of the line spacing and it does not cause a carriage return．The value of n must be between 0 and 255 ．

REFERENCE：Chapter 4

Form feed controls

PURPOSE：Advance paper to top of next page（Form Feed）．

CODE：
（decimal ASCII）
〈FF〉
（hex ASCII）
REMARKS：The actual length of a page ejected by a form feed is set either by the setting of DIP switch 1－1 or through various codes which can be sent（see below）．
REFERENCE：Chapter 4

PURPOSE：	Set page length to \boldsymbol{n} lines．		
CODE：	〈ESC〉	＂C＂	n
（decimal ASCII）	27	67	n
（hex ASCII）	$1 B$	43	n

REMARKS：This command sets the length of all subse－ quent pages to n lines．The value of n must be between 1 and 127.

REFERENCE：Chapter 4

PURPOSE：Set page length to \boldsymbol{n} inches．
CODE：
（decimal ASCII）
（hex ASCII）
REMARKS：

REFERENCE：Chapter 4

PURPOSE：Set the top margin．
CODE：
（decimal ASCII）
（hex ASCII）
REMARKS：

〈ESC〉	＂R＂	n
27	82	n
$1 B$	52	n

This command sets the margin at the top of the page to $\mathrm{n}-1$ lines．Printing will start on line n ．The default value for n upon power on is 1 ． The value of n must be between 1 and 16 ．

REFERENCE：Chapter 4

PURPOSE：Set the bottom margin．

CODE：
（decimal ASCII）
（hex ASCII）
REMARKS：

$\langle\mathrm{ESC}\rangle$	$" N "$	n
27	78	n
$1 B$	$4 E$	n

This command sets the margin at the bottom of the page to n lines．The printer will auto－ matically execute a form feed when the num－ ber of lines left on a page is equal to n ．The value of n must be between 1 and 127．This command is sometimes referred to as＂skip－ over－perforation．＂
REFERENCE：Chapter 4
PURPOSE：Cancel top and bottom margins．

CODE：
（decimal ASCII）
（hex ASCII）
REMARKS：
〈ESC〉＂O＂
$27 \quad 79$
1B 4 F
This command cancels both the top margin set by 〈ESC〉＂R＂n and the bottom margin set by 〈ESC〉＂N＂n．
REFERENCE：Chapter 4
Vertical tabs
PURPOSE：

CODE：
（decimal ASCII）
（hex ASCII）
REMARKS：

Advance paper to the next vertical tab posi－ tion．

〈VT〉
11
0B
This command causes the paper to be ad－ vanced to the next vertical tab position，or the top of the next page，whichever it finds first． The vertical tab positions are set upon power on at lines $6,12,18,24,30,36,42,48,54$ ，and 60.

REFERENCE：Chapter 5

PURPOSE:	Set vertical tab positions.	
CODE:	〈ESC〉 "P" n1 n2 n3...	0
(decimal ASCII)	$27 \quad 80$	n1 n2 n3...
(hex ASCII)	$1 \mathrm{~B} \quad 50$	n1 n2 n3...

Commands to Control Horizontal Position of Print Head

PURPOSE: \quad| Return print head to home position (Car- |
| :--- |
| riage Return). |

CODE:
(decimal ASCII)
(hex ASCII)
REMARKS:

REFERENCE: Chapter 4

PURPOSE: Set the left print margin.
CODE:
(decimal ASCII)
(hex ASCII)
REMARKS:
〈CR >
13
0D automatically.

$\langle E S C\rangle$	$" M "$	n
27	77	n
$1 B$	$4 D$	n

This command returns the print head to the home position (the left margin). If DIP switch 2-4 has been set on, then this command will also cause a line feed character to be generated after the carriage return, thereby advancing to the beginning of the next print line

This command sets the home position returned to during the execution of all subsequent carriage returns to be print position n. The power on default for n is 1 . The value of n must be between 1 and 255. For Delta-10 the maximum print position for pica pitch is 80 , for elite is 96, and for condensed pitch is 136. For Delta-15 the maximum print position for pica pitch is 136 , for elite is 163 , and for condensed pitch is 233.
REFERENCE: Chapter 5

PURPOSE: Set the right print margin.
CODE:
(decimal ASCII)
(hex ASCII)
REMARKS:

PURPOSE: Move the print head to the next horizontal tab position.

CODE:
(decimal ASCII)
(hex ASCII)
REMARKS:

REFERENCE: Chapter 5

PURPOSE: Set horizontal tab positions.
CODE:
(decimal ASCII)
(hex ASCII)
REMARKS:

$$
\begin{array}{llcc}
\langle\text { ESC } & \text { "D" } & \text { n1 n2 n3 } \ldots . & 0 \\
27 & 68 & \text { n1 n2 n3... } & 0 \\
\text { 1B } & 44 & \text { n1 n2 n3... } & 00 \\
\text { This command cancels all current horizontal } \\
\text { tab positions and sets those defined at print } \\
\text { positions n1, n2, n3, etc. The maximum num- } \\
\text { ber of horizontal tab positions allowed is } 255 . \\
\text { The ASCII } 0 \text { character is used as a command } \\
\text { terminator. Each horizontal tab position } \\
\text { must be between } 1 \text { and } 255, \text { and they must be } \\
\text { specified in ascending order. }
\end{array}
$$

REFERENCE: Chapter 5

PURPOSE:	Skip n print positions.		
CODE:	$\langle\mathrm{ESC}\rangle$	$" \mathrm{~b} "$	n
(decimal ASCII)	27	98	n
(hex ASCII)	$1 B$	62	n

REMARKS: This command causes the print head to advance n print positions to the right. It does not, however, change the current value of the horizontal tab positions. The value of n must be between 1 and 255 .

REFERENCE: Chapter 5

PURPOSE: Move the print head back one print position (backspace).
CODE:
(decimal ASCII)
〈BS〉
8
(hex ASCII)
REMARKS: This command shifts the print head one column to the left. If the print head is at the home position, the command is ignored. This command can be used to overstrike characters.
REFERENCE: Chapter 6

Download Character Commands

PURPOSE: Define download characters into RAM.

CODE:

REFERENCE: Chapter 7

PURPOSE: Copy standard character ROM fonts into RAM.

CODE:
(decimal ASCII)
(hex ASCII)
REMARKS: This command takes all of the characters in the standard ASCII character (others don't work) and copies them into RAM. This is helpful prior to defining characters in RAM because it allows standard ROM characters to be printed on the same line as download characters.
REFERENCE: Chapter 7

PURPOSE：Select download character set with propor－ tional spacing．

CODE：
（decimal ASCII）
（hex ASCII）
REMARKS：

REFERENCE：Chapter 7

PURPOSE：Cancel download character set with propor－ tional spacing．

CODE：
（decimal ASCII）
（hex ASCII）
REMARKS：
〈ESC〉
27
1B
This command cancels the download charac－ ter set and selects the standard ASCII charac－ ter set．

REFERENCE：Chapter 7

PURPOSE： | Select download character set with normal |
| :--- |
| spacing． |

CODE：
（decimal ASCII）
（hex ASCII）
REMARKS：

〈ESC〉
27
27
＂\＄＂
36
24

1
\square
01

This command causes the printer to select the download character set using normal spacing and ignoring the proportional width data．
NOTE：Download characters cannot be mixed with other characters on the same line．
REFERENCE：Chapter 7

PURPOSE: Cancel download character set with normal spacing.

CODE:
(decimal ASCII)
(hex ASCII)
REMARKS: This command cancels the download character set and selects the standard ASCII character set.

REFERENCE: Chapter 7

Commands to Control Graphics

PURPOSE:	Print normal-density graphics.		
CODE:	〈ESC〉	" K "	$\mathrm{n} 1 \mathrm{n} 2 \mathrm{~m} 1 \mathrm{~m} 2 \mathrm{~m} 3 \ldots$
(decimal ASCII)	27	75	$\mathrm{n} 1 \mathrm{n} 2 \mathrm{~m} 1 \mathrm{~m} 2 \mathrm{~m} 3 \ldots$
(hex ASCII)	$1 B$	$4 B$	$\mathrm{n} 1 \mathrm{n} 2 \mathrm{~m} 1 \mathrm{~m} 2 \mathrm{~m} 3 \ldots$

REMARKS: This command selects 60 dots-per-inch, bitimage graphics mode. The values of $n 1$ and n 2 represent the number of graphics characters to be printed, where the total number of characters $=n 2$ times $256+n 1$. There must be the correct number of graphic characters following n 2 . The ASCII value of these characters determine which pins are fired for each character.

REFERENCE: Chapter 8

PURPOSE：	Print double－density graphics		
CODE：	〈ESC〉	＂L＂	$\mathrm{n} 1 \mathrm{n} 2 \mathrm{~m} 1 \mathrm{~m} 2 \mathrm{~m} 3 \ldots$
（decimal ASCII）	27	76	$\mathrm{n} 1 \mathrm{n} 2 \mathrm{~m} 1 \mathrm{~m} 2 \mathrm{~m} 3 \ldots$
（hex ASCII）	$1 B$	$4 C$	$\mathrm{n} 1 \mathrm{n} 2 \mathrm{~m} 1 \mathrm{~m} 2 \mathrm{~m} 3 .$.

REMARKS：This command selects 120 dots－per－inch，col－ umn－scan，bit－image graphics mode．The val－ ues of $n 1$ and $n 2$ are the same as in normal density graphics．There must be the correct number of graphic characters following $n 2$ ． The ASCII value of these characters deter－ mine which pins are fired for each character．
REFERENCE：Chapter 8

PURPOSE：\quad| Print double－density graphics with |
| :--- |
| double－speed． |

CODE：
（decimal ASCII）
（hex ASCII）
REMARKS：

〈ESC〉	＂y＂ $\mathrm{n} 1 \mathrm{n} 2 \mathrm{~m} 1 \mathrm{~m} 2 \mathrm{~m} 3 \ldots$	
27	121	$\mathrm{n} 1 \mathrm{n} 2 \mathrm{~m} 1 \mathrm{~m} 2 \mathrm{~m} 3 \ldots$
1B	79	$\mathrm{n} 1 \mathrm{n} 2 \mathrm{~m} 1 \mathrm{~m} 2 \mathrm{~m} 3 \ldots$

This command selects 120 dots－per－inch，col－ umn－scan，bit－image graphics mode with double－speed．The values of $n 1$ and $n 2$ are the same as in normal density graphics．There must be the correct number of graphic char－ acters following $n 2$ ．The ASCII value of these characters determine which pins are fired for each character．

REFERENCE：Chapter 8
PURPOSE：Print quadruple－density graphics．
CODE：
（decimal ASCII）
（hex ASCII）
REMARKS：

$\langle\mathrm{ESC}$	＂ z ＂	$\mathrm{n} 1 \mathrm{n} 2 \mathrm{~m} 1 \mathrm{~m} 2 \mathrm{~m} 3 \ldots$
27	122	$\mathrm{n} 1 \mathrm{n} 2 \mathrm{~m} 1 \mathrm{~m} 2 \mathrm{~m} 3 .$.
1B	$7 A$	$\mathrm{n} 1 \mathrm{n} 2 \mathrm{~m} 1 \mathrm{~m} 2 \mathrm{~m} 3 .$.

This command selects 240 dots－per－inch，col－ umn－scan，bit－image graphics mode．The val－ ues of $n 1$ and $n 2$ are the same as in normal density graphics．There must be the correct number of graphic characters following n 2 ． The ASCII value of these characters deter－ mine which pins are fired for each character．
REFERENCE：Chapter 8

Macro Instruction Commands

PURPOSE：Define macro instruction．
CODE：
（decimal ASCII）

$\langle\mathrm{ESC}\rangle$	$"+"$	\ldots	$\langle\mathrm{RS}\rangle$
27	43	\ldots	30
1 B	2 B	\ldots	1 E

REMARKS：
This command cancels any existing macro instruction，and replaces it with the instruc－ tion defined．The maximum number of char－ acters allowed in the macro instruction is 16. The 〈RS〉 character marks the end of the macro definition．

REFERENCE：Chapter 6

PURPOSE：Execute macro instruction．
CODE：
（decimal ASCII）
〈ESC〉
＂！＂
27
33
（hex ASCII）
REMARKS：This command executes a macro instruction that was previously defined．
REFERENCE：Chapter 6

Other Commands

PURPOSE：Set the value of the eighth data bit to logical 1.

CODE：
（decimal ASCII）
（hex ASCII）
REMARKS：

〈ESC〉	$">"$
27	62
1 B	3 E

This command forces the eighth data bit of each subsequent character sent to the printer to logical 1．This code allows users with a 7 － bit interface to access those characters whose ASCII code is greater than 127．This code should not be used to transmit printer control codes．

REFERENCE：Chapter 6

PURPOSE：	Set the value of the eighth data bit to logical 0．	
CODE：	〈ESC〉 \quad＂$="$	
（decimal ASCII）	27	61
（hex ASCII）	$1 B$	3D

REMARKS：This command forces the eighth data bit of each subsequent character sent to the printer to logical 0 ．This code should not be used to transmit printer control codes．
REFERENCE：Chapter 6

PURPOSE：Accept the value of the eighth data bit as is．

CODE：
（decimal ASCII） （hex ASCII）
REMARKS：

27
1B35

23
This command cancels either setting of the eighth data bit．The printer will use the value of the eighth data bit that is sent from the computer．This code allows users with only a 7－bit interface to resume normal functions af－ ter accessing those characters whose ASCII code is greater than 127.
REFERENCE：Chapter 6

PURPOSE：Delete the last character sent．
CODE：
（decimal ASCII）
（hex ASCII）
REMARKS：This command deletes the last character re－ ceived．This command is ignored if the last character received has already been printed， or if the last character received was all or part of a function code．

REFERENCE：Chapter 6

PURPOSE:	Set printer off line.
CODE:	\langle DC3 \rangle
(decimal ASCII)	19
(hex ASCII)	13

REMARKS: This command causes the printer to set itself off line, disregarding all subsequent characters and function codes, with the exception of〈DC1〉, which will return the printer to an on line state. This is not the same as pushing the ON-LINE button. When the ON-LINE light is out the printer will not respond to DC1.

REFERENCE: Chapter 6

PURPOSE: Set printer on line.

CODE:
(decimal ASCII)
(hex ASCII)
REMARKS: This code resets the printer to an on line state, thus allowing it receive and process all subsequent characters and function codes. This is not the same as pushing the ON-LINE button. When the ON-LINE light is out the printer will not respond to DC1.

REFERENCE: Chapter 6
PURPOSE: Sound printer bell.
CODE:
(decimal ASCII)
(hex ASCII)
REMARKS: This command causes the printer tone to sound for approximately one-fourth second.

REFERENCE: Chapter 6

PURPOSE：Disable the printer bell．

CODE：	$\langle\mathrm{ESC}\rangle$	＇ $\mathrm{Y} "$	0
（decimal ASCII）	27	89	0
（hex ASCII）	1 B	59	00

REMARKS： | This command causes the printer to ignore |
| :--- |
| the 〈BEL）character． |

REFERENCE：Chapter 6

PURPOSE：Enable the printer bell．

CODE：
（decimal ASCII）
（hex ASCII）
REMARKS：

〈ESC〉＂Y＂
$27 \quad 89$

1B
59 01

This command causes the printer to respond to the 〈BEL〉 character normally by sounding the printer bell．
REFERENCE：Chapter 6
PURPOSE：Disable paper－out detector．
CODE：
（decimal ASCII）
（hex ASCII）
REMARKS：
〈ESC〉＂ 8 ＂
27
1B
This command causes the printer to disre－
gard the signal sent by the paper－out detector． The paper－out signal normally sounds the printer bell and stops printing until paper is inserted and the printer is reset．This com－ mand is useful when printing on single sheets of paper because it allows printing to the bot－ tom of the page．
REFERENCE：Chapter 6
PURPOSE：Enable paper－out detector．
CODE：
（decimal ASCII）
（hex ASCII）
REMARKS：
This command restores the function of the paper－out detector．

REFERENCE：Chapter 6

	PURPOSE：	Select uni－directional printing．		
CODE：	〈ESC〉	＂U＂	1	
（decimal ASCII）	27	85	1	
（hex ASCII）	$1 B$	55	01	

REMARKS：This command causes all subsequent lines to be printed in uni－directional printing．Uni－di－ rectional printing is useful in printing tables or charts，since it ensures that vertical col－ umns of characters will be in alignment．
REFERENCE：Chapter 6

PURPOSE
CODE：
（decimal ASCII）
（hex ASCII）
REMARKS：
Cancel uni－directional printing．

$\langle E S C\rangle$	$" U "$	0
27	85	0
$1 B$	55	00

This command cancels uni－directional print－ ing，and returns to the standard bi－directional printing，which is considerably faster．
REFERENCE：Chapter 6

PURPOSE：Initialize printer．
CODE：
（decimal ASCII）
（hex ASCII）
〈ESC〉＂＠＂

REMARKS：
This command reinitializes the printer．The print buffer is cleared，and the form length， character pitch，character set，line feed pitch， and international character set are all reset to the values defined by their respective DIP switches．
The main difference between the 〈ESC〉＂＠＂ command and turning the printer off and back on is that download character RAM is preserved with this command．
REFERENCE：Chapter 6

Appendix L

Command Summary in Numeric Order

Control code
CHR\＄（0）
CHR\＄（7）
CHR\＄（8）
CHR\＄（9）
CHR\＄（10）
CHR\＄（11）
CHR\＄（12）
CHR\＄（13）
CHR\＄（14）
CHR\＄（15）
CHR ${ }^{(17)}$
CHR\＄（18）
CHR\＄（19）
CHR\＄（20）
CHR\＄（27）
CHR\＄（30）
CHR\＄（127）
〈ESC〉CHR\＄（14）
〈ESC〉CHR\＄（15）
（ESC）＂！＂
〈ESC〉＂\＃＂
〈ESC〉＂\＄＂CHR\＄（0）
〈ESC〉＂\＄＂CHR\＄（1）
〈ESC〉＂＊＂CHR\＄（0）

Function
End tab settings
Sound bell
Backspace
Horizontal tab
Line feed
Vertical tab
Form feed
Carriage return
Expanded print
Condensed print
On line
Pica type
Off line
Cancel enlarged print
Escape（indicated as 〈ESC＞below）
End macro instruction definition
Delete last character
Expanded print
Condensed print
Use macro
Accept eighth bit as is
Cancel normal download characters
Use normal download characters
Copy ROM characters to download
RAM
〈ESC〉＂＊＂CHR\＄（1）n1 n2 m1 m2 ．．．m11
Define download character
〈ESC〉＂＋＂．．．CHR\＄（30）Define macro
〈ESC〉＂－＂CHR\＄（0）Stop underlining

Control code
〈ESC〉＂－＂CHR\＄（1）
〈ESC〉＂0＂
〈ESC＞＂ 1 ＂
〈ESC〉＂ 2 ＂
〈ESC〉＂ 3 ＂n
〈ESC〉＂ 4 ＂
〈ESC〉＂ 5 ＂
〈ESC〉＂7＂n
〈ESC）＂ 8 ＂
〈ESC＞＂ 9 ＂
〈ESC〉＂＝＂
〈ESC〉＂＞＂
〈ESC〉＂＠＂
〈ESC〉＂A＂n
〈ESC〉＂B＂CHR\＄（1）
〈ESC〉＂B＂CHR\＄（2）
〈ESC＞＂B＂CHR\＄（3）
〈ESC〉＂C＂n
〈ESC〉＂C＂CHR\＄（0）n
〈ESC＞＂D＂．．CHR\＄（0）
〈ESC）＇E＂
〈ESC）＇F＂＇
〈ESC〉＂＇G＂
〈ESC〉＂H＂
〈ESC）＂J＂n
〈ESC〉＂K＂n1 n2
〈ESC〉＂L＂n1 n2
〈ESC〉＂M＂n
〈ESC〉＂N＂n
〈ESC〉＂O＂
〈ESC〉＇P＂．．．CHR\＄（0）
〈ESC〉＂Q＂n
〈ESC〉＂R＂n
〈ESC〉＂S＂CHR\＄（0）
〈ESC＞＂S＂CHR\＄（1）
〈ESC＞＂T＂
〈ESC〉＂U＂CHR\＄（0）
〈ESC〉＂U＂CHR\＄（1）
〈ESC〉＂W＂CHR\＄（0）
〈ESC〉＂W＂CHR\＄（1）
〈ESC〉＂X＂CHR\＄（0）
〈ESC〉＂ X ＂CHR\＄（1）

Function

Start underlining
1／8 inch line feed
7／72 inch line feed
1／6 inch line feed
n／144 inch line feed
Italic print
Cancel italic print
Select international character set
Ignore paper－out signal
Enable paper－out signal
Set eighth bit to 0
Set eighth bit to 1
Reset the printer
$n / 72$ inch line feed
Pica print
Elite print
Condensed print
Set page length to n lines
Set page length to n inches
Set horizontal tabs
Emphasized print
Cancel emphasized print
Double－strike print
Cancel double－strike print
Single line feed of $n / 144$ inches
Single density graphics
Double density graphics
Set left margin at column n
Set bottom margin at n lines
Cancel top and bottom margins
Set vertical tabs
Set right margin at column n
Set top margin at line n
Superscript on
Subscript on
Cancel super and subscripts
Bidirectional print
Unidirectional print
Cancel enlarged print
Enlarged print
Cancel proportional download characters
Use proportional download characters

Control code〈ESC〉＂Y＂CHR\＄（0）
〈ESC〉＇Y＂CHR\＄（1）
〈ESC〉＂a＂n
〈ESC〉＂b＂n
〈ESC〉＂y＂n1 n2
〈ESC〉＂z＂n1 n2

Function

Disable bell
Enable bell
Advance n line feeds
Tab over n columns
Double speed，double density graphics
Quadruple density graphics

Appendix M

ASCII Code Conversion Chart

Standard ASCII Codes			Control character	Character
Decimal	Hexadecimal	Binary		
0	00	00000000	Ctrl-@	NUL
1	01	00000001	Ctri-A	
2	02	00000010	Ctrl-B	
3	03	00000011	Ctrl-C	
4	04	00000100	Ctrl-D	
5	05	00000101	Ctrl-E	
6	06	00000110	Ctrl-F	
7	07	00000111	Ctrl-G	BEL
8	08	00001000	Ctrl-H	BS
9	09	00001001	Ctrl-I	HT
10	OA	00001010	Ctrl-J	LF
11	0B	00001011	Ctrl-K	VT
12	0 C	00001100	Ctrl-L	FF
13	OD	00001101	Ctrl-M	CR
14	OE	00001110	Ctrl-N	SO
15	OF	00001111	Ctrl-O	SI
16	10	00010000	Ctrl-P	
17	11	00010001	Ctrl-Q	DC1
18	12	00010010	Ctrl-R	DC2
19	13	00010011	Ctrl-S	DC3
20	14	00010100	Ctrl-T	DC4
21	15	00010101	Ctrl-U	
22	16	00010110	Ctrl-V	
23	17	00010111	Ctrl-W	
24	18	00011000	Ctrl-X	
25	19	00011001	Ctrl-Y	
26	1A	00011010	Ctrl-Z	
27	1B	00011011		ESC
28	1C	00011100		
29	1D	00011101		
30	1E	00011110		RS
31	1F	00011111		

Decimal	Standard ASCII Codes Hexadecimal	Binary	Character
74	4A	01001010	\square
75	4B	01001011	K
76	4 C	01001100	L
77	4D	01001101	M
78	4 E	01001110	N
79	4 F	01001111	O
80	50	01010000	F
81	51	01010001	0
82	52	01010010	F
83	53	01010011	5
84	54	01010100	T
85	55	01010101	\square
86	56	01010110	v
87	57	01010111	$1 /$
88	58	01011000	X
89	59	01011001	γ
90	5A	01011010	z
91	5B	01011011	[
92	5 C	01011100	\}
93	5D	01011101	7
94	5 E	01011110	\therefore
95	5 F	01011111	-
96	60	01100000	
97	61	01100001	a
98	62	01100010	t
99	63	01100011	\square
100	64	01100100	\square
101	65	01100101	e
102	66	01100110	f
103	67	01100111	9
104	68	01101000	n
105	69	01101001	i
106	6A	01101010	\pm
107	6B	01101011	k
108	6 C	01101100	1
109	6D	01101101	in
110	6 E	01101110	\square
111	6 F	01101111	0
112	70	01110000	p
113	71	01110001	9
114	72	01110010	F
115	73	01110011	$=$

Decimal	Standard ASC Hexadecimal				
Decimal		Binary	Character		
116	74	01110100	t		
117	75	01110101	u		--
118	76	01110110	\checkmark		
119	77	01110111	w		-
120	78	01111000	X		
121	79	01111001	y		
122	7A	01111010	2		-
123	7B	01111011	¢		
124	7C	01111100	;		-
125	7D	01111101	3		
126	7E	01111110	\sim	-	-
127	7F	01111111	DEL		
128	80	10000000			
129	81	10000001			
130	82	10000010			
131	83	10000011			
132	84	10000100			
133	85	10000101			\cdots
134	86	10000110			
135	87	10000111	BEL		
136	88	10001000	BS		
137	89	10001001	HT		
138	8A	10001010	LF		
139	8B	10001011	VT		
140	8C	10001100	FF		-
141	8D	10001101	CR		
142	8E	10001110	SO		-
143	8F	10001111	SI		
144	90	10010000			--
145	91	10010001	DC1	-	
146	92	10010010	DC2		
147	93	10010011	DC3		
148	94	10010100	DC4		
149	95	10010101			
150	96	10010110			
151	97	10010111			-
152	98	10011000			
153	99	10011001			
154	9A	10011010			
155	9B	10011011	ESC		
156	9 C	10011100			
157	9D	10011101			

Decimal	Standard ASC Hexadecimal	Binary	Character
158	9E	10011110	RS
159	9 F	10011111	
160	A0	10100000	2
161	A1	10100001	\cdots
162	A2	10100010	S
163	A3	10100011	;'
164	A4	10100100	\dagger
165	A5	10100101	4
166	A6	10100110	\div
167	A7	10100111	$+$
168	A8	10101000	6
169	A9	10101001	\cdots
170	AA	10101010	$\stackrel{\square}{*}$
171	AB	10101011	k.
172	AC	10101100	t
173	AD	10101101	$*$
174	AE	10101110	+
175	AF	10101111	\square
176	B0	10110000	Ts
177	B1	10110001	\dot{A}
178	B2	10110010	¢
179	B3	10110011	θ
180	B4	10110100	:
181	B5	10110101	F
182	B6	10110110	\square
183	B7	10110111	B
184	B8	10111000	
185	B9	10111001	\square
186	BA	10111010	(x)
187	BB	10111011	π
188	BC	10111100	\pm
189	BD	10111101	3
190	BE	10111110	\%
191	BF	10111111	\div
192	C0	11000000	\bar{A}
193	C1	11000001	a
194	C2	11000010	ζ
195	C3	11000011	*
196	C4	11000100	畐
197	C5	11000101	H
198	C6	11000110	0
199	C7	11000111	,

Decimal	Standard ASCII Codes Hexadecimal	Binary	Character
242	F2	11110010	\neg
243	F3	11110011	-
244	F4	11110100	+
245	F5	11110101	+
246	F6	11110110	
247	F7	11110111	-
248	F8	11111000	-
249	F9	11111001	-
250	FA	11111010	+
251	FB	11111011	
252	FC	11111100	
253	FD	11111101	
254	FE	11111110	
255	FF	11111111	

Appendix N

Technical Specifications

Printing

Printing method Serial impact dot matrix
Printing speed 160 characters per second in 10 and 12 CPI 137 characters per second in 17 CPI
Paper feed $\quad 100 \mathrm{~ms} /$ line (at $1 / 6$ inch/line) Sprocket or friction feed
Printing direction Bidirectional, logic seeking Unidirectional in bit image modes
Character set 96 standard ASCII characters 88 international characters 64 special symbols 32 block graphics characters 189 user defined characters
Character size $\quad 2.4 \mathrm{~mm} \times 2.0 \mathrm{~mm}$ standard 10 CPI characters
Character matrix Standard characters: 9 dot 9 dot Block graphics: 6 dot $x 6$ dot User defined: 7 dot $x 4$ to 11 dot Bit image modes: 7 or 8 dot $x 60$ dots/in. 7 or $8 \operatorname{dot} x 120$ dots/in. 7 or $8 \operatorname{dot} x 240$ dots/in.
Line spacing
Column width
1/6 or $1 / 8$ inch standard n/72 inch or n/144 inch programmable

	10 CPI	Delta-10
12 CPI	80	Delta-15
17 CPI	96	163
	136	233

Paper

Delta-10 Delta-15

Paper type	Single sheets	$8-10 \mathrm{in}$. wide	$8-15 \mathrm{in}$. wide
	Roll paper	8.5 in . wide	8.5 in . wide
	Sprocket-feed paper $3-10 \mathrm{in}$. wide	$5-15.5$ in. wide	
Thickness	One-part forms	$0.07-0.10 \mathrm{~mm}$	$0.07-0.10 \mathrm{~mm}$
	Max. 3-part forms	0.28 mm max.	0.28 mm max.
Roll diameter	5 in . max.	5 in. max.	

Printer		Delta-10

Parallel interface

Interface	Centronics-compatible, 7 or 8 bit
Synchronization	By externally supplied strobe pulses
Handshaking	By ACK or BUSY signals
Logic level	TTL
Connector	57-30360 Amphenol

Serial interface

Interface	Asynchronous RS-232C
Bit rate	$110,300,600,1200,2400,4800,9600$ baud
Word length	1 start bit 7 or 8 data bits
	Odd, even or no parity 1 or 2 stop bits
Handshaking	Serial busy, 1 byte mode Serial busy, 1 block mode ACK mode XON/XOFF mode

Appendix 0

The Parallel Interface

Delta has both a parallel interface and a serial interface to communicate with the computer that it is connected to. The operating specifications of the parallel interface are as follows:

Data transfer rate: Synchronization: Handshaking: Logic level:

1,000 to 6,000 characters per second Via externally supplied STROBE pulses $\overline{A C K}$ and BUSY signals Compatible with TTL level

Delta's parallel interface connects to the computer by a 36 pin connector on the back of the printer. This connector mates with an Amphenol 57-30360 connector. The functions of the various pins are summarized in Table O-1.

Functions of the Connector Signals

Communications between the computer and the Delta use many of the pins of the connector. To understand how the system of communications works we need to look at the functions of the various signals carried by the pins of the interface connector.

Pin 1 carries the STROBE pulse signal from the computer to the printer. This signal is normally held high by the computer. When the computer has data ready for the printer it sets this signal to a low value for at least 0.5 microseconds. When the printer sees this pulse on the strobe pin, it reads the data that the computer supplies on pins 2 through 9 . Each of these lines carries one bit of information. A logical " 1 " is represented by a high signal level, and a logical " 0 " is represented by a low signal level. The computer must maintain these signals for a period beginning at least 0.5 microseconds before the strobe pulse starts and continuing for at least 0.5 microseconds after the strobe pulse ends.

When the Delta has successfully received the byte of data from the computer it sets pin 10 low for approximately 9 microse-
conds. This signal acknowledges the receipt of the data and so is called the ACK signal.

Figure O-1. Delta interfacc timing diagram.

Figure 0-2. Typical interface circuit.

Table 0-1

Signal Pin No.	Signal Name	Direction	Function
1	$\overline{\text { STROBE }}$	IN	Signals when data is ready to be read. Signal goes from HIGH to LOW (for at least 0.5 microseconds) when data is available.
2	DATA1	IN	These signals provide the information of the first to eighth bits of parallel data. Each signal is at a HIGH level for a logical 1 and at a LOW level for a logical 0 .
3	DATA2	IN	
4	DATA3	IN	
5	DATA4	IN	
6	DATA5	IN	
7	DATA6	IN	
8	DATA7	IN	
9	DATA8	IN	
10	ACK	OUT	A 9 microsecond LOW pulse acknowledges receipt of data.
11	BUSY	OUT	When this signal goes LOW the printer is ready to accept data.
12	PAPER OUT	OUT	This signal is normally LOW. It will go HIGH if Delta runs out of paper. This signal can be held LOW permanently by turning DIP switch 2-1 off.
13	SELECTED	OUT	This signal is HIGH when the printer is online.
14-15	N/C		Unused.
16	SIGNAL GND		Signal ground.
17	$\begin{aligned} & \text { CHASSIS } \\ & \text { GND } \end{aligned}$		Printer's chassis ground, isolated from logic ground.
18	+ 5VDC	OUT	External supply of +5 VDC .
19-30	GND		Twisted pair return signal ground level.
31	RESET	IN	When this signal goes LOW the printer is reset to its power-on condition.
32	ERROR	OUT	This signal is normally HIGH. This signal goes LOW to signal that the printer cannot print due to an error condition.
33	EXT GND		External ground.
34-36	N/C		Unused.

Pin 11 reports when the Delta is not able to receive data. The signal is called BUSY. When this signal is high, Delta cannot receive data. This signal will be high during data transfer, when the printer is off-line and when an error condition exists.

Appendix P

Serial Interface Specifications

Delta provides a very flexible RS232C serial interface. It can communicate at rates from 110 to 9600 baud and supports four different kinds of handshaking. The operating specifications of the interface are as follows:

Data transfer rate:	110-9600 baud
Word length:	1 start bit
	7 or 8 data bits
	Odd, even or no parity
	1 or 2 stop bits ${ }^{\text {Mark or OFF }-3 \text { to }-15 \text { volts }}$
Signal levels:	Mark or OFF, -3 to -15 volts Space or ON, +3 to +15 volts
Handshaking:	Serial busy, 1 byte mode
	Serial busy, 1 block mode
	ACK mode
	XON/XOFF mode

Delta has a DB-25 female connector on the back to connect to a computer. The functions of the pins are summarized in Table P-1

Configuring the Serial Interface

DIP switch 3 controls the configuration of the serial interface. Figure P-1 shows the location of DIP switch 3. You must remove Delta's upper case to reach this switch. See Chapter 10 for instructions on how to do this. Table P-2 describes the functions of the individual switches in DIP switch 3.

Delta's Serial Protocols

Delta has four serial protocols selected by DIP switches 3-3
and 3-4. Figure P-2 shows a typical byte of serial data and Figure P-3 shows timing charts for the 4 protocols.

Table P-1
Serial Interface Pin Functions

Signal Pin No.	Signal Name	Direction	Function
1	GND	-	Printer's chassis ground.
2	TXD	OUT	This pin carries data from the printer.
3	RXD	IN	This pin carries data to the printer.
4	RTS	OUT	This is ON when the printer is ready to receive data.
5	CTS	IN	This pin is ON when the computer is ready to send data.
6	DSR	IN	This pin is ON when the computer is ready to send data. Delta does not check this pin.
7	GND	-	Signal ground
8	DCD	IN	This pin is ON when the computer is ready to send data.
$9-10$	N/C		Unused
11	RCH	OUT	This is the signal line for the serial busy protocols. This pin goes OFF when Delta's buffer fills, and ON when Delta is ready to receive data. In the busy protocols this line carries the same signal as pin 20.
12	N/C		Unused
13	GND	-	Signal ground
$14-19$	N/C		Unused
20	DTR	OUT	Delta turns this pin ON when it is ready to receive data.
$21-25$	N/C		Unused.

Table P-2
DIP Switch 3

Switch	ON	OFF
3-1	7 data bits	8 data bits
3-2	Parity checked	No parity
3-3	Handshaking protocols-see below	
3-4		
3-5	Odd parity	Even parity
3-6	Data transfer rate-see below	
3-7		
3-8		

Delta-15

Figure P-1. DIP switch 3 is located inside the case.

Table P－3
 Handshaking protocols

Protocol	Switch 3－3	Switch 3－4
Serial busy，1 byte mode	OFF	OFF
Serial busy，1 block mode	ON	OFF
ACK mode	OFF	ON
XON／XOFF	ON	ON

Table P－4
Data transfer rates

Baud rate	Switch 3－6	Switch 3－7	Switch 3－8
110	OFF	OFF	OFF
110	OFF	OFF	ON
300	OFF	ON	OFF
600	OFF	ON	ON
1200	ON	OFF	OFF
2400	ON	OFF	ON
4800	ON	ON	OFF
9600	ON	ON	ON

Serial busy protocols

In the serial busy protocols，Delta uses DTR（pin 20）and RCH （pin 11）to signal to the computer when it is able to accept data． These two pins go ON when Delta is ready to accept data．In the 1 byte mode they go OFF after each character is received．In the 1 block mode they only go OFF when Delta＇s buffer approaches capacity．In both cases they will stay OFF if the buffer is too full to accept more data．

XON／XOFF protocol

The XON／XOFF protocol uses the ASCII characters 〈DC1〉 and 〈DC3〉（sometimes called XON and XOFF，respectively）to communicate with the computer．When Delta＇s buffer approaches capacity Delta will send a DC3（ASCII 19）on TXD （pin 2）to tell the computer that it must stop sending data．When Delta is able to receive more data it sends a DC1（ASCII 17）on TXD．The computer can then send more data until Delta sends another DC3．

ACK protocol

In the ACK protocol, Delta sends an ACK (ASCII 6) on TXD (pin 2) each time that it is prepared to receive a byte of data.

Figure P-2. Typical data byte on the serial interface.

Figure P-3. Serial protocol timing charts.

Index

ACK protocal 301
Adjusting the print head gap 13
Advance paper 265
American Standard Code for
Information Interchange 19
Apple II computer 23，56，65， 143
Applesoft BASIC 143
Array，in memory 107
ASCII 19
ASCII code conversion chart 283
ASCII codes 80， 283
Atari BASIC 193
Atari computer 193
Attribute byte 81
Auto line feed 228
Backspace 65， 268
BASIC 19，23， 29
Applesoft 143
Atari 193
Commodore 211
Microsoft 178
problems with 117
TRS－80 162
using this book with 23
〈BEL〉 62， 275
Bell 61， 275
Bell code 61
Bidirectional printing 63， 277
Binary 283
Block graphic characters 66
Bold print 32
Bottom feed（Delta－15） 11
Bottom margin 50
Bridge hand program 85
Apple II 148
Atari 197
Commodore 215
Osborne 1181
TRS－80 165
〈BS〉 268
Business graphics 111
Button，F．F． 2
Button，form feed 2
Button，L．F． 3
Button，on line 2
Byte，attribute 81
C－64 computer 24， 211
Calendar 119
Carriage return 44， 266

Character design program 95
Character graphics 66
Character matrix 201
Character sets 291
Character size 291
Character style charts 239
Character values 80
Character width 30
Character widths 88
Characters，connecting 91
Characters，defining 76
Characters，download 73
Characters，international 68
Characters，proportional 88， 270
Characters，special 66
Characters，user－defined 73
Chart program 37
Apple II 146
Atari 195
Commodore 212
Osborne 1179
TRS－80 163
Chart，ASCII code conversion 283
Chart，print modes 40
Charts，character style 239
CHRS function 25
CHR\＄（） 19
CHR\＄（10）44， 260
CHR\＄（11）59， 264
CHR\＄（12）48， 262
CHR\＄（127）65， 274
CHR\＄（13）44， 266
CHR\＄（14）31， 256
CHR\＄（15）31， 255
CHR\＄（17）63， 275
CHR\＄（18）31， 254
CHR\＄（19）63， 275
CHR\＄（20） 256
CHR\＄（27） 26
CHR\＄（30）69， 273
CHR\＄（7）62， 275
CHR\＄（8）65， 268
CHR\＄（9）55， 267
Cleaning 123
Codes 19
Column width 291
Columns of dots 78
for graphics 101
Combining text and graphics 103

Command quick reference B / C
Command summary in numerir order 279
Commands，download characters 269
form feed 262
graphics 271
horizontal position 266
other 273
print style 251
user－defined characters 269
vertical positioning 260
Commercial software 18
Commodore RASIC 211
Commodore C－64 24
Commodore computers 211
Communication，establishing 24
Compaq computer 139
Computer art 104
Computer memory 107
Condensed pitch 30， 254
Condensed print 228
Connecting characters 91
Connector，parallel interface 293
Connector，serial interface 297
Connectors，interface 4
Control character 283
Control code reference 251
Control codes 20， 25
Control key 20
Control panel 2
Cover，printer 2，132， 138
CP／M 23
CP／M computer 177
〈CR〉 266
CTRL 20
Darker print 32
Data transfer rate 293， 297
〈DC1） 275
〈DC2〉 254
〈DC3） 275
〈DC4〉256
Decimal 283
Default vertical tabs 59
Defining characters 76
〈DEL） 274
Delete 65， 274
Delta Plot program 107
Apple II 155
Atari 203
Commodore 221
Osborne 1187
TRS－80 172
Descender 77， 81
Descender data 81
Design，printing a 104
Detector，paper－out 63， 276
Digits 91
Dimensions，external 292

DIP switch 1－5 44
DIP switch 2－3 67
DIP switch 2－4 44
DIP switch 3298
DIP switch 3，IBM－PC 141
DIP switches 4， 227
Dot graphics 99
Dot graphics，calculating 107
Dot matrix printing 74
Dots，in columns 78
Dots，overlapping 77
Double density graphics 115， 272
Double density／double speed graphics 115,272
Double space 44
Double－strike printing 32， 257
Download characters 62，73， 269
selecting 90
with print modes 95
proportional 88
Download utility program 95
Apple II 1.52
Atari 200
Commodore 218
Osborne 1185
TRS－80 169
Dust 124
EasyWriter 22
Eight bit interface 228
Eighth data bit 273
Elite pitch 30， 254
Emphasized print 32，228， 257
（ESC） 26
〈ESC〉＂！＂69， 273
〈ESC〉＂\＃＂66， 274
〈ESC〉＂$\$$＂83， 270
〈ESC〉＂＊＂＇80，83， 269
〈ESC＞＂＋＂69， 273
〈ESC〉＂－＂35， 258
〈ESC〉＂0＂46， 260
（ESC）＂1＂46， 261
（ESC）＇2＂45， 261
（ESC）＂ 3 ＂45， 262
（ESC）＂4＂34， 252
〈ESC〉＂ 5 ＂34， 252
（ESC）＂7＂68， 253
〈ESC〉＂ 8 ＂63， 276
〈ESC〉＂9＂63， 276
〈ESC〉＂$=$＂ 66,274
〈ESC〉＂＞＂66， 273
（ESC）＂＠＂62， 277
（ESC）＂A＂45， 261
〈ESC〉＂a＂47，60， 265
〈ESC〉＂B＂30， 253
〈ESC〉＂b＂57， 268
（ESC）＂C＂49， 263
（ESC）＂D＂56， 267
〈ESC〉＂E＂33， 257

〈ESC〉＂F＂33， 258
〈ESC〉＂G＂33， 257
〈ESC〉＂H＂33， 257
〈ESC〉＂J＂46， 262
〈ESC）＂K＂100， 271
〈ESC〉＂L＂115， 272
〈ESC〉＂M＂57， 266
〈ESC〉＂N＂50， 264
〈ESC〉＇O＇50， 264
（ESC）＂P＂59， 265
〈ESC〉＂Q＂57， 267
〈ESC〉＂R＂50， 263
〈ESC〉＂S＂36， 259
〈ESC〉＂T＂36， 259
〈ESC〉＂U＇＂64， 277
〈ESC．＂W＂＇32，255， 256
〈ESC〉＂X＂90， 270
〈ESC〉＂Y＂ 62
〈ESC〉＂y＂115， 272
〈ESC〉＂z＂115， 272
Escape code 26
Expanded print 31， 255
F．F．Button 2
（FF） 262
Font style controls 252
Form feed 48,262
Form length 49
Forms control 43
Friction feed 5
Function code reference 251
Fuse replacement 125
Fuse，primary 126
secondary 127
spare 132
Gap，print head 13
grafstar 143
Graphics characters 66
Graphics combined with text 103
Graphics commands 271
Graphics，business 111
dot 99
double density 115,272
double density／double speed 115， 272
normal density 115， 271
plotting 107
quadruple density 115,272
Grid，character design 75
Guide，paper 2，132， 134
Handshaking 293， 297
Hex 19
Hexadecimal 19， 283
High resolution graphics 115
Holder，roll paper 132
Horizontal position commands 266
Horizontal tab 55， 267
〈HT〉55， 267
IBM－PC 23， 139

IBM－PC BASIC 141
IBM－PC MODE command 140
IBM－PC，listing programs 142
Impact printer 74
Initialize printer 277
Initializing 62
Ink ribbon 132
Installation programs 18
Installing the ink ribbon 136
Interface connectors 4
Interface，parallel 293
selection 228
serial 297
seven bit 65,67
International characters 68， 228
select 2.53
selection 231
Italic printing 34，228， 252
Каурго computer 177
Knob，platen 2，132， 133
L．F．button 3
Lamp，on line 2
Lamp，paper out 2
Lamp，power 2
Lamp，ready 2
Left margin 57
Length of page 43
Length，form 49
Length，page 49
Levers，snap 134
LF，auto 228
〈LF〉 260
Line feed 44，260， 262
Line feed commands 260
Line spacing 43，44，228， 260
Listing programs 23
Apple II 145
Atari 195
Commodore 212
IBM－PC 142
LLIST 23
LLIST，IBM－PC 142
L．nading paper 4
bottom feed（Delta－15） 11
roll 7
single sheet 5
sprocket feed 9
Location for Delta 131
Logic level 293
Logo program 105
Logo，printing 104
LPRINT 23
Macro 62， 68
Macro instruction 273
defining 69
using 70

Macro program 70
Apple II 148
Atari 196
Commodore 214
Osborne 1181
TRS-80 165
Maintenance 123
Margin, left and right 57, 266
top and bottom 50, 263
resetting 58
Mask 109
Matrix, character 291
Matrix, dot 74
MBASIC 178
Microsoft BASIC 23
Mixing print modes 36
MODE command, IBM-PC 140
Modes, combining print 36
Non-printing codes 22
Normal density graphics 115, 271
Numeral program 92
Apple II 150
Atari 199
Commodore 216
Osborne 1183
TRS-80 167
Off line 63, 275
On line 275
On line button 2
On line lamp 2
On-line 63
Osborne computer 177
Overlapping dots 77
Page length 43, 49, 228, 263
Paper advance 265
Paper guide 2, 132, 134
Paper lint 124
Paper loading 4
Paper out detector 63
Paper out lamp 2
Paper selection 4
Paper separator 2, 132, 134
Paper specifications 292
thickness 5
types 5
width 5
Paper, single sheet 5, 63 sprocket feed 5
Paper-out detector 228, 276
Parallel cable, Apple II 144
Atari 194
IBM-PC 140
Kaypro 178
Osborne 1178
TRS-80 Model I 161
TRS-80 Model II 162

Parallel interface 228, 293
connector 4, 293
timing 294
Pica pitch 30,253
Pie chart 114
Pie chart program 111
Apple II 157
Atari 205
Commodore 222
Osborne 189
TRS-80 173
Pitch 30, 253
changing with margins 58
changing with tabs 57
condensed 30
elite 30
pica 30
Platen 2, 13
Platen knob 2, 132, 133
Plotting 107
Power lamp 2
Power requirements 292
Power switch 2
PR\#1 24, 144
Preventive maintenance 123
Primary fuse 126
Print density 32
Print head 13, 74
gap, adjusting 13
replacement 127
Print matrix 74
Print modes 257
mixing 36
with download characters 95
Print pitch 30, 253
Print style commands 251
Printer cover 2, 132, 138
Printer driver, TRS-80 162
Printer initialization 277
Printing a design 104
logo 104
download characters 83
text 29
user-defined characters 83
Printing speed 291
Printing, bidirectional 277
dot matrix 74
faint 127
unidirectional 63, 277
Problem codes with BASIC 27, 56, 117
Program, bridge hand 85
Apple II 148
Atari 197
Commodore 215
Osborne 1181
TRS-80 165
Program, character design 95

Program，chart 37
Apple II 146
Atari 195
Commodore 212
Osborne 1179
TRS－80 163
Program，Delta Plot 107
Apple 155
Atari 203
Commodore 221
Osborne 1187
TRS－80 172
Program，download utility， 95
Apple II 152
Atari 200
Commodore 218
Osborne 1185
TRS－80 169
Program，logo 105
Program，macro 70
Apple II 148
Atari 196
Commodore 214
Osborne 1181
TRS－80 165
Program，numeral 92
Apple II 150
Atari 199
Commodore 216
Osborne 1183
TRS－80 167
Program，pie chart 111
Apple II 157
Atari 205
Commodore 222
Osborne 1189
TRS－80 173
Program，special character chart 66
Apple II 147
Atari 196
Commodore 214
Osborne 1181
TRS－80 165
Programs，installation 18
Proportional characters 88， 270
Proportional widths 81
Protocol，ACK 301
serial busy 300
XON／XOFF 300
serial 297
Quadruple density graphics 115， 272
Quick reference B／C
RAM 62，83， 269
RAM，loading standard characters 83
Ready lamp 2
Reference，control codes 251
Registration card 131
Release lever 5

Removing the upper case 124
Replacing a fuse 125
Replacing the print head 127
Reset 62
Resolution 100， 115
Return，carriage 44， 266
Ribbon，ink 132
installation 136
part number 292
Right margin 57
Roll paper 7
holder 2， 132
ROM 74，83， 269
Screws，shipping 131
Secondary fuse 127
Self－test 14
Semicolon 35， 43
Separator，paper 2，132， 134
Serial busy protocols 300
Serial cable，IBM－PC 141
Serial interface 228， 297
connector 4,297
Serial protocul 297
Seven bit interface 65，67， 228
Shaft，roll paper 132
Shipping screws 131
〈SI〉 255
Signal levels 297
Snap levers 134
〈SO〉 256
Software，commercial 18
Spacing，line 43
Spare fuse 132
Special character chart program 66
Apple II 147
Atari 196
Commodore 214
Osborne 1181
TRS－80 165
Special print modes 257
Special symbols 66
Specifications 291
Speed，printing 291
Sprocket feed paper 5， 9
Subscripts 35， 259
Summary of commands in numeric order 279
SuperCalc 21
Superscripts 35， 259
Switch，DIP 4
Switch，power 2
Synchronization 293
Tab 55， 57
horizontal 55， 267
horizontal，one time 57
vertical 55，58， 264
vertical，one－time 60
Technical specifications 291
Temperature 131

Terminology 19
Test, self 14
Text, combined with graphics 103
printing 29
Thickness adjustment lever 14
Thickness, paper 5
Timing, parallel interface 294
Top margin 50, 263
Tractor feed 5
Tractor unit 2, 133
TRS-80 BASIC 162
TRS-80 computer 23, 49, 161
Underlining 35, 258
Unidirectional printing 63, 277
Universal/Atari Parallel Interface 193
Universal/Commodore Parallel Interface 211
Unpacking 131
Upper case, removal of 124
User printer controls 22
User-defined characters 73, 269
with print modes 95
proportional 88 selecting 90
User-defined codes 68
Utility program 95
Vertical positioning 260
Vertical spacing 43
Vertical tab 55, 58, 264
Vertical tab, one-time 60
VIC-20 computer 211
Voltage 131
〈VT〉59, 264
Weight 292
Width, column 291
Width, paper 5
Widths, characters 88 proportional 81,88
Word length 297
Word processors 21
WordStar 22
XON/XOFF protocol 300

DIP Switch Settings

Switch	ON	OFF	SETTING
DIP Switch 1			
1-1	11" page length	12" page length	
1-2	Normal print	Emphasized print	
1-3	10 CPI (pica pitch)	17 CPI (condensed pitch)	
1-4	Normal	Italic	
1-5	1/6" line feed	1/8" line feed	
1-6	International character set selection-see below		
1-7			
1-8			
DIP Switch 2			
2-1	Paper-out detector on	Ignore paper-out	
2-2	Serial interface	Parallel interface	
2-3	7-bit interface	8-bit interface	
2-4	Auto LF with CR	LF must be from host	
DIP Switch 3			
3-1	7 data bits	8 data bits	
3-2	Parity checked	No parity	
3-3	Handshaking protocols--see below		
3-4			
3-5	Odd parity	Even parity	
3-6	Data transfer rate-see below		
3-7			
3-8			

International character sets

Switch	USA	England	Germany	Denmark	France	Sweden	Italy	Spain
$1-6$	ON	OFF	ON	OFF	ON	OFF	ON	OFF
$1-7$	ON	ON	OFF	OFF	ON	ON	OFF	OFF
$1-8$	ON	ON	ON	ON	OFF	OFF	OFF	OFF

Handshaking protocols

Protocol	Switch 3-3	Switch 3-4
Serial busy, 1 byte mode	OFF	OFF
Serial busy, 1 block mode	ON	OFF
ACK mode	OFF	ON
XON/XOFF	ON	ON

Data transfer rates

Baud rate	Switch 3-6	Switch 3-7	Switch 3-8
110	OFF	OFF	OFF
110	OFF	OFF	ON
300	OFF	ON	OFF
600	OFF	ON	ON
1200	ON	OFF	OFF
2400	ON	OFF	ON
4800	ON	ON	OFF
9600	ON	ON	ON

Use the "setting" column to record the way the switches are set in your printer.

Command Quick Reference

Commands to control print style
〈ESC）＂ 5 ＂
Cancel italic print
〈ESC）＂4＂
Italic print
〈ESC〉＂7＂n
Select international character set
Font pitch controls
〈ESC〉＂B＂CHR\＄（1）
（ESC）＂B＂CHR\＄（2）
〈ESC〉＂B＂CHR\＄（3）
CHR\＄（18）
CHR\＄（15）
（ESC）CHR\＄（15）
（ESC）＂W＂CHR\＄（1）
CHR\＄（14）
（ESC）CHR\＄（14）
（ESC）＂W＂CHR\＄（0）
CHR\＄（20）
Special print modes
〈ESC）＂G＂
〈ESC）＂H＂
〈ESC〉＂＂＂
〈ESC〉＂F＂
〈ESC〉＂－＂CHR\＄（1）
〈ESC〉＂．＂CHR\＄（0）
〈ESC〉＂S＂CHR\＄（0）
〈ESC〉＂S＂CHR\＄（1）
Pica pitch
Elite pitch
Condensed pitch
Pica pitch
Condensed pitch
Condensed pitch
Expanded print
Expanded print
Expanded print
Cancel expanded print
Cancel expanded print
Double－strike print
Cancel double－strike print
Emphasized print
Cancel emphasized print
Start underlining
Stop underlining
Superscript on
〈ESC）＂T＂
Subscript on
Cancel super and subscripts
Commands to control vertical position of the print head
CHR\＄（10）
〈ESC〉＂ 0 ＂
〈ESC〉＂ 1 ＂
〈ESC）＂ 2 ＂
〈ESC〉＂A＂n
〈ESC〉＂ 3 ＂n
〈ESC〉＂＂n
Form feed controls
CHR\＄（12）
Line feed
Set line feed to $1 / 8$ inch
Set line feed to $7 / 72$ inch
Set line feed to $1 / 6$ inch
Set line feed to $n / 72$ inch
Set line feed to $\mathrm{n} / 144$ inch
Single line feed of $n / 144$ inches

〈ESC）＂C＂n
〈ESC〉＂C＂CHR\＄（0）n
〈ESC〉＂＂＂n
〈ESC〉＂N＂n
〈ESC〉＂O＂
Form feed
Set page length to n lines
Set page length to n inches
Set top margin at line n
Set bottom margin at n lines
Cancel top and bottom margins

Vertical tabs

CHR\＄（11）	Vertical tab
〈ESC〉＂P＂．．CHR\＄（0）	Set vertical tabs
〈ESC〉＂a＂n	Advance n line feeds

Commands to control horizontal position of the print head

CHR\＄（13）
〈ESC〉＂M＂n
〈ESC〉＂Q＂n
CHR\＄（9）
〈ESC〉＂D＂．．．CHR\＄（0）
〈ESC〉＂b＂n
CHR\＄（8）

Carriage return
Set left margin at column n
Set right margin at column n
Horizontal tab
Set horizontal tabs
Tab over n columns
Backspace

Download character commands
〈ESC〉＂＊＂CHR\＄（1）n1 n2 m1 m2 ．．．m11
Define download character
〈ESC〉＂＊＂CHR\＄（0）Copy standard ROM characters to download RAM
〈ESC〉＂X＂CHR\＄（1）Use proportional download characters
〈ESC〉＂X＂CHR\＄（0）Cancel proportional download charac－
ters
〈ESC〉＂\＄＂CHR\＄（1）Use normal download characters
〈ESC〉＂\＄＂CHR\＄（0）Cancel normal download characters
Commands to control graphics

〈ESC〉＂K＂n1 n2	Normal density graphics
〈ESC〉＂L＂n1 n2	Double density graphics
〈ESC〉＂y＂n1 n2	Double speed，double density graphics
〈ESC）＂z＂n1 n2	Quadruple density graphics

Macro instruction commands
〈ESC〉＂＋＂．．．CHR\＄（30）Define macro
〈ESC〉＂！＂Use macro

Other function codes

〈ESC〉＂＞＂
〈ESC〉＂＝＂
〈ESC〉＂\＃＂
CHR\＄（127）
CHR\＄（19）
CHR\＄（17）
CHR\＄（7）
〈ESC〉＂Y＂CHR\＄（0）
〈ESC〉＂Y＂CHR\＄（1）
〈ESC〉＂ 8 ＂
〈ESC〉＂9＂
〈ESC〉＂U＂CHR\＄（1）
〈ESC〉＂U＂CHR\＄（0）
〈ESC〉＂＠＂

Set eighth bit to 1
Set eighth bit to 0
Accept eighth bit as is
Delete last character
Off line
On line
Sounds bell
Disable bell
Enable bell
Ignore paper－out signal
Enable paper－out signal
Unidirectional print
Bidirectional print
Reset the printer

