Radix USER'S MANUAL

NOT INTENDED FOR SALE

Federal Communications Commission Radio Frequency Interference Statement

This equipment generates and uses radio frequency energy and if not installed and used properly, that is, in strict accordance with the manufacturer's instructions, may cause interference to radio and television reception. It has been type tested and found to comply with the limits for a Class B computing device in accordance with the specifications in Subpart J of Part 15 of FCC Rules, which are designed to provide reasonable protection against such interference in a residential installation. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient the receiving antenna
- Relocate the computer with respect to the receiver
- Move the computer away from the receiver
- Plug the computer into a different outlet so that computer and receiver are on different branch circuits.

If necessary, the user should consult the dealer or an experienced radio/television technician for additional suggestions. The user may find the following booklet prepared by the Federal Communications Commission helpful: "How to Identify and Resolve Radio-TV Interference Problems." This booklet is available from the U.S. Government Printing Office, Washington, D.C., 20402, Stock No. 004-000-00345-4.
For compliance with Federal Noise Interference Standard, this equipment requires a shielded cable.

A note about the programs in this manual:

This manual contains several programs that help to demonstrate the versatility of the Radix printers. Star Micronics has made every effort to insure that the programs are functional and accurate. However, Star Micronics cannot guarantee their accuracy or suitability to any particular application.

Trademark Acknowledgement

Radix-10, Radix-15, grafstar: Star Micronics
Apple, Apple II, Apple II + , Apple IIe, Applesoft: Apple Computer Inc.
Compaq: Compaq Computer Corporation
CP/M: Digital Research
EasyWriter II: Information Unlimited Software, Inc.
IBM Personal Computer, IBM PC, IBM XT: International Business Machines Corp.
Kaypro: Kaypro Computer Corporation
Microsoft BASIC: Microsoft Corporation
Osborne 1: Osborne Computer Corporation
PeachText: Peachtree Software Incorporated, an MSA Company
SuperCalc: Sorcim Corporation
Scripsit, TRS-80: Radio Shack, a division of Tandy Corporation
WordStar: MicroPro International Corporation

©Copyright 1984 Star Micronics, Inc.

A Special Message to the New Owner

You're to be congratulated on selecting the printer of choice for both the sophisticated as well as the first-time user/owner the new Radix!

Right now, before you even start readying your Radix for action, we'd like to impress you with these two thoughts:

1. In as few words as possible, we'll highlight the several special features that Radix offers you, and
2. We'll show you how this manual can help you get the most from your Radix, while saving you time, effort, and money. Taking up the special features first, so they'll be fresh in your mind as you ramble through this manual . . . specifically . . . Speed - At 200 characters per second top printing speed, it's one
of the fastest in its class. And Radix is smart too: when printing blank spaces, Radix speeds up to a blistering 240 CPS!
16K Memory - Also called print buffer. Radix has a mind of its own! Buffer memory holds over 16,000 characters or about 8 printed pages, thus allowing your printer to accept information as fast as your computer can send it. Since computer speed is faster than printer speed, this feature frees your computer to do other things while your printer continues to print.
472 Characters - Allows printing in no less than nine different fonts or type faces, including a brand new face which we call . . . Near Letter Quality - A solid black dot-free, high-resolution type face that looks more like typewriter than computer-generated printing. Perfect for correspondence.
Faster Paper Handling - More economical, too. Automatic feeding for both single sheets and sprocket paper. And the unique built-in tractor design - behind the platen - avoids wasting a sheet each time you start printing, as in conventional loading. It also permits "reverse paper feed," for multiple column printing or other special applications, with a neater appearance, too.
Graphics - If you're designing your own, you'll be delighted at finding three different dot graphic densities with varying degrees of resolution or sharpness. There's even a quadruple density, with 240 dots per inch horizontal by 72 dots per inch vertical! And, you can print double density graphics at double speed!
Macro Instruction - A real timesaver on the keyboard. This feature allows you to define a sequence of codes and call (transmit) that entire sequence with a single code.
Easy Interfaces - Both parallel and serial interface capabilities are built into Radix - there's nothing extra to buy.
Easy Everything! - All the DIP switches are quickly accessible for ease in connecting your computer and changing print parameters; the ink ribbon comes in its own enclosed cartridge, ready to snap into place; paper is machine-fed, not cranked into place manually. Easy is the word for Radix!

We think you'll also find this manual easy and pleasant to use. We've gone to great lengths to make it so. As a first example, look over the table of contents and you'll see what we mean. Whether greenhorn or wizard, everybody will find what they need to know to fulfill their expectations. We suggest that each new user/owner, before you even unpack the box, read or at least scan Chapters 1 and 2 - "Getting to Know Your Radix" and "Getting Started with Radix" - as well as Appendix A, "Setting Up Radix." Now you can unpack the box and start putting things together.

When you're ready to connect your computer to your Radix, look at Appendices B through E for directions applying to your
make of computer. Remember, Radix has both serial and parallel interfaces, so there's nothing extra to buy!

If you're not a programmer, you'll be most interested in Chapters 3,4, and 5. They explain - in non-programmer's language how to get the most from Radix using some of the most popular software packages on the market today. You won't need to know a word of BASIC!

For you who wish to design your own characters, do your own plotting, your own infinite variety of dot graphic patterns and densities, you'll have a ball! For you, Chapters 7 through 12 are a must, and of course everybody should look at Chapter 14, which tells how to maintain your Radix for a long and carefree life.

In this manual there are plenty of example programs to demonstrate and show off all of Radix's features. There are even two utility programs included: one which allows you to design your own printing characters on your computer screen and one to set up Radix the way you want it with just a few keystrokes. Since many Radix users have IBM Personal Computers (or the equivalent) all the example programs are written in Microsoft BASIC for the IBM. But throughout the manual, users of other computers will find hints on how to make Radix work with their computer. And in the appendix, complete translations of the utility programs for several popular computers are included.

So, gentle reader, with this manual we hand you the key to the wonderful world of Radix. May you enjoy years of handsome, fast, and carefree printing!

Table of Contents

Chapter 1 Getting to Know Your Radix 1
Components and Controls Paper Selection and Loading Loading single sheets
Loading sprocket-feed paper
Ribbon Installation
Adjusting the Gap
Self-Test
Some Tips for Smoother Operation
Chapter 2 Getting Started With Radix 15
Using Commercial Software
First, some terminology
The escape code
Using this book without learning BASIC
Chapter 3 Word Processing With Radix 21General Concepts
The escape codeThe master reset codeUsing Near Letter Quality (NLQ)Getting the most from your print choices
Using Radix With EasyWriter IIRedefining pitch settings and print control codes
A sample printout with EasyWriter II
Redefining your own print pitches
Redefining your own print control keys
Using Radix With PeachText
Entering special function codes
Using boldface print
Underlining with Radix
A sample printout with PeachText
Storing documents with function codes
Using Radix with WordStarUser-defined print commands
Using Radix with Scripsit
Defining user print codes
A sample printout with Scripsit
Redefining your own print codes
Using Radix With AppleWriter II
Chapter 4 Using Radix With Spreadsheet Programs 39
Using Radix with VisiCalc Using Radix with SuperCalc Sending control codes from SuperCalc
Lotus 1-2-3
Chapter $5 \quad$ Using Radix With Graphics Programs 47
SuperCalc ${ }^{3}$
BPS Business Graphics
Making pie graphs round
Chapter 6 Controlling Radix With BASIC 53
Some Basics About BASICEstablishing communications
The CHR\$ function
Control CodesThe escape codeSome problem codes
Chapter $7 \quad$ Printing Text With Radix 59
Some Special Kinds of TextNear Letter Quality charactersItalic printingUnderliningSuperscripts and subscripts
Changing the Print PitchExpanded printMaking Radix Print Darker
Mixing ModesSummary
Chapter 8 Line Spacing and Forms Control 75
Starting New Lines
Reverse line feeds
Changing Line Spacing
Moving down the page without a carriage return
Forms ControlsForm feed
Reverse form feed
Changing the Page LengthTop and Bottom Margins
Summary
Chapter 9 Formatting Your Output 89
Using Horizontal Tabs
A one-shot tab command
Setting Left and Right Margins
Using Vertical Tabs
A one-shot vertical tab command
Summary
Chapter 10 Special Features of the Radix Printer 97
Now hear thisInitializing RadixPutting Radix to sleepPrinting to the bottom of the sheetBackspace and deleteUnidirectional printing
The seven bit dilemma
International character sets
The macro control code
Summary
Chapter 11 Creating Your Own Characters 109
Dot Matrix Printing
The Print Matrix
Defining Your Own Characters
Rule 1: Download characters are seven dots high
Rule 2: Dots cannot overlap
Add up each column of dots
Assigning a value to your character
Download character definition command
Printing Download Characters
Proportional Characters
Defining proportional characters
Printing proportional characters
Connecting characters
Mixing Print Modes With Download Characters
A Utility ProgramInstructions for using DLEDIT.BAS
Summary
Chapter 12 Printing With Dot Graphics 139
Comparing Dot Graphics With Download Characters
Using the Dot Graphics Commands
Specifying the number of columns of dots
Specifying the graphics data
Combining text and graphics
Printing a Design or Logo
Plotting With Radix
How the program works
Using Radix for business graphics
High Resolution Graphics
If You Have Problems With BASIC
Summary
Chapter 13 Putting Radix to Work For You 161
Radix Setup Program
Chapter 14 Basic Maintenance 171
Cleaning Radix
Replacing the Ink Ribbon
Replacing a Fuse
Replacing the Print Head
Appendix A Setting Up Radix 181
Where Shall We Put It?
What Have We Here?
Removing the printer covers
Removing packing and shipping screws Installing the platen knob
Installing the ribbon cartridge
Connecting Radix to Your Computer
Appendix B IBM Personal Computer and Compaq 189
Computer
Connecting Radix to an IBM
Connecting with the parallel interface
Connecting to the serial interface
BASIC Programming
Listing programs
Printing Graphics Screens
Program Listings
Appendix C Apple II Computers 195
Setting the Switches
Applesoft BASIC
Listing programs
Program Listings
Download character editing utility
Piechart programPrinter setup utility
Appendix D TRS-80 Computers 213
Setting the Switches
TRS-80 BASIC
Listing programs
Program Listings
Download character editing utility
Piechart program
Printer setup utility
Appendix E Kaypro, Osborne and Other CP/M 231
Computers
Setting the Switches Using MBASICListing programsProgram ListingsDownload character editing utilityPiechart programPrinter setup utility
Appendix F The Parallel Interface 249
Functions of the Connector Signals
Appendix G Serial Interface Specifications 253
Configuring the Serial Interface Radix's Serial Protocols Serial busy protocols XON/XOFF protocol ACK protocol
Appendix H DIP Switch Settings 259
Switch Functions
Appendix I ASCII Codes 263
Appendix J Character Style Charts 269
Appendix K Function Code Reference 281
Commands to Control Print Style
Font style controls Font pitch controlsSpecial print modesCommands to Control Vertical Position ofPrint Head
Line feed controls
Form feed controlsCommands to Control Horizontal Position ofPrint Head
Download Character Commands
Commands to Control GraphicsMacro Instruction CommandsOther Commands
Appendix L Command Summary in Numeric Order 313
Appendix M ASCII Code Conversion Chart 315
Appendix \mathbf{N} Technical Specifications 323
Index 327
Consumer Response 331
Star Service Centers 332
Warranty 333
DIP Switch Quick Reference 334
Command Quick Reference Inside back cover

Table of Tables

Table 1-1 Left margin on the single sheet guide 7
Table 3-1 Easywriter II control keys 27
Table 3-2 PeachText print functions 32
Table 4-1 Visicalc control codes 40
Table 4-2 Print columns on a page with Visicalc 41
Table 4-3 Print columns on a page with SuperCalc 42
Table 4-4 Print columns on a page with 1-2-3 45
Table 5-1 Rounding factors for console modes 51
Table 7-1 Near letter quality commands 61
Table 7-2 Italic commands 61
Table 7-3 Underline commands 62
Table 7-4 Superscript and subscript commands 63
Table 7-5 Print pitch commands 64
Table 7-6 Expanded print commands 66
Table 7-7 Print emphasis commands 67
Table 8-1 Line feed commands 77
Table 8-2 Line spacing commands 80
Table 8-3 Form feed commands 83
Table 8-4 Form length commands 83
Table 8-5 Top and bottom margin commands 84
Table 9-1 Horizontal tab commands 91
Table 9-2 Left and right margin commands 92
Table 9-3 Vertical tab commands 95
Table 10-1 Bell commands 98
Table 10-2 Some miscellaneous commands 99
Table 10-3 Printing direction commands 101
Table 19-4 Eighth bit control commands 102
Table 10-5 International character set commands 104
Table 10-6 International character sets 105
Table 10-7 Macro instruction commands 106
Table 11-1 Download character definition commands 122
Table 11-2 Download character printing commands 126
Table 11-3 Mixing download characters with various print modes 130
Table 12-1 Calculating n1 and n2 141
Table 12-2 Dot graphics commands 156
Table 13-1 Menus of Radix setup program 162
Table B-1 Recommended DIP switch settings for IBM-PC 190
Table B-2 IBM-PC parallel cable 190
Table B-3 Serial switch settings 191
Table B-4 IBM-PC serial cable 191
Table C-1 Recommended DIP switch settings for Apple 195
Table C-2 Apple parallel cable 196
Table D-1 Recommended DIP switch settings for TRS-80 213
Table D-2 TRS-80 Model I parallel cable 214
Table D-3 TRS-80 Model II parallel cable 214
Table E-1 Recommended DIP switch settings for Kaypro 231
Table E-2 Kaypro parallel cable 232
Table E-3 Osborne 1 parallel cable 232
Table F-1 Parallel interface pin functions 251
Table G-1 Serial interface pin functions 254
Table G-2 DIP switch B 255
Table G-3 Handshaking protocols 255
Table G-4 Data transfer rates 255
Table H-1 DIP switch settings 260
Table H-2 International character sets 262

Chapter 1

Getting to Know Your Radix

The more you learn about Radix and its sophisticated features, old and new, the better Radix is going to perform for you. Remember, it's not just what you know - it's what you know how to use! So, let's start getting acquainted!

Subjects we'll cover in this chapter include:

- Components and controls
- Paper-out and front-cover-open detectors
- Paper selection and loading
- Adjusting the gap - for different paper thickness
- Self-test - printout of available characters
- Some tips for smoother operation

Figure 1-1. Front and rear views of Radix-10.

Components and Controls

First, the components. You saw most of these when you unpacked your printer. Now we'll give you a condensed run-
down on what they do. (For details on your initial set-up of Radix, with all components in place, see Appendix A.)
Printer covers - There are two, front and rear. Their function is to protect the ribbon and print head from dust and dirt, and also to reduce the sound level.
Single sheet guide - As you've guessed, this plastic rack is used to support and guide the single sheets during printing.
Sprocket paper guide - This wire rack serves the same function, but for sprocket paper.
Ink ribbon cartridge - A neat and tidy timesaver, which snaps into place within a few seconds.
Power cord - Connects the printer to its power source, usually a wall outlet. It's located at the right rear.
Print head - This is the unit which does the actual printing. Like a typewriter, the print head prints through an ink ribbon.
Tractor - This built-in unit sits in the rear of your printer, under the rear cover. Its sprocket wheels carry the sprocket-feed paper on its pathway through the printer.
Platen - This is the rubber cylinder that carries paper to the print head.
Parallel interface connector - Around on the back, this is the place where you connect your computer to Radix, so that they are able to communicate with each other. It's for computers that use parallel communications.
Serial interface connector - This interface allows you to connect your Radix with a computer that uses serial communications.

Now let's take a tour around the controls, starting with the control panel board, located at the right front. There are 5 lamps and 5 buttons on the panel:
Power lamp - Glows green when the power is on.
Ready lamp - Glows green when the printer is ready to accept data. This light flickers during transmission. Don't worry about the flicker; it's normal!
On Line lamp - Glows green when the communication lines to your computer are open.
Paper-Out lamp-Glows red when the printer is out of paper and stops printing. It works only when you're using sprocket paper.
Pause lamp - A very important control! It glows green when the pause button has been pressed or when the front cover has been opened. When the pause lamp is on, you can feed paper with the LF, FF, or Feed buttons - but there's no printing possible. When the pause lamp is off, the printer will print - but you can't feed paper.

Figure 1-2. Front and rear views of Radix-15.

Pause button - Basically, this button allows you to change the printer status from "printing" to "not printing" or vice versa, with the results stated above under the Pause Lamp heading. This
allows you to stop printing to advance the paper - a few lines or to the top of the next page.
Feed button - This is used for automatic feeding of single sheets, which is described in detail later in this chapter.
LF button - Stands for "Line Feed," and allows you to advance the paper one line at a time when the pause lamp is on. If you hold the button down, you'll get consecutive line feeds, one after the other.
FF button - Stands for "Form Feed." When you tap this button while the pause lamp is on, you advance the paper to the top of a new page or "form."
On Line button - Lets you change the printer status between "off line," and "on line." When it's on line, the printer can receive data from the computer. When it's off line, the printer sends a signal to the computer indicating that it cannot accept data. When you turn the power switch on, you are automatically on line.

Figure 1-3. Radix's controls.

There are other kinds of controls, not connected to the control panel board. Some of the more important ones are:
Power switch - Towards the back, on the right side. This turns on the electricity to your machine.
Platen knob - Middle, right side. Lets you manually turn the platen, just like a typewriter. CAUTION: Turn this knob only with the power switch off. Turning it with the power on could damage the platen drive gears.
Release lever - On top, near the left rear corner. You'll be using this particular control often. What it does is control the pressure of the paper against the platen. Its position is crucial to feeding the different paper types - sprocket and single sheets. It has three settings: "Friction," "Set," and "Tractor." The first two are used for single sheet printing, and the Tractor position for sprocket paper. This will be fully explained in the section describing paper
loading procedures.
Bail lever - The bail is the movable bar that presses the paper against the platen during printing, and when moved away from the platen, allows the paper to reach its proper position during the loading operation. The lever which controls it is on the right side of the platen.
Paper-out detector - This sensor automatically stops printing and tells you when the printer runs out of sprocket paper. The paper-out lamp glows red and a beep tone alerts you when the printer runs out of paper. The pause lamp also glows, so you are ready to load more paper. The lamp also glows if the release lever is not set in the tractor position for sprocket paper loading.
Front-cover-open detector - When the front cover is not fully closed, this magnetic detector causes the pause lamp to glow, and printing is interrupted (or won't begin). If this happens, printing may be re-started by securely closing the cover and pressing the pause button.
DIP switches - Primarily, these switches are used in interfacing Radix to your particular brand of computer. But there are also switches to set the power-on default settings for print style, line spacing, and page size. See the appendix for a complete explanation.

Paper Selection and Loading

Now we'll look at paper. Your Radix can handle single sheets - standard-size stationery, multi-part carbonless business forms, or almost any other kind of cut sheet. You can also print on "computer paper" with the holes along the sides, which is also called sprocket, punched, or perforated fan-fold. The loading procedures are quite different for single sheet and sprocket paper. We'll try to keep it short and sweet, but without sacrificing clarity and preciseness in our explanations.

Loading single sheets

Start with the proper paper. Paper width must be between $5^{1 / 2}$ and $81 / 2$ inches ($51 / 2$ and $141 / 2$ inches for the Radix-15), and paper thickness between .07 mm and .10 mm (16 pound to 24 pound bond falls in this range). Loading is done automatically and instantly by pushing the Feed button. Here's the correct sequence: 1. Attach the single sheet guide to the printer (Figure 1-4).
2. To set the margin, use the little metal guide (shown in Figure 15) in one of its 3 positions.
3. Put the release lever in the "set" position. This step is very important for proper sheet alignment.

Figure 1-4. Use the single sheet guide for loading cut paper.

Table 1-1
Left margin on the single sheet guide

Position of Guide	Distance from Left-Hand Edge of Paper	
	For Radix-10	For Radix-15
Left	Approx. 6 inch	Approx. .8 inch
Middle	Approx. 3 inch	Approx. 5 inch
Right	Approx. .1 inch	Approx. .3 inch

Figure 1-5. The metal guide is used to align the left margin.
4. Putting the left edge of the sheet against the metal guide, insert a sheet into the paper chute until the bottom edge of the paper touches the paper stopper. (The set position of the release lever permits you to get the paper in straight.)
5. Now, push the release lever away from you to the "friction" position. This grips the paper securely for proper feeding.
6. Make sure that the bail is resting against the platen (you should push the bail lever away from the front of the printer). Radix will automatically lift it out of the way at the proper time!
7. With the power on, press the Feed button, and the paper automatically moves around the platen to the correct position to start printing, just one inch from the top edge of the sheet!
Note: If you'd like to start the first line of printing lower down on the sheet, as for letter correspondence for example, just press the

Pause, then the LF (line feed) button to move the paper to the desired starting point. Hold down the LF button for multiple line feeds.

Loading sprocket-feed paper

Continuous paper feeds into the printer from the rear. So, the paper should be stacked directly back of the printer, either on the same surface, if there's room, or on the floor.

Here's the proper sequence for loading:

1. Turn off the power and remove the rear cover. (After you've practiced a few times, you'll find it easy to load paper by just opening the cover.)
2. Attach the wire paper guide to the rear of the upper case, as shown in Figure 1-6.

Figure 1-6. The wire paper guide keeps continuous paper away from the cables.
3. Pull the release lever towards you to put it in the "tractor" position.
4. Pull the bail lever towards you to the open position.
5. Open the tractor covers, located on top of the left- and righthand sprocket units (Figure 1-7).

Figure 1-7. The tractors, which guide the paper, are underneath the rear cover.
6. Flip the sprocket clamp levers towards the rear. This unlocks the sprocket wheels to move left and right so you can align them with the holes in the paper.
7. Bring the paper up from the back, over the wire guide, and into the back of the printer. When the holes in the paper fit snugly over the nubby teeth in both sprockets, close the tractor covers and snap the clamp levers back into their locked positions (Figure 1-8).
8. Now we'll feed the paper around the platen automatically. To do this, close the rear cover, turn on the power, then push the

Pause button and hold down the LF button until the paper moves smoothly into position.

Figure 1-8. With the tractors in place, you're ready to close the covers and advance the paper.
9. Close the bail lever (push away from you). The top edge of the paper should line up with the cutter edge of the front cover so that printing will start one inch from the top edge.

Ribbon Installation

This is described in two places: installation of the ribbon cartridge is explained in Appendix A; replacing the ink ribbon inside the ribbon cartridge casing is described in Chapter 14 ("Maintenance").

Adjusting the Gap

The gap is the space between the print head and the platen. Adjusting the gap is simply adjusting the printer to accommodate different thicknesses of paper.

To make this adjustment, move the adjustment lever which is under the front cover, immediately in front of the release lever shown in Figure 1-9. Pulling the adjustment lever towards you will widen the gap; pushing it away from you will narrow the gap.

Figure 1-9. The adjustment lever allows for different thicknesses of paper.

Five positions are available; you can feel the lever clicking into the various notches. The second step (illustrated) is the one most commonly used for single sheets of paper. The lever is nearly straight up in this position.

You shouldn't encounter any difficulty in finding the right gap setting to fit your paper. If necessary, experiment; you'll soon find the best position for the paper you're using.

Self-Test

The "self-test" is a trial run of your beautiful new machine. Radix carries a built-in program that prints out sample lines of letters, numbers, and other characters - to show you that everything's in good working order. It also serves as a display of the characters available in the Radix. And finally, it's a "warm-up" that permits you to check your installation of ribbon and paper, and the adjustment of the print head gap.

Best of all, you don't have to wait another minute - you can print the self-test without hooking up the Radix to your computer! It's as simple as $1,2,3 \ldots$

1. Plug the printer's power cord into a 120 VAC outlet.
2. Insert a sheet of paper (or sprocket paper, either one).
3. While holding down the LF button, turn the power switch on.

Were you surprised? It's speedy, isn't it? 200 characters a second, to be exact (when printing normal pica type).


```
pqrstuvwryz\!う^
```



```
PQr=turw&yz\!)N
```


Figure 1-10. Radix's self-test gives a preview of its capabilities.

Some Tips for Smoother Operation

Here are some ideas that might save time and trouble with Radix.

- When setting the left-hand margin on sprocket paper, you'll find the bail bar is marked with pica size unit measurements, so it's a handy reference. (There are 10 pica characters to the inch, so the markings $10,20,30$ and so on also correspond exactly to inches, 1, 2, 3, etc.)
- The sprocket paper is perforated in page size units, to facilitate easy folding (that's the way it comes, in a stack). It is this edge that you should align with the front cover cutter edge so that printing will start just one inch below that point.
- When loading sprocket paper, never place the release lever in either the "set" or "friction" position. You'll know when this happens by the beep tone and the paper-out lamp glowing red. Use the "tractor" setting at all times when loading or running sprocket paper.
- When you use multi-layer paper, such as a 3-part carbonless form, you should adjust the print head gap to fit the greater paper thickness, as explained earlier in this chapter.
- If paper should jam when loading sprocket paper, it's usually because you forgot to put the bail lever in the open position (by pulling it towards you). Best thing to do then is to turn the power off, open the front cover, and roll the paper backwards by turning the platen knob.
- If the printing is faint, first check the thickness adjustment lever, then try a new ribbon. If it's still too faint, perhaps it's finally time for a new print head.

Chapter 2

Getting Started With Radix

In this chapter you'll learn about:

- Connecting Radix to your computer
- Using Radix with commercial software
- ASCII codes

You have assembled and tested your printer, and seen a quick sample of Radix's capabilities in the self-test. Now it's time to do what you bought Radix to do: print information from your computer.

But first you need to connect Radix to your computer. Figure 2-1 shows where the cable connects, but there's more that you need to know. Complete instructions for connecting Radix to many popular computers are given in the appendix. Find the appendix that covers your computer and follow the instructions
for connecting Radix and for setting the DIP switches. If your computer isn't listed in the appendix, then ask your Star dealer which computer that is listed is most like yours. If none of the listed computers are similar to yours, then your Star dealer will give you advice on connecting Radix to your computer.

When everything is connected, come back here and we will check it out!

Figure 2-1. Radix has both serial and parallel interfaces.

Using Commercial Software

Many of you purchased Radix to use with commercial software. You made a good choice because Radix is compatible with most commercial programs, from word processing programs to spreadsheet programs to accounting programs.

Many of these programs have a routine for describing your printer. These routines are often in "installation programs". They typically give you a choice of printers or printer types to pick from. Some typical descriptions that you might pick for Radix are: "TTY type printer with backspace", "IBM-dot matrix printer", "Centronics-type printer", "Dot matrix ASCII printer". Radix should work fine with any of these descriptions.

Some printer lists are not very clear, and may not include any-
thing that you think describes Radix. If you can't decide which description best fits Radix, we recommend that you narrow the list to two or three choices (you can quickly eliminate all the daisywheel printer types) and then experiment. You won't hurt anything if you guess wrong; it just won't work right. This should quickly tell you if your guess is right. If all else fails, though, your Star dealer will be happy to give you some advice.

Some programs don't ask you what kind of printer you have, but instead they ask some questions about what your printer can do. Here are the answers to the "most asked" questions. Radix can do a "backspace". Radix can do a "hardware form feed".

With these questions answered, you are ready to start printing. Read the manual that came with your commercial software and Chapters 3 through 5 of this manual to see how to make it send information for Radix to print. This is all you need to know to use Radix as a regular printer. But Radix isn't just a regular printer. Radix has many capabilities that your commercial software isn't aware of. A little later we will see what it takes to use some of Radix's advanced features with commercial software.

First, some terminology

Radix knows what to print because it knows how to interpret the codes that the computer sends to it. These codes are numbers that the computer sends to Radix. Both the computer and Radix know the meaning of these codes because they are a set of standard codes used by almost all microcomputers. This set of codes is the American Standard Code for Information Interchange, which is usually referred to as ASCII (pronounced ask-key). There are ASCII codes for all the letters of the alphabet, both lower case and capital, the numbers from 0 to 9 , most punctuation marks, and some (but not all) of Radix's functions.

ASCII codes are referred to in several different ways, depending on the way they are used. Some times these codes are treated as regular numbers. For example, the letter " A " is represented by the number 65 in ASCII. Appendix M shows all of the ASCII codes.

In BASIC, ASCII codes are used in the CHR\$ function. This function is used to print the character that is represented by the number in the CHR\$ function. The BASIC statement PRINT CHR\$(65) will print an " A " on the terminal.

In some other programming languages, ASCII codes are referred to by their hex value. "Hex" is short for hexadecimal which is a base-16 number system (our usual numbers are base-10) Since hex needs 16 digits, it uses the numbers 0 through 9 and
then it uses the letters A through F for digits. The ASCII code for the letter " A " is 41 in hex.

Of course, most of the time we don't even need to think about this code system. Our computers are smart enough to know that when we press the " A " key on our keyboard we want to print the letter " A ". The computer takes care of all the rest.

But there are a number of ASCII codes that don't have keys on the keyboard. The most important of these codes are the codes that have ASCII values below 32. These codes control many of Radix's functions. Even though there aren't keys for these codes, most keyboards can send these codes. It's done by holding down the "control" key (many times marked CTRL) and simultaneously pressing a letter key. The particular letter key that is pressed determines what code is sent. Control and A sends ASCII code 1, control and B sends ASCII code 2, and so on. Because of the way they are created, these codes are often referred to as "control-A" etc.

So there are four common ways of referring to the same set of codes: the character or name of the code, the decimal ASCII value, the hexadecimal ASCII value, and the "control-" value.

For example, the code that causes Radix to advance the paper one line is ASCII 10 (decimal). This code is commonly referred to by all the following names:

line feed	- its name
<LF	- the abbreviation of its name
ASCII 10	- its decimal value
ASCII 0AH	- its hexadecimal value (the H signifies hex)
CHR\$(10)	- the way it's used in BASIC
control-J	- the way you send it from a keyboard.

There's a chart in Appendix M that shows these side-by-side so that you can convert back and forth.

The reason that we are telling you all this about ASCII codes is that people are not very consistent about how they describe ASCII codes. We are going to help you use Radix with commercial software, but we don't know what its documentation is going to call the various codes. So if you know all the different things that the codes might be called, it will be easier to figure out what it is trying to tell you.

Now, armed with the knowledge of what to look for, you can delve into the manuals of your commercial software and dig out the secrets of how to send "control codes" to your printer. When you find the method that your program uses, then you can shop
through this manual to find the function that you want to use．By translating the codes from the system that we use，to the system that your commercial software uses，you should be able to use many of Radix＇s advanced features．It may help，however if we look at a couple of examples．In the next three chapters，we＇ll give examples of many of Radix＇s codes using many popular pro－ grams．

The escape code

There＇s one particular ASCII code that we are going to be using more than all the rest．This is ASCII 27，which is called escape．With all of Radix＇s advanced features，there weren＇t enough single ASCII codes to go around．So escape is used to start sequences of control codes that open a wider range of functions to us．

While you must call this code CHR\＄（27）in BASIC，we are going to refer to it as 〈ESC〉 in this book．This will make it much easier to recognize when we use it．

A typical escape code sequence starts with 〈ESC〉 which is followed by one or more codes．As an example，the escape code sequence to turn on italic print is：

〈ESC〉＂4＂

We＇ll learn more about these escape code sequences and how to use them in the chapters that follow．

Using this book without learning BASIC

Throughout the latter part of this book we will be teaching you how to use all of Radix＇s features using the BASIC program－ ming language in our examples．This is because it is easy to com－ municate with Radix from BASIC and because，despite its shortcomings，BASIC is the nearest thing to a universal language among users of personal computers．But it＇s not the only way to communicate with Radix，as you will see in the next chapters． Even if you don＇t know BASIC，you can learn how to use Radix＇s features by reading on．When you find a function that you want to use，just apply what you already know about translating from one name for codes to another．The examples will still show you how the commands are used，even if you are not using BASIC．

Chapter 3

Word Processing with Radix

Not many word processing programs directly support the advanced features of printers like Radix. They usually provide a method for using a few of the more common print features such as boldface and underlining. But as you are probably beginning to see from this manual, Radix can do much more than that.

As a result, most word processing programs provide a way of sending special codes to a printer. The actual codes used (as well as the method of entering them) can be different. The theory behind these methods, however, is basically the same.

This chapter discusses four word processing programs most used by Radix owners. The programs also provide a variety of ways to enter the codes necessary to use the advanced features of Radix. These concepts can be applied to many other

programs besides those detailed here. The four programs are:
 - Easywriter II

- PeachText
- WordStar
- Scripsit

If your word processing program is not included in this chapter, you should still study the different techniques used. Then, with the help of your program manual and the supporting chapters in this manual, you should be able to figure out how yours works.

General Concepts

Each word processing program has a way to get out of the standard text entry mode in order to accept the special printer function codes. PeachText uses an \OUT\statement. Wordstar uses the CONTROL key in different ways to define the print function codes.

Easywriter II has a system function which allows you to define print pitches and special print functions for use with the ALT key. Scripsit has a similar process in which user-defined codes are used as recognition characters to select and cancel print functions.

Your word processing User Manual (if it supports this process) will have a section describing how to get out of the standard program. You will probably have to figure out on your own which codes are used. The general concepts and details of the four sample programs should be enough to help you be successful.

The escape code

Most of Radix's special print functions start with a code called the escape code. It can be entered in decimal or hexadecimal values, by an ASCII character, or by using the control keys on your keyboard. It depends on which program and which computer you are using.

This escape code tells the printer to interpret the values (or characters) following it as printer functions. The codes used to describe the functions are also entered in the same method as the escape code. In this chapter, we will show you the format each word processor uses as well as the general rules to correctly enter the function codes.

Chapter 2，＂Getting Started with Radix，＂covers how to con－ vert forms of ASCII codes．You should review Chapter 2，if you have not already done so，before working with the function codes．

The master reset code

There is one function code which turns off all the print func－ tions currently being used by the printer．It is called the master reset code and resets the printer to its DIP switch settings．These print characteristics are the same as the ones used by the printer when it is first turned on．

The code sequence for master reset is 〈ESC〉＂＠＂．By check－ ing the ASCII equivalents in Appendix M，you can see that the decimal expression is 2764 ．You＇ll see these numbers several times in this chapter．

Technically speaking，initializing the printer clears the print buffer and the form length，character pitch，character set，line feed pitch and international character set are all reset to the values defined by their respective DIP switch settings．

We suggest you get in the habit of using the master reset code in any document where you use function codes．If you do not，the printer will keep the characteristics most recently defined and print any following documents the same way．

You could turn Radix off each time（which also resets the default settings）but that would be hard on the printer circuits． Also，you＇ll save time and paper by letting the printer automati－ cally reset with this code．（If you need more information on DIP switch settings for Radix，please refer to Appendix H．）

Using Near Letter Quality（NLQ）

With near letter quality，Radix prints more dots for each char－ acter than with the draft printing．This process results in a higher quality look to your text．Draft quality characters print much faster，so use them for your first drafts and use near letter quality for a professional looking finished manuscript．

The escape code sequence to turn the NLQ set on is 〈ESC〉 ＂B＂ 4 and the code sequence to select draft quality is 〈ESC〉＂B＂ 5．The decimal equivalents are 27664 and 27665 ，respectively．

Near letter quality printing can be printed in pica width（ 10 characters per inch）and underlined if you wish．It cannot，how－ ever，be mixed with Radix＇s other print widths，italics，super－ scripts，subscripts，double－strike，or emphasized printing．

Getting the most from your print choices

After working with Radix for a while, you may find that you want to add to or change some of the print functions we have described in this chapter.

We suggest you do three things. First, you should review Chapter 2 and Appendix K to become as familiar as possible with ASCII codes and the Radix function codes.

Second, read Chapter 7 which describes them in greater detail and shows examples of how they are used in BASIC programming. The functions will, for the most part, act the same in your word processing program. Understanding what's available and how they perform will help you use them correctly in your documents.

And third, follow the procedures in this chapter and your program User's Manual.

You may want to experiment with expanded text in combination with other print types. You can create some great-looking results with these functions. Also, try applying what you have learned in this chapter to your own work while it is still fresh in your mind. If you are unsure of any functions, review them first, then try some of your own samples.

Using Radix with Easywriter II

(Note: If you have not read the "General Concepts" section at the beginning of this chapter, you should do so before continuing.)

The Radix printer can be used with most of the standard print functions available with your Easywriter II word processing program. These functions require no special adjustments to the printer or your program. They include:

1. Printing from the Print List Form screen.
2. Setting margins, tabs and lines per inch in the ruler line of your document. (The pitch settings, however, should be adjusted to obtain maximum use. They will be discussed later in this chapter.)
3. Print settings in the System Parameter function which are either default settings or new settings edited by you.
You can also redefine print functions of Easywriter II to take advantage of many of the printing capabilities of Radix. You may already be familiar with reconfiguring the printer driver from Appendix B of your Easywriter II User's Manual. If not, don't be nervous; it's not as hard as it sounds. We will show you how to
make changes in your program specifically to help you print with Radix.

By changing the pitch settings, you can use the document ruler line to print pica, elite and condensed width pitches. In addition, you can use the same theory to print in near letter quality pica.

The print control codes can be redefined to enhance the final product of your document. The boldface, underline, superscript and subscript functions require only a slight "recoding" of information in the printer driver. And we have some suggestions for changing the characteristics of the other print control codes to use italic, expanded, emphasized and italic-underline print. With these options, you will have even more printing flexibility with Radix.

Redefining pitch settings and print control codes

In order to change the settings used in the document ruler line and the print control codes, it is necessary to edit ASCII code decimal values in the System Functions portion of your Easywriter II program. (For more details on ASCII codes, please refer to Chapter 2.)

Your Radix printer is considered a Type B printer by the Easywriter II program. Before making any changes in the printer driver, you should first check to be sure the printer selection is set for printer Type B (Option 7 on the System Functions menu).

Then follow the instructions in Appendix B of your Easywriter II User's Manual to reconfigure Type B printers. To become more familiar with the reconfiguration process and its terms and to make the instructions in this section easier to understand, we suggest you read through Appendix B first.

In these next few paragraphs, we'll show you the ASCII decimal values we feel provide a good flexibility in printing with Radix. You should follow the instructions hands-on with your own Easywriter II program.

The changes you will make are for pitch settings and print control codes (also called font support). However, all the screens involved will be explained as you see them displayed.

From the System Functions Menu, choose Option 9 (Reconfigure Printer Type B) and the printer name will be displayed. Type over the present printer name as follows:

Press RETURN and the Edit Global Sequences screen will be displayed. These codes control the print functions for form feed, line feed, margin settings and automatic justification. We do not recommend that you edit any of these codes.

Press RETURN and the Edit Pitch Table screen will be displayed. On this screen, you will enter the ASCII decimal values to define the print pitches. The first two fields in each line define the pitch range (which in this case are both the same number). They should be assigned as follows:

```
10 = Draft Pica 1 = Near Letter Quality Pica
12 = Draft Elite 2 = Master Reset Code
17 = Draft Condensed
```

On this screen, the column labeled "Sequence" is used to define the print functions in their ASCII decimal values. For these print pitches, we will use a combination of codes to turn near letter quality print on and off and to choose the function code for each pitch. (For more details on function codes, please refer to Appendix K.)

Follow the sample and enter the (italic) codes for lines 17-21.

17.	[10]	[10]	[27	66	5	27	66	
18.	[12]	[12]	[27	66	5	27	66	
19.	[17]	[17]	[27	66	5	27	66	3
20.	[1]	[1]	[27	66	4			
21.	$[2]$	$\left[\begin{array}{ll}2\end{array}\right]$	[27	64				
22.	[120]	[120]	[
23.	[120]	[120]	[
24.	[120]	[120]	[
25.	[120]	[120]	[
26.	[120]	[120]	[

The codes 120 in lines 22 through 26 can be changed to reflect more pitch settings. We recommend that, until you are more familiar with using special function codes, you use just the five we have defined.

When you have finished, press RETURN. You will be transferred to the Edit Line Spacing screen. Do not change these codes.

They define how many lines per inch the printer uses. Press RETURN to transfer to the Edit Font Support screen.

Change all of the entry fields to Option 2 (Control Code Support) on the Edit Font Support screen. Also, make changes in the other fields to look like the figure shown below. Enter the (italic) codes for lines 41-50.
41. Bold/Shadow Face Support [2]
42. Single Underline Support [2] Using Character [95]
43. Double Underline Support [2] Using Character [0]
44. Overstrike Support [2] Using Character from
45. Special (Color) Support [2] System Parameters
46. Sub/Superscript Support [2]
47. Will underline retain font (Y) or be normal font (N)? [N
49. Start double underline []
50. After double underline []

When you have finished, press RETURN and the Edit Font Sequences screen will be displayed. Here you will define print control codes for use in your documents. As with the pitch settings, ASCII decimal values are used that correspond to the print function assigned to each control key. Table 3-1 shows the current control function, the print function we will assign to it and the keyboard keys used.

Table 3-1
Easywriter II control keys

Easywriter II function	New function	Keys used
Boldface	Boldface	ALT \& B
Shadow	Italic	ALT \& S
Underline	Underline	
Double	Expanded	ALT \& =
Overstrike	Emphasized	ALT \& O
Special	Italic Underlined	ALT \& *
Subscript	Subscript	ALT \& D
Superscript	Superscript	ALT \& U

Enter the (italic) codes for lines 51-66.
51. Normal to Bold
52. Bold to Normal
53. Normal to Shadow
54. Shadow to Normal
55. Normal to Underline
56. Underline to Normal
57. Normal to Double
58. Double to Normal
59. Normal to Overstrike
60. Overstrike to Normal
61. Normal to Special
62. Special to Normal
63. Normal to Subscript
64. Subscript to Normal
65. Normal to Superscript
66. Superscript to Normal

[27	71	27	69
[27	72	27	70
[27	52		
[27	53		
[27	45	1	
[27	45	0	
[27	87	1	
[27	87	0	
[27	69		
[27	70		
[27	52	27	45
[27	53	27	45
[27	83	1	
[27	84		
[27	83	0	
[27	84		

When you have finished, press RETURN. You're done! You will be transferred out of the Reconfigure Type B Printer function and back to the System Functions Menu.

A sample printout with Easywriter II

Let's look at a short example to demonstrate how pitch settings and print control keys can be used in a document. The example below shows the use of expanded and italic prints used in combination with condensed and pica pitch settings. Use your Easywriter II program hands-on and type the example below.

SUBJECT: ORDERING STATIONERY SUPPLIES
I would like to place an order for stationery supplies from your mail order catalog. Enclosed is my order form and a check for $\$ 247.67$. Please process this order as soon as possible. Thank you.

With the cursor under the " S " in "SUBJECT", set the print pitch in the ruler line to condensed width pitch. Name the ruler
line "condensd" (without the quotes) and change the character pitch to 17 and the line spacing to 6 . To make the subject title expanded, use the ALT and = keys (in the line mode) to highlight the line.

Now, change the pitch setting in the next line to pica by setting a new ruler line: Ruler Name - pica; Character Pitch - 10. Use the print control key S (for italic) to highlight the second sentence in the paragraph. Move the cursor to the " E " in "Enclosed" and (in the sentence mode) use the ALT and S keys to highlight the sentence. (You'll have to press S twice to get the .67.)

At the end of the document, reinitialize the printer to its default settings with a new ruler line using the Master Reset code. Ruler Name - reset; Character Pitch - 2.

Print the document. Your printout should look like this:

SUBJECT: ORDERING STATIONERY SUPPLIES
I would like to place an order for stationery supplies from your mal order tatalog. Enclosed ismy order form and a aheck for * 24 . 6 . Flease process this order as soon as possible. Thank you.

The subject title will print in expanded condensed characters which are twice the width as standard condensed characters. The sentence in the paragraph is printed in italic pica print. The last ruler line will reinitialize the printer. (See the general concepts section of this chapter for more details on master reset.) This is just one example, however, you should be able to apply most of the function codes to the setup used here.

Redefining your own print pitches

If you want to define a new print pitch (Edit Pitch Table), be sure to start the sequence with the code 27665 . This code tells the printer to turn off near letter quality print. Then enter your function code to choose the print you want. By not using the function code 27665 first, the printer will continue to print near letter quality.

For example, if you found yourself frequently using italic print for large blocks of text in pica width pitch, you can combine italic and pica pitch to define italic pica and use it in the ruler line of your document. The ASCII code sequence would be 2766527 6612752 which would print italic pica pitch.

Redefining your own print control keys

The ASCII codes to redefine the print control keys (Edit Font Sequences) are pretty straight forward. There are individual ASCII decimal values to turn on and off different prints. You want to affect that aspect but not the print pitch itself. Leave that for your document ruler line. Remember, all the codes can be found in Appendix K of this manual.

Also, keep in mind that print control keys can be combined in your document such as boldface and underline. Easywriter II uses three methods of highlighting on the display screen. It highlights, underlines and shows reverse image characters. You cannot combine print control functions that use the same method of highlighting.

For example, in our definitions, underline and expanded prints are both displayed as underlined on the screen. Whichever function you use last will cancel out any previous modes.

Using Radix with PeachText

(Note: If you have not read the "General Concepts" section at the beginning of this chapter, you should do so before continuing.)

Radix can be used with PeachText for a wide range of different print functions. Radix automatically supports many of the standard printing capabilities as well as the method of sending special codes to use all of its printing features. As a result, you can really customize the final look of your documents.

With Radix, you can perform all the following print functions without making any special changes to your PeachText program.

1. Print documents from the Text Edit screen.
2. Print documents from the Print Status screen.
3. Use print commands and recognition characters in your document.
4. Select and print variable information for merge letters, etc.

All of these functions are fully described in the PeachText User's Manual and will not be discussed in this chapter. You should refer to the manual if you need help in successfully performing any of these functions.

With the print capabilities described above, however, some individual functions will not work without using special codes. They include changing lines per inch and characters per inch,
using superscript and subscript recognition characters，backspac－ ing，and using horizontal and vertical tabs commands．

Entering special function codes

When you want to enter a code to perform a special print function，you must first enter the PeachText command，\OUT． Then，enter the decimal values relating to the ASCII code for each function you want performed．The statement is closed by using the \symbol．

Each value must be separated by a comma．For example，a valid statement would be \OUT27，69 \．If the function code you want is expressed in more than one ASCII character，you must use a comma between each decimal value．To select elite pitch，for example，the ASCII code is 〈ESC〉＂B＂2．The PeachText state－ ment would read \OUT27，66，2 \backslash ．

Different print combinations can be combined within one statement．In these cases，you need to use the escape code for each function．For example，to select double－strike and emphasized print at once，the PeachText statement is \OUT27，71，27，69\} where 27,71 selects double－strike print and 27,69 selects empha－ sized print．

When you enter these codes in your document，they will appear on the display screen，but they will not print out on paper． The characters do not take up any hard space when printed．Your first character of text will actually print in the first space where the command begins（on the screen）．

When you start using these codes on your own，you should turn to Appendix K in this manual to look up the printer function you want．To enter the codes into PeachText，simply use the deci－ mal values in the format previously described．Let＇s take an exam－ ple．

Say you want to change to near letter quality characters．The function code as shown in Appendix K is 〈 ESC 〉＂ B ＂4．The deci－ mal equivalent is 27664 ．Your PeachText command would be entered as \OUT27，66，4 \．By following this format，you can use any of the function codes applicable to Radix as described in Appendix K．

Table 3－2 references the most commonly used print functions and the PeachText statements you should enter in your document．

Using boldface print

There are several different ways to highlight text as boldface
print. The easiest way is to use the boldface function with the PeachText recognition character (@) as described in the PeachText User's Manual. You can also use function codes to select double-strike, emphasized or combine both to highlight in boldface fashion.

Each type will give you a slightly different look. You may want to experiment with them and use the one you like the best. Once you have chosen the method you feel is best for your needs, try to stick with it as much as possible. Switching back and forth will be confusing and ultimately detract from the look of your documents.

Table 3-2
PeachText print functions

Print Function	Select Code	Deselect Code
Pica Pitch	\backslash OUT27,66,1 \backslash	-
Elite Pitch	\backslash OUT27,66,2 \backslash	-
Condensed Pitch	\backslash OUT27,66,3 \backslash	-
Near Letter Quality	\backslash OUT27,66,4 \backslash	\backslash OUT27,66,5 \backslash
Double-Strike	\backslash OUT27,71	\backslash OUT27,72 \backslash
Emphasized	\backslash OUT27,69 \backslash	\backslash OUT27,70 \backslash
Italic Print	\backslash OUT27,52 \backslash	\backslash OUT27,53 \backslash
Single-Line Expanded	\backslash OUT27,14 \backslash	see note below
Continuous Expanded	\backslash OUT27,87,1 \backslash	\backslash OUT27,87,0 \backslash
Underline	\backslash OUT27,45,1	\backslash OUT27,45,0
Superscripts	\backslash OUT27,83,0	\backslash OUT27,84 \backslash
Subscripts	\backslash OUT27,83,1 \backslash	\backslash OUT27,84 \backslash

Note: A carriage return will automatically turn off single-line expanded text.

Underlining with Radix

There are two different ways to underline text. The easiest way is to use the underline function with the PeachText recognition character (__) as described in the PeachText User's Manual. With Radix, this will print as a series of dashes under the text (as opposed to a solid line).

The special printer function codes can also be used to select and cancel underlining. As shown in the Table 3-2, the code \backslash OUT27,45,1 \selects underlining and \backslash OUT27,45,0 \backslash cancels it. With these codes, Radix will print a solid line under the text (including spaces) rather than dashes.

The choice is yours as to which you use depending on your application. The flexibility, however, is nice to have.

A sample printout with PeachText

Let's look at a short example to demonstrate how function codes are used in a PeachText document. The following example shows how italic and italic-underline print are used. Use your PeachText program hands-on and type the example exactly as you see it below.

SUBJECT: \OUT27,52\ORDERING STATIONERY
SUPPLIES \OUT27,53\
I would like to place an order for stationery supplies from your mail order catalog.
\OUT27,52,27,45,1\Enclosed is my order form and a check for $\$ 247.67$. \OUT27,53,27,45,0\ Please process this order as soon as possible. Thank you. \oUT27,64 \}

In the subject title of this example, the first code \backslash OUT27,52 \ selects italic print; the second code \OUT27,53 \} cancels it. In the paragraph of the example, the first function code combines italic with underline print. The decimal values 27,52 select italic and $27,45,1$ select underline.

Also in the paragraph, the function code \OUT27, $53,27,45,0 \backslash$ cancels italic-underline print. The decimal values 27,53 cancel italic and 27,45,0 cancel underline.

The final function code \backslash OUT27,64 \ resets the default settings on the printer. Now, print the document. Your printout should look like this:

SUEJECT: GRDERING STATIGNERY SUPPLIES
I would like to place an order for stationery supplies from your mail order catalog. Enclosed is my order form and a Gheck for \$24T. $\hat{6}$. Flease process this order as soon as possible. Thank: you.

This is just one example, but you should be able to apply most of the function codes to the setup used here.

Storing documents with function codes

When you create combinations of function codes you like, store them as skeleton documents. To access the documents later, go to the Main Menu and use the copy document function (CO) to duplicate the skeleton document. Then rename the new document. This will save you time and reduce your chance of entering incorrect codes.

Using Radix with WordStar

(Note: If you have not read the "General Concepts" section at the beginning of this chapter, you should do so before continuing.)

Radix supports many of the standard WordStar printing capabilities without requiring any changes. You can:

1. Print documents from the No-File Menu.
2. Use the dot commands except for lines per inch, characters per inch and microjustification.
3. Print boldface, underline, double-strike, strikeout, superscript and subscript characters as well as use print pause.
4. Select and print variable information for merge letters, etc.

User-defined print commands

There are several CONTROL-P (${ }^{\wedge}$ P) commands that automatically work with Radix and require no changes. They include:
${ }^{\wedge}$ PS Underscore
${ }^{\wedge}$ PB Boldface
${ }^{\wedge} P D$ Double-strike
${ }^{\wedge} \mathrm{PX}$ Strikeout
${ }^{\wedge}$ PT Superscript
${ }^{\wedge}$ PV Subscript
${ }^{\wedge}$ PC Print Pause
It is also possible to define the ${ }^{\wedge} \mathrm{PA}$ (alternate pitch) command to change the print pitch of your document. The WordStar User's Manual fully describes the use of these ${ }^{\wedge} \mathrm{P}$ functions. You should refer to your manual if you need help with them.

There are four alternative ${ }^{\wedge} \mathrm{P}$ codes that can be defined during the installation of your WordStar program to perform other printer functions. They are ${ }^{\wedge} \mathrm{PQ},{ }^{\wedge} \mathrm{PW},{ }^{\wedge} \mathrm{PE}$, and ${ }^{\wedge} \mathrm{PR}$. The process of defining ${ }^{\wedge} \mathrm{P}$ commands is called "patching" and is a fairly complicated process. Once you have successfully defined these codes, they are inserted in your text exactly like the other ${ }^{\wedge} \mathrm{P}$ commands. If you wish to use them, refer to the WordStar User's Manual for instructions or contact your dealer for assistance.

Perhaps the most useful user-defined ${ }^{\wedge} \mathrm{P}$ command is ${ }^{\wedge} \mathrm{PE}$. If you define this as an escape (ASCII code 27), you can then access nearly all of Radix's advanced features. Without this patch, you cannot place an escape in the WordStar document and subsequently, you are limited to using WordStar's repertoire of print functions. A shame when you have a powerful Radix!

Using Radix with Scripsit

(Note: If you have not read the "General Concepts" section at the beginning of this chapter, you should do so before continuing.)

Radix can be used with most of the Scripsit print functions. You can use most of the basic functions on the Open Document Options screen as well as on the Print Text Options screen. Two minor adjustments you need to make. On the Open Document Options screen the printer type is LPN4. Also, DIP switch C-4 must be OFF to cause a line feed at the end of each line.

There are some print functions, however, that do not work without redefining the printer driver or by continually changing the DIP switch settings. That could be an awkward, time-consuming task.

Instead, we recommend the User Print Code Facility to define several recognition characters and control your print functions. With the use of the CLEAR key and each recognition character, Scripsit can perform any print function you define.

Print Pause and Form Feed automatically work with Radix. Double underscore only works with daisy wheel printers and strikeout does not work without redefining the printer driver. (Since strikeout is seldom used, we do not suggest you try it.)

Boldface, underline, superscripts and subscripts do not work with the recognition characters described in the Scripsit User's Manual but can be defined in the Print Code Facility along with some other print functions (emphasized, italic and expanded).

The print pitch settings on the Open Document Options screen will not work with Radix. Therefore, we will show you how to use recognition characters to define pica, elite, condensed and near letter quality pitches.

Defining user print codes

Your first step is to enter the Edit Printer Control screen. If you are not familiar with this function, review your Scripsit User's Manual for details. Each character on this screen will be
assigned an ASCII decimal value corresponding to the function you want. If you have not read Chapter 2 in this manual, we suggest you do so before continuing.

The decimal equivalents of each function can be found in Appendix K. A space should be left between each decimal value. The sample below shows each code as it should be entered into the Edit Printer Control screen. Type the (italic) codes as they appear here.

| Code | Units Sequence:up to 11 codes will be counted |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Comments | |

When you have finished entering the codes, press ENTER to return to the System Setup menu. Then, press BREAK to return to the Main menu.

Each function code is pretty straight forward and they are all included in Appendix K of this manual. But there is a certain way to enter them.

Say you want to enter the codes for double-strike print. The function code as shown in Appendix K is 〈ESC〉 " G ". The deci-
mal equivalent is 27 71. Your Scripsit command would be entered as 27 71. By following this format, you can use any of the function codes applicable to Radix as described in Appendix K.

The function codes for pica, elite and condensed width pitches are expressed a bit differently than the rest. If you want to request one of these three prints and you are changing from Near Letter Quality (NLQ), the first codes 27665 will turn NLQ off before printing draft pica, elite or condensed 27661 (2 or 3).

Notice that boldface is actually a combination of function codes for defining double-strike and emphasized print. If you want to use just double-strike as boldface, you can delete the codes 2769 and 2770 from sequences 5 and 6.

A sample printout with Scripsit

Let's look at a short example to demonstrate how pitch settings and print control keys can be used in a document. The example below shows the use of boldface and italic prints used in combination with pica and elite pitch settings. Use your Scripsit program hands-on and type the example below. (To get the "@" symbol, use the CLEAR key on your keyboard).
@1SUBJECT: @50RDERING STATIONERY SUPPLIES@6
@2I would like to place an order for stationery supplies from your mail order catalog. @'Enclosed is my order form and a check for $\$ 247.67$.@\# Please process this order as soon as possible. Thank you.
@0

The first recognition character @1 will start pica width pitch. The second character @5 will turn on boldface print until @6 turns it off. At the beginning of the paragraph, @2 starts elite pitch. The second sentence is bracketed by the recognition characters @" and @\# which will turn italic print on and off. The last code @ 0 is the master reset code which will reinitialize the printer to its default characteristics.

Now print the document. Your printout should look like this:

SUBJECT: ORDERING BTATIDNERY ELPPLIEB
I would like to place an order for stationery supplies from your mail order catalog. Enclosed is my order form and a check for \$247.67. Please process this order as soon as possible. Thank you.

The subject title prints in boldface pica. The entire paragraph prints in elite pitch but with the second sentence as italic characters. And although you do not see it happen, the printer is reset by the code @0. (See the general concepts section of this chapter for more details on Master Reset.)

This is just one example, but you should be able to apply most of the function codes to the setup used here. A note about underlining: with Scripsit, Radix will underline the spaces designated for the left margins of each line. You will have to enter the control codes at the beginning and end of each line to turn underlining on and off.

Redefining your own print codes

If you want to define a new print pitch, be sure to start the sequence with the code 27665 . This code tells the printer to turn off near letter quality print. Then enter your function code to choose the pitch you want. Otherwise, if you change pitches in a document from near letter quality to draft, the function code alone (in the printer driver) will continue to print near letter quality.

For example, if you found yourself frequently using italic print for large blocks of text in pica pitch, you can combine italic and pica pitch to define italic pica and use it in the ruler line of your document. The ASCII code sequence would be 276652766 12752 which would print italic pica pitch. Remember, you can enter up to 11 codes for each User Print Code.

Also, keep in mind that recognition characters can be combined in your document to print, for instance, italic and underline. Simply enter the two codes before the text. With italic-underline, the codes would be @"@9 to turn it on and @\#@! to turn it off.

Chapter 4

Using Radix With Spreadsheet Programs

Radix is a good printer to use with spreadsheet programs because its capabilities match the requirements for printing spreadsheets. It can print large spreadsheets fast and it can also print good looking final reports with the Near Letter Quality (NLQ) character set.

We will look at how to use Radix with three popular spreadsheet programs:

- VisiCalc
- SuperCalc
- Lotus 1-2-3

Using Radix With VisiCalc

VisiCalc was the first spreadsheet program. Although it is now widely imitated, it is still one of the most popular. The descriptions here are for VisiCalc as implemented on the IBM-PC; it may work slightly differently on your computer.

VisiCalc spreadsheets are printed with the /Print command. The /Print command prints the area of the spreadsheet between the active cell, at the upper left, and a cell that you enter in the command, at the lower right.

First, move the active cell to the cell in the upper left corner of the area that you want to print. Then, to start the print command, enter / \mathbf{P}, and then \mathbf{P} to direct the output to the printer. Now you must specify the lower right corner of the part of the worksheet that you want to print, and press return to start printing.

This system works fine if the area of the worksheet that you want to print all fits on one page. But if you want to print a larger area and break it into pages, then you must figure out the different areas that you want to print and use separate /Print commands to print them, moving the active cell to the upper left cell of each area before you print it. You also must use the printer controls to advance the paper to the next page so that you don't print over the perforations on sprocket feed paper.

Radix gives you another way to print large spreadsheets. You can change the width of the characters that Radix prints, and thus print more characters per line. The "Setup option allows you to send function codes to the printer from VisiCalc. To change the character pitch to condensed, enter ""^ $\mathbf{C O}\langle$ RET \rangle. The following table shows what the shorthand that VisiCalc uses when sending function codes to the printer. The ${ }^{\wedge}$ character (the caret on the

Table 4-1

VisiCalc control codes

${ }^{\wedge} \mathrm{C}$	This marks the next character as a control code. For example, if you want to send control-O to the printer, you must enter ${ }^{\wedge}$ CO.
${ }^{\wedge} \mathrm{E}$	This sends an escape to the printer. Since escape is so widely used, they made a special code for it.
${ }^{\wedge} \mathrm{R}$	This sends a carriage return to the printer.
${ }^{\Lambda} \mathrm{L}$	This sends a line feed to the printer. You can use this to put blank lines between sections of the worksheet as you print it out.
${ }^{\wedge} \mathrm{H}$	This code says to treat the next two characters as hexadecimal digits. For example, if you entered ${ }^{\wedge} \mathrm{HOF}$, then VisiCalc would send hex 0 F (decimal 15, or control-O) to the printer.
${ }^{\wedge \Lambda}$	This sends one caret character $\left({ }^{\wedge}\right)$ to the printer.

keyboard) signifies the beginning of one of the special codes to VisiCalc.

With these codes you can send any of Radix's function codes through VisiCalc. If you select a different printing style than normal, you will have to enter it before printing each section of the spreadsheet because VisiCalc resets the printer as it starts each /Print command.

The most common codes are to change the print pitch, so the following table shows how many print columns will fit on a page with the various print pitches possible, and the codes to use to get them. If you have a Radix-15, but are using $81 / 2$ inch wide paper, use the values for a Radix- 10 .

Table 4-2
Print columns on a page with VisiCalc

Pitch	Radix-10	Radix-15	Setup codes
Pica	80	136	${ }^{\wedge} \mathrm{EBB}^{\wedge} \mathrm{CA}$
Elite	96	163	${ }^{\wedge} \mathrm{EB}^{\wedge} \mathrm{CB}$
Condensed	136	233	${ }^{\wedge} \mathrm{EB}^{\wedge} \mathrm{CC}$
Pica Expanded	40	68	$\begin{aligned} & { }^{\wedge} \mathrm{EB}^{\wedge} \mathrm{CA} \\ & \wedge \mathrm{E}^{\wedge} \mathrm{CA} \end{aligned}$
Elite Expanded	48	81	$\begin{aligned} & \wedge^{\wedge} \mathrm{EB}^{\wedge} \mathrm{CB} \\ & { }^{\mathrm{E}} \mathrm{WW}^{\wedge} \mathrm{CA} \end{aligned}$
Condensed Expanded	68	116	$\begin{aligned} & { }^{\wedge} \mathrm{EB}^{\wedge} \mathrm{CC} \\ & { }^{\wedge} \mathrm{EW} W^{\wedge} \mathrm{CA} \end{aligned}$
NLQ on	80	136	${ }^{\wedge} \mathrm{EB}^{\wedge} \mathrm{CD}$
NLQ off			${ }^{\wedge} \mathrm{EB}^{\wedge} \mathrm{CE}$

One more thing that you may wish to do is to switch to NLQ printing for a final report. To switch to NLQ, enter ${ }^{6 \times}{ }^{\wedge}$ EB ${ }^{\wedge} \mathbf{C D}$. This will turn on NLQ printing. As you can see, you can use any of Radix's features with VisiCalc, just by entering the proper codes in the "Setup option to the /Print command.

Using Radix with SuperCalc

SuperCalc is a popular spreadsheet program. It has a lot of flexibility and can utilize many of Radix's advanced features.

The /Output command is used to print SuperCalc spreadsheets. This command allows you great variation in the way you print your spreadsheets.

The simplest way to print a spreadsheet is to enter／O to start the／Output command，type \mathbf{D} to print the spreadsheet as it is dis－ played，and then type ALL，to specify printing the entire spread－ sheet，and finally press \mathbf{P} to direct the output to the printer．

If your spreadsheet is too wide to fit onto a single sheet of paper，then SuperCalc will automatically split the worksheet into strips（you＇ll see how to tell SuperCalc how wide your printer is in a moment）．First，SuperCalc will print as much of the spreadsheet as will fit on a page，and then it will print additional page－wide strips until the entire worksheet is printed．

To make this automatic system of dividing the spreadsheet into strips work you need to tell SuperCalc how many character columns that you want to print on each page．（Note that we are now talking about character columns，and not spreadsheet col－ umns．）The／Output command has a Setup option that，among other things，allows you to specify the number of character col－ umns that will fit on a line．To use this option，enter／OD ALL，S． This will present you with a menu of setup choices．The selection that we are interested in is＂$W=$ Change page width＂．Select this option and enter the appropriate number of columns for the print－ ing pitch and paper width that you want to use．SuperCalc will remember this setting until you exit the program．（You can make a setting permanent by using the INSTALL program that comes with SuperCalc．）

Table 4－3
Print columns on a page with SuperCalc

Pitch	Radix－10	Radix－15	Setup codes
Pica	80	136	〈ESC）B Ctrl－A
Elite	96	163	〈ESC〉 B Ctrl－B
Condensed	136	233	（ESC）B Ctrl－C
Pica Expanded	40	68	（ESC）B Ctrl－A （ESC）W Ctrl－A
Elite Expanded	48	81	〈ESC〉 B Ctrl－B 〈ESC）W Ctrl－A
Condensed Expanded	68	116	〈ESC〉 B Ctrl－C 〈ESC）W Ctrl－A
NLQ on	80	136	〈ESC）B Ctrl－D
NLQ off			〈ESC〉 B Ctrl－E

Sending control codes from SuperCalc

The Setup option of the／Output command also allows you to send control codes to the printer．The menu item＂ $\mathrm{S}=$ Manual
setup codes＂lets you send any type of code to the printer that you wish．When you select＂ S ＂，a prompt appears that says＂Enter codes（CR when done：）．＂You can then enter any codes that you wish，and when you are done you press return to signal the end of the setup codes．Control codes are sent in the normal manner，by holding down the control key and pressing a letter key．On some computers the 〈ESC〉 key will not send an escape code（ASCII 27）．If this is a problem，try using control－［．Many times this will send an escape code to the printer．
As an example，to turn on NLQ printing，enter 〈ESC〉B control－ D return，and then press \mathbf{P} to start printing the report．Table 4－3 shows the codes required to change the print width to various sizes．

Lotus 1－2－3

Lotus is one of the new integrated software packages that includes a spreadsheet，a database manager and graphics．We will see how to print Lotus 1－2－3 spreadsheets in this chapter．

Lotus 1－2－3 uses the／Print command to print spreadsheets． When you enter／P，a menu appears that presents you with a num－ ber of choices．Lotus 1－2－3 gives you a lot of flexibility in printing spreadsheets through this menu，but the only thing you have to do is to define a range to print．All the other items have default values that make getting started easy．

If you do change several of the things listed on the／Print menu，Lotus 1－2－3 will remember the selections that you have made and use them each time you print the spreadsheet．They are even saved with the spreadsheet so that they will be the same the next time that you use the spreadsheet．

You can specify the range to print in all the normal ways：by pointing，by typing the cell addresses of the endpoints，by enter－ ing a range name，or by using the F 3 key to point to a range name．

After you have specified a range to print，and changing any of the other options that you wish，begin to print the spreadsheet by selecting the Go option．Lotus $1-2-3$ will split the spreadsheet into sections to fit onto pages if it won＇t all fit on one page．

Let＇s look at some of the other options on the／Print menu，and see how they add to the flexibility of printing spreadsheets．

The Line option advances the paper one line．Use this to put space between different sections of your spreadsheets when you print them．The Page option advances the paper to the top of a
new page. Use this option to start on a new page.
Selecting the Align option tells Lotus 1-2-3 that you have moved the paper to the top of a new page. Use this option after using the F.F. button to move the paper or after inserting a new single sheet of paper.

The Clear option allows you to clear any or all of the other options that you have selected. The Quit option ends the /Print command and returns you to Ready Mode.

Selecting Options from the /Print menu presents you with some additional page format selections.

You can add Headers or Footers to each page of your output. A header is a line that prints at the top of each page, while a footer is a line that prints at the bottom of each page.

Lotus 1-2-3 has three characters that perform special functions when they are included in a header or a footer. You can include sequential page numbers on each page by including the \# character where you want the page number to print (For example: Page \#).

The current date will be printed if you include the @ character in a header or footer. (For example: As of @.)

You can direct sections of headers and footers to the left, right, or center by using the | character. Each header or footer is divided into three sections; Left, center, and right. The | character shows the limits of these sections. So to print a header with the date to the left, a title in the center, and a page number to the right, the header might look like this:
@|Spreadsheet Title|Page \#

And, on January 12, 1984, the results might look like this:

$$
\text { 12-Jan-84 Spreadsheet Title Page } 1
$$

Another of the selections under Options is Setup. This selection allows you to create a setup string that will be sent to the printer before each section of a spreadsheet is printed. You can include non-printing codes in the setup string by using a backslash (\backslash) followed by a three digit number that consists of the decimal ASCII value for the code that you wish to send (with lead-
ing zeros if required). For example, to print a worksheet in condensed print, use the setup string $\backslash 015$. This sends ASCII 15 which is the code for condensed printing. The following table shows how many character columns will fit with different printing widths, and the setup string to get each width.

Table 4-4
Print columns on a page with Lotus 1-2-3

Pitch	Radix-10	Radix-15	Setup codes
Pica	80	136	$\backslash 027 \mathrm{~B} \backslash 001$
Elite	96	163	$\backslash 027 \mathrm{~B} \backslash 002$
Condensed	136	233	$\backslash 027 \mathrm{~B} \backslash 003$
Pica Expanded	40	68	$\backslash 027 \mathrm{~B} \backslash 001$ $\backslash 027 \mathrm{~W} \backslash 001$
Elite Expanded	48	81	$\backslash 027 \mathrm{~B} \backslash 002$ $\backslash 027 \mathrm{~W} \backslash 001$
Condensed Expanded	68	116	$\backslash 027 \mathrm{~B} \backslash 003$ $\backslash 027 \mathrm{~W} \backslash 001$
NLQ on	80	136	$\backslash 027 \mathrm{~B} \backslash 004$
NLQ off			$\backslash 027 \mathrm{~B} \backslash 005$

Chapter 5

Using Radix With Graphics Programs

There are now many business graphics programs on the market. Radix is a good printer to use with these programs because of its advanced graphics capabilities. We will look at two graphics programs in some detail. If you have a different graphics program, then hopefully you can use some of the concepts in the programs that we cover to help you with your program.

In this chapter you'll learn how to use Radix with:

- SuperCalc ${ }^{3}$
- BPS Business Graphics

SuperCalc ${ }^{3}$

SuperCalc ${ }^{3}$ can produce 7 different kinds of graphs. Using information contained on the worksheet you can create and print a wide variety of graphs.

Before you start printing graphs you must tell SuperCalc ${ }^{3}$ what kind of printer you are using. This is done with the STARTUP program that is furnished on the SuperCalc ${ }^{3}$ disk. To use this, type STARTUP at the A> prompt and follow the on-screen directions. If the Star Radix printer is not listed, please consult with your Star dealer for an alternate printer selection.

Once you have started the SuperCalc ${ }^{3}$ program there are still some things that you must tell the program about your printer. Use the /Global Graphics Options Command by entering /G G O. You will see a menu like that shown in Figure 5-1. There are many things on this screen but we need only concern ourselves with a few.

Figure 5-1. SuperCalc ${ }^{3}$ /Global Graphics Options menu.

The first selection to make is at the top of the second column. Use the Tab key to quickly move to the "Resolution:" entry. This choice affects the density and quality of the graphs that you print. There are four choices, single through quad density, but if you did not find the Radix listed in the STARTUP program only single and
double will work. We suggest that you select double until you are more familiar with the program.

The next thing that you must specify is the "Plotter Interface" that you are using. Move to this selection and enter P if you are using the parallel interface on the Radix, or S if you are using the serial interface.

Your entry of S or P will affect your next entry also. Depending on which you have selected, a different section of the menu below will be highlighted. Here you need to specify which printer number the Radix is. Generally, printers are connected as printer number 1, so if you don't know any differently, enter 1. Then, if you are using a serial interface you must enter the values that reflect the way that you set the DIP switches on Radix. If these settings are not consistent with the way the switches are set then it will not work.

Once these selections are made, enter /G G S to save your selections to disk so that you won't have to make these selections every time that you want to print a graph.

Now you are ready to print a graph. Create a graph using the /View command, and when it is in the form that you like, press the F9 key to print the graph on Radix.

By using the /Global Graphics Fonts command you can change the style of letters that are on your graphs. SuperCalc ${ }^{3}$ has eight different fonts available and you can use any or all of them on any graph.

You can change the size and placement of the graph on the page by using the /Global Graphics Layout command. This command allows you to put up to four graphs on a page.

BPS Business Graphics

BPS Business Graphics is a program that changes groups of numbers into graphs. It is a very flexible program and can produce many different kinds of graphs.

BPS Business Graphics prints graphs by first creating the graph on the screen and then making a copy of the screen on the printer. This means that your computer must have the ability to do graphics on the screen.

Before you can print a graph you must have the proper device driver installed. Use the INSTALL DEVICES B: command with the device installation disk in drive B:. If you do not find RADIX in the list of available devices, please ask your Star dealer for an alternate printer selection. You only need to do this installation once;

BPS Business Graphics will use the same device driver until you install another one.

Now, when you have your points loaded and are ready to print a graph, use the following commands:

DRAW (Plus the appropriate arguments)
SET OUTPUT UNIT PARALLEL
WRITE SCREEN (Plus the appropriate device name)

Your graph will first be displayed on the screen and then printed on Radix.

There are several ways to vary the way graphs are printed. Obviously you can use the many features of BPS Business Graphics to add elements to your graph. But you can also change the quality of the way the graph is printed.

One way to change the printing is to use the SET FILL CYCLE command. This will change the pattern of each element of the graph as it is drawn. In a pie graph it will change the pattern in each section of the graph.

Another way to improve the quality of the printed graph is to use the DET DEVICE CONSOLE HIBW command. This command tells the program that you have a high resolution monitor. BPS Business Graphics then plots in its highest quality, which may not look very good on your screen if you don't have a high resolution monitor. But when the image is printed it will be in the highest possible quality.

Making pie graphs round

BPS Business Graphics uses what it calls a rounding factor to make pie graphs round. Many output devices produce oval pie graphs because their aspect ratios don't match. The aspect ratio of an object is the ratio of its height to its width. The rounding factor is the third argument to the DRAW PIE command, so with a rounding factor of 1 , the command looks like this: DRAW PIE $0,0,1$.

The following table shows the rounding factors to use with the different console modes.

BPS Business Graphics can create many types of graphs, and we have just touched the surface of its capabilities, but with these hints you should be able to get started printing graphs quickly.

Table 5-1
Rounding factors for console modes

Console Mode	Rounding Factor
COLOR	1.21
RGB	1.21
TV	0.61
HIBW	2.43
LOBW	1.21

Chapter 6

Controlling Radix With BASIC

Throughout the rest of this book we will be teaching you how to use Radix's features using the BASIC programming language in our examples. It is easy to communicate with Radix from BASIC and, though it has its detractors, BASIC is the nearest thing to a universal language among users of personal computers. But remember that it's not the only way to communicate with Radix, as we have already seen.

Subjects covered in this chapter include:

- Listing BASIC programs on the printer
- Printing from BASIC
- CHR\$ function
- Problem codes

All of the examples in this manual are written in Microsoft

BASIC (specifically, Microsoft BASIC for the IBM Personal Computer). With minor modifications, the examples and utility programs can be adapted to run in any version of BASIC. In this chapter and in the appendix for your computer, we'll tell you what modifications need to be made and how to do it. In this chapter we assume that you have some familiarity with BASIC.

Some Basics About BASIC

Probably the simplest thing to do with your printer in BASIC is to list a program on the printer. But in this world of proliferating microcomputers even this presents a problem. It seems that every computer uses a different system of communicating with the printer. We are going to tell you about some of the more common ways, and hope that between this and your computer's BASIC manual you will be able to stay with us.

First on our list is Microsoft BASIC's way of communicating with the printer. They just add an "L" to the beginning of the LIST and PRINT commands, making them LLIST and LPRINT. This method is used by more computers than any other and so we will use it throughout this book, after telling the rest of you how to follow along.

Microsoft BASIC is used by TRS-80 computers, IBM-PC computers, many CP/M computers, and many other computers. (Look in your BASIC manual; it will probably say if it's Microsoft BASIC.)

Next we need to talk about Apple II computers. They have a real simple system. To list a program that you have loaded into memory, just type:

PR\#1
LIST
PR\# \varnothing

The PR\#1 says "send everything to the printer," the LIST sends it, and the PR\#0 says "Ok, back to the screen now."

Some other computers require you to open the printer as a numbered device, and then direct the output to that device. For
example, to list a program on the printer with a Commodore C-64 computer you type the following:

OPEN4,4
CMD4
LIST
CLOSE4

This says that the printer is device 4 , directs the output to it, lists the program, and finally closes device 4.

The appendix gives more information about listing programs on various computers. Find the appendix that tells how your computer works, and try it.

Now that we all know how our computers address the printer, let's try listing a BASIC program. Load a BASIC program and LLIST it (or however your computer does it). We've crossed the first major hurdle-learning how to list programs on Radix. Now we are ready to jump into the world of programming with Radix. But first, there are a few fundamentals that we need to cover.

Establishing communications

We've learned something about communicating with our printer. Now we need to adapt what we know to printing in a BASIC program. Generally, computers use about the same procedure for printing in a program as they do to list a program. Again take a few moments to look at the appendix that relates to your computer. We'll continue when you have it all figured out.

Welcome back. Let's try what we learned. Type the following:

```
NEW
10 LPRINT "TESTING"
RUN
```

Remember-we use LPRINT; you may have to use something else!

At any rate, you should have the word "TESTING" on your printer. Quite an achievement, isn't it? Let's get done with this simple stuff so that we can go on to something interesting.

The CHR\＄function

We mentioned CHR\＄in Chapter 2 as one way to express ASCII codes．We are going to use it a lot in communicating with Radix．Radix uses many of the ASCII codes that don＇t represent letters and numbers．The CHR\＄function gives us an easy way to send these codes to the printer．Try this to see how the CHR\＄ function works：

NEW
$1 \varnothing$ LPRINT CHR $\$$（82）
RUN

That should print an＂R＂for Radix．If you check the chart in Appendix I you will see that 82 is the ASCII code for＂R＂．

Control codes

Radix uses many of the non－printing ASCII codes for control codes．These codes perform a function rather than printing a character．Let＇s try an easy one right now：

NEW
10 LPRINT CHR\＄（7）
RUN

Where did that noise come from？That＇s Radix＇s bell．We will learn more about it in Chapter 10．We just wanted to illustrate a code that causes Radix to perform a function．

The escape code

There＇s one ASCII code that we are going to be using more than all the rest．This is ASCII 27，which is called escape．In BASIC it is CHR\＄（27）．With all of Radix＇s advanced features，there weren＇t enough single ASCII codes to access all of them．So escape is used to start sequences of control codes that open a wider range of functions to us．

While you must call this code CHR\＄（27）in BASIC，we are going to refer to it as 〈ESC〉 in this book．This will make it much easier to recognize when we use it．

A typical escape code sequence starts with 〈ESC〉 which is
followed by one or more CHR\＄codes．As an example，the escape code sequence to turn on italic print is：

```
〈ESC> CHR$(52)
```

In a program，this would look like this：

NEW
10 LPRINT CHR $\$(27)$ CHR\＄（52）；
$2 \emptyset$ LPRINT＂TESTING＂ RUN

Try this program．It will print the word TESTING in italic．
Some of you fast students may have noticed that CHR\＄（52）is the same as＂ 4 ＂．That＇s right，the program will work just as well if line 10 is changed like this：
$1 \emptyset$ LPRINT CHR\＄（27）＂4＂；

That＇s just another form of the same ASCII code，and it＇s all the same to Radix．

Here＇s another shortcut for BASIC programmers：since〈ESC〉 is used so often，assign it to a variable．In a long program， typing ESC \＄is much easier than typing CHR\＄（27）each time！Now our program looks like this：

5 ESC $\$=$ CHR $\$(27)$
10 LPRINT ESC\＄＂4＂；

Turn your printer off and back on now，or you will be printing in italic for quite a while！

Some problem codes

Before we go too far we need to mention some codes that may cause you problems．Like most of the subjects in this chapter，we have to be a little vague because of the differences in computers．

Nearly all BASICs change some of the ASCII codes between your BASIC program and your printer. Some turn CHR\$(10) (a line feed) into a CHR\$(13) (a carriage return) before sending it on. Some other problem codes are 0,7 , and 9 through 13. Once again we refer you to the appendix about your computer, where some more specific information awaits.

That's it for the basics. You are ready to learn how to use the many features of Radix.

Chapter 7

Printing Text With Radix

Beginning with this chapter we will be exploring all the features of Radix.

In this chapter we'll cover:

- Near letter quality characters
- Italics
- Underlining
- Superscript and subscripts
- Print pitch
- Print emphasis

All our examples will be given in Microsoft BASIC as used by the IBM Personal Computer, but remember that you don't need to know BASIC to use Radix's features. Just use the same ASCII codes as we do in our examples.

If your computer doesn＇t use Microsoft BASIC，look in the appendix to see what changes you need to make for your BASIC． The appendix tells you how to change the short example pro－ grams，and gives complete listings of the longer programs， already converted for your computer．

You have already printed a few lines on your Radix printer． Now it＇s time to start looking at the many variations of printing style that you have available to you．

Some Special Kinds of Text

If you looked carefully at Radix＇s self test，you noticed that it can print in italics．But there＇s more！Radix can underline charac－ ters，print superscripts and subscripts，and perhaps most exciting， print near letter quality characters．

Near Letter Quality characters

Radix＇s Near Letter Quality（sometimes abbreviated as NLQ） character set is ideal for correspondence and other important printing，for it takes a keen eye to detect that it is from a dot matrix printer．Normally（unless you have turned DIP switch A－4 off）， Radix prints draft quality characters．This is adequate for most work and it prints fastest．But for the final printout，try NLQ．The program below shows how．
$1 \emptyset$＇Demo near letter quality character set．
$2 \emptyset$ LPRINT CHR\＄（27）＂B＂CHR $\$(4)$ ；＇Select NLQ．
$3 \emptyset$ LPRINT＂This line shows Radix＇s NEAR LETTER QUALITY！＂
$4 \emptyset$ LPRINT CHR\＄（27）＂B＂CHR $\$(5)$ ；＇Select draft．
$5 \emptyset$ LPRINT＂This line shows Radix＇s standard print．＂

In this program，line 20 selects NLQ characters with the〈ESC〉＂B＂CHR\＄（4）command．Line 30 prints a sample before line 40 switches Radix back to draft printing with an 〈ESC〉＂ B ＂ CHR\＄（5）．When you run the program you should get this：

This line shows Radix＇s NEAR LETTER QUALITY： This line shows Fadix ${ }^{*}=$ standard print．

Table 7－1
Near letter quality commands

Function	Control code
Near letter quality ON	〈ESC＂B＂CHR\＄（4）
Near letter quality OFF	〈ESC〉＂B＂CHR\＄（5］

Italic printing

Italic letters are letters that are slanted to the right．Radix can print all of its letters except NLQ characters in italic as well as the roman（standard）letters you are accustomed to．Italics can be used to give extra emphasis to certain words．The command codes to turn italic on and off are shown in Table 7－2．

Table 7－2
Italic commands

Function	Control code
Italic ON	$\langle\mathrm{ESC}\rangle$＂4＂
Italic OFF	$\langle\mathrm{ESC}\rangle$＂ 5 ＂

Use this program to see italic characters：

```
1\emptyset 'Demo italic and roman.
2\emptyset LPRINT CHR$(27) "4" ; 'Italic on.
30 LPRINT "This line is in ITALIC characters."
40 LPRINT CHR$(27) "5" ; 'Italic off.
50 LPRINT "This line is in ROMAN (normal) characters."
```

Here is what you should get：

```
This line is in ITALIC characters.
This line is in FOMAN (normal) characters.
```

This program is easy；line 20 turns italic on with 〈ESC〉＂4＂， and line 40 turns it off with 〈ESC〉＂ 5 ＂．

Underlining

Not only can Radix print all styles of printing in both roman
and italic，but it can underline them too．The control codes are shown in Table 7－3．

Table 7－3
 Underline commands

Function	Control code
Underline ON	\langle ESC＂＂－＂CHR\＄（1）
Underline OFF	$\langle\mathrm{ESC}\rangle$＂－＂CHR\＄（0）

Again，that＇s simple．Let＇s try it with this program：

```
10 'Demo underlining.
2\emptyset LPRINT CHR$(27) "-" CHR$(1) ; 'Underline on.
30 LPRINT "This phrase is UNDERLINED;" ;
40 LPRINT CHR$(27) "-" CHR$( }\varnothing\mathrm{ ) ; 'Underline off.
50 LPRINT " this is not."
```

It should come out like this：
This phrase is UNDEFLINED；this is not．

In this program underline is turned on in line 20 with 〈ESC〉 ＂－＂CHR\＄（1），and then off in line 40 with 〈ESC〉＂－＂CHR\＄（0）． There＇s a new little wrinkle in this program，though．It all printed on one line．The semicolons at the end of the first three lines told BASIC that those lines were to be continued．Therefore，BASIC didn＇t send a carriage return and line feed at the end of those lines． We just did this to illustrate that all these control codes can be used in the middle of a line．It＇s easy to underline or italicize only part of a line．

Superscripts and subscripts

Radix can print in two different heights of characters．The smaller characters are called superscripts and subscripts and are half the height of normal characters．Superscripts print even with the tops of regular printing while subscripts print even with the bottom of regular printing．They are frequently used to reference footnotes，and in mathematical formulas．

Table 7－4 has the codes for using superscripts and subscripts．

Table 7－4
Superscript and subscript commands

Function	Control code
Superscript ON	$\langle E S C\rangle$＂S＂CHR\＄（0）
Subscript ON	$\langle E S C\rangle$＂S＂CHR\＄（1）
Super \＆subscript OFF	$\langle E S C\rangle$＂T＂＇

Try this program to see them work：

```
10 'Demo subscripts and superscripts.
2\emptyset LPRINT "Look! " ;
3\emptyset LPRINT CHR$(27) "S" CHR$(\emptyset) ; 'Superscript on.
40 LPRINT "Superscripts " ;
50 LPRINT CHR$(27) "T" ; 'Cancel superscripts.
6 0 ~ L P R I N T ~ " \& ~ " ~ ; ~
7\emptyset LPRINT CHR$(27) "S" CHR$(1) ; 'Subscripts on.
80 LPRINT "subscripts " ;
90 LPRINT CHR$(27) "T" ; 'Cancel subscripts.
1\emptyset\emptyset LPRINT "on one line."
```


Here line 30 turns on superscripts with 〈ESC〉＂S＂CHR\＄（0）． It＇s turned off in line 50 with 〈ESC〉＂T＂．Then，between printing text，subscripts are turned on in line 70 with 〈ESC〉＂S＂CHR\＄（1）， and finally off in line 90．Again，everything prints on one line because of the semicolons．

Changing the Print Pitch

In＂printer talk，＂character width is called pitch．Normally， Radix prints 10 characters per inch．This is called pica pitch because it＇s the same spacing as a standard pica typewriter．

Radix can also print 12 characters per inch．This is called elite pitch because it is the same spacing as an elite typewriter．

Condensed print is approximately 17 characters per inch．

Condensed pitch allows you to get 136 columns of printing on an $81 / 2$ inch page．

You tell Radix which pitch you want to use with the 〈ESC〉 ＂B＂command．The table below shows three options of this com－ mand．

Table 7－5
Print pitch commands

Pitch	Characters／inch	Control code
Pica	10	$\langle E S C\rangle$＂B＂CHR\＄（1） or CHR\＄（18）
Elite	12	$\langle E S C\rangle$＂ B ＂CHR\＄（2）
Condensed	17	$\langle E S C\rangle$＂B＂CHR\＄（3） or CHR\＄（15）

Let＇s see how these three pitches look．Try this program：

```
10 'Demo all pitches.
2\varnothing LPRINT CHR$(27) "B" CHR$(3) ; 'Select condensed
    pitch.
3\varnothing LPRINT "This line is CONDENSED pitch."
4\varnothing LPRINT CHR$(27) "B" CHR$(2) ; 'Select elite pitch.
5 0 ~ L P R I N T ~ " T h i s ~ l i n e ~ i s ~ E L I T E ~ p i t c h . " ~
6\emptyset LPRINT CHR$(27) "B" CHR$(1) ; 'Select pica pitch.
7\emptyset LPRINT "This line is PICA pitch (normal)."
```

When you run this program you should get this：
This line is CONDENSED pitch．
This line is ELITE pitch．
This line is FICA pitch（nommal）．

Line 20 turns on condensed pitch with 〈ESC〉＂B＂CHR\＄（3）． Line 30 prints a line at 17 characters per inch．The 〈ESC〉＂ B ＂ CHR\＄（2）in line 40 changes Radix to elite pitch and line 50 prints a line in elite pitch．Line 60 resets Radix to pica pitch and line 70 prints a line in pica pitch．

Pica pitch and condensed pitch can be set with＂shortcut＂ codes．Instead of using 〈ESC〉＂B＂CHR\＄（n），you can set them with a single code．CHR\＄（18）sets pica pitch and CHR\＄（15）sets condensed pitch．You can not set elite pitch with a single code．

Expanded print

Each of Radix＇s three print pitches can be enlarged to twice its normal width．This is called expanded print．Try this program to see how it works：

```
10 'Demo expanded mode.
2\emptyset LPRINT "Demonstration of " ;
30 LPRINT CHR$(14) ; 'Expanded mode on.
4\emptyset LPRINT "EXPANDED" ;
50 LPRINT CHR$(2\emptyset) ; 'Expanded mode off.
60 LPRINT " printing."
7\varnothing LPRINT "Notice that " ;
8\emptyset LPRINT CHR$(14) ; 'Expanded mode on.
90 LPRINT "EXPANDED mode"
10\emptyset LPRINT "automatically turns off at end of a line."
Demonstration of EXFFAN|DED printing.
Notice that EXFGMDED mode
automatically turns off at end of a line.
```

Expanded print set with CHR $\$(14)$ is automatically canceled at the end of the line．This is convenient in many applications， such as for one line titles．Note that you don＇t need to put an〈ESC〉 in front of the CHR\＄（14），although 〈ESC〉 CHR\＄（14）works just the same．

You can also cancel one line expanded print before a carriage return with CHR\＄（20），as done in line 50.

Sometimes you may wish to stay in expanded print for more than one line．Change your program to this：

```
10 'Demo permanent expanded mode.
2\emptyset LPRINT CHR$(27) "W" CHR$(1) ; 'Expanded mode on
    permanently.
3\emptyset LPRINT "Permanent expanded"
4\emptyset LPRINT "mode stays on until"
5\emptyset LPRINT "it is ";
6\emptyset LPRINT CHR$(27) "W" CHR$( }\emptyset)\mathrm{ ; 'Expanded mode off.
7\emptyset LPRINT "turned off."
```

Now the results look like this：
 it in turned off．

When you turn on expanded print with 〈ESC〉＂W＂CHR\＄（1）it stays on until you turn it off with 〈ESC〉＂W＂CHR\＄（0）．

Table 7－6
Expanded print commands

Function	Control code
One line expanded ON	CHR\＄（14） or $\langle E S C\rangle$ CHR\＄（14）
One line expanded OFF	CHR\＄（20）
Expanded ON	$\langle E S C\rangle$＂W＂CHR\＄（1）
Expanded OFF	$\langle E S C\rangle$＂W＂CHR\＄（0）

By combining expanded print with the three pitches，Radix has six different character widths available．

Enter this program to see how the print pitches and expanded print can be combined：

10 ＇Demo pitches in combination with expanded mode． $2 \emptyset$ LPRINT CHR $\$(27)$＂W＂CHR $\$(1)$ ；＇Permanent expanded mode on．
30 LPRINT CHR\＄（27）＂B＂CHR\＄（3）；＇Select condensed pitch．
$4 \emptyset$ LPRINT＂This line is EXPANDED CONDENSED pitch．＂
50 LPRINT CHR $\$(27)$＂B＂CHR\＄（2）；＇Select elite pitch．
60 LPRINT＂This is EXPANDED ELITE．＂
$7 \varnothing$ LPRINT CHR $\$(27)$＂B＂CHR\＄（1）；＇Select pica pitch．
$8 \emptyset$ LPRINT＂This is EXPANDED PICA．＂
$9 \varnothing$ LPRINT CHR $\$(27)$＂W＂CHR $\$(\varnothing)$ ；＇Permanent expanded mode off．
$1 \emptyset \emptyset$ LPRINT＂This is UNEXPANDED PICA pitch（default）．＂

Here's what you should get from this program:
This line is EXPANDED CONDENSED pitch. THis is EXFANDED ELITE. THis is EXFANDED FICAThis is UNEXFANDED FICA pitch (default).

Making Radix Print Darker

Radix has very good print density when it's just printing regularly. But sometimes you may want something to stand out from the rest of the page. Radix provides two ways to do this: doublestrike and emphasized print. Both of these go over the characters twice, but they use slightly different methods to darken the characters. Let's try them and see what the difference is.

The following table shows the control codes for getting into and out of double-strike and emphasized modes.

Table 7-7
Print emphasis commands

Function	Control code
Double-strike ON	$\langle\mathrm{ESC}\rangle$ "G"
Double-strike OFF	$\langle\mathrm{ESC}$ "H"
Emphasized ON	$\langle\mathrm{ESC}$ "E"
Emphasized OFF	$\langle\mathrm{ESC}\rangle$ "F"'

Try them now with this little program:

```
10 'Demo double-strike and emphasized.
2\emptyset LPRINT CHR$(27) "G" ; 'Double strike on.
30 LPRINT "This line is DOUBLE-STRIKE printing."
40 LPRINT CHR$(27) "E" ; 'Emphasized on.
50 LPRINT "This line is DOUBLE-STRIKE and EMPHASIZED."
60 LPRINT CHR$(27) "H" ; 'Double strike off.
7\emptyset LPRINT "This line is EMPHASIZED printing."
8\emptyset LPRINT CHR$(27) "F" ; 'Emphasized off.
90 LPRINT "This line is normal printing."
```

Run this program．The results will look like this：
This line is DOUBLE－STRIKE printing． This line is DOUBLE－8TRIKE and EMPHABIZED． This line is EMPHASIZED printing． This line is normal printing．

Line 20 turns on double－strike with 〈ESC〉＂G＂and line 30 prints a line of text．In line 40 emphasized is turned on with〈ESC〉＂E＂．Line 50 prints a line of text in double－strike and emphasized．Line 60 then turns double－strike off with 〈ESC〉＂H＂ so that line 70 can print in emphasized only．Finally，line 80 turns emphasized off，so that Radix is set for normal printing．

Look closely at the different lines of printing．In the line of double－strike printing each character has been printed twice，and they are moved down just slightly the second time they are printed．In emphasized printing，they are moved slightly to the right the second time Radix prints．The last line combined both of these so that each character was printed 4 times．Now that＇s pretty nice printing，isn＇t it？

Mixing Modes

We have learned how to use Radix＇s many different printing modes individually．Now let＇s see how we can combine these modes for even more printing effects．Condensed，italic，double－ strike，underlined subscripts are something that you are probably just itching to print！

There are 336 ＂theoretical＂combinations of the modes that we have learned．Of these，a mere 114 will work！（Some combina－ tions，like expanded superscripts，just don＇t work．）Instead of try－ ing to list all the combinations that work，we have a program that prints a chart showing all the combinations．There is a sample of each of the 114 possible combinations on the chart．（The dots just indicate the few combinations that don＇t work．）Enter the follow－ ing program and run it to make your own chart．

[^0]$4 \emptyset$ 'Initialize constants.
$5 \emptyset$ ITALIC $\$=\operatorname{CHR} \$(27)+44 "$
$6 \emptyset \operatorname{ROMAN} \$=\operatorname{CHR} \$(27)+" 5 "$
$7 \emptyset$ EXPANDED $\$=\operatorname{CHR} \$(27)+" W "+\operatorname{CHR} \(1)
$8 \emptyset$ NOT.EXPANDED $\$=\operatorname{CHR} \$(27)+" \mathrm{~W} "+\operatorname{CHR} \(\emptyset)
$9 \emptyset$ PICA $\$=\operatorname{CHR} \$(27)+" B "+\operatorname{CHR} \(1)
100 ELITE $\$=\operatorname{CHR} \$(27)+" B "+\operatorname{CHR} \(2)
110 CONDENSED\$ $=\operatorname{CHR} \$(27)+" \mathrm{~B} "+\operatorname{CHR} \(3)
$12 \emptyset$ NLQ\$ $=\operatorname{CHR} \$(27)+" B "+\operatorname{CHR} \(4)
130 NOT.NLQ\$ $=\operatorname{CHR} \$(27)+" B "+\operatorname{CHR} \(5)
$14 \emptyset$ EMPHASIZED $\$=\operatorname{CHR} \$(27)+" E "$
$15 \emptyset$ NOT.EMPHASIZED $\$=\operatorname{CHR} \$(27)+" F "$
$16 \emptyset$ DOUBLE.STRIKE $\$=\operatorname{CHR} \$(27)+" G "$
$17 \emptyset$ NOT. DOUBLE.STRIKE $\$=\operatorname{CHR} \$(27)+$ "H"
$18 \emptyset$ UNDERLINED $\$=\operatorname{CHR} \$(27)+"-"+\operatorname{CHR} \(1)
$19 \emptyset$ NOT.UNDERLINED $\$=\operatorname{CHR} \$(27)+"-"+\operatorname{CHR} \(\varnothing)
$2 \emptyset \emptyset$ SUPERSCRIPT\$ $=\operatorname{CHR} \$(27)+" S "+\operatorname{CHR} \(ϕ)
210 SUBSCRIPT\$ $=\operatorname{CHR} \$(27)+" S "+\operatorname{CHR} \(1)
$22 \emptyset$ NOT.SCRIPTED $\$=\operatorname{CHR} \$(27)+" T "$
$23 \emptyset$ RESET.ALL $\$$ = NOT.EMPHASIZED\$ + NOT.UNDERLINED\$ + NOT.DOUBLE.STRIKE\$
$24 \varnothing$ RESET.ALL\$ = RESET.ALL\$ + ROMAN\$ + PICA\$ + NOT.EXPANDED\$ + NOT.NLQ\$
$25 \emptyset$ TRUE $=1:$ FALSE $=\varnothing$
260^{\prime}
$27 \emptyset$
$28 \emptyset$ 'Print heading.
$29 \emptyset$ LPRINT RESET.ALI\$
$30 \emptyset$ LPRINT EXPANDED\$ " NORMAL EXPANDED "
$31 \emptyset$ LPRINT RESET.ALL\$;
$32 \emptyset$ LPRINT UNDERLINED $\$$;
330 LPRINT NLQ\$ "NLQ " NOT.NLQ\$;
$34 \varnothing$ LPRINT CONDENSED\$ "CONDENSED ";
350 LPRINT ELITE $\$$ " ELITE " ;
360 LPRINT PICA\$ " PICA " ;
$37 \emptyset$ LPRINT CONDENSED\$ "CONDENSED " ;
380 LPRINT ELITE $\$$ " ELITE " ;
390 LPRINT PICA\$ " PICA "
$4 \emptyset \emptyset$ LPRINT RESET.ALL\$
$41 \varnothing$ LPRINT "*REGULAR*"
420 GOSUB $54 \varnothing$ 'Print four lines regular.
430 LPRINT "*DOUBLE STRIKE*"
$44 \emptyset$ LPRINT DOUBLE.STRIKE\$;
450 DS.OR.EMP $=$ TRUE

460 GOSUB $54 \emptyset$ 'Print four lines double strike.
479 LPRINT "*EMPHASIZED*"
480 EMPHASIZED $=$ TRUE
$49 \emptyset$ GOSUB $54 \emptyset$ 'Print four lines emphasized.
500 LPRINT "*DOUBLE STRIKE \& EMPHASIZED*"
$51 \emptyset$ LPRINT DOUBLE.STRIKE\$ EMPHASIZED\$;
$52 \emptyset$ GOSUB $54 \emptyset$ 'Print double strike \& emphasized.
530 END
540 '
$55 \varnothing$ 'Subroutine to print four lines.
560 'Each shows NLQ, also the three different pitches
$57 \emptyset$ 'are shown in normal and expanded.
$58 \emptyset$ 'Roman, roman underlined, italic, and italic underlined.
590^{\prime}
690 ITALICS $=$ FALSE $:$ LPRINT ROMAN\$;
$61 \emptyset$ UNDERLINED $=$ FALSE :LPRINT NOT.UNDERLINED $\$$;
$62 \emptyset$ EXPANDED = FALSE :LPRINT NOT.EXPANDED $\$$;
630 PICA $=$ FALSE
640
650 'Produce a line in four different pitches.
$66 \emptyset$ IF EXPANDED THEN $72 \emptyset$
$67 \emptyset$ IF ITALICS THEN LPRINT ".... " ; : GOTO 72ø
680 IF DS.OR.EMP THEN LPRINT ".... " ; : GOTO 72Ø
690 LPRINT NLQ\$; : NLQ = TRUE
790 GOSUB 860 'Print near-letter-
quality.
$71 \emptyset$ LPRINT NOT.NLQ\$; : NLQ = FALSE
$72 \emptyset$ LPRINT CONDENSED\$;
730 GOSUB $86 \emptyset$ 'Print condensed.
$74 \emptyset$ LPRINT ELITE\$;
750 GOSUB $86 \emptyset$ 'Print elite.
760 LPRINT PICA $\$$; PICA $=$ TRUE
$77 \emptyset$ GOSUB $86 \emptyset$ 'Print pica.
780
790 'See what has just been done and prepare for next line.
$8 \emptyset \emptyset$ IF EXPANDED = TRUE THEN LPRINT :GOTO 82 \varnothing
$81 \emptyset$ LPRINT EXPANDED $\$$; :EXPANDED = TRUE :GOTO $63 \emptyset$
$82 \emptyset$ IF UNDERLINED $=$ TRUE THEN LPRINT :GOTO $84 \emptyset$
$83 \emptyset$ LPRINT UNDERLINED $\$$; :UNDERLINED $=$ TRUE :GOTO $62 \emptyset$
840 IF ITALICS = TRUE THEN LPRINT RESET.ALL\$:RETURN
$85 \emptyset$ LPRINT ITALIC\$; :ITALICS $=$ TRUE :GOTO 61ø
860

```
870 'Print a small sample showing upper case, lower
    case.
880 'Also show subscripts and superscripts if
    appropriate.
890
90\emptyset BLANK$ = STRING$(6,32) :FOUR.DOT$ = "...."
91\emptyset IF EMPHASIZED = FALSE THEN LPRINT "ABcd"; :GOTO 97\emptyset
920 IF PICA = FALSE THEN LPRINT FOUR.DOT$; :GOTO 94\emptyset
930 LPRINT EMPHASIZED$ "ABcd" ;
940 IF EXPANDED = TRUE THEN LPRINT " "; :ELSE
    LPRINT BLANK$;
950 RETURN
960 '
97\emptyset 'Handle non-emphasized cases.
980 IF EXPANDED OR NLQ THEN LPRINT " "; :RETURN
990 LPRINT SUPERSCRIPT$; "Xx";
1\emptyset\emptyset\emptyset LPRINT SUBSCRIPT$; "Yy ";
1g1\emptyset LPRINT NOT.SCRIPTED$;
192\emptyset RETURN
```

Here is the chart it produces：

NLQ CONDENSED		MDFMAL		EXFANDED		
		ELITE	FICA	COMDENSED	ELITE	FICA
＊FEEGULAF＊						
ABcd ABCD	$\begin{aligned} & A B C d^{x_{x} y_{y}} \\ & {A B C D d^{x} y_{y}}^{2} \end{aligned}$	$\begin{aligned} & \text { ABcd } x^{x} v r \\ & \text { ABCd }{ }^{x x} y_{y} \end{aligned}$	$\begin{aligned} & \text { ABCd } x_{x} r y \\ & \text { ABCd } \times x y y \end{aligned}$	$\begin{aligned} & \text { ABcd } \\ & \text { ABcd } \end{aligned}$	$\begin{aligned} & \text { AEcd } \\ & \text { AECd } \end{aligned}$	$\begin{aligned} & A E \subset d \\ & A E C d \end{aligned}$
	$\begin{aligned} & \text { ABCdxxy; } \\ & \text { ABCd } d^{x x} y_{y} \end{aligned}$	$\begin{aligned} & A B d^{x x} y v \\ & A B d^{x x} y y \end{aligned}$	$\begin{aligned} & A B \operatorname{dog}^{x x y} \\ & A B g^{x x y y} \end{aligned}$	$\begin{aligned} & A B \subset d \\ & A B \subset d \end{aligned}$	$\begin{aligned} & A B \subset \sigma \\ & A B \in G \end{aligned}$	$\begin{aligned} & A E c \Phi \\ & A B 心 \Phi \end{aligned}$

＊DOUELE STRIKEE＊

	$\begin{aligned} & \text { ABcdxxry } \\ & \text { ABcdxxyyy} \end{aligned}$	ABCdxxry ABed $x_{x} y_{y}$	ABed ABred	$\begin{aligned} & \text { ABed } \\ & \text { ABred } \end{aligned}$	$\begin{aligned} & A E \subset d \\ & A E=d \end{aligned}$	
$\cdots \text { Alcd } \\|^{x x_{y}}$	$\begin{aligned} & A B_{c} d^{x \times x} y \\ & A B d^{x \times x y y} \end{aligned}$	$\begin{aligned} & A B c d^{x \times x y} \\ & A B c d^{x \times y y} \end{aligned}$	ABCd ARed	$\begin{aligned} & A B \in d \\ & A B C d \end{aligned}$	$\begin{aligned} & A B=\square \\ & A B=0 \end{aligned}$	

＊EMFHASI ZED＊

	$\ldots .$	ABcd ABed		$\begin{aligned} & A B C d \\ & A B C d \end{aligned}$
	\ldots	$\begin{aligned} & A B \subset d \\ & A B \subset d \end{aligned}$		$\begin{aligned} & A B<\sigma \\ & A B<\sigma \end{aligned}$

Summary

Control code
〈ESC〉＂B＂CHR\＄（4）
〈ESC〉＂B＂CHR\＄（5）
〈ESC〉＂ 4 ＂
〈ESC〉＂ 5 ＂
〈ESC〉＂－＂CHR\＄（1）
〈ESC〉＂－＂CHR\＄（0）〈ESC）＂S＂CHR\＄（0）

Function
Near letter quality on
Near letter quality off
Italic on
Italic off
Underline on
Underline off
Superscript on

〈ESC〉＇S＇CHR\＄（1）	Subscript on
〈ESC）＂T＂	Super \＆subscript off
〈ESC〉＂B＂CHR\＄（1）	Sets pica pitch
〈ESC＞＂B＂CHR\＄（2）	Sets elite pitch
〈ESC＞＇B＂CHR\＄（3）	Sets condensed pitch
CHR\＄（18）	Sets pica pitch
CHR\＄（15）	Sets condensed pitch
CHR\＄（14）	One line expanded
〈ESC＞CHR\＄（14）	One line expanded
CHR\＄（20）	One line expanded off
〈ESC）＂W＇CHR\＄（1）	Expanded on
〈ESC〉＇W＂CHR\＄（0）	Expanded off
〈ESC＞＇G＂	Double－strike on
〈ESC）＂H＂	Double－strike off
〈ESC＞＂E＂	Emphasized on
〈ESC〉＇F＂	Emphasized off

Chapter 8

Line Spacing and Forms Control

We have learned how to print in many different ways, but so far we haven't looked at how to position the printing on the page.

In this chapter we will learn how to:

- Change the vertical spacing
- Change the length of the page
- Set top and bottom margins

Starting New Lines

Up until now the only time we have thought about printing on a new line is when we didn't want it to happen. We learned that
putting a semicolon（；）at the end of a BASIC line will not end the line of printing．So somehow，the computer is telling the printer when to end one line and start another．

There are two codes that are used to end one line and start another．They are carriage return（CHR\＄（13））and line feed （CHR\＄（10））．Like the escape code，they have been given abbrevia－ tions which you＇ll find in many texts（including this one）：〈CR〉 and 〈LF〉．The codes are simple，but their action is a little confus－ ing（especially with BASIC）．Carriage return is the easiest．Each time that the printer receives a CHR\＄（13）it returns the print head to the left margin．It does not advance the paper（if DIP switch C－4 is off；see below）．

Line feed is more complicated．Each time the printer receives a CHR $\$(10)$ it both advances the paper one line and returns the print head to the left margin，ready to start a new line．

Now to add a little confusion－most（but not all）versions of BASIC add a line feed（CHR\＄（10））to every carriage return （CHR\＄（13））that they send．If your version of BASIC doesn＇t do this，then you should turn DIP switch C－4 on so that Radix will add the line feed for you．When you have DIP switch C－4 on the printer will do the same thing when it receives a carriage return as it does when it receives a line feed．

If you find that your printer double spaces when it should single space，then you probably need to turn DIP switch C－4 off．

Reverse line feeds

Your Radix printer has a unique capability：it can move the paper up or down！Its unique tractor design allows the paper to be fed in either direction without jamming．This allows you to move around the page at will．You can use this feature to print several columns of text side by side，or print a graph and then move back up and insert descriptive legends．As you experiment you＇re bound to come up with more uses！

The simplest form of reverse paper feeding is a reverse line feed．The code is 〈ESC〉 〈LF〉，which causes the paper to move down（in effect，moving the printing up）one line．A＂line＂used in a reverse line feed is the same size as a line in a regular line feed （this is normally $1 / 6$ inch）．When you change the line spacing （which you＇ll read about next），you change it for both forward and reverse line feeds．

Table 8-1
 Line feed commands

Function	ASCII code	Control code
Return print head to left margin	$\langle\mathrm{CR}\rangle$	CHR\$(13)
Advance paper one line	\langle LF \rangle	CHR\$(10)
Reverse paper one line		\langle ESC \rangle CHR\$(10)

Changing Line Spacing

When you turn Radix on the line spacing is set to 6 lines per inch (or 8 lines per inch if DIP switch A-5 is off). This is fine for most printing applications, but sometimes you may want something different. Radix makes it easy to set the line spacing to whatever value you want.

Try this program to see how easy it is to change the line spacing:

```
10 'Demo variable line spacing.
2\emptyset OPEN "LPT1:" AS #1 : WIDTH #1,255
30 FOR I = 1 TO 25
4\emptyset 'Set line spacing.
5\emptyset PRINT #1,CHR$(27) "A" CHR$(I) ;
6\emptyset LPRINT "RADIX line spacing set to " I
7\varnothing NEXT I
8\emptyset LPRINT "Line spacing is set to 1/6 inch (normal)."
90 'Set line spacing to 1/6 inch (normal).
100 LPRINT CHR$(27) "2" ;
11\varnothing CLOSE #1
```

The printout is shown on the next page.
In this program, notice that we're sending codes to the printer a different way. In addition to the LPRINT statements for character strings, we've opened the printer as a random file in line 20. This method, which works with most versions of Microsoft BASIC, allows us to send codes that would otherwise be "problem codes" (such as CHR\$(13), which BASIC automatically follows with a CHR\$(10)). The codes are sent with the PRINT \#1 statement in line 50. Unfortunately, this method doesn't work for all computers, but the appendix for your computer shows some other ways to send "problem codes."

Line 50 changes the line spacing．The command 〈ESC〉＂ A ＂ CHR\＄（n）changes the line spacing to $n / 72$ of an inch．The loop that is started in line 30 increases the value of n（the variable I in the program）each time it is executed．So the line spacing increases as the program continues．Finally，the 〈ESC〉＂ 2 ＂in line 100 resets the line spacing to 6 lines per inch．This is a shortcut that is the same as 〈ESC〉＂A＂CHR\＄（12）．

You may wonder why they picked $1 / 72$ of an inch as the incre－ ment for the line spacing command．There＇s a good reason：the

Line spacing is set to $1 / 6$ inch（normal）．
dots that the printer makes are 1／72 inch apart．So this means that you can vary the line spacing in increments as fine as one dot－ unless you want finer spacing，like one half dot spacing．

The 〈ESC〉＂ 3 ＂CHR\＄（n）command sets the line spacing in increments of $1 / 144$ inch．Change line 50 in your program so it is like this：

```
50 PRINT #1,CHR$(27) "3" CHR$(I) ;
```

and run the program again．Now the results will look like this：

The program works just the same as before，but the line spac－ ings are just half what they were．This is because 〈ESC〉＂ 3 ＂ CHR $\$(n)$ sets the line spacing to $n / 144$ inch．

Table 8－2 shows all the line spacing commands，including sev－ eral＂shortcut＂commands for commonly used line spacings．

Let＇s take a look at the last two commands in the table，which give a one－time line feed（or reverse line feed）of $n / 144$ inch．The〈ESC〉＂J＂CHR\＄（n）command does not change the setting of the line spacing，but it does cause the printer to make one line feed of $\mathrm{n} / 144$ inch．Try this program to see how it works：

```
1\varnothing 'Demo one-time line feeds.
20 LPRINT "Line number 1."
30 LPRINT "Line number 2." ;
40 'One time line feed 10\emptyset/144 inch.
```

Table 8－2
Line spacing commands

Function	Control code
Set line spacing to $\mathrm{n} / 72$ inch	〈ESC）＂A＂CHR\＄（n）
Set line spacing to $\mathrm{n} / 144$ inch	（ESC）＂ 3 ＂CHR\＄（n）
Set line spacing to $1 / 8$ inch	（ESC）＂ 0 ＂
Set line spacing to 7／72 inch	（ESC）＂ 1 ＂
Set line spacing to $1 / 6$ inch	（ESC）＂ 2 ＂
One－time line feed of $n / 144$ inch	〈ESC〉＂J＂CHR\＄（n）
One－tifine reverse line feed of $n / 144$ inch	（ESC）＂j＂CHR\＄（n）
Advance paper n lines	〈ESC〉＇a＂CHR\＄（n）

Note：If your computer does not support lowercase characters，use CHR \＄（106） and CHR\＄（97）for＂ j ＂and＂ a ，＂respectively．
$5 \emptyset$ LPRINT CHR\＄（27）＂J＂CHR\＄（10Ø）；
$6 \emptyset$ LPRINT＂Line number 3．＂
$7 \emptyset$ LPRINT＂Line number 4．＂

Here is what Radix will produce：

Line number 1.
Line number 2.

Line number $\underset{\text { ．}}{ }$
Line number 4.

The 〈ESC〉＂＂J＂CHR\＄（100）in line 50 changes the line spacing to $100 / 144$ for one line only．The rest of the lines are printed with the normal line spacing．Notice that both line 30 and line 50 end with semicolons．This prevents the normal line feed from occur－ ring．

The 〈ESC〉＂ j ＂CHR $\$(n)$ command works the same way except that the paper moves in the opposite direction．Try this simple change to your program and see what a difference it makes！

```
Line number \Xi.
Line number 4.
Line rumber 1.
Line number 2.
```

The value of n in all four commands［ $\langle E S C\rangle$＂A＂，〈ESC \rangle＂ 3 ＂，〈ESC〉＂ J ＂，and 〈ESC〉＂ j ＂）can range from 0 to 255 ．A value of 0 means that there is no line spacing．This allows you to print multi－ ple lines in the same position on the page．This is useful when you want to overprint graphics and text．

Moving down the page without a carriage return

So far，all the commands that move the paper also move the print head to the left margin．And normally this is what you want． Sometimes，though，you may wish to move down the page with－ out moving the printhead back to the left margin．The 〈ESC〉＂a＂ CHR\＄（n）command does just that．This command advances the paper n lines（using whatever the current line spacing is）without moving the printhead．Change lines 40 and 50 of your program so that they are like this：

```
4 0 ~ ' A d v a n c e ~ p a p e r ~ 3 ~ l i n e s . ~
50 IPRINT CHR$(27) "a" CHR$(3) ;
```

Now when you run the program the results will look like this：

```
Line number 1.
Line number* 2.
    Line number S.
Line number 4.
```

The new line 50 moves the paper up 3 lines，but the printhead doesn＇t move．Therefore，line 60 prints its message starting in the column that the printhead was left in at the end of line 30.

Forms Controls

We have seen how to control the spacing between lines on a page. Radix also has commands that control the placement of printing on the page, and even adjust for different size pages.

Form feed

The simplest forms control code is the form feed. Form feed (or 〈FF〉) is CHR\$(12) and causes the printer to move the paper to the top of the next sheet. Try it by changing lines 40 and 50 to this:

```
40 'Form feed
50 LPRTNT CHR$(12) ;
```

Before you run the program, turn your printer off and adjust the paper so that the top of the sheet is even with the top of the ribbon guide on the print head, then turn the printer back on. If you don't remember how to do this, review Chapter 1. When you run the program, the results will look like this:

The form feed (CHR\$(12)) in line 50 caused the printer to move to the top of a new page before printing the last two lines.

A note to TRS-80 users: CHR\$(12) is a problem code for the TRS-80. To send a form feed command to Radix you must add 128 to it making it CHR $\$(140)$. Use CHR $\$(140)$ where we use CHR\$(12) in these programs.

Reverse form feed

Just as Radix can perform a reverse line feed, it can do a reverse form feed. This code moves the paper so that the print head is positioned at the top of the current page. This can be used, for example, to print text in a multi-column magazine format; print the first column, then reverse form feed back to the top of the page to start the second column. The code for reverse form feed is easy to remember: $\langle\mathrm{ESC}\rangle\langle\mathrm{FF}\rangle$.

Table 8-3
Form feed commands

Function	ASCII code	Control code
Advance paper to top of next page	\langle FF \rangle	CHR\$(12)
Reverse paper to top of current page		\langle ESC \rangle CHR\$(12)

Changing the Page Length

You may have some computer forms that you wish to use with Radix that are not 11 inches high. That's no problem, because you can tell Radix how high the forms are that you are using. There are two commands for doing this, shown in this table:

Table 8-4
Form length commands

Function	Control code
Set the page length to n lines	$\langle\text { ESC }\rangle^{\text {"C" CHR\$(} n)}$
Set the page length to n inches	$\langle E S C\rangle{ }^{~ " C " ~ C H R \$(0) ~ C H R \$(n) ~}$

Let's set up a 7 inch high form length, which is typical of many computer checks. The following program will do it.

```
10 'Demo variable form lengths.
2\emptyset LPRINT CHR$(27) "C" CHR$(\varnothing) CHR$(7) ; 'Form length 7
    inches.
3\emptyset LPRINT "Pay to the order of:"
4\emptyset LPRINT CHR$(12) ; 'Form feed.
50 LPRINT "Pay to the order of:"
```

This program should print "Pay to the order of:" twice, and they should be 7 inches apart. Line 20 sets the form length to 7 inches. After line 30 prints, line 40 sends a form feed to advance the paper to the top of the next form. Line 50 then prints its message.

After you have run this program, turn off the printer and adjust the top of form position. When you turn the printer back on the page length will be reset to its normal setting (usually 11 inches).

Top and Bottom Margins

Many programs that use a printer don't keep track of where they are printing on the page. This causes a problem when you get to the bottom of a page because these programs just keep on printing, right over the perforation. This makes it very hard to read, especially if a line happens to fall right on the perforation. And if you separate the pages then you are really in trouble.

Of course Radix has a solution to this predicament. Radix can keep track of the position on the page, and advance the paper so that you won't print too near the perforation. There are two commands to do this. One controls the space at the top of the page and the other controls the space at the bottom of the page. The control codes are given in the following table.

Table 8-5
Top and bottom margin commands

Function	Control code
Set top margin	$\langle E S C\rangle$ "R" CHR\$(n)
Set bottom margin	$\langle E S C\rangle$ "N" CHR\$(n)
Clear top and bottom margins	$\langle E S C\rangle$ "O"'

In both cases the value of n tells Radix how many lines to skip， although there is a slight difference in the usage．When you set the top margin with 〈ESC〉＂R＂CHR\＄（n），the value of n tells Radix what line to start printing on．When you set the bottom margin with 〈ESC〉＂N＂CHR\＄（n），the value of n tells Radix how many blank lines should be left at the bottom of the page．

Let＇s try a simple application to see how these margins work． Enter this program，which will print 150 lines without top and bottom margins．

```
10 'Demo top and bottom margins.
2\emptyset LPRINT CHR$(12) ; 'Form feed.
30 FOR I = 1 TO 15\varnothing
40 LPRINT "This is line" I
50 NEXT I
60 LPRINT CHR$(12) ; 'Form feed.
```

When you run this program it will print 150 lines right down the page and across the perforations．When it＇s done line 60 sends a form feed to advance the paper to the top of the next page．Look at the lines that have printed near the perforations．Separate the sheets and see if any of the lines have been torn in half．These are the problems that the top and bottom margins will solve．

Now add the following lines to your program．（Don＇t forget the semicolons or you won＇t get quite the same results that we did．）

```
11 'Leave 6 blank lines at bottom of page.
12 LPRINT CHR$(27) "N" CHR$(6) ;
13 'Start top of page at line 6.
14 LPRINT CHR$(27) "R" CHR$(6) ;
55 LPRINT CHR$(27) "O" ; 'Clear top & bottom margins.
```

Now when you run the program Radix will skip the first six lines and the last six lines on each page．Always send a form feed after setting the top margin，or it will not work on the first page printed．That＇s because the top margin only takes effect after a form feed．

Line 14 sets the top margin，line 12 sets the bottom margin， and line 55 clears both margins when we are done．

Summary

Control code
CHR\＄（10）
〈ESC〉 CHR\＄（10）
CHR\＄（13）
〈ESC〉＂A＂CHR\＄（n）
〈ESC〉＂ 3 ＂CHR\＄（n）
〈ESC〉＂0＂
〈ESC〉＂ 1 ＂
〈ESC）＂ 2 ＂

Function
Line feed
Reverse line feed
Carriage return
Set line spacing to $n / 72$ inch
Set line spacing to $\mathrm{n} / 144$ inch
Set line spacing to $1 / 8$ inch
Set line spacing to 7／72 inch
Set line spacing to $1 / 6$ inch

〈ESC〉＂J＂CHR\＄（n）	One－time line feed
〈ESC〉＂j＂CHR\＄（n）	One－time reverse line feed of $n / 144$ inch
〈ESC）＂a＂CHR\＄（n）	Advance the paper n lines
CHRS（12）	Form feed
〈ESC＞CHR\＄（12）	Reverse form feed
〈ESC＞＂C＂CHR\＄（n）	Set page length to n lines
＜ESC＞＂C＂CHR\＄（0）CHR\＄（n）	Set page length to n inches
〈ESC〉＂R＂CHR\＄（n）	Set top margin；start printing on line n
〈ESC〉＂N＂CHR\＄（n）	Set bottom margin；leave n line blank
〈ESC〉＂O＂	Clear top and bottom margins

Chapter 9

Formatting Your Output

You have probably used the tab and margin features on a typewriter. They make it easier to format the text on a page. Radix also has tabs and margins that you can set. But it goes beyond the capabilities of a typewriter because besides having tabs that go across the page, called horizontal tabs, Radix has vertical tabs that go down the page.

In this chapter we will discover how to use:

- Horizontal tabs
- Vertical tabs
- Left and right margins

Using Horizontal Tabs

When you turn Radix on there are horizontal tabs set auto－ matically every ten spaces．If you start counting at column 1 they are at columns $10,20,30,40$ ，etc．It＇s easy to use these tabs；you just send a CHR $\$(9)$ to Radix and the print head will move to the next tab position．CHR\＄（9）is the ASCII code 〈HT〉 for horizontal tab．

Try this one line program to demonstrate the use of the default horizontal tabs．

```
10 'Tabs demo.
2\emptyset LPRINT "one" CHR$(9) "two" CHR$(9) "three" CHR$(9)
    "four"
```

Here＇s what will print：
one two three four

Even though the words are different lengths，they are spaced out evenly by the horizontal tabs．

CHR\＄（9）is a problem with some computers．Some BASICs convert CHR\＄（9）to a group of spaces that act like a sort of pseudo－ tab．This is fine if the computer and the printer have the same tab settings，but it doesn＇t allow us to use our own tab settings on Radix．We can＂outsmart＂these computers by adding 128 to the ASCII value that we use．Instead of using CHR\＄（9），use CHR\＄（137） for a tab command．Even this trick won＇t work for Apple II com－ puters，for they use $\operatorname{CHR} \$(9)$ for something else entirely．Apple users can get some help in Appendix C．

Now add the following line to your program to set different horizontal tabs：

15 LPRINT $\operatorname{CHR} \$(27)$＂D＂ $\operatorname{CHR} \$(8) \operatorname{CHR} \$(16) \operatorname{CHR} \$(24) \operatorname{CHR} \(\varnothing)

〈ESC〉＂D＂is the command to begin setting horizontal tabs．It must be followed by characters representing the positions that you want the tabs set．In our program we are setting tabs in col－
umns 8,16 , and 24 . The $\operatorname{CHR} \$(0)$ at the end ends the string of tabs. In fact, any character that is not greater than the previous one will stop setting tabs. This means that you must put all your tab values in order, from least to greatest, or they won't all get set. (It also means that a CHR\$(1) is just as good as a CHR\$(0) for ending a group of tabs; some computers have trouble sending CHR\$(0).)

When you run the program now it produces this:
one two three four

The words are now closer together, but still evenly spaced. Turn your printer off and on again to reset the default tabs.

If you set tabs in one pitch, such as pica, and then change the pitch, say to elite, the tab settings will also change. If, for example, the tabs are set every eight spaces, when you change pitch they will still be set every eight spaces, but the spaces will be a different width.

A one-shot tab command

Suppose you need to move to a position across the page, but you only need to do it once. It doesn't make much sense to set up a tab to use only one time. There must be an easier way-and of course there is.

The solution is called a one-time tab and is 〈ESC〉 "b" CHR\$(n). This command moves the print head n columns to the right. It has the same effect as sending \mathbf{n} spaces to the printer.

Table 9-1
Horizontal tab commands

Function	Control code
Advance to next tab position	CHR\$(9)
Set tabs at $n 1, n 2$, etc.	\langle ESC "D" CHR\$(n1) CHR\$(n2)...CHR\$(0)
One-time tab of n spaces	\langle ESC \rangle " b " CHR\$(n)

Note: If your computer does not support lowercase characters, use CHR\$(98) for "b."

Setting Left and Right Margins

Radix's left and right margins work just like a typewriter-
once they are set all the printing is done between them. The commands to set the margins are given in the following table:

Table 9-2
 Left and right margin commands

Function	Control code
Set left margin at column n	$\langle E S C\rangle$ " M " CHR\$(n)
Set right margin at column n	$\langle E S C\rangle$ "Q" CHR\$(n)

Try setting Radix's margins with this program:

```
10 'Demo margins.
2\emptyset GOSUB 7\emptyset
3\emptyset LPRINT CHR$(27) "M" CHR$(1\emptyset) ; 'Left margin = 1\emptyset.
4\emptyset LPRINT CHR$(27) "Q" CHR$(7\emptyset) ; 'Right margin = 7\emptyset.
50 GOSUB 7\varnothing
6 0 \text { END}
70 FOR I = 1 TO 8\varnothing
8\emptyset LPRINT "X" ;
90 NEXT I
10\emptyset LPRINT
11\emptyset RETURN
```

The first thing that this program does is to branch to the subroutine that starts in line 70 . This subroutine prints 80 X 's in a row. The first time that the subroutine is used, all the X's fit in one line. Then line 30 sets the left margin to 10 , and line 40 sets the right margin to 70 . Once again the subroutine is used, but this time the X's won't all fit on one line since there is now only room for 61 characters between the margins. (There's room for 61 (instead of 60) characters because you can print in both the first and last column that you name.)

Run the program. The results will look like this:

[^1]When you want to reset the margins to the default values，you have two choices．You can either turn the printer off and back on， or you can set margin values equal to the default values．This means that you should set a left margin of 1 and a right margin of 80 on Radix－10 or 136 on Radix－ 15.

If you change the pitch of your printing after you set your margins，the margins will not change．They stay at the same place on the page．So if you set the margins to give you 65 columns of printing when you are using pica type，and then you change to elite type you will have room for more than 65 columns of elite printing between the margins．

Using Vertical Tabs

Vertical tabs have the same kinds of uses that horizontal tabs do－they just work in the other direction．Horizontal tabs allow you to reach a specific column on the page no matter where you start from．Vertical tabs are the same．If you have a vertical tab set at line 20，a 〈VT〉（or vertical tab）will move you to line 20 whether you start from line 5 or line 19.

The default vertical tab settings are every six lines．If you send a CHR\＄（11），which is the ASCII code for 〈VT〉，before we have set up tabs it will advance the paper to one of these preset tabs．Enter this program to see how this works．

```
10 'Demo vertical tabs.
2\emptyset LPRINT CHR$(11) "First tab."
30 LPRINT CHR$(11) "Second tab."
4\emptyset LPRINT CHR$(11) "Third tab."
5\emptyset LPRINT CHR$(11) "Fourth tab."
```

The CHR\＄（11）in each line advances the paper to the next vertical tab．The lines should be spaced evenly，six lines apart．

Now let＇s set some vertical tabs of our own．Add these lines to the program：

```
12 LPRINT CHR$(27) "P" CHR$(10) ;
14 LPRINT CHR$(2\emptyset) CHR$(4\emptyset) CHR$(5\emptyset) CHR$(\emptyset) ;
```

〈ESC〉＂P＂is the command to set vertical tabs．Like the hori－ zontal tab setting command，tab positions must be defined in ascending order．Our example sets vertical tabs at lines 10，20，40 and 50 ．Then the CHR\＄（11）in each of the following lines advances the paper to the next vertical tab．The printout is shown below．

Add one more line to the program to demonstrate one more feature of vertical tabs．
$6 \emptyset$ LPRINT CHR\＄（11）＂Fifth tab．＂

Now when you run the program the first page looks just like before，but line 60 sends one more 〈VT〉 than there are tabs．This doesn＇t confuse Radix－it advances the paper to the next tab posi－ tion which happens to be the first tab position on the next page． That＇s nice，isn＇t it？

First tab．

Second tab．

Third tab．

A one－shot vertical tab command

There＇s a one－time vertical tab command that works just like the one－time horizontal tab command．It is 〈ESC〉＂a＂CHR\＄（n）， and it causes the paper to advance n lines．It doesn＇t change the settings of the vertical tabs．

Table 9－3

Vertical tab commands

Function	Control code
Advance paper to next tab position	CHR\＄（11）
Set vertical tabs at $n 1, \mathrm{n} 2$, etc．	$\langle\mathrm{ESC}\rangle$＂P＂CHR\＄（n1）CHR\＄（n2）．．．CHR\＄（0）
Advance paper n lines	$\langle E S C\rangle$＂a＂CHR\＄（n）

Note：If your computer does not support lowercase characters，use CHR\＄（97） for＂a．＂

Summary

Control code
CHR\＄（9）
〈ESC〉＂D＂n1 n2 n3 ．．．CHR\＄（0）
〈ESC〉＂b＂n
〈ESC〉＂M＂n
〈ESC〉＂＂Q＂n
CHR\＄（11）
〈ESC〉＂P＂n1 n2 n3 ．．CHR\＄（0）Set vertical tabs
〈ESC〉＂a＂n

Function

Horizontal tab
Set horizontal tabs
One－time horizontal tab of n spaces
Set left margin
Set right margin
Vertical tab
One－time vertical tab of n lines

Chapter 10

Special Features of the Radix Printer

In the previous chapters we have learned about several groups of control codes. In this chapter we will look at more control codes. These codes don't fit neatly into any of the groupings that we have studied, but they add a lot of capability to Radix. So here goes.

Commands covered in this chapter include:

- Bell
- Master reset
- Unidirectional printing
- Eighth bit control
- Block graphics

－International character sets
 －Macro instruction

Now hear this

You may have heard Radix＇s bell if you have ever run out of paper．And you may have wondered why it＇s called a bell when it beeps instead of ringing！It＇s a long story that goes back to the early days of computers，when teletype machines were used for com－ puter terminals．These mechanical marvels had a bell in them that could be heard for blocks．This bell was used to signal the operator that something needed attention．The code that the computer sent to the teletype machine to ring the bell was，reasonably enough， called a bell code．Well the name bell code is still with us，even if the bell has changed to a beeper，and a lot of people still call the beeper a bell，even if it doesn＇t sound like one．So with our trivia lesson out of the way，let＇s see how we can＂ring the bell．＂

The code to sound Radix＇s＂bell＂is CHR\＄（7），which is ASCII code 7 or 〈BEL〉．Any time Radix receives this code it will sound the bell for a quarter of a second．This can be used to remind an operator to change the paper or to make another adjustment to the printer．Note to Apple users：Entering a CHR\＄（7）will sound Apple＇s bell；the code will not be sent to Radix．

You can try this by typing：

LPRINT CHR $\$(7)$ ；

There are two other codes that affect the bell．One disables the bell，so that Radix will ignore a CHR\＄（7），and the other turns the bell back on．All three codes that affect the bell are shown in the following table．

Table 10－1
Bell commands

Function	Control code
Sound bell	CHR $\$(7)$
Disable bell	〈ESC＂Y＂CHR\＄（0）
Enable bell	（ESC）＂Y＂CHR\＄（1）

Initializing Radix

Up to now when we wanted to reset Radix to the power on
condition we have had to either turn the printer off and then on again，or to send the specific codes that reset the particular fea－ tures．There is an easier way．The control code 〈ESC〉＂＠＂will reset all of Radix＇s features to the power on condition（as deter－ mined by the DIP switches），with two exceptions．Those excep－ tions are that 〈ESC〉＂＠＂will not erase any characters that you have stored in Radix＇s RAM memory（Chapter 11 tells you how to create your own characters），and it won＇t erase the macro if you have one stored in Radix＇s RAM（this chapter will tell you how to create a macro）．

Putting Radix to sleep

You know how to put Radix off－line with the On Line button． Radix has another off－line state that can be controlled from your computer．When you turn Radix offline from your computer， Radix will ignore anything that you send it，except for the code to go on－line again．CHR\＄（19）is the code to turn Radix off－line； CHR\＄（17）returns Radix to on－line status．

Printing to the bottom of the sheet

Sometimes when you are using sprocket paper you may want to print near the bottom of the last sheet．The paper－out detector usually stops Radix when you are about 3 inches from the bottom of the sheet．This is to notify you if you are running out of continu－ ous paper．

Radix has the ability to print right to the bottom of the sheet． You can disable the paper－out detector so that it doesn＇t stop the printer．This will allow you to print to the end of the sheet，and even beyond if you are not careful．The codes to control the paper－ out detector，along with the other codes that we have just learned are in the following table．

Table 10－2
Some miscellaneous commands

Function	Control code
Master reset	\langle ESC＂$@ "$
Off－line	CHR\＄（19）
On－line	CHR $\$(17)$
Paper－out detector off	$\langle E S C\rangle$＂ 8 ＂＇
Paper－out detector on	\langle ESC \rangle＂ $9 "$
Move print head back one space	CHR\＄（8）
Delete last character sent	CHR\＄（127）

Backspace and delete

Backspace (CHR\$(8)) "backs up" the printhead so that you can print two characters right on top of each other. Each time Radix receives a backspace it moves the printhead one character to the left, instead of to the right. You can strike over multiple letters by sending more than one backspace code.

Delete (CHR\$(127)) also "backs up" one character, but then it "erases" the previous character (it's erased from Radix's buffer, not from the paper).

The following program shows how these two codes work.

```
1\emptyset 'Demo backspace and delete codes.
2\emptyset LPRINT "Backspace does not" ;
30 LPRINT CHR$(8) CHR$(8) CHR$(8) ; 'Three backspaces.
40 LPRINT "=== work."
5\emptyset LPRINT "Delete does not" ;
60 LPRINT CHR$(127) CHR$(127) CHR$(127) ; 'Three
    deletes.
7\emptyset LPRINT "work."
```

Here is what this program will print:

```
Eackspace does mot work.
```

Delete does work.

The backspace codes in line 30 move the printhead a total of three spaces to the left so that the first part of line 40 will overprint the word "not". The delete codes in line 60 "erase" the three letters in the word "not" so that it doesn't even print.

Unidirectional printing

Unidirectional printing is a big word that means printing in one direction only. Radix normally prints when the printhead is moving in both directions. But once in a while you may have an application where you are more concerned about how the vertical lines align than with how fast it prints. Radix lets you make this choice. The table below shows the commands for controlling how Radix prints.

Table 10-3
Printing direction commands

Function	Control code
Print in one direction	\langle ESC \rangle "U" CHR\$(1)
Print in both directions	\langle ESC " U " CHR\$(0)

Try this program to see the difference that printing in one direction makes.

10 'Demo unidirectional printing.
$2 \emptyset$ LPRINT CHR (27) "A" CHR\$(7) ; 'Line spacing = 7/72".
30 FOR $I=1$ TO $1 \emptyset$
$4 \varnothing$ LPRINT " 1 "
50 NEXT I
$6 \emptyset$ LPRINT : LPRINT
$7 \varnothing$ LPRINT CHR $\$(27)$ "U" CHR $\$(1)$; 'Turn on unidirectional printing.
$8 \varnothing$ FOR $I=1$ TO $1 \varnothing$
$9 \emptyset$ LPRINT "|"
$10 \emptyset$ NEXT I
$11 \varnothing$ LPRINT CHR\$(12) CHR\$(27) "@" ; 'Form feed, master reset.

Here is what you will get. The top line is printed bidirec-
tionally, and the bottom is printed unidirectionally. You will have to look hard because there isn't much difference.

Let's analyze the program. Line 20 sets the line spacing to $7 / 72$ of an inch so that the characters that we print will touch top to bottom. Lines $\mathbf{3 0 - 5 0}$ print 10 vertical line characters. Then line 70 sets one-direction printing and the vertical lines are printed again. Finally line 110 sends a form feed to advance the paper to the top of a new page, and then uses the master reset to restore Radix to the power-on condition.

The seven bit dilemma

Certain computers (most notably the Apple II) don't have the capability to send eight bits on their parallel interface. They can only send seven bits. This would make it impossible for these computers to use Radix's block graphics characters and special symbols if Star's engineers hadn't thought of a solution. (All of these characters have ASCII codes greater than 127 which means that the eighth bit must be on to use them.) The solution lies in the three control codes given in the following table.

Table 10-4
Eighth bit control commands

Function	Control code
Turn the eighth bit ON	\langle ESC \rangle " $\rangle "$
Turn the eighth bit OFF	$\left\langle\right.$ ESC ${ }^{\prime \prime}="$
Accept the eighth bit	
"as is" from the computer	$\langle E S C\rangle$ "\#"

Block graphics characters and special symbols

Besides the upper and lower case letters and symbols that we are by now familiar with, Radix has a whole different set of characters that are for special uses. These characters include block graphics characters for drawing forms and graphs, and special symbols for mathematical, engineering and professional uses. The following program will print out all of the graphics characters available.

[^2]```
5\emptyset LPRINT I "= " ;
6\emptyset LPRINT CHR$(I) ; 'Send graphic char.
7\emptyset LPRINT CHR$(9) ; 'Tab.
8\emptyset NEXT I : LPRINT : NEXT J
```

Figure 10-1 shows what this program will print. If your chart doesn't look like this because it has regular letters and numbers instead of the special symbols, then your computer is only using seven bits (unless you have set DIP switch C-3 on by mistake). You can get the correct printout by adding these lines:

55 LPRINT CHR $\$(27)$ " $>$ " ; 'Turn on 8th bit.
65 LPRINT CHR\$(27) "=" ; 'Turn off 8th bit.

So how are all of these strange characters used? Here is a short program that demonstrates how the graphics characters can be combined to create figures.

```
10 'Draws a figure with block graphic chars.
2\emptyset LPRINT CHR$(27) "A" CHR$(6) ; 'Set line spacing
 to 6/72".
30 LPRINT CHR$(235) CHR$(231) CHR$(231) CHR$(236)
40 LPRINT CHR$(233) CHR$(163) CHR$(161) CHR$(234)
50 LPRINT CHR$(233) CHR$(162) CHR$(160) CHR$(234)
60 LPRINT CHR$(237) CHR$(232) CHR$(232) CHR$(238)
7\emptyset LPRINT CHR$(27) "2" ; 'Restore 1/6" line spacing.
```

If you have a 7-bit interface, add the following lines to the program given above.

25 LPRINT CHR $\$(27)$ " $"$; 'Turn on 8th bit. 65 LPRINT CHR $(27)$ " $=$ " ; 'Turn off 8th bit.

In this program line 20 sets the line spacing to 6 dots which is the height of the graphics characters. Then lines $30-60$ print the

| $160=$－ | $161=-$ | $162=-$ | $16 \pm=\cdots$ |
| :---: | :---: | :---: | :---: |
| $168=0$ | $169=$ | $179=\%$ | $171=\mathrm{t}$ |
| $176=$ Tx | $177=8$ | $178=\square$ | $179=0$ |
| $184=$ I | $185=6$ | $186=0$ | $167=\pi$ |
| $172=\bar{A}$ | $193=a$ | $174=5$ | $195=\mathrm{E}$ |
| $200=t$ | $201=3$ | $202=E$ | $203=0$ |
| $208=7$ | $207=$ A | $210=6$ | $211=u$ |
| $216=$ i | $217=6$ | $218=$ E | $219=$ e |
| $224=$ | $225=$ | $226=$ | 227 |
| $232=-$ | $23 \mathrm{~S}=1$ | $2 \mathrm{~S}=$ | $2 \mathrm{~S}=$－ |
| $240=$ | $241=$ | $242=7$ | 243 |
| $248=$－ | $249=-1$ | $250=+$ | $251=F$ |

Figure 10－1．
figure，and line 70 resets the line spacing to $1 / 6$ inch．Here is what this program prints：

## $\theta$

## International character sets

Radix is a multi－lingual printer for it can speak in eight lan－ guages！Radix changes languages by changing 11 characters that are different for the different languages．These sets of characters

## Table 10－5 <br> International character set commands

| Country | Control code |
| :---: | :---: |
| U．S．A． | 〈ESC〉＂7＂CHR\＄（0） |
| England | 〈ESC〉＂7＂CHR\＄（1） |
| Germany | 〈ESC〉＂7＂CHR\＄（2） |
| Denmark | 〈ESC＞＂7＂CHR\＄（3） |
| France | 〈ESC〉＂7＇CHR\＄（4） |
| Sweden | 〈ESC〉＂7＂CHR\＄（5） |
| Italy | 〈ESC〉＂7＂CHR\＄（6） |
| Spain | 〈ESC〉＂7＂CHR\＄（7） |


| $164=t$ | $165=$ | $166=$ | $167=\div$ |
| :---: | :---: | :---: | :---: |
| $172=4$ | $173=\%$ | $174=*$ | $175=0$ |
| $180=5$ | $181=$ | $182=5$ | $18 \mathrm{E}=3$ |
| $188= \pm$ | $189=\square$ | $150=2$ | $191=\div$ |
| $196=\bar{E}$ | $177=\mu$ | $198=0$ | $197=$ |
| $204=4$ | 205 | $208=$ 上 | $297=11$ |
| $212=4$ | $213=F$ | $214=$ a | 215 $=0$ |
| $220=1$ | $221=$ e | 220 rion | $225=f$ |
| $298=$ | $229={ }^{2}$ | $2 \mathrm{O}={ }^{\mathbf{m}}$ | 2－1 |
| $236=$－ | $2 \mathrm{E} 7=$－ | $2 \mathrm{~S}=\mathrm{m}$ | 279 |
| $244=1$ | $245=1$ | $246=1$ | $247=$ |
| 2 或 $=$ | 25－$=$＊ | $254=m$ | 25E |

are called international character sets．The control codes to select the international character sets are given in Table 10－5．

The characters that change are shown beneath their ASCII code in Table 10－6．

Table 10－6
International character sets

| Country | 35 | 64 | 91 | 92 | 93 | 94 | 96 | 123 | 124 | 125 | 126 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| U．S．A． | \＃ | ＠ | ［ | 1 | ］ | $\wedge$ | － | \｛ | ！ | \} | $\sim$ |
| England | £ | ＠ | ［ | 1 | 1 | $\wedge$ | $\cdot$ | \｛ | ， | \} | $\sim$ |
| Germany | \＃ | § | A | 0 | Ü | $\wedge$ | ， | ä | ö | ü | $\beta$ |
| Denmark | \＃ | ＠ | A | $\Phi$ | $\AA$ | $\wedge$ | － | $\boldsymbol{æ}$ | $\varnothing$ | $\dot{\mathrm{a}}$ | $\sim$ |
| France | £ | à | － | ç | § | $\wedge$ | ＇ | é | ù | è | ． |
| Sweden | \＃ | É | $\ddot{\text { Ă }}$ | Ö | A | Ü | é | ä | ö | á | ü |
| Italy | \＃ | § | 。 | C | é | $\wedge$ | ù | à | ò | è | i |
| Spain | \＃ | ＠ | i | $\tilde{N}$ | ¿ | $\wedge$ | ， | ． | ñ | \} | $\sim$ |

## The macro control code

The last of our group of miscellaneous control codes is defini－ tely not the least．It is a user－defined control code，called a macro control code．The term macro is from the jargonese macro－instruc－ tion which refers to an instruction that＂calls，＂or uses a group of normal instructions．In computer programming macro－instruc－
tions (which are similar to subroutines) save programmers a lot of time and effort. Radix's macro can save you a lot of time and effort also.

Here is how Radix's macro works. You define your macro by telling Radix what normal control codes are to be included in the macro. Then you can use the macro any time that you want and Radix will do all the things that you included in the macro definition. You can include up to 16 codes in a single macro. You can even use the macro to store a frequently used word or phrase. There are two control codes for the macro: one to define it, and one to use it. They are given in the table below.

Table 10-7
Macro instruction commands

| Function | Control code |
| :--- | :--- |
| Define macro | $\langle$ ESC $\rangle+" \ldots$ codes you include . . . CHR\$(30) |
| Use macro | $\langle$ ESC $\rangle$ "!" |

To see how this works we can build a macro that will reset the printing style to normal, no matter what style it may be to start with. The following program will define a macro to do this.

```
10 'Defines a macro that will reset RADIX to normal.
2\emptyset LPRINT CHR$(27) "+" ; 'Start macro definition.
30 LPRINT CHR$(18) ; 'Select pica pitch.
4\emptyset LPRINT CHR$(27) "W" CHR$(}\varnothing\mathrm{) ; 'Expanded off.
50 LPRINT CHR$(27) "F" ; 'Emphasized off.
60 LPRINT CHR$(27) "H" ; 'Double-strike off.
7\emptyset LPRINT CHR$(27) "-" CHR$(}\varnothing\mathrm{) ; 'Underline off.
80 LPRINT CHR$(27) "T" ; 'Super & subscripts off.
90 LPRINT CHR$(27) "5" ; 'Select roman character set.
10\emptyset LPRINT CHR$(30) ; 'End macro definition.
```

As the comments in the program listing show this will define a macro that will reset all the print style functions. Radix will remember this macro until the power is turned off or until a new macro is defined. A macro can hold up to 16 bytes (characters) of information. The one that we defined contains fifteen.

Now that you have defined a macro, let's see how to use it. This program will print one line using several printing style fea-
tures．Then it＂calls＂the macro in line 60 ．When line 70 prints the style is＂plain vanilla＂because the macro has reset it．

```
10 IUses macro to reset RADIX to normal.
2\emptyset LPRINT CHR$(27) "4" ; 'Italic.
3\emptyset LPRINT CHR$(27) "G" ; 'Double-strike.
4\emptyset LPRINT CHR$(27) "W" CHR$(1) ; 'Expanded.
50 LPRINT "This line is special."
60 LPRINT CHR$(27) "!" ; 'Use the macro.
70 LPRINT "This line is normal printing."
```



```
This line is normal printing.
```

In this chapter we have learned many different commands that have many different uses．In the next chapter we will make up for this diversity－the whole chapter only covers three com－ mands！But they are some of the most powerful that Radix offers． They give you the ability to create your own characters．

## Summary

Control code
CHR\＄（7）
〈ESC〉＂Y＂CHR\＄（0）
〈ESC〉＂Y＂＇CHR\＄（1）
〈ESC〉＂（0）＂
CHR\＄（19）
CHR\＄（17）
〈ESC〉＂ 8 ＂
〈ESC〉＇9＂
〈ESC〉＂U＂CHR\＄（1）
〈ESC〉＂U＂CHR\＄（0）
CHR\＄（8）
CHR\＄（127）
〈ESC〉＂＞＂
〈ESC〉＂＝＂
〈ESC〉＂\＃＂
（ESC）＂ 7 ＂n
〈ESC〉＂＋＂．．．CHR\＄（30）
〈ESC〉＂！＂

## Function

Bell
Disable bell
Enable bell
Reset
Off－line
On－line
Paper－out detector off
Paper－out detector on
Unidirectional printing
Bidirectional printing
Backspace
Delete
Eighth bit on
Eighth bit off
Eighth bit as－is
Select international character set
Define macro
Use macro


Chapter 11

## Creating Your Own Characters

In this chapter we'll cover:

- Designing and printing your own characters
- Designing proportional characters

In the previous four chapters of this manual you've learned how to control the Radix printer to give you dozens of different typefaces. By using various combinations of pitches, character weights, and font selections, you can create nearly any effect you want to in text. And with international character sets and the special text and graphics characters described in Chapter 10, you can print almost any character you can think of.

But if "almost any character" isn't good enough for you, then it's a good thing you have a Radix printer! With it you can actually create your own characters. As you'll see in this chap-
ter, download characters can be used to print a logo, special characters for foreign languages, scientific and professional applications, or any other specific printing task.

## Dot Matrix Printing

In order to create download characters, you'll need some understanding of how dot matrix printers work. They're called "dot matrix" because each character is made up of a group of dots. Look closely at some printed characters produced by your Radix and you will see the dots. Figure 11-1 shows how the letter " C " is formed by printing 15 dots.


Figure 11-1. The letter " $C$ " is created by printing 15 dots.

The printhead in Radix consists of nine thin wires stacked one atop the other. Figure 11-2 shows an enlarged schematic view of the front of the printhead, showing the ends of the wires and their relationship to the printed characters. As you can see, the capital letters use the top seven wires of the printhead, and the descenders (such as the lower case " g " shown) use the bottom seven pins. As the printhead moves across the page (in either direction-that's what is meant by bi-directional printing) it prints one column of dots at a time. Each time a dot is supposed to print an electromagnet inside the printhead causes the appropriate wire to strike the ribbon (making Radix an impact printer).

## The Print Matrix

All of the standard characters that Radix prints are formed from patterns of dots that are permanently stored in the printer's ROM (read-only memory). This includes all of the standard ASCII characters, the block graphics and special characters, the international character sets, the NLQ characters and the italic characters.

But there is another area of memory in Radix reserved for


Figure 11-2. As the printhead moves across the page, each of the wires prints one row of dots.
user-defined characters. These are characters that you design and download into Radix. When download characters are defined they are stored in RAM (random access memory), which allows you to define or modify them at any time.

Each of these characters, whether it is from the standard character ROM or in download RAM, is constructed on a grid which is six "boxes" wide by nine "boxes" high. The dots used to print a character can be inside any of the boxes. In addition, a dot can straddle any of the vertical lines. As an example, take a look at the enlarged " 9 " superimposed on the grid in Figure 11-3. As you can see, some dots are inside the boxes, and some are centered on the vertical lines. This, in effect, makes the character grid 11 dots wide by 9 dots high. To see how the rest of the characters in the standard character ROM are constructed, take a look at Appendix J.


Figure 11-3. Dots can be inside boxes or straddle the vertical lines of the grid.

## Defining Your Own Characters

You've seen how the engineers at Star designed their characters by using a grid to lay out the dots. Now you can define characters exactly the same way. Make up some grids (photocopy Figure 11-4 if you wish) and get ready to be creative! (Just in case you are not feeling creative, and to make our explanations a little clearer, we'll be using a "bullet" as an example of a download character. You can see how we've laid it out in Figure 11-5. You'll find this useful for highlighting a list of items, as we have done at the beginning of each chapter in this manual.

You'll notice that Figure 11-4 includes a lot of information around the grid. Don't be intimidated; we'll explain each item as we come to it in our discussion of defining and actually printing download characters. You may have noticed another difference between this grid and the one shown in Figure 11-3: it's only seven boxes high. Which leads us to. . .

## Rule 1: Download characters are seven dots high

As you noticed in Figure 11-2, capital letters, most lowercase letters, and most special characters use only the top seven pins of the printhead. This is also the standard for download characters, so our grid is only seven dots high.

It's also possible to use the bottom seven pins, just as the " g ", " p ", " $q$ ", and " " " of the standard character sets do. These are called descenders (because the bottom of the character descends


Figure 11-4. Use this grid (or one similar to it) to define your own characters.
below the baseline of the rest of the characters).
One bit in the download character definition command is used to tell Radix whether a character is to be treated as a descender or not. We'll get to the command in due time. For now, if your character uses the top seven dots, write in a zero next to the word "Descender" on the layout grid; if it uses the bottom seven dots, write in a one. In our example, we'll want the bottom of the bullet to line up with the baseline of the other characters, so it will not be a descender. As shown in Figure 11-5, we've written in a " 0 " on our grid.

## Rule 2: Dots cannot overlap

As you can see in Figure 11-5 our bullet will print fairly solid. But, you may ask, why not make it really solid and print all the intermediate dots, as shown in Figure 11-6? Because the dots that straddle the vertical lines in the grid actually overlap those inside the boxes. If we tried to print overlapping dots, Radix's print head would have to slow down and back up to print both dots-not very efficient! To avoid this inefficiency, Radix will not allow you to define a character like Figure 11-6. (Actually, you can define it, but


Figure 11-5. We've designed a character and decided that it would not be a descender, hence the " 0 " written in.


Figure 11-6. Dots cannot overlap; those in immediately adjacent "half columns" will be ignored when the character is printed.
when it prints, Radix will leave out the overlapping dots, so that it would print like Figure 11-5.)

## Add up each column of dots

Now it's time to give our creative side a break and get down to some basic arithmetic. That's where the numbers down the left side of the grid come in. Notice that there is a number for each row of dots and that each number is twice the previous number. By making these numbers powers of two we can take any combination of dots in a vertical column and assign them a unique value. Some examples will make this clearer. As shown in Figure 11-7, if we add the numbers for the dots that print in a column, the sum will be a number in the range of 0 to 127. Each number from 0-127 represents a unique combination of dots.

So add up the values of the dots in each column using this system. This way it takes one number to describe each column of dots. In Figure 11-8 we've shown our grid with the sums of the columns filled in across the bottom (see if these agree with your


Figure 11-7. By adding the values of each dot in a column, you'll get a unique description for any combination of dots.
answers!). Across the top of the grid you've probably noticed the cryptic labeling of each column: m1, m2, m3, etc. These labels correspond to the labels in the command syntax statement, which we'll get to shortly.

## Assigning a value to your character

We've done a pretty thorough job of designing and describing
a user-defined character. But the Radix has room for 189


Figure 11-8. Add the values of the dots in each column and write the sum of each column at the bottom.
download characters-how does it know which user-defined character we want to print? Exactly the same way it knows which standard character we want to print: every character is assigned a unique number.

The standard characters are assigned the ASCII codes-numbers from 0 to 255. For the download character sets there are two banks of characters that can be defined: values from 33 to 126 and 160 to 254. This means that once a character is defined and assigned a value (and the download character set is selected), you can use that character on the printer the same way you would any standard character. You can send the character with the same ASCII value (for instance, if you had assigned your character a code of 66 , it would print each time you sent a character " $B$ " to the printer). You can also access the character from a BASIC program with the CHR\$ function-in this case LPRINT CHR\$(66) would print the character.

Except for the limitation that download characters must be assigned values in the range of 33 to 126 or 160 to 254 , there are no rules or restrictions on the use of numbers. This means you can
use whatever is most convenient for you-perhaps seldom-used keys can be replaced by more useful characters. In our example, we'll assign the bullet a value of 43 , which is the ASCII value for the " + " character. This way, when we want to print a bullet, all we have to do is send the printer a + .

To make our demonstration of download characters more complete, we've designed two more characters. To avoid confusion between the letter " $O$ " and zero, we have created a slashed zero to replace Radix's zero (ASCII 48). And, since some people prefer the "lb" abbreviation for pound, we've replaced Radix's "\#" symbol (ASCII 35) with a "lb." The information on the grids is now complete (except for proportional width data-a more advanced topic we'll take up shortly).

## Download character definition command

You've read through a long explanation of download characters and we haven't even told you the command syntax yet! Now the wait is over. This is the most complex command in the Radix repertoire and now you've got the necessary knowledge to implement it. Here it is:

〈ESC〉"*" CHR\$(1) n1n2m1m2m3m4m5m6m7m8m9m10m11


Figure 11-9. Character designs for our three characters.

Like the other Radix commands, it starts with an 〈ESC〉 (CHR\$(27)). The next character is an asterisk (*), which is CHR\$(42), followed by a CHR\$(1).
$n 1$ is the value we assign to the character-in the case of the bullet it is CHR\$(43).
$n 2$ is called the attribute byte, for it describes two attributes of the character we have designed: descender data and proportional width information. A byte consists of eight bits. In the attribute byte, the first three (high order) bits are unused, the fourth bit is used for the descender data, and the last four bits are used for proportional widths. We'll be discussing proportional character widths in detail later in this chapter; for now, we'll leave it at 11. The descender data was discussed earlier: to use the top seven pins, this bit should be 0 ; to use the bottom seven pins this bit should be 1. Figure $11-10$ shows the bits of the attribute byte as we'll use them for our bullet character. Since the descender data is 0 , the value of the byte is equal to the value of the proportional data-11. By now you've probably seen an easier way to determine the value of the attribute byte. Instead of translating everything to binary, merely assign the descender data a value of 16 (the value of the fourth bit) if you want descenders, or 0 if you don't want descenders. Then just add the descender data to the proportional width. This way, it's simply a matter of adding two decimal numbers. (In our case, it's $0+11=11$.)


Figure 11-10. The attribute byte (n2) for our bullet character.

You'll probably recognize m1. . .m11 from the top of our layout grid. That's right, each column is described by one byte. Now we've got everything we need to download one character to the printer. The complete command for our bullet character is shown in Figure 11-11.

Now let's send the information to the printer. The following program will send the character definitions for all three characters to the printer. Enter the program and run it.


Figure 11-11. This is the complete command to send our bullet character to the Radix printer.

10 'Downloads symbols.
$2 \emptyset$ OPEN "LPT1:" AS \#1 : WIDTH \#1,255
$3 \emptyset$ FOR I = 1 TO 3 'Do three character downloads.
40 PRINT \#1,CHR\$(27) "*" CHR\$(1) ; 'Begin char download.
50 READ N1\$,N2
60 PRINT \#1,N1\$ CHR\$(N2) ; 'Send char code, and attribute.
$7 \emptyset$ FOR M = 1 TO 11 'Send 11 bytes of download per char.
$8 \emptyset$ READ D
$9 \emptyset$ PRINT \#1,CHR\$(D) ;
$10 \emptyset$ NEXT M
110 NEXT I
120 CLOSE \#1
130 LPRINT
$14 \emptyset$ DATA "+",11,24,36,9ø,36,9ø,36,9ø,36,24,,$\emptyset$
$15 \emptyset$ DATA " $\emptyset$ ", 11,92,34, $\varnothing, 81,8,69, \emptyset, 34,29, \emptyset, \emptyset$
$16 \emptyset$ DATA "\#",11,127, $\emptyset, \emptyset, 127, \emptyset, 68, \emptyset, 68,56, \emptyset, \emptyset$

When you run this program, it looks like nothing happens. That's OK. We'll see why in just a moment. Save this program. We'll need it again shortly.

## Printing Download Characters

You've now defined and sent three characters to the Radix.

But how do you know that？If you try printing those characters now（type LPRINT＂+0 ＂＂）you don＇t get a bullet，slashed zero and ＂lb．＂Instead you get ．．．+0 \＃．That＇s because the download char－ acters are stored in a different part of Radix＇s memory．To tell it to look in download character RAM instead of standard character ROM it requires another command：

〈ESC〉＂\＄＂CHR\＄（n）

This command is used to select the download character set（if $n=1$ ）or to select the standard character set（if $n=0$ ）．Let＇s try it out．Enter this command：

LPRINT CHR\＄（27）＂\＄＂CHR\＄（1）＂＋O\＃＂

Voila！It should have printed out the three characters we defined．Your printout should look like this：

あoit
（If it doesn＇t，check the last program we ran for errors，then re－ run it．）

Let＇s find out if there are any other characters in the download RAM．Try this program：

```
10 'Print all RAM characters.
2\emptyset LPRINT CHR$(27) "$" CHR$(1) ; 'Select download
 characters.
30 FOR I = 33 TO 126 : LPRINT CHR$(I) ; : NEXT I
40 FOR I = 16\emptyset TO 254 : LPRINT CHR$(I) ; : NEXT I
50 LPRINT
6\emptyset LPRINT CHR$(27) "$" CHR$(\emptyset) ; 'Select ROM characters.
```

Nope！Just three characters in the download set．This is incon－ venient for a couple of reasons．First，every time you wanted to use a download character you would have to switch back and
forth between character sets．Knowing that you wouldn＇t want to do that，Radix won＇t even allow it．Standard characters and download characters cannot be mixed in a line．If you want to use download characters，the command should appear at the begin－ ning of the line．All subsequent characters（even on following lines）are printed with the download set until you return to the standard characters with an 〈ESC〉＂\＄＂CHR\＄（0）．（Note that the〈ESC〉＂\＄＂CHR\＄（1）command can be in the middle of a line，and that entire line will be printed with the download characters．Like－ wise，if you select the standard character set anywhere in a line， the entire line will be printed with the standard characters．Con－ flicting commands within a line can cause unpredictable results．）

So does that mean that in order to print something meaning－ ful with our special symbols we have to define an entire alphabet？ Fear not．The engineers at Star have made it an easy task to use mostly standard characters with just a few special characters thrown in．This command copies all the characters from the standard character ROM into download RAM：

```
〈ESC> "*" CHR$(\emptyset)
```

Since it will copy all characters into the download area，it will wipe out any characters that are already there．So it＇s important to send this command to the printer before you send any download characters you want to define．With that in mind，add this line to the program we used to send the characters to Radix：

25 PRINT \＃1，CHR\＄（27）＂＊＂CHR\＄（ $\varnothing$ ）；＇Copy ROM to RAM．

Now try the download printout test program again．Your results should look like Figure 11－12．You probably noticed that our printout test includes the characters with ASCII values from 160 to 254，but nothing prints．The 〈ESC〉＂＊＂CHR\＄（0）command copies only the standard ASCII characters（those in the range of 33 to 126）to download RAM；it does not copy any block graphics characters．

To demonstrate how to use these characters，let＇s use this character set with a word processing program to print a grocery ad．Just as you learned in Chapter 3，send the printer control codes to select download characters（27361）followed by this text：


```
DEFGHIJKLMNOFOFSTUNWXYZ[\]% "abcdEfgh
i jt:1mnopqretuvwsyz Ei)*
```

Figure 11-12. Printout of the download character set, into which all the standard characters have been copied, and the \#, +, 0 have been changed.

Today's Specials

+ Oranges 10 \# / \$1. $\varnothing \emptyset$
+ Ocean Perch \$1.90/\#

Your output should look like this:

Today ${ }^{3}=$ Special $=$


- Gcean Ferch $\$ 1.90 / \mathrm{b}$

Just a sampling of Radix's download capabilities! As you can see, it's no problem to define characters in BASIC (or another language) and use them with a word processor or other application.

Note that we didn't have to re-enter the download characters, since they were already sent to the printer with the previous program. They will stay with the printer until you download new characters to replace them or turn the printer off. Even the 〈ESC〉 "@" command, which initializes the printer, does not destroy the contents of download RAM.

Table 11-1
Download character definition commands

| Function | Control code |
| :--- | :--- |
| Define download character | $\langle\mathrm{ESC}\rangle$ " $*$ " $\mathrm{CHR} \$(1) \mathrm{n} 1 \mathrm{n} 2 \mathrm{~m} 1 \ldots \mathrm{~m} 11$ |
| Copy ROM to download RAM | $\langle\mathrm{ESC}\rangle$ " $*$ " CHR\$(0) |

## Proportional Characters

Up until now, all the characters that your Radix has printed have been of a fixed width-either 10, 12, or 17 (or 5,6 or 8.5 in expanded mode) characters per inch. Whichever pitch you select, all the characters are the same width. You'll notice though, that in typeset books, such as this one, each character has a slightly different width. For instance, the " $i$ " is quite narrow, and the " $W$ " is very wide. This is more pleasing to the eye and easier to read.

So, if you're going to go to the trouble of designing your own download characters for Radix, you might as well make them pleasing to the eye! Proportional download characters allow you to do just that. As you'll remember from our initial discussion of download character definition, part of the attribute byte is for proportional width data. We skipped over that, with the promise of describing it later. Well now is the time!

## Defining proportional characters

Except for the actual width, defining characters for proportional printing is exactly the same as defining normal width download characters. Characters can range from 4 to 11 dots wide. This means that characters can be as narrow as one-third the normal width. The examples in Figure 11-13 show characters of different widths. These characters are defined in the program that follows.

```
\(1 \varnothing\) 'Downloads proportional characters into RAM.
\(2 \emptyset\) OPEN "LPT1:" AS \#1 : WIDTH \#1,255
30 FOR C \(=1\) TO 4
40 READ C \(\$, C O D E\)
\(5 \emptyset\) PRINT \#1, \(\mathrm{CHR} \$(27)\) "*" \(\mathrm{CHR} \$(1) \mathrm{C} \$ \mathrm{CHR} \$(\mathrm{CODE})\);
60 FOR I = 1 TO 11
\(7 \emptyset\) READ BITS
\(8 \emptyset\) PRINT \#1, CHR \(\$(B I T S)\);
\(9 \varnothing\) NEXT I
100 NEXT C
110 CLOSE \#1
\(12 \emptyset\) 'Print a sample.
\(13 \emptyset\) LPRINT " Mississippi"
140 LPRINT
150 LPRINT "ROM char set, normal spacing."
160 LPRINT
```

```
17\emptyset LPRINT
18\emptyset 'Select RAM set, normal spacing.
19\emptyset LPRINT CHR$(27) "$" CHR$(1) ;
2\emptyset\emptyset LPRINT " Mississippi"
210 'Cancel RAM set, normal spacing.
22\emptyset LPRINT CHR$(27) "$" CHR$(\emptyset)
23\emptyset LPRINT "RAM char set, normal spacing."
240 LPRINT
250 LPRINT
260 'Select RAM set, proportional spacing.
27\emptyset LPRINT CHR$(27) "X" CHR$(1) ;
28\emptyset LPRINT " Mississippi"
290 'Cancel RAM set, proportional spacing.
3\emptyset\emptyset LPRINT CHR$(27) "X" CHR$(}0
31\emptyset LPRINT "RAM char set, proportional spacing."
320 END
33\emptyset DATA "M",11,1,126,1,2,4,8,4,2,1,126,1
34\emptyset DATA "i",4,64,61,64,\emptyset,\emptyset,\emptyset,\emptyset,\emptyset,\emptyset,\emptyset,\emptyset
35\emptyset DATA "p",23,127,\emptyset,17,\emptyset,17,14,\emptyset,\emptyset,\emptyset,\emptyset,\emptyset
36\emptyset DATA "s",6,8,84,\emptyset,84,32,\emptyset,\emptyset,\emptyset,\emptyset,\emptyset,\emptyset
```



Figure 11-13. These download characters are defined as proportional characters.

One thing to remember about defining proportional charac－ ters：a character cannot be wider than the specified width．That seems obvious enough！For example，if you specify a width of 6 for a character，the seventh through eleventh columns of dots（if you specified any）will not print．You must，however，send information （even if it is 0 ）for those columns when you define a character； Radix expects eleven characters following the 〈ESC〉＂＊＂ CHR\＄（1）n1 n2 sequence．

In most cases，the width you select should actually be at least one dot wider than the number of columns that the character actu－ ally occupies．This is so that there will be a space（of one dot） between characters when you print them．If you specify a width which is exactly the same as the number of columns in the charac－ ter definition，the characters will touch when they print（this is sometimes desirable－for border characters or for large download characters that are more than eleven dots wide）．

## Printing proportional characters

Printing with proportional download characters is much like using normal width download characters：one command is used to select the download set or the standard character set．Here＇s the command：

## 〈ESC〉＂X＂CHR\＄（n）

If $\boldsymbol{n}$ is 1 ，then the download character set is selected，and pro－ portional widths are used．If $n$ is 0 ，the standard character set is selected．

It should be noted that it is possible to use the same character definitions for either normal width or proportional download char－ acters（if a valid proportional width is included in the attribute byte）． The only difference is the way they are accessed：〈ESC〉＂\＄＂ CHR\＄（1）for normal width or 〈ESC〉＂X＂CHR\＄（1）for proportional width．The two commands work independently of each other，so that 〈ESC〉＂\＄＂CHR\＄（0）will not turn off proportional download characters，and 〈ESC〉＂X＂CHR\＄（0）will not turn off normal width download characters．If you have selected both normal and propor－ tional download characters，proportional will print until you send the printer an 〈ESC〉＂X＂CHR\＄（0）．The printer will then continue to print with normal width download characters（rather than returning to the standard character set）until you send an 〈ESC〉＂\＄＂CHR\＄（0）．

This can lead to confusion if you have accidentally specified both types of download characters.

```
 Mississippi
FOM char set, normal spacing.
Mississippi
FAM char set, normal spacing.
 Mississippi
RAM char set: proportional spacing.
```

Figure 11-14. This printout shows the same text, printed with the same download characters, in both normal and proportional widths.

Table 11-2
Download character printing commands

| Function | Control code |
| :--- | :--- |
| Normal download characters ON | $\langle\mathrm{ESC}\rangle$ "\$" CHR\$(1) |
| Normal download characters OFF | $\langle\mathrm{ESC}\rangle$ " $\$$ " CHR\$(0) |
| Proportional download characters ON | $\langle\mathrm{ESC}\rangle \mathrm{X}$ " CHR\$(1) |
| Proportional download characters OFF | $\langle\mathrm{ESC}\rangle$ "X" CHR\$(0) |

## Connecting characters

As we noted earlier, it's possible to connect proportional width characters. This can be useful for creating logos or other characters which are larger than one normal character. It also makes it possible to create connecting scripts, like handwriting. The trick to this is to specify the width in the attribute byte to be exactly the same as the number of columns of dots that the character (or partial character) occupies. And, if you change the vertical spacing to $7 / 72$ " (use the 〈ESC〉 " 1 " command), you can make characters connect vertically. This allows you to make very large characters indeed!

In the program that follows, we've used this technique to create some large numbers. Each digit is actually made up of four characters-two horizontally by two vertically. This means, of course, that you must define and print four characters for each finished digit. We assigned the upper left quadrant of each digit to ASCII codes from 160 to 169, the upper right quadrant to codes 170 to 179, and so on. Figure 11-15 shows how one digit is defined, and Figure 11-16 shows the final output of our program.


Figure 11-15. Each digit is made up of four individual characters.

10 'Program to define and print BIG numerals.
20 'Each numeral is made up of four characters,
30 'two wide, and two high.
40 'A blank is also defined.
50
60 'Download the 41 special characters.
$7 \varnothing$ OPEN "LPT1:" AS \#1 : WIDTH \#1,255
$8 \emptyset$ FOR N1 = $16 \emptyset$ TO $2 \emptyset \emptyset$ ' N 1 is the char code.
90 PRINT \#1,CHR\$(27) "*" CHR\$(1) ;
$19 \emptyset$ PRINT \#1,CHR\$(N1);
110 READ N2
$12 \emptyset$ PRINT \#1,CHR\$(N2);

130 FOR S = 1 TO 11
140 READ MS
$15 \emptyset$ PRINT \#1,CHR\$(MS);
$16 \emptyset$ NEXT S
170 NEXT N1
$18 \varnothing$ CLOSE \#1
$19 \emptyset$ BLANK\$ $=\operatorname{CHR} \$(2 \emptyset \emptyset)$
$2 \not 0{ }^{\prime}$
210 'Print the BIG numerals.
$22 \emptyset$ LPRINT
$23 \varnothing$ LPRINT CHR $\$(27)$ "X" CHR\$(1) ; 'Select RAM chars.
$24 \varnothing$ LPRINT CHR $\$(27)$ " " ; '7/72" line spacing.
250 'Print the top half of the numerals.
$26 \varnothing$ FOR NUM $=\varnothing$ TO 9
$27 \emptyset$ LPRINT CHR $\$($ NUM*4+16 $)$ CHR\$(NUM*4+161) BLANK\$ ;
289 NEXT NUM
290 LPRINT
300 'Print the bottom half of the numerals.
$31 \varnothing$ FOR NUM $=\varnothing$ TO 9
320 LPRINT CHR $\$($ NUM*4+162) CHR $\$(N U M * 4+163)$ BLANK $\$$;
330 NEXT NUM
$34 \varnothing$ LPRINT CHR $\$(27)$ "X" CHR $\$(\varnothing)$; 'Deselect RAM.
$35 \emptyset$ LPRINT CHR $\$(27)$ " 2 " $11 / 6$ " line spacing (normal).
360 'ZERO
$37 \emptyset$ DATA $11, \varnothing, 96,16,104,16,44,3 \varnothing, 14, \varnothing, 2,1$
380 DATA $11,2,1,2,1,6,8,38,88,32,88,32$
$39 \emptyset$ DATA $11,3,12,19,12,51, \emptyset, 96, \emptyset, 96, \emptyset, 96$
$4 \emptyset \emptyset$ DATA $11, \emptyset, 32, \emptyset, 48, \emptyset, 28,3,12,3,4,3$
$41 \varnothing$ 'ONE
$42 \emptyset$ DATA $11, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, 4, \emptyset, 4, \emptyset, 4,126$
$43 \varnothing$ DATA $9,12,114,12,114,12,2, \emptyset, \emptyset, \emptyset, \emptyset, \varnothing$
$44 \varnothing$ DATA $11,64, \emptyset, 64, \emptyset, 64, \varnothing, 64,32,8 \emptyset, 47,8 \emptyset$
$45 \emptyset$ DATA $9,47,8 \emptyset, 47,64, \varnothing, 64, \emptyset, 64, \varnothing, \emptyset, \varnothing$
460 ' TWO
$47 \varnothing$ DATA $11, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, 12,16,14, \emptyset, 6, \emptyset$
$48 \emptyset$ DATA $11,3, \varnothing, 3, \varnothing, 7 \emptyset, 56,7 \emptyset, 56,4,24, \varnothing$
$49 \emptyset$ DATA $11,64, \emptyset, 64,32,64,32,8 \emptyset, 32,8 \emptyset, 4 \emptyset, 64$
$5 \emptyset \emptyset$ DATA $11,44,64,38,65,34,65,32,8 \emptyset, 32,88, \varnothing$
510 ' THREE
$52 \emptyset$ DATA $11, \varnothing, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, 4,2,4,2,4$
$53 \varnothing$ DATA $11,34,84,34,92,34,76,34,68,2,64, \emptyset$
540 DATA $11,16, \emptyset, 48, \emptyset, 56,64,48,64,32,64,32$
550 DATA $11,64,32,64,48,9,54,9,22,9,6,1$
561 ' FOUR
$57 \emptyset$ DATA $11, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, 64,36,88,32,16$
$58 \emptyset$ DATA $11, \emptyset, \emptyset, 64,32,64,56,64,6 \emptyset, 2,12, \varnothing$
$59 \emptyset$ DATA $11, \emptyset, 8,4,1 \emptyset, 5,1 \emptyset, 5,8,4,72,4$
$6 \emptyset \emptyset$ DATA $11,88,38,89,38,89,6,73,4,8,6, \varnothing$
610 ' FIVE
$62 \emptyset$ DATA $11, \emptyset, \emptyset, \emptyset, \emptyset, 64,32,84,5 \emptyset, 76,34,68$
$63 \emptyset$ DATA $1 \varnothing, 34,68,34,68,34,68,2,68,2, \emptyset, \emptyset$
$64 \emptyset$ DATA $1 \varnothing, \emptyset, 32,24,1 \varnothing 1,24,97, \emptyset, 64, \varnothing, 64, \varnothing$
$65 \emptyset$ DATA $11,64, \emptyset, 96,1,48,15,48,15,16,15, \emptyset$
$66 \emptyset$ ' SIX
$67 \emptyset$ DATA 11, $\varnothing, 96, \emptyset, 112, \emptyset, 12 \emptyset, \emptyset, 92, \varnothing, 1 \emptyset 2, \emptyset$
$68 \emptyset$ DATA $11,98, \varnothing, 98, \emptyset, 98, \emptyset, 7 \emptyset, \varnothing, 14, \emptyset, 6$
$69 \emptyset$ DATA $11,7,8,23,8,55,8,99, \emptyset, 65, \emptyset, 64$
$7 \emptyset \emptyset$ DATA 11, $\varnothing, 96, \emptyset, 112,1,62,1,3 \emptyset, 1,14, \emptyset$
710 ' SEVEN
$72 \emptyset$ DATA $11, \emptyset, 16,8,6,8,6,8,6,8,6,8$
$73 \emptyset$ DATA $9,7 \emptyset, 8,1 \emptyset 2,8,54,8,6, \emptyset, 2, \varnothing, \emptyset$
$74 \varnothing$ DATA $11, \varnothing, 64, \emptyset, 96, \emptyset, 12 \emptyset, \varnothing, 124, \varnothing, 3 \emptyset, 1$
$75 \emptyset$ DATA $9,6,1, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \varnothing, \emptyset, \emptyset, \varnothing$
$76 \emptyset$ ' EIGHT
$77 \emptyset$ DATA 11, $\varnothing, \emptyset, \emptyset, \emptyset, 24,36,24,1 \emptyset 2,24,1 \emptyset 2, \emptyset$
$78 \emptyset$ DATA 11,67, $\varnothing, 67, \emptyset, 99,28,34,28,34,28, \emptyset$
$79 \emptyset$ DATA 11,12,18,44,19,1ø8,19,96,1,64, $\varnothing, 64$
$8 \emptyset \emptyset$ DATA 11, $\emptyset, 96,1,112,15,48,15,16,14, \emptyset, \emptyset$
810 ' NINE
$82 \emptyset$ DATA $11, \emptyset, \emptyset, 12 \emptyset, 4,12 \emptyset, 6,12 \emptyset, 6, \emptyset, 3, \emptyset$
$83 \emptyset$ DATA 11,3, $\varnothing, 3, \emptyset, 67,4,123,4,122,4,12 \emptyset$
$84 \emptyset$ DATA $11,48, \emptyset, 56, \emptyset, 113, \emptyset, 99, \emptyset, 99, \emptyset, 99$
$85 \emptyset$ DATA $11, \emptyset, 115, \emptyset, 57, \varnothing, 31, \emptyset, 15, \varnothing, 7, \varnothing$
$86 \emptyset$ ' SPACE
$87 \emptyset$ DATA $11, \varnothing, \emptyset, \varnothing, \varnothing, \emptyset, \varnothing, \varnothing, \emptyset, \varnothing, \varnothing, \varnothing$

## 0123456789

Figure 11-16. The output for characters like this must be carefully planned.

## Mixing Print Modes with Download Characters

It's possible to get even more printing effects by combining
download characters with the various print modes available with Radix. Most of the commands that you learned in Chapter 7 work with normal width download characters as well as standard characters. A few of them will work with proportional download characters as well. Table 11-3 summarizes the various print modes and their compatibility with download characters.

Table 11-3
Mixing download characters with various print modes

|  | Normal width <br> (Escape \$) | Proportional <br> (Escape X) |
| :--- | :---: | :---: |
| Standard Characters | Yes | Yes |
| Italic | - | - |
| NLQ Characters | - | - |
| Pica | Yes | Yes |
| Elite | Yes | - |
| Condensed | Yes | - |
| Expanded | Yes | - |
| Double-strike | Yes | - |
| Emphasized | Yes | - |
| Underline | Yes | Yes |
| Super/subscript | Yes | - |

## A Utility Program

If you've followed along this far you've probably become pretty proficient at designing download characters. And even the addition is getting easier! But this is a good computer applica-tion-Computer Aided Design (CAD) for download characters. The program below allows you to design and edit characters on the screen. You can make changes (no erasing!) until it's the way you like it, and then the program makes the necessary calculations and sends the character to Radix.

As you can see, at 205 lines this is quite a long program! However, if you want to use the full capabilities of Radix's download characters, you'll really appreciate it.

## Instructions for using DLEDIT

The program screen is shown in Figure 11-17. Above the main grid (where you actually place the dots) there are two informational lines.

The first line tells the ASCII code of the character being edited (and in parentheses, the normal character for that code). The next field in the first line tells whether the character being edited is a descender or not ( a " 1 " indicates that it is; " 0 " means that it is not).

The second status line shows the proportional width of the character being defined. The asterisks extend over the columns of dots to indicate the actual width when the character is printed using the 〈ESC〉 " X " command.

Below the layout grid is the prompt line. This will appear only when you need to enter information, such as the ASCII code of the character you wish to define.

To the right of the layout grid is the command menu. All of the valid commands are defined here; if you press any other key, the computer will beep and no action will be taken. Below, each command is defined in greater detail.
P - Print the character. This command takes the character that is currently on the screen and prints it in condensed, elite, pica, expanded pica, and proportional widths so you can see how it looks. In addition, it prints the complete character set in both normal and proportional widths. At the end of the printout is the data statement necessary to download this character through a BASIC program.


Figure 11-17. DLEDIT screen display shows ASCII code and character layout.

A - Set ASCII code. To change the ASCII code (which is shown in the first status line), press "A." You will then be prompted for the code you want to use.
C - Clear all dots. Press "C" to get a clean screen.
Q- Quit. "Q" closes all files and ends the program.
R - Perform ROM copy. The ROM character set will be copied to download RAM immediately.
$\uparrow \leftarrow \rightarrow \downarrow$ - Move cursor. The arrow keys are used to move the cursor around the grid.
Ins - Insert. The insert key places a dot at the current cursor location.
Del - Delete. The delete key deletes a dot from the current cursor location.

+     - Wider. Use the " +" key to increase the proportional width, which is indicated by the row of asterisks above the grid. The maximum width is 11 columns.
-     - Narrower. Use the "-" key to decrease the proportional width. The minimum width is four columns.
D-Descender. This command toggles the descender flag, which is shown in the first status line. If it is equal to zero, the top seven pins of the printhead are used; if it is equal to 1 , the bottom seven pins are used to create a descender character.
Enjoy the program!

```
1\emptyset 'Program to allow editing down-load characters.
2\emptyset 'for the RADIX printer.
30'
40 'Initialization.
50 DIM Z(8,12),MM(11)
60 AS=33
7\emptyset CS$=CHR$(16)+CHR$(17):SC$=STRING$(2,219)
80 RAMNML$ = CHR$(27) + "$" + CHR$(1)
90 RAMNMLOFF$ = CHR$(27) + "$" + CHR$(\varnothing)
10\emptyset RAMPRO$ = CHR$(27) + "X" + CHR$(1)
11\emptyset RAMPROOFF$ = CHR$(27) + "X" + CHR$(\emptyset)
120 OPEN "LPT1:" AS #2 : WIDTH #2,255
130 LPRINT CHR$(27) "@" ; : WIDTH "LPT1:",255
140 GOSUB 1930
150 '
160 'Main loop.
17\emptyset A$=INKEY$:IF A$="" THEN 17\emptyset
18\emptyset B$ = LEFT$(A$,1)
19\varnothing IF B$ = CHR$(}\varnothing\mathrm{) THEN 290
```

```
200 IF A$ = "+" THEN GOSUB 1060 : GOTO 370 'Wider.
210 IF A$ = "-" THEN GOSUB 1090 : GOTO 370 'Narrower.
22\emptyset IF A$ = "D" OR A$ = "d" THEN GOSUB 112\emptyset : GOTO 37\varnothing
230 IF A$="Q" OR A$="q" THEN GOSUB 380 : END
240 IF A$="P" OR A$="p" THEN GOSUB 136\varnothing : GOTO 370
250 IF A$="C" OR A$="c" THEN GOSUB 193\varnothing : GOTO 37\varnothing
260 IF A$="A" OR A$="a" THEN GOSUB 172\emptyset : GOTO 37\emptyset
27\varnothing IF A$="R" OR A$="r" THEN GOSUB 198\varnothing : GOTO 37\varnothing
28\emptyset BEEP:GOTO 37\emptyset
290 B$=RIGHT$(A$,1)
30\emptyset IF B$=CHR$(75) THEN GOSUB 910:GOTO 37\emptyset 'Left.
310 IF B$=CHR$(77) THEN GOSUB 930:GOTO 370 'Right.
32\emptyset IF B$=CHR$(8\emptyset) THEN GOSUB 95\emptyset:GOTO 37\emptyset 'Down.
330 IF B$=CHR$ (72) THEN GOSUB 97\emptyset:GOTO 37\emptyset 'Up.
340 IF B$=CHR$(82) THEN GOSUB 990:GOTO 370 'Insert.
350 IF B$=CHR$(83) THEN GOSUB 1030:GOTO 370 'Delete.
360 BEEP
370 GOTO 17\varnothing
380 COLOR 7,\emptyset : CLS
390 CLOSE #1,#2
400 RETURN
410 '
42\emptyset ' Subroutine to paint screen.
4 3 0 ~ C L S ~
44\varnothing GOSUB 182\emptyset
450 '
46\emptyset 'Draw grid.
47\emptyset P1 = 1 : M$ = CHR$(179) + STRING$(2,32)
48\emptysetN$ = STRING$(2,196) + CHR$(197)
490 L$ = STRING$(2,196) + CHR$(193)
5\emptyset\emptyset LOCATE 4,1\emptyset:PRINT CHR$(218);CHR$(196);
51\emptyset FOR I=1 TO 1\varnothing
52\emptyset PRINT CHR$(196) CHR$(194) CHR$(196) ; : NEXT I
53\varnothing PRINT CHR$(196) CHR$(191) : LOCATE 5,1\emptyset
540 FOR K=1 TO 12 : PRINT M$; : NEXT K : PRINT
550 FOR J=1 TO 6:LOCATE 5+P1,10:P1=P1+1:PRINT CHR$(195);
560 FOR K=1 TO 10:PRINT N$;:NEXT K
57\emptyset PRINT CHR$(196) CHR$(196) CHR$(18\emptyset)
580 LOCATE 5+P1,10 : P1=P1+1
590 FOR K=1 TO 12:PRINT M$;:NEXT K
6\emptyset\emptyset PRINT:NEXT J:LOCATE 18,1\emptyset:PRINT CHR$(192);
610 FOR I=1 TO 10:PRINT L$;:NEXT I
62\emptyset PRINT CHR$(196);CHR$(196);CHR$(217)
```

630 FOR $I=\emptyset$ TO 6:LOCATE $5+\mathrm{I} * 2,6:$ PRINT $2^{\wedge} \mathrm{I}$; :NEXT I 640
650 'Put in dots.
$66 \varnothing$ FOR H = 1 TO $11:$ FOR J = 1 TO $7: 2(\mathrm{~J}, \mathrm{H})=\varnothing$
$70 \emptyset$ NEXT J : NEXT H
710 FOR H = 1 TO 11 : GOSUB $12 \not 0 \emptyset:$ NEXT H
$72 \emptyset \mathrm{X}=1: \mathrm{Y}=1: \mathrm{G}=1: \mathrm{H}=1$
$730^{\circ}$ GOSUB 1300
740
750 'Paint menu.
760 LOCATE 6,47 : PRINT "P -- Print the character."
770 LOCATE 7,47 : PRINT "A -- Set ASCII code."
780 LOCATE 8,47 : PRINT "C -- Clear all dots."
790 LOCATE 9,47 : PRINT "Q -- Quit."
$8 \emptyset \emptyset$ LOCATE 10,47 : PRINT "R -- Perform ROM copy."
$81 \varnothing$ LOCATE 11,44 : PRINT CHR\$(24) CHR\$(27) CHR\$(26)
CHR $\$(25)$;
820 PRINT " -- Move cursor."
$83 \emptyset$ LOCATE $12,45:$ PRINT "ins -- place a dot.";
$84 \varnothing$ LOCATE 13,45:PRINT "del -- remove a dot.";
850 LOCATE 14,47 : PRINT "+ -- make character wider." ;
860 LOCATE 15,47 : PRINT "- -- make character narrower."
;
870 LOCATE 16,47 : PRINT "D -- Toggle descender mode." ;
880 RETURN
890
900 'Edit subroutines.
910 GOSUB 1240:Y=Y-3:H=H-1:IF Y/1 THEN BEEP: $\mathrm{Y}=1: \mathrm{H}=1$
920 GOSUB 1300:RETURN
$93 \varnothing$ GOSUB 124ø:Y=Y+3:H=H+1:IF $\mathrm{Y}>31$ THEN BEEP: $\mathrm{Y}=31: \mathrm{H}=11$
940 GOSUB 1300:RETURN
950 GOSUB $1240: \mathrm{X}=\mathrm{X}+2: \mathrm{G}=\mathrm{G}+1:$ IF $\mathrm{X}>13$ THEN BEEP:X=13:G=7
960 GOSUB 1300:RETURN
970 GOSUB 1240:X=X-2:G=G-1:IF X<1 THEN BEEP:X=1:G=1
980 GOSUB 1390:RETURN
990 IF $Z(G, H-1)=1$ OR $Z(G, H+1)=1$ THEN BEEP:RETURN
$1 \not \emptyset \emptyset 2(\mathrm{G}, \mathrm{H})=1$ : COLOR 31,1
1010 LOCATE X+4,Y+1ø : PRINT SC\$ ; : COLOR 7, $\varnothing$
$102 \emptyset$ GOSUB 1150 : RETURN
$103 \varnothing \mathrm{Z}(\mathrm{G}, \mathrm{H})=\varnothing$ : COLOR 7, $\varnothing$
$104 \varnothing$ LOCATE $\mathrm{X}+4, \mathrm{Y}+1 \varnothing$ : PRINT CS $\$$; : COLOR 7, $\varnothing$

```
1050 GOSUB 1150 : RETURN
1060 IF PROWID = 11 THEN BEEP : RETURN
1070 PROWID = PROWID + 1
1080 GOSUB 182\emptyset : RETURN
1090 IF PROWID = 4 THEN BEEP : RETURN
1100 PROWID = PROWID - 1
111\emptyset GOSUB 182\emptyset : RETURN
112\emptyset IF DESC = 1 THEN DESC = }\varnothing:\mathrm{ GOTO 114 }
1130 DESC = 1
1140 GOSUB 182\emptyset : RETURN
1150
1160 'Subroutine to calculate a column value & print it.
117\emptyset MM(H) = \emptyset : FOR J=1 TO 7
118\emptyset MM(H)=MM(H)+Z(J,H)*\mp@subsup{2}{}{\wedge}(\textrm{J}-1)
1190 NEXT J : GOSUB 12\emptyset\emptyset : RETURN
120\emptyset
1210 'Subroutine to print a column value.
122\emptyset LOCATE 19,7+H*3 : PRINT RIGHT$(" "+STR$(MM(H)),3)
 ;
1230 RETURN
1240
1250 'Subroutine to remove the cursor.
1260 LOCATE X+4,Y+10
127\varnothing IF Z(G,H) = \emptyset THEN PRINT " " ;
128\emptyset IF Z(G,H) = 1 THEN COLOR 7, }\varnothing\mathrm{ : PRINT SC$;
1290 RETURN
1300
1310 'Subroutine to place the cursor.
132\emptyset LOCATE X+4,Y+1\varnothing
133\emptyset IF Z(G,H)=1 THEN COLOR 31,1 : PRINT SC$; : COLOR
 7,\varnothing
134\varnothing IF Z(G,H)=\varnothing THEN COLOR 7,\emptyset : PRINT CS$;
1350 RETURN
136\emptyset
137\emptyset 'Subroutine to print current character.
1380 GOSUB 2050
1390 LPRINT "ASCII code =" AS : LPRINT
140\varnothing PRINT #2,REC$; 'Download the character.
141\emptyset LPRINT CHR$(27) "B" CHR$(3) "Condensed"
142\emptyset LPRINT RAMNML$ STRING$(21,AS)
1430 LPRINT RAMNMLOFF$
144\varnothing LPRINT CHR$(27) "B" CHR$(2) "E1ite"
1450 LPRINT RAMNML$ STRING$(15,AS)
146\varnothing LPRINT RAMNMLOFF$
```

$147 \emptyset$ LPRINT $\operatorname{CHR} \$(27)$＂B＂CHR\＄（1）＂Pica＂
$148 \emptyset$ LPRINT RAMNML\＄STRING\＄（12，AS）
$149 \emptyset$ LPRINT RAMNMLOFF $\$$
1500 LPRINT CHR\＄（27）＂W＂CHR\＄（1）＂Expanded＂
1510 LPRINT RAMNML\＄STRING\＄（6，AS）
$152 \emptyset$ LPRINT RAMNMLOFF\＄CHR $\$(27)$＂W＂CHR $\$(\emptyset)$
1530 LPRINT＂Character set（normal width）＂
$154 \varnothing$ LPRINT RAMNML $\$$ ；
1550 FOR I＝33 TO 126 ：LPRINT CHR $\$(\mathrm{I})$ ；：NEXT ：LPRINT
$156 \emptyset$ FOR $\mathrm{I}=16 \emptyset$ TO 254 ：LPRINT CHR\＄（I）；：NEXT ：LPRINT
$157 \emptyset$ LPRINT RAMNMLOFF\＄
1589 LPRINT＂Proportional＂
$159 \emptyset$ LPRINT RAMPRO $\$$ STRING $\$(15, A S)$
$16 \emptyset \emptyset$ LPRINT RAMPROOFF\＄
1610 LPRINT＂Character set（proportional）＂
$162 \emptyset$ LPRINT RAMPRO\＄；
1630 FOR $\mathrm{I}=33$ TO 126 ：LPRINT $\operatorname{CHR} \$(\mathrm{I})$ ；：NEXT ：LPRINT
1640 FOR I＝16Ø TO 254 ：LPRINT CHR\＄（I）；：NEXT ：LPRINT
$165 \emptyset$ LPRINT RAMPROOFF $\$$
1660 LPRINT ：LPRINT ：LPRINT
$167 \emptyset$ LPRINT＂Use this data statement to download this character．＂
$168 \emptyset$ GOSUB $295 \emptyset:$ LPRINT＂DATA 27＂；
1690 FOR I $=2$ TO LEN（REC\＄）
$170 \emptyset$ LPRINT＂，＂STR\＄（ASC（MID $\$(\operatorname{REC} \$, I, 1)))$ ；
$171 \emptyset$ NEXT I ：LPRINT ：LPRINT ：LPRINT ：LPRINT ：RETURN $172 \emptyset$
$173 \varnothing$＇Subroutine to input desired character code．
$174 \varnothing$ LOCATE 23，5
$175 \emptyset$ INPUT＂Enter ASCII code（33－126 OR 160－254）－－＞＂； AS
$176 \emptyset$ GOSUB $2 \emptyset 1 \emptyset$
$177 \emptyset$ IF AS 〈 33 OR AS 〉 254 THEN BEEP ：GOTO $174 \varnothing$
$178 \emptyset$ IF AS 〈 $16 \emptyset$ AND AS 〉 126 THEN BEEP ：GOTO $174 \emptyset$
$181 \emptyset$ GOSUB $182 \emptyset:$ RETURN
$182 \emptyset$
$183 \varnothing$＇Subroutine to display header．
1840 LOCATE 1，1 ：PRINT＂ASCII CODE＝＂AS ；
1850 PRINT＂（＂CHR\＄（AS AND \＆H7F）；
1860 IF AS＞ 127 THEN PRINT＂＋128＂；
$187 \emptyset$ PRINT＂）＂；
$188 \emptyset$ LOCATE 1，3Ø ：PRINT＂DESCENDER＝＂DESC ；

```
190\emptyset LOCATE 3,1\emptyset : PRINT STRING$(33, " ") ;
191\emptyset LOCATE 3,2 : PRINT "WIDTH : " STRING$(PROWID*3,
 "*") ;
1920 RETURN
1930
1940 'Subroutine to clear current character.
195\emptyset PROWID = 11 : DESC = }
196\varnothing FOR H = 1 TO 11 : MM(H) = \varnothing : NEXT H
197\varnothing GOSUB 41\varnothing : RETURN
1980
1990 'Subroutine to perform a ROM copy.
20\emptyset\emptyset LPRINT CHR$(27) "*" CHR$(\emptyset) ; : RETURN
2ø1\varnothing '
2\emptyset2\emptyset 'Subroutine to erase query message.
2030 LOCATE 23,5 :PRINT STRING$(70," ") ;
2040 RETURN
2050
2060 'Subroutine to build command string.
2070 REC$ = CHR$(27) + "*" + CHR$(1)
2\emptyset8\emptyset REC$ = REC$ + CHR$(AS) + CHR$(DESC*16 + PROWID)
2\emptyset9\emptyset FOR I = 1 TO 11 : REC$ = REC$ + CHR$(MM(I)) : NEXT
 I
21\emptyset\emptyset RETURN
```


## Summary

## Control code

## Function

〈ESC〉＂＊＂CHR\＄（1）n1 n2 m1 ．．．m11
Defines download character into RAM
〈ESC〉＂＊＂CHR\＄（0） Copies fonts in ROM into download RAM
〈ESC〉＇X＂CHR\＄（1）Selects the download character set and uses proportional spacing
〈ESC〉＂X＂CHR\＄（0）Cancels proportional download charac－ ter set
〈ESC〉＂\＄＂CHR\＄（1）Selects the download character set and uses normal spacing
〈ESC〉＂\＄＂CHR\＄（0）Cancels normal download character set


Chapter 12

## Printing With Dot Graphics

Subjects covered in this chapter include:

- Radix's bit image graphics capabilities
- Printing a pre-defined shape
- Plotting a calculated shape
- High resolution graphics

In Chapter 11 you were introduced to a form of computer graphics; you were able to actually define characters dot by dot. In this chapter you'll learn to use the same principles to make Radix print whole pages of dot graphics! We'll show you how to use dot graphics to create "super download characters." In addition, you'll see how your Radix printer can be used as a graphics plotter. This can have some practical business applications as well as create some terrific computer art!

## Comparing Dot Graphics with Download Characters

A good understanding of dot graphics requires an understanding of how dot matrix printers work; you may want to review the first few pages of Chapter 11. The principles for dot graphics are the same as those for download characters.

There are some differences in the way they are implemented however. While download commands can be used to define a character between four and eleven columns of dots wide, dot graphics commands can be used to define a shape as narrow as one column of dots wide or as wide as 3264 dots on a Radix-15!

There is no "descender data" with dot graphics; graphics images are always printed with the top seven or eight pins of the print head, depending on whether you have a 7 -bit or 8 -bit interface (if you're not sure which type of interface your computer has, check the appendix for your computer).

So when do you use graphics and when do you use download characters? Practically anything you can do with graphics you can do with download characters, and vice versa. A clever programmer could actually plot a mathematical curve using download characters or use strings of graphics data as userdefined characters. But why do it the hard way? There are several instances when dot graphics is clearly the best way to approach the problem:

- If the graphic image to be printed is wider than 11 dots or higher than 7 dots
- If an image is to be printed just one time, as opposed to a frequently used "text" character
- If you want higher resolution (Radix can print as many as 240 dots per inch in dot graphics mode; text mode, which includes download characters, prints 60 dots per inch)


## Using the Dot Graphics Commands

The command to print normal density ( 60 dots per inch horizontal; $\mathbf{7 2}$ dots per inch vertical) dot graphics uses this format:

Just like many of the other codes you have learned, the command starts with an escape sequence ( $\langle E S C\rangle$ " $K$ " in this case). But unlike Radix's other codes there can be any number of graphics data bytes following the command. That's where $n 1$ and $n 2$ come in; they are used to tell Radix how many bytes of graphics data to expect.

## Specifying the number of columns of dots

To figure the values of $n 1$ and $n 2$, you'll need to figure out how wide your graphic image will be (remember that there are 60 columns of dots per inch in normal density). Then comes the fun part: converting one number (the number of columns of dots) into two! Why is it necessary to use two numbers to tell Radix the number of graphics codes to expect? Because the largest number we can send in one byte (that's what the BASIC CHR\$( ) function sends: one byte) is 255 . And with normal density graphics it's possible to have a graphics image as wide as 480 dots on Radix-10 or 816 dots on Radix-15. So to figure out how many columns of graphics data to expect, Radix multiplies n2 by 256 and adds the value of $n 1$ to the product. If you divide the number of columns by 256 , then $n 2$ is the quotient and $n 1$ is the remainder (why not let your computer figure it out for you: if the number of columns is assigned to variable X , then $\mathrm{N} 1=\mathrm{X}$ MOD 256 and $\mathrm{N} 2=\mathrm{INT}(\mathrm{X} /$ 256)). Table 12-1 might make things even easier.

Table 12-1
Calculating $n 1$ and n2

| If the number of columns, <br> x, ranges from: | then $\mathbf{n 1}$ is: | and $\mathbf{n}$ 2 is: |
| :---: | :---: | :---: |
| 1 to 255 | x | 0 |
| 256 to 511 | $\mathrm{x}-256$ | 1 |
| 512 to 767 | $\mathrm{x}-512$ | 2 |
| 768 to 1023 | $\mathrm{x}-768$ | 3 |
| 1024 to 1279 | $\mathrm{x}-1024$ | 4 |
| 1280 to 1535 | $\mathrm{x}-1280$ | 5 |
| 1536 to 1791 | $\mathrm{x}-1536$ | 6 |
| 1792 to 2047 | $\mathrm{x}-1792$ | 7 |
| 2048 to 2303 | $\mathrm{x}-2048$ | 8 |
| 2304 to 2559 | $\mathrm{x}-2304$ | 9 |
| 2560 to 2815 | $\mathrm{x}-2560$ | 10 |
| 2816 to 3071 | $\mathrm{x}-2816$ | 11 |
| 3072 to 3264 | $x-3072$ | 12 |
|  |  |  |

## Specifying the graphics data

Now that we've told Radix how much data to expect, we better figure out how to send that information! Just as you do with download characters, with dot graphics you have control over the firing of every single pin on Radix's print head. In Figure 12-1, you can see that we've labeled each pin on the print head with a number, as we did with download characters (you should note one important difference: this time the top pin has the highest value; for download character definitions it is the bottom pin). And specifying pins to fire is done in the same way: to fire the second pin from the top, for instance, send a CHR\$(64). Firing several pins at once is done in a similar fashion. For example, to print the first, third, and fourth dots, add their values $(128+32+16)$ to send this total: CHR\$(176). This is one byte of graphics data; it would replace $m 1$ in our format statement on page 140.


Figure 12-1. Starting with the most significant bit at the top, each pin of the print head is assigned a value which is a power of two. Note that for 7-bit computers, the top pin has a value of 64, and the bottom two pins are unused.

A short program should demonstrate how to implement the graphics command. The program below gave us this printout:


```
40 OPEN "LPT1:" AS #1 : WIDTH #1,255
50 PRINT #1,CHR$(27) "K" CHR$(WID MOD 256)
 CHR$(INT(WID/256)) ;
6\varnothing FOR I = \emptyset TO WID-1
7\emptyset PRINT #1,CHR$(2^INT((1+SIN(I*PI/32))*3.5+.5)) ;
8 0 ~ N E X T ~ I ~
90 LPRINT
1ø\emptyset CLOSE #1
```

In line 50 we've selected normal density graphics and said that 100 characters of graphics data would follow. The loop between lines 60 and 80 is repeated to plot 100 points along a curve. This is an example of plotting a very simple mathematical function (a sine wave) to create a design. Later in this chapter we'll show something more complex. The mathematical concepts (such as sine and pi) demonstrated here are not important; you don't have to be a math whiz to use Radix's graphics.

## Combining text and graphics

It's also possible to mix text and graphics in one line. This can be useful for labeling charts or graphs, or even inserting fancy graphics in text. Try adding these lines to our program:

45 PRINT \#1,"WOW!" ;
85 PRINT \#1,"This is great!" ;

Now if you run the program you should get a printout that looks like this:

WOW!


But there is one thing to be careful of: all graphics data must print on the same line. The graphics command is turned off at the end of each line, even if you have specified that more graphics codes follow. To see what we mean, change line 30 to plot 1000 points and run the program.

30 WID $=10 \not \emptyset \emptyset$


This will make the sine wave pattern long enough to go off the page.

As you can see, Radix printed graphics up to the end of the line, then ignored the rest of the graphics data and returned to normal text on the next line.

## Printing a Design or Logo

Since you control the firing of every pin, you can print nearly anything with Radix that you can draw (and probably better, if you're like most computer users!). This can be used for creating "computer art" or drawing maps. Or, as we'll show you here, you can use dot graphics to print your logo at the top of each letter you print.

Designing an image to print with dot graphics is much like designing download characters. The best way to start is to lay out your image on graph paper. Since you can print eight rows (seven with a 7 -bit interface) of dots with each pass of the print head, draw a heavy horizontal line every eight rows on your graph paper. And it may be helpful to write the dot values (128, 64, 32, etc.) down the left side of each row. Then after you've filled in the "dots" that you want to print, it's time to get out the old calculator again! Just as you did with download characters, add up the values of each column of dots; this makes up one byte.

In the program below, we've taken the logo graphics information and put it into BASIC DATA statements. The program itself is short and simple. The loop starting at line 100 reads the data statements into a string array variable called LOGO\$. In line 170 we change the line spacing to $8 / 72$ inch so that the lines of graphics data will connect vertically. The actual printing is done in the loop between lines 180 and 210; line 190 sends the graphics control code to Radix and line 200 sends one line of graphics data.

The printout from the program is shown right below the program.


## S <br> 

Figure 12-2. By laying out the logo on graph paper, you can calculate all of the graphics data.

```
10 'Prints S&S logo.
2\emptyset LINE.8$ = CHR$(27)+CHR$(65)+CHR$(8)
30}\mathrm{ 'Set line spacing to 1/6"
40 LINE.12$ = CHR$(27)+CHR$(5\emptyset)
50 'Select dot graphics
60 GRAPHIC$ = CHR$(27)+CHR$(75)
70 DIM LOGO$(4)
8\emptyset WIDTH "LPT1:",255
90 ' READ DATA
100 FOR ROW = 1 TO 4
11\emptyset FOR COLUMN = 1 TO 1\emptyset\emptyset
12\emptyset READ P
13\emptyset LOGO$(ROW) = LOGO$(ROW) + CHR$(P)
14\varnothing NEXT COLUMN
150 NEXT ROW
160 ' PRINT LOGO
17\emptyset LPRINT LINE.8$;
18\emptyset FOR ROW = 1 TO 4
19\emptyset LPRINT GRAPHIC$;CHR$(1\varnothing\emptyset);CHR$(\emptyset);
2g\emptyset LPRINT LOGO$(ROW)
210 NEXT ROW
```

$22 \emptyset$ LPRINT LINE. $12 \$$
230 'ROW 1
$24 \emptyset$ DATA $\varnothing, \emptyset, \emptyset, \emptyset, 1,3,7,7,7,15$
250 DATA $14,14,14,14,14,7,7,3,3,15$
$26 \emptyset$ DATA $15,15, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$
$27 \emptyset$ DATA $\emptyset, 1,3,3,7,7,15,14,14,14$
$28 \emptyset$ DATA $14,15,7,7,7,3, \varnothing, \varnothing, \varnothing, \varnothing$
$29 \emptyset$ DATA $\varnothing, \varnothing, \varnothing, \emptyset, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing$
$3 \emptyset \emptyset$ DATA $\varnothing, \varnothing, \varnothing, \emptyset, \varnothing, \emptyset, \emptyset, \emptyset, \varnothing, \emptyset$
$31 \emptyset$ DATA $\emptyset, \emptyset, \emptyset, \emptyset, 1,3,7,7,7,15$
$32 \emptyset$ DATA $14,14,14,14,14,7,7,3,3,15$
$33 \emptyset$ DATA $15,15, \varnothing, \emptyset, \emptyset, \varnothing, \varnothing, \emptyset, \varnothing, \varnothing$
$34 \emptyset$ ' ROW 2
$35 \emptyset$ DATA $\emptyset, \emptyset, 6 \emptyset, 255,255,255,255,255,143,15$
360 DATA 7,7,7,7,3,3,3,131,193,241
$37 \emptyset$ DATA $24 \varnothing, 24 \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, \varnothing, 1$
380 DATA $121,253,253,255,255,255,143,7,7,7$
390 DATA $31,253,252,248,248,240,192, \varnothing, 7,15$
$4 \emptyset \emptyset$ DATA $31,31,15,7,3, \emptyset, \emptyset, \varnothing, \varnothing, \emptyset$
$41 \emptyset$ DATA $\varnothing, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \varnothing, \emptyset, \emptyset, \varnothing$
$42 \emptyset$ DATA $\emptyset, \emptyset, 6 \emptyset, 255,255,255,255,255,143,15$
430 DATA $7,7,7,7,3,3,3,131,193,241$
$44 \emptyset$ DATA $24 \varnothing, 24 \varnothing, \emptyset, \varnothing, \varnothing, \emptyset, \varnothing, \varnothing, \varnothing, \varnothing$
450 'ROW 3
$46 \emptyset$ DATA $\emptyset, 31,31,3,129,128,192,192,192,192$
$47 \emptyset$ DATA 192,224,224,224,224,240,255,255,255,255
$48 \emptyset$ DATA $255,127, \emptyset, \emptyset, \emptyset, \emptyset, 63,127,255,255$
$49 \emptyset$ DATA $255,255,193,128,128,128,128,192,224,24 \varnothing$
$50 \emptyset$ DATA $252,255,255,255,127,63,31,7,7,31$
$51 \emptyset$ DATA $254,252,248,224,128, \varnothing, \emptyset, 3,7,7$
$52 \emptyset$ DATA $7,3, \emptyset, \emptyset, \varnothing, \varnothing, \varnothing, \varnothing, \emptyset, \varnothing$
$53 \emptyset$ DATA $\emptyset, 31,31,3,129,128,192,192,192,192$
$54 \emptyset$ DATA $192,224,224,224,224,24 \emptyset, 255,255,255,255$
$55 \emptyset$ DATA $255,127, \varnothing, \varnothing, \emptyset, \varnothing, \varnothing, \emptyset, \varnothing, \varnothing$
560 'ROW 4
$57 \emptyset$ DATA $\emptyset, 248,248,24 \emptyset, 224,224,112,112,56,56$
$58 \emptyset$ DATA $56,56,56,12 \emptyset, 12 \emptyset, 24 \emptyset, 24 \emptyset, 224,224,192$
$59 \varnothing$ DATA $128, \varnothing, \varnothing, \emptyset, \varnothing, \varnothing, 192,224,24 \emptyset, 24 \emptyset$
$60 \emptyset$ DATA $24 \emptyset, 248,248,248,12 \emptyset, 12 \emptyset, 56,56,56,56$
610 DATA $48,112,224,224,224,224,24 \emptyset, 24 \emptyset, 248,248$
$62 \emptyset$ DATA $12 \emptyset, 12 \emptyset, 56,56,56,56,12 \emptyset, 24 \emptyset, 224,224$
$63 \emptyset$ DATA $192,128, \emptyset, \emptyset, \varnothing, \emptyset, \varnothing, \emptyset, \varnothing, \varnothing$
$64 \emptyset$ DATA $\varnothing, 248,248,24 \varnothing, 224,224,112,112,56,56$

650 DATA $56,56,56,12 \emptyset, 12 \emptyset, 24 \emptyset, 24 \emptyset, 224,224,192$
$66 \emptyset$ DATA $128, \emptyset, \emptyset, \varnothing, \emptyset, \emptyset, \emptyset, \varnothing, \emptyset, \varnothing$

## S\&S

## Plotting with Radix

This section of the manual gets into more serious BASIC programming just because it's required in order to have the computer act as a plotter driver. Don't be intimidated; while it's beyond the scope of this manual to teach BASIC, if you try the examples and take it slowly you should be doing some fancy plotting of your own before you know it.

If designing and calculating dot graphics images by laying them out on graph paper seems too tedious to you, then let the computer do the work for you! With your computer doing the calculations and Radix plotting the output, you can come up with some terrific business graphs, charts, and mathematical function plots.

The best way to do this is to set up an array in memory. This is your "graph paper." The first thing to do is to determine how big you want your output to be; this will determine the size of your array. (If you have grandiose plans to fill an entire page with plotter output, you better have lots of memory in your computer. With 60 dots per inch horizontally and 72 dots per inch vertically, it takes at least 540 bytes of memory for each square inch of plotted area. That doesn't sound so bad-but an area 8 inches square requires over 32 K !)

Your array should be two-dimensional (just like graph paper) where one dimension will be the number of columns of dots and the other dimension is the number of printing lines (remember that you can have up to eight rows of dots per printed line).

Here's a program that will use calculated-shape graphics to plot a circle. As you'll see, by changing a few lines it can be used to plot virtually any shape.

30 'Set program constants.
$40 \mathrm{MAXCOL} \%=75 \quad:$ MAXROW\% $=14$

```
50 DIM BIT%(MAXCOL%,MAXROW%)
60 MASK%(1) = 64 : MASK%(4) = 8
7\varnothing MASK%(2) = 32 : MASK%(5) = 4
80 MASK%(3) = 16 : MASK%(6) = 2
90 LX = 2\emptyset : LY = 2\emptyset
100 LXFAC = 72/LX : LYFAC = 87/LY
110 '
12\emptyset 'Plot curve.
130 GOSUB 60\emptyset
140'
150 'Send bit image map to printer.
160 LPRINT CHR$(27) "A" CHR$(6)
17\emptyset FOR ROW% = \emptyset TO MAXROW%
180 A$ = ""
19\varnothing LPRINT CHR$(27) "K" CHR$(MAXCOL%) CHR$(}\varnothing\mathrm{);
200 FOR COL% = 1 TO MAXCOL%
210 A$ = A$ + CHR$(BIT%(COL%,ROW%))
220 NEXT COL%
23\emptyset LPRINT A$ " "
24\varnothing NEXT ROW%
250 LPRINT CHR$(27) "2"
260 END
270
28\emptyset 'Subroutine to draw a line from X1,Y1 to X2,Y2.
290'
300 XL = X2 - X1 : YL = Y2 - Y1
310NX = ABS(XL*LXFAC) : NY = ABS(YL*LYFAC)
32\emptyset IF NX < NY THEN NX = NY
330 NS% = INT(NX+1)
340 DX = XL/NS% : DY = YL/NS%
350 FOR I% = 1 TO NS%
360 X1 = X1 + DX : Y1 = Y1 + DY
370 GOSUB 40\emptyset
380 NEXT I%
390 RETURN
400 '
410 'Subroutine to plot a point at X1,Y1.
420
430 XX = X1 * LXFAC : YY = Y1 * LYFAC
440 COL% = INT(XX) + 1
450 ROW% = INT(YY/6)
46\emptyset XIT% = INT(YY - ROW% * 6)+1
47\emptyset BIT%(COL%,ROW%) = BIT%(COL%,ROW%) OR MASK%(XIT%)
4 8 \| ~ R E T U R N
```

```
6 0 0
610 ' Subroutine to plot a circle
62ø
630 RAD = c,
640 X1 = 19 : Y1 = 10
650 FOR ANG% = \emptyset TO 36\emptyset STEP 1\varnothing
660 RANG = ANG%*6.28/36\emptyset
67\varnothing X2 = RAD*COS(RANG)+1\emptyset : Y2 = RAD*SIN(RANG)+1\emptyset
6 8 0 \text { GOSUB 27ø}
690 NEXT ANG%
7 9 0 \text { RETURN}
```


## How the program works

In the program above, we've created an array called BIT\%, which is dimensioned in line 50 . You'll note that instead of

using numeric constants to dimension the array, we used the variables MAXCOL $\%$ and MAXROW\%. This way, if your computer has enough memory and you want to plot a larger image, all you need to change are the values in line 40. The array MASK\% contains the values of the dots. (In order to make this program run on the most computers, we're using only six pins for graphics. With many computers, you can use all eight available pins.) In lines 90 and 100 we've defined some other variables you'll be interested in: LX, LXFAC, LY, and LYFAC are used as scaling factors. By changing these values, you can change the size of your printed image or even distort it (you can, for example, make our circle print as an ellipse). Experiment a little bit!

The main calculations for plotting the image are done in the subroutine starting at program line 600 . This is where you put the formulas that you want to plot. By changing just the lines after 600 (with some creative mathematics!) you can plot any functionlimited only by your imagination. Some examples are shown at the end of this section.

What the program section starting at line 600 actually does is to calculate starting and ending points for a line (in our circle the "lines" are very short-sometimes the starting and ending points are the same). The coordinates of the starting point of the line are assigned to variables X1 and Y1. The line ends at point X2,Y2. When these coordinates have been calculated, a subroutine call is made to line 270. This subroutine calculates the coordinates of individual points along that line.

After these coordinates have been determined, the subroutine at line 400 is called. This routine turns "on" an individual dot in our array called BIT\%. (Keep in mind that no printing has been done yet; the computer is still drawing the image on its "graph paper" in memory.) The way an individual dot is turned on is using the logical OR function in line 470.

When all the points have been plotted in memory, printing begins at line 150 . We first set the line spacing to $6 / 72$ inch using the 〈ESC〉 " $A$ " command. This is so that there are no gaps between rows of dots. Then the loop from line 170 to line 240 prints the dot graphics image one line (which is six dots high) at a time. The variable $\mathrm{A} \$$ is used to build a string of all the columns of BIT\% in a given row.

As you can see, by taking the program in small pieces and analyzing it, graphics programming does not have to be difficult. If you want to try some other plots, try these (replace lines after 600 with the lines below). The printouts from each program are shown below the listing.

```
600
610 'Subroutine to plot a star.
620 '
63\emptyset RAD = 9
64\emptyset FOR ANG% = \emptyset TO 36\emptyset STEP 45
65\emptyset RANG = ANG% * 3.14159 / 18\emptyset
660 RANG2 = (ANG% + 135)* 3.14159 / 18\emptyset
670 X1 = RAD * COS(RANG) + 10
68\emptyset Y1 = RAD * SIN(RANG) + 10
690 X2 = RAD * COS(RANG2) + 10
70\emptyset Y2 = RAD * SIN(RANG2) + 10
71\varnothing GOSUB 27\varnothing
72\emptyset NEXT ANG%
730 RETURN
```



600
610 'Subroutine to plot a sine wave.
620
$63 \emptyset \mathrm{X} 1=\varnothing: \mathrm{Y} 1=1 \emptyset: \mathrm{X} 2=2 \emptyset: \mathrm{Y} 2=1 \varnothing$
$64 \emptyset$ GOSUB $27 \emptyset$
$65 \emptyset \mathrm{X} 1=1 \emptyset: \mathrm{Y} 1=\emptyset: \mathrm{X} 2=1 \emptyset: \mathrm{Y} 2=2 \emptyset$
660 GOSUB 270
$67 \emptyset \mathrm{X1}=\varnothing: \mathrm{Y} 1=1 \emptyset$
$68 \emptyset$ FOR X2 $=\emptyset$ TO $2 \emptyset$ STEP .2
$69 \emptyset \mathrm{Y} 2=1 \emptyset-9 * \operatorname{SIN}(3.14159 * \mathrm{X} 2 / 1 \emptyset):$ GOSUB $27 \emptyset$
700 NEXT X2
710 RETURN


## Using Radix for business graphics

You don't have to be a mathematician, scientist, or computer hacker/artist to use Radix's graphics capabilities. It can be used for business graphics too-line graphs, bar charts, pie charts, and more! There are many commercially available graphics programs that support Radix's graphics. And, of course, you can write your own. To get you started, we've written a program that prints a pie chart. Here it is:

10 'Program to print a piechart on the RADIX.
$2 \emptyset^{\prime}$
30 'Initialize program constants.
$4 \emptyset \mathrm{ESC} \$=\operatorname{CHR} \$(27): \mathrm{LF} \$=\operatorname{CHR} \$(1 \varnothing)$
$5 \emptyset \mathrm{FF} \$=\operatorname{CHR} \$(12) \quad: \operatorname{VTAB} \$=\operatorname{CHR} \$(11)$
$6 \emptyset \operatorname{REVFF} \$=\mathrm{ESC} \$+\mathrm{FF} \$$
$7 \emptyset$ 'Emphasized \& expanded modes.
$8 \emptyset$ TITLE. $\mathrm{ON} \$=\mathrm{ESC} \$+\mathrm{EE}$ + $\mathrm{ESC} \$+" \mathrm{~W} "+\operatorname{CHR} \$(1)$
$9 \emptyset$ TITLE.OFF $\$=\mathrm{ESC} \$+$ "F" $+\mathrm{ESC} \$+$ "W" $+\mathrm{CHR} \$(\varnothing)$
$10 \emptyset$ OPEN "LPT1:" AS \#1 : WIDTH \#1,255
$11 \varnothing$ DIM BIT\% $(190,36)$, A\$ $(36)$, PCT\% (25)
$12 \emptyset$ DIM TEXT\$(48),PIECETEXT\$(25)
$13 \emptyset \operatorname{MASK} \%(1)=64: \operatorname{MASK} \%(4)=8$
$14 \varnothing$ MASK\% (2) $=32 \quad: \operatorname{MASK} \%(5)=4$
$15 \emptyset \operatorname{MASK} \%(3)=16 \quad: \operatorname{MASK} \%(6)=2$
$16 \emptyset \mathrm{LX}=2 \emptyset \quad: L Y=2 \emptyset$
$17 \emptyset$ LXFAC $=190 / L X \quad:$ LYFAC $=216 / L Y$
$18 \emptyset$ FOR $I=\emptyset \mathrm{TO} 48$
190 TEXT (I) $=$ SPACE $\$(79)$
$2 \not 00$ NEXT I
210 GOSUB 1040
$22 \emptyset$
230 ' Plot curve
$24 \varnothing \mathrm{RAD}=9$
$250 \mathrm{X1}=19 \quad: \mathrm{Y} 1=10$
$27 \emptyset$ FOR ANG\% $=\varnothing$ TO $36 \emptyset$ STEP 12
280 RANG $=$ ANG\%*6.28/36
$29 \emptyset \mathrm{X} 2=\mathrm{RAD} * \operatorname{COS}(\mathrm{RANG})+1 \emptyset: \mathrm{Y} 2=\mathrm{RAD} * \operatorname{SIN}(\mathrm{RANG})+1 \emptyset$
390 GOSUB $64 \varnothing$
310 NEXT ANG\%
$32 \emptyset$ FOR PIECE\% = 1 TO NUMBER.PIECES\%
$33 \emptyset \mathrm{X} 1=1 \emptyset \quad: Y 1=1 \emptyset$
$34 \emptyset$ TOTAL.PCT\%=TOTAL.PCT\%+PCT\% (PIECE\%)
$35 \emptyset$ ANG\% $=36 \emptyset * T O T A L . P C T \% * . ~ .01$
$36 \emptyset$ RANG $=$ ANG\%*6.28/36 0
$37 \emptyset \mathrm{X} 2=\mathrm{RAD} * \operatorname{COS}(\mathrm{RANG})+1 \emptyset: \mathrm{Y} 2=\mathrm{RAD} * \operatorname{SIN}(\mathrm{RANG})+1 \emptyset$
$38 \emptyset$ GOSUB $64 \varnothing$
390 GOSUB $87 \emptyset$
400 NEXT PIECE\%
410
$42 \emptyset$ 'Send chart title to printer.
440 LPRINT ESC $\$$ "A" CHR\$(6) REVFF\$ VTAB\$ ;
$45 \emptyset$ LPRINT TITLE. $0 N \$$ SPACE $\$(2 \emptyset$-LEN(TITLE $\$) / 2)$;

```
460 LPRINT TITLE$ TITLE.OFF$
47\varnothing LPRINT VTAB$ VTAB$;
48\varnothing FOR I = }\emptyset\mathrm{ TO 48
490 LPRINT TEXT$(I) : NEXT I
500 '
510 'Send bit image map to printer.
52\emptyset LPRINT REVFF$ VTAB$ VTAB$ VTAB$;
530 LPRINT LF$ LF$ LF$ LF$ LF$ LF$
540 FOR ROW% = \emptyset TO 35
5 5 0 \text { LPRINT " " ;}
560 LPRINT ESC$ "K" CHR$(190) CHR$(}0)
570 FOR COL% = 1 TO 190
58\emptyset PRINT#1, CHR$(BIT%(COL%,ROW%)) ; : NEXT
590 PRINT#1, LF$
60\emptyset PRINT CHR$(176) CHR$(176);
610 NEXT ROW%
620 LPRINT ESC$ "2" FF$
6 3 0 \text { END}
640'
650 'Subroutine to draw a line from X1,Y1 to X2,Y2.
600 '
670 XL = X2 - X1 : YL = Y2 - Y1
680 NX = ABS(XL*LXFAC) : NY = ABS(YL*LYFAC)
690 IF NX (NY THEN NX = NY
70\emptyset NS% = INT(NX+1)
710 DX = XL/NS% : DY = YL/NS%
720 FOR I% = 1 TO NS%
730 X1 = X1 + DX : Y1 = Y1 + DY
74\emptyset GOSUB 78\emptyset
750 NEXT I%
76\emptyset PRINT CHR$(29) CHR$(205) CHR$(205) CHR$(175);
77Ø RETURN
780
790 'Subroutine to plot a point at X1,Y1.
800 '
810 XX = X1 * LXFAC : YY = Y1 * LYFAC
82\emptyset COL% = INT(XX) + 1
830 ROW% = INT(YY/6)
84\emptyset XIT% = INT(YY - ROW% * 6)+1
850 BIT%(COL%,ROW%) = BIT%(COL%,ROW%) OR MASK%(XIT%)
860 RETURN
870
88\emptyset 'Subroutine to arrange field descriptions.
890
```

```
90\emptyset MIDANG%=(ANG%+PREVANG%)/2
91\emptyset RANG = MIDANG%*6.28/36\emptyset
92\emptyset X3 = INT(24*SIN(RANG)+.5): Y3 = INT(2\emptyset*COS(RANG))
930 X4 = 24 + X3 : Y4 = 42 + Y3
94\emptyset IF (MIDANG% > 7\emptyset AND MIDANG% (11\emptyset) THEN 99\emptyset
950 IF (MIDANG% > 250 AND MIDANG% (290) THEN 990
96\emptyset IF MIDANG%>27\emptyset OR MIDANG%<9\emptyset THEN 101\emptyset
97\emptyset MID$(TEXT$(X4),Y4-LEN(PIECETEXT$(PIECE%)))
 =PIECETEXT$(PIECE%)
980 GOTO 1\emptyset2\emptyset
990 MID$(TEXT$(X4),Y4-LEN(PIECETEXT$(PIECE%))/2)
 =PIECETEXT$(PIECE%)
1\emptyset\emptyset\emptyset GOTO 1\emptyset2\emptyset
1010 MID$(TEXT$(X4),Y4) = PIECETEXT$(PIECE%)
102\emptyset PREVANG%=ANG%
1030 RETURN
1040 '
1050 'Subroutine to query user for data.
1060 '
107\emptyset CLS: PRINT : PRINT : PRINT :
1080 INPUT "ENTER TITLE FOR CHART: ",TITLE$
1090 IF LEN(TITLE$) <= 40 THEN 111\emptyset
11\emptyset\emptyset PRINT "TITLE TOO LONG - 4\emptyset CHAR. MAX" : GOTO 108\emptyset
111\emptyset AMT.SOFAR%=\emptyset : AMT.LEFT%=1\emptyset\emptyset
1120 FOR I=1 TO 24
1130 CLS
1140 PRINT " ENTER PARAMETERS FOR
 PIECHART"
115\emptyset PRINT " TOTAL SO FAR : ";
116\emptyset PRINT USING "###";AMT.SOFAR%
117\emptyset PRINT " TOTAL REMAINING: ";
118\emptyset PRINT USING "###";AMT.LEFT%
119\emptyset PRINT :PRINT :PRINT :PRINT
120\emptyset INPUT "ENTER PERCENTAGE FOR FIELD: ",PCT%(I)
121\emptyset IF PCT%(I)>AMT.LEFT% OR PCT%(I)=\varnothing THEN
 PCT%(I)=AMT.LEFT%
122\emptyset AMT.LEFT%=AMT.LEFT%-PCT%(I)
123\emptyset AMT.SOFAR%=AMT .SOFAR%+PCT%(I)
1240 PRINT :PRINT
125\emptyset INPUT "ENTER DESCRIPTION OF FIELD:
 ",PIECETEXT$(I)
1260 IF LEN(PIECETEXT$(I))<16 THEN 128\emptyset
1270 PRINT "FIELD TOO LONG - 15 CHAR. MAX": GOTO 125\emptyset
128\emptyset IF AMT.IEFT%=\emptyset THEN 13\emptyset\emptyset
```

1290 NEXT I
$130 \emptyset$ NUMBER．PIECES\％＝$=$
$131 \emptyset$ IF NUMBER．PIECES\％＝1 THEN $111 \emptyset$
1320 CLS
1330 RETURN

You should recognize many sections of code from the plotting program．We＇ve expanded on that program framework to include routines for inputting data to be graphed and placing labels next to the pie chart．We＇ve used a feature of Radix to simplify pro－ gramming and speed up the program：a reverse form feed．The program calculates locations and prints all of the labels．When the labels are done，a reverse form feed to the top of the sheet prepares Radix for the graphics data．

The output from our program is shown below．

Nationai League Wmat Attendance－1アプ


Cincinnati

## High Resolution Graphics

Up until now ail of the dot graphics printing we have done has been with Radix's normal density mode. This can give you some pretty sharp images at great speed. Sometimes though, you may want to create an image with even higher resolution. Radix has four graphics modes you can use; they're summarized in Table 12-2.

Table 12-2
Dot graphics commands

| Function | Control code |
| :--- | :--- |
| Normal density (60 dots/inch) | $\langle E S C\rangle$ "K" 1 1 n2 m1 m2 $\ldots$ |
| Double density (120 dots/inch) | $\langle E S C\rangle$ "L" n1 n2 m1 m2 $\ldots$ |
| Double density/double speed | $\langle E S C\rangle$ "y" n1 n2 m1 m2 ... |
| Quadruple density (240 dots/inch) | $\langle E S C\rangle " z " n 1 \mathrm{n} 2 \mathrm{~m} 1 \mathrm{~m} 2 \ldots$ |

Note: If your computer does not support lowercase characters, use CHR\$(121) and CHR\$(122) for " $y$ " and " $z$ ", respectively.

The command syntax for all of the commands is the samejust as you have learned it for the 〈ESC〉 "K" (normal density) command. The number of columns to be printed is $n 1+256 * n 2$.

So what do these different modes do? On the following pages are actual size reproductions of printouts of the same image printed in each of the four different graphics modes. They were all printed using the plotting program in this chapter (with a rather complex set of formulas starting at line 600!).


Normal density graphics


Quadruple density graphics

So if quadruple density looks so great, why not use it all the time? Let's try an experiment on your printer which will show just how the different density modes work. Using the first program in this chapter, change line 50 to try each of the different modes. Just change the " $K$ " to " $L$ ", " $y$ ", and " $z$ " in turn. Your printouts should look something like this:

(ESC)"L"

(ESC)"y"


〈ESC)"z"

As you can see, the different modes seem to condense the printed image. So, to get the same image in a higher density mode, you must plot more points. This requires twice as much memory for your array, twice as much computing time, and twice as much printing time (but the results may be worth $i t!$ ).

Star's engineers have given programmers a unique shortcut for program development though-double density double speed graphics. Although this mode requires just as much memory and computing time as double density, it prints at the same speed as normal density graphics. Amazing, you say? Well, it is-until you know the secret. Every other column of dots is ignored, so the output is actually the same as normal density graphics. The advantage is that you can write and debug your programs at double speed, then change to double density graphics for terrific output.

## If You Have Problems with BASIC

You may write some graphics programs that look just right in the listing, but the printouts aren't quite what you expected. A
common problem is that the BASIC interpreter in your computer is inserting a few of its own codes. For instance, if your program generates a CHR\$(13) as valid graphics data, BASIC may follow it with a CHR\$(10). Another problem arises with certain computers that replace horizontal tabs (CHR\$(9)) with a series of spaces (CHR\$(32)). A possible solution to these problems is to not use the bottom dot (which has a value of 1). This way, you will never produce an odd number, hence, you will never have a CHR\$(13) or CHR\$(9). (This is why we used only six pins in our plotting program.)

That's one solution to one problem. You'll find more of each (with specific information for your computer) in the appropriate appendix.

## Summary

| Control code | Function |
| :--- | :--- |
| $\langle\mathrm{ESC}\rangle$ " K " $\mathrm{n} 1 \mathrm{n} 2 \mathrm{~m} 1 \mathrm{~m} 2 \ldots$ | Print $\mathrm{n} 1+256 * \mathrm{n} 2$ columns of nor- |
| mal density graphics |  |



Chapter 13

## Putting Radix to Work For You

If you've followed us this far, you've learned a lot about your Radix printer-how to use its myriad of type styles, sizes, line spacing options, character sets, margins, tabs, and more. Perhaps you've even created some download characters (maybe using the utility program in Chapter 11).

Now, as your reward (as if the knowledge of how to use all these features wasn't enough!) for reading this entire manual, we have one more utility program for you. With this program you can set many of Radix's print parameters with just a few keystrokes. No more writing a short program each time you want to change the print style to NLQ, for example. All you will need to do is type "RUN 〈return> 1100" and it's done-the program is completely menu-driven.

## Table 13-1 <br> Menus of Radix setup program



It may take a while to enter it, but we think that in the long run, this program will save you time when you want to set margins or tabs or any of Radix's other advanced features. Enjoy!

```
1\varnothing 'Program to setup RADIX printer as directed.
2\emptyset'
3\emptyset 'Initialize.
4\emptyset ESC$ = CHR$(27) : TB = 25 : DIM TBS(256)
50 OPEN "lpt1:" AS #1 : WIDTH #1, 255 : KEY OFF
60'
70 'Display MAIN menu.
8\emptyset TITLE$ = "MAIN MENU"
90 GOSUB 2290
1\emptyset\emptyset PRINT TAB(TB) "\emptyset. Exit."
11\varnothing PRINT TAB(TB) "1. Select CHARACTER SET."
12\emptyset PRINT TAB(TB) "2. Select PRINTING MODES."
130 PRINT TAB(TB) "3. Select PITCH."
14\emptyset PRINT TAB(TB) "4. Select LINE SPACING."
15\emptyset PRINT TAB(TB) "5. Set MARGINS, TABS & FORMS."
160 GOSUB 238\emptyset
17\emptyset IF S<\emptyset OR S>5 THEN BEEP : GOTO 16\emptyset
18\emptyset IF S = }\emptyset\mathrm{ THEN CLOSE #1 : CLS : END
19\emptyset ON S GOSUB 21\emptyset,48\emptyset,35\emptyset,124\emptyset,64\emptyset
2\emptyset\emptyset GOTO 6\emptyset
21\varnothing
22\emptyset 'Subroutine to display CHARACTER SET menu.
23\emptyset TITLE$ = "CHARACTER SET MENU"
24\emptyset GOSUB 229\emptyset
25\emptyset PRINT TAB(TB) "\emptyset. Return to main menu."
26\emptyset PRINT TAB(TB) "1. Select NLQ character set."
27\emptyset PRINT TAB(TB) "2. Cancel NLQ character set."
28\emptyset PRINT TAB(TB) "3. Select ITALIC character set."
290 PRINT TAB(TB) "4. Cancel ITALIC character set."
300 GOSUB 2380
31\emptyset IF S<\emptyset OR S>4 THEN BEEP : GOTO 30\emptyset
32\emptyset IF S = \emptyset THEN RETURN
33\emptyset ON S GOSUB 118\emptyset,121\emptyset,159\emptyset,162\emptyset
340 GOTO 210
350
360 'Subroutine to display PITCHES menu.
37\emptyset TITLE$ = "PITCHES MENU"
380 GOSUB 229\varnothing
```

```
390 PRINT TAB(TB) "\emptyset. Return to main menu."
4 0 0 ~ P R I N T ~ T A B (T B) ~ " 1 . ~ S e l e c t ~ P I C A ~ p i t c h . " ~
410 PRINT TAB(TB) "2. Select ELITE pitch."
42\varnothing PRINT TAB(TB) "3. Select CONDENSED pitch."
4 3 0 \text { GOSUB 238ø}
44\varnothing IF S<\emptyset OR S>3 THEN BEEP : GOTO 43\varnothing
4 5 \emptyset ~ I F ~ S ~ = ~ \emptyset ~ T H E N ~ R E T U R N
46\emptyset ON S GOSUB 82\emptyset,85\emptyset,88\emptyset
47\varnothing GOTO 35\varnothing
480'
490 'Subroutine to display PRINTING MODES menu.
50\emptyset TITLE$ = "PRINTING MODES MENU"
5 1 0 \text { GOSUB 2290}
52\emptyset PRINT TAB(TB) " }\varnothing\mathrm{ . Return to main menu."
530 PRINT TAB(TB) "1. Select EXPANDED mode."
540 PRINT TAB(TB) "2. Cancel EXPANDED mode."
550 PRINT TAB(TB) "3. Select EMPHASIZED mode."
560 PRINT TAB(TB) "4. Cancel EMPHASIZED mode."
57\emptyset PRINT TAB(TB) "5. Select DOUBLE-STRIKE mode."
58\varnothing PRINT TAB(TB) "6. Cancel DOUBLE-STRIKE mode."
590 GOSUB 2380
60\emptyset IF S<\emptyset OR S>6 THEN BEEP : GOTO 59\varnothing
61\varnothing IF S = }\varnothing\mathrm{ THEN RETURN
62\emptyset ON S GOSUB 153\emptyset,1560,217\emptyset,220\emptyset,2230,226\emptyset
6 3 \varnothing \text { GOTO 48Ø}
640 '
65\emptyset 'Subroutine to display MARGINS, TABS & FORMS menu.
66 TITLE$ = "MARGINS, TABS & FORMS MENU"
6 7 0 \text { GOSUB 2290}
68\emptyset PRINT TAB(TB) "\emptyset. Return to main menu."
690 PRINT TAB(TB) "1. Set HORIZONTAL TABS."
70\emptyset PRINT TAB(TB) "2. Set VERTICAL TABS."
710 PRINT TAB(TB) "3. Set LEFT MARGIN."
72\emptyset PRINT TAB(TB) "4. Set RIGHT MARGIN."
73\emptyset PRINT TAB(TB) "5. Set TOP MARGIN."
74\varnothing PRINT TAB(TB) "6. Set BOTTOM MARGIN."
750 PRINT TAB(TB) "7. Cancel TOP & BOTTOM MARGINS."
760 PRINT TAB(TB) "8. Set PAGE LENGTH."
770 GOSUB 238\emptyset
78\emptyset IF S<\emptyset OR S>8 THEN BEEP : GOTO 77\emptyset
79\emptyset IF S = \emptyset THEN RETURN
89\emptyset ON S GOSUB 182\emptyset,213\emptyset,91\emptyset,97\emptyset,1\varnothing3\emptyset,1090,115\emptyset,165\emptyset
81\varnothing GOTO 64ø
```

$82 \varnothing$
830 'Subroutine to select PICA pitch.
$84 \varnothing$ S\$ = ESC $\$+$ " $\mathrm{B} "+\mathrm{CHR} \$(1)$ : GOSUB $246 \emptyset$ : RETURN 850
$86 \emptyset$ 'Subroutine to select ELITE pitch.
$87 \emptyset$ S\$ = ESC $\$+$ "B" + CHR\$(2) : GOSUB $246 \emptyset:$ RETURN
880
$89 \emptyset$ 'Subroutine to select CONDENSED pitch.
990 S\$ = ESC $\$+$ "B" + CHR\$(3) : GOSUB $246 \emptyset:$ RETURN 910
920 'Subroutine to set LEFT MARGIN.
930 GOSUB $25 \varnothing 0$
940 INPUT "Enter new left margin (1-255)" ; X
950 IF X < 1 OR X > 255 THEN BEEP : GOTO 930
$96 \emptyset$ S\$ = ESC $\$+$ "M" + CHR $\$(X):$ GOSUB $246 \emptyset:$ RETURN
970
$98 \emptyset$ 'Subroutine to set right MARGIN
990 GOSUB 2500
$19 \varnothing \emptyset$ INPUT "Enter new right margin (1-255)" ; X
$1 \varnothing 1 \varnothing$ IF X < 1 OR X > 255 THEN BEEP : GOTO 99ø
$1 \varnothing 2 \emptyset \mathrm{~S} \$=\mathrm{ESC} \$+\mathrm{Q} Q \mathrm{C}+\mathrm{CHR} \$(\mathrm{X}):$ GOSUB $246 \emptyset:$ RETURN 1030
1040 'Subroutine to set TOP MARGIN.
1050 GOSUB 2500
1960 INPUT "Enter new top margin (1-16)" ; X
1070 IF X < 1 OR X 〉 16 THEN BEEP : GOTO 1050
$1080 \mathrm{~S} \$=\mathrm{ESC} \$+\mathrm{R}$ " $+\mathrm{CHR} \$(\mathrm{X}):$ GOSUB $2460:$ RETURN 1090
1100 'Subroutine to set BOTTOM MARGIN.
1110 GOSUB 250ø
$112 \emptyset$ INPUT "Enter new bottom margin (1-127)" ; X
$113 \emptyset$ IF X < 1 OR X 〉 127 THEN BEEP : GOTO 111ø
1140 S\$ = ESC\$ + "N" + CHR\$(X) : GOSUB 2460 : RETURN 1150
1160 'Subroutine to CANCEL TOP \& BOTTOM MARGINS.
$117 \emptyset$ S\$ = ESC $\$+$ " 0 " : GOSUB $246 \varnothing$ : RETURN
$118 \varnothing$
$119 \varnothing$ 'Subroutine to select NLQ character set.
1290 S\$ = ESC\$ + "B" + CHR\$(4) : GOSUB 2460 : RETURN $121 \varnothing$
$122 \emptyset$ 'Subroutine to cancel NLQ character set.
1230 S\$ = ESC $\$+$ "B" $+\operatorname{CHR} \$(5)$ : GOSUB $246 \varnothing$ : RETURN 1240

1250 'Subroutine to select LINE SPACING.
1260 TITLE $\$=$ "LINE SPACING MENU"
$127 \emptyset$ GOSUB 2290
$128 \emptyset$ PRINT TAB(TB) " $\emptyset$. Return to main menu."
$129 \varnothing$ PRINT TAB(TB) "1. Select $1 / 6$ inch line spacing."
1300 PRINT TAB(TB) "2. Select $1 / 8$ inch line spacing."
1310 PRINT TAB(TB) "3. Select 7 dot graphics spacing."
$132 \emptyset$ PRINT TAB(TB) "4. Select $n / 144$ inch spacing."
1330 GOSUB $238 \emptyset$
$134 \emptyset$ IF $S\langle\emptyset$ OR $S\rangle 4$ THEN BEEP : GOTO $133 \emptyset$
$135 \emptyset$ IF $S=\emptyset$ THEN RETURN
$136 \emptyset$ ON S GOSUB $138 \emptyset, 141 \emptyset, 144 \emptyset, 147 \emptyset$
1370 GOTO 124ø
1380
1390 'Subroutine to select $1 / 6$ inch line spacing.
$140 \emptyset \mathrm{~S} \$=\mathrm{ESC} \$+$ "2" : GOSUB $246 \emptyset$ : RETURN
$141 \varnothing{ }^{\prime}$
$142 \emptyset$ 'Subroutine to select $1 / 8$ inch line spacing.
1430 S\$ = ESC $\$+$ " $\emptyset ":$ GOSUB $246 \emptyset$ : RETURN
$1440^{\prime}$
$145 \emptyset$ 'Subroutine to select 7 dot graphics spacing.
1460 S\$ = ESC \$ + "1" : GOSUB $246 \varnothing$ : RETURN
1470 '
$148 \emptyset$ 'Subroutine to select $\mathrm{n} / 144$ inch line spacing.
1490 GOSUB 2590
1500 INPUT "Enter line space in $1 / 144$ ths of an inch"; $X$
$151 \varnothing$ IF X 〈 $\varnothing$ OR X 〉 255 THEN BEEP : GOTO $149 \varnothing$
$152 \emptyset \mathrm{~S} \$=\mathrm{ESC} \$+\mathrm{"} 3 \mathrm{l}+\mathrm{CHR} \$(\mathrm{X}):$ GOSUB $246 \emptyset:$ RETURN 1530 '
$154 \varnothing$ 'Subroutine to select EXPANDED print.
$155 \emptyset \mathrm{~S} \$=\mathrm{ESC} \$+\mathrm{W} \mid+\mathrm{CHR} \$(1):$ GOSUB $246 \emptyset:$ RETURN $1560^{\prime}$
1570 'Subroutine to cancel EXPANDED printing.
$158 \emptyset \mathrm{~S} \$=\mathrm{ESC} \$+\mathrm{W} \mid+\operatorname{CHR} \$(\varnothing):$ GOSUB $246 \emptyset:$ RETURN $1590{ }^{\prime}$
$160 \emptyset$ 'Subroutine to select ITALIC character set.
1610 S\$ = ESC\$ + "4" : GOSUB 2460 : RETURN 1620
1630 'Subroutine to cancel ITALIC character set.
1640 S\$ = ESC $\$+05 "$ : GOSUB $246 \emptyset$ : RETURN $165 \emptyset$
1660 'Subroutine to set PAGE LENGTH.
1670 GOSUB $250 \emptyset$

```
1680 PRINT "Page length in Inches or Lines (I,L)?"
1690 PRINT TAB(TB) ;
1700 A$ = INKEY$: IF A$ = "" THEN 17\emptyset0
1710 IF A$ = "I" OR A$ ="i" THEN 174\varnothing
172\emptyset IF A$ = "L" OR A$ ="I" THEN 178\emptyset
173\varnothing BEEP : GOTO 17\emptyset\emptyset
1740 INPUT "Length of page in inches (1-32)" ; X
1750 IF X < 1 OR X > 32 THEN BEEP : GOTO 167\emptyset
1760 S$ = ESC$ + "C" + CHR$(}0)+\operatorname{CHR$(X)
1770 GOSUB 2460 : RETURN
1780 INPUT "Length of page in lines (1-127)" ; X
179\emptyset IF X < 1 OR X > 127 THEN BEEP : GOTO 167\emptyset
1800 S$ = ESC$ + "C" + CHR$(X)
181\emptyset GOSUB 2460 : RETURN
182\emptyset '
183\emptyset 'Subroutine to set HORIZONTAL TABS.
1840 S$ = ESC$ + "D" : MAX = 255 : GOSUB 1850 : RETURN
1850 '
1860 'Subroutine to set tabs, either horiz or vert.
1870 GOSUB 250\emptyset
1880 PRINT "Would you like to set the tabs in"
1890 PRINT TAB(TB) "Regular intervals, or specify"
1990 PRINT TAB(TB) "each one Individually (R,I)"
1910 A$ = INKEY$: IF A$ = "" THEN 1910
1920 IF A$ = "R" OR A$ = "r" THEN 2\emptyset7\varnothing
1930 IF A$ = "I" OR A$ = "i" THEN 1950
194\varnothing BEEP : GOTO 185\emptyset
1950 PRINT : I = 2 : TBS(1) = -1
1960 PRINT TAB(TB) "Enter the list of tabs, in"
1970 PRINT TAB(TB) "ascending order. No more than" MAX
 "."
1980 PRINT TAB(TB) : INPUT "Enter a tab" ; TBS(I)
199| IF TBS(I) < }\varnothing\mathrm{ OR TBS(I) > 255 THEN 194 }
2\emptyset\emptyset\emptyset IF TBS(I) = \emptyset THEN I = 1 : GOTO 2\emptyset4\emptyset
2ø1\varnothing IF TBS(I) <= TBS(I-1) THEN 194\varnothing
202\emptyset I = I + 1 : IF I > MAX THEN 194\emptyset
2\emptyset30 GOTO 1980
2040 I = I + 1
2050 S$ = S$ + CHR$(TBS(I)) : IF TBS(I) 〈> \emptyset THEN 204\emptyset
2060 S$ = S$ + CHR$(}\varnothing):\mathrm{ GOSUB 2460 : RETURN
2070 PRINT : PRINT TAB(TB) ; : INPUT "Enter interval" ;
 X
2ø8\emptyset IF X (\emptyset OR X > 255 THEN 194\emptyset
2090 FOR I = 1 TO 255 STEP X
```

$21 \emptyset \emptyset$ MAX $=$ MAX $-1:$ IF MAX $=\emptyset$ THEN $212 \emptyset$
$211 \emptyset \mathrm{~S} \$=\mathrm{S} \$+\operatorname{CHR} \$(\mathrm{I}): \mathrm{NEXT} \mathrm{I}$
$212 \emptyset \mathrm{~S} \$=\mathrm{S} \$+\operatorname{CHR} \$(\varnothing):$ GOSUB $246 \emptyset: \operatorname{RETURN}$
$2130^{\prime}$
$214 \emptyset$ 'Subroutine to set VERTICAL TABS.
$215 \emptyset$ S\$ $=\mathrm{ESC} \$+$ "P" : MAX $=2 \emptyset:$ GOSUB $185 \emptyset$
$216 \emptyset$ RETURN
$217 \emptyset$
2180 'Subroutine to select EMPHASIZED printing.
2190 S\$ = ESC\$ + "E" : GOSUB 2460 : RETURN
$220 \square^{\prime}$
$221 \varnothing$ 'Subroutine to cancel EMPHASIZED printing.
$222 \emptyset \mathrm{~S} \$=\mathrm{ESC} \$+\mathrm{FF}$ : GOSUB $246 \emptyset:$ RETURN
$2230^{\prime}$
$224 \varnothing$ 'Subroutine to select DOUBLE-STRIKE printing.
$2250 \mathrm{~S} \$=\mathrm{ESC} \$+$ "G" : GOSUB 2460 : RETURN $226 \square^{\prime}$
$227 \varnothing$ 'Subroutine to cancel DOUBLE-STRIKE printing.
228 S\$ = ESC $\$+$ "H" : GOSUB $246 \emptyset$ : RETURN
2290
$230 \emptyset$ 'Subroutine to print a menu title.
2310 CLS
$232 \emptyset$ PRINT : PRINT : PRINT
2330 PRINT TAB(27) "--- RADIX PRINTER SETUP ---"
2340 PRINT
$235 \emptyset$ PRINT TAB((8 1 -LEN(TITLE $\$)) / 2)$ TITLE\$
2360 PRINT : PRINT
$237 \emptyset$ RETURN
$2380^{\prime}$
2390 'Subroutine to input menu selection.
2400 LOCATE 2 2,18 : PRINT "Enter selection or press P
for print sample."
$241 \emptyset$ C $\$=$ INKEY $\$$ : IF $C \$=" 1$ THEN $241 \emptyset$
2415 IF C $\$=" \mathrm{P} "$ OR $\mathrm{C} \$=\mathrm{pp}$ " THEN GOSUB $3 \emptyset \emptyset \emptyset:$ GOTO $238 \emptyset$
$242 \emptyset$ IF C\$ < " $\varnothing$ " OR C\$ 〉 "9" THEN BEEP : GOTO $241 \varnothing$
$2430 \mathrm{~S}=\mathrm{VAL}(\mathrm{C} \$)$
$244 \emptyset$ LOCATE 2 $0,18: \operatorname{PRINT} \operatorname{STRING} \$(5 \emptyset, " ")$
2450 RETURN
2460 '
$247 \varnothing$ 'Subroutine to output command string.
$248 \emptyset$ PRINT \#1, S\$ ;
2490 RETURN
25001
$251 \emptyset$ 'Subroutine to clear screen \& position cursor. $252 \emptyset$ CLS : LOCATE 1 $\emptyset, T B$ : RETURN 3090
$301 \varnothing$ ' Subroutine to print sample $302 \emptyset$ FOR I $=1$ TO 4 : FOR $J=33$ TO 126 3030 PRINT \#1, CHR $\$(\mathrm{~J})$;
$304 \varnothing$ NEXT : PRINT \#1, $\operatorname{CHR} \$(1 \varnothing)$ : NEXT $305 \emptyset$ RETURN


Chapter 14
Basic Maintenance
As almost any good mechanic will tell you, dust and heat are prime enemies of any mechanism, and Radix is no exception. The best maintenance is preventive. So, to start with, we hope you've found a clean, dust-free location with a comfortable temperature range for both you and your computer/printer system. Appendix A gives you further tips on locating Radix.

## Cleaning Radix

The second rule for long life is periodic cleaning. Both inside and outside of the case and covers respond gratefully to periodic
cleaning with a damp rag and alcohol. Do this whenever the case appears to be getting dirty, always being careful to avoid dripping alcohol on the printer mechanism.

To remove dust and paper lint from inside the tractor and printer areas, it's best to use a soft brush, but, be very, very careful not to bend or injure any electronic parts or wiring, as they are vulnerable to a heavy-handed touch.

Besides the periodic cleanings, the only other maintenance you'll likely encounter will be changing the ink ribbon cartridge, replacing a blown fuse, or replacement of the print head after a long period of use.

## Replacing the Ink Ribbon

When the printing gets too faint for comfortable reading, it's time for a new ink ribbon. By far the most convenient way is to simply replace the entire ribbon cartridge (Appendix A describes this procedure). After all, that's the purpose of the cartridge: to save time and messing with dirty ribbons.

It is possible, however, to buy a replacement ribbon and insert it yourself inside the original cartridge casing. The procedure for inserting a new ribbon into the old cartridge (not recommended for non-mechanical types!) is as follows.

1. First, obtain from your Radix dealer the correct type of ribbon "sub-cassette" (not spool-type ribbons used with some other printers).
2. Remove the ribbon cartridge from the printer by holding both ends and pulling straight up from the holder springs. (Refer to Appendix A for illustrations of installing ribbon cartridge.)
3. Pry open the cartridge cover with a thin-bladed screwdriver. Arrows in Figure 14-1 show the numerous slots for inserting a screwdriver.
4. Press hard against the end of the idler gear holder to make a gap between it and the ribbon drive gear, and remove the old ink ribbon sub-cassette. See Figure 14-2.
5. Clean out any dirt from inside and around the cartridge and around the ribbon drive gear.


Figure 14-1. Use a screwdriver to pry open the cartridge.


Figure 14-2. Replace the ribbon sub-cassette.
6. Remove the wrapping from the new ribbon sub-cassette, remove the adhesive tape attached to the joint, and insert the sub-cassette into the ribbon cassette as shown in Figure 14-2.
7. Pull out the ink ribbon and set it according to the directions shown by the arrow in Figure 14-3. It's easy for the ribbon to get twisted somewhere along its pathway. Don't let it happen!


Figure 14-3. Make sure that the ribbon is not twisted when you thread it through its path.
8. Firmly pull the idler gear towards you and guide the ribbon between the idler gear and the ribbon drive gear.
9. Remove both top and bottom of the ribbon sub-cassette.
10. Replace the ribbon cartridge top cover.
11. When you've completed the installation, mark the correct number on the silver label stuck on the right-hand side of the cartridge cover. This number indicates the number of times the ribbon has been replaced. Five replacements is the maximum, after which you should buy a complete new cartridge.

## Replacing a Fuse

How can you tell when you've blown a fuse? Well, when the printer won't operate and the power lamp on the control panel isn't lit, even though you're sure that the power switch is on and the printer is plugged in - it's likely a blown fuse.

To check the primary fuse, you start by turning the power switch off and unplugging the power cord.
Warning: There is an extreme shock hazard inside Radix. To avoid serious injury, it is important that the power cord is disconnected.

Next, remove the upper case, shown in Figure 14-4, by pulling off the platen knob. Caution: Don't twist or turn the platen knob; pull it straight off.

Then remove the fastening screws along the back side. Lift the back edge of the cover and at the same time, pull it slightly forward to release the front of the case. Lift it all the way off, being careful not to pull the wires which connect the cover to the case.

When the case is off, check Figure 13-5 for location of the primary fuse, which you'll find held by its clamps close to the power switch. The fuse is a commonly used type, with a metal strip suspended in a glass and metal case. If the strip is broken, the fuse is blown. Replace this fuse with a 3A/125V slow-blow type fuse (Bell 5MT3 or equivalent). Now reassemble Radix and test-run it. If the printer still isn't working, call on your Radix dealer/service center for help.

## Replacing the Print Head

The dot matrix print head has a remarkably long life, printing perhaps $100,000,000$ characters before it wears out. You'll know when that happens when the printout is too faint for your taste even after replacing the ink ribbon or cartridge.
Warning: The print head gets hot during operation, so let it cool off for awhile, if necessary, to avoid burning your fingers.

To replace the print head, start by turning the power switch off and unplugging the power cord.
Then, in sequence:

1. Remove the front cover and the ribbon cartridge.


Figure 14-4. After removing the screws, pull the upper case slightly forward and lift it off the printer. The primary fuse is located near the power switch.
2. Remove the two screws and washers fastening the print head.
3. While holding the print head, pull off the head cable connector from the print head.
4. Insert the head cable connector to a new print head and fasten with the same two screws and washers.


Figure 14-5. Replacement of Radix's print head is simple.
5. Apply "screw lock," (an adhesive available at hardware stores) to the heads of the screws.
Be absolutely sure that you've made a good solid connection between the print head and its cable connector, or it could cause problems.


## Appendix

## Appendix A

## Setting Up Radix

In this appendix, we'll show you how to unpack your new Radix printer, set it up in the right location, and get it ready for you to load it with paper and start printing. But first . . .

## Where Shall We Put It?

Before you do anything else, give some thought to where you'll be using your printer. Obviously, it will be somewhere near your computer. And both printer and computer will lead longer, healthier lives if they like their environment. For a congenial environment, we recommend. .

- Placing the printer on a flat surface
- Keeping it out of direct sunlight and away from heat-producing appliances
- Using it only in temperatures where you are comfortable
- Avoiding areas with a lot of dust, grease, or humidity
- Giving it "clean" electricity. Don't connect it to the same circuit as large, noise-producing motors
- Power supply voltage should be the same voltage that's specified on the identification plate - not over $10 \%$ more or less than the recommended 120 volts AC.
Warning: Extremely high or low voltage can damage your printer.


## What Have We Here?

Now let's take a look at what's in the carton. Take it slow and easy, and check each item in the box against Figure A-1. There should be exactly 9 items. One important item is the printer's warranty and registration card. Now is the time to fill it in and mail it. It's a good warranty, and you'll like the protection it gives you.


Figure A-1. Inside the carton you should have received: 1) Radix printer, 2) cut sheet guide, 3) continuous paper guide, 4) power cord, 5) platen knob, 6) spare fuse, 7) ribbon cartridge, 8) this user's manual, and 9) warranty registration card.

Let's move on to the next step . . .

## Removing the printer covers

What are covers for, really? Primarily, for two reasons: one, to keep dust and dirt away from the delicate "innards," and two, to keep the noise level down. The front cover must be on or Radix will not print. So, you should keep the covers on all the time, except when setting the ink ribbon cartridge in place, loading paper, or making other adjustments when the cover might be in the way.

Radix has two covers, front and back. Both operate in the
same way. To remove them, lift up the free end (nearest the center of the printer) so that the cover makes approximately a $45^{\circ}$ angle with the printer frame, then with a slight rocking motion, lift it straight up and off the machine. To replace, just reverse the procedure. Figure A-2 illustrates the proper position and movement for both removal and replacement of the covers.


Figure A-2. Remove the printer covers by tilting them up to about $45^{\circ}$, then lifting straight up.

## Removing packing and shipping screws

There are three (on a Radix-10) or four (on a Radix-15) shipping screws on the bottom of the printer, used to hold the internal chassis securely to the external frame during shipping. To get at these, carefully place the printer upside down on a soft surface like a foam cushion. Remove the screws with a Phillips screwdriver as shown in Figure A-3.

Next, remove the front cover, and remove the large flat piece of cardboard packing which protects the print head, per Figure A-4.


Figure A-3. Radix-10 has three screws which secure the chassis during shipping; Radix-15 has four. They should be removed before use.


Figure A-4. Remove the piece of cardboard packing that protects Radix's print head.

You'll be smart to save these screws, along with the rest of the packing material and the shipping carton, in case you ever have to ship the printer. Tape the screws somewhere on the carton or packing. (You did fill in that warranty card, didn't you?)

## Installing the platen knob

This is the knob that turns the rubber platen cylinder. It fits into the hole on the right side of the printer case. Just match the odd-shaped hole in the knob with the same shape on the shaft you'll see inside the hole in the case, and press it on firmly. Give the knob a few turns to see that it's turning the platen easily and smoothly.

## Installing the ribbon cartridge

The ribbon cartridge greatly simplifies installing the ink ribbon. For easy installation, though, it's wise to follow the sequence and diagrams shown here.

1. Turn the power switch off, and remove the front cover (as explained earlier.)
2. Slide the print head gently with your fingers to the approximate center of its pathway.


Figure A-5. A guide pin on each side of the ribbon cartridge helps to align the cartridge during installation.
3. Note the position of the guide pins on the cartridge as shown in Figure A-5. Then hold the cartridge at each end, with the ribbon facing away from you, and insert the guide pins into the cut-out hooks of the printer frame. You'll find this easier if you tilt the cartridge forward as you do this, as Figure A-6 shows.
4. Using the guide pins as a fulcrum, lightly press the cartridge down until the two holder springs snap shut to hold the cartridge firmly in place.
5. Now thread the ribbon carefully between the print head and the ribbon guide next to the platen. (Take a good look at


Figure A-6. Tilt the ribbon cartridge in until the guide pins meet the hooks in the printer frame, then lower the front edge until the holder springs hold it in place.

Figure A-7.) You might want to use a ball point pen to lightly press the ribbon guide against the platen (rubber roller) while you insert the ribbon into the thin space between the print head and ribbon guide. Important: Center the ribbon vertically in the middle of the print head to avoid misprints or the ribbon coming off during printing.
6. Turn the spool gear knob in the direction of the arrow printed on the top left side of the cartridge to take up the slack in the ribbon; continue turning the spool gear four or five times to verify that everything is properly set and ready to roll.
7. As a final step, replace the front cover. As you'll learn in Chapter 1, Radix refuses to print unless the front cover is securely in place! A glowing "pause" lamp warns of a loose cover. When this occurs, do the obvious thing: fasten the cover securely, press the pause button to douse the green light, and you're back in business!


Figure A-7. Use a ball point pen to place the ribbon between the print head and the ribbon guide. It's important that the ribbon is centered vertically between the print head and the ribbon guide.

## Connecting Radix to Your Computer

To complete the installation, you'll need to connect Radix to your computer. In appendices B through E, we've described this procedure, including specific guidelines for making connections ("interfacing') with several of the most popular computers used by Radix owners.

Then, in Chapter 1, you'll learn how to load paper (here's where you'll use the paper guides) and operate Radix.

## Appendix $B$

## IBM Personal Computer and Compaq Computer

Both the IBM Personal Computer and the Compaq computer function the same when connected to Radix. We will discuss the IBM-PC, knowing that all we say works just as well for the Compaq.

## Connecting Radix to an IBM

Radix can connect to either a serial or a parallel interface in the IBM-PC or IBM-XT computers. IBM calls a parallel interface a "Parallel Printer Adapter," and they call a serial interface an "Asynchronous Communications Adapter."

You only need a cable to connect Radix to your IBM-PC. Your Radix dealer can furnish this cable, or you can use a standard IBM-PC parallel printer cable for the parallel interface.

## Connecting with the parallel interface

We recommend that you set the DIP switches in Radix as shown below when connecting it to an IBM-PC parallel interface.

## Connecting to the serial interface

The IBM-PC expects its printer to be connected to the parallel interface. If you are using the serial interface, then you will need to instruct your computer to send information to the serial interface instead of to the parallel interface. This is done with the MODE command. You must use the following two commands each time you turn on your computer.

MODE COM1:48,N,8,1,P
MODE LPT1:=COM1:

The first line sets up the asynchronous adapter to match the

Table B-1
Recommended DIP switch settings for IBM-PC

| Switch | Setting | Function |
| :---: | :---: | :--- |
| A-1 | ON | 11 inch page size |
| A-2 | ON | Normal print density |
| A-3 | ON | 10 CPI pitch |
| A-4 | ON | Normal characters |
| A-5 | ON | 1/6 inch line feed |
| A-6 | ON | U.S.A. Character set |
| A-7 | ON |  |
| A-8 | ON |  |
| C-1 | ON | Paper-out detector active |
| C-2 | OFF | Parallel interface |
| C-3 | OFF | 8-bit interface |
| C-4 | OFF | No auto line feed |

## Table B-2 <br> IBM-PC parallel cable

| Radix |  | IBM-PC Parallel |  |
| :---: | :---: | :---: | :---: |
| Pin No. | Function | Pin No. | Function |
| 1 | STROBE | 1 | STROBE |
| 2 | D1 | 2 | D0 |
| 3 | D2 | 3 | D1 |
| 4 | D3 | 4 | D2 |
| 5 | D4 | 5 | D3 |
| 6 | D5 | 6 | D4 |
| 7 | D6 | 7 | D5 |
| 8 | D7 | 8 | D6 |
| 9 | D8 | 9 | D7 |
| 10 | ACK | 10 | ACK |
| 11 | BUSY | 11 | BUSY |
| 12 | PAPER END | 12 | PAPER END |
| 13 | SELECTED | 13 | SELECT |
| 16 | GROUND | 18-25 | GROUND |
| 31 | RESET | 16 | RESET |
| 32 | ERROR | 15 | ERROR |

settings of DIP switch B in Radix. The second re-directs printer output to the serial port. The switches on DIP switch B must be set as shown below to use this MODE command. (The IBM-DOS manual tells you how to create a different MODE command for different DIP switch settings.) You can put these two MODE commands into a file named AUTOEXEC.BAT and it will execute automatically each time you start your computer.

Table B-3
Serial switch settings

| Switch | Setting | Function |
| :---: | :---: | :--- |
| B-1 | OFF | 1 stop bit |
| B-2 | OFF | 8 data bits |
| B-3 | OFF | No parity |
| B-4 | ON | Serial busy, 1 block mode |
| B-5 | OFF |  |
| B-6 | either | Parity |
| B-7 | ON | 4800 baud |
| B-8 | OFF |  |
| B-9 | ON |  |
| B-10 | either | Not used |

The serial cable shown below will work with DIP switch B set as shown above to connect Radix to a serial interface on the IBM.

Table B-4
IBM-PC serial cable

| Radix |  |  |  | IBM-PC |  |
| :---: | :---: | :--- | :---: | :---: | :---: |
| Pin No. | Function |  | Pin No. | Function |  |
| 2 | TRANSMIT DATA | - | 3 | RECEIVE DATA |  |
| 3 | RECEIVE DATA | - | 2 | TRANSMIT DATA |  |
| 4 | REQUEST TO SEND | - | 5 | CLEAR TO SEND |  |
| 5 | CLEAR TO SEND | - | 4 | REQUEST TO SEND |  |
| 7 | SIGNAL GROUND | - | 7 | SIGNAL GROUND |  |
| 8 | CARRIER DETECT | - | 4 | REQUEST TO SEND |  |
| 20 | DATA TERMINAL READY |  | 6 | DATA SET READY |  |

## BASIC programming

All the programs in this book are written in the BASIC used by the IBM-PC. That makes it easy to do the things that we show you. But when you start writing your own programs there are several things that you should know.

IBM BASIC defaults to a printer width of 80 . This means that it will automatically insert a carriage return and line feed after every 80 characters. If you want to print lines longer than 80 characters you will need to change the width of the printer. If you set the printer width to 255 , then the IBM will never insert a line feed and carriage return, unless you start a new line. (This is what you want usually.) To set the width of the printer to 255 , use this statement:

```
10\emptyset WIDTH "LPT1:", 255
```

IBM BASIC has one other little trick that will mess up your graphics if you let it. IBM BASIC is very insistent about adding a line feed to a carriage return. This is fine if you are printing text, but if an ASCII 13 pops up in the middle of your graphics printout, IBM BASIC will still add a line feed to it. This will put strange things in the middle of your graphics, and leave you with extra characters at the end of your line.

There is an easy way to avoid this problem. You just open the printer as a random file. The following program shows how this is done.

| $1 \emptyset$ OPEN "LPT1:" AS \#1 | : RANDOM ACCESS |
| :--- | :--- |
| $2 \emptyset$ WIDTH \#1, 255 | SET WIDTH TO 255 |
| $3 \emptyset$ PRINT \#1, "TESTING" | : PRINT A LINE |
| $4 \emptyset$ PRINT \#1, CHR $\$(1 \emptyset)$ | ADD YOUR OWN LF |

## Listing programs

To list programs on Radix, make sure the program is in the IBM's memory and use the LLIST command. This directs the listing to the printer instead of the screen.

## Printing Graphics Screens

Version 2.0 of the IBM DOS has a program called GRAPHICS that allows you to print a graphics display screen．The program as IBM created it is，however，not compatible with Star printers．But all that is required to make it work is to change two bytes of the program．This can easily be done with the DEBUG program that comes with IBM DOS．（Even if you have never used DEBUG before we will lead you through it．）

The first step is to create a diskette with DOS， GRAPHICS．COM and DEBUG．COM on it（it doesn＇t matter if there are other things on it too）．We will leave it to you to create this diskette．Look in your computer＇s manual if you have trouble． Be sure that this is not your original DOS diskette．

With this diskette in drive A，follow the script below．The things that you are to type are shown in italic type．The messages that will appear on your screen are shown in regular type．With two exceptions，every number should appear on your screen exactly as it does in this script．The two exceptions are the four digit numbers before the colons（0921：in the script）．They may be different on your computer．The symbol 〈enter〉 means to press the enter key．

```
A)DEBUG GRAPHICS.COM 〈enter`
-E 169 (enter)
0921:0169 18.10 (enter)
-E 250 <enter)
0921:0250 24.18 <enter>
-W <enter>
Writing \varnothing315 bytes
-Q <enter)
```

A）

To use this program，type GRAPHICS at the A＞prompt before you create a graphics image on the screen．Then when you want to print a graphics image，press shift－PrtSc and the image will be copied from the screen to the printer．For more information on the GRAPHICS program refer to your DOS manual．

## Program Listings

There are no program listings given here for the IBM-PC because all the programs in the book are written for the IBM-PC.

## Appendix C

## Apple II Computers

Apple II computers require an interface board (mounted inside the Apple II) and a cable to run Radix. Star recommends that you use the grafstar ${ }^{\text {rim }}$ interface for the Apple II, II + , and IIe. It comes complete with a cable and is easily installed. A unique feature of the grafstar" makes it possible to do some fancy dot graphics programming.

You can, of course, use many of the available parallel interface boards for the Apple II, and an appropriate cable.

## Setting the Switches

We recommend that you set the DIP switches in Radix as shown below when connecting it to an Apple II. Since you'll be using the parallel interface, the settings of switch $B$ have no effect.

Table C-1
Recommended DIP switch settings for Apple

| Switch | Setting | Function |
| :---: | :---: | :--- |
| A-1 | ON | 11 inch page size |
| A-2 | ON | Normal print density |
| A-3 | ON | 10 CPI pitch |
| A-4 | ON | Normal characters |
| A-5 | ON | 1/6 inch line feed |
| A-6 | ON | U.S.A. Character set |
| A-7 | ON |  |
| A-8 | ON |  |
| C-1 | ON | Paper-out detector active |
| C-2 | OFF | Parallel interface |
| C-3 | ON | 7-bit interface |
| C-4 | OFF | No auto line feed |
|  |  |  |

## Table C-2 <br> Apple parallel cable

| Radix |  | Apple Board |  |
| :---: | :---: | :---: | :---: |
| Pin No. | Function | Pin No. | Function |
| 25 | SIG GND | 1 | SIG GND |
| 26 | SIG GND | 2 | SIG GND |
| 27 | SIG GND | 3 | SIG GND |
| 1 | STROBE | 4 | STROBE |
| 28 | SIG GND | 5 | N/C |
| 2 | DATA1 | 6 | DATA1 |
| 3 | DATA2 | 7 | DATA2 |
| 4 | DATA3 | 8 | DATA3 |
| 5 | DATA4 | 9 | DATA4 |
| 6 | DATA5 | 10 | DATA5 |
| 7 | DATA6 | 11 | DATA6 |
| 8 | DATA7 | 12 | DATA7 |
| 9 | DATA8 | 13 | DATA8 |
| 10 | ACK | 14 | ACK |
| 29 | SIG GND | 15 | SIG GND |

## Applesoft BASIC

The Apple II computer, using Applesoft BASIC, does not have different types of PRINT statements for the screen and printer. You must add commands to your programs that direct the output of the PRINT statements to the printer. To direct output to the printer (with the interface board in slot \#1) you must use the PR\# 1 command. Depending on the version of Applesoft BASIC that you are using this command can take various forms. It is usually one of the following:

```
1\varnothing PR# 1
or
10 PRINT "〈Ctrl-D>PR#1"
or
10 PRINT CHR$(4) "PR#1"
```

To return output to the screen, the command is PR\# 0 , in the same form that works for PR\# 1.

To allow line lengths longer than the Apple II usually uses you must add the following statement to your programs:
$2 \emptyset$ PRINT CHR $\$(9)$ "255N"

This allows lines of any length to be sent to the printer and is especially important for dot graphics. (The number 255 in the BASIC statement above could be replaced by any number from 0 to 255 and would set the line length to that value.)

Two codes are a particular problem on the Apple II: CHR\$(7) and CHR\$(9). The computer will not send these codes to Radix. Try to avoid using these in dot graphics programs.

The Apple II computer uses CHR\$(9) as a printer initialization code. It won't send it on to the printer. There is a way to bypass this problem, however. You can change the printer initialization code to a value other than CHR\$(9) like this:

## PR\#1

PRINT CHR\$(9) ; CHR\$(1)

This makes CHR\$(1) the printer initialization code (and transfers the problems to that code) and allows you to use Radix's tabs.

There is one more way to sneak problem codes past the Apple II's operating system and that's to poke the codes directly to the output port. To send ASCII code 9 , for example, you could do this:

```
100 N = 9
11\emptyset IF PEEK(496\emptyset1)>127 THEN 11\varnothing
12\emptyset POKE 49296,N
```

Line 110 checks the printer's status, and when it's okay, line 120 pokes the code to the printer.

## Listing programs

To make a listing of your BASIC programs on Radix from your Apple II computer you must take the following steps:

1. Be sure that the program that you wish to list is in the memory of the Apple II.
2. Direct the output to the printer by typing PR\#1.
3. Type LIST to start the listing.
4. When the listing is finished, type PR\#0 to redirect the output to the screen.

## Program Listings

Following are program listings in Applesoft BASIC for the main utility programs used in the tutorial section of this book.

## Download character editing utility



380 RETURN
$39 \varnothing$ GOSUB 1ø9ø：Y＝Y－2：H＝H－1：IF Y＜ 1 THEN PRINT CHR\＄（7）；：Y＝1：H＝ 1
$4 \varnothing \varnothing$ GOSUB 1ø50：RETURN
410 GOSUB 190Ø：Y＝Y＋2：H＝H＋1：IF Y＞ 21 THEN PRINT CHR\＄（7）；：Y＝21：H＝ 11
$42 \varnothing$ GOSUB 1050：RETURN
430 GOSUB 1900：X $=X+2: G=G+1:$ IF X $>13$ THEN
PRINT CHR\＄（7）；：X＝13：G＝7
440 GOSUB 1050：RETURN
450 GOSUB 1 $\varnothing \varnothing \varnothing: \mathrm{X}=\mathrm{X}-2: \mathrm{G}=\mathrm{G}-1$ ：IF X＜ 1 THEN PRINT CHR\＄（7）；：X＝1：G＝ 1
460 GOSUB 1050：RETURN
$47 \varnothing$ IF $Z(G, H-1)=1$ OR $Z(G, H+1)=1$ THEN PRINT CHR $\$$（7）；：RETURN
$48 \varnothing \mathrm{Z}(\mathrm{G}, \mathrm{H})=1:$ INVERSE ：VTAB X $+2:$ HTAB $Y+5:$ PRINT SC\＄；：NORMAL ：GOSUB 4øø日：RETURN
$49 \varnothing \mathrm{Z}(\mathrm{G}, \mathrm{H})=\varnothing:$ NORMAL $:$ VTAB X $+2:$ HTAB $Y+5:$ PRINT CS\＄；：GOSUB 4øøØ：RETURN
$900 \mathrm{X}=1: \mathrm{Y}=1: \mathrm{G}=1: \mathrm{H}=1$
901 HOME
902 FOR I＝ 2 TO 16 STEP 2：VTAB I：HTAB 5：FOR J＝ 1 TO 23：PRINT＂－＂；：NEXT J：PRINT ：NEXT I
904 FOR J＝ 3 TO 16 STEP 2：VTAB J：FOR I $=5$ TO 27
STEP 2：HTAB I：PRINT＂！＂；：NEXT I：PRINT ：NEXT J
$905 \mathrm{~K}=1$ ：VTAB 1：HTAB 5
906 FOR K＝ 1 TO 11：PRINT K；＂＂；：NEXT K
$907 \mathrm{~K}=\varnothing$
908 FOR V＝ 3 TO 15 STEP 2：VTAB V：HTAB 2：PRINT $2^{\wedge}$ $\mathrm{K}: \mathrm{K}=\mathrm{K}+1$ ：NEXT V
909 VTAB 17：FOR I＝ 1 TO 11： $\operatorname{HTAB} 4+I * 2:$ PRINT ＂Ø＂；：NEXT I
910 VTAB 1：HTAB 30：PRINT＂CURSOR＂
912 VTAB 2：HTAB 29：PRINT＂MOVEMENT＂
914 VTAB 3：HTAB 29：PRINT＂〈I〉 UP＂
916 VTAB 4：HTAB 29：PRINT＂〈M〉 DOWN＂
918 VTAB 5：HTAB 29：PRINT＂〈J〉 LEFT＂
920 VTAB 6：HTAB 29：PRINT＂〈K〉 RIGHT＂
922 VTAB 7：HTAB 29：PRINT＂〈RET〉 INSERT＂
924 VTAB 8：HTAB 29：PRINT＂〈SPACE〉 DEL＂
926 VTAB 9：HTAB 29：PRINT＂〈A〉ASCII＂
928 VTAB 10：HTAB 29：PRINT＂〈P〉 PRINT＂
930 VTAB 11：HTAB 29：PRINT＂〈C〉 CLEAR＂
932 VTAB 12：HTAB 29：PRINT＂〈R〉 COPY ROM＂

```
934 VTAB 13: HTAB 29: PRINT "<+> WIDER"
936 VTAB 14: HTAB 29: PRINT "〈-> NARROWER"
938 VTAB 15: HTAB 29: PRINT "〈D> DESCENDER"
940 VTAB 16: HTAB 29: PRINT "〈ESC> EXIT"
95\emptyset FOR I = 1 TO 11: FOR J = 1 TO 7:Z(J,I) = \emptyset: NEXT J:
 NEXT I
9 6 0 ~ R E T U R N
1\emptyset\emptyset\emptyset IF Z(G,H)=\varnothing THEN VTAB X + 2: HTAB Y + 5: PRINT
 " ";
101\emptyset IF Z(G,H) = 1 THEN VTAB X + 2: HTAB Y + 5: PRINT
 SC$;
1015 VTAB 23: HTAB 1
102\emptyset RETURN
105\varnothing IF Z(G,H) = 1 THEN INVERSE : VTAB X + 2: HTAB Y +
 5: PRINT CS$;: NORMAL
106\emptyset IF Z(G,H) = \emptyset THEN NORMAL : VTAB X + 2: HTAB Y +
 5: PRINT CS$;: NORMAL
1065 VTAB 23: HTAB 1
197\emptyset RETURN
1910 REM CLEAR CURRENT CHARACTER
192\emptyset PW% = 11:DS = \emptyset
193\emptyset FOR H = 1 TO 11:MM(H) = \emptyset: NEXT H
1935 GOSUB 90\varnothing
1940 GOSUB 2200: RETURN
2\emptyset8\emptyset REM BUILD COMMAND STRING
2085 RC$ = ESC$ + "*" + CHR$ (1)
2990 RC$ = RC$ + CHR$(AS) + CHR$(DS * 16 + PW%)
2095 FOR I = 1 TO 11:RC$ = RC$ + CHR$ (MM(I)): NEXT I
2 9 9 6 ~ R E T U R N
2200 REM
2210 VTAB 2\emptyset: HTAB 1: PRINT "ASCII CODE = ";AS;
222\emptyset PRINT "("; CHR$ (AS);")";
2230 VTAB 20: HTAB 25: PRINT "DESCENDER= ";DS;
2250 FOR I = 8 TO 19: VTAB 22: HTAB I: PRINT " ";: NEXT
 I
2260 VTAB 22: HTAB 1: PRINT "WIDTH: ";: FOR I = 1 TO
 PW%: PRINT "*";: NEXT I
227\emptyset VTAB 23: HTAB 1
228\emptyset RETURN
30\emptyset\emptyset REM WIDER
3010 IF PW% = 11 THEN PRINT BEEP$;: RETURN
302\emptyset PW% = PW% + 1
3030 GOSUB 22\emptyset\emptyset
```

```
3040 RETURN
3100 REM NARROWER
311\emptyset IF PW% = 4 THEN PRINT BEEP$;: RETURN
312\emptyset PW% = PW% - 1
313\emptyset GOSUB 22\emptyset\emptyset
314\varnothing RETURN
32\emptyset\emptyset REM DESCENDER
3210 DS = ABS (1 - DS)
322\emptyset GOSUB 22\emptyset\emptyset: RETURN
3300 REM PRINT
3310 GOSUB 208\emptyset
3 3 2 0 ~ P R \# ~ 1 /
3325 PRINT CHR$ (9);"255N"
3327 PRINT CHR$ (27);"@"
3330 PRINT "ASCII CODE = ";AS: PRINT
3335 PRINT RC$
3345 PRINT CHR$ (15);"CONDENSED"
335\emptyset PRINT NR$: FOR I = 1 TO 21: PRINT CHR$ (AS);:
 NEXT I: PRINT
3355 PRINT NF$
336\emptyset PRINT CHR$ (27); "B"; CHR$ (2); "ELITE"
3365 PRINT NR$: FOR I = 1 TO 15: PRINT CHR$ (AS);:
 NEXT I: PRINT
337\emptyset PRINT NF$
3375 PRINT CHR$ (27);"B"; CHR$ (1);"PICA"
3378 PRINT NR$: FOR I = 1 TO 12: PRINT CHR$ (AS);:
 NEXT I: PRINT
3379 PRINT NF$
338\emptyset PRINT CHR$ (27);"W"; CHR$ (1);"EXPANDED"
3384 PRINT NR$;: FOR I = 1 TO 6: PRINT CHR$ (AS);:
 NEXT I
3385 PRINT CHR$ (27);"W" ; CHR$ (\emptyset)
3386 PRINT NF$
3387 PRINT : PRINT "CHARACTER SET ": PRINT NR$: FOR I =
 3 3 \text { TO 126}
3388 PRINT CHR$ (I);: NEXT I: PRINT : PRINT NF$: PRINT
3390 PRINT : PRINT "PROPORTIONAL"
3392 PRINT PN$;: FOR I = 1 TO 15: PRINT CHR$ (AS);:
 NEXT I: PRINT PF$
3393 PRINT : PRINT : PRINT "CHARACTER SET
 ..PROPORTIONAL": PRINT PN$: FOR I = 33 TO 126: PRINT
 CHR$ (I);: NEXT I: PRINT : PRINT PF$: PRINT
3394 PRINT "USE THIS DATA STATEMENT TO DOWNLOAD THIS
 CHARACTER."
```

```
3395 PRINT "DATA 27";
3396 FOR I = 2 TO LEN (RC$)
3397 PRINT ","; STR$ (ASC (MID$ (RC$,I,1)));
3398 NEXT I: PRINT : PRINT : PRINT :
3399 PR# Ø: RETURN
3500 REM ASCII CODE
3510 VTAB 23: HTAB 1
352\emptyset INPUT "ENTER ASCII (33-126) ";AS
3530 IF AS < 33 OR AS > 126 THEN PRINT BEEP$;: GOTO
 3510
3535 VTAB 23: FOR I = 1 TO 39: HTAB I: PRINT " ";: NEXT
 I
3540 GOSUB 2200: RETURN
37\varnothing\varnothing REM COPY ROM
3710 PR# 1
3715 PRINT CHR$ (9);"255N"
372\emptyset PRINT ESC$;"*"; CHR$ (\emptyset);
3 7 3 0 ~ P R \# ~ Ø ~
374\varnothing RETURN
4 0 0 0 ~ R E M ~ C A L C U L A T E ~ A ~ C O L U M N ~ V A L U E ~
4\emptyset1\emptyset MM(H) = \emptyset: FOR J = 1 TO 7
4ø2\emptysetMM(H) = MM(H) + Z(J,H) * 2 ^ (J - 1)
4 0 3 0 ~ N E X T ~ J : ~ G O S U B ~ 4 1 \emptyset \emptyset : ~ R E T U R N ~
410\emptyset REM PRINT A COLUMN VALUE
4103 FOR I = 1 TO 3: VTAB 16 + I: HTAB 4 + H * 2: PRINT
 " ";: NEXT I
4105 LV$ = STR$ (MM(H))
4 1 0 6 ~ F O R ~ I ~ = ~ 1 ~ T O ~ L E N ~ (L V \$) ~
4107 VTAB 16 + I: HTAB 4 + H * 2: PRINT MID$
 (LV$,I,1);: NEXT I
412\emptyset VTAB 23: HTAB 1: RETURN
```


## Piechart program

```
HOME
5 PRINT "Please Stand By"
10 A = 768
2\emptyset FOR I = A TO A + 12
30 READ B
35 POKE I,B
4 0 ~ N E X T ~ I ~
50 DATA 32,74,255,165,250,5,251
60 DATA 133,252,32,63,255,96
10\emptyset REM PIECHART
```

$11 \varnothing$ DIM BIT\%(190,36), A\$(36),PCT\%(25),TXT\$(48), PTXT\$(25)
$12 \emptyset \mathrm{ES} \mathrm{\$}=\mathrm{CHR} \$(27): \mathrm{LF} \$=\mathrm{CHR} \$(10)$
$130 \mathrm{FF} \$=\mathrm{CHR} \$(12): \mathrm{VT} \$=\mathrm{CHR} \$(11)$
$14 \varnothing$ EM\$ = ES\$ + "E":CE\$ = ES\$ + "F"
$145 \mathrm{RF} \$=\operatorname{CHR} \$(27)+\mathrm{CHR} \$(12)$
$15 \emptyset$ FOR $I=1$ TO 148:SP\$ $=\operatorname{SP} \$+\operatorname{CHR} \$(\varnothing): \operatorname{NEXT} I$
160 FOR I = 1 TO 79:SS\$ = SS\$ + " ": NEXT I
$1 \not 0 \emptyset$ REM SET PROGRAM CONSTANTS
$101 \emptyset \operatorname{MASK} \%(1)=64: \operatorname{MASK} \%(4)=8$
$1 \emptyset 2 \emptyset \operatorname{MASK} \%(2)=32: \operatorname{MASK} \%(5)=4$
$1 \varnothing 3 \varnothing \operatorname{MASK} \%(3)=16: \operatorname{MASK} \%(6)=2$
$1040 \mathrm{LX}=2 \emptyset: \mathrm{LY}=2 \emptyset$
$1950 \mathrm{XFAC}=190 / \mathrm{LX}: Y F A C=216 / \mathrm{LY}$
$106 \emptyset$ FOR $I=\emptyset$ TO 48
$1070 \operatorname{TXT\$ (I)}=$ SS $\$$
$108 \emptyset$ NEXT I
1090 GOSUB 7090
1092 HOME : PRINT : PRINT : PRINT : PRINT
1093 PRINT "THIS PROGRAM TAKES ABOUT"
1094 PRINT "2 MINUTES TO RUN. PLEASE"
1095 PRINT "TURN ON YOUR PRINTER AND"
1096 PRINT "STAND BY..................."
1097 PRINT : PRINT : PRINT
1098 FOR I = 1 TO 31: PRINT "Ø";: NEXT I
1099 PRINT " ": PRINT " "
$11 \emptyset \emptyset$ FOR I = 1 TO NP\%: PRINT "Ø";: NEXT I
$111 \varnothing$ PRINT " "
$112 \emptyset$ VTAB 12: HTAB 1
$200 \emptyset$ REM PLOT CURVE
$2010 \mathrm{RAD}=9$
$2 \varnothing 2 \varnothing \mathrm{X} 1=19: \mathrm{Y} 1=1 \varnothing$
$2 \emptyset 3 \varnothing$ FOR ANG $=\varnothing$ TO $36 \emptyset$ STEP 12
$204 \emptyset \mathrm{R} 1=$ ANG * $6.28 / 36 \emptyset$
$205 \emptyset \mathrm{X} 2=\mathrm{RAD} * \operatorname{COS}(\mathrm{R} 1)+1 \emptyset: \mathrm{Y} 2=\mathrm{RAD} * \operatorname{SIN}(\mathrm{R} 1)+1 \varnothing$
$2 \not 6 \emptyset$ GOSUB $4 \emptyset \varnothing \emptyset$
$2 \not 70$ NEXT ANG
2075 VTAB 14: HTAB 1
$2 \emptyset 8 \emptyset$ FOR PI $=1$ TO NP\%
$2090 \mathrm{X} 1=1 \varnothing: \mathrm{Y} 1=1 \varnothing$
$2100 \mathrm{TP} \mathrm{\%}=\mathrm{TP} \%+\mathrm{PCT} \%(\mathrm{PI})$
$211 \emptyset \mathrm{ANG}=36 \emptyset * \mathrm{TP} \% * . \varnothing 1$
$212 \emptyset \mathrm{R} 1=$ ANG * $6.28 / 36 \varnothing$
$213 \emptyset \mathrm{X} 2=\mathrm{RAD} * \operatorname{COS}(\mathrm{R} 1)+1 \emptyset: \mathrm{Y} 2=\mathrm{RAD} * \operatorname{SIN}(\mathrm{R} 1)+1 \emptyset$

```
214\emptyset GOSUB 4\emptyset\emptyset\emptyset
2150 GOSUB 600\emptyset
216\emptyset NEXT PI
30日\emptyset REM SEND BIT IMAGE MAP TO PRINTER
3090 PR# 1
310\emptyset PRINT CHR$ (9); "\emptysetN"
311\emptyset X = (4\emptyset - LEN (TI$) / 2)
312\emptyset FOR I = 1 TO X: PRINT " ";: NEXT I
313\emptyset PRINT EM$;TI$;CE$;LF$
314\emptyset PRINT VT$;VT$;VT$
3150 PRINT ES$;"A"; CHR$ (6)
3160 FOR I = \emptyset TO 48: PRINT TXT$(I): NEXT I
3165 PRINT RF$;VT$;VT$;VT$;
3166 PRINT LF$;LF$;LF$;LF$;LF$;LF$
317\emptyset FOR ROW = \emptyset TO 35
318\emptyset PRINT ES$;"K"; CHR$ (82); CHR$ (1);SP$;
319\emptyset FOR COL = 1 TO 19\emptyset: PRINT CHR$ (BIT%(COL,ROW));:
NEXT
3192 PRINT " "
321\varnothing NEXT ROW
325\emptyset PRINT ES$;"2";FF$
3255 PR# \emptyset
3257 HOME
3260 END
4\emptyset\emptyset\emptyset REM DRAW A LINE FROM X1,Y1 TO X2,Y2
4\emptyset1\emptyset XL = X2 - X1:YL = Y2 - Y1
4\emptyset2\emptyset NX = ABS (XL * XFAC):NY = ABS (YL * YFAC)
403\emptyset IF NX < NY THEN NX = NY
404\emptyset NS% = INT (NX + 1)
4050 DX = XL / NS%:DY = YL / NS%
406\emptyset FOR I = 1 TO NS%
4\emptyset7\emptyset X1 = X1 + DX:Y1 = Y1 + DY
4080 GOSUB 500\emptyset
4 0 9 0 ~ N E X T ~ I ~
4 0 9 5 ~ P R I N T ~ " * " ;
4 1 0 0 ~ R E T U R N
5\emptyset\emptyset\emptyset REM PLOT A POINT AT X1,Y1
5010 XX = X1 * XFAC:YY = Y1 * YFAC
502\emptyset COL = INT (XX) + 1
5030 ROW = INT (YY / 6)
5040 XIT% = INT (YY - (6* ROW)) + 1
5042 POKE 250,BIT%(COL,ROW)
5044 POKE 251,MASK%(XIT%)
5046 CALL 768
```

```
5050 BIT%(COL,ROW) = PEEK (252)
5060 RETURN
6000 REM
6010 MA% = (ANG + PA%) / 2
602\emptyset R1 = MA% * 6.28 / 36\emptyset
6030 X3 = INT (2\emptyset * SIN (R1)):Y3 = INT (22 * COS
 (R1))
6040X4=22 + X3:Y4 = 40 + Y3
6045 IF (MA% > 7\varnothing AND MA% < 11\emptyset) THEN GOSUB 630\emptyset: GOTO
 6070
6047 IF (MA% > 250 AND MA% < 290) THEN GOSUB 6300:
 GOTO 6070
605\emptyset IF MA% > 27\emptyset OR MA% < 90 THEN GOSUB 610\emptyset: GOTO
 6070
6 0 6 0 \text { GOSUB 6200}
6070 PA% = ANG
6 0 8 \emptyset ~ R E T U R N
610\emptyset MM$ = TXT$(X4)
6102 LL$ = LEFT$(MM$,Y4)
6104 PP = LEN (PTXT$(PI))
6106 RR$ = RIGHT$ (MM$,80 - (Y4 + PP))
6108 TXT$(X4) = LL$ + PTXT$(PI) + RR$
6110 RETURN
62ø\emptyset MM$ = TXT$(X4)
62\emptyset2 PP = LEN (PTXT$(PI))
62ø4 LL$ = LEFT$ (MM$,(Y4 - PP))
62ø6 RR$ = RIGHT$ (MM$,(80 - Y4))
6208 TXT$(X4) = LL$ + PTXT$(PI) + RR$
6 2 1 \emptyset ~ R E T U R N
6300 MM$ = TXT$(X4)
6310 PP = INT (LEN (PTXT$(PI)) / 2)
632\emptyset LL$ = LEFT$ (MM$,(Y4 - PP))
6330 RR$ = RIGHT$ (MM$,(80 - Y4))
634\varnothing TXT$(X4) = LL$ + PTXT$(PI) + RR$
6 3 5 \emptyset ~ R E T U R N
70\emptyset\emptyset REM
7010 HOME : PRINT : PRINT : PRINT
702\emptyset INPUT "ENTER TITLE FOR CHART ";TI$
7025 IF LEN (TI$) < = 40 THEN 7030
7\emptyset27 PRINT CHR$ (7);"TITLE TOO LONG - 4\emptyset CHAR. MAX ":
 GOTO 7000
7\varnothing3\emptyset AS% = \emptyset:AL% = 10\emptyset
7035 FOR I = 1 TO 24
7 0 4 0 \text { HOME}
```

```
705\emptyset PRINT "TOTAL SO FAR : ";AS%
706\emptyset PRINT "TOTAL REMAINING : ";AL%
707\emptyset INPUT "ENTER % FOR FIELD ";PCT%(I)
7\emptyset8\emptyset IF PCT%(I) > AL% OR PCT%(I) = \emptyset THEN PCT%(I) = AL%
7090 AL% = AL% - PCT%(I)
71\emptyset\emptyset AS% = AS% + PCT%(I)
711\emptyset INPUT "ENTER DESCRIPTION OF FIELD : ";PTXT$(I)
712\emptyset IF LEN (PTXT$(I)) > 15 THEN PRINT "FIELD TOO
 LONG - 15 CHAR. MAX": GOTO 711\varnothing
713\emptyset IF AL% = \emptyset THEN GOTO 72\emptyset\emptyset
7140 NEXT I
72\emptyset0 NP% = I
721\emptyset IF NP% = 1 THEN 703\emptyset
722\emptyset HOME
7230 RETURN
```


## Printer setup utility

```
10 REM PROGRAM TO SET UP RADIX
2\emptyset BEEP$ = CHR$ (7)
4\emptyset ESC$ = CHR$ (27):TB = 5: DIM TBS(256)
8\emptyset HOME
9\emptyset TI$ = "MAIN MENU"
10\emptyset GOSUB 2560
11\varnothing PRINT TAB(TB);"\emptyset. EXIT "
12\emptyset PRINT TAB(TB);"1. SELECT CHARACTER SET."
13\emptyset PRINT TAB(TB);"2. SELECT PRINTING MODES"
14\emptyset PRINT TAB(TB);"3. SELECT PITCH "
150 PRINT TAB(TB);"4. SELECT LINE SPACING"
160 PRINT TAB(TB);"5. SET MARGINS, TABS & FORMS"
170 GOSUB 265\emptyset
18\emptyset IF S 〈 \emptyset OR S > 5 THEN PRINT BEEP$;: GOTO 17\emptyset
19\emptyset IF S = }\emptyset\mathrm{ THEN HOME : END
2\emptyset\emptyset ON S GOSUB 22\emptyset,49\emptyset,36\emptyset,141\emptyset,65\emptyset
21\emptyset GOTO 8\emptyset
22\emptyset REM SUBROUTINE TO DISPLAY CHARACTER SET MENU
24\emptyset TI$ = "CHARACTER SET MENU"
250 GOSUB 2560
260 PRINT TAB(TB);"\emptyset. RETURN TO MAIN MENU"
27\emptyset PRINT TAB(TB);"1. SELECT NLQ CHARACTER SET"
28\emptyset PRINT TAB(TB);"2. CANCEL NLQ CHARACTER SET"
29\emptyset PRINT TAB(TB);"3. SELECT ITALIC CHARACTER SET"
3\emptyset\emptyset PRINT TAB(TB);"4. CANCEL ITALIC CHARACTER SET"
310 GOSUB 2650
```

```
32\emptyset IF S < \emptyset OR S > 4 THEN PRINT BEEP$;:GOTO 31\emptyset
33\emptyset IF S = }\varnothing\mathrm{ THEN RETURN
34\emptyset ON S GOSUB 131\emptyset,136\emptyset,180\emptyset,184\emptyset
350 GOTO 22\varnothing
36\emptyset REM DISPLAY PITCHES MENU
38\emptyset TI$ = "PITCHES MENU"
390 GOSUB 2560
4\emptyset\emptyset PRINT TAB(TB);"\emptyset. RETURN TO MAIN MENU"
410 PRINT TAB(TB);"1. SELECT PICA PITCH"
4 2 \emptyset ~ P R I N T ~ T A B (~ T B) ; " 2 . ~ S E L E C T ~ E L I T E ~ P I T C H " ~
430 PRINT TAB(TB);"3. SELECT CONDENSED PITCH"
4 4 0 \text { GOSUB 2650}
45\emptyset IF S < \emptyset OR S > 3 THEN PRINT BEEP$;: GOTO 44\varnothing
4 6 \emptyset ~ I F ~ S ~ = ~ \emptyset ~ T H E N ~ R E T U R N ~
47\emptyset ON S GOSUB 830,88\emptyset,93\varnothing
4 8 0 ~ G O T O ~ 3 6 0 ~
4 9 0 ~ R E M ~ D I S P L A Y ~ P R I N T I N G ~ M O D E ~
500 TI$ = "PRINTING MODES MENU"
510 GOSUB 2560
530 PRINT TAB(TB);"\emptyset. RETURN TO MAIN MENU"
540 PRINT TAB(TB);"1. SELECT EXPANDED MODE"
550 PRINT TAB(TB);"2. CANCEL EXPANDED MODE"
560 PRINT TAB(TB);"3. SELECT EMPHASIZED MODE"
57\emptyset PRINT TAB(TB);"4. CANCEL EMPHASIZED MODE"
58\emptyset PRINT TAB(TB);"5. SELECT DOUBLE STRIKE MODE"
590 PRINT TAB(TB);"6. CANCEL DOUBLE STRIKE MODE"
6 0 0 ~ G O S U B ~ 2 6 5 0 ~
61\emptyset IF S < \emptyset OR S > 6 THEN PRINT BEEP$;: GOTO 6\emptyset\emptyset
62\emptyset IF S = }\emptyset\mathrm{ THEN RETURN
630 ON S GOSUB 17\emptyset\emptyset,1750,240\emptyset,244\emptyset,248\emptyset,252\emptyset
640 GOTO 490
6 5 0 ~ R E M
660 REM DISPLAY MARGIN, TABS AND FORMS
670 TI$ = "MARGINS, TABS & FORMS MENU"
6 8 0 \text { GOSUB } 2 5 6 0
69\emptyset PRINT TAB(TB);"\emptyset. RETURN TO MAIN MENU"
7\emptyset\emptyset PRINT TAB(TB);"1. SET HORIZONTAL TABS"
71\emptyset PRINT TAB(TB);"2. SET VERTICAL TABS"
72\emptyset PRINT TAB(TB);"3. SET LEFT MARGIN"
730 PRINT TAB(TB);"4. SET RIGHT MARGIN"
74\varnothing PRINT TAB(TB);"5. SET TOP MARGIN"
750 PRINT TAB(TB);"6. SET BOTTOM MARGIN"
760 PRINT TAB(TB);"7. CANCEL TOP & BOTTOM MARGINS"
77\varnothing PRINT TAB(TB);"8. SET PAGE LENGTH"
```

```
780 GOSUB 2650
79\emptyset IF S < \emptyset OR S > 8 THEN PRINT BEEP$;: GOTO 78\emptyset
8\emptyset\emptyset IF S = }\varnothing\mathrm{ THEN RETURN
81\emptyset ON S GOSUB 2\emptyset5\emptyset,236\emptyset,98\emptyset,106\emptyset,113\emptyset,121\emptyset,128\emptyset,188\emptyset
82\emptyset GOTO 650
83\varnothing REM SELECT PICA
85\emptyset S$ = ESC$ + "B" + CHR$ (1)
860 GOSUB 2730
870 RETURN
88\emptyset REM SELECT ELITE
890 S$ = ESC$ + "B" + CHR$ (2)
900 GOSUB 2730
910 RETURN
930 REM SELECT CONDENSED
940 S$ = ESC$ + "B" + CHR$(3)
960 GOSUB 2730
970 RETURN
98\emptyset REM SET LEFT MARGIN
100\emptyset GOSUB 2770
1010 INPUT "ENTER NEW LEFT MARGIN (1-255) ";X
102\emptyset IF X < 1 OR X > 255 THEN PRINT BEEP$;: GOTO 10\emptyset0
1030 S$ = ESC$ + "M" + CHR$(X)
1040 GOSUB 2730
1050 RETURN
106\emptyset REM SET RIGHT MARGIN
108\emptyset GOSUB 277\varnothing
1\emptyset9\emptyset INPUT "ENTER NEW RIGHT MARGIN (1-255) ";X
1100 IF X (1 OR X > 255 THEN PRINT BEEP$;: GOTO 108\emptyset
1110 S$ = ESC$ + "Q" + CHR$(X)
1120 GOSUB 2730: RETURN
1130 REM SET TOP MARGIN
1150 GOSUB 2770
116\emptyset INPUT "ENTER NEW TOP MARGIN (1-16) ";X
1170 IF X < 1 OR X > 16 THEN PRINT BEEP$;: GOTO 1150
1180 S$ = ESC$ + "R" + CHR$(X)
119\varnothing GOSUB 2730
12\emptyset\emptyset RETURN
1210 REM SET BOTTOM MARGIN
1230 GOSUB 2770
124\varnothing INPUT "ENTER NEW BOTTOM MARGIN (1-127) ";X
1250 IF X < 1 OR X > 127 THEN PRINT BEEP$;: GOTO 1230
1260 S$ = ESC$ + "N" + CHR$(X)
1270 GOSUB 2730: RETURN
128\varnothing REM CANCEL TOP & BOTTOM MARGIN
```

$130 \emptyset$ S\＄＝ESC\＄＋＂O＂：GOSUB 2730：RETURN
1310 REM SELECT NLQ
$1330 \mathrm{~S} \$=\mathrm{ESC} \$+\mathrm{BB}$＋CHR\＄（4）
1340 GOSUB 2730：RETURN
1360 REM CANCEL NLQ
$1380 \mathrm{~S} \$=\mathrm{ESC} \$+\mathrm{BB}$＋CHR\＄（5）
1390 GOSUB 2730：RETURN
1410 REM SELECT LINE SPACING
1430 TI\＄＝＂LINE SPACING MENU＂
1440 GOSUB 2560
1450 PRINT TAB（ TB）；＂Ø．RETURN TO MAIN MENU＂
$146 \varnothing$ PRINT TAB（ TB）；＂1．SELECT $1 / 6$ INCH LINE SPACING＂
$147 \emptyset$ PRINT TAB（ TB）；＂2．SELECT $1 / 8$ INCH LINE SPACING＂
$148 \emptyset$ PRINT TAB（ TB）；＂3．SELECT 7 DOT GRAPHICS SPACING＂
1490 PRINT TAB（ TB）；＂4．SELECT N／144 INCH SPACING＂
1500 GOSUB 2650
$151 \varnothing$ IF S 〈 $\emptyset$ OR S 〉4 THEN PRINT BEEP\＄；：GOTO $15 \emptyset \emptyset$
$152 \emptyset$ IF $S=\varnothing$ THEN RETURN
1530 ON S GOSUB 1550，1580，1610，164ø
1540 GOTO 141ø
1550 REM SELECT $1 / 6$ INCH LINE SPACING
$157 \varnothing$ S\＄＝ESC\＄＋＂2＂：GOSUB 2730：RETURN
$158 \emptyset$ REM SELECT $1 / 8$ INCH LINE SPACING
$160 \emptyset$ S\＄＝ESC $\$+$＂$\varnothing$＂：GOSUB 2730：RETURN
1610 REM SELECT 7 DOT GRAPHICS SPACING
1630 S\＄＝ESC $\$+$＂ 1 ＂：GOSUB 2730：RETURN
1640 REM SELECT N／144 INCH LINE SPACING
1660 GOSUB $277 \varnothing$
$167 \emptyset$ INPUT＂ENTER LINE SPACE（ $\varnothing$－255）＂；X
$168 \emptyset$ IF X＜$\varnothing$ OR X 〉 255 THEN PRINT BEEP\＄；：GOTO $166 \emptyset$
1690 S\＄＝ESC $\$+$＂ 3 ＂+ CHR\＄（X）：GOSUB 2730：RETURN
1790 REM SELECT EXPANDED
$172 \emptyset$ S\＄＝ESC \＄＋＂W＂＋CHR\＄（1）
1730 GOSUB 2730
1740 RETURN
$175 \emptyset$ REM CANCEL EXPANDED
$177 \varnothing$ S\＄$=$ ESC $\$+$＂W＂$+\operatorname{CHR} \$(\emptyset)$
$178 \emptyset$ GOSUB 2730
1790 RETURN
$18 \emptyset \emptyset$ REM SELECT ITALIC
$182 \emptyset$ S\＄＝ESC\＄＋＂4＂：GOSUB 2730
$183 \varnothing$ RETURN
1840 REM CANCEL ITALIC
1860 S\＄＝ESC $\$+$＂5＂：GOSUB 2730

```
187\emptyset RETURN
188\emptyset REM SET PAGE LENGTH
1900 GOSUB 277\varnothing
1910 PRINT "PAGE LENGTH IN INCHES OR LINES (I,L)?"
192\emptyset PRINT TAB(TB);
1930 GET A$
194\emptyset IF A$ = "I" THEN 197\varnothing
1950 IF A$ = "L" THEN 2\emptyset1\emptyset
1960 PRINT BEEP$;: GOTO 193\varnothing
197\varnothing INPUT "LENGTH OF PAGE IN INCHES (1-32) ";X
1980 IF X < 1 OR X > 32 THEN PRINT BEEP;: GOTO 19ø\emptyset
1990 S$ = ESC$ + "C" + CHR$ (})=\mathrm{ + CHR$(X)
2000 GOSUB 2730: RETURN
2\emptyset1\emptyset INPUT "LENGTH OF PAGE IN LINES (1-127) ";X
2\emptyset2\emptyset IF X < 1 OR X > 127 THEN PRINT BEEP$;: GOTO 190\emptyset
2030 S$ = ESC$ + "C" + CHR$ (X)
2040 GOSUB 2730: RETURN
2050 REM SET HORIZONTAL TAB
207\emptyset S$ = ESC$ + "D":MAX = 255: GOSUB 2080: RETURN
208\emptyset REM SET TABS
2100 GOSUB 2770
211\varnothing PRINT "WOULD YOU LIKE TO SET THE TABS IN"
212\emptyset PRINT TAB(TB);"REGULAR INTERVALS, OR SPECIFY"
2130 PRINT TAB(TB);"EACH ONE INDIVIDUALLY (R,I) "
2140 GET A$
2150 IF A$ = "R" THEN 230\varnothing
216\emptyset IF A$ = "I" THEN 218\emptyset
217\emptyset PRINT BEEP$;: GOTO 2\emptyset8\emptyset
218\emptyset PRINT :I = 2:TBS(1) = - 1
219\varnothing PRINT TAB(TB);"ENTER THE LIST OF TABS, IN "
22ø\emptyset PRINT TAB(TB);"ASCENDING ORDER. NO MORE THAN
 ";MAX;"."
221\varnothing PRINT TAB(TB): INPUT "ENTER TAB ";TBS(I)
222\emptyset IF TBS(I) < }\emptyset\mathrm{ OR TBS(I) > 255 THEN 217ø
2230 IF TBS(I) = \emptyset THEN I = 1: GOTO 227\varnothing
2240 IF TBS(I) < = TBS(I - 1) THEN 217\varnothing
2250 I = I + 1: IF I > MAX THEN 217\emptyset
2260 GOTO 221\emptyset
2270 I = I + 1
228\emptyset S$ = S$ + CHR$ (TBS(I)): IF TBS(I) < > \emptyset THEN 227\emptyset
2 2 8 5 ~ G O S U B ~ 2 7 3 0 ~
2290 RETURN
230\emptyset PRINT : PRINT TAB(TB);: INPUT "ENTER INTERVAL
 ";X
```

```
231\varnothing IF X < \emptyset OR X > 255 THEN PRINT BEEP$;: GOTO 2\emptyset8\emptyset
232\varnothing FOR I = 1 TO 255 STEP X
2330 MAX = MAX - 1: IF MAX = \emptyset THEN 2350
2340 S$ = S$ + CHR$ (I): NEXT I
2350 S$ = S$ + CHR$ (\emptyset):GOSUB 2730: RETURN
2360 REM VERTICAL TABS
238\emptyset S$ = ESC$ + "P":MAX = 2\varnothing: GOSUB 2ø8\emptyset
2390 RETURN
2400 REM SELECT EMPHASIZED
2420 S$ = ESC$ + "E": GOSUB 2730
2430 RETURN
2440 REM CANCEL EMPHASIZED
2460 S$ = ESC$ + "F": GOSUB 2730
2470 RETURN
248\emptyset REM DOUBLE-STRIKE
2500 S$ = ESC$ + "G": GOSUB 2730
2510 RETURN
2520 REM CANCEL DOUBLE-STRIKE
2540 S$ = ESC$ + "H": GOSUB 2730
2550 RETURN
2560 REM PRINT A MENU TITLE
257\varnothing HOME
2580 PRINT : PRINT : PRINT
2590 PRINT TAB(6);"---RADIX PRINTER SETUP ---"
2600 PRINT
2610 PRINT TAB((4| - LEN (TI$)) / 2);TI$
262\emptyset PRINT : PRINT
2630 RETURN
2650 REM SELECTION
2660 VTAB 19: HTAB 10: PRINT "HIT 〈P> FOR SAMPLE PRINT"
2665 VTAB 21: HTAB 1\emptyset: PRINT "SELECTION ";
2 6 7 4 ~ G E T ~ C \$ ~
2675 IF C$ = "P" THEN GOSUB 3900: GOTO 2650
2680 IF C$ < "\emptyset" OR C$ > "9" THEN PRINT BEEP$;: GOTO
 2670
2690 S = VAL (C$)
2700 VTAB 20:
2710 FOR H = 10 TO 4\varnothing: HTAB H: PRINT " ";: NEXT H
272\emptyset RETURN
2730 REM OUTPUT COMMAND STRING
2750 PR# 1
2755 PRINT S$;
2758 PR# \emptyset
2760 RETURN
```

$277 \varnothing$ REM CLEAR SCREEN AND POSITION CURSOR
$279 \varnothing$ HOME : VTAB 19: HTAB TB: RETURN
$30 \varnothing 0$ REM PRINT
3005 PR\# 1
3097 PRINT CHR\$ (9);"255N"
$301 \emptyset$ FOR I = 1 TO 4: FOR J = 33 TO 126
$302 \emptyset$ PRINT CHR $\$(\mathrm{~J})$; : NEXT J
3030 PRINT : NEXT I
$304 \emptyset$ PR\# $\emptyset$
3050 RETURN

## Appendix $D$

## TRS-80 Computers

All that's required to connect Radix to your TRS-80 is a cable. It is available at your Radix dealer.

## Setting the Switches

When connecting Radix to a TRS-80 we recommend that you set the DIP switches in Radix as shown below. Since you will be using the parallel interface, the settings of switch $B$ have no effect.

Table D-1
Recommended DIP switch settings for TRS-80

| Switch | Setting | Function |
| :---: | :---: | :--- |
| A-1 | ON | 11 inch page size |
| A-2 | ON | Normal print density |
| A-3 | ON | 10 CPI pitch |
| A-4 | ON | Normal characters |
| A-5 | ON | $1 / 6$ inch line feed |
| A-6 | ON | U.S.A. Character set |
| A-7 | ON |  |
| A-8 | ON |  |
| C-1 | ON | Paper-out detector active |
| C-2 | OFF | Parallel interface |
| C-3 | OFF | 8 -bit interface |
| C-4 | ON | Auto line feed |

## TRS-80 BASIC

You may have to initialize your Model II to direct LPRINT statements to the printer. Use the SYSTEM "FORMS" command to do it.

## Table D-2 <br> TRS-80 Model I parallel cable

| Radix |  |  | TRS-80 Model I |  |
| :---: | :---: | :--- | :---: | :---: |
| Pin No. | Function |  | Pin No. | Function |
| 1 | STROBE | 1 | STROBE |  |
| 2 | D1 | 3 | D1 |  |
| 3 | D2 | $\square$ | 5 | D2 |
| 4 | D3 | $\square$ | D3 |  |
| 5 | D4 | $\square$ | 9 | D4 |
| 6 | D5 | $\square$ | 11 | D5 |
| 7 | D6 | $\square$ | 13 | D6 |
| 8 | D7 | $\square$ | 15 | D7 |
| 9 | D8 | $\square$ | 17 | D8 |
| 11 | BUSY | $\square$ | 21 | READY |

## Table D-3 <br> TRS-80 Model II parallel cable

| Radix |  | TRS-80 Model II |  |
| :---: | :---: | :---: | :---: |
| Pin No. | Function | Pin No. | Function |
| 1 | STROBE | 1 | STROBE |
| 2 | D1 | 3 | D1 |
| 3 | D2 | 5 | D2 |
| 4 | D3 | 7 | D3 |
| 5 | D4 | 9 | D4 |
| 6 | D5 | 11 | D5 |
| 7 | D6 | 13 | D6 |
| 8 | D7 | 15 | D7 |
| 9 | D8 | 17 | D8 |
| 10 | ACK | 19 | ACK |
| 11 | BUSY | 21 | BUSY |

TRS-80 uses another version of Microsoft Basic. Most of the programs in this book will work just as they are, but the TRS-80 does have a few unique "problem codes." They are $0,10,11$, and 12. None of these are passed properly to the printer.

You can bypass the TRS-80's BASIC and send these codes directly to the printer with the following short routine. The variable N must be set equal to the code that you wish to pass (in our example it's 0 ).

```
90N = \emptyset
10\emptyset IF PEEK(14312)<>63 THEN 1\emptyset\emptyset
110 POKE 14312,N
```

Or you can use this special printer driver that will solve all your problems. Just run this program first, and then any codes sent by a BASIC program will be sent directly to the printer. This program is for the TRS-80 Model III.

5 REM DRIVER FOR TRS-8Ø III
$10 \mathrm{AD}=16571$
20 FOR $\mathrm{I}=\varnothing$ TO 14
30 READ A:POKE AD+I,A
40 NEXT I
$5 \emptyset$ POKE 16422,187
60 POKE 16423,64
$7 \emptyset$ DATA $33,232,55,203,126,32,252,33,17$,
$\emptyset, 57,126,211,251,2 \emptyset 1$
$8 \emptyset$ END

And here is a version for the TRS-80 Model I.

5 REM DRIVER FOR THE TRS-8甲 I
$1 \varnothing \mathrm{AD}=16571$
$2 \emptyset$ FOR $\mathrm{I}=\varnothing$ TO 15
30 READ A: POKE AD+I,A
$4 \varnothing$ NEXT I
$5 \emptyset$ POKE 16422,187
60 POKE 16423,64
$7 \emptyset$ DATA 33,232,55,203,126,32,252,33,17, $\emptyset, 57,126,5 \emptyset, 232,55,2 \emptyset 1$
80 END

## Listing programs

To list a BASIC program that is in your TRS-80's memory on Radix, type LLIST. This directs the listing to the printer instead of the screen.

## Program Listings

## Download character editing utility

$1 \varnothing$ 'Program to allow editing down-load characters.
$2 \emptyset$ 'for the RADIX printer.
30
40 'Initialization.
45 CLEAR 1øøø
50 DIM $\mathrm{Z}(8,12), \mathrm{MM}(11)$
60 AS=33 : ESC\$ $=\operatorname{CHR} \$(27)$
65 PN $\$=E S C \$+" X "+C H R \$(1): P F \$=E S C \$+" X "+C H R \$(\varnothing)$
67 NN $=$ ESC $\$+" \$ "+C H R \$(1): N F \$=E S C \$+" \$ "+C H R \$(\varnothing)$
$8 \emptyset \operatorname{CS} \$=" \mathrm{C} ": \mathrm{SC} \$=\mathrm{CHR} \$(143): \mathrm{SS} \$=" @ "$
90 GOSUB $191 \emptyset$
$19 \square^{\prime}$
$11 \varnothing$ 'Main loop.
$12 \emptyset$ A $\$=I N K E Y \$: I F A \$=" "$ THEN $12 \emptyset$
$15 \emptyset$ IF AS $="+"$ THEN GOSUB $105 \emptyset:$ GOTO $34 \varnothing$ 'Wider.
$16 \varnothing$ IF A $\$=$ "-" THEN GOSUB $198 \emptyset:$ GOTO $34 \emptyset$ 'Narrower.
$17 \emptyset$ IF $\mathrm{A} \$=" \mathrm{~T}$ " OR $\mathrm{A} \$=" \mathrm{t} "$ THEN GOSUB $111 \varnothing$ : GOTO $34 \varnothing$
'Descender.
$18 \varnothing$ IF $A \$=" Q "$ OR $A \$=" q$ " THEN CLS : END
$19 \emptyset$ IF $A \$=" P "$ OR $A \$=" p "$ THEN GOSUB $135 \emptyset:$ GOTO $34 \emptyset$
$21 \emptyset$ IF $A \$=" C "$ OR A $\$=" \mathrm{c}$ " THEN GOSUB 1910: GOTO $34 \emptyset$
$22 \emptyset$ IF $A \$=" A "$ OR A $\$=" a$ " THEN GOSUB $167 \emptyset:$ GOTO $34 \emptyset$
$24 \emptyset$ IF A $\$=" \mathrm{R} "$ OR A $\$=" r$ " THEN GOSUB $2 \emptyset 1 \emptyset:$ GOTO $34 \emptyset$
$27 \emptyset$ IF $A \$=\operatorname{CHR} \$(8)$ THEN GOSUB $99 \emptyset: G O T O 340$ 'Left.
$28 \emptyset$ IF $A \$=\operatorname{CHR} \$(9)$ THEN GOSUB $92 \emptyset: G O T O 340$ 'Right.
$29 \emptyset$ IF $A \$=\operatorname{CHR} \$(1 \emptyset)$ THEN GOSUB $94 \emptyset: G O T O 34 \emptyset{ }^{\prime}$ Down.
$3 \emptyset \emptyset$ IF $\mathrm{A} \$=\mathrm{CHR} \$(91)$ THEN GOSUB 960:GOTO $34 \emptyset$ 'Up.
$31 \emptyset$ IF $A \$=" I "$ OR $A \$=" i "$ THEN GOSUB 980:GOTO $34 \varnothing$ 'Insert. -
$32 \emptyset$ IF $A \$=$ "D" OR A $\$=" \mathrm{~d} "$ THEN GOSUB 1ø2ø:GOTO $34 \emptyset$
'Delete.
$34 \emptyset$ GOTO 12ø
390
$4 \emptyset \emptyset$ 'Subroutine to paint screen.
410 CLS
$42 \emptyset$ GOSUB $177 \emptyset$
$430{ }^{\prime}$
$44 \varnothing$ 'Draw grid.

```
45\emptyset PRINT @2*64+5,"M1 M2 M3 M4 M5 M6 M7 M8 M9
 M10 M11"
4 7 0 \text { PRINT @3*64+4,"!---!---!---!---!---!---!---!---!----}
 !---!---!"
48\emptyset FOR I= }\emptyset\mathrm{ TO 6:PRINT @(I+4)*64+1,2[I;
4 8 5 ~ P R I N T ~ @ (I + 4) * 6 4 + 4 , " ! " ; T A B (4 8) ; " ! " ; : N E X T ~ I ~
49\emptyset PRINT @11*64+4,"!---!---!---!---!---!---!----!---------
 !---!---!";
620 '
6 3 0 ~ ' P u t ~ i n ~ d o t s .
64\emptyset FOR H= 1 TO 11 : FOR J = 1 TO 7 : Z(J,H) = \emptyset
68\emptyset NEXT J : NEXT H
69\emptyset FOR H = 1 TO 11 : GOSUB 1190 : NEXT H
7\emptyset\emptyset X=1:Y=1:G=1:H=1
71\emptyset GOSUB 129\emptyset
72\emptyset
73\emptyset 'Paint menu.
732 PRINT @49,"CURSOR MOVEMENT";
734 PRINT @1*64+5\emptyset,"LEFT ARROW";
736 PRINT @2*64+50,"RIGHT ARROW";
738 PRINT @3*64+5\emptyset,"UP ARROW";
739 PRINT @4*64+5\emptyset,"DOWN ARROW";
745 PRINT @5*64+50,"P)RINT CHAR.";
750 PRINT @6*64+5\emptyset,"A)SCII SET";
760 PRINT @7*64+5\emptyset,"C)LEAR DOTS";
77\emptyset PRINT @8*64+5\emptyset,"Q)UIT";
780 PRINT @9*64+50,"R)OM COPY";
790 PRINT @10*64+50,"T)OGGLE DESC.";
82\emptyset PRINT @11*64+5\emptyset,"I)NSERT DOT";
830 PRINT @12*64+5\emptyset,"D)ELETE DOT";
84\emptyset PRINT @13*64+5\emptyset,"+) WIDER CHAR.";
850 PRINT @14*64+5\emptyset,"-) NARROWER";
870 RETURN
880'
890 'Edit subroutines.
9\emptyset\emptyset GOSUB 123\emptyset:Y=Y-1:H=H-1:IF Y<1 THEN Y=1:H=1
91\emptyset GOSUB 1290:RETURN
920 GOSUB 1230:Y=Y+1:H=H+1:IF Y>11 THEN Y=11:H=11
930 GOSUB 1290:RETURN
940 GOSUB 1230:X=X+1:G=G+1:IF X>7 THEN X=7:G=7
950 GOSUB 129\emptyset:RETURN
960 GOSUB 1230:X=X-1:G=G-1:IF X<1 THEN X=1:G=1
970 GOSUB 1290:RETURN
980 IF Z(G,H-1)=1 OR Z (G,H+1)=1 THEN RETURN
```

```
990 Z(G,H) = 1
1\emptyset\emptyset\emptyset PRINT @(X+3)*64+Y*4+2,SS$;
101\varnothing GOSUB 1140 : RETURN
1\varnothing2\emptyset Z(G,H)=\emptyset
1030 PRINT @(X+3)*64+Y*4+2,CS$;
104\emptyset GOSUB 114\emptyset : RETURN
1050 IF PROWID = 11 THEN RETURN
106\emptyset PROWID = PROWID + 1
107\varnothing GOSUB 177\emptyset : RETURN
1\emptyset8\emptyset IF PROWID = 4 THEN RETURN
1090 PROWID = PROWID - 1
1100 GOSUB 1770 : RETURN
111\emptyset IF DESC = 1 THEN DESC = \varnothing : GOTO 113\emptyset
112\emptyset DESC = 1
1130 GOSUB 1770 : RETURN
1140
1150 'Subroutine to calculate a column value and print
 it.
1160 MM(H) = \emptyset: FOR J=1 TO 7
117\emptyset MM(H)=MM(H)+Z(J,H)*2[(J-1)
1180 NEXT J
1190 '
1200 'Subroutine to print a column value.
1205 PRINT @12*64+H*4+1," ";
121\emptyset PRINT @12*64+H*4+1,RIGHT$(STR$(MM(H)),3);
1220 RETURN
1230
1240 'Subroutine to remove the cursor.
1250 PRINT @(X+3)*64+Y*4+2,"";
126\emptyset IF Z(G,H) = \emptyset THEN PRINT " ";
127\emptyset IF Z(G,H) = 1 THEN PRINT SC$;
1280 RETURN
1290 '
1300 'Subroutine to place the cursor.
1310 PRINT @(X+3)*64+Y*4+2,"";
132\emptyset IF Z(G,H)=1 THEN PRINT SS$;
1330 IF Z(G,H)=\varnothing THEN PRINT CS$;
1340 RETURN
1350
1360 'Subroutine to print current character.
137\emptyset GOSUB 2\emptyset8\emptyset
1380 LPRINT "ASCII code =" AS : LPRINT
140\emptyset LPRINT REC$; 'Download the character.
1410 LPRINT CHR$(27) "@" ;
```

```
1460 LPRINT CHR$(27) "B" CHR$(3) "Condensed"
147\varnothing LPRINT NN$ STRING$(21,AS)
1480 LPRINT NF$
1490 LPRINT CHR$(27) "B" CHR$(2) "Elite"
1500 LPRINT NN$ STRING$(15,AS)
1510 LPRINT NF$
1520 LPRINT CHR$(27) "B" CHR$(1) "Pica"
1530 LPRINT NN$ STRING$(12,AS)
1540 LPRINT NF$
1550 LPRINT CHR$(27) "W" CHR$(1) "Expanded"
1560 LPRINT NN$ STRING$(6,AS)
157\emptyset LPRING NF$ CHR$(27) "W" CHR$(}\varnothing
1573 LPRINT:LPRINT "CHARACTER SET (NORMAL SPACING) "
1574 LPRINT NN$
1575 FOR I=33 TO 126:LPRINT CHR$(I);:NEXT I:LPRINT
1576 FOR I=16\emptyset TO 254:LPRINT CHR$(I);:NEXT
 I:LPRINT:LPRINT
1577 LPRINT NF$
158\emptyset LPRINT "Proportional"
1590 LPRINT PN$ STRING$(15,AS)
1592 LPRINT PF$
1595 LPRINT:LPRINT "CHARACTER SET (PROPORTIONAL
 SPACING)":LPRINT PN$;
1596 FOR I=33 TO 126:LPRINT CHR$(I);:NEXT I:LPRINT
1597 FOR I=16\emptyset TO 254:LPRINT CHR$(I);:NEXT I:LPRINT
1600 LPRINT PF$
161\varnothing LPRINT : LPRINT : LPRINT
162\emptyset LPRINT "Use this data statement to download this
 character."
1630 GOSUB 208\emptyset : LPRINT "DATA 27" ;
1640 FOR I = 2 TO LEN(REC$)
1650 LPRINT "," STR$(ASC(MID$(REC$,I,1))) ;
1660 NEXT I : LPRINT : LPRINT : LPRINT : LPRINT : RETURN
1670 '
1680 'Subroutine to input desired character code.
1690 PRINT @14*64,"";
17\emptyset\emptyset INPUT "Enter ASCII code (33-126 OR 160-254) --> " ;
 AS
1710 GOSUB 204\varnothing
1720 IF AS > 32 AND AS < 127 THEN GOTO 176\emptyset
1730 IF AS > 159 AND AS < 255 THEN GOTO 176\varnothing
1740 GOTO 1690
1760 GOSUB 1770 : RETURN
177\emptyset '
```

```
178\emptyset 'Subroutine to display header.
1790 PRINT @1,"ASCII CODE = ";AS;" ";
1800 PRINT "(" CHR$(AS AND &H7F) ;
1810 IF AS > 127 THEN PRINT " + 128" ;
1820 PRINT ") " ;
1830 PRINT @30,"DESCENDER = ";DESC;
188\emptyset PRINT @1*64+9,STRING$(11," ");
1890 PRINT @1*64+1,"WIDTH : ";STRING$(PROWID,"*");
1900 RETURN
1910 '
1920 'Subroutine to clear current character.
193\varnothing PROWID = 11 : DESC = }
194\varnothing FOR H = 1 TO 11:MM(H) = \emptyset : NEXT H
1950 GOSUB 39\emptyset : RETURN
2ø1\varnothing
2\emptyset2\emptyset 'Subroutine to perform a ROM copy.
203\emptyset LPRINT ESC $ "*" CHR$(\emptyset): RETURN
2040'
2050 'Subroutine to erase query message.
2060 PRINT @14*64,STRING$(50," ");
2070 RETURN
2080 '
2\varnothing90 'Subroutine to build command string.
2100 REC$ = ESC$ + "*" + CHR$(1)
2110 REC$ = REC$ + CHR$(AS) + CHR$(DESC*16 + PROWID)
212\emptyset FOR I = 1 to 11 : REC$ = REC$ + CHR$(MM(I)) : NEXT
 I
2130 RETURN
```


## Piechart program

```
10 'Program to print a piechart on the RADIX.
15 CLEAR 4øøø
\(2 \emptyset \mathrm{CLS}\)
21 'DIRECT-T0-PRINTER DRIVER FOR TRS-8Ø MODEL III
\(22 \mathrm{AD}=16571\)
23 FOR I=ø TO 14
24 READ A : POKE AD + I, A
25 NEXT I
26 POKE 16422,187
27 POKE 16423,64
28 DATA \(33,232,55,2 \varnothing 3,126,32,252,33,17, \emptyset, 57,126\), 211,251,2ø1
29
30 'Initialize program constants.
```

```
40 ESC$ = CHR$(27) : LF$=CHR$(10)
50 FF$ = CHR$(12): VTAB$ = CHR$(11)
60 REVFF$ = ESC$ + FF$
7\emptyset 'Emphasized & expanded modes.
8\emptyset TITLE$ = ESC$ + "E" + ESC$ + "W" + CHR$(1)
90 NTITLE$ = ESC$ + "F" + ESC$ + "W" + CHR$(\varnothing)
110 DIM BIT%(190,36),PCT%(25)
120 DIM TEXT$(48),PIECETEXT$(25)
130 MASK%(1) = 128 : MASK%(4) = 16
140 MASK%(2) = 64 : MASK%(5) = 8
150 MASK%(3) = 32 : MASK%(6) = 4
160 LX = 2\emptyset : LY = 2\emptyset
17\emptyset LXFAC = 190/LX : LYFAC = 216/LY
180 FOR I= \emptyset TO 48
190 TEXT$(I) = STRING$(79," ")
2 0 0 ~ N E X T ~ I ~
210 GOSUB 1040
2 1 5 \text { GOSUB 2øøø}
217 PRINT @64*7,"";
22\emptyset
230 'Plot curve
240 RAD=8
250 X1 = 19 : Y1 = 10
27\emptyset FOR ANG% = \varnothing TO 36\emptyset STEP 15
28\emptyset RNG = ANG%*6.28/36\emptyset
290 X2 = RAD*COS(RNG)+1\emptyset: Y2 = RAD*SIN(RNG)+1\emptyset
300 GOSUB 640
310 NEXT ANG%
315 PRINT @64*9,"";:
32\emptyset FOR PIECE% = 1 TO PCNT%
330 X1 = 10: Y1 = 10
340 TPCT%=TPCT%+PCT%(PIECE%)
350 ANG%=36Ø*TPCT%*.01
360 RNG = ANG%*6.28/360
37\emptyset X2 = RAD*COS(RNG)+1\emptyset : Y2 = RAD*SIN(RNG)+1\emptyset
380 GOSUB 640
390 GOSUB 87\varnothing
4ø\emptyset NEXT PIECE%
4 1 0
420 'Send chart title to printer.
440 LPRINT ESC$ "A" CHR$(6) REVFF$ VTAB$;
45\emptyset LPRINT TITLE$ STRING$(16-LEN(CTITLE$)/2," ");
4 6 0 ~ L P R I N T ~ C T I T L E \$ ~ N T I T L E \$ ~ \$
```

```
47\emptyset LPRINT VTAB$ VTAB$;
48\emptyset FOR I = \emptyset TO 48
49\emptyset LPRINT TEXT$(I) : NEXT I
500
51\varnothing 'Send bit image map to printer.
515 LPRINT ESC$ "A" CHR$(6) ;
52\emptyset LPRINT REVFF$ VTAB$ VTAB$ VTAB$;
500 LPRINT LF$ LF$ LF$ LF$ LF$ LF$
540 FOR ROW% = 2 TO 33
550 LPRINT " " ;
56\emptyset LPRINT ESC$ "K" CHR$(171) CHR$(\emptyset) ;
570 FOR COL% = 1 TO 171
58\emptyset LPRINT CHR$(BIT%(COL%,ROW%)) ; : NEXT
590 LPRINT
6 1 0 ~ N E X T ~ R O W \% ~
62\emptyset LPRINT ESC$ "2" FF$
630 END
6 4 0
65\emptyset 'Subroutine to draw a line from X1,Y1 to X2,Y2.
6 6 0
67\emptyset XL = X2 - X1 : YL = Y2 - Y1
68\emptyset NX = ABS(XL*LXFAC) : NY = ABS(YL*LYFAC)
690 IF NX < NY THEN NX = NY
7\emptyset\emptyset NS% = INT(NX+1)
71\emptyset DX = XL/NS% : DY = YL/NS%
72\emptyset FOR I% = 1 TO NS%
730 X1 = X1 + DX : Y1 = Y1 + DY
7 4 0 \text { GOSUB 780}
750 NEXT I%
76\emptyset PRINT "*";
77\emptyset RETURN
780
79\emptyset 'Subroutine to plot a point at X1,Y1.
80\emptyset '
81\emptyset XX = X1 * LXFAC : YY = Y1 * LYFAC
82\emptyset COL% = INT(XX) + 1
830 ROW% = INT(YY/6)
84\emptyset XIT% = INT(YY - ROW% * 6) +1
85\emptyset BIT%(COL%,ROW%) = BIT%(COL%,ROW%) OR MASK%(XIT%)
860 RETURN
87\emptyset
88\emptyset 'Subroutine to arrange field descriptions.
890
90\emptyset MIDANG%=(ANG%+PREVANG%)/2
```

$91 \varnothing$ RNG $=$ MIDANG\%*6.28/36
$92 \emptyset \mathrm{X} 3=\operatorname{INT}(24 * \operatorname{SIN}(\mathrm{RNG})+.5): \mathrm{Y} 3=\operatorname{INT}(2 \emptyset * \operatorname{COS}(\mathrm{RNG}))$
$930 \mathrm{X4}=24+\mathrm{X} 3: \mathrm{Y} 4=42+\mathrm{Y} 3$
$94 \varnothing$ IF (MIDANG\% > $7 \emptyset$ AND MIDANG\% ( $11 \varnothing$ ) THEN $99 \varnothing$
950 IF (MIDANG\% > 250 AND MIDANG\% ( 290) THEN 990
$96 \emptyset$ IF MIDANG\%) $27 \emptyset$ OR MIDANG\% $\langle 9 \varnothing$ THEN $1 \varnothing 1 \varnothing$
$97 \varnothing$ MID\$(TEXT\$(X4), Y4-LEN(PIECETEXT\$(PIECE\%))) $=$ PIECETEXT\$(PIECE\%)
$98 \varnothing$ GOTO 1ø2ø
990 MID\$(TEXT\$(X4), $\mathrm{Y} 4-\mathrm{INT}(\operatorname{LEN}($ PIECETEXT\$(PIECE\%))/
2)) $=$ PIECETEXT $($ PIECE\%)

1000 GOTO $102 \varnothing$
1010 MID\$(TEXT\$(X4), Y4) $=$ PIECETEXT\$(PIECE\%)
1020 PREVANG\% =ANG\%
1030 RETURN
1040 '
1050 'Subroutine to query user for data.
1060 '
$107 \emptyset$ CLS: PRINT : PRINT : PRINT :
$198 \varnothing$ PRINT "ENTER TITLE FOR CHART";
1985 INPUT CTITLE\$
1090 IF LEN(CTITLE $\$$ ) < 32 THEN 111ø
$11 \emptyset \emptyset$ PRINT "TITLE TOO LONG - 32. CHAR. MAX" : GOTO $1 \emptyset 8 \emptyset$
$111 \varnothing$ SOFAR\%= $\varnothing$ : LFT\%=1 $\varnothing \varnothing$
$112 \emptyset$ FOR I=1 TO 24
1130 CLS
1140 PRINT " ENTER PARAMETERS FOR PIE-CHART"
1150 PRINT " TOTAL SO FAR : ";
1160 PRINT USING "\#\#\#";SOFAR\%
$117 \varnothing$ PRINT " TOTAL REMAINING: ";
1189 PRINT USING "\#\#\#";LFT\%
1190 PRINT :PRINT :PRINT :PRINT
1206 PRINT "ENTER PERCENTAGE FOR FIELD: ";
1205 INPUT PCT\% (I)
$121 \varnothing$ IF PCT\% (I) $)$ LFT\% OR PCT\% (I) $=\varnothing$ THEN PCT\% (I) $=$ LFT\%
$122 \emptyset$ LFT\% $=$ LFT\%-PCT\% (I)
1230 SOFAR\%=SOFAR\%+PCT\% (I)
1240 PRINT :PRINT
1250 PRINT "ENTER DESCRIPTION OF FIELD: ";
1255 INPUT PIECETEXT\$(I)
$126 \varnothing$ IF LEN(PIECETEXT\$(I))<16 THEN $128 \varnothing$
$127 \varnothing$ PRINT "FIELD TOO LONG - 15 CHAR. MAX": GOTO 1250
$128 \emptyset$ IF LFT\% $=\emptyset$ GOTO $13 \varnothing \varnothing$
1290 NEXT I

```
130\emptyset PCNT%=I
131\emptyset IF PCNT%=1 THEN 111\emptyset
1320 CLS
1330 RETURN
2000 REM
2010 CLS
2\emptyset2\emptyset PRINT:PRINT:PRINT
2\emptyset3\emptyset PRINT "THIS PROGRAM TAKES ABOUT TWO MINUTES TO RUN"
2\emptyset4\emptyset PRINT "PLEASE TURN ON YOUR PRINTER AND STAND BY..."
205\emptyset PRINT:PRINT
2\emptyset6\emptyset PRINT "::::::::::::::::::::::::::"
2070 PRINT
2\emptyset8\emptyset FOR I=1 TO PCNT%:PRINT ":"; : NEXT I
2090 RETURN
```


## Printer setup utility

```
\(1 \emptyset\) 'Program to setup RADIX printer as directed.
20
30 'Initialize.
35 CLEAR 1\varnothing\emptyset\emptyset
4\emptyset ESC$ = CHR$(27) : TB = 15 : DIM TBS(256)
60 '
7\emptyset 'Display MAIN menu.
80 CLS
9\varnothing TITLE$ = "MAIN MENU"
100 GOSUB 2560
110 PRINT TAB(TB) "\emptyset. Exit."
12\emptyset PRINT TAB(TB) "1. Select CHARACTER SET."
13\emptyset PRINT TAB(TB) "2. Select PRINTING MODES."
14\emptyset PRINT TAB(TB) "3. Select PITCH."
15\emptyset PRINT TAB(TB) "4. Select LINE SPACING."
16\emptyset PRINT TAB(TB) "5. Set MARGINS, TABS & FORMS."
17\emptyset GOSUB 265\emptyset
18\emptyset IF S<\emptyset OR S〉5 THEN 17\emptyset
19\emptyset IF S = }\emptyset\mathrm{ THEN END
20\emptyset ON S GOSUB 22\emptyset,49\emptyset,36\emptyset,141\emptyset,65\emptyset
21\emptyset GOTO 6\emptyset
220 '
230 'Subroutine to display CHARACTER SET menu.
24| TITLE$ = "CHARACTER SET MENU"
250 GOSUB 256\emptyset
260 PRINT TAB(TB) "\emptyset. Return to main menu."
27\emptyset PRINT TAB(TB) "1. Select NLQ character set."
28\emptyset PRINT TAB(TB) "2. Cancel NLQ character set."
```

```
290 PRINT TAB(TB) "3. Select ITALIC character set."
300 PRINT TAB(TB) "4. Cancel ITALIC character set."
310 GOSUB 265ø
32\emptyset IF S<\emptyset OR S\4 THEN 31\varnothing
330 IF S = \varnothing THEN RETURN
340 ON S GOSUB 131\emptyset,1360,180\emptyset,184\emptyset
35\emptyset GOTO 22\emptyset
360 '
37\emptyset 'Subroutine to display PITCHES menu.
380 TITLE$ = "PITCHES MENU"
390 GOSUB 2560
4 0 \emptyset \text { PRINT TAB(TB) " } \emptyset . ~ R e t u r n ~ t o ~ m a i n ~ m e n u . " ~
4 1 0 ~ P R I N T ~ T A B (T B) ~ " 1 . ~ S e l e c t ~ P I C A ~ p i t c h . " ~
4 2 \emptyset ~ P R I N T ~ T A B (T B) ~ " 2 . ~ S e l e c t ~ E L I T E ~ p i t c h . " ~
430 PRINT TAB(TB) "3. Select CONDENSED pitch."
440 GOSUB 2650
45\emptyset IF S< }\varnothing\mathrm{ OR S>3 THEN 440
46\emptyset IF S = }\varnothing\mathrm{ THEN RETURN
470 ON S GOSUB 830,880,930
4 8 9 \text { GOTO 360}
490'
50\emptyset 'Subroutine to display PRINTING MODES menu.
510 TITLE$ = "PRINTING MODES MENU"
520 GOSUB 2560
530 PRINT TAB(TB) " }\varnothing\mathrm{ . Return to main menu."
540 PRINT TAB(TB) "1. Select EXPANDED mode."
550 PRINT TAB(TB) "2. Cancel EXPANDED mode."
560 PRINT TAB(TB) "3. Select EMPHASIZED mode."
57\emptyset PRINT TAB(TB) "4. Cancel EMPAHASIZED mode."
58 PRINT TAB(TB) "5. Select DOUBLE-STRIKE mode."
590 PRINT TAB(TB) "6. Cancel DOUBLE-STRIKE mode."
6 0 0 \text { GOSUB 2650}
610 IF S〈 }\varnothing\mathrm{ OR S>6 THEN 60Ø
62\emptyset IF S = }\emptyset\mathrm{ THEN RETURN
630 ON S GOSUB 17\emptyset\varnothing,175\emptyset,24\emptyset\emptyset,244\emptyset,2480,252\emptyset
640 GOTO 490
650'
660 'Subroutine to display MARGINS, TABS & FORMS menu.
67\emptyset TITLE$ = "MARGINS, TABS & FORMS MENU"
6 8 0 ~ G O S U B ~ 2 5 6 0 ~ \
690 PRINT TAB(TB) " }\emptyset\mathrm{ . Return to main menu."
7\emptyset\emptyset PRINT TAB(TB) "1. Set HORIZONTAL TABS."
710 PRINT TAB(TB) "2. Set VERTICAL TABS."
72\emptyset PRINT TAB(TB) "3. Set LEFT MARGIN."
```

```
73\emptyset PRINT TAB(TB) "4. Set RIGHT MARGIN."
74\emptyset PRINT TAB(TB) "5. Set TOP MARGIN."
750 PRINT TAB(TB) "6. Set BOTTOM MARGIN."
76\emptyset PRINT TAB(TB) "7. Cancel TOP AND BOTTOM MARGINS."
77\emptyset PRINT TAB(TB) "8. Set PAGE LENGTH."
78\emptyset GOSUB 265\emptyset
790 IF S〈\emptyset OR S>8 THEN 78\emptyset
8\emptyset\emptyset IF S = \emptyset THEN RETURN
81\emptyset ON S GOSUB 2\emptyset5\emptyset,236\emptyset,98\emptyset,1\emptyset6\emptyset,113\emptyset,121\emptyset,128\emptyset,188\emptyset
82\emptyset GOTO 65\emptyset
830
84\emptyset 'Subroutine to select PICA pitch.
850 S$ = ESC$ + "B" + CHR$(1)
860 GOSUB 273\emptyset
870 RETURN
88\emptyset
890 'Subroutine to select ELITE pitch.
900 S$ = ESC$ + "B" + CHR$(2)
910 GOSUB 2730
920 RETURN
930
940 'Subroutine to select CONDENSED pitch.
950 S$ = ESC$ + "B" + CHR$(3)
960 GOSUB 2730
970 RETURN
980
990 'Subroutine to set LEFT MARGIN.
100\emptyset GOSUB 277\emptyset
101\emptyset INPUT "Enter new left margin (1-255)" ; X
102\emptyset IF X < 1 OR X > 255 THEN GOTO 10\emptyset\emptyset
103\emptyset S$ = ESC$ + "M" + CHR$(X)
104\emptyset GOSUB 273\emptyset
105\emptyset RETURN
1060 '
107\emptyset 'Subroutine to set RIGHT MARGIN.
108\emptyset GOSUB 2770
1090 INPUT "Enter new right margin (1-255)" ; X
11ด\emptyset IF X < 1 OR X > 255 THEN GOTO 108\emptyset
1110 S$ = ESC$ + "Q" + CHR$(X)
112\emptyset GOSUB 273\emptyset : RETURN
1130'
114\varnothing 'Subroutine to set TOP MARGIN.
115\emptyset GOSUB 277\emptyset
116\emptyset INPUT "Enter new top margin (1-16)" ; X
```

$117 \varnothing$ IF X＜ 1 OR X 〉 16 THEN GOTO $115 \emptyset$
$1180 \mathrm{~S} \$=\mathrm{ESC} \$+\mathrm{R}$＂$+\mathrm{CHR} \$(\mathrm{X})$
1190 GOSUB $273 \varnothing$
$12 \not \varnothing$ RETURN
1210 ＇
$122 \emptyset$＇Subroutine to set BOTTOM MARGIN．
1230 GOSUB 2770
1240 INPUT＂Enter new bottom margin（1－127）＂；X
1250 IF X 〈 1 OR X 〉 127 THEN GOTO $123 \varnothing$
$1260 \mathrm{~S} \$=\mathrm{ESC} \$+\mathrm{N} "+\mathrm{CHR} \$(\mathrm{X})$
$127 \varnothing$ GOSUB $273 \varnothing$ ：RETURN
$128 \varnothing$
1290 ＇Subroutine to cancel TOP \＆BOTTOM MARGINS．
$130 \varnothing$ S\＄＝ESC\＄＋＂0＂：GOSUB $273 \varnothing$ ：RETURN
1310
$132 \emptyset$＇Subroutine to select NLQ character set．
$1330 \mathrm{~S} \$=\mathrm{ESC} \$+\mathrm{BH}$＂ $\mathrm{CHR} \$(4)$
1340 GOSUB 2730 ：RETURN
$136 \emptyset$
$137 \varnothing$＇Subroutine to cancel NLQ character set．
$138 \emptyset$ S\＄＝ESC $\$+$＂B＂$+\mathrm{CHR} \$(5)$
1390 GOSUB 2730
1400 RETURN
1410
$142 \emptyset$＇Subroutine to select LINE SPACING．
1430 TITLE\＄＝＂LINE SPACING MENU＂
1440 GOSUB 2560
$145 \varnothing$ PRINT TAB（TB）＂$\varnothing$ ．Return to main menu．＂
1460 PRINT $\operatorname{TAB}(T B)$＂ 1 ．Select $1 / 6$ inch line spacing．＂
1470 PRINT TAB（TB）＂ 2 ．Select $1 / 8$ inch line spacing．＂
$148 \emptyset$ PRINT TAB（TB）＂3．Select 7 dot graphics spacing．＂
1490 PRINT TAB（TB）＂4．Select n／144 inch spacing．＂
1500 GOSUB 2650
$151 \varnothing$ IF S $\langle\varnothing$ OR S $\rangle 4$ THEN $15 \emptyset \emptyset$
$152 \emptyset$ IF $S=\emptyset$ THEN RETURN
$153 \emptyset$ ON S GOSUB $155 \emptyset, 158 \emptyset, 161 \emptyset, 164 \emptyset$
$154 \varnothing$ GOTO $141 \varnothing$
1550
1560 ＇Subroutine to select $1 / 6$ inch line spacing．
$157 \emptyset$ S\＄＝ESC\＄＋＂2＂：GOSUB $273 \emptyset$ ：RETURN 1580
1590 ＇Subroutine to select $1 / 8$ inch line spacing．
$16 \emptyset \emptyset$ S\＄＝ESC $\$$＋＂Ø＂：GOSUB $273 \emptyset$ ：RETURN
$161 \emptyset^{\prime}$
$162 \emptyset$ 'Subroutine to select 7 dot graphics spacing.
1630 S\$ = ESC $\$+$ "1" : GOSUB $273 \emptyset$ : RETURN
1640 '
1650 'Subroutine to select $\mathrm{n} / 144$ inch line spacing.
$166 \emptyset$ GOSUB $277 \emptyset$
1670 INPUT "Enter line space in $n / 144$ ths of an inch"; $X$
$168 \emptyset$ IF X 〈 $\emptyset$ OR X 〉 255 THEN $166 \emptyset$
$169 \emptyset \mathrm{~S} \$=\operatorname{ESC} \$+43 "+\operatorname{CHR} \$(X):$ GOSUB $2730:$ RETURN
1709
$171 \varnothing$ 'Subroutine to select EXPANDED print.
$172 \emptyset \mathrm{~S} \$=\mathrm{ESC} \$+\mathrm{W} "+\mathrm{CHR} \$(1)$
1730 GOSUB 2730
$174 \emptyset$ RETURN
1750
1760 'Subroutine to cancel EXPANDED print.
$177 \emptyset \mathrm{~S} \$=\mathrm{ESC} \$+\mathrm{W}=\mathrm{CHR} \$(\varnothing)$
$178 \emptyset$ GOSUB $273 \emptyset$
$179 \emptyset$ RETURN
1890
$181 \varnothing$ 'Subroutine to select ITALIC character set.
$182 \emptyset$ S\$ = ESC\$ + "4" : GOSUB $273 \emptyset$
$183 \emptyset$ RETURN
$184 \emptyset^{\prime}$
1850 'Subroutine to cancel ITALIC character set.
1860 S\$ = ESC $\$+" 5 ":$ GOSUB $273 \varnothing$
$187 \emptyset$ RETURN
1889 '
1890 'Subroutine to set PAGE LENGTH.
1990 GOSUB $277 \emptyset$
$191 \varnothing$ PRINT "Page length in Inches or Lines ( $\mathrm{I}, \mathrm{L}$ )?"
$192 \emptyset$ PRINT TAB(TB) ;
$1930 \mathrm{~A} \$=$ INKEY\$ : IF $\mathrm{A} \$=\mathrm{=} \| \mathrm{THEN} 1930$
$194 \emptyset$ IF $A \$=" I "$ OR $A \$=" i "$ THEN $197 \emptyset$
$195 \emptyset$ IF $A \$=" L "$ OR $A \$=" 1 "$ THEN $2 \emptyset 1 \emptyset$
$196 \emptyset$ GOTO 1930
1979 INPUT "Length of page in inches (1-32)" ; X
$198 \emptyset$ IF X < 1 OR X > 32 THEN $19 \emptyset \emptyset$
$199 \emptyset \mathrm{~S} \$=\mathrm{ESC} \$+\mathrm{CC}$ " $+\operatorname{CHR} \$(\varnothing)+\operatorname{CHR} \$(\mathrm{X})$
$209 \emptyset$ GOSUB 2730 : RETURN
$201 \emptyset$ INPUT "Length of page in lines (1-127)" ; X
$2 \emptyset 2 \emptyset$ IF X < 1 OR X > 127 THEN $19 \emptyset \emptyset$
$203 \emptyset \mathrm{~S} \$=\mathrm{ESC} \$+\mathrm{C}$ " $+\mathrm{CHR} \$(\mathrm{X})$
$2 \emptyset 4 \emptyset$ GOSUB $273 \emptyset$ : RETURN

```
2050
2060 'Subroutine to set HORIZONTAL TABS.
2\varnothing70 S$ = ESC$ + "D" : MAX = 255 : GOSUB 2\emptyset8\emptyset : RETURN
2080
209\emptyset 'Subroutine to set tabs, either horiz or vert.
210\emptyset GOSUB 277\emptyset
2110 PRINT "Would you like to set the tabs in"
212\emptyset PRINT TAB(TB) "Regular intervals, or specify"
2130 PRINT TAB(TB) "each one Individually (R,I)"
2140 A$ = INKEY$: IF A$ = "" THEN 2140
2150 IF A$ = "R" OR A$ = "r" THEN 2300
2160 IF A$ = "I" OR A$ = "i" THEN 218\emptyset
217\emptyset GOTO 2\emptyset8\emptyset
218\emptyset PRINT : I = 2 : TBS(1) = -1
2190 PRINT TAB(TB) "Enter the list of tabs, in"
22\emptyset\emptyset PRINT TAB(TB) "ascending order. No more than" MAX
 "."
2210 PRINT TAB(TB) : INPUT "Enter a tab" ; TBS(I)
222\emptyset IF TBS(I) < \emptyset OR TBS(I) > 255 THEN 217\emptyset
223\emptyset IF TBS(I) = \emptyset THEN I = 1 : GOTO 227\varnothing
224ø IF TBS(I) <= TBS(I-1) THEN 217\varnothing
225\emptyset I = I + 1 : IF I > MAX THEN 217\emptyset
2260 GOTO 221\emptyset
227\emptyset I = I + 1
2280 S$ = S$ + CHR$(TBS(I)) : IF TBS(I) 〈> \emptyset THEN 227\varnothing
2285 S$=S$+CHR$(}\varnothing\mathrm{):GOSUB 273ф
2290 RETURN
2300 PRINT : PRINT TAB(TB) ; : INPUT "Enter interval" ;
 X
2310 IF X < \emptyset OR X > 255 THEN 208\emptyset
232\emptyset FOR I = 1 TO 255 STEP X
2330 MAX = MAX -1 : IF MAX = }\varnothing\mathrm{ THEN 235ø
2340 S$ = S$ + CHR$(I) : NEXT I
235\emptyset S$ = S$ + CHR$(\varnothing) : GOSUB 273\emptyset : RETURN
2360
237\varnothing 'Subroutine to set VERTICAL TABS.
238\emptyset S$ = ESC$ + "P" : MAX = 2\emptyset : GOSUB 2\emptyset8\emptyset
2390 RETURN
240\emptyset
2410 'Subroutine to select EMPHASIZED printing.
242\emptyset S$ = ESC$ + "E" : GOSUB 273\varnothing
2430 RETURN
2440
2450 'Subroutine to cancel EMPHASIZED printing.
```

```
2460 S$ = ESC$ + "F" : GOSUB 2730
2470 RETURN
2480'
2490 'Subroutine to select DOUBLE-STRIKE printing.
25\emptyset\emptyset S$ = ESC$ + "G" : GOSUB 273\varnothing
2510 RETURN
2520 '
2530 'Subroutine to cancel DOUBLE-STRIKE printing.
2540 S$ = ESC$ + "H" : GOSUB 273\varnothing
2550 RETURN
2560 '
2570 'Subroutine to print a menu title.
2580 CLS
26\emptyset\emptyset PRINT TAB(18) "--- RADIX PRINTER SETUP ---"
2610 PRINT
2620 PRINT TAB((64-LEN(TITLE$))/2) TITLE$
2630 PRINT
2640 RETURN
2650 '
2660 'Subroutine to input menu selection.
2670 PRINT @960+TB,"Enter selection. or hit P for a
 print out";
2680 C$ = INKEY$: IF C$ = "" THEN 2680
2685 IF C$="P" OR C$="p" THEN GOSUB 30\emptyset0:GOTO 2660
269\emptyset IF C$ < "\emptyset" OR C$ > "9" THEN GOTO 268\emptyset
27\emptyset\emptyset S = VAL(C$)
271\emptyset PRINT @96\emptyset,STRING$(63," ");
272\emptyset RETURN
2730 '
274\varnothing 'Subroutine to output command string.
2750 LPRINT S$;
2760 RETURN
2 7 7 0
278\emptyset 'Subroutine to clear screen & position cursor.
2790 CLS : PRINT @32\emptyset+TB, "" ; : RETURN
30\emptyset\emptyset FOR I=1 TO 4:FOR J=32 TO 126:LPRINT CHR$(J);:NEXT J
3010 FOR J=160 TO 254:LPRINT CHR$(J);: NEXT J
3015 LPRINT
3\emptyset2\emptyset NEXT I:RETURN
```


# Appendix E <br> Kaypro, Osborne and Other CP/M Computers 

All that you need to connect Radix to an Osborne 1 or Kaypro computer is a cable. Your Radix dealer can provide the cable that you need.

## Setting the Switches

When connecting Radix to an Osborne 1, Kaypro, or other CP/M computer, we recommend that you set the DIP switches in Radix as shown below. (Although our chart indicates switch C-2 set for a parallel interface, a serial interface will work also.)

> | Table E-1 |
| :---: |
| Recommended DIP switch settings for Kaypro |

| Switch | Setting | Function |
| :---: | :---: | :--- |
| A-1 | ON | 11 inch page size |
| A-2 | ON | Normal print density |
| A-3 | ON | 10 CPI pitch |
| A-4 | ON | Normal characters |
| A-5 | ON | $1 / 6$ inch line feed |
| A-6 | ON | U.S.A. Character set |
| A-7 | ON |  |
| A-8 | ON |  |
| C-1 | ON | Paper-out detector active |
| C-2 | OFF | Parallel interface |
| C-3 | OFF | 8-bit interface |
| C-4 | OFF | No auto line feed |

When you connect your printer to your Osborne 1 you must use the SETUP program to tell the computer whether Radix is connected to the Osborne 1's serial or parallel interface (either will work).

Table E-2
Kaypro parallel cable

| Radix |  | Kaypro |  |
| :---: | :---: | :---: | :---: |
| Pin No. | Function | Pin No. | Function |
| 1 | STROBE | 1 | STROBE |
| 2 | DATA1 | 2 | DATA1 |
| 3 | DATA2 | 3 | DATA2 |
| 4 | DATA3 | 4 | DATA2 |
| 5 | DATA4 | 5 | DATA2 |
| 6 | DATA5 | 6 | DATA2 |
| 7 | DATA6 | 7 | DATA2 |
| 8 | DATA7 | 8 | DATA2 |
| 9 | DATA8 | 9 | DATAB |
| 11 | BUSY | 11 | BUSY |
| 16 | SIG GND | 16 | SIG GND |

Table E-3
Osborne 1 parallel cable

| Radix |  | Osborne 1 |  |
| :---: | :---: | :---: | :---: |
| Pin No. | Function | Pin No. | Function |
| 2 | DATA1 - | 1 | DATA0 |
| 6 | DATA5 | 2 | DATA4 |
| 3 | DATA2 $-\square$ | 3 | DATA1 |
| 7 | DATA6 | 4 | DATA5 |
| 4 | DATA3 - | 5 | DATA2 |
| 8 | DATA7 - | 6 | DATA6 |
| 5 | DATA4 | 7 | DATA3 |
| 9 | DATA8 | 8 | DATA7 |
| 1 | STROBE | 11 | STROBE |
| 11 | BUSY | 15 | BUSY |
| 16 | SIG GND | 16 | SIG GND |

## Using MBASIC

Many CP/M computers use Microsoft BASIC (called MBASIC). If you have a CP/M-80 computer that uses Microsoft BASIC the program listings given here should work with your computer also.

MBASIC is a very close relative of the IBM-Microsoft BASIC used in this book. The only difference is that MBASIC "interprets" CHR\$(9) and substitutes a group of spaces to simulate a tab. You can send a horizontal tab to Radix by using CHR\$(137) instead of CHR\$(9).

Some versions of Microsoft BASIC will add a carriage return and line feed at the end of every 80 (or sometimes 132) characters. To print lines longer than 80 (or 132) characters (as when doing dot graphics) you must define a wider printer width. The following statement will prevent the computer from inserting unwanted codes.

10 WIDTH LPRINT 255

## Listing programs

Microsoft BASIC uses the "L" prefix on several commands to direct them to the printer. To list programs on the printer, just type LLIST. To direct program output to the printer, use LPRINT in place of PRINT.

## Program Listings

The following programs are in Microsoft BASIC for the Kaypro.

## Download character editing utility

$1 \varnothing$ 'Program to allow editing down-load characters.
$2 \emptyset$ 'for the RADIX printer.
30
40 'Initialization.
50 DIM $2(8,12)$,MM(11)
60 WIDTH 255
$70 \mathrm{AS}=33$ :

```
80 CS$=CHR$(91)+CHR$(93):SC$=STRING$(2,159):
 CR$=STRING$(2,127)
90 RAMNML$ = CHR$(27) + "$" + CHR$(1)
1\emptyset\emptyset RAMNMLOFF$ = CHR$(27) + "$" + CHR$(\emptyset)
11\emptyset RAMPRO$ = CHR$(27) + "X" + CHR$(1)
12\emptyset RAMPROOFF$ = CHR$(27) + "X" + CHR$(\emptyset)
130 DEF FNL$(ROW,COL) = CHR$(27) + "=" + CHR$(ROW+32) +
 CHR$(COL+32)
140 LPRINT CHR$(27) "@" ; : WIDTH "LPT1:",255
150 GOSUB 1660
160'
170. 'Main loop.
18\emptyset A$=INKEY$:IF A$="" THEN 18\varnothing
190 IF A$ = "+" OR A$ = "=" THEN GOSUB 82\emptyset : GOTO 34\emptyset
 'Wider.
2\emptyset0 IF A$ = "-" OR A$ = CHR$(95) THEN GOSUB 85\emptyset : GOTO
 340 'Narrower.
21\varnothing IF A$ = "D" OR A$ = "d" THEN GOSUB 88\varnothing : GOTO 34\varnothing
 'Descender.
22\varnothing IF A$="Q" OR A$="q" THEN GOSUB 35\varnothing : END
230 IF A$="P" OR A$="p" THEN GOSUB 112\emptyset : GOTO 34\emptyset
240 IF A$="C" OR A$="c" THEN GOSUB 1660 : GOTO 34\varnothing
250 IF A$="A" OR A$="a" THEN GOSUB 1480 : GOTO 340
260 IF A$="R" OR A$="r" THEN GOSUB 171\varnothing : GOTO 34\varnothing
27\varnothing IF A$=CHR$(8) THEN GOSUB 67\varnothing:GOTO 34\varnothing 'Left.
280 IF A$=CHR$(12) THEN GOSUB 690:GOTO 340 'Right.
29\emptyset IF A$=CHR$(10) THEN GOSUB 71\varnothing:GOTO 34\emptyset 'Down.
30\emptyset IF A$=CHR$(11) THEN GOSUB 730:GOTO 34\emptyset 'Up.
310 IF A$=CHR$(13) THEN GOSUB 750:GOTO 340 'Insert.
32\emptyset IF A$=CHR$(127) THEN GOSUB 790:GOTO 340 'Delete.
330 PRINT CHR$(7);
34\emptyset GOTO 18\emptyset
350 PRINT CHR$(26);
36\emptyset RETURN
370'
380 ' Subroutine to paint screen.
390 PRINT CHR$(26);
400 GOSUB 156\emptyset
410 '
42\emptyset 'Draw grid.
43\emptyset FOR I=\varnothing T0 6:PRINT FNL$(5+I*2,6); 2^I;:NEXT I
440'
450 'Put in dots.
46\emptyset FOR H = 1 TO 11 : FOR J = 1 TO 7 : Z(J,H) = \varnothing
```

470 NEXT J : NEXT H
489 FOR H = 1 TO 11 : GOSUB 960 : NEXT H
$490 \mathrm{X}=1: \mathrm{Y}=1: \mathrm{G}=1: \mathrm{H}=1$
500 GOSUB 1060
510
$52 \varnothing$ 'Paint menu.
530 PRINT FNL\$(6,47) "P -- Print the character."
540 PRINT FNL $\$(7,47)$ "A -- Set ASCII code."
550 PRINT FNL $\$(8,47)$ "C -- Clear all dots."
$56 \emptyset$ PRINT FNL $(9,47)$ "Q -- Quit."
$57 \emptyset$ PRINT FNL $\$(1 \varnothing, 47)$ "R -- Perform ROM copy."
580 PRINT FNL $\$(11,45)$ "Arrow keys move cursor"
590 PRINT FNL\$(12,45) "RET -- place a dot.";
$6 \not 0$ PRINT FNL\$ $(13,45)$ "DEL -- remove a dot.";
$61 \varnothing$ PRINT FNL\$ $(14,47)$ "+ -- make character wider." ;
$62 \emptyset$ PRINT FNL $\$(15,47)$ "- -- make character narrower." ;
630 PRINT FNL $\$(16,47)$ "D -- Toggle descender mode." ;
$64 \emptyset$ RETURN
650
660 'Edit subroutines.
$67 \emptyset$ GOSUB 1øøø:Y=Y-3:H=H-1:IF Y/1 THEN PRINT CHR $\$(7)$; : $\mathrm{Y}=1: \mathrm{H}=1$
680 GOSUB 1060:RETURN
690 GOSUB 100Ø:Y=Y+3:H=H+1:IF Y>31 THEN PRINT CHR\$(7); : $\mathrm{Y}=31: \mathrm{H}=11$
70Ø GOSUB 1060:RETURN
$71 \emptyset$ GOSUB $1 \emptyset \emptyset \emptyset: \mathrm{X}=\mathrm{X}+2: \mathrm{G}=\mathrm{G}+1:$ IF $\mathrm{X}>13$ THEN PRINT CHR\$(7); : $\mathrm{X}=13: \mathrm{G}=7$
720 GOSUB 1060:RETURN
730 GOSUB $1 \not \emptyset \emptyset \emptyset: X=X-2: G=G-1: I F X(1$ THEN PRINT CHR $\$(7)$; : $\mathrm{X}=1: \mathrm{G}=1$
740 GOSUB 1060:RETURN
$75 \varnothing$ IF $Z(G, H-1)=1$ OR $Z(G, H+1)=1$ THEN PRINT CHR $\$(7)$; :RETURN
$76 \emptyset Z(G, H)=1$
$77 \varnothing$ PRINT $\operatorname{FNL} \$(\mathrm{X}+4, \mathrm{Y}+1 \emptyset)$ CR\$ ;
$78 \emptyset$ GOSUB $91 \varnothing$ : RETURN
$79 \varnothing \mathrm{Z}(\mathrm{G}, \mathrm{H})=\varnothing$
$89 \varnothing$ PRINT FNL $\$(\mathrm{X}+4, \mathrm{Y}+1 \varnothing$ ) CS\$ ;
81ø GOSUB 910 : RETURN
$82 \emptyset$ IF PROWID $=11$ THEN PRINT CHR $\$(7)$; : RETURN
830 PROWID = PROWID + 1
840 GOSUB $156 \emptyset$ : RETURN
$85 \emptyset$ IF PROWID $=4$ THEN PRINT CHR $\$(7)$; : RETURN

```
86\emptyset PROWID = PROWID - 1
870 GOSUB 156\varnothing : RETURN
88\emptyset IF DESC = 1 THEN DESC = \varnothing : GOTO 9\emptyset\emptyset
89\emptyset DESC = 1
90\emptyset GOSUB 156\emptyset : RETURN
910
92\emptyset 'Subroutine to calculate a column value & print it.
93\emptyset MM(H) = \emptyset : FOR J=1 TO 7
940 MM (H) =MM (H)+Z (J,H)*2^(J-1)
950 NEXT J : GOSUB 960 : RETURN
960
970 'Subroutine to print a column value.
98\emptyset PRINT FNL$(19,7+3*H); RIGHT$(" "+STR$(MM(H)),3);
9 9 0 ~ R E T U R N
1000 '
1010 'Subroutine to remove the cursor.
1020 PRINT FNL$(X+4, Y+1\emptyset);
1\emptyset3\emptyset IF Z (G,H) = \emptyset THEN PRINT " " ;
1040 IF Z(G,H) = 1 THEN PRINT SC$;
1050 RETURN
1060
107\emptyset 'Subroutine to place the cursor.
1\emptyset8\emptyset PRINT FNL$(X+4,Y+1\emptyset);
1\emptyset9\emptyset IF Z (G,H)=1 THEN PRINT CR$;
11\emptyset\emptyset IF Z (G,H)=\emptyset THEN PRINT CS$;
1110 RETURN
1120'
1130 'Subroutine to print current character.
114\varnothing GOSUB 178\emptyset
1150 LPRINT "ASCII code =" AS : LPRINT
116\emptyset LPRINT REC$; 'Download the character.
1170 LPRINT CHR$(27) "B" CHR$(3) "Condensed"
118\emptyset LPRINT RAMNML$ STRING$(21,AS)
119\emptyset LPRINT RAMNMLOFF$
12\emptyset\emptyset LPRINT CHR$(27) "B" CHR$(2) "Elite"
121\emptyset LPRINT RAMNML$ STRING$(15,AS)
122\emptyset LPRINT RAMNMLOFF$
1230 LPRINT CHR$(27) "B" CHR$(1) "Pica"
1240 LPRINT RAMNML$ STRING$(12,AS)
125\emptyset LPRINT RAMNMLOFF$
1260 LPRINT CHR$(27) "W" CHR$(1) "Expanded"
127\emptyset LPRINT RAMNML$ STRING$(6,AS)
128\emptyset LPRINT RAMNMLOFF$ CHR$(27) "W" CHR$(}\varnothing
1290 LPRINT "Character set (normal width)"
```

1300 LPRINT RAMNML\＄；
$131 \varnothing$ FOR $\mathrm{I}=33$ TO 126 ：LPRINT CHR $\$(\mathrm{I})$ ；：NEXT ：LPRINT
$132 \emptyset$ FOR I＝16 10254 ：LPRINT CHR $\$(\mathrm{I})$ ；：NEXT ：LPRINT
1330 LPRINT RAMNMLOFF $\$$
1340 LPRTNT＂Proportional＂
1350 LPRINT RAMPRO $\$ \operatorname{STRING} \$(15, A S)$
1360 LPRINT RAMPROOFF\＄
$137 \emptyset$ LPRINT＂Character set（proportional）＂
1380 LPRINT RAMPRO\＄；
1390 FOR $\mathrm{I}=33$ TO 126 ：LPRINT CHR $\$(\mathrm{I})$ ；：NEXT ：LPRINT
1400 FOR $\mathrm{I}=16 \emptyset$ TO 254 ：LPRINT CHR $\$(\mathrm{I})$ ；：NEXT ：LPRINT
1410 LPRINT RAMPROOFF\＄
$142 \emptyset$ LPRINT ：LPRINT ：LPRINT
1430 LPRINT＂Use this data statement to download this character．＂
1440 GOSUB 1780 ：LPRINT＂DATA 27＂；
1450 FOR $I=2$ TO LEN（REC\＄）
$146 \varnothing$ LPRINT＂，＂STR\＄（ASC（MID\＄（REC\＄，I，1）））；
$147 \varnothing$ NEXT I ：LPRINT ：LPRINT ：LPRINT ：LPRINT ：RETURN
1480 ＇
1490 ＇Subroutine to input desired character code．
1590 PRINT FNL $\$(23,5)$ ；
1510 INPUT；＂Enter ASCII code（33－126 OR 160－254）－－＞＂
AS
1520 GOSUB 1740
1530 IF AS 〈 33 OR AS 〉 254 THEN PRINT CHR\＄（7）；：
GOTO $150 \square$
1540 IF AS 〈 160 AND AS＞ 126 THEN PRINT CHR\＄（7）；：
GOTO $150 \emptyset$
1550 GOSUB $156 \emptyset$ ：RETURN
1560 ＇
$157 \emptyset$＇Subroutine to display header．
$158 \varnothing$ PRINT FNL $\$(1,1)$＂ASCII CODE $="$ AS ；
1590 PRINT＂（＂CHR\＄（AS AND \＆H7F）；
1690 IF AS $>127$ THEN PRINT＂＋128＂；
1610 PRINT＂）＂；
$162 \emptyset$ PRINT FNL\＄（1，3ø）＂DESCENDER＝＂DESC ；
$163 \varnothing$ PRINT FNL\＄（3，1ø）STRING $\$(33, " ")$ ；
$164 \emptyset$ PRINT FNL $\$(3,2)$＂WIDTH ：＂STRING\＄
（PROWID＊3，＂＊＂）；
1650 RETURN
1660 ＇
1670 ＇Subroutine to clear current character．
$168 \varnothing$ PROWID $=11:$ DESC $=\varnothing$

```
1690 FOR H = 1 TO 11 : MM(H) = \emptyset : NEXT H
170\varnothing GOSUB 37\varnothing : RETURN
1710
172\emptyset 'Subroutine to perform a ROM copy.
1730 LPRINT CHR$(27) "*" CHR$(\emptyset) ; : RETURN
174\varnothing
1750 'Subroutine to erase query message.
1760 PRINT FNL$(23,5) STRING$(70," ") ;
1770 RETURN
1780 '
1790 'Subroutine to build command string.
1806 REC$ = CHR$(27) + "*" + CHR$(1)
1810 REC$ = REC$ + CHR$(AS) + CHR$(DESC*16 + PROWID)
1820 FOR I = 1 TO 11 : REC$ = REC$ + CHR$(MM(I)) : NEXT
 I
1830 RETURN
```


## Piechart program

$\emptyset$ 'Program to print a piechart on the RADIX.
$20^{\prime}$
30 'Initialize program constants.
$4 \varnothing \operatorname{ESC} \$=\operatorname{CHR} \$(27) \quad: \operatorname{LF\$ }=\operatorname{CHR} \$(1 \phi)$
$50 \mathrm{FF} \$=\operatorname{CHR} \$(12): \mathrm{VTAB} \$=\operatorname{CHR} \$(11)$
$6 \emptyset$ REVFF $\$=$ ESC $\$+\operatorname{FF} \$$
$7 \varnothing$ 'Emphasized \& expanded modes.
$8 \emptyset$ TITLE. $\mathrm{ON} \$=\mathrm{ESC} \$+\mathrm{EE}$ + ESC $\$+$ "W" $+\mathrm{CHR} \$(1)$
90 TITLE. $0 \mathrm{FF} \$=\mathrm{ESC} \$+\mathrm{F} "+\mathrm{ESC} \$+\mathrm{W} "+\operatorname{CHR} \$(\varnothing)$
$100^{\prime}$
$11 \varnothing$ DIM $\operatorname{BIT} \%(190,36), \operatorname{AS}(36), \operatorname{PCT} \%(25)$
120 DIM $\operatorname{TEXT\$ (48),\text {PIECETEXT\$(25)}}$
$130 \operatorname{MASK} \%(1)=128 \quad: \operatorname{MASK} \%(4)=16$
$140 \operatorname{MASK} \%(2)=64: \operatorname{MASK} \%(5)=8$
$150 \operatorname{MASK} \%(3)=32: \operatorname{MASK} \%(6)=4$
$16 \emptyset \mathrm{LX}=2 \emptyset \quad: \mathrm{LY}=2 \emptyset$
170 LXFAC $=199 / \mathrm{LX} \quad: \quad$ LYFAC $=216 / \mathrm{LY}$
180 FOR $\mathrm{I}=\emptyset$ TO 48
$190 \operatorname{TEXT} \$(\mathrm{I})=\operatorname{SPACE} \$(79)$
200 NEXT I
$21 \varnothing$ GOSUB $104 \varnothing$
220
230 ' Plot curve
$240 \mathrm{RAD}=9$
$250 \mathrm{X} 1=19 \quad: \mathrm{Y} 1=10$
$27 \emptyset$ FOR ANG\% $=\emptyset$ TO 360 STEP 12

```
28\emptyset RANG = ANG%*6.28/36\emptyset
29\varnothing X2 = RAD*COS(RANG)+1\varnothing : Y2 = RAD*SIN(RANG)+1\varnothing
300 GOSUB 640
310 NEXT ANG%
320 FOR PIECE% = 1 TO NUMBER.PIECES%
330 X1 = 1\varnothing : Y1 = 1\varnothing
34\emptyset TOTAL.PCT%=TOTAL.PCT%+PCT%(PIECE%)
350 ANG%=360*TOTAL.PCT%*.ø1
360 RANG = ANG%*6.28/36\emptyset
37\varnothing X2 = RAD*COS(RANG)+1\emptyset: Y2 = RAD*SIN(RANG) +1\emptyset
380 GOSUB 64\varnothing
390 GOSUB 870
4\emptyset\emptyset NEXT PIECE%
410'
420 'Send chart title to printer.
440 LPRINT ESC$ "A" CHR$(6) REVFF$ VTAB$;
450 LPRINT TITLE.ON$ SPACE$(2\emptyset-LEN(TITLE$)/2) ;
4 6 0 \text { LPRINT TITLE\$ TITLE.OFF\$}
47\emptyset LPRINT VTAB$ VTAB$;
40 FOR I = \emptyset TO 48
490 LPRINT TEXT$(I) : NEXT I
500 '
510 'Send bit image map to printer.
52\emptyset LPRINT REVFF$ VTAB$ VTAB$ VTAB$;
530 LPRINT LF$ LF$ LF$ LF$ LF$ LF$
54\varnothing FOR ROW% = \emptyset TO 35
5 5 0 \text { LPRINT " " ;}
56\emptyset LPRINT ESC$ "K" CHR$(19\emptyset) CHR$(\emptyset) ;
570 FOR COL% = 1 TO 190
580 LPRINT CHR$(BIT%(COL%,ROW%)) ; : NEXT
590 LPRINT
60\emptyset PRINT CHR$(127) CHR$(127);
610 NEXT ROW%
620 LPRINT ESC$ "2" FF$
630 END
6 4 0
650 'Subroutine to draw a line from X1,Y1 to X2,Y2.
6 6 0
670 XL = X2 - X1 : YL = Y2 - Y1
680 NX = ABS(XL*LXFAC) : NY = ABS(YL*LYFAC)
690 IF NX < NY THEN NX = NY
706 NS% = INT(NX+1)
71\emptyset DX = XL/NS% : DY = YL/NS%
72\varnothing FOR I% = 1 TO NS%
```

```
730 X1 = X1 + DX : Y1 = Y1 + DY
740 GOSUB 78\varnothing
750 NEXT I%
76\emptyset PRINT CHR$(8) "==>";
77\emptyset RETURN
7 8 0
790 'Subroutine to plot a point at X1,Y1.
800'
81\emptyset XX = X1 * LXFAC : YY = Y1 * LYFAC
82\emptyset COL% = INT(XX) + 1
830 ROW% = INT(YY/6)
84\emptyset XIT% = INT(YY - ROW% * 6)+1
85\emptyset BIT%(COL%,ROW%) = BIT%(COL%,ROW%) OR MASK%(XIT%)
860 RETURN
87\varnothing
88\emptyset 'Subroutine to arrange field descriptions.
890
90\emptyset MIDANG%=(ANG%+PREVANG%)/2
910 RANG = MIDANG%*6.28/36\emptyset
92\emptyset X3 = INT(24*SIN(RANG)+.5) : Y3 = INT(2\emptyset*COS(RANG))
930 X4 = 24 + X3 : Y4 = 42 + Y3
940 IF (MIDANG% > 70 AND MIDANG% < 11\emptyset) THEN 990
95\emptyset IF (MIDANG% > 250 AND MIDANG% (290) THEN 990
96\emptyset IF MIDANG%>27\emptyset OR MIDANG% (90 THEN 101\emptyset
97\varnothing MID$(TEXT$(X4),Y4-LEN(PIECETEXT$(PIECE%)))
 =PIECETEXT$(PIECE%)
980 GOTO 102\emptyset
990 MID$(TEXT$(X4),Y4-LEN(PIECETEXT$(PIECE%))\2)
 =PIECETEXT$(PIECE%)
10\varnothing\emptyset GOTO 102\emptyset
101\varnothing MID$(TEXT$(X4),Y4) = PIECETEXT$(PIECE%)
102\varnothing PREVANG%=ANG%
1030 RETURN
1040
1050 'Subroutine to query user for data.
1060
1070 PRINT CHR$(26) : PRINT : PRINT :
1\emptyset8\emptyset INPUT "ENTER TITLE FOR CHART: ",TITLE$
1090 IF LEN(TITLE$) <= 40 THEN 111\emptyset
11\emptyset\emptyset PRINT "TITLE TOO LONG - 40 CHAR. MAX" : GOTO 1\emptyset8\emptyset
111\varnothing AMT.SOFAR%=\emptyset : AMT.LEFT%=1\emptyset\emptyset
112\emptyset FOR I=1 TO 24
113\varnothing PRINT CHR$(26);
```

```
1140 PRINT " ENTER PARAMETERS FOR
 PIECHART"
1150 PRINT " TOTAL SO FAR : ";
1160 PRINT USING "###";AMT.SOFAR%
1170 PRINT " TOTAL REMAINING: ";
1180 PRINT USING "###";AMT.LEFT%
1190 PRINT :PRINT :PRINT :PRINT
120\emptyset INPUT "ENTER PERCENTAGE FOR FIELD: ",PCT%(I)
121\emptyset IF PCT%(I)>AMT.LEFT% OR PCT%(I)=\varnothing THEN
 PCT%(I)=AMT.LEFT%
1220 AMT.LEFT%=AMT.LEFT%-PCT%(I)
1230 AMT.SOFAR%=AMT.SOFAR%+PCT%(I)
1240 PRINT :PRINT
125\varnothing INPUT "ENTER DESCRIPTION OF FIELD:
 ",PIECETEXT$(I)
1260 IF LEN(PIECETEXT$(I))<16 THEN 1280
127\varnothing PRINT "FIELD TOO LONG - 15 CHAR. MAX": GOTO 1250
128\emptyset IF AMT.LEFT%=\emptyset GOTO 130\emptyset
1290 NEXT I
130\emptyset NUMBER.PIECES%=I
131\varnothing IF NUMBER.PIECES%=1 THEN 111\varnothing
132\emptyset PRINT CHR$(26);
1330 RETURN
```


## Printer setup utility

```
10 'Program to setup RADIX printer as directed.
2\emptyset
30 'Initialize.
4\varnothing ESC$ = CHR$(27) : TB = 25 : DIM TBS(256)
50
60 'Display MAIN menu.
7\emptyset TITLE$ = "MAIN MENU"
80 GOSUB 228\emptyset
90 PRINT TAB(TB) "\emptyset. Exit."
100 PRINT TAB(TB) "1. Select CHARACTER SET."
110 PRINT TAB(TB) "2. Select PRINTING MODES."
12\emptyset PRINT TAB(TB) "3. Select PITCH."
130 PRINT TAB(TB) "4. Select LINE SPACING."
14\varnothing PRINT TAB(TB) "5. Set MARGINS, TABS & FORMS."
150 GOSUB 2370
16\emptyset IF S<\emptyset OR S>5 THEN PRINT CHR$(7) : GOTO 15\varnothing
17\varnothing IF S = }\varnothing\mathrm{ THEN PRINT CHR$(26); : END
18\emptyset ON S GOSUB 2\varnothing\emptyset,47\emptyset,34\varnothing,1230,63\emptyset
190 GOTO 50
```

200
$21 \varnothing$ 'Subroutine to display CHARACTER SET menu.
$22 \emptyset$ TITLE $\$=$ "CHARACTER SET MENU"
$23 \varnothing$ GOSUB $228 \emptyset$
$24 \emptyset$ PRINT TAB(TB) " $\emptyset$. Return to main menu."
$25 \emptyset$ PRINT TAB(TB) "1. Select NLQ character set."
$26 \emptyset$ PRINT TAB(TB) "2. Cancel NLQ character set."
$27 \emptyset$ PRINT TAB(TB) "3. Select ITALIC character set."
$28 \emptyset$ PRINT TAB(TB) "4. Cancel ITALIC character set."
$29 \varnothing$ GOSUB $237 \emptyset$
$3 \emptyset \emptyset$ IF $S\langle\emptyset$ OR S>4 THEN PRINT CHR $\$(7)$ : GOTO $29 \emptyset$
$31 \varnothing$ IF $S=\emptyset$ THEN RETURN
$32 \emptyset$ ON S GOSUB 117 $12,12 \emptyset, 158 \emptyset, 161 \emptyset$
$33 \varnothing$ GOTO 2øø
$34 \varnothing$
350 'Subroutine to display PITCHES menu.
$36 \varnothing$ TITLE $\$=$ "PITCHES MENU"
$37 \varnothing$ GOSUB 228ø
$38 \varnothing$ PRINT TAB(TB) " $\varnothing$. Return to main menu."
$39 \varnothing$ PRINT TAB(TB) "1. Select PICA pitch."
$40 \varnothing$ PRINT TAB(TB) "2. Select ELITE pitch."
410 PRINT TAB(TB) "3. Select CONDENSED pitch."
$42 \emptyset$ GOSUB $237 \emptyset$
$43 \emptyset$ IF S〈 $\varnothing$ OR S〉3 THEN PRINT CHR $\$(7)$ : GOTO $42 \emptyset$
$44 \varnothing$ IF $S=\emptyset$ THEN RETURN
$45 \emptyset$ ON S GOSUB $81 \emptyset, 84 \emptyset, 87 \emptyset$
$46 \emptyset$ GOTO 34ø
$47 \varnothing$
$48 \emptyset$ 'Subroutine to display PRINTING MODES menu.
490 TITLE\$ = "PRINTING MODES MENU"
$50 \emptyset$ GOSUB $228 \emptyset$
$51 \emptyset$ PRINT TAB(TB) " $\varnothing$. Return to main menu."
$52 \emptyset$ PRINT TAB(TB) "1. Select EXPANDED mode."
530 PRINT TAB(TB) "2. Cancel EXPANDED mode."
$54 \emptyset$ PRINT TAB(TB) "3. Select EMPHASIZED mode."
550 PRINT TAB(TB) "4. Cancel EMPHASIZED mode."
560 PRINT TAB(TB) "5. Select DOUBLE-STRIKE mode."
$57 \varnothing$ PRINT TAB(TB) "6. Cancel DOUBLE-STRIKE mode."
580 GOSUB $237 \emptyset$
$59 \emptyset$ IF $S\langle\emptyset$ OR $S\rangle 6$ THEN PRINT CHR $\$(7)$ : GOTO $58 \emptyset$
$6 \emptyset \emptyset$ IF $S=\emptyset$ THEN RETURN
$61 \emptyset$ ON S GOSUB 152ø,155 ,216 ,219 ,222ø,225
$62 \emptyset$ GOTO $47 \emptyset$
$630^{\prime}$

640 'Subroutine to display MARGINS, TABS \& FORMS menu.
650 TITLE\$ = "MARGINS, TABS \& FORMS MENU"
660 GOSUB $228 \emptyset$
$67 \varnothing$ PRINT TAB(TB) " $\emptyset$. Return to main menu."
680 PRINT TAB(TB) "1. Set HORIZONTAL TABS."
690 PRINT TAB(TB) "2. Set VERTICAL TABS."
790 PRINT TAB(TB) "3. Set LEFT MARGIN."
710 PRINT TAB(TB) "4. Set RIGHT MARGIN."
$72 \emptyset$ PRINT TAB(TB) " 5 . Set TOP MARGIN."
730 PRINT TAB(TB) "6. Set BOTTOM MARGIN."
$74 \varnothing$ PRINT TAB(TB) "7. Cancel TOP \& BOTTOM MARGINS."
750 PRINT TAB(TB) "8. Set PAGE LENGTH."
760 GOSUB $237 \varnothing$
$77 \varnothing$ IF $\mathrm{S}\langle\emptyset$ OR S$\rangle 8$ THEN PRINT CHR\$(7) : GOTO $76 \emptyset$
$78 \emptyset$ IF $S=\emptyset$ THEN RETURN
$79 \emptyset$ ON S GOSUB 181ø,212ø,90ø,96 ,102ø,1080,114ø,164ø
890 GOTO 630
810
820 'Subroutine to select PICA pitch.
830 S\$ = ESC $\$+$ "B" + CHR $\$(1)$ : GOSUB 2460 : RETURN
849
$85 \varnothing$ 'Subroutine to select ELITE pitch.
869 S\$ = ESC $\$+$ "B" + CHR $\$(2)$ : GOSUB $246 \emptyset:$ RETURN
$87 \varnothing$
$88 \emptyset$ 'Subroutine to select CONDENSED pitch.
890 S\$ = ESC\$ + "B" + CHR\$(3) : GOSUB $246 \varnothing$ : RETURN
990
910 'Subroutine to set LEFT MARGIN.
920 GOSUB $25 \varnothing 0$
930 INPUT "Enter new left margin (1-255)" ; X
$94 \varnothing$ IF X < 1 OR X > 255 THEN PRINT CHR\$(7) : GOTO $92 \varnothing$
950 S\$ = ESC\$ + "M" + CHR\$(X) : GOSUB $246 \varnothing$ : RETURN 960
$97 \varnothing$ 'Subroutine to set right MARGIN
980 GOSUB 2501
990 INPUT "Enter new right margin (1-255)" ; X
1090 IF X < 1 OR X > 255 THEN PRINT CHR\$(7) : GOTO 989
1010 S\$ = ESC $\$+$ "Q" + CHR\$(X) : GOSUB 2460 : RETURN
1020 '
1030 'Subroutine to set TOP MARGIN.
1040 GOSUB 2590
$105 \emptyset$ INPUT "Enter new top margin (1-16)" ; X
$106 \emptyset$ IF X < 1 OR X 〉 16 THEN PRINT CHR $\$(7)$ : GOTO $1 \not 04 \emptyset$
$1 \varnothing 7 \varnothing \mathrm{~S} \$=\mathrm{ESC} \$+$ "R" $+\operatorname{CHR} \$(\mathrm{X}):$ GOSUB $246 \varnothing:$ RETURN

```
1080 '
1090 'Subroutine to set BOTTOM MARGIN.
1100 GOSUB \(250 \varnothing\)
1110 INPUT "Enter new bottom margin (1-127)" ; X
1120 IF X < 1 OR X > 127 THEN PRINT CHR\$(7) : GOTO \(110 \emptyset\)
1130 S\$ = ESC \(\$+\) "N" + CHR\$(X) : GOSUB \(2460:\) RETURN
1140
1150 'Subroutine to CANCEL TOP \& BOTTOM MARGINS.
\(116 \emptyset\) S\$ = ESC \(\$+\) " 0 " : GOSUB \(246 \varnothing\) : RETURN
\(117 \varnothing\)
\(118 \emptyset\) 'Subroutine to select NLQ character set.
1190 S\$ = ESC\$ + "B" + CHR\$(4) : GOSUB \(2460:\) RETURN \(12 \not \varnothing^{\prime}\)
\(121 \emptyset\) 'Subroutine to cancel NLQ character set.
1220 S\$ = ESC \(\$+\) "B" \(+\operatorname{CHR} \$(5):\) GOSUB \(2460:\) RETURN \(1230{ }^{\prime}\)
\(124 \varnothing\) 'Subroutine to select LINE SPACING.
1250 TITLE\$ = "LINE SPACING MENU"
1260 GOSUB 2280
\(127 \emptyset\) PRINT TAB(TB) " \(\varnothing\). Return to main menu."
1280 PRINT TAB(TB) " 1 . Select \(1 / 6\) inch line spacing."
1290 PRINT TAB(TB) " 2 . Select \(1 / 8\) inch line spacing."
1300 PRINT TAB(TB) "3. Select 7 dot graphics spacing."
1310 PRINT TAB(TB) "4. Select \(n / 144\) inch spacing."
1320 GOSUB \(237 \varnothing\)
1330 IF \(\mathrm{S}\langle\emptyset\) OR S\(\rangle 4\) THEN PRINT CHR\$(7) : GOTO \(132 \emptyset\)
1340 IF \(S=\varnothing\) THEN RETURN
\(135 \emptyset\) ON S GOSUB \(137 \emptyset, 14 \varnothing \emptyset, 143 \varnothing, 146 \emptyset\)
1360 GOTO 1230
1370
\(138 \emptyset\) 'Subroutine to select \(1 / 6\) inch line spacing.
1390 S\$ = ESC \(\$+\) " 2 " : GOSUB 2460 : RETURN
1400
\(141 \varnothing\) 'Subroutine to select \(1 / 8\) inch line spacing.
\(142 \emptyset \mathrm{~S} \$=\mathrm{ESC} \$+\mathrm{q} \varnothing \mathrm{l}\) : GOSUB \(246 \emptyset:\) RETURN
\[
1430
\]
1440 'Subroutine to select 7 dot graphics spacing.
1450 S\$ = ESC \(\$+\) "1" : GOSUB 2460 : RETURN
1460
1470 'Subroutine to select \(\mathrm{n} / 144\) inch line spacing.
1480 GOSUB 2500
1490 INPUT "Enter line space in \(1 / 144\) ths of an inch"; X
159 IF X < \(\emptyset\) OR X 〉 255 THEN PRINT CHR\$(7) : GOTO \(148 \varnothing\)
1510 S\$ = ESC \(\$+\) " 3 " \(+\operatorname{CHR} \$(X):\) GOSUB \(2460:\) RETURN
```

$152 \square^{\prime}$
1530 'Subroutine to select EXPANDED print.
$1540 \mathrm{~S} \$=\mathrm{ESC} \$+\mathrm{W} "+\operatorname{CHR} \$(1):$ GOSUB $2460:$ RETURN
1550
1560 'Subroutine to cancel EXPANDED printing.
$157 \emptyset \mathrm{~S} \$=\mathrm{ESC} \$+\mathrm{W} "+\operatorname{CHR} \$(\rho):$ GOSUB $246 \emptyset:$ RETURN
1580
$159 \varnothing$ 'Subroutine to select ITALIC character set.
$169 \emptyset \mathrm{~S} \$=\mathrm{ESC} \$+$ "4" : GOSUB $246 \emptyset$ : RETURN
1610
$162 \emptyset$ 'Subroutine to cancel ITALIC character set.
1630 S\$ = ESC $\$+$ "5" : GOSUB 2460 : RETURN
1640
1650 'Subroutine to set PAGE LENGTH.
1660 GOSUB 2500
$167 \varnothing$ PRINT "Page length in Inches or Lines (I,L)?"
$168 \emptyset$ PRINT TAB(TB) ;
1690 A $\$=$ INKEY $\$$ : IF A $\$=" "$ THEN $169 \emptyset$
$17 \emptyset \emptyset$ IF $A \$=" I "$ OR A $\$=" i$ " THEN $173 \emptyset$
$171 \emptyset$ IF $A \$=" L "$ OR A $\$=" 1 "$ THEN $177 \emptyset$
$172 \emptyset$ PRINT CHR $\$(7):$ GOTO $169 \emptyset$
1730 INPUT "Length of page in inches (1-32)" ; X
$174 \emptyset$ IF X 〈 1 OR X > 32 THEN PRINT CHR\$(7) : GOTO $166 \emptyset$
$1750 \mathrm{~S} \$=\mathrm{ESC} \$+{ }^{2} \mathrm{C} \|+\operatorname{CHR} \$(\varnothing)+\operatorname{CHR} \$(\mathrm{X})$
1760 GOSUB $246 \emptyset$ : RETURN
1770 INPUT "Length of page in lines (1-127)" ; X
$178 \emptyset$ IF X < 1 OR X > 127 THEN PRINT CHR\$(7) : GOTO $166 \emptyset$
$1790 \mathrm{~S} \$=\mathrm{ESC} \$+\mathrm{C}$ " $+\mathrm{CHR} \$(\mathrm{X})$
$180 \emptyset$ GOSUB $246 \emptyset$ : RETURN
1810
$182 \emptyset$ 'Subroutine to set HORIZONTAL TABS.
$1830 \mathrm{~S} \$=\mathrm{ESC} \$+$ "D" : MAX $=255:$ GOSUB $184 \emptyset:$ RETURN
1840
1850 'Subroutine to set tabs, either horiz or vert.
1860 GOSUB $250 \emptyset$
1870 PRINT "Would you like to set the tabs in"
1880 PRINT TAB(TB) "Regular intervals, or specify"
$189 \emptyset$ PRINT TAB(TB) "each one Individually ( $\mathrm{R}, \mathrm{I}$ )"
1900 A $\$=$ INKEY\$ : IF A\$ = "" THEN 1900
191ø IF $A \$=" R "$ OR $A \$=" r$ " THEN $2 \not 06 \emptyset$
$192 \emptyset$ IF $\mathrm{A} \$=" \mathrm{I}$ " OR $\mathrm{A} \$=$ "i" THEN $194 \varnothing$
1930 PRINT CHR $\$(7):$ GOTO 1840
1940 PRINT : $\mathrm{I}=2: \operatorname{TBS}(1)=-1$
1950 PRINT TAB(TB) "Enter the list of tabs, in"

```
196\emptyset PRINT TAB(TB) "ascending order. No more than" MAX
 "."
1970 PRINT TAB(TB); : INPUT "Enter a tab" ; TBS(I)
198\emptyset IF TBS(I) < \emptyset OR TBS(I) > 255 THEN 193\emptyset
199\emptyset IF TBS(I) = }\emptyset\mathrm{ THEN I = 1 : GOTO 2ø3ø
2\emptyset\emptyset\emptyset IF TBS(I) <= TBS(I-1) THEN 1930
2\emptyset1\emptyset I = I + 1 : IF I > MAX THEN 1930
2\emptyset20 GOTO 197\emptyset
2\emptyset3\emptyset I = I + 1
2\emptyset4\emptysetS$ = S$ + CHR$(TBS(I)) : IF TBS(I)〈> \emptyset THEN 2\emptyset3\emptyset
205\emptyset S$ = S$ + CHR$(}0):\mathrm{ GOSUB 246Ø : RETURN
2060 PRINT : PRINT TAB(TB) ; : INPUT "Enter interval" ;
 X
2\emptyset7\emptyset IF X < \emptyset OR X > 255 THEN 193\emptyset
2\emptyset8\emptyset FOR I = 1 TO 255 STEP X
2\emptyset9\emptyset MAX = MAX - 1 : IF MAX = \emptyset THEN 211\emptyset
210\emptyset S$ = S$ + CHR$(I) : NEXT I
211\emptyset S$ = S$ + CHR$(\emptyset) : GOSUB 246\emptyset : RETURN
2120
213\emptyset 'Subroutine to set VERTICAL TABS.
214\emptyset S$ = ESC$ + "P" : MAX = 2\emptyset : GOSUB 184\emptyset
2150 RETURN
216\emptyset
217\emptyset 'Subroutine to select EMPHASIZED printing.
218\emptyset S$ = ESC$ + "E" : GOSUB 246\emptyset : RETURN
2190
2200 'Subroutine to cancel EMPHASIZED printing.
2210 S$ = ESC$ + "F" : GOSUB 246\emptyset : RETURN
222\emptyset
2230 'Subroutine to select DOUBLE-STRIKE printing.
224\emptyset S$ = ESC$ + "G" : GOSUB 246\emptyset : RETURN
2250
2260 'Subroutine to cancel DOUBLE-STRIKE printing.
2270 S$ = ESC$ + "H" : GOSUB 2460 : RETURN
2280
2290 'Subroutine to print a menu title.
23\emptyset\emptyset PRINT CHR$(26);
2310 PRINT : PRINT : PRINT
2320 PRINT TAB(27) "--- RADIX PRINTER SETUP ---"
2330 PRINT
234\emptyset PRINT TAB((80-LEN(TITLE$))/2) TITLE$
2350 PRINT : PRINT
2360 RETURN
2370
238\emptyset 'Subroutine to input menu selection.
```

```
2390 PRINT ESC$ "=" CHR$(2\emptyset+32) CHR$(18+32);
2400 PRINT "Enter selection or press P for print
 sample."
2410 C$ = INKEY$: IF C$ = "" THEN 2410
242\emptyset IF C$ = "P" OR C$ = "p" THEN GOSUB 2530 : GOTO 237\emptyset
2430 IF C$ ("\emptyset" OR C$) "9" THEN PRINT CHR$(7) : GOTO
 2390
2440 S = VAL(C$)
2450 RETURN
2460
2470 'Subroutine to output command string.
2480 LPRINT S$;
2490 RETURN
2500'
2510 'Subroutine to clear screen & position cursor.
252\emptyset PRINT CHR$(26) ESC$ "=" CHR$(1\emptyset+32) CHR$(TB+32); :
 RETURN
2530
254ø ' Subroutine to print sample
2550 FOR I = 1 TO 4 : FOR J = 33 TO 127
2560 LPRINT CHR$(J) ;
2570 NEXT : LPRINT : NEXT
2580 RETURN
```


## Appendix F

## The Parallel Interface

Radix has both a parallel interface and a serial interface to communicate with the computer that it is connected to. The operating specifications of the parallel interface are as follows:

Data transfer rate: $\quad 1,000$ to 6,000 characters per second
Synchronization: Via externally supplied STROBE pulses
Handshaking:
$\overline{A C K}$ and BUSY signals
Logic level: $\quad$ Compatible with TTL level
Radix's parallel interface connects to the computer by a 36 pin connector on the back of the printer. This connector mates with an Amphenol 57-30360 connector. The functions of the various pins are summarized in Table F-1.

## Functions of the Connector Signals

Communications between the computer and the Radix use many of the pins of the connector. To understand how the system of communications works we need to look at the functions of the various signals carried by the pins of the interface connector.

Pin 1 carries the STROBE pulse signal from the computer to the printer. This signal is normally held high by the computer. When the computer has data ready for the printer it sets this signal to a low value for at least 0.5 microseconds. When the printer sees this pulse on the strobe pin, it reads the data that the computer supplies on pins 2 through 9 . Each of these lines carries one bit of information. A logical " 1 " is represented by a high signal level, and a logical " 0 " is represented by a low signal level. The computer must maintain these signals for a period beginning at least 0.5 microseconds before the strobe pulse starts and continuing for at least 0.5 microseconds after the strobe pulse ends.

When the Radix has successfully received the byte of data from the computer it sets pin 10 low for approximately 9 microseconds. This signal acknowledges the receipt of the data and so is called the ACK (for "acknowledge") signal.


Figure F-1. Radix interface timing diagram.


Figure F-2. Typical interface circuit.

## Table F-1 <br> Parallel interface pin functions

| Pin No. | Signal Name | Direction | Function |
| :---: | :---: | :---: | :---: |
| 1 | $\overline{\text { STROBE }}$ | IN | Signals when data is ready to be read. Signal goes from HIGH to LOW (for at least 0.5 microseconds) when data is available. |
| 2 | DATA1 | IN | These signals provide the information of the first to eighth bits of parallel data. Each signal is at a HIGH level for a logical 1 and at a LOW level for a logical 0 . |
| 3 | DATA2 | IN |  |
| 4 | DATA3 | IN |  |
| 5 | DATA4 | IN |  |
| ¢ 6 | DATA5 | IN |  |
| 7 | DATA6 | IN |  |
| 8 | DATA7 | IN |  |
| 9 | DATA8 | IN |  |
| 10 | $\overline{\text { ACK }}$ | OUT | A 9 microsecond LOW pulse acknowledges receipt of data. |
| 11 | BUSY | OUT | When this signal goes LOW the printer is ready to accept data. |
| 12 | PAPER OUT | OUT | This signal is normally LOW. It will go HIGH if Radix runs out of paper. This signal can be held LOW permanently by turning DIP switch C-1 off. |
| 13 | SELECTED | OUT | This signal is HIGH when the printer is online. |
| 14-15 | N/C |  | Unused. |
| 16 | $\begin{array}{\|l} \hline \text { SIGNAL } \\ \text { GND } \end{array}$ |  | Signal ground. |
| 17 | $\begin{aligned} & \text { CHASSIS } \\ & \text { GND } \end{aligned}$ |  | Printer's chassis ground, isolated from logic ground. |
| 18 | +5VDC | OUT | External supply of +5VDC. |
| 19-30 | GND |  | Twisted pair return signal ground level. |
| 31 | RESET | IN | When this signal goes LOW the printer is reset to its power-on condition. |
| 32 | ERROR | OUT | This signal is normally HIGH. This signal goes LOW to signal that the printer cannot print due to an error condition. |
| 33 | EXT GND |  | External ground. |
| 34-36 | N/C |  | Unused. |

Pin 11 reports when the Radix is not able to receive data. The signal is called BUSY. When this signal is high, Radix cannot receive data. This signal will be high during data transfer, when the printer is off-line and when an error condition exists.

Radix will report that it has run out of paper by making the PAPER OUT signal on pin 12 high. This pin can be held low by turning DIP switch C-1 off. When the printer is in the on-line state pin 13 is held high. This signal (SELECTED) tells the computer that the printer is ready to receive data.

Pins 14, 15, and 34-36 are not used, while pins 16, 17, 19-30 and 33 are grounded. Pin 18 is connected to the +5 VDC supply in the printer.

Pin 31 can be used to reset the printer. If this signal ( $\overline{\mathrm{RESET}}$ ) goes low the printer will reinitialize. Pin 32 is used to report error conditions in the printer. This signal (ERROR) is high during normal operation and goes low to report that the printer cannot print due to an error condition.

## Appendix G

## Serial Interface Specifications

Radix provides a very flexible RS232C serial interface. It can communicate at rates from 150 to 19,200 baud (bits per second) and supports four different kinds of handshaking. This interface can also function as a 20 mA current loop interface. The operating specifications of the interface are as follows:

Data transfer rate: 150-19200
Word length: 1 start bit
7 or 8 data bits Odd, even or no parity 1 or 2 stop bits
Signal levels: $\quad$ Mark or logical 1, $\mathbf{- 3}$ to $\mathbf{- 1 5}$ volts or current ON Space or logical $0,+3$ to +15 volts or current OFF
Handshaking: Serial busy, 1 byte mode Serial busy, 1 block mode ACK mode XON/XOFF mode

Note: 19200 baud can be used only with a RS232C interface; it cannot be used with a 20 mA current loop interface.

Radix has a DB-25 female connector on the back to connect to a computer. The functions of the pins are summarized in Table G-1.

## Configuring the Serial Interface

DIP switch $B$ controls the configuration of the serial interface. Switch B is located under Radix's front cover. Table G-2 describes the functions of the individual switches in DIP switch B.

Table G-1
Serial interface pin functions

| Pin No. | Signal | Direction | Function |
| :---: | :---: | :---: | :---: |
| 1 | GND | - | Printer's chassis ground. |
| 2 | TXD | OUT | This pin carries data from the printer. |
| 3 | RXD | IN | This pin carries data to the printer. |
| 4 | RTS | OUT | This is ON when the printer is ready to receive data. |
| 5 | CTS | IN | This pin is ON when the computer is ready to send data. |
| 6 | DSR | IN | This pin is ON when the computer is ready to send data. Radix does not check this pin. |
| 7 | GND | - | Signal ground. |
| 8 | DCD | IN | This pin is ON when the computer is ready to send data. |
| 9 | TTY TXDR | - | This pin is the return path for data transmitted from the printer on the 20 mA current loop. |
| 10 | TTY TXD | OUT | This pin carries data from the printer on the 20 mA current loop. |
| 11 | RCH | OUT | This is the signal line for the serial busy protocols. This pin goes OFF when Radix's buffer fills, and ON when Radix is ready to receive data. In the busy protocols this line carries the same signal as pin 20. |
| 12 | N/C |  | Unused |
| 13 | GND | - | Signal ground |
| 14-16 | N/C |  | Unused |
| 17 | TTY TXDR | - | This pin is the return path for data transmitted from the printer on the 20 mA current loop. |
| 18 | TTY RXDR | - | This pin is the return path for data transmitted to the printer on the 20 mA current loop. |
| 19 | TTY RXD | IN | This pin carries data to the printer on the 20 mA current loop. |
| 20 | DTR | OUT | Radix turns this pin ON when it is ready to receive data. |
| 21-22 | N/C |  | Unused. |
| 23 | TTY RXDR | - | This pin is the return path for data transmitted to the printer on the 20 mA current loop. |
| 24 | TTY TXD | OUT | This pin carries data from the printer on the 20 mA current loop. |
| 25 | TTY RXD | IN | This pin carries data to the printer on the 20 mA current loop. |

Table G-2
DIP switch B

| Switch | ON | OFF |
| :--- | :--- | :--- |
| B-1 | 2 stop bits | 1 stop bit |
| B-2 | 7 data bits | 8 data bits |
| B-3 | Parity checked | No parity |
| B-4 | Handshaking protocols-see Table G-3 |  |
| B-5 | Odd parity |  |
| B-6 | Even parity |  |
| B-7 |  |  |
| B-8 | Data transfer rate-see Table G-4 |  |
| B-9 |  |  |
| B-10 | Not used |  |

> Table G-3
> Handshaking protocols

| Protocol | Switch B-4 | Switch B-5 |
| :--- | :--- | :--- |
| Serial busy, 1 byte mode | OFF | OFF |
| Serial busy, 1 block mode | ON | OFF |
| ACK mode | OFF | ON |
| XON/XOFF mode | ON | ON |

Table G-4
Data transfer rates

| Baud rate | Switch B-7 | Switch B-8 | Switch B-9 |
| :--- | :--- | :--- | :--- |
| 150 | OFF | OFF | OFF |
| 300 | OFF | OFF | ON |
| 600 | OFF | ON | OFF |
| 1200 | OFF | ON | ON |
| 2400 | ON | OFF | OFF |
| 4800 | ON | OFF | ON |
| 9600 | ON | ON | OFF |
| 19200 | ON | ON | ON |

## Radix's Serial Protocols

Radix has four serial protocols selected by DIP switches B-4 and B-5. Figure G-2 shows a typical byte of serial data and Figure G-3 shows timing charts for the 4 protocols.

## Serial busy protocols

In the serial busy protocols，Radix uses DTR（pin 20）and RCH （pin 11）to signal to the computer when it is able to accept data． These two pins go ON when Radix is ready to accept data．In the 1 byte mode they go OFF after each character is received．In the 1 block mode they only go OFF when Radix＇s buffer approaches capacity．In both cases they will stay OFF if the buffer is too full to accept more data．

## XON／XOFF protocol

The XON／XOFF protocol uses the ASCII characters 〈DC1〉 and 〈DC3〉（sometimes called XON and XOFF，respectively）to communicate with the computer．When Radix＇s buffer approaches capacity Radix will send a DC3（ASCII 19）on TXD （pin 2）to tell the computer that it must stop sending data．When Radix is able to receive more data it sends a DC1（ASCII 17）on TXD．The computer can then send more data until Radix sends another DC3．

## ACK protocol

In the ACK protocol，Radix sends an ACK（ASCII 6）on TXD （pin 2）each time that it is prepared to receive a byte of data．


Figure G－1．Typical data byte on the serial interface．


Figure G-2. Serial protocol timing charts.

## Appendix H

## DIP Switch Settings

The DIP (dual in-line package) switches control some of the functions of Radix. A DIP switch actually contains several individual switches. Radix has one DIP switch with 8 individual switches in it, one with 10 individual switches, and one DIP switch with 4 individual switches. Figure H-1 is a drawing of a typical DIP switch.


Figure H-1. A DIP switch is actually a series of several small switches.

All three DIP switches are readily accessible from the top. They are located in the compartment with the print head, and can be seen by opening the front cover. To change the setting of a switch, use a ballpoint pen or a similar object. The "on" position for a switch is towards the back of the printer; "off" is towards the front.

Never change the settings of any of the DIP switches when the power is on. Turn off both the printer and your computer.

Table $\mathrm{H}-1$ summarizes the functions of DIP switches A and C.

DIP switch B controls the serial interface and is covered in Appendix G. The individual switches on DIP switch A are called A-1 through A-8; those on switch C are C-1 through C-4.

Table H-1
DIP switch settings

| Switch | ON | OFF |  |
| :--- | :--- | :--- | :---: |
| Switch A |  |  |  |
| A-1 | 11" page length | $12^{\prime \prime}$ page length |  |
| A-2 | Normal print | Emphasized print |  |
| A-3 | 10 CPI (pica pitch) | 17 CPI (condensed pitch) |  |
| A-4 | Normal | NLQ |  |
| A-5 | $1 / 6^{\prime \prime}$ line feed | $1 / 8^{\prime \prime}$ line feed |  |
| A-6 |  |  |  |
| A-7 | International character set selection - see Table H-2 |  |  |
| A-8 | Switch C |  |  |
|  |  |  |  |
| C-1 | Paper-out detector on | Ignore paper-out |  |
| C-2 | Serial interface | Parallel interface |  |
| C-3 | 7-bit interface | 8-bit interface |  |
| C-4 | Auto LF with CR | LF must be from host |  |

DIP switch A controls the default settings for printing functions. DIP switch C controls the interface.

## Switch Functions

Switch Function
Switch A-1 sets the default page length for Radix. If switch $\mathrm{A}-1$ is ON , the page length is set to $11^{\prime \prime}$. When switch A-1 is OFF the page length is set to $12^{\prime \prime}$. This switch is set ON at the factory.
A-2 This switch selects either normal or emphasized print for the default. If this switch is ON then Radix will print normal type when the power is turned on. If this switch is OFF then Radix will print emphasized type when the power is turned on. This switch is set ON at the factory. This switch has no effect if switch A-4 is off.


Figure H-2. Radix's DIP switches are located under the front cover.

A-3 This switch selects the default character pitch. If this switch is ON the default pitch is 10 CPI . If this switch is OFF the default pitch is 17 CPI. This switch is set ON at the factory. This switch has no effect if switch A-4 is off.
A-4 Switch A-4 selects the default character style. If this switch is ON then the default character style is normal characters. If this switch is OFF then the default character style is near letter quality. If this switch is OFF then switches A-2 and A-3 have no effect. This switch is set ON at the factory.
A-5 This switch sets the default line spacing. When this switch is ON the default line spacing is set to $1 / 6 \mathrm{inch}$. This means that Radix will advance the paper 1/6 inch each time it receives a line feed. When this switch is OFF the default line spacing is $1 / 8$ inch. This switch is set ON at the factory.

A-6 - A-8 These three switches determine the default international character set as shown in Table H-2. These switches are all set ON at the factory.

Table H-2
International character sets

| Switch | USA | England | Germany | Denmark | France | Sweden | Italy | Spain |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A-6 | ON | OFF | ON | OFF | ON | OFF | ON | OFF |
| A-7 | ON | ON | OFF | OFF | ON | ON | OFF | OFF |
| A-8 | ON | ON | ON | ON | OFF | OFF | OFF | OFF |

C-1 This switch disables the paper-out sensor. If this switch is ON the printer will signal the computer when it runs out of continuous paper and will stop printing. If this switch is OFF the printer will ignore the paper-out sensor and will continue printing. This switch is set ON at the factory.
C-2 This switch selects the active interface. Turn this switch ON to use the serial interface. Turn this switch OFF to use the parallel interface. This switch is set OFF at the factory.
C-3 This switch controls the eighth bit of the parallel interface. If this switch is ON the printer will only read the first seven bits on the parallel interface and ignores the eighth bit. If this switch is OFF all eight bits will be read. This switch is set OFF at the factory.
C-4 When this switch is ON, Radix will automatically advance the paper one line every time it receives a carriage return. When this switch is OFF, the computer must send a line feed command every time the paper is to advance. (Most BASICs send a line feed with every carriage return, therefore, this switch should usually be off.) This switch is set OFF at the factory.

## Appendix I ASCII Codes

## Standard and Italic Characters

| Decimal | Character | Function | Decimal | Ch | racter |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | NUL | End tab settings | 47 | / | / |
| 7 | BEL | Bell | 48 | 0 | 0 |
| 8 | BS | Backspace | 49 | 1 | 1 |
| 9 | HT | Horizontal tab | 50 | 2 | 2 |
| 10 | LF | Line feed | 51 | 3 | 3 |
| 11 | VT | Vertical tab | 52 | 4 | 4 |
| 12 | FF | Form feed | 53 | 5 | 5 |
| 13 | CR | Carriage return | 54 | $b$ | $\theta$ |
| 14 | SO | Expanded print on | 55 | 7 | 7 |
| 15 | SI | Condensed print on | 56 | 8 | 8 |
| 17 | DC1 | On line | 57 | 9 | 9 |
| 18 | DC2 | Pica pitch | 58 | : | ; |
| 19 | DC3 | Off line | 59 | ; | ; |
| 20 | DC4 | Expanded print off | 60 | < | $\because$ |
| 27 | ESC | Escape | 61 | $=$ | $=$ |
| 30 | RS | End macro | 62 | $\geqslant$ | $\cdots$ |
| 32 |  | Space | 63 | $?$ | $?$ |
| 33 | $!$ |  | 64 | E | 0 |
| 34 | $\cdots$ |  | 65 | A | $A$ |
| 35 | \# \# | * | 66 | E | $B$ |
| 36 | 韦 $\ddagger$ |  | 67 | C | $c$ |
| 37 | \% \% |  | 68 | D | $D$ |
| 38 | * * |  | 69 | $E$ | $E$ |
| 39 | , | Apostrophe | 70 | $F$ | $F$ |
| 40 | $1<$ |  | 71 | G | $G$ |
| 41 | ) $)$ |  | 72 | H | H |
| 42 | * * |  | 73 | I | $I$ |
| 43 | + + |  | 74 | J | 7 |
| 44 | , | Comma | 75 | K | $k$ |
| 45 | - - | Hyphen | 76 | L | $L$ |
| 46 |  | Period | 77 | M | H |

*These characters may be different if you are using an international character set other than the USA set. The characters for each set are shown on the next page.

| Decimal Character |  |  |  | Decimal Character |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 78 | N | N |  | 103 | 9 | 9 |  |
| 79 | － | 0 |  | 104 | h | b |  |
| 80 | F＇ | P |  | 105 | i | i |  |
| 81 | － | $a$ |  | 106 | i | j |  |
| 82 | F | $\rho$ |  | 107 | k： | $k$ |  |
| 83 | 5 | 3 |  | 108 | 1 | 1 |  |
| 84 | T | $T$ |  | 109 | m | m |  |
| 85 | U | $u$ |  | 110 | ก | $\square$ |  |
| 86 | $v$ | $\theta$ |  | 111 | － | 0 |  |
| 87 | W | H |  | 112 | p | $p$ |  |
| 88 | X | $x$ |  | 113 | a | $q$ |  |
| 89 | $Y$ | y |  | 114 | $r$ | ${ }^{\mu}$ |  |
| 90 | z | $z$ |  | 115 | 三 | － |  |
| 91 | ［ | ［ | ＊ | 116 | ＋ | $t$ |  |
| 92 | ， | ， | ＊ | 117 | 4 | ${ }^{\text {a }}$ |  |
| 93 | $J$ | 7 | ＊ | 118 | $\checkmark$ | \％ |  |
| 94 | $\cdots$ | $\cdots$ | ＊ | 119 | w | w |  |
| 95 |  |  |  | 120 | \％ | $x$ |  |
| 96 | － | ； | ＊ | 121 | Y | 4 |  |
| 97 | a | a |  | 122 | $z$ | $z$ |  |
| 98 | $\square$ | $b$ |  | 123 |  |  | ＊ |
| 99 | － | $=$ |  | 124 | n | n | ＊ |
| 100 | d | $d$ |  | 125 | ？ | ， | ＊ |
| 101 | e | $e$ |  | 126 | $\sim$ | $\sim$ | ＊ |
| 102 | ＋ | $f$ |  | 127 | D |  | Delete |
| ＊These characters may be different if you are using an interna－ tional character set other than the USA set．The characters for each set are shown below． |  |  |  |  |  |  |  |

## International Character Sets

| Decimal | USA | England | Germany | Denmark | France | Sweden | Italy | Spain |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 35 | ＊ | $\pm$ | \＃ | \＃ | $\pm$ | \＃ | \＃ | \＃ |
| 64 | I | 曰 | $\Xi$ | 回 | a | E | 3 | E |
| 91 | ［ | ［ | $\ddot{A}$ | f1 | － | $\ddot{A}$ | n | i |
| 92 | 1 | $\checkmark$ | $\dot{0}$ | \＃ | 5 | $\dot{6}$ | 5 | F |
| 93 | ］ | ］ | ij | A | 5 | A | E | $\dot{\Sigma}$ |
| 94 | $\therefore$ | $\cdots$ | $\cdots$ | $\cdots$ | $\therefore$ | U | $\therefore$ | $\cdots$ |
| 96 | ： | － | － | ＊ | ： | e | U | － |
| 123 | c | r | a | z | e | 3 | a |  |
| 124 | ； | ＇ | 0 | ［2i | a | $\ddot{0}$ | 0 | $\ldots$ |
| 125 | j | 3 | i | a | e | $\dot{\text { a }}$ | e | 3 |
| 126 | $\sim$ | $\sim$ | $\beta$ | $\sim$ |  | ii | i | $\sim$ |

## Special Characters

| Decimal Character |  | Function | Decimal | Character |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | 184 | I |
| 135 | BEL | Bell | 185 | $\square$ |
| 136 | BS | Backspace | 186 | N |
| 137 | HT | Horizontal tab | 187 | $\pi$ |
| 138 | LF | Line feed | 188 | $\pm$ |
| 139 | VT | Vertical tab | 189 | J |
| 140 | FF | Form feed | 190 | $\cdots$ |
| 141 | CR | Carriage return | 191 | $\div$ |
| 142 | SO | Expanded print on | 192 | A |
| 143 | SI | Condensed print on | 193 | $\stackrel{\text { a }}{ }$ |
| 145 | DC1 | On line | 194 | ¢ |
| 146 | DC2 | Pica pitch | 195 | £ |
| 147 | DC3 | Off line | 196 | E |
| 148 | DC4 | Expanded print off | 197 | ${ }^{1}$ |
| 155 | ESC | Escape | 198 | $\square$ |
| 158 | RS | End macro | 199 | ＊ |
| 160 | － |  | 200 | $t$ |
| 161 | $\because$ |  | 201 | 三 |
| 162 | － |  | 202 | E |
| 163 | $\cdots$ |  | 203 | co |
| 164 | ＋ |  | 204 | 4 |
| 165 | 4 |  | 205 | 下 |
| 166 | $\div$ |  | 206 | 安 |
| 167 | $\stackrel{+}{+}$ |  | 207 | 11 |
| 168 | $\square$ |  | 208 | \％ |
| 169 | $\stackrel{-}{4}$ |  | 209 | $\pm$ |
| 170 | $\square$ |  | 210 | $\square$ |
| 171 | F |  | 211 | U |
| 172 | 4 |  | 212 | 4 |
| 173 | \％ |  | 213 | F |
| 174 | ＊ |  | 214 | a |
| 175 | $\square$ |  | 215 | ة |
| 176 | Tr |  | 216 | 4 |
| 177 | 4 |  | 217 | B |
| 178 | （2i |  | 218 | E |
| 179 | $\theta$ |  | 219 | － |
| 180 | L |  | 220 | 4 |
| 181 | F |  | 221 | e |
| 182 | $\square$ |  | 222 | $\bar{i}$ |
| 183 | 8 |  | 223 | $f$ |

## Block Graphics Characters

| Decimal Character |  |  | Decimal Character |  |
| :---: | :---: | :---: | :---: | :---: |
| 224 |  | Space | 240 | $r$ |
| 225 | - |  | 241 | - |
| 226 | - |  | 242 | 7 |
| 227 | - |  | 243 | T |
| 228 | - |  | 244 | - |
| 229 | m |  | 245 | 1 |
| 230 | - |  | 246 | $\stackrel{1}{2}$ |
| 231 | - |  | 247 | , |
| 232 | - |  | 248 | $\perp$ |
| 233 | ! |  | 249 | $-1$ |
| 234 | - |  | 250 | $+$ |
| 235 | 1 |  | 251 | $F$ |
| 236 | - |  | 252 | 4 |
| 237 | ¢ |  | 253 | * |
| 238 | - |  | 254 | m. |
| 239 | E |  | 255 |  |






## Appendix J

## Character Style Charts

## Standard Characters

32

33


36

41

42
39



50

51


54

55

56

57

58

59




68


## 61 <br> 


67

69

72

73

75

76

$80 \%$ \#

83

86

87


82



## 93


94

95


96


101


116


120


122


123


124

125


126


## Italic Characters


64

65

67

68

73

70

71

72

75

76

89

85

93

90

94

91

92

95



## International Characters





92







126


## Special Characters



224 \#\#
225

229

233



251


253


254


## Appendix K

## Function Code Reference

The purpose of this Appendix is to provide a quick reference for the various functions available on the Radix-10 and Radix-15. The descriptions of the codes appear in the following format:

PURPOSE: Tells what the function code does.

CODE:
(decimal ASCII)
(hex ASCII)
REMARKS: Details how the command is used.
REFERENCE: Tells which chapter of the manual describes the command in greater detail

There are several commands that require that you specify a value (or values) to Radix. In these cases, we have used an italic " $n$ " or " $m$ " to indicate a variable. You should insert the ASCII code for proper value here.

## Commands to Control Print Style

These commands are used to control the font style, the print pitch, and special effects.
Font style controls
PURPOSE: Select the standard character set.

CODE:
(decimal ASCII)
(hex ASCII)
REMARKS:

$$
\langle\mathrm{ESC}\rangle
$$

$$
27
$$

1B

This command causes the printer to cancel the italic character set and select instead the standard character set. You can select the standard character set as the power-on default by turning DIP switch A-4 on.

REFERENCE: Chapter 7

PURPOSE: Select the italic character set.
CODE:
(decimal ASCII)
(hex ASCII)
REMARKS:
REFERENCE: Chapter 7

## PURPOSE: Select an international character set.

CODE:
(decimal ASCII)
(hex ASCII)
REMARKS:

| $\langle\mathrm{ESC}\rangle$ | $" 7 "$ | $n$ |
| :---: | :---: | :---: |
| 27 | 55 | $n$ |
| 1B | 37 | $n$ |

This command causes the printer to select an international character set determined by the value of $\boldsymbol{n}$ as shown in the table below:

| n | Character set |
| :--- | :--- |
| 0 | U.S.A. |
| 1 | England |
| 2 | Germany |
| 3 | Denmark |
| 4 | France |
| 5 | Sweden |
| 6 | Italy |
| 7 | Spain |

You can select a particular international character set as a power-on default by adjusting the settings of DIP switches A-6, A-7, and A-8.

REFERENCE: Chapter 10

PURPOSE: $\quad$ Select the NLQ (Near Letter Quality) character set.

CODE:
(decimal ASCII)
(hex ASCII)
REMARKS:

〈ESC〉 27
1B
This command causes all subsequent printing to be done with the NLQ (Near Letter Quality) character set. This character set cannot be used in conjunction with other font styles or special print modes except for underlining. You can set NLQ characters as the power-on default by turning DIP switch A-4 off.

REFERENCE: Chapter 7

| PURPOSE: | Cancel the NLQ character set. |  |  |
| :--- | :---: | :---: | ---: |
| CODE: | $\langle E S C\rangle$ | $" B "$ | 5 |
| (decimal ASCII) | 27 | 66 | 5 |
| (hex ASCII) | $1 B$ | 42 | 05 |

REMARKS: This command causes the printer to cancel the NLQ character set and return to the standard (also known as "draft") character set.

REFERENCE: Chapter 7
Font pitch controls
PURPOSE: Set the print pitch to pica (10 characters/ inch).

CODE:
(decimal ASCII)
(hex ASCII)
REMARKS:

〈ESC〉 "B"
2766
1B
421101

This command causes all subsequent printing to be done in pica type. This command also sets the maximum number of print columns to 80 on the Radix- 10 and 136 on the Radix-15. You can select pica type as the power-on default by turning DIP switch A-3 on.

REFERENCE: Chapter 7
PURPOSE: Set the print pitch to elite (12 characters/ inch).
CODE:
(decimal ASCII)
(hex ASCII)
REMARKS:
This command causes all subsequent printing except NLQ characters to be done in elite type. This command also sets the maximum number of print columns to 96 on the Radix10 and 163 on the Radix-15.
REFERENCE: Chapter 7

PURPOSE：

CODE： （decimal ASCII） （hex ASCII）

REMARKS：

REFERENCE：Chapter 7
PURPOSE：$\quad$ Set the print pitch to pica（ 10 characters／ inch）．

CODE：
（decimal ASCII）
（hex ASCII）
REMARKS：

REFERENCE：

CODE：
（decimal ASCII） （hex ASCII）

REFERENCE：Chapter 7

PURPOSE：$\quad$ Set the print pitch to condensed（17 charac－ ters／inch）．

REMARKS：This command is the same as 〈ESC〉＂$B$＂3， but can be used in applications where a sin－ gle－character command is required．

〈SI〉
15
0F
This command is the same as 〈ESC〉＂$B$＂ 1 ， but can be used in applications where a sin－ gle－character command is required．
Chapter 7

| PURPOSE： | Set the print pitch to condensed（17 charac－ ters／inch）． |
| :---: | :---: |
| CODE： | 〈ESC〉 〈SI〉 |
| （decimal ASCII） | 2715 |
| （hex ASCII） | 1B 0F |
| REMARKS： | Same as 〈Sİ，above． |
| REFERENCE： | Chapter 7 |
| PURPOSE： | Set the printer to expanded print． |
| CODE： | 〈ESC〉＂W＂ |
| （decimal ASCII） | $27-87$ |
| （hex ASCII） | 1B 57 |
| REMARKS： | This command causes all subsequent print－ ing except NLQ characters to be in expanded type．The size of the type is determined by the normal type size at the time the command is sent： |
|  | Normal Expanded |
|  | Pica 10 CPI 5 CPI |
|  | Elite 12 CPI 6 CPI |
|  | Condensed 17 CPI 8．5 CPI |
| REFERENCE： | Chapter 7 |
| PURPOSE： | Set the printer to expanded print for the re－ mainder of the current line． |
| CODE： <br> （decimal ASCII） （hex ASCII） | $\begin{gathered} \langle\mathrm{SO}\rangle \\ 14 \\ 0 \mathrm{E} \end{gathered}$ |
| REMARKS： | This command causes the printer to print ex－ panded characters until a carriage return is sent．It can also be cancelled with 〈DC4〉． The character widths are shown above in the description of the 〈ESC〉＂W＂ 1 command． |
| REFERENCE： | Chapter 7 |

PURPOSE：$\quad$ Set the printer to expanded print for the re－ mainder of the current line．

CODE：
（decimal ASCII）
（hex ASCII）
〈ESC〉 〈SO〉
$27 \quad 14$
1B 0E
REMARKS：Same as 〈SO〉，above．
REFERENCE：Chapter 7

PURPOSE：Cancels expanded print．
CODE：
（decimal ASCII）
（hex ASCII）

| 〈ESC〉 | ＂W＂ | 0 |
| :---: | :--- | ---: |
| 27 | 87 | 0 |
| $1 B$ | 57 | 00 |

REMARKS：This command resets the print size to what－ ever it was before being set to expanded print．
REFERENCE：Chapter 7
PURPOSE：Cancels expanded print．
CODE：
（decimal ASCII）
〈DC4〉
（hex ASCII） 20

REMARKS：
This command cancels one line expanded printing set with 〈SO〉．
REFERENCE：Chapter 7

## Special print modes

PURPOSE: Select double-strike printing.
CODE:
(decimal ASCII)
(hex ASCII)
REMARKS:

| $\langle E S C\rangle$ | $" G "$ |
| :---: | :---: |
| 27 | 71 |
| $1 B$ | 47 |

This command causes all subsequent characters except NLQ characters to be printed in double-strike. Double-strike causes all characters to be printed once, the paper moved up $1 /$ 144 inch, the characters reprinted, and the paper moved back down 1/144 inch.
REFERENCE: Chapter 7
PURPOSE: Cancel double-strike printing.
CODE:
(decimal ASCII)
(hex ASCII)
REMARKS:

REFERENCE: Chapter 7

PURPOSE: $\quad$ Select emphasized printing.
CODE:
(decimal ASCII)
(hex ASCII)
REMARKS: This command causes all subsequent characters except NLQ characters to be printed in emphasized print. Emphasized print can only be used with pica-sized characters, or enlarged pica-sized characters ( 10 CPI and 5 CPI), and cannot be used with superscripts or subscripts. You can select emphasized printing as the power-on default by turning DIP switch A-2 off.

REFERENCE: Chapter 7

## PURPOSE: Cancel emphasized printing.

CODE:
(decimal ASCII)
(hex ASCII)
REMARKS: This command cancels emphasized printing and returns the printer to normal printing. You can select normal printing as the poweron default by turning DIP switch A-2 on.

REFERENCE: Chapter 7
PURPOSE: Select underlining.
CODE:
(decimal ASCII)
(hex ASCII)
REMARKS:

REFERENCE: Chapter 7

PURPOSE: Cancel underlining.
CODE:
(decimal ASCII)
(hex ASCII)
REMARKS:

REFERENCE: Chapter 7

PURPOSE: Select superscripts.

CODE:
(decimal ASCII)
(hex ASCII)
REMARKS: This command causes all subsequent characters to be printed as superscripts. While in superscript mode, the normal bi-directional printing is cancelled and replaced with unidirectional printing. Printing is also set to double-strike mode. Superscripts may be used in conjunction with the italic font, and in pica, elite, and condensed pitches. It may not, however, be used in conjunction with emphasized print, enlarged print, or NLQ characters.

REFERENCE: Chapter 7

PURPOSE: Select subscripts.
CODE:
(decimal ASCII)
(hex ASCII)
REMARKS:

Cancel superscripts and subscripts.

〈ESC〉
27
1B
This command cancels either superscript or subscript mode. It also cancels the uni-directional printing and double-strike which the mode had set.

## REFERENCE: Chapter 7

## Commands to Control Vertical Position of Print Head

These commands are used to move the paper relative to the loca－ tion of the print head．By moving the paper up or down，the print head，in effect，moves the opposite direction（down or up）on the page．

## Line feed controls

PURPOSE：Advance the paper one line（Line Feed）．

CODE：
（decimal ASCII）
（hex ASCII）
REMARKS：

〈LF〉
10
0A
The actual distance advanced by the line feed is set either through the setting of DIP switch A－5 or through various codes which can be sent（see below）．When DIP switch C－4 is ＂on＂a line feed is automatically generated whenever the printer receives a carriage re－ turn．

REFERENCE：Chapter 8
PURPOSE：$\quad$ Reverse the paper one line．

CODE：
（decimal ASCII）
（hex ASCII）
REMARKS：
〈ESC〉 〈LF〉
$27 \quad 10$
1B 0A
This command causes the printer to reverse the paper（in effect moving the print head up on the sheet）one line．The actual distance traveled is set either through the setting of DIP switch A－5 or through various codes which can be sent（see below）．
REFERENCE：Chapter 8

## PURPOSE: $\quad$ Change the line spacing to $1 / 8$ inch.

CODE:
(decimal ASCII)
(hex ASCII)
REMARKS:

〈ESC〉 "0"
27
1B
48
30
This command sets the distance the paper advances or reverses during all subsequent line feeds to $1 / 8$ inch. You can select $1 / 8$ inch line spacing as the power-on default by turning DIP switch A-5 off.

## REFERENCE: Chapter 8

PURPOSE: Change the line spacing to 7/72 inch.
CODE:
(decimal ASCII)
(hex ASCII)
REMARKS:

REFERENCE: Chapter 8

PURPOSE: Change the line spacing to $1 / 6$ inch.
CODE:
(decimal ASCII)
(hex ASCII)
REMARKS:

REFERENCE: Chapter 8

| PURPOSE： | Change the line spacing to $n / 72$ inch． |  |  |
| :---: | :---: | :---: | :---: |
| CODE： | 〈ESC〉 | ＂ A ＂ | n |
| （decimal ASCII） | 27 | 65 | n |
| （hex ASCII） | 1B | 41 | n |
| REMARKS： | This command sets the distance the paper ad－ vances or reverses during all subsequent line feeds to $n / 72$ inch．The value of $n$ must be be－ tween 0 and 255. |  |  |

REFERENCE：Chapter 8
PURPOSE：Change the line spacing to $n / \mathbf{1 4 4}$ inch．
CODE：
（decimal ASCII）
（hex ASCII）
REMARKS：

| 〈ESC〉 | ＂ $3 "$ | $n$ |
| :---: | :---: | :---: |
| 27 | 51 | $n$ |
| $1 B$ | 33 | $n$ |

This command sets the actual distance the paper advances or reverses during all subse－ quent line feeds to $n / 144 \mathrm{inch}$ ．The value of $n$ must be between 0 and 255 ．
REFERENCE：Chapter 8
PURPOSE：$\quad$ Send a one－time line feed of $\boldsymbol{n} / \mathbf{1 4 4}$ inch．
CODE：
（decimal ASCII）
（hex ASCII）
REMARKS：

| $\langle\mathrm{ESC}\rangle$ | $" \mathrm{~J} "$ | $n$ |
| :---: | :---: | :---: |
| 27 | 74 | $n$ |
| $1 B$ | 4 A | n |

This command causes the printer to advance the paper $n / 144$ inch and return the print head to the left margin．It does not change the current value of the line spacing．The value of n must be between 0 and 255 ．
REFERENCE：Chapter 8

| PURPOSE： | Send a one－time reverse line feed of $\boldsymbol{n} / \mathbf{1 4 4}$ inch． |
| :---: | :---: |
| CODE： | 〈ESC〉＂j＂n |
| （decimal ASCII） | $27 \quad 106$ |
| （hex ASCII） | 1B 6A |
| REMARKS： | This command causes the printer to reverse the paper $n / 144$ inch and return the print head to the left margin．It does not change the current value of the line spacing．The value of n must be between 0 and 255 ． |
| REFERENCE： | Chapter 8 |
| Form feed controls |  |
| PURPOSE： | Advance paper to top of next page（Form Feed）． |
| CODE： | 〈FF〉 |
| （decimal ASCII） （hex ASCII） | $\begin{aligned} & 12 \\ & \mathrm{OC} \end{aligned}$ |
| REMARKS： | The actual length of a page ejected by a form feed is set either by the setting of DIP switch A－1 or through various codes which can be sent（see below）． |
| REFERENCE： | Chapter 8 |
| PURPOSE： | Reverse the paper to the top of the current page． |
| CODE： | 〈ESC〉 〈FF〉 |
| （decimal ASCII） | $27 \quad 12$ |
| （hex ASCII） | 1B OC |
| REMARKS： | This command causes the printer to reverse the paper to the top of the current printing page（or form）． |
| REFERENCE： | Chapter 8 |


| PURPOSE： | Set page length to $n$ lines． |  |  |
| :--- | :---: | :---: | :---: |
| CODE： | $\langle E S C\rangle$ | ＂C＂ | $n$ |
| （decimal ASCII） | 27 | 67 | $n$ |
| （hex ASCII） | $1 B$ | 43 | $n$ |

REMARKS：This command sets the length of all subse－ quent pages to $n$ lines．The value of $n$ must be between 1 and 127.

REFERENCE：Chapter 8
PURPOSE：$\quad$ Set page length to $n$ inches．
CODE：
（decimal ASCII）

| 〈ESC〉 | ＂C＂ | 0 | n |
| :---: | :---: | ---: | :---: |
| 27 | 67 | 0 | $n$ |
| $1 B$ | 43 | 00 | $n$ |

REMARKS：This command sets the length of all subse－ quent pages to $n$ inches．The value of $n$ must be between 1 and 32．You can select a power－ on default form length of 11 inches or 12 inches by setting DIP switch A－1．
REFERENCE：Chapter 8
PURPOSE：Set the top margin．
CODE：
（decimal ASCII）

| 〈ESC〉 | ＂R＂ | $n$ |
| :---: | :--- | :--- |
| 27 | 82 | $n$ |
| 1B | 52 | $n$ |

REMARKS：This command sets the margin at the top of the page to $n-1$ lines．Printing will start on line $n$ ．The default value for $n$ upon power－on is 1 ． The value of $n$ must be between 1 and 16 ．
REFERENCE：Chapter 8

PURPOSE：Set the bottom margin．

CODE：
（decimal ASCII） （hex ASCII）
REMARKS：

| 〈ESC〉 | ＂N＂ | $n$ |
| :---: | :---: | :---: |
| 27 | 78 | $n$ |
| $1 B$ | $4 E$ | $n$ |

This command sets the margin at the bottom of the page to $n$ lines．The printer will auto－ matically execute a form feed when the num－ ber of lines left on a page is equal to $n$ ．The value of $n$ must be between 1 and 127．This command is sometimes referred to as＂skip－ over－perforation．＂
REFERENCE：Chapter 8
PURPOSE：
CODE：
（decimal ASCII）
（hex ASCII）
REMARKS：

REFERENCE：Chapter 8

## Vertical tabs

PURPOSE：

CODE：
（decimal ASCII）
（hex ASCII）
REMARKS：
Advance paper to the next vertical tab posi－ tion．

〈VT〉
11
OB
This command causes the paper to be ad－ vanced to the next vertical tab position，or the top of the next page，whichever it finds first． The vertical tab positions are set upon power on at lines $6,12,18,24,30,36,42,48,54$ ，and 60.

REFERENCE：Chapter 9

## PURPOSE：Set vertical tab positions．

| CODE： | 〈ESC〉＂P＂ | n1 n2 n3．．． | 0 |
| :---: | :---: | :---: | :---: |
| （decimal ASCII） | 2780 | n1 n2 n3．． | 0 |
| （hex ASCII） | 1B 50 | n1 n2 n3．．． | 00 |
| REMARKS： | This comma tab positions n1，n2，n3，et tical tab posit character is Each vertical and 255 ，and cending orde | cels all cur ts those def aximum nu owed is 20 ． a command ition must must be spe | rtical <br> lines <br> f ver－ <br> CII 0 <br> nator． <br> een 1 <br> in as－ |
| REFERENCE： | Chapter 9 |  |  |

PURPOSE：Advance the paper $\mathbf{n}$ lines．
CODE：
（decimal ASCII）
（hex ASCII）
REMARKS：

| 〈ESC〉 | ＂a＂ | $n$ |
| :---: | :---: | :---: |
| 27 | 97 | $n$ |
| $1 B$ | 61 | $n$ |

This command causes the printer to advance the paper n lines．It does not，however， change the current value of the vertical tab positions．The value of $n$ must be between 1 and 255.

REFERENCE：Chapter 8，Chapter 9

## Commands to Control Horizontal Position of Print Head

| PURPOSE： | Return print head to home position（Car－ <br> riage Return）． |
| :--- | :---: |
| CODE： | 〈CR〉 |
| （decimal ASCII） | 13 |
| （hex ASCII） | 0 D |

REMARKS：This command returns the print head to the home position（the left margin）．If DIP switch C－4 has been set on，then this command will also cause a line feed character to be genera－ ted after the carriage return，thereby advanc－ ing to the beginning of the next print line automatically．
REFERENCE：Chapter 8

PURPOSE：Set the left print margin．
CODE：
（decimal ASCII）
（hex ASCII）
REMARKS：

| 〈ESC〉 | ＂M＂ | $n$ |
| :---: | :---: | :---: |
| 27 | 77 | $n$ |
| $1 B$ | $4 D$ | $n$ |

This command sets the home position re－ turned to during the execution of all subse－ quent carriage returns to be print position $n$ ． The power on default for $n$ is 1 ．The value of $n$ must be between 1 and 255．For Radix－10 the maximum print position for pica pitch is 80 ， for elite is 96，and for condensed pitch is 136. For Radix－15 the maximum print position for pica pitch is 136 ，for elite is 163 ，and for con－ densed pitch is 233.

REFERENCE：Chapter 9

## PURPOSE: Set the right print margin.

CODE:
(decimal ASCII)
(hex ASCII)
REMARKS:

REFERENCE: Chapter 9

PURPOSE: | Move the print head to the next horizontal |
| :--- |
| tab position. |.

CODE:
(decimal ASCII)
(hex ASCII)
REMARKS:

REFERENCE: Chapter 9

PURPOSE: Set horizontal tab positions.
CODE:
(decimal ASCII)
(hex ASCII)
REMARKS: This command cancels all current horizontal tab positions and sets those defined at print positions n1, n2, n3, etc. The maximum number of horizontal tab positions allowed is 255 . The ASCII 0 character is used as a command terminator. Each horizontal tab position must be between 1 and 255, and they must be specified in ascending order.
REFERENCE: Chapter 9

## PURPOSE: $\quad$ Skip n print positions.



REMARKS:

REFERENCE: Chapter 9
PURPOSE: $\quad \begin{aligned} & \text { Move the print head back one print position } \\ & \text { (backspace). }\end{aligned}$
CODE:
(decimal ASCII) (hex ASCII)
REMARKS:

| 〈ESC〉 | "b" | $n$ |
| :---: | :---: | :---: |
| 27 | 98 | $n$ |
| $1 B$ | 62 | $n$ |

This command causes the print head to advance $n$ print positions to the right. It does not, however, change the current value of the horizontal tab positions. The value of $n$ must be between 1 and 255.

This command shifts the print head one col- umn to the left. If the print head is at the home position, the command is ignored. This command can be used to overstrike characters.

REFERENCE: Chapter 10

## Download Character Commands

| PURPOSE: | Define download characters into RAM. |
| :---: | :---: |
| CODE: |  |
|  | $27 \quad 42 \quad$1 n 1 n 2 m 1 m 2 m 3 m 4 <br> m 5 m 6 m 7 m 8 m 9 m 10  <br> m 11  |
|  | $\text { 1B 2A } \quad \begin{array}{rl} 01 & \mathrm{~m} 1 \mathrm{n} 2 \mathrm{~m} 1 \mathrm{~m} 2 \mathrm{~m} 3 \mathrm{~m} 4 \\ \mathrm{~m} 5 \mathrm{~m} 6 \mathrm{~m} 7 \mathrm{~m} 8 \mathrm{~m} 9 \mathrm{~m} 10 \\ & \mathrm{~m} 11 \end{array}$ |
| REMARKS: | This command is used to set up a userdefined character and store it into RAM for later use. RAM is cleared during power down. The value of $n 1$ is the position in RAM that this character is to occupy. It must be between 33 and 126 or between 160 and 254. That is, it must fall within the range of printable characters. The value of $n 2$ determines the attributes and width of the character. m1 thru m11 determine which dots form the character. |
| REFERENCE: | Chapter 11 |
| PURPOSE: | Copy standard character ROM fonts into RAM. |
| CODE: | 〈ESC〉 "*" 0 |
| (decimal ASCII) | $27 \quad 420$ |
| (hex ASCII) | 1B 2A 00 |
| REMARKS: | This command takes all of the characters in the standard ASCII character set (those with ASCII values between 33 and 126; characters with ASCII values above 160 are not copied to RAM) and copies them into RAM. This is helpful prior to defining characters in RAM because it allows standard ROM characters to be printed on the same line as download characters. |
| REFERENCE: | Chapter 11 |


| PURPOSE： | Select download character set with propor－ tional spacing． |
| :---: | :---: |
| CODE： | 〈ESC〉＂X＂ 1 |
| （decimal ASCII） | 27 88 1 |
| （hex ASCII） | 1B 58 |
| REMARKS： | This command selects the download charac－ ter set using the proportional spacing defined in the character attribute data． <br> Note：Download characters cannot be mixed with other characters on the same line． |
| REFERENCE： | Chapter 11 |
| PURPOSE： | Cancel download character set with propor－ tional spacing． |
| CODE： | 〈ESC〉＂X＂0 |
| （decimal ASCII） | 27 88 0 |
| （hex ASCII） | 1B 58 |
| REMARKS： | This command cancels the download charac－ ter set and selects the standard ASCII charac－ ter set． |
| REFERENCE： | Chapter 11 |
| PURPOSE： | Select download character set with normal spacing． |
| CODE： | 〈ESC〉＂\＄＂ 1 |
| （decimal ASCII） | $27 \quad 36$ |
| （hex ASCII） | 1B 2401 |
| REMARKS： | This command causes the printer to select the download character set using normal spacing and ignoring the proportional width data． <br> Note：Download characters cannot be mixed with other characters on the same line． |
| REFERENCE： | Chapter 11 |

## PURPOSE：Cancel download character set with normal spacing．

CODE：
（decimal ASCII）
（hex ASCII）
REMARKS：

| 〈ESC〉 | $" \$ "$ | 0 |
| :---: | :---: | ---: |
| 27 | 36 | 0 |
| 1B | 24 | 00 |

This command cancels the download charac－ ter set and selects the standard ASCII charac－ ter set．

REFERENCE：Chapter 11

## Commands to Control Graphics

PURPOSE：Print normal－density graphics．
CODE：
（decimal ASCII）
（hex ASCII）
REMARKS：

| 〈ESC〉 | ＂K＂ | $\mathrm{n} 1 \mathrm{n} 2 \mathrm{~m} 1 \mathrm{~m} 2 \mathrm{~m} 3 \ldots$ |
| :---: | :---: | :---: |
| 27 | 75 | $\mathrm{n} 1 \mathrm{n} 2 \mathrm{~m} 1 \mathrm{~m} 2 \mathrm{~m} 3 \ldots$ |
| 1B | 4 B | $\mathrm{n} 1 \mathrm{n} 2 \mathrm{~m} 1 \mathrm{~m} 2 \mathrm{~m} 3 \ldots$ |

This command selects 60 dots－per－inch，col－ umn－scan，bit－image graphics mode．The val－ ues of n 1 and n 2 represent the number of graphics characters to be printed，where the total number of characters＝n2 times $256+$ n1．The correct number of graphic data bytes （ $\mathrm{m} 1, \mathrm{~m} 2$ ，etc．）must follow n2．The ASCII value of these characters determine which pins are fired for each character．

REFERENCE：Chapter 12
PURPOSE：
CODE：
（decimal ASCII）
（hex ASCII）
REMARKS：

## Print double－density graphics．

$\begin{array}{ccc}\text { 〈ESC〉 } & \text {＂L＂} & \text { n1 n2 m1 m2 m3．．．} \\ \text { 27 } & 76 & \text { n1 n2 m1 m2 m3．．．} \\ \text { 1B } & \text { 4C } & \text { n1 n2 m1 m2 m3．．．}\end{array}$
This command selects 120 dots－per－inch，col－ umn－scan，bit－image graphics mode．The val－ ues of $n 1$ and $n 2$ are the same as in normal density graphics．The correct number of graphic data bytes（m1，m2，etc．）must follow n 2 ．The ASCII value of these characters deter－ mine which pins are fired for each character．

REFERENCE：Chapter 12

| PURPOSE： | Print double－density graphics with double－ <br> speed． |
| :--- | :--- |

CODE：
〈ESC〉＂y＂n1 n2 m1 m2 m3．．．
（decimal ASCII）
（hex ASCII）
REMARKS：

$$
27 \quad 121 \mathrm{n} 1 \mathrm{n} 2 \mathrm{~m} 1 \mathrm{~m} 2 \mathrm{~m} 3 . . .
$$

1B $\quad 79 \mathrm{n} 1 \mathrm{n} 2 \mathrm{~m} 1 \mathrm{~m} 2 \mathrm{~m} 3 .$.
This command selects 120 dots－per－inch，col－ umn－scan，bit－image graphics mode with double－speed．The values of $n 1$ and $n 2$ are the same as in normal density graphics．The cor－ rect number of graphic data bytes（ $\mathrm{m} 1, \mathrm{~m} 2$ ， etc．）must follow n2．The ASCII value of these characters determine which pins are fired for each character．

REFERENCE：Chapter 12

## PURPOSE：Print quadruple－density graphics．

| CODE： | 〈ESC〉 | ＂z＂ | $\mathrm{n} 1 \mathrm{n} 2 \mathrm{~m} 1 \mathrm{~m} 2 \mathrm{~m} 3 \ldots$ |
| :--- | :---: | :---: | :---: |
| （decimal ASCII） | 27 | 122 | $\mathrm{n} 1 \mathrm{n} 2 \mathrm{~m} 1 \mathrm{~m} 2 \mathrm{~m} 3 .$. |
| （hex ASCII） | $1 B$ | 7 A | $\mathrm{n} 1 \mathrm{n} 2 \mathrm{~m} 1 \mathrm{~m} 2 \mathrm{~m} 3 \ldots$ |

REMARKS：This command selects 240 dots－per－inch，col－ umn－scan，bit－image graphics mode．The val－ ues of $n 1$ and $n 2$ are the same as in normal density graphics．The correct number of graphic data bytes（m1，m2，etc．）must follow n 2 ．The ASCII value of these characters deter－ mine which pins are fired for each character．

## REFERENCE：Chapter 12

## Macro Instruction Commands

PURPOSE：Define macro instruction．

CODE：
（decimal ASCII）
（hex ASCII）
REMARKS：

| $\langle\mathrm{ESC}\rangle$ | $"+"$ | $\ldots$ | $\langle\mathrm{RS}\rangle$ |
| :---: | :---: | :---: | :---: |
| 27 | 43 | $\ldots$ | 30 |
| 1 B | 2 B | $\ldots$ | 1 E |

This command cancels any existing macro instruction，and replaces it with the instruc－ tion defined．The maximum number of char－ acters allowed in the macro instruction is 16. The 〈RS〉 character marks the end of the macro definition．

REFERENCE：Chapter 10

PURPOSE：Execute macro instruction．
CODE：
（decimal ASCII）
〈ESC〉＇！’
$27 \quad 33$
（hex ASCII）
REMARKS：
1B
21
This command executes a macro instruction that was previously defined．

REFERENCE：Chapter 10

## Other Commands

| PURPOSE： | Set the value of the eighth data bit to logical 1. |
| :---: | :---: |
| CODE： | 〈ESC〉＂＞＂ |
| （decimal ASCII） | 27 62 |
| （hex ASCII） | 1B 3E |
| REMARKS： | This command forces the eighth data bit of each subsequent character sent to the printer to logical 1．This code allows users with a $7-$ bit interface to access those characters whose ASCII code is greater than 127．This code should not be used to transmit printer control codes． |
| REFERENCE： | Chapter 10 |
| PURPOSE： | Set the value of the eighth data bit to logical 0. |
| CODE： | 〈ESC〉＂＝＂ |
| （decimal ASCII） | $27 \quad 61$ |
| （hex ASCII） | 1 B 3D |
| REMARKS： | This command forces the eighth data bit of each subsequent character sent to the printer to logical 0 ．This code should not be used to transmit printer control codes． |
| REFERENCE： | Chapter 10 |

## PURPOSE：Accept the value of the eighth data bit as is．

CODE：
（decimal ASCII）
（hex ASCII）
REMARKS：

REFERENCE：Chapter 10

PURPOSE：Delete the last character sent．
CODE：
（decimal ASCII）
（hex ASCII）
REMARKS：
〈DEL〉 127
7F
This command deletes the last character re－

〈ESC〉＂\＃＂
$27 \quad 35$
1B 23
This command cancels either setting of the eighth data bit．The printer will use the value of the eighth data bit that is sent from the computer．This code allows users with a 7－bit interface to resume normal functions after accessing those characters whose ASCII code is greater than 127. ceived．This command is ignored if the last character received has already been printed， or if the last character received was all or part of a function code．
REFERENCE：Chapter 10

PURPOSE：Set printer off line．

CODE：
（decimal ASCII）
（hex ASCII）
REMARKS：
〈DC3〉
19
13
This command causes the printer to set itself off line，disregarding all subsequent charac－ ters and function codes，with the exception of〈DC1〉，which will return the printer to an on line state．This is not the same as pushing the ON－LINE button．When the ON－LINE light is out the printer will not respond to 〈DC1〉．
REFERENCE：Chapter 10

PURPOSE：Set printer on line．
CODE：
（decimal ASCII）
（hex ASCII）
REMARKS：This code resets the printer to an on line state， thus allowing it receive and process all subse－ quent characters and function codes．This is not the same as pushing the ON－LINE button． When the ON－LINE light is out the printer will not respond to 〈DC1〉．

REFERENCE：Chapter 10

PURPOSE：Sound printer bell．
CODE：
（decimal ASCII）
〈BEL〉
7
（hex ASCII）
REMARKS：
This command causes the printer tone to sound for approximately one－fourth second．
REFERENCE：Chapter 10
PURPOSE：Disable the printer bell．
CODE：
（decimal ASCII）
（hex ASCII）
REMARKS：

REFERENCE：Chapter 10
PURPOSE：Enable the printer bell．

| 〈ESC〉 | ＂Y＂ | 0 |
| :---: | :---: | ---: |
| 27 | 89 | 0 |
| $1 B$ | 59 | 00 |

This command causes the printer to ignore the 〈BEL〉 character．

CODE：
（decimal ASCII）
（hex ASCII）
REMARKS：〈ESC〉＂$Y$＂ 1
$27 \quad 89$
59 1
1B 01

This command causes the printer to respond to the 〈BEL〉 character normally by sounding the printer bell．
REFERENCE：Chapter 10

|  | Disable paper-out detector. |  |
| :--- | :---: | :---: |
| PURPOSE: | ( 8 " |  |
| CODE: | ESC〉 | 56 |
| (decimal ASCII) | 27 | 56 |
| (hex ASCII) | $1 B$ | 38 |


| REMARKS: | This command causes the printer to disre- <br> gard the signal sent by the paper-out detector. <br> The paper-out signal normally sounds the <br> printer bell and stops printing until paper is <br> inserted and the printer is reset. DIP switch <br> C-1 can also be set to disable the paper-out de- <br> tector. |
| :--- | :---: |
| Chapter 10 |  |

REFERENCE: Chapter 10

PURPOSE: Select uni-directional printing.
CODE:
(decimal ASCII)
(hex ASCII)
REMARKS:

| $\langle E S C\rangle$ | $" U "$ | 1 |
| :---: | :---: | ---: |
| 27 | 85 | 1 |
| $1 B$ | 55 | 01 |

This command causes all subsequent lines to be printed in uni-directional printing. Uni-directional printing is useful in printing tables or charts, since it ensures that vertical columns of characters will be in alignment.

REFERENCE: Chapter 10
PURPOSE: Cancel uni-directional printing.
CODE:
(decimal ASCII)
(hex ASCII)
REMARKS:
REFERENCE: Chapter 10
PURPOSE: Initialize printer.
CODE:(decimal ASCII)(hex ASCII)REMARKS: This command reinitializes the printer. Theprint buffer is cleared, and the form length,character pitch, character set, line feed pitch,and international character set are all reset tothe values defined by their respective DIPswitches.
The main difference between the 〈ESC〉 "@"command and turning the printer off andback on is that download character RAM andthe macro instruction are preserved with thiscommand.
REFERENCE: Chapter 10

## Appendix L

## Command Summary in Numeric Order

Control code
CHR\＄（0）
CHR\＄（7）
CHR\＄（8）
CHR\＄（9）
CHR\＄（10）
CHR\＄（11）
CHR\＄（12）
CHR\＄（13）
CHR\＄（14）
CHR\＄（15）
CHR\＄（17）
CHR\＄（18）
CHR\＄（19）
CHR\＄（20）
CHR\＄（27）
CHR\＄（30）
CHR\＄（127）
〈ESC〉 CHR\＄（10）
〈ESC〉 CHR\＄（12）
〈ESC）CHR\＄（14）
〈ESC〉 CHR\＄（15）
（ESC）＂！＂
〈ESC〉＂\＃＂
〈ESC）＂\＄＂CHR\＄（0）
〈ESC〉＂\＄＂CHR\＄（1）
〈ESC〉＂＊＂CHR\＄（0）

Function
Ends tab settings
Sounds bell
Backspace
Horizontal tab
Line feed
Vertical tab
Form feed
Carriage return
One line expanded print
Condensed print
On line
Pica type
Off line
Cancels one line expanded print
Escape（indicated as 〈ESC〉 below）
Ends macro instruction definition
Delete last character
Reverse line feed
Reverse feed to top of page
One line expanded print
Condensed print
Use macro
Accept eighth bit as is
Cancel normal download characters
Use normal download characters
Copy ROM characters to download RAM
〈ESC〉＂＊＂CHR\＄（1）n1 n2 m1 m2 ．．．m11
Define download character
〈ESC〉＂＋＂．．．CHR\＄（30）Define macro

| 〈ESC）＂－＂CHR\＄（0） | Stop underlining |
| :---: | :---: |
| 〈ESC）＂－＂CHR\＄（1） | Start underlining |
| （ESC）＂0＂ | 1／8 inch line feed |
| 〈ESC）＂ 1 ＂ | 7／72 inch line feed |
| （ESC）＂ 2 ＂ | 1／6 inch line feed |
| 〈ESC）＂ 3 ＂$n$ | n／144 inch line feed |
| 〈ESC）＂4＂ | Italic print |
| 〈ESC）＂ 5 ＂ | Cancel italic print |
| 〈ESC）＇7＂n | Select international character set |
| 〈ESC）＂ 8 ＂ | Ignore paper－out signal |
| 〈ESC〉＇9＂ | Enable paper－out signal |
| 〈ESC〉＂＝＂ | Set eighth bit to 0 |
| 〈ESC〉＂〉＂ | Set eighth bit to 1 |
| 〈ESC〉＂＠＂ | Reset the printer |
| 〈ESC）＂A＂n | $n / 72$ inch line feed |
| 〈ESC）＂B＂CHR\＄（1） | Pica print |
| 〈ESC＞＂B＂CHR\＄（2） | Elite print |
| 〈ESC＞＂B＂CHR\＄（3） | Condensed print |
| 〈ESC＞＂B＂CHR\＄（4） | Select NLQ（Near Letter Quality） characters |
| （ESC）＂B＂CHR\＄（5） | Cancel NLQ characters |
| 〈ESC）＂C＇$n$ | Set page length to $n$ lines |
| 〈ESC〉＂C＂CHR\＄（0）n | Set page length to n inches |
| 〈ESC）＂D＂．．CHR\＄（0） | Set horizontal tabs |
| 〈ESC）＂E＂ | Emphasized print |
| 〈ESC）＂F＂ | Cancel emphasized print |
| 〈ESC）＂G＂ | Double－strike print |
| 〈ESC〉＂H＂ | Cancel double－strike print |
| 〈ESC）＂J＂$n$ | Single line feed of $n / 144$ inches |
| 〈ESC）＂K＂n1 n2 | Single density graphics |
| 〈ESC＞＂L＂n1 n2 | Double density graphics |
| 〈ESC）＇M＂n | Set left margin at column n |
| 〈ESC＞＂N＂$n$ | Set bottom margin at $n$ lines |
| 〈ESC）＂O＂ | Cancel top and bottom margins |
| 〈ESC）＂P＂．．．CHR\＄（0） | Set vertical tabs |
| 〈ESC）＂Q＂ | Set right margin at column $n$ |
| （ESC）＂R＂$n$ | Set top margin at line $n$ |
| （ESC）＂S＂CHR\＄（0） | Superscript on |
| （ESC）＂S＂CHR\＄（1） | Subscript on |
| （ESC）＂T＂ | Cancel super and subscripts |
| 〈ESC）＇＂U＂CHR\＄（0） | Bidirectional print |
| 〈ESC）＂U＂CHR\＄（1） | Unidirectional print |
| 〈ESC〉＇W＂CHR\＄（0） | Cancel enlarged print |
| 〈ESC〉＇W＇CHR\＄（1） | Enlarged print |


| 〈ESC〉＂X＂CHR\＄（0） | Cancel proportional download characters |
| :---: | :---: |
| 〈ESC〉＂X＂CHR\＄（1） | Use proportional download characters |
| 〈ESC＞＂Y＂CHR\＄（0） | Disable bell |
| 〈ESC＞＂Y＂CHR\＄（1） | Enable bell |
| 〈ESC〉＂a＂$n$ | Advance $n$ line feeds |
| （ESC）＂b＂n | Tab over n columns |
| 〈ESC〉＂j＂$n$ | Reverse line feed of $n / 144$ inches |
| 〈ESC〉＂y＂n1 n2 | Double speed，double density graphics |
| 〈ESC〉＂z＂n1 n2 | Quadruple density graphics |

## Appendix M <br> ASCII Code Conversion Chart

| Standard ASCII Codes |  |  | Control character | Character |
| :---: | :---: | :---: | :---: | :---: |
| Decimal | Hexadecimal | Binary |  |  |
| 0 | 00 | 00000000 | Ctrl-@ | NUL |
| 1 | 01 | 00000001 | Ctrl-A |  |
| 2 | 02 | 00000010 | Ctrl-B |  |
| 3 | 03 | 00000011 | Ctrl-C |  |
| 4 | 04 | 00000100 | Ctrl-D |  |
| 5 | 05 | 00000101 | Ctrl-E |  |
| 6 | 06 | 00000110 | Ctrl-F |  |
| 7 | 07 | 00000111 | Ctrl-G | BEL |
| 8 | 08 | 00001000 | Ctrl-H | BS |
| 9 | 09 | 00001001 | Ctrl-I | HT |
| 10 | 0A | 00001010 | Ctrl-J | LF |
| 11 | 0B | 00001011 | Ctrl-K | VT |
| 12 | OC | 00001100 | Ctrl-L | FF |
| 13 | 0D | 00001101 | Ctrl-M | CR |
| 14 | OE | 00001110 | Ctrl-N | SO |
| 15 | 0F | 00001111 | Ctrl-O | SI |
| 16 | 10 | 00010000 | Ctrl-P |  |
| 17 | 11 | 00010001 | Ctrl-Q | DC1 |
| 18 | 12 | 00010010 | Ctrl-R | DC2 |
| 19 | 13 | 00010011 | Ctrl-S | DC3 |
| 20 | 14 | 00010100 | Ctrl-T | DC4 |
| 21 | 15 | 00010101 | Ctrl-U |  |
| 22 | 16 | 00010110 | Ctrl-V |  |
| 23 | 17 | 00010111 | Ctrl-W |  |
| 24 | 18 | 00011000 | Ctrl-X |  |
| 25 | 19 | 00011001 | Ctrl-Y |  |
| 26 | 1A | 00011010 | Ctrl-Z |  |
| 27 | 1B | 00011011 |  | ESC |
| 28 | 1 C | 00011100 |  |  |
| 29 | 1D | 00011101 |  |  |
| 30 | 1E | 00011110 |  | RS |
| 31 | 1F | 00011111 |  |  |


| Decimal | Standard ASC Hexadecimal | Binary | Character |
| :---: | :---: | :---: | :---: |
| 32 | 20 | 00100000 | SP |
| 33 | 21 | 00100001 | ! |
| 34 | 22 | 00100010 | : |
| 35 | 23 | 00100011 | \# |
| 36 | 24 | 00100100 | 寺 |
| 37 | 25 | 00100101 | $\%$ |
| 38 | 26 | 00100110 | \% |
| 39 | 27 | 00100111 | * |
| 40 | 28 | 00101000 | ( |
| 41 | 29 | 00101001 | ) |
| 42 | 2A | 00101010 | * |
| 43 | 2B | 00101011 | + |
| 44 | 2C | 00101100 | * |
| 45 | 2D | 00101101 | - |
| 46 | 2E | 00101110 | * |
| 47 | 2 F | 00101111 | \% |
| 48 | 30 | 00110000 | 0 |
| 49 | 31 | 00110001 | 1 |
| 50 | 32 | 00110010 | 2 |
| 51 | 33 | 00110011 | 3 |
| 52 | 34 | 00110100 | 4 |
| 53 | 35 | 00110101 | 5 |
| 54 | 36 | 00110110 | 6 |
| 55 | 37 | 00110111 | 7 |
| 56 | 38 | 00111000 | 8 |
| 57 | 39 | 00111001 | 9 |
| 58 | 3A | 00111010 | : |
| 59 | 3B | 00111011 | ; |
| 60 | 3C | 00111100 | < |
| 61 | 3D | 00111101 | $=$ |
| 62 | 3E | 00111110 | \% |
| 63 | 3F | 00111111 | $?$ |
| 64 | 40 | 01000000 | [ |
| 65 | 41 | 01000001 | A |
| 66 | 42 | 01000010 | E |
| 67 | 43 | 01000011 | C |
| 68 | 44 | 01000100 | D |
| 69 | 45 | 01000101 | $E$ |
| 70 | 46 | 01000110 | F |
| 71 | 47 | 01000111 | 6 |
| 72 | 48 | 01001000 | H |
| 73 | 49 | 01001001 | 1 |


| Decimal | Standard ASCII Codes Hexadecimal | Binary | Character |
| :---: | :---: | :---: | :---: |
| 74 | 4A | 01001010 | J |
| 75 | 4B | 01001011 | K |
| 76 | 4 C | 01001100 | L |
| 77 | 4D | 01001101 | M |
| 78 | 4E | 01001110 | N |
| 79 | 4 F | 01001111 | 0 |
| 80 | 50 | 01010000 | F: |
| 81 | 51 | 01010001 | 0 |
| 82 | 52 | 01010010 | $F$ |
| 83 | 53 | 01010011 | 5 |
| 84 | 54 | 01010100 | T |
| 85 | 55 | 01010101 | U |
| 86 | 56 | 01010110 | $\checkmark$ |
| 87 | 57 | 01010111 | $w$ |
| 88 | 58 | 01011000 | $X$ |
| 89 | 59 | 01011001 | $Y$ |
| 90 | 5A | 01011010 | 7 |
| 91 | 5B | 01011011 | [ |
| 92 | 5C | 01011100 | - |
| 93 | 5D | 01011101 | ] |
| 94 | 5E | 01011110 | $\cdots$ |
| 95 | 5 F | 01011111 | - |
| 96 | 60 | 01100000 |  |
| 97 | 61 | 01100001 | a |
| 98 | 62 | 01100010 | $b$ |
| 99 | 63 | 01100011 | c |
| 100 | 64 | 01100100 | d |
| 101 | 65 | 01100101 | e |
| 102 | 66 | 01100110 | f |
| 103 | 67 | 01100111 | 9 |
| 104 | 68 | 01101000 | rim |
| 105 | 69 | 01101001 | i |
| 106 | 6A | 01101010 | i |
| 107 | 6B | 01101011 | t |
| 108 | 6C | 01101100 | 1 |
| 109 | 6D | 01101101 | in |
| 110 | 6 E | 01101110 | n |
| 111 | 6 F | 01101111 | 0 |
| 112 | 70 | 01110000 | P |
| 113 | 71 | 01110001 | 9 |
| 114 | 72 | 01110010 | r |
| 115 | 73 | 01110011 | 5 |


| Decimal | Standard ASCII Code Hexadecimal | Binary | Character |
| :---: | :---: | :---: | :---: |
| 116 | 74 | 01110100 | $t$ |
| 117 | 75 | 01110101 | U |
| 118 | 76 | 01110110 | $\checkmark$ |
| 119 | 77 | 01110111 | W |
| 120 | 78 | 01111000 | \% |
| 121 | 79 | 01111001 | y |
| 122 | 7A | 01111010 | $z$ |
| 123 | 7B | 01111011 | ¢ |
| 124 | 7C | 01111100 | ; |
| 125 | 7D | 01111101 | 3 |
| 126 | 7E | 01111110 | $\sim$ |
| 127 | 7F | 01111111 | DEL |
| 128 | 80 | 10000000 |  |
| 129 | 81 | 10000001 |  |
| 130 | 82 | 10000010 |  |
| 131 | 83 | 10000011 |  |
| 132 | 84 | 10000100 |  |
| 133 | 85 | 10000101 |  |
| 134 | 86 | 10000110 |  |
| 135 | 87 | 10000111 | BEL |
| 136 | 88 | 10001000 | BS |
| 137 | 89 | 10001001 | HT |
| 138 | 8A | 10001010 | LF |
| 139 | 8B | 10001011 | VT |
| 140 | 8 C | 10001100 | FF |
| 141 | 8D | 10001101 | CR |
| 142 | 8 E | 10001110 | SO |
| 143 | 8 F | 10001111 | SI |
| 144 | 90 | 10010000 |  |
| 145 | 91 | 10010001 | DC1 |
| 146 | 92 | 10010010 | DC2 |
| 147 | 93 | 10010011 | DC3 |
| 148 | 94 | 10010100 | DC4 |
| 149 | 95 | 10010101 |  |
| 150 | 96 | 10010110 |  |
| 151 | 97 | 10010111 |  |
| 152 | 98 | 10011000 |  |
| 153 | 99 | 10011001 |  |
| 154 | 9A | 10011010 |  |
| 155 | 9B | 10011011 | ESC |
| 156 | 9 C | 10011100 |  |
| 157 | 9D | 10011101 |  |


| Decimal | Standard ASC Hexadecimal | Binary | Character |
| :---: | :---: | :---: | :---: |
| 158 | 9 E | 10011110 | RS |
| 159 | 9 F | 10011111 |  |
| 160 | A0 | 10100000 | - |
| 161 | A1 | 10100001 | $\checkmark$ |
| 162 | A2 | 10100010 | - |
| 163 | A3 | 10100011 | - |
| 164 | A4 | 10100100 | + |
| 165 | A5 | 10100101 | $+$ |
| 166 | A6 | 10100110 | $+$ |
| 167 | A7 | 10100111 | * |
| 168 | A8 | 10101000 | $\square$ |
| 169 | A9 | 10101001 | $\cdots$ |
| 170 | AA | 10101010 | \% |
| 171 | AB | 10101011 | * |
| 172 | AC | 10101100 | 4 |
| 173 | AD | 10101101 | $\phi$ |
| 174 | AE | 10101110 | * |
| 175 | AF | 10101111 | $\square$ |
| 176 | B0 | 10110000 | Tr |
| 177 | B1 | 10110001 | A |
| 178 | B2 | 10110010 | (2i) |
| 179 | B3 | 10110011 | $\dagger$ |
| 180 | B4 | 10110100 | : |
| 181 | B5 | 10110101 | " |
| 182 | B6 | 10110110 | $\square$ |
| 183 | B7 | 10110111 | 3 |
| 184 | B8 | 10111000 | I |
| 185 | B9 | 10111001 | 0 |
| 186 | BA | 10111010 | ${ }_{*}$ |
| 187 | BB | 10111011 | $\pi$ |
| 188 | BC | 10111100 | $\pm$ |
| 189 | BD | 10111101 | 3 |
| 190 | BE | 10111110 | \% |
| 191 | BF | 10111111 | $\div$ |
| 192 | C0 | 11000000 | $\bar{A}$ |
| 193 | C1 | 11000001 | a |
| 194 | C2 | 11000010 | 5 |
| 195 | C3 | 11000011 | $\pm$ |
| 196 | C4 | 11000100 | a |
| 197 | C5 | 11000101 | $\mu$ |
| 198 | C6 | 11000110 | $\square$ |
| 199 | C7 | 11000111 | , |


| Decimal | Standard ASC Hexadecimal | Binary | Character |
| :---: | :---: | :---: | :---: |
| $200$ | C8 | $11001000$ | $\dagger$ |
| 201 | C9 | 11001001 | 三 |
| 202 | CA | 11001010 | E |
| 203 | CB | 11001011 | 6 |
| 204 | CC | 11001100 | 4 |
| 205 | CD | 11001101 | \% |
| 206 | CE | 11001110 | s |
| 207 | CF | 11001111 | 11 |
| 208 | Do | 11010000 | 等 |
| 209 | D1 | 11010001 | A |
| 210 | D2 | 11010010 | 0 |
| 211 | D3 | 11010011 | U |
| 212 | D4 | 11010100 | ¢ |
| 213 | D5 | 11010101 | F |
| 214 | D6 | 11010110 | $\ddot{B}$ |
| 215 | D7 | 11010111 | $\ddot{0}$ |
| 216 | D8 | 11011000 | ii |
| 217 | D9 | 11011001 | 6 |
| 218 | DA | 11011010 | E |
| 219 | DB | 11011011 | e |
| 220 | DC | 11011100 | 4 |
| 221 | DD | 11011101 | e |
| 222 | DE | 11011110 | $\bar{i}$ |
| 223 | DF | 11011111 | f |
| 224 | E0 | 11100000 |  |
| 225 | E1 | 11100001 | - |
| 226 | E2 | 11100010 | - |
| 227 | E3 | 11100011 | * |
| 228 | E4 | 11100100 | - |
| 229 | E5 | 11100101 | ${ }^{\text {m }}$ |
| 230 | E6 | 11100110 | " |
| 231 | E7 | 11100111 | - |
| 232 | E8 | 11101000 | - |
| 233 | E9 | 11101001 | ! |
| 234 | EA | 11101010 | 1 |
| 235 | EB | 11101011 | + |
| 236 | EC | 11101100 | - |
| 237 | ED | 11101101 | 4 |
| 238 | EE | 11101110 | $\pm$ |
| 239 | EF | 11101111 | ■ |
| 240 | F0 | 11110000 | r |
| 241 | F1 | 11110001 | $\cdots$ |


| Decimal | Standard ASCII Codes <br> Hexadecimal | Binary | Character |
| :---: | :---: | :---: | :---: |
| 242 | F2 | 11110010 | $\neg$ |
| 243 | F3 | 11110011 | - |
| 244 | F4 | 11110100 | + |
| 245 | F5 | 11110101 | - |
| 246 | F6 | 11110110 | - |
| 247 | F7 | 11110111 | - |
| 248 | F8 | 11111000 | - |
| 249 | F9 | 11111001 | - |
| 250 | FA | 11111010 | + |
| 251 | FB | 11111011 |  |
| 252 | FC | 11111100 | + |
| 253 | FD | 11111101 |  |
| 254 | FE | 11111110 |  |
| 255 | FF | 11111111 |  |

## Appendix N

## Technical Specifications

| Printing |  |
| :---: | :---: |
| Printing method | Serial impact dot matrix |
| Printing speed | 200 characters per second in 10 CPI |
| Print buffer | 16 K bytes |
| Paper feed | 12 lines/second (at $1 / 6$ inch line spacing) Sprocket or friction feed |
| Printing direction | Bidírectional, logic seeking <br> Unidirectional in bit image and NLQ modes |
| Character set | 96 standard ASCII characters <br> 96 italic characters <br> 96 near letter quality (NLQ) characters <br> 88 international characters <br> 64 special symbols <br> 32 block graphics characters <br> 189 user-defined characters |
| Character size | $2.4 \mathrm{~mm} \times 2.0 \mathrm{~mm}$ standard 10 CPI characters |
| Character matrix | Standard characters: 9 dot $x 9$ dot Block graphics: $6 \operatorname{dot} x 6$ dot User defined: 7 dot $x 4$ to 11 dot Near letter quality: 17 dot $x 9$ dot Bit image modes: 7 or $8 \operatorname{dot} \times 60$ dots/in. 7 or 8 dot $\times 120$ dots/in. 7 or $8 \operatorname{dot} \times 240$ dots/in. |
| Line spacing | 1/6, $1 / 8$ inch or $7 / 72$ inch standard $n / 72$ inch or $n / 144$ inch programmable |


|  | Radix-10 | Radix-15 |
| :--- | :---: | :---: |
| Pica | 80 | 136 |
| Elite | 96 | 163 |
| Condensed | 136 | 233 |
| Pica expanded | 40 | 68 |
| Elite expanded | 48 | 81 |
| Condensed expanded | 68 | 116 |

Special features 240 CPS white spacing

Automatic single sheet insertion
Near letter quality printing
Pause and feed buttons
Reverse paper feed
Short form tear-off
Easy access format switches
Self-test
Downloadable characters (proportional and standard)
Dual interface
Macro instruction
Continuous underlining
7 or 8 bit selectable interface
Ultra hi resolution bit image graphics
Vertical and horizontal tabs
Skip over perforation
15.5" carriage (Radix-15 only)

Paper

| Paper type | Single sheets | $5.5-8.5 \mathrm{in}$. wide $5.5-14.5 \mathrm{in}$. wide |  |
| :--- | :--- | :--- | :--- |
|  | Continuous paper | $4-10 \mathrm{in}$. wide | $4-15.5 \mathrm{in}$. wide |
| Thickness | One-part forms | $0.07-0.10 \mathrm{~mm}$ | $0.07-0.10 \mathrm{~mm}$ |
|  | Max. 3-part forms | 0.28 mm max. 0.28 mm max. |  |

Dimensions Height 117 mm (4.6 in.) 117 mm (4.6 in.) Width 414 mm (16.3 in.) 556 mm (21.9 in.) Depth 345 mm (13.6 in.) 345 mm (13.6 in.)
Weight $\quad 9.1 \mathrm{~kg}\{20.1 \mathrm{lb}\} \quad .11.1 \mathrm{~kg}(24.5 \mathrm{lb}$.
Power $\quad 120 \mathrm{VAC} \pm 10 \% 60 \mathrm{~Hz}$, approx. 160 W
Ribbon Star Micronics ribbon cartridge Radix-10: \#80980070; Radix-15: \#80980080 Sub-cassette: Radix-10: \#80900220;

Radix-15: \#80900230

## Parallel interface

| Interface | Centronics-compatible, 7 or 8 bit |
| :--- | :--- |
| Synchronization | By externally supplied strobe pulses |
| Handshaking | By ACK or BUSY signals |
| Logic level | TTL |
| Connector | 57-30360 Amphenol |

## Serial interface

| Interface | Asynchronous RS-232C/20 mA current loop |
| :--- | :--- |
| Bit rate | $300,600,1200,2400,4800,9600,19200$ baud |
| Word length | 1 start bit |
|  | 7 or 8 data bits |
|  | Odd, even or no parity <br> 1 or 2 stop bits |
| Handshaking | Serial busy, 1 byte mode <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br>  <br> Serial busy, 1 block mode <br> ACK mode <br> XON/XOFF mode |

## Index

ACK protocol 256
Adjusting paper gap 12， 14
Advance paper 75，291，293，294，296， 297
American Standard Code for
Information Interchange 17
Apple computers 90，98，102， 195
ASCII codes 17，263， 315
Attribute byte 118， 123
Backspace 99， 300
Bail lever 6，8， 10
BASIC 17，53，158，192，196，213， 233
〈BEL〉 98， 308
Bell 98， 308
Bidirectional printing 100， 310
Bit image graphics iv，139， 303
Block graphics 102，266， 279
Bold print 27，31，34，36， 67
BPS Business Graphics 49
〈BS〉99， 300
Buffer iv
Business graphics 151
Button，feed 5， 8
FF 5
LF 5
on line 5， 99
pause 4
Buzzer 98， 308
Cancel double－strike 67， 288
download characters 302， 303
emphasized 67， 289
expanded print 66， 287
italics 61， 282
margins 84， 296
NLQ 60， 284
superscripts and subscripts 63， 290
underlining 62， 289
Carriage return 76， 298
Changing line spacing 77，292， 293
page length 83， 295
Character graphics 102，266， 279
Character style chart 72
Character width 26， 63
Chart，block graphics characters 104
character style 72
CHR\＄function 17,56
CHR\＄（7）98， 308
CHR\＄（8）99， 300

CHR\＄（9）90， 299
CHR\＄（10）76， 291
CHR\＄（11）93， 296
CHR\＄（12）82， 294
CHR\＄（13）76， 298
CHR\＄（14）65， 286
CHR\＄（15）64， 285
CHR\＄（17）99， 308
CHR\＄（18）64， 285
CHR\＄（19）99， 307
CHR\＄（20）65， 287
CHR\＄（127）99， 307
Cleaning 171
Clearing margins 84
Combining print modes 68，129， 143
Commands，download characters 301
font pitch 284
font style 282
graphics 303
horizontal position 298
line feed 291
print style 281
vertical position 291
Commercial software 16
Compaq computers 189
Condensed pitch 26，32，36，41，42，45，63， 261，285， 286
Connecting to your computer 15,188 ， 189，195，213， 231
Continuous paper 9
Control characters 315
Control codes 56
Control key 18
Control panel 3
Copying characters to download RAM 121， 301
Cord，power 3， 16
Covers 3， 182
CP／M computers 231
〈CR〉76， 298
〈DC1〉 99， 308
〈DC2〉 64， 285
〈DC3〉 99， 307
〈DC4〉65， 287
Defining characters $112,117,123,301$
Defining macro instruction 105， 305
〈DEL〉 99， 307

Delete 99， 307
Deselect printer 99， 307
Detector，front－cover－open 6， 182
paper－out 6，99， 309
DIP switches 6，60，76，77，99，103，253，
259，283，284，285，288，289，291，292，
294， 298
Dot graphics iv，139， 303
Dot matrix 110
Double density graphics 156， 304
Double－strike 32，34，67， 288
Download character editing program，
Apple 198
IBM 130
Kaypro 233
TRS－80 216
Download characters 99，110，140， 301
Easywriter II 24
Eighth bit controls 102，306， 307
Elite pitch $26,32,36,41,42,45,63,284$
Emphasized print 27，32，36，67，260，288， 289
Environment 181
Escape code 19，22，35，40， 56
〈ESC〉＂！＂106， 305
〈ESC〉＂\＃＂102， 307
〈ESC〉＂$\$$＂CHR\＄（n）120， 302
〈ESC〉＂＊＂CHR\＄（n）117，121， 301
〈ESC〉＂＋＂106， 305
（ESC）＂．＂CHR\＄（n）62， 289
（ESC）＂0＂80， 292
（ESC）＂ 1 ＂ 80,292
〈ESC〉＂ 2 ＂78， 292
〈ESC〉＇3＂CHR\＄（n）79， 293
〈ESC〉＂ 4 ＂61， 282
〈ESC〉＂ 5 ＂61， 282
〈ESC〉＂ 7 ＂CHR\＄（n）104， 283
（ESC）＂ 8 ＂99， 309
〈ESC〉＇ 9 ＂99， 309
〈ESC〉＂$=$＂102， 306
〈ESC〉＂＞＂102， 306
〈ESC〉＂＠＂23，99， 310
〈ESC〉＂A＂CHR\＄（n）78， 293
〈ESC〉＂a＂CHR\＄（n）81，95， 297
〈ESC〉＂B＂CHR\＄（4）23，60， 283
〈ESC〉＂B＂CHR\＄（5）23， 60
〈ESC〉＂B＂CHR\＄（n）64，284， 285
〈ESC〉＂b＂CHR\＄（n）91， 300
〈ESC〉＂C＇＂83， 295
〈ESC〉＂D＂ 90,299
〈ESC〉＂E＂67， 288
〈ESC〉＂F＂67， 289
〈ESC〉＂G＂67， 288
〈ESC〉＂H＂67， 288
〈ESC）＂J＂CHR\＄（n）79， 293
〈ESC〉＂j＂CHR\＄（n）80， 294
〈ESC〉＂K＂140， 303
〈ESC〉＂L＂156， 304
〈ESC〉＂M＂CHR\＄（n）92， 298
（ESC）＂N＂CHRS（n）84， 296
〈ESC〉＂O＂84， 296
〈ESC〉＂P＂94， 297
〈ESC〉＂Q＂CHR\＄（n）92， 299
〈ESC〉＂R＂CHR\＄（n）84， 295
〈ESC〉＂S＂CHR\＄（n）63， 290
〈ESC〉＂T＂63， 290
〈ESC〉＂U＂CHR\＄（n）101，309， 310
〈ESC〉＂W＂CHR\＄（n）66，286， 287
〈ESC〉＂X＂CHR\＄（n）125， 302
〈ESC〉＂Y＂CHR\＄（n）98， 308
〈ESC〉＂y＂156， 304
〈ESC〉＂z＂156， 305
〈ESC〉 〈FF〉 83， 294
〈ESC〉〈LF〉76， 291
〈ESC〉 〈SI〉 286
〈ESC〉〈SO〉65， 287
〈ESC〉CHR\＄（14）65， 287
〈ESC〉CHR\＄（15） 286
Expanded pitch 45，27，32，36，41，42，65， 286
Feed button 5， 8
Feeding paper 5，6， 9
〈FF〉 82， 294
FF button 5
Font pitch commands 284
Font style commands 282
Foreign language characters 104，262， 264，275， 283
Form feed 82， 294
Form feed button 5
Form feed，reverse 83
Front－cover－open detector 6， 182
Fuse replacement 175
Gap，adjusting 12， 14
Graphics iv，47，102，139，193， 303
Grid for download characters 113
Hexadecimal 17， 315
High resolution graphics 156
Hints for smoother operation 13
Horizontal position commands 298
Horizontal tabs 90，299， 300
〈HT〉 90， 299
IBM Personal Computer 189
Initialize printer 23，26，36，98， 310
Ink ribbon cartridge 3，11，171， 185
Installation programs 16
Interface iv
parallel 3， 249
serial 3， 253
International characters 104，262，264， 275， 283
Italics 27，32，36，61， 282
Kaypro computers 231
Lamp，on line 3
paper－out 3， 14
pause 3， 5
power 3
ready 3

Lever，bail 6，8， 10
Lever，release 5，6，8，10， 14
（LF〉 76， 291
LF button 5
Line feed 76，291， 293
Line feed button 5
Line feed commands 291
Line feed，reverse 76，291， 294
Line spacing 77，261，292， 293
Listing programs 54，192，197，215， 233
LLIST 54
Loading paper 6， 9
Location 181
Lotus 1－2－3 43
LPRINT 54
Macro instruction iv，99，105， 305
Maintenance 171， 334
Margins，left and right 13，91，298， 299
top and bottom 84，295， 296
Master reset code 23，26，36，98， 310
MBASIC 233
Mixing print modes 68，129， 143
Near Letter Quality（NLQ）characters iv， 23，26，32，36，41，42，45，60，61，261， 283， 284
Off line 5，99， 307
On line 5，99， 308
On line button 5， 99
On line lamp 3
One line expanded print 65，286， 287
One－time tab 91，95， 300
Osborne computers 231
Page length 83，260， 295
Paper feeding 5，6， 9
Paper gap，adjusting 12， 14
Paper guide 3， 9
Paper thickness，adjustment 12， 14
Paper－out detector 6，99， 309
Paper－out lamp 3， 14
Parallel interface 3， 249
Pause button 4
Pause lamp 3， 5
PeachText 30
Pica pitch 26，32，36，41，42，45，63，261， 284， 285
Piechart program，Apple 202
IBM 151
Kaypro 238
TRS－80 220
Pitch 26，63，261， 284
Platen 3
Platen knob 5， 185
Plotting 147
Power cord 3， 16
Power lamp 3
Power switch 5
Print buffer iv
Print head 3， 175
Print pitch 26

Print style commands 281
Printer covers 3， 182
Printer initialization 23，26，36，98， 310
Printer setup utility program，Apple 206
IBM－163
Kaypro 241
TRS－80 224
Printing a design 144
Printing download characters 119，125， 302
Printing speed iii
Program listings 215
Program，download character editor，
Apple 198
IBM 130
Kaypro 233
TRS－80 216
Program，piechart，Apple 202
IBM 151
Kaypro 238
TRS－80 220
Program，printer setup utility，Apple 206 IBM 163
Kaypro 241
TRS－80 224
Programs，listing 54，192，197，215， 233
Proportional characters 123， 302
Quadruple density graphics 156， 305
RAM characters 111， 121
Ready lamp 3
Release lever 5，6，8，10， 14
Replacing a fuse 175
Reset code 23，26，36，98， 310
Return 298
Reverse form feed 83， 294
Reverse line feed 76，291， 294
Reverse paper 76，83，291， 294
Ribbon cartridge 3，11，171， 185
ROM characters 111， 121
Screws，shipping 183
Scripsit 35
Select printer 308
Self－test 13
Serial busy protocols 256
Serial interface 3， 253
Service 334
Setting margins 84，91，295，296，298， 299
tabs 90，94，297， 299
Setup 181
Seven bit interface 102，306， 307
Sheet guide 3， 6
Shipping screws 183
〈SI〉64， 285
Single sheet guide 3， 6
Single sheets 5， 6
Skip over perforation 84， 296
〈SO〉 65， 286
Software，commercial 16
Special symbols 102，265， 277

Speed iii
Spreadsheets 39
Sprocket paper 5, 9, 13
Sprocket paper guide 3, 9
Starting new lines 75
Strike over 100
Subscripts 27, 32, 34, 36, 62, 290
SuperCalc 41, 48
Superscripts 27, 32, 34, 36, 62, 290
Switch, power 5
Switches, DIP 6, 60, 76, 77, 99, 253, 259, 283, 284, 285, 288, 289, 291, 292, 294, 298, 103
Tabs, horizontal 90, 299, 300
vertical 93, 296
Thickness, adjusting gap 12
Tips for smoother operation 13
Tractor 3, 10
TRS-80 computers 83, 213
Underlining 27, 32, 34, 36, 61, 289
Unidirectional printing 100, 309
Unpacking 181
User-defined characters 99, 110, 140, 301
Vertical positions commands 291
Vertical tabs 93, 296
VisiCalc 40
〈VT〉 93, 296
Word processing 21
WordStar 34
XON/XOFF protocol 256

DIP Switch Settings

| Switch | ON | OFF | SETTING |
| :---: | :---: | :---: | :---: |
| DIP Switch A |  |  |  |
| A-1 | 11" page length | 12" page length |  |
| A-2 | Normal print | Emphasized print |  |
| A-3 | 10 CPI (pica pitch) | 17 CPI (condensed pitch) |  |
| A-4 | Normal | NLQ |  |
| A-5 | 1/6" line feed | $1 / 8^{\prime \prime}$ line feed |  |
| A-6 | International character set selection-see below |  |  |
| A-7 |  |  |  |
| A-8 |  |  |  |
| DIP Switch B |  |  |  |
| B-1 | 2 stop bits | 1 stop bit |  |
| B-2 | 7 data bits | 8 data bits |  |
| B-3 | Parity checked | No parity |  |
| B-4 | Handshaking protocols-see below |  |  |
| B-5 |  |  |  |
| B-6 | Odd parity | Even parity |  |
| B-7 | Data transfer rate-see below |  |  |
| B-8 |  |  |  |
| B-9 |  |  |  |
| B-10 | Not used |  |  |
| DIP Switch C |  |  |  |
| C-1 | Paper-out detector on | Ignore paper-out |  |
| C-2 | Serial interface | Parallel interface |  |
| C-3 | 7-bit interface | 8-bit interface |  |
| C-4 | Auto LF with CR | LF must be from host |  |

## International character sets

| Switch | USA | England | Germany | Denmark | France | Sweden | Italy | Spain |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A-6 | ON | OFF | ON | OFF | ON | OFF | ON | OFF |
| A-7 | ON | ON | OFF | OFF | ON | ON | OFF | OFF |
| A-8 | ON | ON | ON | ON | OFF | OFF | OFF | OFF |

Handshaking protocols

| Protocol | Switch B-4 | Switch B-5 |
| :--- | :--- | :--- |
| Serial busy, 1 byte mode | OFF | OFF |
| Serial busy, 1 block mode | ON | OFF |
| ACK mode | OFF | ON |
| XON/XOFF mode | ON | ON |

Data transfer rates

| Baud rate | Switch B-7 | Switch B-8 | Switch B-9 |
| :--- | :--- | :--- | :--- |
| 150 | OFF | OFF | OFF |
| 300 | OFF | OFF | ON |
| 600 | OFF | ON | OFF |
| 1200 | OFF | ON | ON |
| 2400 | ON | OFF | OFF |
| 4800 | ON | OFF | ON |
| 9600 | ON | ON | OFF |
| 19200 | ON | ON | ON |

Use the "setting" column to record the way the switches are set in your printer.


[^0]:    10 ＇Prints a chart of all RADIX print styles．
    $2 \emptyset$ WIDTH＂LPT1：＂， 255 ＇Cancel auto CR \＆LF after $8 \varnothing$ chars．

[^1]:    
     $X X X X X X X X X X X X X X X X X X X$

[^2]:    10 'Prints all block graphic characters.
    $2 \emptyset$ WIDTH "LPT1:",255
    30 FOR J = $16 \emptyset$ TO 255 STEP 8
    40 FOR $\mathrm{I}=\mathrm{J}$ TO J +7

