1.1 GENERAL

The Toshiba Tl000XE is one of the lightest portable computers available offering high technology, high speed, excellent legibility, IBM PC XT compatibility and battery machine. The Tl000XE is so small it defines a new class of portables called notebook computers.
The T1000XE's operating system uses the MS-DOS version 3.30 s and a powerful 80C86-2 microprocessor which has 16-bit data width on the data bus line. The memory capacity is one mbyte as standard. The system can be added 1 - or 2 -Mbyte memory card, thus the system can be had up to 3 mbytes of RAM. The Tl000XE stores version 3.30 of the MS-DOS operating system and related programs in read only memory (ROM). The internal 2.5-inch hard disk drive (HDD) has capacity of 20 Mbytes. The keyboard is compatible with IBM enhanced keyboard which has 82 or 84 keys. A backlit liquid crystal display (LCD) comes with your T1000XE. The screen supports 640 by 400 pixels with color/graphics adapter (CGA) compatible graphics and two color attribute combinations. The power supply system is composed of the AC adapter and batteries. The Tl000XE provides connecting ports with the optional devices at the rear panel and right side of the system. There are one parallel port, one serial port, one external 3.5-inch FDD port and the expansion bus connector.

OPTION: The external 3.5-inch floppy disk drive (FDD) supports 1.44-Mbyte double-sided, high-density, double-track (2HD) and 720-Kbyte double-sided, double-density, double-track (2DD) disks.

Figure 1-1 T1000XE system unit

File No. 960-019

1.2 SYSTEM UNIT

Figure 1-2 shows the T1000XE's system block diagram.

Figure 1-2 Block diagram

The T1000XE has a system board in the system. The system board is composed of the following components:

System board

* Central processing unit: CPU (80C86-2)

The CPU is a 16 -bit microprocessor operated at 9.54 MHz or 4.77 MHz clock speed.

* Super Integration: SI (T9776)

The SI stores the following components:
Direct Memory Access controller: DMA (82C37AP)
Programmable interrupt controller: PIC (82C59AP)
Programable interval timer: PIT (82C53P)
Floppy disk controller: (TC8565P/AP)
Serial input/output controller: SIO (TC8570P)

* Variable frequency oscillator: VFO (TC8568AM)

The VFO chip is used for $E D D$ control logic.

* Real time clock: RTC (TC8521P)

The RTC has memory in the chip which keeps the date, time and system configuration by RTC battery.

* Keyboard controller: KBC (80C49F)
* Memories:

Standard RAM: 1 Mbyte
Backup RAM: 16 Kbytes
BIOS ROM: 48 Kbytes
Video RAM: 32 Kbytes
CG-ROM: 128 Kbytes
DOS-ROM: 512 Kbytes

* Gate arrays:

Bus controller 2 gate array : BUSC2-GA (100 pin)
Bus driver gate array : BUSD-GA (100 pin)
I/O controller 2 gate array : I/O CONT2-GA (100 pin)
Display controller gate array : DSPC-GA (100 pin)
Expanded memory controller 2 gate array : EMC2-GA
(100 pin)

File No. 960-019

* Jumper straps:

PJ22 ROM CS jumper strap
When this strap is removed, BIOS ROM will be disabled. (This is used when testing the system board.) The location of this strap is shown in Appendix A.

W1/W2 jumper straps
The system board also has W1/W2 jumper straps. These jumper straps are used for selecting the display characters generated by your keyboard in text mode. The location of these straps are shown in Appendix A. The following table shows setting of the display font change.

Table 1-1 Display font change

	USA	Northern Europe	Canadian French	Multi lingual
W1	Short	Open	Short	Open
W1	Short	Short	Open	Open

1.3 2.5-INCH HARD DISK DRIVE

The 20 -Mbyte (formatted) HDD (hard disk drive) is a random access type storage device. It is equipped with non-removal 2.5-inch magnetic disk and mini-winchester type magnetic heads.

The HDD is shown in figure 1-3 and specifications are described in table 1-2.

Figure 1-3 2.5-inch HDD
Table 1-2 2.5-inch HDD specifications

Item	JDE2825P	CP2024
\|Storage capacity (Mbytes)		
Formatted	21.4	21.4
Number of disks	1	1
\| Data surfaces	2	2
\| Data heads	2	2
Track per surface	581	653
Track density (tpi)	1,465	1,700
\|Sectors per track	36	33
Access time (ms)		
\| Track to track	8	5
\| Average	25	25
Maximum	45	40
Rotation speed (rpm)	3,109	3,433
\| Data transfer rate (bps)		
\| To/from media	10 M	10 M
Interleave	1:1	1:1
\|Recording method	2-7 RLL code (Run length limited)	
\| Recording density (ID)		
I (bpi)	39,665	34,816

File No. 960-019

1.4 KEYBOARD

The 82 or 84 -keyboard is mounted on the system unit. The $82-k e y$ is for USA version and 84-key is for European version.
The keyboard is connected to the keyboard controller on the system board through a $20-\mathrm{pin}$ flat cable. The keyboard is shown in figure 1-4.
The optional keyboards are illustrated in appendix E.

Figure 1-4 Keyboard

File No. 960-019

1.5 BACKLIT LIQOID CRYSTAL DISPLAY

The backlit liquid crystal display (LCD) is composed of a LCD module and electroluminescence (EL) panel. The backlit LCD is an LCD illuminated from the rear. Thus, you can read its clear display even in poor light condition. It receives vertical and horizontal synchronizing signals, 8-bit data signals (4-bit upper data signal, 4-bit lower data signal), and shift clock for data transmission. All signals are TTL level compatible. The specifications are described in table 1-3.
The backlit LCD has two color attribute combinations and the display quality can be adjusted by contrast and brightness controls.
The backlit LCD is shown in figure 1-5.

Figure 1-5 Backlit LCD

Table 1-3 Backlit LCD specifications

Item		Specifications
Number of dots	(dots)	640×400
Dot dimension	(mm)	$0.27(\mathrm{~W}) \times 0.27(\mathrm{H})$
Dot pitch	(mm)	$0.30(\mathrm{~W}) \times \mathrm{X} 0.30(\mathrm{H})$
Display area	(mm)	200.0 (W) X 128.0(H)
Contrast		Approx. 1 : 5

File No. 960-019
(This page is intentionally blank.)

2.1 GENERAL

The problem isolation procedures described in part 2 are used to isolate defective field replaceable units (FRUs). The FRUs covered are:

```
1. Power supply unit
2. System board
3. HDD
4. Keyboard
5. Display
```

Detailed replacement procedures instructions are described in part 4 and test program operations are described in part 3.

The following items are necessary for implementing the problem isolation procedures.

1. T1000XE diagnostics disk
2. Phillips head screwdriver
3. Work disk (for FDD testing)
4. Cleaning disk kit (for FDD testing)
5. Printer port LED
6. RS-232-C, printer wraparound connectors
7. External 3.5-inch FDD

The problem isolation flowchart described in section 2.2 can be used to determine which isolation procedures are necessary to isolate a T1000XE problem.

2.2 PROBLEM ISOLATION FLOWCHART

The flowchart in figure $2-1$ is used as a guide for determining which FRU is defective. Please confirm the followings before performing the flowchart procedures.

1. All optional equipments are disconnected.
2. Prepare the external 3.5-inch FDD.

Figure 2-1 Problem isolation flowchart

If the diagnostics program cannot detect any error, it may be an intermittent error. Running test is required to check a computer for a while.

File No. 960-019

1. If an error is detected on the system test, memory test, display test, ASYNC test, printer test, or real timer test, perform the system board isolation procedures in section 2.4 .
2. If an error is detected on the keyboard test, perform the keyboard problem isolation procedures in section 2.7 .
3. If an error is detected on the external 3.5-inch floppy disk test, perform the FDD problem isolation procedures in section 2.5 .

2.3 POWER SUPPLY PROBLEM ISOLATION PROCEDURES

This section describes how to determine whether the power supply is defective or not. Start with PROCEDURE 1 and continue with the other procedures as instructed. The procedures described in this section are:

PROCEDURE 1 DC IN indicator check PROCEDURE 2 Connector check

PROCEDURE 1

DC IN indicator check
This indicator lights red if power is supplied from the AC adapter when you connect the AC adapter to the Tl000XE and a wall outlet. If the AC adapter's output voltage is abnormal, the indicator labeled "DC IN" blinks red.

If the DC IN indicator blinks red or does not glow when connecting the AC adapter to the computer, check the following items.

Check 1 Unplug the AC adapter from the wall outlet and computer. Plug the AC adapter to the computer and wall outlet, then turn on the computer. If the phenomenon still remains, perform check 2.

Check 2 The AC adapter may be damaged. Replace it with a new AC adapter. If the phenomenon still remains, perform PROCEDURE 2.

PROCEDURE 2

Connector check
The battery cable is connected to the system board. The cable may be disconnected from the PJ502 on the system board. Disassemble the system unit for checking the cable. Disassemble procedures is described in part 4.

Check 1 Check that the following cable is connected to the system board correctly.
o Battery connector ---------------> PJ502

- Sub battery connector ----------> PJ503

If these cables are disconnected, connect them. Try again the normal operation. If the phenomenon remains, the system board may be damaged. Replace the system board.

If the battery is completely discharged, the same phenomenon occurs. In this case, charge the battery for 10 minutes, and push the power switch, the DC IN indicator will stop blinking.

File No. 960-019

2.4 SYSTEM BOARD PROBLEM ISOLATION PROCEDURES

This section describes how to determine whether the system board is defective or not. Start with PROCEDURE 1 and continue with the other procedures as instructed. The procedures described in this section are:

```
PROCEDURE 1: Message check
PROCEDURE 2: Printer port LED check
PROCEDURE 3: Test program check
```

PROCEDURE 1
Message check and Beep sound check
After power on, the system performs initial reliability test (IRT) which program is stored in BIOS ROM on the system board. If the error message appears, perform check 1. If nothing is displayed on the screen, perform PROCEDURE 2

Check 1 If the following error message appears on the screen, press any key. This program confirms the current system configuration and the configuration stored to RTC memory. If it is different, the following message will appear. You can easily set the current configuration in the RTC memory by pressing any key. If another error message appears, perform check 2.

SYSTEM CONFIGURATION ERROR
 A checksum error occurred in the configuration RAM. Press any key for default set....

Check 2 If the following message appears, press any key. At this time the resumed data will be erased. If another error message appears, perform check 3 .

WARNING: RESUME FAILURE. PRESS ANY KEY TO CONTINUE.

Check 3 The IRT program tests the system board. If an error occurs on the IRT program, the error message appears on the screen and beep sound(s) is (are) generated. If the following error message does not appear and the beep sound(s) is (are) not heard, perform PROCEDURE 3.
(The boldface message is visible on the screen. The normal message does not appear on the screen and only beep sound(s) is (are) generated.)

V-RAM TEST ERROR BEEP (LONG 1 and SHORT 2)

KEYBOARD ERROR

RESUME ERROR
BEEP (SHORT 1)
If an error for storing data occurs at the resume mode, the following message will appear.

WARNING RESUME FAIIURE PRESS ANY KEY TO CONTINUE

FDD ERROR

```
HARD RAM TEST BEEP (SHORT 1)
```

 If an error occurs during the read test, the
 following message will appear.
 WARNING: DATA IN HARD RAM WAS LOST
YOU MUST FORMAT HARD RAM BEFORE USE
DISK CONTROLLER FAILURE

DISK 0 FAILURE

NO ROM DISK

PROCEDURE 2
Printer port LED check
The printer port LED informs the IRT program status and error status as a hexadecimal value after turning on the system. Connect the printer port LED to the printer port. After turning on, read the LED status from left to right. If the final LED status is $F E H$, perform PROCEDURE 3. If the final LED status matches one of the error status code in the table $2-1$, replace the system board.

Table 2-1 Error status of the printer port LED

Error status	, Meaning	Process
	Display controller	
	\| initialization test	
01H	BIOS ROM checksum test	HALT
	।	
06H	\| First 16KB RAM test	HALT

If the status changes from AAH to FEH the IRT program is normal.

PROCEDURE 3

Test program check
The test program which is stored in the T1000XE diagnostics disk has several programs for testing the system board. Perform the following test. Detail operation is described in part 3.

$$
\begin{aligned}
& \text { System test } \\
& \text { Memory test } \\
& \text { Display test } \\
& \text { Printer test } \\
& \text { ASYNC test } \\
& \text { Real timer test }
\end{aligned}
$$

If an error is detected during the above tests, replace the system board.

2.5 EXTERNAL FLOPPY DISK DRIVE PROBLEM ISOLATION PROCEDURES

This section describes how to determine whether the external floppy disk drive is defective or not. Start with PROCEDURE 1 and continue with the other procedures as instructed. The procedures described in this section are:

PROCEDURE 1: Format check
PROCEDURE 2: Test program check
PROCEDURE 3: Connector check
PROCEDURE 1
Format check
Prepare a new floppy disk, by formatting it using the MS-DOS FORMAT command.
If the floppy disk does not format correctly, check the following items.

Check 1 Check that the external FDD indicator lights. If it does not light, perform PROCEDURE 3. If it lights, perform check 2.

Check 2 Check that the MS-DOS FORMAT command was used correctly.
When the media type is 2DD, use the FORMAT/3 command.
When the media type is 2HD, use the FORMAT command.
If the FORMAT command is used correctly, perform check 3. If the FORMAT command was not used correctly, try again.
If the phenomenon still remains, perform check 3.
Check 3 Clean the read/write head using the 3.5-inch FDD cleaning kit. If the problem still remains, perform PROCEDURE 2.

File No. 960-019

PROCEDURE 2

Test program check
The FDD test program is stored in the T1000XE diagnostics disk. After run the MS-DOS, load the diagnostic program. Detail operation is described in part 3.
Prepare the formatted floppy disk, then perform the FDD test. The error code and status are described in table 2-2. If the error occurs, perform check 1.

Table 2-2 FDD error code and status

Code	Status
01 H	Bad command
02 H	Address mark not found
03 H	Write protected
04 H	Record not found
06 H	Media removed on dual attach card
08 H	DMA overrun error
09 H	DMA boundary error
10 H	CRC error
20 H	FDC error
40 H	Seek error
60 H	FDD not drive
80 H	Time out error (Not ready)
EEH	Write buffer error

Check 1 If the "Write protected" message appears, remove the write protect by moving the write protect tab. If any other error message appears, perform check 2.

Check 2 Check that the floppy disk is formatted correctly. If it is correct, perform PROCEDURE 3.

PROCEDURE 3

Connector check
The external 3.5-inch FDD is connected to the system unit by one cable. Check the FDD cable. If it is not connected, connect it to the system unit. If it is connected to the system unit correctly, perform check 1.

- FDD I/F connector ---------> PJ5

Check 1 The external 3.5-inch FDD may be damaged. Replace the FDD with a new FDD, then check PROCEDURE 1 and 2. If the error still occurs, the system board (floppy disk controller or the other controllers) may be defective. Replace the system board.

2.6 HARD DISK DRIVE PROBLEM ISOLATION PROCEDURES

This section describes how to determine whether or not the hard disk drive is defective. Start with PROCEDURE 1 and continue with the other procedures as instructed. The procedures described in this section are:

```
PROCEDURE 1: Logical Format Check
PROCEDURE 2: Test Program Check
PROCEDURE 3: Connector Check
```

CAUTION: The contents or the hard disk will be erased by performing the HDD problem isolation procedures. Before performing isolation, transfer the contents of the hard disk to floppy disks. This can be done with the MS-DOS BACKUP command. (See the MS-DOS manual for details.)

PROCEDURE 1

Logical Format Check
Using the MS-DOS system disk, make partition of the hard disk by using the FDISK command, then format the hard disk by using the FORMAT command. At this time enter /s after FORMAT to transfer the system program.

If normal operation is restored, the HDD is normal. If normal operation is not restored, perform PROCEDURE 2.

PROCEDURE 2

Test Program Check
The HDD test program is stored in the T1000XE Diagnostics disk. Perform all HDD tests. Detail operation is described in part 3.

If an error is detected during the HDD test, an error code and status will be displayed; perform PROCEDURE 3. The error code and status are described in table 2-3. If no error is generated, the HDD is normal.

Table 2-3 HDD error status

Code	Status
01 H	\|Bad command error
02 H	\|Bad address mark
04 H	\|Record not found
05 H	\|HDC not reset
07 H	IDrive not initialize
09 H	IDMA boundary error
0 AH	\|Bad sector error
0 HH	\|Bad track error
10 H	\|ECC error
11 H	\|ECC recover enable
20 H	\|HDC error
40 H	\|Seek error
80 H	\|Time out error
AAH	\|Drive not ready
BBH	\|Undefined
CCH	IWrite fault
EEH	\|Access time out error
EOH	IStatus error

PROCEDURE 3
Connector Check
The HDD is connected to the system board by the HDD cables. Disassemble the system unit for checking the HDD cables.

Detail procedures are described in part 4. If they are not connected, connect them to the system board.

Check 1 The HDD may be damaged. Replace the HDD unit with a new HDD unit. If the error still occurs, perform check 2.
check 2 The system board may be damaged. Replace the system board with a new system board.

2.7 KEYBOARD PROBLEM ISOLATION PROCEDURES

This section describes how to determine whether the keyboard is defective or not. Start with PROCEDURE 1 and continue with the other procedures as instructed. The procedures described in this section are:

PROCEDURE 1: Test program check
PROCEDURE 2: Connector check

PROCEDURE 1

Test program check
The keyboard test program is stored in the T1000XE diagnostics disk. Perform the test program. Detail operation is described in part 3.
If an error occurs, perform PROCEDURE 2. If an error does not occur, the keyboard is normal.

PROCEDURE 2

Connector check
The keyboard is connected to the system board by one 22 -pin flat cable. Disassemble the system unit for checking the keyboard cable. Detail procedures are described in part 4. If it is not connected, connect it. If it is connected correctly, perform check 1.

- Keyboard I/F connector --------> PJ8

Check 1 The keyboard may be damaged. Replace the keyboard with a new one, then perform PROCEDURE 1. If the error still occurs, the keyboard controller on the system board may be damaged. Replace the system board.

2.8 DISPLAY PROBLEM ISOLATION PROCEDURES

This section describes how to determine whether the DISPLAY is defective or not. Start with PROCEDURE 1 and continue with the other procedures as instructed. The procedures described in this section are:

> PROCEDURE 1: Brightness and contrast volume check PROCEDURE 2: Test program check PROCEDURE 3: Connector check PROCEDURE 4: Replacement check

PROCEDURE 1

Brightness and contrast volume check
The system has brightness and contrast dials on the left side of the system unit. Using the two dials to tune up the display screen to your satisfaction. If the brightness does not change, EL element may be run down. Replace the EL panel. If the character light does not change, perform PROCEDURE 2.
If brightness and contrast of the display change, perform PROCEDURE 2.

PROCEDURE 2

Test program check
Using the T1000XE diagnostics disk, perform the display test. The display test checks the display controller on the system board.
If an error is detected, perform PROCEDURE 3. If an error is not detected, the display is normal.

PROCEDURE 3
Connector check
The display unit has the LCD module and EL panel. The LCD module are connected to the LED board and the system board by connectors. Disassemble the display unit for checking these connectors. Detail procedures are described in part 4. If these connectors are not connected, connect them. If these connectors are connected, perform PROCEDURE 4.

PROCEDURE 4

Replacement check
Replace the LED board, then perform the normal operation. If the phenomenon still remains, replace the LCD module. If the phenomenon still remains, the system board may be damaged.

3.1 GENERAL

This part explains test and diagnostics programs. That checks the functions of all hardware modules of the T1000XE. TESTCE1X is composed of 15 programs grouped into two modules: the service program module (DIAGNOSTICS MENU) and test program module (DIAGNOSTIC TEST MENU).
The service program module is composed of 5 tasks:

1. DIAGNOSTIC TEST
2. RUNNING TEST
3. LOG UTILITIES
4. HEAD CLEANING
5. SYSTEM CONFIGURATION

The test program module is composed of 10 tests:

1. SYSTEM TEST
2. MEMORY TEST
3. KEYBOARD TEST
4. DISPLAY TEST
5. FLOPPY DISK TEST
6. PRINTER TEST
7. ASYNC TEST
8. HARD DISK TEST
9. REAL TIMER TEST
10. EXPANSION TEST

In addition to TESTCE1X, there are HDFAT, FDFMT, FDCPY, and FDDMP commands in the test and diagnostics programs.

The following items are necessary for carrying out the test and diagnostic programs.

1. T1000XE diagnostics disk
2. External 3.5-inch FDD
3. Formatted work disk (For FDD test)
4. Cleaning disk kit (For head cleaning)
5. Printer wraparound connector (For printer wraparound test)
6. RS-232-C wraparound connector (For ASYNC wraparound test)

Service personnel can use these programs to isolate problems by selecting the appropriate program and operation procedures described in section 3.2.

File No. 960-019

3.2 ORERATIONS

1. After run the MS-DOS, insert the diagnostics disk in the external floppy disk drive.
2. Type in A>TESTCE1X, then press Enter.
3. The following display will appear:

TOSHIBA personal computer T1000XE DIAGNOSTICS
Version X.XX (c) copyright TOSHIBA Corp. 1989
DIAGNOSTICS MENU
1-DIAGNOSTIC TEST
2-RUNNING TEST
3-LOG UTILITIES
4-HEAD CLEANING
5-
6-
$7-$
8-SYSTEM CONFIGURATION
9-EXIT TO MS-DOS
PRESS [1]-[9] KEY ?
Detailed explanations of the service programs and operations are given in section 3.16 to 3.19 .

```
NOTE: To stop the test program while running the test program,
press Ctrl + Break
```

4. Type in 1, then press Enter and the following display will appear:

TOSHIBA personal computer TlOOOXE DIAGNOSTICS version X.XX (c) copyright TOSHIBA Corp. 1989

DIAGNOSTIC MENO

```
    1-SYSTEM TEST
    2-MEMORY TEST
    3-KEYBOARD TEST
    4-DISPLAY TEST
    5-FLOPPY DISK TEST
    6-PRINTER TEST
    7-ASYNC TEST
    8-HARD DISK TEST
    9-REAL TIMER TEST
    10-EXPANSION TEST
```

 88-FDD ERROR RETRY COUNT SET
 99-EXIT TO DIAGNOSTICS MENU
 PRESS [1]-[9] KEY ??
 Numbers, 1 to 10 are diagnostic tests.
 Number 88 is for setting the floppy disk drive error retry count.
 Number 99 is for returning to the DIAGNOSTIC MENU.
 When selecting the floppy disk test, special sub-messages will
 appear, as described in section 3.8 .
 5. After typing in a test number (1 to 10) of the DIAGNOSTIC TEST MENU, pressing Enter displays as follows:

ROM-TEST V X.XX SUB-NO..??
PASS. . 0000 ERRCNT. 000 CMD. . XX
STATUS XXX ADR XXXXX WD XX RD XX
01 - BIOS ROM CHECKSUM
02 - DOS ROM CHECKSUM
99 - EXIT TO DIAGNOSTICS MENU
The screen shown above, for example, appears when you type 1 and Enter.
6. Select a subtest. Type in the subtest number, then press Enter. The following message will appear:

TEST LOOP (1:Yes/2:NO) 1
If you select Yes (by typing in 1, then pressing Enter): Each time a test cycle ends, it increments the pass counter by one and repeats the test cycle.
If you select No (by typing in 2, then pressing Enter) : At the end of a test cycle, the test execution is terminated and you exit to the subtest menu.
7. Type in 1 or 2, then press Enter. The following message will appear:

ERROR STOP (1:Yes/2:NO) 1

If you select Yes (by typing in 1, then pressing Enter): When an error occurs, the error status is displayed and execution of the test program stops and the operation guide is displayed on the right side of the display screen.
If you select No (by typing in 2, then pressing Enter): When an error occurs, the error status is displayed then the error counter increases by one and you go to the next test.
8. Type in 1 or 2, then press Enter and the test program will run. Each subtest is described in table 3-1 of section 3.3.
9. When an error occurs during the test program, the following message will appear: (if you answer Yes for ERROR STOP question,)

ERROR STATUS NAME
[HALT OPERATION]]
1:Test End
2:Continue
3:Retry
Press [1]-[3] Key
1: Terminates the test program execution and exits to the subtest menu.
2: Continues the test.
3: Retries the test.
The error code and error status names are described in table 3-2 of section 3.14.

3.3 SUBTEST NAMES

Table 3-1 lists the subtest of each test program.

Table 3-1 Subtest names

No. 1	Test name	Subtest No.	Subtest item
1	SYSTEM	01	\|BIOS ROM CHECKSUM
		02	IDOS ROM CHECKSUM
		01	\| Constant data
		02	\|Random data
2	MEMORY	03	\|Sequential data
		04	\| Addresspack
		05	\| Memory refresh
		06	\| Backup memory
		07	\| EMS mode
3	KEYBOARD	01	\|Pressed key display
		02	\|Pressed key code display
		01	\|VRAM read/write
		02	\|Character attributes
		03	\| Character set
		04	180*25 Character display
4	DISPLAY	05	$1320 * 200$ Graphics display
		06	\|640*200 Graphics display
		07	\|640*400 Graphics display
		08	\| Display page
		09	$\mid \mathrm{H}$ pattern display
-		10	\|LED display
		01	\|Sequential read
		02	\|Sequential read/write
5	FDD	03	\|Random address/data
			\|read/write
		04	\|Write specified address
-		05	\mid Read specified address
		01	\|Ripple pattern
6	PRINTER	02	\|Function pattern
		03	\| Wraparound
		01	Wrap around (channel \#1)
		02	\|Wrap around (channel \#2)
		03	\|Point to point (send)
7	ASYNC	04	\|Point to point (receive)
		05	l Card modem loopback
		06	\| Card modem on-line
		07	\|Dial tester test

File No. 960-019

Table 3-1 Subtest names (continued)

No. 1	Test name	Subtest No.	Subtest item
8		01	\| Sequential read
1	\|	02	\|Address uniqueness
1		03	\|Random address/data
1	HDD	04	\|Cross talk \& peak shift
\|	I	05	\| Write/read/compare (CE)
1 \|	\|	06	\| Write specified address
1	I	07	\|Read specified address
1		08	\|ECC circuit
9	REAL TIMER\|	01	\|Real timer test
	1	02	\|Real timer carry test
10	EXPANSION	01	\| Box wrap around test
		02	\|Box mono video-ram test

3.4 SYSTEM TEST

Subtest 01 BIOS ROM CHECKSUM
This test performs the IPL ROM checksum test on the system board.
(Test extent : F4000h - FFFFFh 48KB)
Subtest 02 DOS ROM CHECKSUM
This test performs the DOS ROM checksum test on the system board.
(Test extent : E0000h - EFFFFh $64 \mathrm{~KB} * 8$)

3.5 MEMORY TEST

Subtest 01 Constant data
This subtest writes constant data to conventional memory (640 KB), then reads and compares it with the original data. The constant data is '00h', '55h', 'AAh', and 'FFh'.

Subtest 02 Random data
This subtest writes random data to conventional memory (640KB), then reads and compares it with the original data.

Subtest 03 Sequential data
This subtest writes sequential data to conventional memory (640 KB), then reads and compares it with the original data repeatedly. The sequential data is '00h' to 'FFh'.

Subtest 04 Addresspack
This subtest packs test address and writes data to conventional memory (640 KB), then reads and compare it with the original data.

Memory refresh
This subtest writes data to conventional memory (640 KB), then reads and compares it with the original data. The data is '00h', '55h', 'AAh', and 'FFh'. There is a delay between the write and the read operations.

Subtest 06 Backup memory
This subtest writes data ('FFh', 'AAh', '55h', and 'OOh') and address pattern data created by XORing (Exclusive-ORring) high/low of the offset address to memory (addressed F0000h to F07FFh), then reads and compares it with the original data. Before and after the test data is preserved.

EMS mode
This subtest tests EMS memory (page frame address 'D0000h') and block select register ('03h') every 64 KB in the same way as (6).

3.6 KEYBOARD TEST

Subtest 01 Pressed key display
When the keyboard layout (as shown below) is drawn on the display, press any key and check that the corresponding key on the screen is changed to the character "*".
When a key is held pressed, the display will blink designating the auto-repeat function.

KEYBOARD TEST

[Prt Sc] -----------> [Alt] + [Prt Sc]
[Pause] -------> [Ctrl] + [Pause]
IF TEST OK, PRESS [Del] THEN [Enter] Key

Subtest 02 Pressed key code display
When a key is pressed, its scan code, character code, and key top name are displayed on the screen in the format shown below.
The Ins lock, Caps lock, Num lock, Scroll lock, Alt, Ctrl, Left Shift, and Right Shift keys are displayed in reverse screen when pressed.
The scan codes, character codes and key top names are described in appendix D.

KEYBOARD TEST

Scan code $=$	
Character code	$=$
Keytop	$=$

Ins Lock Caps Lock Num Lock Scroll Lock
Alt Ctrl
Press [Enter] Key

3.7 DISPLAY TEST

Subtest 01

Subtest 02

VRAM read/write
This subtest writes constant data (FFh, AAh, 55h, 00h) and address data to video RAM (32 KB), then reads the data written and compares it with the original data.

Character attributes
This subtest checks:
Normal Display
Intensified Display
Reverse Display
Blinking Display
For color displays, all seven colors used (blue, green, cyan, red, magenta, yellow, white) are displayed. The background and foreground colors can then be checked for brightness. The display below appears on the screen when this test is run.

CHARACTER ATTRIBUTES

NEXT LINE SHOWS NORMAL DISPLAY. NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NEXT LINE SHOWS INTENSIFIED DISPLAY.

IIIIIIIIIIIIIIIIIIIIIIIII
NEXT LINE SHOWS REVERSE DISPLAY. RRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

NEXT LINE SHOWS BLINKING DISPLAY BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

BLUE
GREEN
CYAN
RED
MAGENTA
YELLOW
WHITE

Press [Enter] Key

```
File No. 960-019
```

Subtest 03 Character set
In this subtest the character set of its code 100 h to FFh) is displayed in the 40×25 character mode as shown below.

CHARACTER SET IN 40*25
F口巾
() $*+,-/ 0123456789::<=>$? @ ABCDEFGHIJKLMINO FQRSTUVWXYZ[\]^_ *abcdefghijklmnoparstuve

$\equiv \pm \geq \leq\lceil \rfloor \div \approx^{0}=-5^{n+1}$
Press [Enter] Key
80*25 Character display
In this subtest, the character string is displayed shifting one character line by line in the $80 * 25$ character mode as shown below.

80*25 CHARACTER DISPLAY

Abstract

012345678901234567890123456789012345678901234567890123456789012345678901234567 *S\%G'()*+.-./0123456789: : < =>? ©ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]- abcdefghijkImnop *\&'()*+,-./O123456789: : < = > P@ABCDEFGHIJKLMNOPQRSTUVWXYZ[!) - abcdefghifklmnopqr * +, -. 10123456789:;<">?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]* Fabcdefghifklmnopqrstuvw $+,-. / 0123456789: ; \ll>?$? - /O123456789: \ll > QABCDEFGHIJKLMNOPQRSTUVWXYZ[\]-abcdefgh1jklmnopqrstuvwxyz . $10123456789: \ll$? QABCDEFGHIJKLMNOPQRSTUVWXYZ[)] Fabedefghijklmnopqrstuvwxyz 0123456789 : : < > ? $¢$ ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]- -abcdefghijklmnopqrstuvwxyz(i) $123456789:$: < $3>$?@ABCDEFGHIJKLMNOPQRSTUVWXYZ (\backslash]. -abcdefghifklmnopqrstuvwxyz(l) 456789 : ; <=>?@ABCDEEGHIJKLMNOPQRSTUVWXYZ(
)`_-abcdefghijklmnopqrstuvwxyz(|)- $\Delta \subset$ u

Press [Enter] Key

File No. 960-019

Subtest $05320 * 200$ Graphics display
This subtest displays three of color sets for the color display in the $320 * 200$ dots graphics mode as shown below.

320*200 GRAPHICS DISPLAY

Press [Enter] Key

Subtest 06 640*200 Graphics display
This subtest displays the color blocks for the black and white display in the $640 * 200$ dots graphics mode as shown below.

Press [Enter] Key

Subtest 07

Subtest 08

640*400 Graphics display
This subtest displays the color blocks for the black and white display in the 640×400 pixels graphics mode as shown below.

640*400 GRAPHICS DISPLAY
EVEN DOTS ODD DOTS DRIVEN DRIVEN

ALL DOTS DRIVEN

Press [Enter] Key

Display page
This subtest confirms that the pages can be changed in order (page 0 to page 7) in the 40×25 character mode.

DISPLAY PAGE O
$\begin{array}{lllllllllllllllllllllllllll}0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 & & & & & & 0 & 0 & 0 & 0\end{array}$
"H" pattern display
This subtest displays H characters on the entire screen, as shown below.

 ННЕННННННННННРННННННННННННННННАННННННННННННННННННН

Subtest 10 LED display
This subtest displays as follows:
[Speed/Caps/Num/Overlay LED test]
(1) Press [Fn + Pgdn] key! ...Speed (red)
(2) Press [$\mathrm{Fn}+\mathrm{Pgup}$] key! ...Speed (green)
(3) Press [Caps Lock] key! ...Caps (on/off)
(4) Press [Fn + Fll] key! ...Num (on/off)
(5) Press [Fn] key! ...Overlay

Press [Enter] Key

When the Enter key is pressed, the display changes as shown below. Double and single fonts, and reverse display are changed by pressing Enter key.
[Attribute special test]
(1) $E G($ non-zero) , BG(zero) , R18(bit1,0) ...Double
(2) $E G$ (non-zero) NE BG(non-zero), R18(bit3,2) ...

Press [Enter] Key

3.8 FLOPPY DISK TEST

NOTE: This is the test of the external 3.5-inch FDD.

```
CAUTION: Before running the floppy disk test, prepare a formatted
```

work disk and remove the diagnostics disk. Then insert the work
disk into the FDD. Because the contents of the floppy disk will be
erased.

OPERATION

1. When you select the floppy disk test of the DIAGNOSTIC TEST MENU, the following message will appear.

TEST DRIVE MENU

1-UNIT 1
2-UNIT 2
9-EXIT TO DIAGNOSTICS MENU
PRESS [1]-[2] or [9] Key ?
2. Select the test drive number, then press the Enter. The following message will appear.

TEST MODE MENU
1-2HD <Internal or External>
2-2DD <Internal>
3-2D <External Drive 2HD>
4-2D <External Drive 2D>
9-Exit To DIAGNOSTICS MENU
PRESS [1]-[4] or [9] KEY ?
3. Select the media type of the floppy disk to be tested, then press the Enter. The following message will appear.

FDD-TEST V X.XX SUB-NO...??
PASS. . 0000 ERRCNT.. 000 CMD..XX
STATUS XXX ADR XXXXX WD XX RD XX
01 - Sequential read
02 - Sequential read/write
03 - Random address/data read/write
04 - Write specified address
05 - Read specified address
99 - Exit to DIAGNOSTICS MENU

4 Select the sub test number, then press the Enter. The following message will appear.

TEST LOOP (1:Yes/2:No) 1

If you select Yes (by typing in 1, then pressing Enter):
Each time a test cycle ends, it increments the pass counter by one and repeats the test cycle.
If you select No (by typing in 2, then pressing Enter): At the end of a test cycle, the test execution is terminated and you exit to the subtest menu..
5. Type in 1 or 2, then press Enter. The following message will appear:

ERROR STOP (1:Yes/2:NO) 1
If you select Yes (by typing in 1, then pressing Enter): When an error occurs, the error status is displayed and execution of the test program stops and the operation guide is displayed on the right side of the display screen.
If you select No (by typing in 2, then pressing Enter): When an error occurs, the error status is displayed then the error counter increases by one and you go to the next test.
6. Type in 1 or 2, then press Enter. The following message will appear.

Max. Track	$=80$
Max. Head	$=1$
Max. Sector	$=\mathbf{X X}$

Track Number ??
Mount the Word disk(s) on the drive(s), then press [Enter] key.
7. If you perform the subtest 02 to 04 , the following message will appear.
[Warning:The content of the disk(s),
will be destroyed]
Mount the Work disk(s) on the drive(s), then press [Enter] key.
8. If you perform the subtest 01,02 , only Track Number is specified. And if you perform the subtest 03, Track Number, Head Number, Sector Number, and No. of Sector are not specified.
9. If inserted floppy disk is a work disk, press Enter. FDD test will run.

CONTENTS

Subtest 01 Sequential read
This test performs the CRC (cyclic redundancy check) with a continuous read operation of all tracks on a floppy disk.
2D (Double-sided, double-density): Track 0 to 39. 2DD (Double-sided, double-density, double-track) and 2HD (Double-sided, high-density, double-track): Track 0 to 79 .
The start track can be specified at the previous stage.
Subtest 02 Sequential read/write
This test writes data to all tracks (as defined above) continuously and then reads the data out and compares it with the original data.
(The data pattern is 'B5h', 'ADh' and 'ADh' repeated.)
Subtest 03 Random address/data read/write
This test writes random data to random address on all tracks (as defined in subtest 01) and then reads the data out and compares it with the original data.

Subtest 04 Write specified address
This test writes the specified data on the specified address that you enter from the keyboard. You can specify the test data, track number, and head number.

Read specified address
This subtest performs read operation on the specified address that you enter from the keyboard. You can specify the track number and head number.

3.9 PRINTER TEST

CAUTION: A printer (IBM compatible) must be connected to the system in order to execute the test. Confirm that the setup option External FDD/PRT is set to Printer.

CONTENTS

Subtest 01 Ripple pattern

This subtest prints characters for code 20 H through 7 EH line by line while shifting one character to the right at the beginning of each new line.
"S*\&'()*+,-./0123456789: : < = > ? QABCDEFGHIJKLMNOPQRSTUVWXYZ[] - abcdefghijklmnopq
'()* $+,-/ 0123456789:$; < = > ? QABCDEFGHIJKLMNOPQRSTUVWXYZ[] " abcdefghijklmnopgrstuv

Function
This subtest prints out various print type as elite, condense, and double etc.

Subtest 03 Wraparound

> NoTE: A printer wraparound connector is necessary for executing this test. Wiring diagram of the printer wraparound connector is described in the part 3.19 . The data, control, and status lines will be checked with the printer wraparound connector.

OPERATION

Subtest 01 and 02

1. When you select the subtest 01 or 02 , the following message will appear.

Select the channel number (1-3) ?
Select the printer channel number, then type in the number. The T1000XE supports three printer channels.
2. After pressing the Enter, the subtest is executed.

Subtest 03

1. When you select this subtest, the following message will appear.

Select the channel number (1-3) ?
Select the printer channel number, then type in the number. The T1000XE supports three printer channels.
2. After pressing the Enter, this subtest is executed.

3.10 ASYNC TEST

In subtest 01 to subtest 05, data transmission is done with the following format:

Speed: 9600 BPS
Data 8 bits and one parity bit (EVEN)
One stop bit
Data pattern: 20 h to 7 Eh
Subtest 01 Wrap around (channel \#1)

NOTE: The RS-232-C wraparound connector must be connected to channel 1 to execute this test. The wiring diagram of the RS-232-C wraparound connector is described in part 3.25.

A data send/receive test is performed with the wraparound connector for the channel 1.

Subtest 02 Wrap around (channel \#2)
The same test as the subtest 01 is performed for the channel 2.

Subtest 03 Point to point (send)

NOTE: This subtest must be executed in condition that two machines are connected with the RS-232-C direct cable and one side should be set as 'send' and the other set as 'receive'. The wiring diagram of the RS-232-C direct cable is described in part 3.19. The subtest 03 executed in one side and the subtest 04 executed in the other will check the communication capability as follows:

A block of data (20 h to 7 Eh) is sent from one side to the other, and then returned back. The returned data is compared with the original one.
This test is used for checking whether the returned data are the same as the original ones.

Subtest 04 Point to point (receive)
This subtest is used with the subtest 03 as described above.

Subtest 05 Card modem loopback

NOTE: If there is no modem card in the system, this test can not be executed.

This subtest is used for checking whether the data to be sent from the modem card to the RS-232-C line is correct or not. This can be done with the loopback function inside the modem card.

Subtest 06 Card modem on-line test

```
NOTE: This test requires two machines which are connected to the PBX (Private Branch Exchange). One side is set as 'send' and the other set as 'receive'. When both sides are ready, you can start the test.
```

In this subtest, data are sent from the 'send' side to the 'receive' side through the PBX. This subtest is used for checking whether data transmission through a telephone line is done properly or not.

Subtest 07 Dial tester test

NOTE: To execute this subtest, a dial tester must be connected to the system.

This subtest is carried out by sending the pulse dial and tone dial twice automatically.
[Pulse dial]: "1-2-3-4-5-6-7-8-9-0-1-2"
[Tone dial]: "1-2-3-4-5-6-7-8-9-*-0-\#"

3.11 HARD DISK TEST

> CAUTION: The contents of the hard disk will be erased when subtest $02,03,04,06,08$, or 09 is run. Before running the test, transfer the contents of the hard disk to the floppy disk. This can be done with the MS-DOS BACKUP command. After the test, enter the MS-DOS FDISK command, which will set the partition. Then enter the MS-DOS FORMAT command. (See the MSDOS manual for details.)

OPERATION

1. When you select the hard disk test to the DIAGNOSTICS TEST MENU, the following message will appear:
TEST CONTROL MENO

TEST DRIVE MENU

1 - UNIT 1
2 - UNIT 2
9 - Exit to DIAGNOSTICS MENU
PRESS [1]-[2] or [3] KEY ?
2. Select the drive number of the hard disk to be tested and press the Enter. The following message will appear:

HDD F/W error retry (1:yes,2:no) ?
3. This message is used for selecting whether to do retry operation or not when the hard disk controller detects an error. Select yes or no and press the Enter. The following message will appear:

Data compare error dump (1:no,2:yes) ?
4. This message is used for selecting whether to do dump operation or not when data compare error is detected. Select yes or no and press the Enter. The following message will appear:

Detail status display (1:no,2:yes) ?
5. This message is used for selecting whether to display the detail status on the screen or not. The detail status are described in section 3.15. Select yes or no and press the Enter. The following message will appear:

HDD-TEST V ?. 03 SUB-NO..??
PASS.. 0000 ERRCNT. 000 CMD. . XX
STATUS XXX ADR XXXXX WD XX RD XX
01 - Sequential read
02 - Address uniquence
03 - Random address/data
04 - Cross talk \& peek shift
05 - Write/read/compare (CE)
06 - Write specified address
07 - Read specified address
08 - ECC circuit
99 - Exit to DIAGNOSTIC TEST MENU
6. Select the sub test number, then press the Enter. The following message will appear.

TEST LOOP (1:Yes/2:NO) 1
This message is described in section 3.2 .
7. Type in 1 or 2, then press Enter. The following message will appear:

ERROR STOP (1:Yes/2:NO) 1
8. Type in 1 or 2, then press the Enter. The following message will appear.

HDD-TEST V ?. 03 SUB-NO..?
PASS.. 0000 ERRCNT. . 000 CMD. . XX
STATUS XXX ADR XXXXX WD XX RD XX
Max. Cylinder $=614$
Max. Head $=03$
Max. Sector = 17
9. If you perform the subtest 02 to 06 and 08 , the following message will appear.
[Warning : The content of the disk(s)
will be destroyed] then press [Enter] Key.
10. If you perform the subtest 06 , all of Cylinder Number, Head Number, Sector Number, No. of Sector, and Data Pattern are specified. If you perform the subtest 07, four of them except Data Pattern are specified. And if you perform the subtest 08, only Cylinder Number and Head Number are specified.

CONTENTS

Subtest 01

Subtest 02

Subtest 03 Random address/data

Subtest 04

Subtest 05

This subtest writes random data to random addresses (cylinder, head, and sector), and then reads the data out and compares it to the original data.
Sequential read
This subtest performs forward reading of contests from track 0 to maximum and then performs reverse reading of the contests from maximum track to track 0 .

Address uniqueness
This subtest writes the address data that is different sector by sector at each track, then reads and compares it to the original data. This test is done for all tracks.
There are three kinds in read sequential as below.
Forward sequential
Reverse sequential
Random

Cross talk \& peak shift
This subtest writes the eight types of worst pattern data (shown below) to cylinder, then reads the data while shifting cylinder by cylinder.

Worst pattern data

1. B5ADAD
2. 4A5252
3. EB6DB6
4. 149249
5. 63B63B
6. 9 C 49 C 4
7. 2DB6DB
8. D24924

Write/read/compare (CE)
This subtest writes B5ADADH worst pattern data to the CE cylinder, and then reads the data out and compares it with the original data.

Subtest 06 Write specified address
This subtest writes specified data to a specified cylinder and head.

Subtest 07 Read specified address
This subtest reads data which has been written to a specified cylinder and head.

Subtest 08 ECC circuit
This subtest checks the ECC (error check and correction) circuit functions to a specified cylinder and head.

File No. 960-019

3.12 REAL TIMER TEST

Subtest 01 Real timer
A new date and time can be input during this subtest when the current date and time are displayed. Operations for the test are as follows.

1. Select the subtest, the following message will appear.

Current data: $x x-x x-x x x x$
Current time: XX:XX:XX

Enter new date:

2. If current date is not correct, input the current new date. Press the Enter, the enter new time: message will appear.
3. If current time is not correct, input the current new time. Press the Enter, return to the subtest menu of the REAL TIME TEST.

Subtest 02 Real time carry

```
CAOTION: When this test is executed, the current
date and time is erased.
```

This subtest checks whether the real time clock increments the time displayed correctly (month, day, year, hour, minute, second).

3.13 EXPANSION TEST

NOTE: If the unique Toshiba option is not connected to the system, this test cannot be executed.

Subtest 01 Box wrap around test

NOTE: If there is no monochrome display card in the unique Toshiba option, this test cannot be executed.

This subtest writes data ($F \mathrm{~F}, \mathrm{AA}, 55,00 \mathrm{~h}$) into the monochrome display memory (B0000h to B0F9Fh), then reads the data out and compares it with the original data.

Subtest 02 Box mono video-ram test

NOTE: As this subtest required a special tool to be executed, it cannot be carried out here.

File No. 960-019

3.14 ERROR CODE AND ERROR STATUS NAMES

Table 3-2 lists the error code and error status names.

Table 3-2 Error code and error status names

Device name	Error code	I Error status name
ROM	01	ROM Checksum Error
RAM	01	Parity Error
EXP	FF	Data Compare Error
FDD	01	IBad Command
	02	\|Address Mark Not Found
	03	\|Write Protected
	04	\| Record Not Found
	06	\| Media Removed On
	- 08	I Dual Attach Card
	08	\| DMA Overrun Error
	09	\| DMA Boundary Error
	10	\| CRC Error
	20	\|FDC Error
	I 40	\| Seek Error
	160	\|FDD Not Drive
	80	\|Time Out Error (Not Ready)
PRINTER	01	Time Out
	108	\|Fault
	110	\|Select Line
	120	lout of Paper
	I 40	\| Power Off
	180	\| Busy Line
HDD	101	\| Bad command error
	102	\| Bad address mark
	1 04	\| Record not found
	105	\| HDC not reset
	\| 07	\| Drive not initialize
	\| 09	\| DMA boundary error
	1 OA	\| Bad sector error
	I OB	\| Bad track error
	110	\|ECC error
	111	\| ECC recover enable
	120	\| HDC error
	140	\|Seek error
	180	\| Time out error
	1 AA	\| Drive not ready
	1 BB	\| Undefined
	1 CC	\| Write fault
	1 E0	\|Status error
	1 F0	\| Not sense error (FF)

Table 3-2 Error code and error status names (continued)

Device name	\|Error cod	1 Error status name
RS-232-C	01	1[DSR ON] Time Out
	102	\|[CTS ON] Time Out
	104	\|RX Empty Time Out
	108	\| TX Buffer Full Time Out
	110	\|Parity Error
	120	\|Framing Error
	140	OVerrun Error
	180	\|Line Status Error
	188	\|Modem Status Error
	133	\| No Carrier (CARD MODEM)
	- 34	\|Error (CARD MODEM)
	36	INO DIAL TONE (CARD MODEM)

File No. 960-019

3.15 HARD DISK TEST DETAIL STATOS

When an error occurs on the hard disk test, the following message will appear:

HDC status $=\mathrm{XXXX}$
Detailed status of the hard disk test error is shown on the screen by eight-unit number. The first XXXX is error status and the last XXXX is not used.

Error status is composed of 2 bytes; the first byte shows the contents of the HDC status register in hexadecimal form and the other error register of the HDC.

These contents are described in the tables 3-3 and 3-4.

Table 3-3 HDC status register contents

Bit	Name	Description
7	BSY	1"0"...HDC is busy.
	(Busy)	\|"1"...HDC is ready.
6	DRDY	\|"0"...Hard disk drive is not ready
	(Drive ready)	1 to accept any command.
		1"1"...Hard disk drive is ready.
5	DWF	\|"0"...DWF error is not detected.
	(Drive write	\|"1"...Write fault condition
	fault)	occurs.
${ }^{4}$	DSC	I"0"...The hard disk drive heads
	(Drive seek	I are not settled over a
	complete)	track.
		\|"1"...The hard disk drive heads
		1 are settled over a track.
3	DRQ	\|"0"...Drive is not ready to
	(Data request)	I transfer data.
		\|"1"...Drive is ready for data
		1 transfer.
2	CORR	\|"0"...Otherwise
	(Corrected	\|"1"...Correctable data error is
	data)	1 corrected.
1	IDX	\|"0"...Otherwise
	(Index)	\|"1"...Index is sensed.
0	ERR	\|"0"...Otherwise
	(Error)	\|"1"...The previous command was
		1 terminated with some error.

Table 3-4 Error register contents

Bit	Name	Description	
7	BBK	\|"0"...Otherwise	
	(Bad block	\|"1"...A bad block mark is	
	mark)	1 detected.	
6	UNC	\|"0"...There is no uncorrectable	
	(Uncorrectable)	\| data error.	
		\|"1"...Uncorrectable data error	
		has been detected.	
5		INot used.	
4	IDNF	\|"0"...Otherwise	
	(Identifica-	\|"1"...There was no ID field in thel	
	tion)	1 requested sector.	
3		INot used.	
2	ABRT	\|"0"...Otherwise	
	(Abort)	\|"1"...Illegal command error or a	
		1 drive status error occurs.	
1	TK0	\|"0"...The hard disk has found	
	(Track 0)	track 0 during a	
		recalibrate command.	
		\|"1"...The hard disk could not find	
		track 0 during a	
		1 recalibrate command.	
0		INot used.	

3.16 RUNNING TEST

3.16.1 Program description

This program automatically runs the following tests in sequence.

1. HDD test (subtest number 01, 05)
2. System test (subtest number 01, 02)
3. Memory test (subtest number 04, 07)
4. Display test (subtest number 01 to 08)
5. FDD test (subtest number 02)
6. Printer test (subtest number 03)
7. Async test (subtest number 01)

When running an FDD test, this system automatically decides whether there are one or two FDDs.

3.16.2 Operations

CAUTION: Do not forget to load a work disk. If a work disk is not loaded, an error will be generated during FDD testing.

1. Remove the diagnostics disk and insert the work disk into the floppy disk drive.
2. After pressing 2 and Enter in the DIAGNOSTIC MENU, the following message will appear:

Printer wrap around test (1:Yes/2:No) ?
3. Select whether to execute the printer wraparound test (Yes) or not (No). Type 1 or 2 and press Enter. (If 1 is selected, a wraparound connector must be connected to the printer connector on the back of the unit.) The following message will appear:

ASYNC wrap around test (1:Yes/2:No) ?
4. Select whether to execute the test (Yes) or not (No). Type 1 or 2 and press Enter. (If 1 is selected, an RS-232-C wraparound connector must be connected to the COMMS connector on the back of the unit.) The following message will appear:

Memory w/r/c test [[Internal $=0384 \mathrm{~KB}$ External $=0000 \mathrm{~KB}]$] (1) Internal (2) External (3) Internal \& External ?
5. Select the number, then type in the number. After pressing the Enter, the following message will appear:
[Warning:The content of the EMS Memory, will be destroyed]
Press [Enter] Key.
6. Press the Enter, the following message will appear:

FDD $w / r / c$ test (1:Yes/2:NO) ?
7. Select whether to execute the test. (Yes) or not (No). Type 1 or 2 and press Enter. If (No) is selected, running test will run. If (Yes) is selected, the sequential read/write test of FDD is executed. The following message will appear:

TEST DRIVE MENU
1-UNIT 1
2-UNIT 2
9-EXIT TO DIAGNOSTICS MENU
PRESS [1]-[2] or [9] Key ?
8. Select the test drive number, then press the Enter. The following message will appear:

FDD MEDIA TYPE
1-2 HD <Internal or External>
2-2DD <Internal>
3-2D <External Drive 2HD>
4-2D <External Drive 2D>
9-Exit TO DIAGNOSTICS MENU
PRESS [1]-[4] or [9] KEY ?
9. Select the media type of the floppy disk to be tested, then press the Enter. The following message will appear:
[Warning:The content of the disk(s),
will be destroyed]
Mount the Work disk(s) on the drive(s), then press [Enter] key.
10. Press the Enter, running test will run.
11. This program is repeated continuously. To stop the program, press Ctrl + Break.

3.17 LOG UTILITIES

3.17.1 Program description

This program logs error information generated, while a test is in progress; the information is stored in the RAM.
However if the POWER switch is turned off the error information will be lost. The error information itself is displayed as the following.

1. Error count (ERR)
2. Test name (TST)
3. Subtest number (SB)
4. Pass count (PASS)
5. Error status (STS)
6. FDD or memory; ADDR (ADDRESS)
7. Write data (WD)
8. Read data (RD)
9. HDC status (HSTS)
10. Error status name (NAME)

This program can store data on a floppy disk or output information to a printer. You must connect 3.5-inch external FDD to the computer to store data on a floppy disk.

3.17.2 Operations

1. After pressing 5 and Enter in the DIAGNOSTICS MENU, the error information logged in the RAM or on the floppy disk is displayed as shown below.

ERROR LOG UTILITIES ERR TST SB PASS STS ADDRESS WD (CCCHSS)

PAGE 01 TOTAL ERROR: [0000]
RD
HSTS NAME
. If error information is displayed on the screen, the following will appear.
(1) Next (2)Prev (3) Exit (4)Clear (5) FD Write (6) FD Read (7)Print
3. Error information displayed on the screen can be manipulated with the following key operation.

The 1 key scrolls the display to the next page.
The 2 key scrolls the display to the previous page.
The 3 key returns the display to the DIAGNOSTIC MENU.
The 4 key erases all error log information in RAM.
The 5 key writes log information to a floppy disk.
The 6 key reads log information from a floppy disk.
The 7 key outputs error log information to a printer.
4. In the case of "error retry OK", the capital "R" will be placed at the beginning of error status. However, this is not added to error count.

3.18 HEAD CLEANING

3.18.1 Program description

This program executes head loading and seek/read operations for head cleaning. A cleaning kit is necessary for cleaning the 3.5-inch EXT. FDD head.
3.18.2 Operations

1. After pressing 4 and Enter in the DIAGNOSTICS MENU, the following message will appear.

1-UNIT 1
2-UNIT 2
3-UNIT 1\&2
9-EXIT TO DIAGNOSTICS MENU
PRESS [1]-[3]or[9] Key.?
2. After above message appears, remove the Diagnostics disk, insert the cleaning disk, and press any key.
3. When the FDD Cleaning Execution message appears, FDD head cileaning will beain.

File No. 960-019

3.19 SYSTEM CONFIGURATION

```
3.19.1 Program description
This program displays the following system configuration.
    1. BIOS ROM VERSION = VX.XX
    2. Base memory size
    3. Display type
    4. A number of floppy disk drives
    5. A number of async ports
    6. A number of printer ports
    7. Expanded memory size
    8. Co-processor presents or not
```


3.19.2 Operations

After pressing 8 and Enter key to select from the DIAGNOSTICS MENU, the following display will appear.

SYSTEM CONFIGURATION VX.XX

* - 640KB Conventional Memory
* - LCD
* - 1 Floppy Disk Drive
* - 1 ASYNC Adapter
* - 1 Hard Disk
* - 1 Printer Adapter
* - XXXXKB EMS Memory size

PRESS [Enter] Key ?
Press Enter key to return to the DIAGNOSTICS MENU.

3.20 HARD DISK formt

This command executes hard disk formatting.
There are two types of hard disk formatting:

1. Physical formatting
2. Logical formatting

This program is for physical formatting of the hard disk; it can execute the following items:

1. All track FORMAT
2. Good track FORMAT
3. Bad track FORMAT
4. Bad track CHECK

CAUTION: The contents of the hard disk will be erased when this program is run. Before running the program, transfer the contents of the hard disk onto a floppy disk. This can be done with the MS-DOS BACKUP command. (See the MS-DOS manual for details.)
3.20.1 Program Description

1. All track FORMAT

Performs physical formatting of hard disk in the manner shown in table 3-5 below:

Table 3-5 Hard disk formatting manner

Items	Description
\| Sector sequences	1
\| Cylinders	0 to 614
Heads	0 to 2
\| Sectors	1 to 16
Sector length (bps)	512
\| Bad track (maximum)	20

2. Good track FORMAT

Executes the formatting of a specified cylinder and track as a good track.
3. Bad track FORMAT

Executes the formatting of a specified cylinder and track as a bad track.
4. Bad track CHECK

Checks for bad tracks by performing a read operation for all tracks on the hard disk; an list of bad tracks is then displayed.
3.202 Operations

CAUTION: After physical formatting is finished, enter the MS-DOS FDISK command, which will set the partition. Then enter the MS-DOS FORMAT command. (See the MS-DOS manual for details.

1. After run the MS-DOS, insert the diagnostics disk in the external floppy disk drive. Type in A>HDFAT, then press Enter. The following display will appear:

DIAGNOSTIC - HARD DISK FORMAT V2.00
1 - All track FORMAT
2 - Good tack FORMAT
3 - Bad track FORMAT
4 - Bad track CHECK
9 - Exit to DIAGNOSTICS MENU

Press [NUMBER] key ?

2. All track FORMAT selection
(1) When all track FORMAT (1) is selected, the following message will appear:

Drive number select (1:\#1, 2:\#2) ?
(2) Select a drive number. Type the drive number and press Enter. The following message will appear:

Interleave number (1/1-8) ?
(3) Select an interleave number (usually select 1). type the number and press Enter. The following display will appear:

Press [Bad track number (CCCH)] key ? [[cylinder, head $=\mathrm{XXX}$ X]]
(4) After pressing the Enter, the [[cylinder, head = XXX X]] message will appear; then all cylinders of the hard disk are formatted and checked.
(5) After formatting the hard disk the Format complete message will then appear.
(6) Press the Enter to return to the HARD DISK FORMAT MENU .
3. Good track FORMAT or bad tack FORMAT selection
(1) When good track FORMAT or bad track FORMAT is selected, the following message will appear:

Drive number select (1:\#1, 2:\#2) ?
(2) select a rive number. Type the drive number and press Enter. The following message will appear:

Interleave number (3/1-3) ?
(3) Select an interleave number (usually select 3). Type the number and press Enter. The following message will appear:
[HDD TYPE] : CYLINDER = XXX
[HDD TYPE] : HEAD $=X$
[HDD TYPE] : SECTOR = XX
Press [track number (CCCH)] key ?
(4) Type a track number (for digits) and press Enter. (The first three digits are the cylinder number and the last digit is the head number.) This executes the formatting of good tracks or bad tracks.

NOTE: This program can format only one track per operation. If it is desired to format several good tracks or bad tracks, repeat the operation as many times as necessary.
(5) After formatting the track of the hard disk, the Format compete message will appear.
(6) Press the Enter to return to the HARD DISK FORMAT MENU .
4. Bad track CHECK selection
(1) When bad track CHECK is selected, the following message will appear:

Drive number select (1:\#1, 2:\#2) ?
(2) Select a drive number. Type the drive number and press Enter. The following message will appear.

Interleave number (3/1-3) ?
(3) Select an interleave number (usually select 3). Type the number and press Enter. Then the following message appears, and bad tracks of the hard disk are checked.
[HDD TYPE] : CYLINDER = XXX
[HDD TYPE] : HEAD = X [HDD TYPE] : SECTOR $=\mathbf{X X}$
[[cylinder, head $=$ xxx $x x]$]
(4) After checking the bad tracks of the hard disk, the Format complete message will appear.
(5) Press the Enter to return to the HARTD DISK FORMAT MENU .

3.21 FLOPPY DISK format

This command executes FDD formatting.
3.21.1 Program Description

CAUTION: This program is for only floppy disk drive test. The program is different from the MS-DOS FORMAT command.

This program can format floppy disk (5.25-inch/3.5inch) as follows:
(1) 2D: Double-sided, double-density, 48/67.5 TPI,MFM mode, 512 bytes, 9 sectors/track.
(2) 2DD: Double-sided, double-density, doubletrack, $96 / 135$ TPI, MFM mode, 512 bytes, 9 sectors/track.
3.21.2 Operations

1. After run the MS-DOS, insert the diagnostics disk in the external floppy disk drive. Type in A>FDFMT, then press Enter. The following message will appear:

DIAGNOSTICS - FLOPPY DISK FORMAT (V2.00)
Drive number select (1:A, 2:B) ?
2. Select a drive number. Type the number and the following message will then appear:

Type select (0:2DD-2DD, 1:2D-2D, 2:2D-2HD, 3:2HD-2HD) ?
3. Select a media/drive type number. Type the number and the message similar to the below will appear:

Warning : Disk data will be destroyed.
Insert work disk into drive A :
press any key when ready.
4. remove the diagnostics disk from the FDD and insert the work disk; press any key.

The following message will appear;
formatting is then executed.
[FDD TYPE] : TRACK = XXX
[FDD TYPE] : HEAD = X
[FDD TYPE] : SECTOR = XX
Format start
[[track, head $=$ xxx x]]
After the floppy disk is formatted, the following message will appear:

Format complete
Another format (1:Yes/2:No) ?
5. If you type 1 and press Enter key, the display will return to the message in (3) above. If you type 2 the display will return to the DIAGNOSTICS MENU.

3.22 FLOPPY DISK COPY

This command copies floppy disks.
3.22.1 Program Description

This program copies from source floppy disk to target floppy disk.
3.22.2 Operation

1. After run the MS-DOS, insert the diagnostics disk in the external floppy disk drive. Type in A>FDCPY, then press Enter. The following message appears:

DIAGNOSTICS - COPY
Type select (0:2DD-2DD, 1:2D-2D, 2:2D-2HD, 3:2HD2HD) ?
2. Select a media/drive type number. Type the number. The following message will then appear:

Insert source disk into drive A : Press any key when ready.
3. Remove the diagnostics disk from the FDD and insert the source disk; press any key. The following message will appear, then start the copy to memory.
[FDD TYPE] : TRACK = XXX
[FDD TYPE] : HEAD = X
[FDD TYPE] : SECTRO = XX
Copy start
[[track, head $=\mathbf{x x x} \times x]$]
4. Remove the source disk from the FDD and insert the work disk (formatted); press any key. The [[track, head = xxx xx]l message will appear, then start the copy to target disk. When copying cannot be done with one operation, message (2) is displayed again. Repeat the operation.

After the floppy disk has been copied, the following message will appear:

Copy complete
Another copy (1:Yes/2:No) ?
5. If you type 1 the display will return to the message in (1) above. If you type 2 the display will return to the DIAGNOSTICS MENU.

File No. 960-019

3.23 FDD and HDD DUMP

This command displays the dump list for both of the FDD and HDD.

3.23.1 Program Description

This program displays the contents of floppy disks (both 3.5-inch and 5.25-inch) and hard disk (designated sectors).
3.23.2 Operation

1. After run the MS-DOS, insert the diagnostics disk in the external floppy disk drive. Type in A>FDDMP, then press Enter. The following message appears:

D[HDD\&FLOPPY DISK DATA DUMP]
format type select ($0: 2 \mathrm{DD}, 1: 2 \mathrm{D}, 2: 2 \mathrm{HD}, 3: \mathrm{HDD}$) ?
2. Select a format type number. Type the number. If 3 is selected, the dump lists for the hard disk are displayed automatically.

0: Displays a dump list for a floppy disk (2DD).
1: Displays a dump list for a floppy disk (2D).
2: Displays a dump list for a floppy disk (2HD).
3: Displays a dump list for a hard disk.
3. If 0,1 , or 2 is selected, the following message will appear. If 3 is selected, the dump list will appear:

Select FDD number ($1: A / 2: B$) ?
4. Select an FDD drive number; the following message will then appear:

Insert source disk into drive A : Press any key when ready.
5. Remove the diagnostics disk from the FDD and insert a source disk; press any key. The Track number ?? message will then appear. Type the track number and press Enter.
6. The Head number ? message will then appear. Type the head number and press Enter.
7. The Sector number ?? message will then appear. Type the sector number and press Enter. The dump list for the floppy disk will be displayed.
8. After a dump list appears on the screen, the Press number key (1:up,2:down,3:end) ? message will appear.

1: Displays the next sector dump.
2: Displays a previous sector dump.
3: Displays the following the message.
Another dump (1:Yes/2:No) ?
9. If you type 1 the display will return to the message shown after (1) above. If you type 2 the display will return to the DIAGNOSTICS MENU.

File No. 960-019

3.24 WIRING DIAGRAM

1. Printer wraparound connector
(9) + PD7
(15) - ERROR
$(14)-$ AUTFD
$(13)+$ SELECT
$(6)+\mathrm{PD} 4$

(16) - PINIT
(5) + PD3

(1) - STROBE
(10) - ACK
(4) + PD2
 (12) + PE
(3) + PD1 \qquad (17) - SLIN
(2) + PDO \qquad (11) + BUSY

Figure 3-1 Printer wraparound connector
2. RS-232-C Wraparound connector
(3) TRANSMIT DATA
(7) REQUEST TO SEND

(2) RECEIVE DATA
(8) CLEAR TO SEND
(1) CARRIER DETECT
(4) DATA TERMINAL READY \qquad (6) DATA SET READY
(9) RING INDICATE

Figure 3-2 RS-232-C wraparound connector
3. RS-232-C direct cable (9-pin to 9-pin)
(3) TD
(4) DTR

(7) RTS

(5) GND \qquad
(2) $R D$

(1) CD

(8) CTS
(9) RI

Figure 3-3 RS-232-C direct cable (9-pin to 9-pin)
4. RS-232-C direct cable (9-pin to 25-pin)
(1) $C D$ \qquad RTS (4)
(2) RD \qquad TD
(3) TD \qquad RD
(4) DTR \qquad

(5) GND \qquad GND
(7) RTS \qquad $C D$
(6) DSR \qquad DTR (20)
(8) CTS

(9) RI \qquad
Figure 3-4 RS-232-C direct cable (9-pin to 25-pin)

File No. 960-019
(This page is intentionally blank.)

4.1 GENERAL

This section gives a detailed description of the procedures for removing and replacing field replaceable units (FRUs).

FRUs are listed as follows:

1. HDD
2. Keyboard
3. RTC battery
4. LCD module
5. EL panel
6. LCD cover assembly
7. Top cover
8. LED board
9. LED/LCD cable
10. Sub battery
11. Modem cover
12. Modem cable
13. System board

The following points must be kept in mind:
1 The system should never be disassembled unless there is a problem. (abnormal operation, etc.)
2. Only approved tools may be used.
3. After deciding the purpose of replacing the unit, and the procedures required, do not carry out any other procedures which are not absolutely necessary.
4. Be sure to turn the POWER switch off before beginning.
5. Be sure to disconnect the AC adapter and all external cables from the system.
6. Follow the only fixed, standard procedures.
7. After replacing a unit, confirm that the system is operating normally.

Tools needed for unit replacement:

1. Phillips head screwdriver
2. tweezers

File No. 960-019

4.2 REMOVING/REPLACING THE HDD

NOTE: 1. If the HDD is not installed, power will be down soon when the system unit is turned on.
2. If the lock switch is not at the right position, the system unit cannot be turned on.
3. If the HDD is not installed, the resume mode will be off.

1. . Remove the $A C$ adapter from the system unit and turn off the power of the system unit.
2. Turn the system unit upside down and remove the two screws (A) located underneath two vold seals from the bottom cover.
```
CAUTION: Do not use any different screw instead of the
screw (A). If it is shorter than the screw (A), the slide switch (B) will not be locked. If it is longer than the screw (A), the lock system of the slide switch (B) will be broken.
```

3. Slide the slide switch (B) to the direction of the small arrow shown in figure $4-1$ and remove the HDD unit (C) from the system unit.

CAUTION: Be careful not to touch the HDD connector when removing the HDD unit.

Figure 4-1 Removing the HDD unit
4. Remove the four screws (D) from the HDD cover (E). And remove the HDD pack cover (F) from the HDD cover.

Figure 4-2 Removing the HDD pack cover

File No. 960-019
5. Remove the two screws (G) and four screws (H) to remove the HDD and HDD cable (I) from the HDD cover. Then remove the HDD cable from the HDD.

NOTE: When putting the screws (H) on the HDD, the torque should be less than $4 \mathrm{kgf} . \mathrm{cm}$.

Figure 4-3 Removing the HDD
6. To install the HDD, follow the above procedures in reverse.

File No. 960-019

4.3 REMOVING/REPLACING THE KEYBOARD AND RTC BATTERY

1. Remove the AC adapter from the system unit and turn off the power of the system unit.
2. Turn the system unit upside down and remove the three screws (A) from the bottom cover.

Figure 4-4 Removing the three screws

File No. 960-019
3. Turn the system unit back over, then open the display.
4. Lift up the front edge of the keyboard unit and place it in front of the computer. At this time, you can not disconnect the keyboard cable yet.
5. Release the pressure plate (B) of the PJ8 (C) to disconnect the keyboard cable (D) from the system board (E).

Figure 4-5 Removing the keyboard unit
6. Unlatch the seven latches (F) of the keyboard mask (G), then pull out the keyboard (H).

Figure 4-6 Removing the keyboard
7. Remove the RTC battery cable (I) from the PJ9 (J) located on the system board. Then remove the RTC battery (K).

Figure 4-7 Removing the RTC battery and battery cable
8. To install the keyboard and the RTC battery, follow the above procedures in reverse.

CAUTION : When you proceed the above, you must turn off the power switch. Because the battery pack is set in the system unit.

4.4 REMOVING/REPLACING THE LCD MODOLE

1. Remove the $A C$ adapter from the system unit and turn off the power of the system unit.
2. Open the display.
3. Remove the two rubbers (A) and the panel (B) from the LCD mask (C), then remove four screws (D).
4. Unlatch the eight latches (E) of the LCD mask.

Figure 4-8 Removing the LCD mask
5. Remove the four screws (F) fixing the LCD module (G). Then disconnect the three LCD cables (H) from the LCD module.

Figure 4-9 Removing the LCD module
6. To install the LCD module, follow the above procedures in reverse.

```
NOTE : When you proceed as stated above, you must
turn off the power switch. Because the battery pack
is set in the system unit.
```


4.5 REMOVING/REPLACING THE EL PANEL

1. Remove the LCD module as directed in section 4.4.
2. The EL panel is held in place by two fasteners (A). Each fastener consists of a pin (B) and a collar (C) as shown in figure $4-11$. Push up the tip of a pin, then using tweezers, pull out each pin from above.
3. The collars may come out when you pull out the pins, if not, push up the tip of each collar, then using tweezer, pull out each collar from above.

Figure 4-10 Removing the two fasteners

Figure 4-11 Fastener

File No. 960-019
4. Pull out the EL panel (D) from the LCD module (E).

Figure 4-12 Removing the EL panel
5. To install a new EL panel, follow the above procedures in reverse.

NOTE : When installing the EL panel into the LCD module, be sure the orange side of the El panel is facing up. When inserting a fastener, insert the inner collar, then insert the pin. Carefully press each pin until it snaps into place.

4.6 REMOVING/REPLACING THE LCD COVER ASSEMBLY

1. Remove the LCD module as directed in the section 4.5 .
2. Remove the screw (A) to remove the cable cover (B) from the LCD cover assembly (C).
3. Remove the two screws (D) fixing the hinge (E) from the $L C D$ cover assembly.

Figure 4-13 Removing the cable cover and hinges

File No. 960-019
4. Bend the LCD cover assembly (F) toward you, then remove it lifting the right edge. Refer to figure 4-14.

Figure 4-14 Removing the LCD cover assembly
5. To install the LCD cover assembly, follow the above procedures in reverse.

File No. 960-019

4.7 REMOVING/REPLACING THE TOP COVER AND MODEM COVER

1. Remove the keyboard, the RTC battery, and the LCD cover assembly as directed in section 4.3 and 4.6 .
2. Remove the battery pack (A) from the top cover (B).
3. Remove the two screws (C) fixing the modem cover (D). Refer to figure 4-15.

Figure 4-15 Removing the modem cover
4. Remove the seven screws (E) fixing the top cover. Then disconnect the LED/LCD cable (F) from the PJ7 (G) located on the system board.

Figure 4-16 Disconnecting the LED/LCD cable
5. To install the top cover and the modem cover, follow the above procedures in reverse.

File No. 960-019

4.8 REMOVING/REPLACING THE LED BOARD AND LCD CABLE

1. Remove the top cover as directed in the section 4.7.
2. Remove the two screws (A) fixing the LED board (B). Disconnect the LED cable (C) from the PJ801, PJ802, and PJ803 (D) located on the LED board.

Figure 4-17 Removing the LED board

File No. 960-019
3. Remove the two screws (E) fixing the LCD cable (F).

Figure 4-18 Removing the LCD cable
4. To install the LED board and the LCD cable, follow the above procedures in reverse.

4.9 REMOVING/REPLACING THE SUB BATTERY, MODEM CABLE, AND SWITCH PCB

1. Remove the top cover as directed in the section 4.7.
2. Disconnect the sub battery cable (A) from the PJ503 (B) located on the system board, then remove the sub battery (C) from the system unit.

Figure 4-19 Removing the sub battery

File No. 960-019
3. Disconnect the modem cable (D) from the PJ6 (E) located on the system board. Remove the screw (F), then remove the modem cable from the bottom cover (G).

Figure 4-20 Removing the modem cable
4. Remove the one screw (H), then remove the switch PCB (I) from the bottom cover. And disconnect the switch PCB cable (J).

Figure 4-21 Removing the switch PCB

File No. 960-019

4.10 REMOVING/REPLACING THE SYSTEM BOARD

1. Remove the sub battery, modem cable, and switch PCB as directed in the section 4.9 .
2. Disconnect the battery cable (A) from the PJ502 (B) located on the system board, then remove the battery cable assembly (C) from the system board.

Figure 4-22 Removing the battery cable assembly
3. Remove the nine screws (D) to remove the system board from the system unit.

Figure 4-23 Removing the system board
4. To install the system board, follow the above procedures in reverse.

File No. 960-019
(This page is intentionally blank.)

APPENDIX A

 BOARD LAYOUT1. System board FH7CP2 (ICs)

Figure A-1 System board FH7CP2 (ICs)

File No. 960-019
(A) CPU : Central processing unit (80C86-2)
(B) SI : Super integration (T9776)
(C) VFO : Variable frequency oscillator (TC8568AM)
(D) RTC : Real time clock (TC8521P)
(E) KBC : Keyboard controller (80C49F)
(F) BUSD-GA : Bus driver gate array
(G) BUSC2-GA : Bus controller2 gate array
(H) EMC2-GA : Expanded memory controller2 gate array
(I) I/OCONT2-GA : I/O controller2 gate array
(J) DSPC-GA : Display controller gate array
(K) SYSTEM RAMS
(L) BIOS ROM
(M) DOS ROM
(N) BACKUP RAM
(O) VIDEO RAM
(P) CG ROM
2. System board FH7CP2 (connector's)

Figure A-3 System board FH7CP2 connector's
2. System board FH7CP2 (connector's)

Figure A-3 System board FH7CP2 connector's
(A) PJ1 Communication connector
(B) PJ2 PRT/EXT.FDD I/F connector
(C) PJ3 Expansion bus connector
(D) PJ5 3.5-inch external FDD I/F connector
(E) PJ6 MODEM I/E connector
(F) PJ7 LCD I/F connector
(G) PJ8 Keyboard I/F connector
(H) PJ9 RTC battery I/F connector
(I) PJ20 HDD LOCK connector
(J) PJ21 HDD I/F connector
(K) PJ22 ROM CS jumper strap
(L) PJ501 DC-IN connector
(M) PJ502 Battery connector
(N) PJ503 Sub battery connector
(0) PJ10 EXP memory connector
(P) W1/W2 jumper straps

File No. 960-019
(This page is intentionally blank.)

File No. 960-019

APPENDIX B PIN ASSIGNMENT

1. PJ 1 Communicaton Connector

Table B-1 Communication connector pin assignment (9-pin)

Pin	Signal	I/O	Pin	Signal	I/O
1	DCD; 100	I	5	GND	
2	RD;000	I	6	DSR;100	I
3	SD;000	0	7	RTS;100	0
4	DTR;100	0	8	CTS;100	I
			9	RI;100	I

2. PJ 2 PRT/EXT.FDD I/F Connector

Table B-2 PRT/EXT.FDD I/F connector pin assignment (25-pin) For PRT

Pin	Signal	I/O	Pin	Signal	I/O
1	STROBE;000	0	13	SELECT;100	I
2	PD0;100	I/O	14	AUTFD;000	0
3	PD1;100	I/O	15	ERROR;000	I
4	PD2;100	I/O	16	PINIT;000	0
5	PD3;100	I/O	17	SLIN;000	0
6	PD4;100	I/O	18	GND	
7	PD5;100	I/O	19	GND	
8	PD6;100	I/O	20	GND	
9	PD7;100	I/O	21	GND	
10	ACK;000	I	22	GND	
11	BUSY; 100	I	23	GND	
12	PE;100	I	24	GND	
			25	GND	

For FDD

Pin	Signal	I/O	Pin	Signal	I/O
1	READY;000	I	13	EXFDWE;100	0
2	INDEX;000	I	14	XRATE; 100	0
3	TRACK0;000	I	15	SIDE; 100	0
4	WPROTC;000	I	16	FDCDRC;100	0
5	RDDA;000	I	17	STEP;100	0
6	DSKCHG;000	I	18	GND	
7	NOT USED		19	GND	
8	NOT USED		20	GND	
9	NOT USED		21	GND	
10	SWEDB; 100	0	22	GND	
11	SWMONB;000	0	23	GND	
12	WRDATA; 100	0	24	GND	
			25	GND	

3. PJ 3 Expansion Bus Connector

Table B-3 Expansion bus connector pin assignment (100-pin)

Pin	Signal	I/O	Pin	Signal	I/O
1	GND		41	MEWR;001	0
2	KVCC; 100	0	42	XMERD;001	0
3	KGND; 000	0	43	GND	
4	CPCNF;100	I	44	XIOWR;001	1/O
5	MDSL; 001	I/O	45	XIORD;001	I/O
6	CMCK; 102	0	46	TC;101	0
7	MIRQ;001	I	47	CALE; 101	0
8	SPTON;001	I	48	RESET;101	0
9	GND		49	DACK 1;001	0
10	A0BB; 101	0	50	IRQ2;101	I
11	A01;101	0	51	GND	
12	A02;101	0	52	N.C.	
13	A03; 101	0	53	CPCKB; 101	0
14	A04;101	0	54	IRQ5;101	I
15	A05;101	0	55	DRQ3;101	I
16	A06;101	0	56	DACK3;001	0
17	A07; 101	0	57	CPADE; 001	0
18	GND		58	DRQ1;101	I
19	A08;101	0	59	IORDY;101	I
20	A09;101	0	60	GND	
21	A10;101	0	61	N.C.	
22	A11;101	0	62	N.C.	
23	A12;101	0	63	N.C.	
24	A13; 101	0	64	N.C.	
25	A14;101	0	65	N.C.	
26	A15; 101	0	66	N.C.	
27	GND		67	N.C.	
28	A16;101	0	68	N.C.	
29	A17;101	0	69	N.C.	
30	A18;101	0	70	GND	
31	A19;101	0	71	N.C.	
32	SYDO;101	I/O	72	N.C.	
33	SYD1;101	I/O	73	IRQ6;101	I
34	SYD2;101	I/O	74	N.C.	
35	SYD3;101	I/O	75	N.C.	
36	GND		76	N.C.	
37	SYD4;101	I/O	77	DRQ2;101	I
38	SYD5;101	I/O	78	N.C.	
39	SYD6;101	I/O	79	N.C.	
40	SYD7;101	I/O	80	N.C.	

Table B-3 Expansion bus connector pin assignment (100-pin) (continued)

Pin	Signal	I/O	Pin	Signal	I/O
81	N.C.		91	N.C.	
82	GND		92	DACK2;001	O
83	DACK0;001	0	93	N.C.	
84	N.C.		94	N.C.	
85	N.C.	95	N.C.		
86	N.C.		96	N.C.	
87	N.C.		97	MDSL2;001	I
88	IOERR;001	I	98	N.C.	
89	N.C.		99	IRQ7;101	I
90	GND				

4. PJ 5 External 3.5-inch FDD I/F Connector

Table B-4 External 3.5-inch EDD I/E connector pin assignment (26-pin)

Pin	Signal	I/O	Pin	Signal	I/O
1	P21A;100 (Vac)		14	STEP;000	0
2	INDEX;000	I	15	GND	
3	P21A; 100 (Ves)		16	WDATA; 000	0
4	FDSELA;000	0	17	GND	
5	P21A;100 (Vicc)		18	WGATE;000	0
6	DSKCHG;000	I	19	GND	
7	P21A; 100 ($\mathrm{V}=\mathrm{c}$)		20	TRACK0;000	I
8	READY;000	I	21	GND	
9	MEDIA; 000	I	22	WPROTC;000	I
10	MONA; 000	0	23	GND	
11	LOWDNS:000	0	24	RDDA; 000	I
12	FDCDRC;000	0	25	GND	
13	GND		26	SIDE;000	0

5. PJ 6 MODEM I/F Connector

Table B-5 MODEM I/F connector pin assignment (30-pin)

Pin	Signal	I/O	Pin	Signal	I/O
1	MVEE; 000	0	16	GND	
2	BMDSL; 000	0	17	SYD2;100	I/O
3	COMCLK; 100	0	18	SYD1;100	I/O
4	GND		19	GND	
5	A0BB; 100	0	20	GND	
6	A01; 100	0	21	SYDO;100	I/O
7	A02;100	0	22	XIOWR;000	0
8	GND		23	XIORD; 000	0
9	SYD7;100	I/O	24	VCC	
10	SYD6;100	I/O	25	RESET;100	0
11	GND		26	BMPOE; 100	0
12	GND		27	VCC	
13	SYD5;100	I/O	28	VCC	
14	SYD4;100	I/O	29	BMIRQ;000	I
15	SYD3;100	I/O	30	BMSPK;000	I

6. PJ 7 LCD I/E Connector

Table B-6 LCD I/F connector pin assignment (40-pin)

Pin	Signal	I/O	Pin	Signal	I/O
1	SLOWL; 110	0	21	GND	
2	FASTL; 100	0	22	FP; 100	0
3	LBATLE; 100	0	23	LP;100	0
4	DCHG;100	0	24	SCP;100	0
5	DPSL;100	0	25	GND	
6	ADLED;010	0	26	UD0;100	0
7	CAPL; 010	0	27	ID1;100	0
8	NUML; 110	0	28	UD2;100	0
9	SCRL;010	0	29	UD3;100	0
10	PVBL; 100	0	30	GND	
11	PVBL; 100	0	31	LCD5V;100	0
12	PVBL; 100	0	32	CNTRST;100	0
13	TRIG;100	0	33	LCDVEE;000	0
14	CBLON; 000	0	34	LD0;110	0
15	BRITI;000	I	35	LD1;110	0
16	BRIT2;100	0	36	LD2;100	0
17	BRIT3;100	I	37	LD3;100	0
18	GND		38	GND	
19	GND		39	GND (FG)	
20	GND		40	GND (FG)	

7. PJ 8 Keyboard I/F Connector

Table B-7 Keyboard I/F connector pin assignment (20-pin)

Pin	Signal	I/0	Pin	Signal	I/O
1	KBSC0;000	0	11	KBSC10;000	0
2	KBSC1;000	0	12	KBRTN0;000	I
3	KBSC2;000	0	13	KBRTN1;000	I
4	KBSC3;000	0	14	KBRTN2;000	I
5	KBSC4;000	0	15	KBRTN3;000	I
6	KBSC5;000	0	16	KBRTN4;000	I
7	KBSC6;000	0	17	KBRTN6;000	I
8	KBSC7;000	0	18	KBRTN7;000	I
9	KBSC8;000	0	19	KBRTN8;000	I
10	KBSC9;000	0	20	N.C.	

8. PJ 9 RTC Battery Connector

Table B-8 RTC battery connector pin assignment (2-pin)

Pin	Signal	I/O	Pin	Signal	I/O
1	GND		2	RTV; 100	I

9. PJ 501 DC-IN Connector

Table B-9 DC-IN connector pin assignment (3-pin)

Pin	Signal	I/O	Pin	Signal	I/O
1	JACK;100	I	3	JACK;000	I
2	JACK;000	I			

10. PJ 502 Battery Connector

Table B-10 Battery connector pin assignment (2-pin)

Pin	Signal	I/O	Pin	Signal	I/O
1	ICHG;100	I	2	GND	

File No. 960-019
11. PJ 503 Sub Battery Connector

Table B-11 Sub battery connector pin assignment (2-pin)

Pin	Signal	I/O	Pin	Signal	I/O
1	PSOBAT;100	I	2	GND	

12. PJ 10 EXP Memory Connector

Table B-12 EXP memory connector pin assignment (40-pin)

Pin	Signal	I/O	Pin	Signal	I/O
1	GND		21	MVRAM; 100	0
2	AD03;100	I/O	22	DRA7;110	0
3	AD04;100	I/O	23	DRA6;110	0
4	AD05;100	I/O	24	DRA5;110	0
5	AD06;100	I/O	25	DRA4;110	0
6	AD07;100	I/O	26	DRA3;110	0
7	AD08;100	I/O	27	DRA2;110	0
8	AD09;100	I/O	28	DRA1;110	0
9	AD10;100	I/O	29	GND	
10	DRA8;110	0	30	GND	
11	GND		31	DRA0;110	0
12	CASH;000	0	32	AD00;100	I/O
13	RASB2;000	0	33	AD01;100	I/O
14	RASB1;000	0	34	AD02;100	I/O
15	XMEWR;010	0	35	AD11;100	I/O
16	CASL;000	0	36	AD12;100	I/O
17	RASB3;000	0	37	AD13;100	I/O
18	RASB0;000	0	38	AD14;100	I/O
19	MVRAM; 100	0	39	AD15;100	I/O
20	MVRAM; 100	0	40	GND	

13. PJ 20 HDD LOCK Connector

Pin	Signal	I/O	Pin	Signal	I/O
1	HLOCK;000		2	GND	

14. PJ 21 HDD I/E Connector

Pin	Signal	I/O	Pin	Signal	I/O
1	HRESET; 000	$\bar{\sigma}$	23	HIOWR;000	$\bar{\sigma}$
2	GND		24	GND	
3	HDB07;100	I/0	25	HIORD;000	$\bar{\square}$
4	HDB08;100		26	GND	
5	HDB06;100		27	HIORDY;100	I
6	HDB09;100		28	N.C	
7	HDB05;100		29	HDIN;010	I
8	HDB10;100		30	GND	
9	HDB04; 100		31	HIRQ5;100	I
10	HDB11;100		32	HIO16;010	I
11	HDB03;100		33	HA01;100	8
12	HDB12;100		34	GND	
13	HDB02;100		35	HA00; 100	$\overline{0}$
14	HDB13;100		36	HA02;100	$\bar{\square}$
15	HDB01; 100		37	HDDCS0;010	$\bar{\square}$
16	HDB14;100		38	HDDCS1;010	$\overline{0}$
17	HDB00; 100		39	HDDLED;000	
18	HDB15;100	\downarrow	40	GND	
19	GND		41	VCC	
20	VCC		42	VCC	
21	N.C		43	GND	
22	GND		44	ATSEL; 100	I

15. PJ 22 ROM CS Connector

Pin	Signal	I/O	Pin	Signal	I/O
1	ROMCS; 000	\bar{O}	2	ROMCS;010	I

File No. 960-019
(This page is intentionally blank.)

APPENDIX C

 DISPLAY CODETable C-1 USA Display code

File No. 960-019
(This page is intentionally blank.)

File No. 960-019

APPENDIX D
KEYBOARD SCAN/CHARACTER CODES
Table D-1 Scan code, character code, and key top names

Cap No.	Key Top	Lower Case	Upper Case	Num Lock Lower		With (Ctrl)	With (Alt)	
1	\sim	29	60	29	7 E	29	60	29

File No. 960-019

Table D-1 Scan code, character code, and key top names (continued)

Cap No.	$\begin{aligned} & \text { Key } \\ & \text { Top } \end{aligned}$	Lower Case	Upper Case	Num Lower	ck Upper	With (Ctrl)	With (Alt)
9	*	0938	09 2A	0938	09 2A	-	7F 00
10	1 9	OA 39	OA 28	OA 39	0A 28	-	8000
11)	OB 30	OB 29	OB 30	OB 29	-	8100
12	=	OC 2D	OC 5F	OC 2D	OC 5F	OC 1F	8200
13	+	OD 3D	OD 2B	OD 3D	0D 2B	-	8300
15	Back space	OE 08	0E 08	0E 08	OE 08	OE 7F	*OE 00
16	Tab	OF 09	OF 00	OF 09	OF 00	*94 00	*A5 00
17	Q	1071	1051	1051	1071	1011	1000
18	W	1177	1157	1157	1177	1117	1100
19	E	1265	1245	1245	1265	1205	1200
20	R	1372	1352	1352	1372	1312	1300
21	T	1474	1454	1454	1474	1414	1400
22	Y	1579	1559	15.59	1579	1519	1500
23	U	1675	1655	1655	1675	1615	1600
24	I	1769	1749	1749	1769	1709	1700

File No. 960-019

Table D-1 Scan code, character code, and key top names (continued)

$\begin{aligned} & \text { Cap } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Key } \\ & \text { Top } \end{aligned}$	Lower Case	Upper Case	Num Lower	k Upper	With (Ctrl)	With (Alt)
25	0	18 6F	184 F	184 F	186 F	180 F	1800
26	P	1970	1950	1950	1970	1910	1900
27	[1A 5B	1A 7B	1A 5B	1 A 7 B	1A 1B	* 1A 00
28	\}	1B 5D	1B 7D	1B 5D	1B 7D	1B1D	* 1 B 00
29	1	2B 5C	2B 7C	2B 5C	2B 7C	2B 1C	*2B 00
30	Caps Lock	-	-	-	-	-	-
31	A	1E 61	1E 41	1E 41	1 E 61	1E 01	1 E 00
32	S	1F 73	1F 53	1F 53	1F 73	1F 13	1F 00
33	D	2064	2044	2044	2064	$20 \quad 04$	2000
34	E	2166	2146	2146	2166	2106	2100
35	G	2267	2247	2247	$22 \quad 67$	$22 \quad 07$	2200
36	H	2368	2348	2348	2368	2308	2300
37	J	24 6A	24 4A	24 4A	24 6A	24 0A	2400
38	K	256 B	25 4B	25 4B	25 6B	25 OB	2500
39	L	26 6C	26 4C	26 4C	26 6C	260 C	2600
40	:	27 3B	27 3A	27 3B	27 3A	-	*2700

File No. 960-019

Table D-1 Scan code, character code, and key top names (continued)

Cap No.	$\begin{aligned} & \text { Key } \\ & \text { Top } \end{aligned}$	Lower Case	Upper Case	Num	Upper	With (Ctrl)	With (Alt)
41	"	2827	2822	$28 \quad 27$	2822	-	*28 00
43	Enter	1c 0D	1C OD	1C OD	1C OD	1c OA	*1C 00
44	$\begin{gathered} \text { Shift } \\ (L) \end{gathered}$	-	-	-	-	-	-
45	1	56 5C	567 C	565 C	56 7C	-	-
46	2	2C 7A	2C 5A	2C 5A	2C 7A	2C 1A	2C 00
47	X	2D 78	2D 58	2D 58	2D 78	2D 18	2D 00
48	C	2E 63	2E 43	2E 43	2E 63	2E 03	2E 00
49	V	2F 76	2F 56	2F 56	2F 76	2F 16	2 F 00
50	B	$30 \quad 62$	3042	$30 \quad 42$	3062	$30 \quad 02$	3000
51	N	316 E	314 E	314 E	316 E	310 E	3100
52	M	32 6D	32 4D	32 4D	32 6D	32 OD	3200
53	$<$	33 2C	33 3C	332 C	33 3C	-	* 3300
54	$>$	342 E	343 E	342 E	343 E	-	* 3400
55	$?$	352 F	353 F	352 F	353 F	-	* 3500
57	$\begin{gathered} \text { Shift } \\ (\mathrm{R}) \end{gathered}$	-	-	-	-	-	-
58	Ctrl (L)	-	-	-	-	-	-
60	Alt (L)	-	-	-	-	-	-

File No. 960-019

Table D-1 Scan code, character code, and key top names (continued)

Cap No.	$\begin{aligned} & \text { Key } \\ & \text { Top } \end{aligned}$	Lower Case	Upper Case	Num I Lower	Upper	With (Ctrl)	With (Alt)
61	Space	3920	3920	3920	3920	3920	3920
62	AltGr	-	-	-	-	-	-
75	Ins	$\begin{array}{ll}52 & 00 \\ 52 & \text { E0 }\end{array}$	$\begin{array}{ll} 52 & 00 \\ 52 & \mathrm{E} 0 \end{array}$	$\begin{array}{ll} 52 & 00 \\ 52 & \mathrm{E} 0 \end{array}$	$\begin{array}{ll} 52 & 00 \\ 52 & \mathrm{E} \end{array}$	*92 E0	*A2 00
76	Del	$\begin{array}{lll}53 & 00 \\ 53 & \text { E0 }\end{array}$	$\begin{array}{ll} 53 & 00 \\ 53 & \text { E0 } \end{array}$	$\begin{array}{ll} 53 & 00 \\ 53 & \mathrm{E} 0 \end{array}$	$\begin{array}{ll} 53 & 00 \\ 53 & \mathrm{E} 0 \end{array}$	*93 E0	*A3 00
79	<-	$\begin{array}{lll}4 B & 00 \\ 4 B & E 0\end{array}$	$\begin{array}{lll}\text { 4B } & 00 \\ 4 B & \text { E0 }\end{array}$	$\begin{array}{ll} \text { 4B } & 00 \\ \text { 4B } & E 0 \end{array}$	$\begin{array}{lll} \text { 4B } & 00 \\ 4 B & E 0 \end{array}$	$\begin{array}{ll} 73 & 00 \\ 73 & \text { E0 } \end{array}$	*9B 00
80	Home	$\begin{array}{ll}47 & 00 \\ 47 & \text { E0 }\end{array}$	$\begin{array}{ll} 47 & 00 \\ 47 & \text { E0 } \end{array}$	$\begin{array}{ll} 47 & 00 \\ 47 & \text { E0 } \end{array}$	4700 47 E0	$\begin{array}{ll}77 & 00 \\ 77 & \text { E0 }\end{array}$	*9700
81	End	$\begin{array}{ll}4 F & 00 \\ 4 F & E 0\end{array}$	$\begin{array}{ll} 4 F & 00 \\ 4 F & E 0 \end{array}$	$\begin{array}{ll} 4 F & 00 \\ 4 F & E 0 \end{array}$	$\begin{array}{ll} 4 \mathrm{~F} & 00 \\ 4 \mathrm{~F} & \mathrm{E} \end{array}$	$\begin{array}{ll} 75 & 00 \\ 75 & \mathrm{E} 0 \end{array}$	*9F 00
83	I	$\begin{array}{ll}48 & 00 \\ 48 & \text { E0 }\end{array}$	$\begin{array}{ll} 48 & 00 \\ 48 & \text { E0 } \end{array}$	$\begin{array}{ll} 48 & 00 \\ 48 & E 0 \end{array}$	$\begin{array}{ll} 48 & 00 \\ 48 & \text { E0 } \end{array}$	*8D E0	*98 00
84	1	$\begin{array}{ll} 50 & 00 \\ 50 & \mathrm{E} 0 \end{array}$	$\begin{array}{ll} 50 & 00 \\ 50 & \mathrm{E} 0 \end{array}$	$\begin{array}{ll} 50 & 00 \\ 50 & \text { E0 } \end{array}$	$\begin{array}{ll} 50 & 00 \\ 50 & \mathrm{E} 0 \end{array}$	*91 E0	*A0 00
85	PgUp	$\begin{array}{ll} 49 & 00 \\ 49 & \text { E0 } \end{array}$	$\begin{array}{ll} 49 & 00 \\ 49 & \text { E0 } \end{array}$	$\begin{array}{ll} 49 & 00 \\ 49 & \text { E0 } \end{array}$	$\begin{array}{ll} 49 & 00 \\ 49 & \text { E0 } \end{array}$	$\begin{array}{ll} 84 & 00 \\ 84 & \text { E0 } \end{array}$	*99 00
86	PgDn	$\begin{array}{ll} 51 & 00 \\ 51 & \mathrm{E} 0 \end{array}$	$\begin{array}{ll} 51 & 00 \\ 51 & \text { E0 } \end{array}$	$\begin{array}{ll} 51 & 00 \\ 51 & \text { E0 } \end{array}$	$\begin{array}{ll} 51 & 00 \\ 51 & \mathrm{E} 0 \end{array}$	$\begin{array}{ll} 76 & 00 \\ 76 & \text { E0 } \end{array}$	*A1 00
89	->	$\begin{array}{ll} 4 D & 00 \\ 4 D & E 0 \end{array}$	$\begin{array}{ll} 4 D & 00 \\ 4 D & E 0 \end{array}$	$\begin{array}{ll} 4 D & 00 \\ 4 D & E 0 \end{array}$	$\begin{array}{ll} 4 D & 00 \\ 4 D & E 0 \end{array}$	$\begin{array}{ll} 74 & 00 \\ 74 & \mathrm{E} 0 \end{array}$	*9D 00

$$
D-5
$$

File No. 960-019

Table D-1 Scan code, character code, and key top names (continued)

Cap No.	Key Top	Lower Case	Upper Case	Num Lock		With (Ctrl)	With (Alt)
				Lower	Upper		
110	Esc	01 1B	*01 00				
112	F1	3B 00	5400	3 B 00	5400	5E 00	6800
113	F2	3C 00	5500	3 C 00	5500	5F 00	6900
114	F3	3D 00	5600	3D 00	5600	6000	6A 00
115	F4	3 E 00	5700	3 E 00	5700	6100	6B 00
116	F5	3 F 00	5800	3F 00	5800	6200	6C 00
117	F6	4000	5900	4000	5900	6300	6D 00
118	F7	4100	5A 00	4100	5A 00	6400	6E 00
119	F8	4200	5B 00	4200	5B 00	6500	6F 00
120	F9	4300	5 C 00	4300	5C 00	6600	$70 \quad 00$
121	F10	4400	5D 00	4400	5D 00	6700	7100
122	F11	* 8500	*87 00	* 8500	* 8700	*89 00	*8B 00
123	F12	* 8600	*88 00	*86 00	*88 00	* 8 A 00	*8C 00
124	Prtsc	-	-	-	-	**72 00	-
126	Pause	-	-	-	-	0000	-
202	Fn	-	-	-	-	-	-

NOTE: *; Only extended code.
**; Only normal code.

APPENDIX E KEY LAYOUT

1. USA keyboard

Figure E-1 USA keyboard

File No. 960-019
2. UK keyboard

Figure E-2 UK keyboard

File No. 960-019
3. German keyboard

Figure E-3 German keyboard

File No. 960-019
4. French keyboard

Figure E-4 French keyboard

Figure E-5 Spanish keyboard
6. Italian keyboard

Figure E-6 Italian keyboard

File No. 960-019
7. Scandinavian keyboard

Figure E-7 Scandinavian keyboard
8. Swiss keyboard

Figure $E-8$ Swiss keyboard

File No. 960-019
9. Special Canadian keyboard

Figure E-9 Special Canadian keyboard

File No. 960-019
10. Keycap number

Figure E-10 Keycap number

