2117 FAMILY 16,384 x 1 BIT DYNAMIC RAM

	2117-2	2117-3	2117-4
Maximum Access Time (ns)	150	200	250
Read, Write Cycle (ns)	320	375	410
Read-Modify-Write Cycle (ns)	330	375	475

- Industry Standard 16-Pin Configuration
- ±10% Tolerance on All Power Supplies: +12V, +5V, -5V
- Low Power: 462mW Max. Operating, 20mW Max. Standby
- Low I_{DD} Current Transients
- All Inputs, Including Clocks, TTL Compatible

- Non-Latched Output is Three-State, TTL Compatible
- RAS Only Retresh
- 128 Refresh Cycles Required Every 2ms
- Page Mode Capability
- CAS Controlled Output Allows Hidden Refresh

The Intel® 2117 is a 16,384 word by 1-bit Dynamic MOS RAM fabricated with Intel's standard two layer polysilicon NMOS technology — a production proven process for high performance, high reliability, and high storage density.

The 2117 uses a single transistor dynamic storage cell and advanced dynamic circuitry to achieve high speed with low power dissipation. The circuit design minimizes the current transients typical of dynamic RAM operation. These low current transients and $\pm 10\%$ tolerance on all power supplies contribute to the high noise immunity of the 2117 in a system environment.

Multiplexing the 14 address bits into the 7 address input pins allows the 2117 to be packaged in the industry standard 16-pin DIP. The two 7-bit address words are latched into the 2117 by the two TTL clocks, Row Address Strobe (RAS) and Column Address Strobe (CAS). Non-critical timing requirements for RAS and CAS allow use of the address multiplexing technique while maintaining high performance.

The 2117 three-state output is controlled by \overline{CAS} , independent of \overline{RAS} . After a valid read or read-modify-write cycle, data is latched on the output by holding \overline{CAS} low. The data out pin is returned to the high impedance state by returning \overline{CAS} to a high state. The 2117 hidden refresh feature allows \overline{CAS} to be held low to maintain latched data while \overline{RAS} is used to execute \overline{RAS} -only refresh cycles.

The single transistor storage cell requires refreshing for data retention. Refreshing is accomplished by performing \overline{RAS} -only refresh cycles, hidden refresh cycles, or normal read or write cycles on the 128 address combinations of A_0 through A_6 during a 2ms period. A write cycle will refresh stored data on all bits of the selected row except the bit which is addressed.

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias10°C to +80°C
Storage Temperature
Voltage on Any Pin Relative to VBB
$(V_{SS} - V_{BB} \ge 4V)$
Data Out Current 50mA

Power Dissipation 1.0W

*COMMENT:

Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. AND OPERATING CHARACTERISTICS^[1,2]

 $T_A = 0^{\circ}C \text{ to } 70^{\circ}C, V_{DD} = 12V \pm 10\%, V_{CC} = 5V \pm 10\%, V_{BB} = -5V \pm 10\%, V_{SS} = 0V, \text{ unless otherwise noted}.$

		Limits					
Symbol	Parameter	Min.	Typ. ^[3]	Max.	Unit	Test Conditions	Notes
1_1	Input Load Current (any input)		0.1	10	μA	$V_{IN}=V_{SS}$ to 7.0V, $V_{BB}=-5.0V$	
I LO	Output Leakage Current for High Impedance State		0.1	10	μA	Chip Deselected: CAS at V _{IH} , V _{OUT} = 0 to 5.5V	
IDD1	V _{DD} Supply Current, Standby			1.5	mA	CAS and RAS at VIH	4
IBB1	VBB Supply Current, Standby		1.0	50	μA		
ICC1	V _{CC} Supply Current, Output Deselected		0.1	10	μA	CAS at VIH	5
IDD2	V _{DD} Supply Current, Operating			35	mA	2117-2, t _{RC} = 375ns, t _{RAS} = 150ns	4,6
				35	mA	2117-3, t _{RC} = 375ns, t _{RAS} = 200ns	4
				33	mA	2117-4, t _{RC} = 410ns, t _{RAS} = 250ns	4
IBB2	VBB Supply Current, Operating, RAS-Only Refresh, Page Mode		150	300	μA	T _A = 0°C	
IDD3	V _{DD} Supply Current, RAS-Only			27	mA	2117-2, t _{RC} = 375ns, t _{RAS} = 150ns	4,6
	Refresh			27	mA	2117-3, t _{RC} = 375ns, t _{RAS} = 200ns	4
				26	mA	2117-4, t _{RC} = 410ns, t _{RAS} = 250ns	4
IDD5	V _{DD} Supply Current, Standby, Output Enabled		1.5	3	mA	CAS at VIL, RAS at VIH	
VIL	Input Low Voltage (all inputs)	-1.0		0.8	V		
ViH	Input High Voltage (all inputs)	2.4		6.0	V		
Vol	Output Low Voltage			0.4	V	I _{OL} = 4.2mA	4
Vон	Output High Voltage	2.4			V	I _{ОН} = -5mA	4

NOTES:

1. All voltages referenced to V_{SS}.

2. No power supply sequencing is required. However, V_{DD}, V_{CC} and V_{SS} should never be more negative than -0.3V with respect to V_{BB} as required by the absolute maximum ratings.

3. Typical values are for $T_A = 25^{\circ}C$ and nominal supply voltages.

4. See the Typical Characteristics Section for values of this parameter under alternate conditions.

5. Icc is dependent on output loading when the device output is selected. Vcc is connected to the output buffer only. Vcc may be reduced to Vss without affecting refresh operation or maintenance of internal device data.

6. For the 2117-2 at t_{RC} = 320ns, t_{RAS} = 150ns, I_{DD2} max. is 45mA and I_{DD3} max. is 31mA.

Typical power supply current waveforms vs. time are shown for the RAS/CAS timings of Read/Write, Read/ Write (Long RAS/CAS), and RAS-only refresh cycles. IDD and IBB current transients at the RAS and CAS edges require adequate decoupling of these supplies. Decoupling recommendations are provided in the Applications section.

The effects of cycle time, VDD supply voltage and ambient temperature on the IDD current are shown in graphs included in the Typical Characteristics Section. Each family of curves for IDD1, IDD2, and IDD3 is related by a common point at V_{DD} = 12.0V and T_A = 25°C for two given tRAS pulse widths. The typical IDD current for a given condition of cycle time, V_{DD} and T_A can be determined by combining the effects of the appropriate family of curves.

$T_A =$	25° C.	Vpp =	12V+10%.	Vcc =	5V+10%.	VBB =	-5V+10%.	$V_{99} = 0V$	unless	otherwise	specified.
	LU U,	100	1 - 1 - 10 /0,	•00	0	• 00		•33 ••	, 4111000	0110110100	opooniou.

Symbol	Parameter	Тур.	Max.	Unit
CI1	Address, Data In	3	5	pF
C _{l2}	RAS Capacitance, WE Capacitance	4	7	pF
CI3	CAS Capacitance	6	10	pF
Co	Data Output Capacitance	4	7	pF

NOTES:

RAM

1. Capacitance measured with Boonton Meter or effective capacitance calculated from the equation:

 $C = \frac{|\Delta t|}{\Delta V}$ with ΔV equal to 3 volts and power supplies at nominal levels.

A.C. CHARACTERISTICS^[1,2,3]

 $T_A = 0^{\circ}C$ to 70° C, $V_{DD} = 12V \pm 10\%$, $V_{CC} = 5V \pm 10\%$, $V_{BB} = -5V \pm 10\%$, $V_{SS} = 0V$, unless otherwise noted. **READ, WRITE, READ-MODIFY-WRITE AND REFRESH CYCLES**

		21	17-2	2117-3		2117-4			
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit	Notes
tRAC	Access Time From RAS		150		200		250	ns	4,5
tCAC	Access Time From CAS		100		135		165	ns	4,5,6
tREF	Time Between Refresh		2		2		2	ms	
tRP	RAS Precharge Time	100		120		150		ns	
t <u>CPN</u>	CAS Precharge Time(non-page cycles)	25		25		25		ns	
tCRP	CAS to RAS Precharge Time	-20		-20		-20		ns	
tRCD	RAS to CAS Delay Time	20	50	25	65	35	85	ns	7
trsh	RAS Hold Time	100		135		165		ns	
tcsн	CAS Hold Time	150		200		250		ns	
tasr	Row Address Set-Up Time	0		0		0		ns	
tRAH	Row Address Hold Time	20		25		35		ns	
tasc	Column Address Set-Up Time	-10		-10		-10		ns	
t CAH	Column Address Hold Time	45		55		75		ns	
tar	Column Address Hold Time, to RAS	95		120		160		ns	
tτ	Transition Time (Rise and Fall)	3	50	3	50	3	50	ns	8
toff	Output Buffer Turn Off Delay	0	50	0	60	0	70	ns	
READ AND	REFRESH CYCLES								
tRC	Random Read Cycle Time	320		375		410		ns	
tras	RAS Pulse Width	150	10000	200	10000	250	10000	ns	
tCAS	CAS Pulse Width	100	10000	135	10000	165	10000	ns	
tRCS	Read Command Set-Up Time	0		0		0		ns	
tRCH	Read Command Hold Time	0		0		0		ns	
WRITE CYC	CLE								
tRC	Random Write Cycle Time	320		375		410		ns	
tRAS	RAS Pulse Width	150	10000	200	10000	250	10000	ns	
tCAS	CAS Pulse Width	100	10000	135	10000	165	10000	ns	
twcs	Write Command Set-Up Time	-20	****	-20		-20		ns	9
twcн	Write Command Hold Time	45		55		75		ns	
twcn	Write Command Hold Time, to RAS	95		120		160		ns	
twp	Write Command Pulse Width	45		55		75		ns	
tRWL	Write Command to RAS Lead Time	60		80		100		ns	
tcwL	Write Command to CAS Lead Time	60		80		100		ns	
tos	Data-In Set-Up Time	0		0		0		ns	
tDH	Data-In Hold Time	45		55		75		ns	
tDHR	Data-In Hold Time, to RAS	95		120		160		ns	
READ-MOD	DIFY-WRITE CYCLE	•		<u></u>		•		\$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u> </u>
tRWC	Read-Modify-Write Cycle Time	330		375		475		ns	
tRRW	RMW Cycle RAS Pulse Width	185	10000	245	10000	305	10000	ns	

tRWC	Read-Modify-Write Cycle Time	330		375		475		ns		
tRRW	RMW Cycle RAS Pulse Width	185	10000	245	10000	305	10000	ns		
tCRW	RMW Cycle CAS Pulse Width	135	10000	180	10000	230	10000	ns		
trwd	RAS to WE Delay	120		160		200		ns	9	
tcwD	CAS to WE Delay	70		95		125		ns	9	

RAM

Notes: See following page for A.C. Characteristics Notes.

1,2. $V_{\text{IH}\ \text{MIN}}$ AND $V_{\text{IL}\ \text{MAX}}$ ARE REFERENCE LEVELS FOR MEASURING TIMING OF INPUT SIGNALS. NOTES:

- 3.4. VOH MIN AND VOL MAX ARE REFERENCE LEVELS FOR MEASURING TIMING OF DOUT.
- 5. toFF IS MEASURED TO IOUT < ILO.
- 5. top: IS MEASURED TO $|_{0UT} \leq |_{ILO}|$. 6. top AND top: ARE REFERENCED TO \overline{CAS} OR \overline{WE} , WHICHEVER OCCURS LAST. 7. tach IS REFERENCED TO THE TRAILING EDGE OF \overline{CAS} OR \overline{RAS} , WHICHEVER OCCURS FIRST. 8. top: REQUIREMENT IS ONLY APPLICABLE FOR $\overline{RAS}/\overline{CAS}$ CYCLES PRECEEDED BY A \overline{CAS} -ONLY CYCLE (i.e., FOR SYSTEMS WHERE \overline{CAS} HAS NOT BEEN DECODED WITH \overline{RAS}).

A.C. CHARACTERISTICS NOTES (From Previous Page)

- 1. All voltages referenced to Vss.
- 2. Eight cycles are required after power-up or prolonged periods (greater than 2ms) of RAS inactivity before proper device operation is achieved. Any 8 cycles which perform refresh are adequate for this purpose.
- 3. A.C. Characteristics assume t_T = 5ns.
- 4. Assume that $t_{RCD} \le t_{RCD}$ (max.). If t_{RCD} is greater than t_{RCD} (max.) then tRAC will increase by the amount that tRCD exceeds tRCD (max.).
- 5. Load = 2 TTL loads and 100pF.
- 6. Assumes $t_{RCD} \ge t_{RCD}$ (max.).

- 7. t_{RCD} (max.) is specified as a reference point only; if t_{RCD} is less than t_{RCD} (max.) access time is t_{RAC} , if t_{RCD} is greater than t_{RCD} (max.) access time is tRCD + tCAC.
- 8. tT is measured between V_{IH} (min.) and V_{IL} (max.).
- 9. twcs, tcwp and tRwp are specified as reference points only. If twcs \geq twcs (min.) the cycle is an early write cycle and the data out pin will remain high impedance throughout the entire cycle. If t_{CWD} ≥ t_{CWD} (min.) and t_{RWD} ≥ t_{RWD} (min.), the cycle is a read-modify-write cycle and the data out will contain the data read from the selected address. If neither of the above conditions is satisfied, the condition of the data out is indeterminate.

WAVEFORMS

READ-MODIFY-WRITE CYCLE

RAM

RAS-ONLY REFRESH CYCLE

HIDDEN REFRESH CYCLE

NOTES: 1.2. V_{IH MIN} AND V_{IL MAX} ARE REFERENCE LEVELS FOR MEASURING TIMING OF INPUT SIGNALS. 3.4. V_{OH MIN} AND V_{OL MAX} ARE REFERENCE LEVELS FOR MEASURING TIMING OF D_{OUT}. 5. t_{OFF} IS MEASURED TO I_{OUT} < |I_{LO}|.____

6: top AND top, ARE REFERENCED TO CAS OR WE, WHICHEVER OCCURS LAST. 6: top AND top, ARE REFERENCED TO CAS OR WE, WHICHEVER OCCURS LAST. 7: troch IS REFERENCED TO THE TRAILING EDGE OF CAS OR RAS, WHICHEVER OCCURS FIRST. 8: top REQUIREMENT IS ONLY APPLICABLE FOR RAS/CAS CYCLES PRECEEDED BY A CAS-ONLY CYCLE (i.e., FOR SYSTEMS WHERE CAS HAS NOT BEEN DECODED WITH RAS).

TYPICAL CHARACTERISTICS^[1]

RAM

TA - AMBIENT TEMPERATURE (°C)

NOTES: See following page for Typical Characteristics Notes.

t_{RC} - CYCLE TIME (ns)

VDD - SUPPLY VOLTAGE (VOLTS)

3-70

GRAPH 11

TYPICAL RAS ONLY

TYPICAL CHARACTERISTICS [1]

GRAPH 12 TYPICAL RAS ONLY REFRESH CURRENT IDD3 VS. AMBIENT TEMPERATURE

GRAPH 13 TYPICAL PAGE MODE CURRENT IDD4 VS. tPC

GRAPH 14 TYPICAL PAGE MODE CURRENT IDD4 VS. VDD

GRAPH 15 TYPICAL PAGE MODE CURRENT IDD4 VS. AMBIENT TEMPERATURE

GRAPH 16 TYPICAL OUTPUT SOURCE CURRENT

IOH VS. OUTPUT VOLTAGE VOH

GRAPH 17 TYPICAL OUTPUT SINK CURRENT I_{OL} VS. OUTPUT VOLTAGE V_{OL}

NOTES:

- The cycle time, V_{DD} supply voltage, and ambient temperature dependence of I_{DD1}, I_{DD2}, I_{DD3} and I_{DD4} is shown in related graphs. Common points of related curves are indicated:
 - IDD1 @ VDD = 13.2V, TA = 0°C
 - IDD2 or IDD3 @ tRAS = 200ns, tRC = 375ns, VDD = 12.0V, TA = 25°C
 - ▲ I_{DD2} or I_{DD3} @ t_{RAS} = 500ns, t_{RC} = 750ns, V_{DD} = 12.0V, T_A = 25°C
 - $\begin{array}{|c|c|c|} \square & I_{DD4} @ t_{CAS} = 135 \text{ns}, \text{ tp}_{C} = 225 \text{ns}, \\ & V_{DD} = 12.0 \text{V}, \text{ T}_{A} = 25^{\circ} \text{C} \end{array}$
 - $\Delta I_{DD4} @ t_{CAS} = 350 \text{ns}, \text{tp}_{C} = 500 \text{ns}, \\ V_{DD} = 12.0 \text{V}, \text{T}_{A} = 25^{\circ} \text{C}$

The typical I_{DD} current for a given combination of cycle time, V_{DD} supply voltage and ambient temperature may be determined by combining the effects of the appropriate family of curves.

D.C. AND A.C. CHARACTERISTICS, PAGE MODE^[7,8,11]

 $T_A = 0^{\circ}C$ to 70°C, $V_{DD} = 12V \pm 10\%$, $V_{CC} = 5V \pm 10\%$, $V_{BB} = -5V \pm 10\%$, $V_{SS} = 0V$, unless otherwise noted. For Page Mode Operation order 2117-2 S6053, 2117-3 S6054, or 2117-4 S6055.

		21 ⁻ S6	2117-2 S6053		2117-3 S6054		17-4 055		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit	Notes
tPC	Page Mode Read or Write Cycle	170		225		275		ns	
tрсм	Page Mode Read Modify Write	205		270		340		ns	
tCP	CAS Precharge Time, Page Cycle	60		80		100		ns	
trрм	RAS Pulse Width, Page Mode	150	10,000	200	10,000	250	10,000	ns	
tCAS	CAS Pulse Width	100	10,000	135	10,000	165	10,000	ns	
I _{DD4}	V _{DD} Supply Current Page Mode, Minimum t _{PC} , Minimum t _{CAS}		38		30		26	mA	9

RAM

ž

WAVEFORMS

NOTES: 1,2. VIH MIN AND VIL MAX ARE REFERENCE LEVELS FOR MEASURING TIMING OF INPUT SIGNALS. 3,4. VOH MIN AND VOL MAX ARE REFERENCE LEVELS FOR MEASURING TIMING OF DOUT

- 5. toFF IS MEASURED TO IOUT < ILOI
- 6. t_{RCH} IS REFERENCED TO THE TRAILING EDGE OF CAS OR RAS, WHICHEVER OCCURS FIRST. 7. ALL VOLTAGES REFERENCED TO V_{SS}.

- 8. AC CHARACTERISTIC ASSUME tT = 5 ns. 9. SEE THE TYPICAL CHARACTERISTICS SECTION FOR VALUES OF THIS PARAMETER UNDER ALTERNATE CONDITIONS.

- UNDER ALTERNATE CONDITIONS. 10. t_{CPR} REGUIREMENT IS ONLY APPLICABL<u>E FOR RAS/CAS</u> CYCLES PRECEEDED BY A CAS-ONLY CYCLE (i.e., FOR SYSTEMS WHERE CAS HAS NOT BEEN DECODED WITH RAS). 11. ALL PREVIOUSLY SPECIFIED A.C. AND D.C. CHARACTERISTICS ARE APPLICABLE TO THEIR RESPECTIVE PAGE MODE DEVICE (i.e., 2117-3, 8064 WILL OPERATE AS A 2117-3).

PAGE MODE WRITE CYCLE

PAGE MODE READ-MODIFY-WRITE CYCLE

NOTES: 1.2. V_{IH MIN} AND V_{IL MAX} ARE REFERENCE LEVELS FOR MEASURING TIMING OF INPUT SIGNALS. 3.4. V_{OH MIN} AND V_{OL MAX} ARE REFERENCE LEVELS FOR MEASURING TIMING OF D_{OUT}. 5. t_{OFF} IS MEASURED TO I_{OUT} < |I_{LO}|.

6: top AND TOP ARE REFERENCED TO CAS OR WE, WHICHEVER OCCURS LAST. 6: top AND TOP ARE REFERENCED TO CAS OR WE, WHICHEVER OCCURS LAST. 7: topp REQUIREMENT IS ONLLY APPLICABLE FOR RAS/GAS CYCLES PRECEEDED BY A CAS-ONLY CYCLE (i.e., FOR SYSTEMS WHERE CAS HAS NOT BEEN DECODED WITH RAS).

APPLICATIONS

READ CYCLE

A Read cycle is performed by maintaining Write Enable $\overline{(WE)}$ high during a RAS/CAS operation. The output pin of a selected device will remain in a high impedance state until valid data appears at the output at access time.

Device access time, t_{ACC} , is the longer of the two calculated intervals:

1. $t_{ACC} = t_{RAC} OR$ 2. $t_{ACC} = t_{RCD} + t_{CAC}$

Access time from RAS, t_{RAC} , and access time from CAS, t_{CAC} , are device parameters. Row to column address strobe delay time, t_{RCD} , are system dependent timing parameters. For example, substituting the device parameters of the 2117-3 yields:

- 3. $t_{ACC} = t_{RAC} = 200$ nsec for 25nsec $\leq t_{RCD} \leq 65$ nsec OR
- 4. $t_{ACC} = t_{RCD} + t_{CAC} = t_{RCD} + 135$ for $t_{RCD} > 65$ nsec

Note that if 25nsec $\leq t_{RCD} \leq 65$ nsec device access time is determined by equation 3 and is equal to t_{RAC} . If $t_{RCL} > 65$ nsec, access time is determined by equation 4. This 40nsec interval (shown in the t_{RCD} inequality in equation 3) in which the falling edge of \overrightarrow{CAS} can occur without affecting access time is provided to allow for system timing skew in the generation of \overrightarrow{CAS} .

REFRESH CYCLES

Each of the 128 rows of the 2117 must be refreshed every 2 milliseconds to maintain data. Any memory cycle:

- 1. Read Cycle
- Write Cycle (Early Write, Delayed Write or Read-Modify-Write)
- 3. RAS-only Cycle

refreshes the selected row as defined by the low order (RAS) addresses. Any Write cycle, of course, may change the state of the selected cell. Using a Read, Write, or Read-Modify-Write cycle for refresh is not recommended for systems which utilize "wire-OR" outputs since output bus contention will occur.

A RAS-only refresh cycle is the recommended technique for most applications to provide for data retention. A RASonly refresh cycle maintains the D_{OUT} in the high impedance state with a typical power reduction of 20% over a Read or Write cycle.

RAS/CAS TIMING

 \overline{RAS} and \overline{CAS} have minimum pulse widths as defined by tRAS and tCAS respectively. These minimum pulse widths must be maintained for proper device operation and data integrity. A cycle, once begun by driving \overline{RAS} and/or \overline{CAS} low must not be ended or aborted prior to fulfilling the minimum clock signal pulse width(s). A new cycle can not begin until the minimum precharge time, tRP, has been met.

DATA OUTPUT OPERATION

The 2117 Data Output (D_{OUT}), which has three-state capability, is controlled by CAS. During CAS high state (CAS at V_{IH}) the output is in the high impedance state. The following table summarizes the D_{OUT} state for various types of cycles.

Intel 2117 Data Output Operation for Various Types of Cycles

Type of Cycle	D _{OUT} State
Read Cycle	Data From Addressed
	Memory Cell
Early Write Cycle	HI-Z
RAS-Only Refresh Cycle	HI-Z
CAS-Only Cycle	HI-Z
Read/Modify/Write Cycle	Data From Addressed
	Memory Cell
Delayed Write Cycle	Indeterminate

HIDDEN REFRESH

A feature of the 2117 is that refresh cycles may be performed while maintaining valid data at the output pin. This feature is referred to as Hidden Refresh. Hidden Refresh is performed by holding \overrightarrow{CAS} at V_{IL} and taking \overrightarrow{RAS} high and after a specified precharge period (t_{RP}), executing a " \overrightarrow{RAS} -Only" refresh cycle, but with \overrightarrow{CAS} held low (see Figure below).

This feature allows a refresh cycle to be "hidden" among data cycles without affecting the data availability.

POWER ON

The 2117 requires no power on sequence providing absolute maximum ratings are not exceeded. After the application of supply voltages or after extended periods of bias (greater than 2 milliseconds) without clocks, the device must perform a minimum of eight initialization cycles (any combination of cycles containing a RAS clock, such as RAS-Only refresh) prior to normal operation.

POWER SUPPLY DECOUPLING/DISTRIBUTION

It is recommended that a 0.1μ F ceramic capacitor be connected between V_{DD} and V_{SS} at every other device in the memory array. A 0.1μ F ceramic capacitor should also be connected between V_{BB} and V_{SS} at every other device (preferably the alternate devices to the V_{DD} decoupling). For each 16 devices, a 10μ F tantalum or equivalent capacitor should be connected between V_{DD} and V_{SS} near the array. An equal or slightly smaller bulk capacitor is also recommended between V_{BB} and V_{SS} for every 32 devices.

The V_{CC} supply is connected only to the 2117 output buffer and is not used internally. The load current from the V_{CC} supply is dependent only upon the output loading and

is associated with the input high level current to a TTL gate and the output leakage currents of any OR-tied 2117's (typically 100μ A or less total). Intel recommends that a 0.1 or 0.01μ F ceramic capacitor be connected between V_{CC} and V_{SS} for every eight memory devices.

Due to the high frequency characteristics of the current waveforms, the inductance of the power supply distribution system on the array board should be minimized. It is recommended that the V_{DD} , V_{BB} , and V_{SS} supply lines be gridded both horizontally and vertically at each device in the array. This technique allows use of double sided circuit boards with noise performance equal to or better than multi-layered circuit boards.

64K BYTE STORAGE ARRAY LAYOUT

intel

2117-5 16,384 x 1 BIT DYNAMIC RAM

	21,17-5
Maximum Access Time (ns)	300
Read, Write Cycle (ns)	490
Read-Modify-Write Cycle (ns)	580

- Industry Standard 16-Pin Configuration
- Low Power: 462mW Max. Operating, 20mW Max. Standby
- Low I_{DD} Current Transients
- All Inputs, Including Clocks, TTL Compatible
- RAS Only Refresh

- Non-Latched Output is Three-State, TTL Compatible
- 128 Refresh Cycles Required Every 2ms
- Page Mode Capability
- CAS Controlled Output Allows Hidden Refresh

The Intel® 2117 is a 16,384 word by 1-bit Dynamic MOS RAM fabricated with Intel's standard two layer polysilicon NMOS technology — a production proven process for high performance, high reliability, and high storage density.

The 2117 uses a single transistor dynamic storage cell and advanced dynamic circuitry to achieve high speed with low power dissipation. The circuit design minimizes the current transients typical of dynamic RAM operation. These low current transients contribute to the high noise immunity of the 2117 in a system environment.

Multiplexing the 14 address bits into the 7 address input pins allows the 2117 to be packaged in the industry standard 16-pin DIP. The two 7-bit address words are latched into the 2117 by the two TTL clocks, Row Address Strobe (RAS) and Column Address Strobe (CAS). Non-critical timing requirements for RAS and CAS allow use of the address multiplexing technique while maintaining high performance.

The 2117 three-state output is controlled by \overline{CAS} , independent of \overline{RAS} . After a valid read or read-modify-write cycle, data is latched on the output by holding \overline{CAS} low. The data out pin is returned to the high impedance state by returning \overline{CAS} to a high state. The 2117 hidden refresh feature allows \overline{CAS} to be held low to maintain latched data while \overline{RAS} is used to execute \overline{RAS} -only refresh cycles.

The single transistor storage cell requires refreshing for data retention. Refreshing is accomplished by performing $\overline{\text{RAS}}$ -only refresh cycles, hidden refresh cycles, or normal read or write cycles on the 128 address combinations of A₀ through A₆ during a 2ms period. A write cycle will refresh stored data on all bits of the selected row except the bit which is addressed.

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias	10°C to +80°C
Storage Temperature	-65° C to +150° C
Voltage on Any Pin Relative to VBB	
$(V_{SS} - V_{BB} \ge 4V)$	0.3V to +20V
Data Out Current	50mA
Power Dissipation	1.0W

*COMMENT:

Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. AND OPERATING CHARACTERISTICS^[1,2]

 $T_A = 0^{\circ}C$ to 70°C, $V_{DD} = 12V \pm 5\%$, $V_{CC} = 5V \pm 10\%$, $V_{BB} = -5V \pm 10\%$, $V_{SS} = 0V$, unless otherwise noted.

		Limits					
Symbol	Parameter	Min.	Typ. ^[3]	Max.	Unit	Test Conditions	Notes
ILI	Input Load Current (any input)		0.1	10	μA	VIN=VSS to VIHMAX, VBB=-5.0V	
ILO	Output Leakage Current for High Impedance State		0.1	10	μA	Chip Deselected: CAS at V _{IH} , V _{OUT} = 0 to 5.5V	
IDD1	VDD Supply Current, Standby			1.5	mA	CAS and RAS at VIH	4
IBB1	VBB Supply Current, Standby		1.0	50	μA		
ICC1	V _{CC} Supply Current, Output Deselected		0.1	10	μA	CAS at VIH	5
IDD2	VDD Supply Current, Operating			35	mA	2117, t _{RC} = 490ns, t _{RAS} = 300ns	4
IBB2	VBB Supply Current, Operating, RAS-Only Refresh, Page Mode		150	400	μA	T _A = 0°C	
IDD3	V _{DD} Supply Current, RAS-Only Refresh			27	mA	2117, t _{RC} = 490ns, t _{RAS} = 300ns	4
IDD5	V _{DD} Supply Current, Standby, Output Enabled		1.5	3	mA	CAS at VIL, RAS at VIH	
VIL	Input Low Voltage (all inputs)	-1.0		0.8	V		
ViH	Input High Voltage (all inputs)	2.4		6.0	V		
Vol	Output Low Voltage			0.4	V	I _{OL} = 4.2mA	4
Vон	Output High Voltage	2.4			V	I _{OH} = -5mA	4

NOTES:

1. All voltages referenced to VSS.

2. No power supply sequencing is required. However, V_{DD}, V_{CC} and V_{SS} should never be more negative than -0.3V with respect to V_{BB} as required by the absolute maximum ratings.

3. Typical values are for $T_A = 25^{\circ}C$ and nominal supply voltages.

4. See the Typical Characteristics Section for values of this parameter under alternate conditions.

5. Icc is dependent on output loading when the device output is selected. Vcc is connected to the output buffer only. Vcc may be reduced to Vss without affecting refresh operation or maintenance of internal device data.

2117-5

TYPICAL SUPPLY CURRENT WAVEFORMS

Typical power supply current waveforms vs. time are shown for the RAS/CAS timings of Read/Write, Read/Write (Long RAS/CAS), and RAS-only refresh cycles. Ibp and Ibb current transients at the RAS and CAS edges require adequate decoupling of these supplies. Decoupling recommendations are provided in the Applications section.

The effects of cycle time, V_{DD} supply voltage and ambient temperature on the I_{DD} current are shown in graphs included in the Typical Characteristics Section. Each family of curves for I_{DD1}, I_{DD2}, and I_{DD3} is related by a common point at V_{DD} = 12.0V and T_A = 25°C for two given t_{RAS} pulse widths. The typical I_{DD} current for a given condition of cycle time, V_{DD} and T_A can be determined by combining the effects of the appropriate family of curves.

CAPACITANCE^[1]

$T_{A} = 25^{\circ}C, V$	$V_{DD} = 12V \pm 5\%$	$V_{CC} = 5V \pm 10\%$	$V_{BB} = -5V \pm 10\%$	$V_{SS} = 0V$,	unless	otherwise	specified.
--------------------------	------------------------	------------------------	-------------------------	-----------------	--------	-----------	------------

Symbol	Parameter	Тур.	Max.	Unit
CI1	Address, Data In	3	5	pF
Cl2	RAS Capacitance, WE Capacitance	4	7	pF
Сіз	CAS Capacitance	6	10	pF
Co	Data Output Capacitance	4	7	pF

NOTES:

1. Capacitance measured with Boonton Meter or effective capacitance calculated from the equation:

 $C = \frac{I\Delta t}{V}$ with ΔV equal to 3 volts and power supplies at nominal levels.

A.C. CHARACTERISTICS^[1,2,3]

 $T_{A}=0^{\circ}C \text{ to } 70^{\circ}C, V_{DD}=12V \pm 5\%, V_{CC}=5V \pm 10\%, V_{BB}=-5V \pm 10\%, V_{SS}=0V, \text{ unless otherwise noted}.$

READ, WRITE, READ-MODIFY-WRITE AND REFRESH CYCLES

		2	117		
Symbol	Parameter	Min.	Max.	Unit	Notes
trac	Access Time From RAS		300	ns	4,5
tCAC	Access Time From CAS		180	ns	4,5,6
tREF	Time Between Refresh		2	ms	
t _{RP}	RAS Precharge Time	180		ns	
tCPN	CAS Precharge Time(non-page cycles)	80		ns	
tCRP	CAS to RAS Precharge Time	-20		ns	
tRCD	RAS to CAS Delay Time	80	120	ns	7
trsh	RAS Hold Time	180		ns	
tcsH	CAS Hold Time	300		ns	
tASR	Row Address Set-Up Time	0		ns	
tRAH	Row Address Hold Time	80		ns	
tasc	Column Address Set-Up Time	0		ns	
tCAH	Column Address Hold Time	80		ns	
tar	Column Address Hold Time, to RAS	215		ns	
tτ	Transition Time (Rise and Fall)	3	50	ns	8
toff	Output Buffer Turn Off Delay	0	80	ns	
READ AND	REFRESH CYCLES				
tRC	Random Read Cycle Time	490		ns	
tras	RAS Pulse Width	300	10000	ns	
tCAS	CAS Pulse Width	180	10000	ns	
tRCS	Read Command Set-Up Time	0		ns	
tRCH	Read Command Hold Time	0		ns	
WRITE CYC	CLE				
tRC	Random Write Cycle Time	490		ns	
tras	RAS Pulse Width	300	10000	ns	
tCAS	CAS Pulse Width	180	10000	ns	
twcs	Write Command Set-Up Time	0		ns	9
twcн	Write Command Hold Time	100		ns	
twcr	Write Command Hold Time, to RAS	215		ns	
twp	Write Command Pulse Width	100		ns	
tRWL	Write Command to RAS Lead Time	130		ns	
tcwL	Write Command to CAS Lead Time	130		ns	
tos	Data-In Set-Up Time	0		ns	
tрн	Data-In Hold Time	80		ns	
t DHR	Data-In Hold Time, to RAS	215		ns	
READ-MOD	DIFY-WRITE CYCLE				
•	Deed Medićy Write Ovela Time	500			

RAM

A.C. CHARACTERISTICS NOTES (From Previous Page)

1. All voltages referenced to Vss.

RAM

- Eight cycles are required after power-up or prolonged periods (greater than 2ms) of RAS inactivity before proper device operation is achieved. Any 8 cycles which perform refresh are adequate for this purpose.
- 3. A.C. Characteristics assume $t_T = 5ns$.
- Assume that $t_{BCD} \leq t_{BCD}$ (max.). If t_{BCD} is greater than t_{BCD} 4. (max.) then tRAC will increase by the amount that tRCD exceeds tRCD (max.).
- Load = 2 TTL loads and 100pF. 5.
- 6. Assumes $t_{RCD} \ge t_{RCD}$ (max.).

- 7. tRCD (max.) is specified as a reference point only; if tRCD is less than t_{RCD} (max.) access time is t_{RAC} , if t_{RCD} is greater than t_{RCD} (max.) access time is tRCD + tCAC.
- 8. tT is measured between VIH (min.) and VIL (max.).
- 9. twcs, tcwp and tRwp are specified as reference points only. If twcs \geq twcs (min.) the cycle is an early write cycle and the data out pin will remain high impedance throughout the entire cycle. If $t_{CWD} \ge t_{CWD}$ (min.) and $t_{RWD} \ge t_{RWD}$ (min.), the cycle is a read-modify-write cycle and the data out will contain the data read from the selected address. If neither of the above conditions is satisfied, the condition of the data out is indeterminate.

WAVEFORMS

READ-MODIFY-WRITE CYCLE

RAM

RAS-ONLY REFRESH CYCLE

NOTES: 1.2. V_{IH} MIN AND V_{IL} MAX ARE REFERENCE LEVELS FOR MEASURING TIMING OF INPUT SIGNALS. 3.4. V_{OH MIN} AND V_{OL MAX} ARE REFERENCE LEVELS FOR MEASURING TIMING OF D_{OUT}. 5. topF IS MEASURED TO I_{OUT} $< |L_{O}|$. 6. tops AND topH ARE REFERENCED TO CAS OR WE, WHICHEVER OCCURS LAST. 7. topH ARE REFERENCED TO TO THE TRAILING EDGE OF CAS OR TAS, WHICHEVER OCCURS FIRST. 8. topP REOLIDEMENT IS ONLY APPLICABLE FOR TAS/CAS CYCLES PRECEEDED BY A CAS-ONLY CYCLE (i.e., FOR SYSTEMS WHERE CAS HAS NOT BEEN DECODED WITH TAS).

ć

TYPICAL CHARACTERISTICS^[1]

RAM

NOTES: See following page for Typical Characteristics Notes.

TYPICAL CHARACTERISTICS ^[1]

3-83

the appropriate family of curves.

RAM

D.C. AND A.C. CHARACTERISTICS, PAGE MODE^[7,8,11]

 $T_A = 0^{\circ}C \text{ to } 70^{\circ}C, V_{DD} = 12V \pm 5\%, V_{CC} = 5V \pm 10\%, V_{BB} = -5V \pm 10\%, V_{SS} = 0V, \text{ unless otherwise noted}.$ For Page Mode Operation order 2117 S6117.

		2117-5 S6117			
Symbol	Parameter	Min.	Max.	Unit	Notes
tPC	Page Mode Read or Write Cycle	310		ns	
t PCM	Page Mode Read Modify Write	405		ns	
tCP	CAS Precharge Time, Page Cycle	120		ns	
trpm	RAS Pulse Width, Page Mode	300	10,000	ns	
tcas	CAS Pulse Width	180	10,000	ns	
IDD4	V _{DD} Supply Current Page Mode, Minimum t _{PC} , Minimum t _{CAS}		26	mA	9

WAVEFORMS

NOTES: 1,2. VIH MIN AND VIL MAX ARE REFERENCE LEVELS FOR MEASURING TIMING OF INPUT SIGNALS. 3,4. VOH MIN AND VOL MAX ARE REFERENCE LEVELS FOR MEASURING TIMING OF DOUT

- 5. toFF IS MEASURED TO IOUT < IILOI.
- 6. TOP IS MERCOND TO THE TRAILING EDGE OF CAS OR RAS, WHICHEVER OCCURS FIRST.
 7. ALL VOLTAGES REFERENCED TO V_{SS}.
 8. AC CHARACTERISTIC ASSUME t₁ = 5ns.
 9. SEE THE TYPICAL CHARACTERISTICS SECTION FOR VALUES OF THIS PARAMETER UNDER ALTERNATE CONDITIONS.

- UNDER ALTERNATE CONUTIONS. 10. t_{CRP} REQUIREMENT IS ONLY APPLICABLE FOR RAS/CAS CYCLES PRECEEDED BY A CAS-ONLY CYCLE (i.e., FOR SYSTEMS WHERE CAS HAS NOT BEEN DECODED WITH RAS). 11. ALL PREVIOUSLY SPECIFIED A.C. AND D.C. CHARACTERISTICS ARE APPLICABLE TO THEIR
- RESPECTIVE PAGE MODE DEVICE (i.e., 2117-5, S6117 WILL OPERATE AS A 2117-5).

PAGE MODE WRITE CYCLE

PAGE MODE READ-MODIFY-WRITE CYCLE

NOTES: 1,2. VIH MIN AND VIL MAX ARE REFERENCE LEVELS FOR MEASURING TIMING OF INPUT SIGNALS. 3.4. V_{OH MIN} AND V_{OL MAX} ARE REFERENCE LEVELS FOR MEASURING TIMING OF D_{OUT}. 5. tope IS MEASURED TO I_{OUT} \leq |I_{LO}|.

6. Top F IS MEASURED TO (100T % ||LC).
 6. Top AND t_{DH} ARE REFERENCED TO CAS OR WE, WHICHEVER OCCURS LAST.
 7. TopR REQUIREMENT IS ONLY APPLICABLE FOR RAS/CAS CYCLES PRECEEDED BY A CAS-ONLY CYCLE (i.e., FOR SYSTEMS WHERE CAS HAS NOT BEEN DECODED WITH RAS).

APPLICATIONS

READ CYCLE

A Read cycle is performed by maintaining Write Enable $\overline{(WE)}$ high during a RAS/CAS operation. The output pin of a selected device will remain in a high impedance state until valid data appears at the output at access time.

Device access time, t_{ACC} , is the longer of the two calculated intervals:

1. $t_{ACC} = t_{RAC} OR$ 2. $t_{ACC} = t_{RCD} + t_{CAC}$

Access time from \overline{RAS} , t_{RAC}, and access time from \overline{CAS} , t_{CAC}, are device parameters. Row to column address strobe delay time, t_{RCD}, are system dependent timing parameters. For example, substituting the device parameters of the $\overline{2}117$ yields:

- 3. t_{ACC} = t_{RAC} = 300nsec for 80nsec $\leq t_{RCD} \leq 120$ nsec OR
- 4. $t_{ACC} = t_{RCD} + t_{CAC} = t_{RCD} + 180$ for $t_{RCD} > 120$ nsec

Note that if 80nsec $\leq t_{RCD} \leq 120$ nsec device access time is determined by equation 3 and is equal to t_{RAC} . If $t_{RCD} > 120$ nsec, access time is determined by equation 4. This 40nsec interval (shown in the t_{RCD} inequality in equation 3) in which the falling edge of CAS can occur without affecting access time is provided to allow for system timing skew in the generation of CAS.

REFRESH CYCLES

Each of the 128 rows of the 2117 must be refreshed every 2 milliseconds to maintain data. Any memory cycle:

- 1. Read Cycle
- Write Cycle (Early Write, Delayed Write or Read-Modify-Write)
- 3. RAS-only Cycle

refreshes the selected row as defined by the low order (\overline{RAS}) addresses. Any Write cycle, of course, may change the state of the selected cell. Using a Read, Write, or Read-Modify-Write cycle for refresh is not recommended for systems which utilize "wire-OR" outputs since output bus contention will occur.

A \overline{RAS} -only refresh cycle is the recommended technique for most applications to provide for data retention. A \overline{RAS} only refresh cycle maintains the D_{OUT} in the high impedance state with a typical power reduction of 20% over a Read or Write cycle.

RAS/CAS TIMING

RAS and **CAS** have minimum pulse widths as defined by tRAS and tCAS respectively. These minimum pulse widths must be maintained for proper device operation and data integrity. A cycle, once begun by driving **RAS** and/or **CAS** low must not be ended or aborted prior to fulfilling the minimum clock signal pulse width(s). A new cycle can not begin until the minimum precharge time, tRP, has been met.

DATA OUTPUT OPERATION

The 2117 Data Output (D_{OUT}) , which has three-state capability, is controlled by CAS. During CAS high state (CAS at V_{IH}) the output is in the high impedance state. The following table summarizes the D_{OUT} state for various types of cycles.

Intel 2117 Data Output Operation for Various Types of Cycles

Type of Cycle	D _{OUT} State
Read Cycle	Data From Addressed
	Memory Cell
Early Write Cycle	HI-Z
RAS-Only Refresh Cycle	HI-Z
CAS-Only Cycle	HI-Z
Read/Modify/Write Cycle	Data From Addressed
	Memory Cell
Delayed Write Cycle	Indeterminate

HIDDEN REFRESH

A feature of the 2117 is that refresh cycles may be performed while maintaining valid data at the output pin. This feature is referred to as Hidden Refresh. Hidden Refresh is performed by holding \overrightarrow{CAS} at V_{IL} and taking \overrightarrow{RAS} high and after a specified precharge period (tRP), executing a " \overrightarrow{RAS} -Only" refresh cycle, but with \overrightarrow{CAS} held low (see Figure below).

This feature allows a refresh cycle to be "hidden" among data cycles without affecting the data availability.

POWER ON

The 2117 requires no power on sequence providing absolute maximum ratings are not exceeded. After the application of supply voltages or after extended periods of bias (greater than 2 milliseconds) without clocks, the device must perform a minimum of eight initialization cycles (any combination of cycles containing a RAS clock, such as RAS-Only refresh) prior to normal operation.

POWER SUPPLY DECOUPLING/DISTRIBUTION

It is recommended that a 0.1μ F ceramic capacitor be connected between V_{DD} and V_{SS} at every other device in the memory array. A 0.1μ F ceramic capacitor should also be connected between V_{BB} and V_{SS} at every other device (preferably the alternate devices to the V_{DD} decoupling). For each 16 devices, a 10μ F tantalum or equivalent capacitor should be connected between V_{DD} and V_{SS} near the array. An equal or slightly smaller bulk capacitor is also recommended between V_{BB} and V_{SS} for every 32 devices.

The V_{CC} supply is connected only to the 2117 output buffer and is not used internally. The load current from the V_{CC} supply is dependent only upon the output loading and

is associated with the input high level current to a TTL gate and the output leakage currents of any OR-tied 2117's (typically 100μ A or less total). Intel recommends that a 0.1 or 0.01μ F ceramic capacitor be connected between V_{CC} and V_{SS} for every eight memory devices.

Due to the high frequency characteristics of the current waveforms, the inductance of the power supply distribution system on the array board should be minimized. It is recommended that the V_{DD}, V_{BB}, and V_{SS} supply lines be gridded both horizontally and vertically at each device in the array. This technique allows use of double sided circuit boards with noise performance equal to or better than multi-layered circuit boards.

64K BYTE STORAGE ARRAY LAYOUT