NMOS 65,536-BIT DYNAMIC RANDOM ACCESS MEMORY

DESCRIPTION

The Fujlitsu MB8265 is a fully decoded, dynamic NMOS random access memory organized as 65536 one-bit words. The design is optimized for high-speed, high performance applications such as mainframe memory, buffer memory, peripheral storage and environments where low power dissipation and compact layout are required.
Multiplexed row and column address inputs permit the MB8265 to be housed in a standard 16 pin DIP. Pin-outs conform to the JEDEC approved pin out.

FEATURES

- 65,536 x 1 RAM, 16 pin package
- Sllicon-gate, Double Poly NMOS, single transistor cell
- Row access time:

150ns Max (MB8265-15)
200ns Max (MB8265-20)

- Cycle time:

270ns Min (MB8265-15)
330ns Min (MB8265-20)

- Low power.

275 mW Active, (MB8265-15)
248 mW Actlve, (MB8265-20)
28 mW Standby (Max)

- +5V Supply, $\pm 10 \%$ tolerance
- On chip substrate blas generator for high performance
- Three-state TTL compatible output

The MB8265 is fabricated using silicon gate NMOS and Fujitsu's advanced Double-Layer Polysilicon process. This process, coupled with single-transistor memory storage cells, permits maximum circuit density and minimal chip size. Dynamic circuitry is employed in the design, including the sense amplifiers.

Clock timing requirements are noncritical, and power supply tolerance is very wide. All inputs and output are TTL compatible.

- All inputs TTL compatible, low capacitive load
- "Gated" CAS
- 128 refresh cycles
- Pin 1 Refresh capability
- Common I/O capability using "Early Write" operation
- Output unlatched at cycle end allows extended page boundary and twodimensional chip select
- Read-Modify-Write, RAS. only refiresh, and Page-Mode capability
- On-chip latches for Addresses and Data-In
- Offers two variations of hidden refresh

MB8265-15/MB8265-20

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Voltage on any Pin Relative to V_{SS}	$\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\mathrm{OUT}}$	-1 to +7.0	V
Voltage on V_{CC} Supply relative to V_{SS}	V_{CC}	-1 to +7.0	V
Storage Temperature	$\mathrm{T}_{\mathrm{STG}}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Power Dissipation	P_{D}	1.0	W
Short Circut Output Current	IOS	50	mA

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

RECOMMENDED OPERATING CONDITIONS

(Referenced to $V_{S S}$)

Parameter	Symbol	Value			Unit	Temperature
		Min	Typ	Max		
Supply Voltage	V_{CC}	4.5	5.0	5.5	V	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
	$V_{\text {SS }}$	0	0	0	V	
Input High Voltage, all inputs	V_{IH}	2.4	-	6.5	V	
Input Low Voltage, all inputs	$\mathrm{V}_{\text {IL }}$	-1.0	-	0.8	V	

CAPACITANCE $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Value			Unit
		Min	Typ	Max	
Input Capacitance $A_{0} \sim A_{7}, D_{\text {IN }}$	$\mathrm{Cl}_{\text {IN1 }}$	-	-	5	pF
Input Capacitance RAS, CAS', $\overline{\mathrm{WE}}$, RFSH	$\mathrm{C}_{\text {IN2 }}$	-	-	8	pF
Output Capacitance DOUT	COUT	-	-	7	pF

STATIC CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Note*: ICC is dependent on output loading and cycle rates. Specified values are obtained with the output open.

DYNAMIC CHARACTERISTICS Notes $[1,2,3$
(Recommended operating conditions unless otherwise noted.)

Parameter Notes		Symbol	MB8265-20			MB8265-15			Unit	
		Min	Typ	Max	Min	Typ	Max			
Time between Refresh			$t_{\text {REF }}$	-	-	2	-	-	2	ms
Random Read/Write Cycle Time		t_{RC}	330	-	-	270	-	-	ns	
Read-Write Cycle Time		$t_{\text {RWC }}$	375	-	-	300	-	-	ns	
Page Mode Cycle Time		$t_{P C}$	225	-	-	170	-	-	ns	
Access Time from RAS 4	6	$t_{\text {RAC }}$	-	-	200	-	-	150	ns	
Access Time from CAS 5	6	tcac	-	-	135	-	-	100	ns	
Output Buffer Turn Off Delay		toff	0	-	50	0	-	40	ns	
Transition Time		${ }_{\text {t }}$	3	-	50	3	-	35	ns	
RAS Precharge Time		t_{RP}	120	-	-	100	-	-	ns	
$\overline{\text { RAS }}$ Pulse Width		$t_{\text {RAS }}$	200	-	10000	150	-	10000	ns	
RAS Hold Time		$t_{\text {RSH }}$	135	-	-	100	-	-	ns	
CAS Precharge Time (Page Mode Only)		t_{CP}	80	-	-	60	-	-	ns	
$\overline{\text { CAS Precharge Time (All Cycles Except Page Mode) }}$		$\mathrm{t}_{\mathrm{CPN}}$	30	-	-	25	-	-	ns	
$\overline{\text { CAS }}$ Pulse Width		tcas	135	-	10000	100	-	10000	ns	
$\overline{\text { CAS }}$ Hold Time		$\mathrm{tcSH}^{\text {che }}$	200	-	-	150	-	-	ns	
/ $\overline{\text { RAS }}$ to CAS Delay Time $\quad 7$	8	$\mathrm{t}_{\mathrm{RCD}}$	30	-	65	25	-	50	ns	
$\overline{\mathrm{CAS}}$ to $\overline{\mathrm{RAS}}$ Precharge Time		$t_{\text {cRP }}$	0	-	-	0	-	-	ns	
Row Address Set Up Time		$t_{\text {ASR }}$	0	-	-	0	-	-	ns	
Row Address Hold Time		$t_{\text {RAH }}$	20	-	-	15	-	-	ns	
Column Address Set Up Time		$t_{\text {ASC }}$	0	-	-	0	-	-	ns	
Column Address Hold Time		${ }_{\text {t }}$	55	-	-	45	-	-	ns	
Column Address Hold Time Referenced to $\overline{\mathrm{RAS}}$		$t_{\text {AR }}$	120	-	-	95	-	-	ns	
Read Command Set Up Time		$t_{\text {RCS }}$	0	-	-	0	-	-	ns	
Read Command Hold Time	10	$t_{\text {RCH }}$	0	-	-	0	-	-	ns	
Write Command Set Up Time	9	twCS	-10	-	-	-10	-	-	ns	
Write Command Hold Time		${ }^{\text {twCH }}$	55	-	-	45	-	-	ns	
Write Command Hold Time Referenced to $\overline{\mathrm{RAS}}$		$t_{\text {WCR }}$	120	-	-	95	-	-	ns	
Write Command Pulse Width		twP	55	-	-	45	-	-	ns	
Write Command to RAS Lead Time		$t_{\text {RWL }}$	80	-	-	60	-	-	ns	
Write Command to C̄̄S Lead Time		$t_{\text {cWL }}$	80	-	-	60	-	-	ns	
Data In Set Up Time		$t_{\text {DS }}$	0	-	-	0	-	-	ns	
Data In Hold Time		$t_{\text {DH }}$	55	-	-	45	-	-	ns	
Data In Hold Time Referenced to $\overline{\text { RAS }}$		$t_{\text {DHR }}$	120	-	-	95	-	-	ns	
$\overline{\text { CAS }}$ to $\overline{W E}$ Delay	9	tCWD	95	-	-	70	-	-	ns	
$\overline{\mathrm{RAS}}$ to $\overline{\mathrm{WE}}$ Delay	9	$\mathrm{t}_{\text {RWD }}$	160	-	-	120	-	-	ns	
Read Command Hold Time Referenced to $\overline{\text { RAS }}$	10	$t_{\text {RRH }}$	25	-	-	20	-	-	ns	
		$\mathrm{t}_{\text {FSR }}$	120	-	-	100	-	-	ns	
RAS to $\overline{\text { RFSH }}$ Delay		$t_{\text {RFD }}$	120	-	-	100	-	-	ns	
RFSH Cycle Time		$\mathrm{t}_{\text {FC }}$	330	-	-	270	-	-	ns	
$\overline{\text { RFSH }}$ Pulse Width		t_{FP}	200	-	-	150	-	-	ns	
$\overline{\text { RFSH }}$ Inactive Time		t_{FI}	120	-	-	100	-	-	ns	
$\overline{\text { RFSH }}$ to $\overline{\text { RAS }}$ Delay	11	$\mathrm{t}_{\text {FRD }}$	50	-	-	40	-	-	ns	
RFSH Hold Time	$11]$	$\mathrm{t}_{\text {FSH }}$	20	-	-	15	-	-	ns	
RFSH Address Set Up Time	11	$t_{\text {ASF }}$	0	-	-	0	-	-	ns	
$\overline{\mathrm{RFSS}}$ Set Up Time Referenced to CAS	11	$\mathrm{t}_{\text {FSC }}$	50	-	-	40	-	-	ns	

MB8265-15/MB8265-20

Notes:

1. An initial pause of $200 \mu \mathrm{~s}$ is required after power-up followed by any 8 RAS cycles before proper device operation is achieved. If internal refresh counter is to be effective, a minimum of 8 active RFSH initialization cycles required. The internal refresh counter must be activated a minimum of 128 times every 2 ms if the RFSH refresh function is used. The RFSH must be held at V_{IH} if the RFSH function is not used.
2. Dynamic measurements assume $\mathrm{t}_{\mathrm{T}}=5 \mathrm{~ns}$.
3. $\mathrm{V}_{\mathrm{IH}}(\mathrm{min})$ and V_{IL} (max) are reference levels for measuring timing of input signals. Also, transition times are measured between $\mathrm{V}_{\mathrm{IH}}(\mathrm{min})$ and $\mathrm{V}_{\mathrm{IL}}(\max)$.
4. Assumes that $t_{R C D} \leq t_{R C D}$ (max). If $t_{R C D}$ is greater than the maximum recommended value shown in this table, $\mathrm{t}_{\text {RAC }}$ will increase by the amount that $\mathrm{t}_{\mathrm{RCD}}$ exceeds the value shown.
5. Assumes that $\mathrm{t}_{\mathrm{RCD}} \geq \mathrm{t}_{\mathrm{RCD}}$ (max).
6. Measured with a load equivalent to 2 TTL loads and 100 pF .
7. Operation within the $t_{R C D}(\max)$ limit insures that $t_{\text {RAC }}($ max $)$ can be met. ${ }^{\prime} \mathrm{t}_{\mathrm{RCD}}$ (max) is specified as a reference point only; if $t_{R C D}$ is greater than the specified $t_{R C D}(\max)$ limit, then access time is controlled exclusively by tcac.
8. $\mathrm{t}_{\mathrm{RCD}}(\mathrm{min})=\mathrm{t}_{\mathrm{RAH}}(\mathrm{min})+2 \mathrm{t}_{\mathrm{T}}\left(\mathrm{t}_{\mathrm{T}}=5 \mathrm{~ns}\right)+\mathrm{t}_{\mathrm{ASC}}(\mathrm{min})$.
9. $t_{\text {WCS }}, t_{\text {CWD }}$ and $t_{\text {RWD }}$ are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If $t_{\text {wos }} \geq t_{\text {wos }}(\mathrm{min})$, the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout entire cycle.
If $\mathrm{t}_{\mathrm{CWD}} \geq \mathrm{t}_{\mathrm{CWD}}(\mathrm{min})$ and $\mathrm{t}_{\mathrm{RWD}} \geq \mathrm{t}_{\mathrm{RWD}}(\mathrm{min})$, the cycle is a read-write cycle and data out will contain data read from the selected cell. If neither of the above sets of conditions is satisfied the condition of the data out is indeterminate.
10. Either $t_{\text {RRH }}$ or $t_{\text {RCH }}$ must be satisfied for a read cycle.
11. $\overline{\text { RFSH }}$ counter test read/write cycle only.

TIMING DIAGRAMS

READ CYCLE

WRITE CYCLE (EARLY WRITE)

READ-WRITE/READ-MODIFY-WRITE CYCLE

PAGE-MODE READ CYCLE

PAGE-MODE WRITE CYCLE

"RAS-ONLY" REFRESH CYCLE
NOTE: $\overline{\operatorname{RFSH}}=\mathrm{V}_{\mathrm{IH}}, \overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}, \overline{\mathrm{WE}}=$ Don't Care

RFSH REFRESH CYCLE
NOTE: $\overline{\mathrm{CAS}}=\mathrm{V}_{\mathrm{IH}}, \overline{\mathrm{WE}}=$ Don't Care

HIDDEN " $\overline{\text { RAS }}$ ONLY" REFRESH CYCLE

HIDDEN RFSH REFRESH CYCLE

RFSH COUNTER TEST READ/WRITE CYCLE
Note: Dout is the waveform in Read-Modify-Write Cycles

DESCRIPTION

Address Inputs

A total of sixteen binary input address bits are required to decode any 1 of 65536 storage cell locations within the MB8265. Eight row-address bits are established on the input pins (A_{0} through A_{7}) and latched with the Row Address Strobe (즁). The eight column-address bits are established on the input pins and latched with the Column Address Strobe (CAS). All input addresses must be stable on or before the falling edge of RAS. CAS is internally inhibited (or "gated") by $\overline{\text { RAS }}$ to permit triggering of $\overline{C A S}$ as soon as the Row Address Hold Time ($t_{\text {RAH }}$) specification has been satisfied and the address inputs have been changed from row-addresses to column-addresses.

Write Enable

The read mode or write mode is selected with the $\overline{W E}$ input. A logic high (1) on WE dictates read mode; logic low (0) dictates write mode. Data input is disabled when read mode is selected.

Data Input

Data written into the MB8265 during a write or readwrite cycle. The last falling-edge of $\overline{W E}$ or $\overline{C A S}$ is a strobe for the Data In (D_{IN}) register. In a write cycle, if $\overline{W E}$ is brought low (write mode) before $\overline{C A S}, D_{I N}$ is strobed by CAS, and the set-up and hold times are referenced to CAS. In a read-write cycle, $\overline{W E}$ will be delayed until CAS has made its negative transition. Thus $D_{I N}$ is strobed by $\overline{W E}$, and set-up and hold times are referenced to $\overline{W E}$.

Data Output

The output buffer is three-state TTL compatible with a fan-out of two standard TTL loads. Data-out is the same polarity as data-in. The output is in a high impedance state until $\overline{\mathrm{CAS}}$ is brought low. In a read cycle, or a readwrite cycle, the output is valid after $\mathrm{t}_{\text {RAC }}$ from transition of $\overline{\text { RAS }}$ when $t_{\text {RCD }}$ (max) is satisfied, or after $t_{C A C}$ from transition of CAS when the transition occurs after $t_{\text {RCD }}$ (max). Data remains valid until CAS is returned to ahigh level. In a write cycle the identical sequence occurs, but data is not valid.

Page-Mode

Page-mode operation permits strobing the row-address into the MB8265 while maintaining $\overline{\text { RAS }}$ at a logic low (0) throughout all successive memory operations in which the row-address doesn't change. Thus the power dissipated by the negative going edge of $\overline{\mathrm{RAS}}$ is saved. Further, access and cycle times are decreased because the time normally required to strobe a new row-address is eliminated.

$\overline{\text { RAS }}$-Only Refresh

Refresh of the dynamic memory cells is accomplished by performing a memory cycle at each of the 128 row-addresses $\left(A_{0} \sim A_{6}\right)$ at least every two milliseconds. During refresh, either $V_{I L}$ or $V_{I H}$ is permitted for A_{7}. $\overline{R A S}$ only refresh avoids any output during refresh because the output buffer is in the high impedance state unless
$\overline{\mathrm{CAS}}$ is brought low. Strobing each of 128 row-addresses with RAS will cause all bits in each row to be refreshed. Further RAS-only refresh results in a substantial reduction in power dissipation.

$\overline{\text { RFSH }}$ Refresh

$\overline{\text { RFSH }}$ type refreshing available on the MB8265 offers an alternate refresh method: (1) When $\overline{\text { RFSH }}$ (pin 1) is brought low (active) during RAS (Pin 4) is high (inactive), on-chip refresh control clock generators and a refresh address counter are enabled and an internal refresh operation takes place. (2) When $\overline{\text { RFSH }}$ is brought high (inactive), the internal refresh address counter is automatically incremented in preparation for the next $\overline{\text { RFSH }}$ refresh cycle. Only $\overline{\text { RFSH }}$ activated cycles affect the internal refresh address counter.
The use of RFSH type refreshing eliminates the need of providing additional external devices to generate refresh addresses.

Hidden Refresh

Hidden Refresh Cycle may take place while maintaining latest valid data at the output by extending $\overline{\text { CAS }}$ active time from the previous memory read cycle.
The MB8265 offers two types of Hidden Refresh. They are referred to as Hidden RAS-Only Refresh and Hidden $\overline{\text { RFSH }}$ Refresh.

1) Hidden $\overline{\text { RAS}}$-Only Refresh

Hidden RAS-Only Refresh is performed by holding CAS at $V_{I L}$ and taking $\overline{R A S}$ high and after a specified precharge period (tRP), executing " $\overline{\mathrm{RAS}}$-Only" refresh, but with CAS held low. RFSH has to be held at V_{IH}.
2) Hidden $\overline{\text { RFSH }}$ Refresh

Hidden $\overline{\text { RFSH }}$ Refresh is performed by holding $\overline{\text { CAS }}$ at $V_{I L}$ and taking $\overline{\text { RAS }}$ high and after a specified precharge period (trRD), executing $\overline{\text { RFSH }}$ refresh, but with $\overline{C A S}$ held low.
A specified precharge period ($\mathrm{t}_{\mathrm{CPN}}$) is required before normal memory Read, Write or Read-Modify-Write cycle after performing either type of Hidden Refresh.

Refresh Counter Test Cycle

A special timing sequence provides a convenient method of verifying the functionality of the RFSH activated circuitry.

(A) $\overline{\text { RFSH }}$ Test Read/Write Cycle

When $\overline{\text { RFSH }}$ is given a signal in timing as shown in timing diagram of $\overline{\text { RFSH }}$ counter Test Read/Write Cycle, Read/Write Operation is enabled. A memory cell address (consisting of a row address (8 bits) and a column address (8 bits)) to be accessed can be defined as follows:
${ }^{*}$ A ROW ADDRESS - Bits $A_{0} \sim A_{6}$ are defined when contents of the internal address counter are latched. The other bit A_{7} is defined by latching a level on A_{7} pin during $\overline{\text { RFSH }}=$ " L " and RAS $=$ " H " (t $t_{\text {RFD }}$).
*A COLUMN ADDRESS - All the bits $A_{0} \sim A_{7}$ are defined by latching levels on $A_{0} \sim A_{7}$ pins in a high-to-low transition of CAS.

MB8265-15/MB8265-20

DESCRIPTION (Continued)

By using a 16-bit address latched into the on-chip address buffers by means of the above operation, any of 64 K memory cells can be read/written into/from.

(B) RFSH Test Read-Modify-Write Cycle

Also, Read-Modify-Write Operation (not only the above normal Read/Write Operations) can be used in this RFSH Counter Test Cycle.
(C) Example of Refresh Counter Test Procedure
(1) Initialize the internal refresh counter. For this operation, $8 \overline{\text { RFSH }}$ cycles are required.
(2) Write a test pattern of " 0 "'s into the memory cells at a single column address and 128 row addresses by using 128 RFSH Test Write Cycle or RFSH Test Read-Modify-Write Cycle. (At this time, A_{7} (row) must be fixed at " H " or " L ".).
(3) Verify the data written into the memory cells in the above step (2) by using the column address used in step (2) and sequence through 128 row address combinations $\left(A_{0} \sim A_{6}\right)$ by means of normal Read Cycle. (At this time, A_{7} (row) must be fixed at the same level as the above step (3).)
(4) Compliment the test pattern and repeat steps (2) and (3).

CURRENT WAVEFORM $\left(\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

TYPICAL CHARACTERISTICS CURVES

TYPICAL CHARACTERISTICS CURVES (Continued)

STANDBY CURRENT

REFRESH CURRENT 1

REFRESH CURRENT 1

PAGE MODE CURRENT

STANDBY CURRENT
vs SUPPLY VOLTAGE

REFRESH CURRENT 1
vs SUPPLY VOLTAGE

PAGE MODE CURRENT vs SUPPLY VOLTAGE

TYPICAL CHARACTERISTICS CURVES (Continued)

$T_{\text {A }}$, AMBIENT TEMPERATURE $\left({ }^{\circ} \mathrm{C}\right.$)

ADDRESS AND DATA INPUT

V_{Cc}, SUPPLY VOLTAGE (V)

REFRESH CURRENT 2
vs SUPPLY VOLTAGE

ADDRESS AND DATA INPUT VOLTAGE vs AMBIENT TEMPERATURE

TYPICAL CHARACTERISTICS CURVES (Continued,

TYPICAL SUPPLY CURRENT vS SUPPLY VOLTAGE DURING POWER UP

SUPPLY CURRENT vs SUPPLY VOLTAGE DURING POWER UP (ON MEMORY BOARD)

